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Abstract

This thesis aims to identify the potential and limitations of using Managed Pressure Drilling

(MPD) in deepwater fields where narrow and unpredictable mud weight windows are en-

countered. A significant effort has been done to understand the methods used to estimate

and verify the underground pressure and stress environment.

Some of the worlds largest conventional oil fields are located in the deep waters beyond the

continental shelves. As the industry engage in these highly productive and promising deep-

water fields, major obstacles are encountered during drilling which leads to high amounts

of costly Non-Productive Time (NPT). With unique challenges such as lost circulation,

narrow drilling windows and vast amounts of salt, there is a need for innovative techniques

to develop these fields in a safe and effective manner.

MPD is presented as a favourable solution to overcome challenges associated with uncertain

and narrow mud windows. Being able to control the annular pressure profile throughout

the wellbore and react to pressure fluctuations within seconds allows drilling to proceed

safely and uninterrupted, while keeping the operational problems to a bare minimum.

In addition to increased operational flexibility, MPD has shown positive effects on lost

circulation, which is a major well cost driver in conventional drilling.

A case study is conducted for a deepwater exploration well in the Gulf of Mexico. Based

on estimations of the pore and fracture pressure gradients, drilling programs are designed

for respectively conventional drilling, and the two MPD variants: Constant Bottom-Hole

Pressure (CBHP) and Controlled Mud Level (CML). Where the latter is a Dual Gradient

Drilling (DGD) approach. The deepwater well is then drilled with the planned drilling

programs and real pore and fracture pressure gradients. This case study shows the unique

flexibility MPD entails when deviations from the plan are encountered.
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Sammendrag

Denne oppgaven tar sikte p̊a å avklare potensialet og begrensningene boreteknikken “Man-

aged Pressure Drilling” (MPD) innehar i dypvannsfelt, hvor uforutsigbare og smale borevin-

duer ofte er tilstede. En betydelig innsats er lagt ned i å forst̊a de metodene som brukes

for å estimere samt verifisere det underjordiske trykk- og spenningsmiljøet.

Noen av verdens største konvensjonelle oljefelt befinner seg p̊a dypt vann utenfor kontinen-

talsoklene. Ettersom bransjen engasjerer seg i disse svært produktive og lovende dypvanns-

feltene, er store hindringer møtt under boring som medfører mye kostbar ikke-produktiv

tid. Med unike utfordringer som tapt sirkulasjon, smale borevinduer og store lag med salt,

er det behov for innovative teknikker for å utvikle disse feltene p̊a en sikker og effektiv

måte.

MPD er presentert som en gunstig løsning for å overvinne utfordringene knyttet til usikre

og smale borevinduer. Mulighetene for presis kontroll av trykket i annulus samt hurtig

reaksjon p̊a trykkforandringer åpner muligheten for at boringen kan fortsette trygt og

uforstyrret, samtidig som de operasjonelle problemene holdes p̊a et minimum. I tillegg til

økt operasjonell fleksibilitet, har MPD vist positive effekter p̊a tapt sirkulasjon, noe som

er en stor kostnadsdriver i konvensjonell boring.

En casestudie er gjennomført for en dypvannsbrønn i Mexicogolfen. Basert p̊a beregninger

av pore- og bruddtrykk er boreprogram designet for henholdsvis konvensjonell boring, og

de to MPD variantene: “Constant Bottom-Hole Pressure” (CBHP) og Controlled Mud

Level (CML), der den sistnevnte er en “Dual Gradient Drilling” (DGD) metode. Dyp-

vannsbrønnen er deretter boret med de planlagte boreprogrammene med reelle pore- og

fraktureringstrykk. Denne studien viser den unike fleksibiliteten MPD innehar n̊ar avvik

fra boreplanen oppst̊ar.
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Chapter 1

Introduction

A widely used expression states that the days of so-called “easy oil” are over, making it

more complicated and expensive to meet the worlds ever-increasing demand for oil and

gas. This reality was first acknowledged by the chairman and chief executive officer of

Chevron, David O’Reilly, whom in 2005 stated that “the era of easy oil is over [1].” Not

only are many of the existing fields experiencing a decline in production, he noted, but the

new discoveries are mainly occurring in places where they are difficult to extract. In the

attempt to meet the worlds increasing energy demand, the petroleum industry has been

“forced” into more remote and challenging environments such as offshore at great water

depths. As illustrated in Figure 1.1, early in the 2000s, oil production from deepwater

(300 - 1 500 meters) and ulta-deepwater (> 1 500 meters) reservoirs in the Gulf of Mecico

surpassed the production from shallow water (< 300 meters) reservoirs [1, 2].

Figure 1.1: Offshore oil production in the Gulf of Mexico per year (1 barrel = 159 litres)
[2].
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In the early 1990s, the oil industry discovered that huge amounts of oil and gas are resting

in the deep waters beyond the continental shelves. It is believed that as much as 7 % of

the worlds oil and gas resources are located in the deep offshore. That is approximately

340 billion barrels (54,1 billion m3) of oil equivalents which is sufficient to cover the global

consumption for roughly six to seven years [3, 4]. As of 2014, the service company Schlum-

berger states that: “Deep waters are among the most important and challenging exploration

and production frontiers today, the success of which offers a unique opportunity for adding

significantly to the worlds proven oil reserves [5].”

As the exploration and production (E&P) companies engage in these promising deepwater

and ultra-deepwater fields, they are encountering challenges that increase costs, NPT and

risk. Narrow mud weight windows, unstable boreholes caused by changes in pore and

fracture pressures, and reservoirs located beneath vast amounts of salt are among the

experienced issues. The mud weight window defines the maximum and minimum well

pressure that is acceptable during drilling, most commonly bound by the pore and fracture

pressure. A peculiar challenge encountered in deep waters is that this margin tends to

decrease with increasing water depth, commonly spoken of as narrow mud weight windows.

If the well pressure either exceeds or drops below the defined pressure margin, problems

related to kicks, lost circulation and unstable boreholes are experienced. Such incidents

may in a worst case scenario lead to blowout, that is, an uncontrollable flow of hydrocarbons

to the environment [6, 7].

The aforementioned challenges encountered in deep water drilling does often result in very

expensive wells. It is not uncommon for a deepwater well in the Gulf of Mexico (GOM) to

target a formation at 30 000 feet (9 145 meters) vertical depth. As illustrated in Figure

1.2, this is far deeper than some of the wells drilled on the Norwegian continental shelf. In

order to drill these wells in a safe en effective manner, innovative technology is required.

An exploration well in the deep waters of the Gulf of Mexico can typically cost from

100 to 200 million US dollars, and an exploration well may cost twice as much. The

aforementioned problems related to NPT contributes significantly to these costs in addition

to safety concerns. The industry is therefore seeking new techniques that are able to

mitigate these problems so that deep wells in deep waters can be drilled in a safe and

effective manner [8].

From a conventional point of view, drilling is conducted with an open-to-atmosphere drilling

fluid circulation system and with a single fluid gradient. However, the relatively modern

drilling technique Managed Pressure Drilling challenges this point of view. MPD utilizes a

closed-to-atmosphere drilling fluid circulation system and enables the bottom-hole pressure
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(BHP) to be kept constant during the entire drilling operation. In 2004, the International

Association of Drilling Contractors (IADC) defined MPD as: “‘An adaptive drilling process

used to precisely control the annular pressure profile throughout the wellbore [9].“ As stated

by IADC, MPD is an adaptive drilling process, meaning that MPD is able to handle and

control sudden underground pressure deviations in a safe and effective manner. MPD is

able to detect influx/losses at very small values and, through quick regulation of the BHP,

brings the situation effectively under control. This feature combined with a CBHP, enables

each section to be drilled longer prior to running casing/liner. The overall advantage of

MPD is increased drillability in narrow and uncertain pressure environments, increased

safety and reduced NPT. This gives reason to believe that several of the experienced is-

sues in deepwater drilling will be mitigated through the use of this technique rather than

conventional drilling [10].

Figure 1.2: Comparison between typical casing programs for respectively a well drilled
at Statfjord, Kristin and a typical deep well drilled in the deep waters of the GOM [8].

1.1 Scope of thesis

Prior to drilling, a mud weight window is constructed based on estimations of the under-

ground pressure and stress environments. There are, however, uncertainties related to these

estimates, and unpleasant “surprises” may therefore be encountered during drilling. The

purpose of this thesis is to investigate and elaborate on how MPD can be used to adapt to

these uncertainties, particularly in deep waters.
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My supervisor, John-Morten Godhavn, has provided estimated and real pore and fracture

pressure gradients for a deepwater exploration well in the Gulf of Mexico. First, based on

the estimated values, drilling programs are designed for respectively conventional drilling

and the two MPD variants: Constant Bottom-Hole Pressure and Controlled Mud Level.

Where the latter is a DGD approach. The well is then drilled, on paper, using the planned

drilling programs and real pore and fracture pressure gradients. When deviations are

encountered it will require the drilling program to be updated. A special focus are given

towards the additional flexibility offered by MPD when such deviations are encountered.

1.2 Outline of thesis

The outline of the thesis is as follow:

Chapter 2 Describes the importance of pressure control during drilling and explains
how the mud weight window is estimated prior to drilling and later upd-
ated by using real information during drilling.

Chapter 3 Discusses deepwater drilling and elaborates on the challenges and concer-
ns related to this.

Chapter 4 Describes the fundamentals of the various drilling techniques, but with a
special focus towards MPD and the advantages offered by the various M-
PD variants

Chapter 5 Contains a case study performed on a deepwater exploration well in the
Gulf of Mexico.

Chapter 6 Presents the final discussion of the thesis.

Chapter 7 Contains the concluding remarks of the thesis.

Appendix A Describes commonly used equipment in MPD.

Appendix B Presents an overview of the various DGD approaches and systems.

Appendix C Contains the details of the planned and actual drilling programs prese-
nted in the case study.



Chapter 2

Pressure control during drilling

A fundamental requirement for a safe and responsible drilling operation is proper control of

the wellbore pressure. The wellbore pressure must be sufficiently high to avoid a collapsed

borehole situation and/or unwanted influx of formation fluids, referred to as a kick. Mean-

while, the pressure in the wellbore must not exceed the maximum pressure the formation

is able to withstand. If this occur, fractures will be formed along the borehole wall and

drilling fluid will be lost to the formation, referred to as lost circulation. The pressure

conditions at which these incidents occur are commonly presented in a plot known as the

mud weight window, further discussed Section 2.1 [11, 12].

Until the early 1900s, drilling after hydrocarbons were conducted without any form of

pressure control whatsoever. The hydrocarbons encountered during drilling would flow

uncontrolled to the surface and lead to a blowout. An unwanted influx of formation fluid

is, as mentioned above, referred to as a kick. However, if the ability to control this influx

is lost and hydrocarbons are flowing with an uncontrollable rate towards the surface, the

situation has developed to a much more serious situation, namely a blowout. Such a

situation may potentially inflict large economic consequences, and in a worst case scenario

involve loss of human lives. The aforementioned drilling strategy in the early 20th century

caused several blowouts to occur, such as the Spindletop blowout on January 10, 1901.

On that day, it was reported in the morning news that a solid stream of Petroleum were

rising out of the earth, 200 feet (61 meter) into the air. The Spindletop well was flowing

uncontrolled for nine days before it was finally brought under control, leaking up to 100

000 barrels (15 900 m3) per day. A picture taken of the Spindletop blowout is presented in

Figure 2.1 [12, 13].
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Figure 2.1: The Spindletop blowout in 1901 [12].

The blowout incidents in the early 20th century functioned as an eye-opener for the in-

dustry regarding the importance of pressure control and safety during drilling, completion

and production operations. Weighted drilling fluids, and hence overbalanced drilling, was

invented to mitigate the occurrence of kicks/blowouts during drilling [12]. “It has been said

that Spindletop was where oil became an industry. Its impact had to be felt [13].”

2.1 Mud weight window

The mud weight window, occasionally referred to as the drilling operating window or the

drilling window, defines the maximum and minimum well pressure that is acceptable during

drilling. On the low side, the well pressure is bound by the formation-pore pressure, Pf , or

the collapse pressure of the formation, PCollapse. Whichever of them has the highest value

determines the lower well pressure margin. Whereas on the high side, the well pressure is

bound by the formation-fracture pressure, Pfrac. The well pressure, Pw, during drilling is

then governed by the following pressure boundaries [10, 11]:

Pf or PCollapse < Pw < Pfrac (2.1)
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Prior to drilling, a mud weight window is constructed based on estimations of the under-

ground stress and pressure environment. These estimations are then further used to plan

an optimal well design. The primary purpose of the planned well is to reach a certain

location of interest, either in the search for new hydrocarbon prospects or to ensure op-

timum drainage of an already discovered hydrocarbon zone. This entails that well design

primarily is governed by the well trajectory required to reach the location of interest. The

suggested well trajectory is then evaluated against the estimated mud weight window to

assess the drillability of the well. This enables an optimal drilling plan to be constructed

prior to drilling, aiming towards an economical and safe drilling operation [11].

Figure 2.2: Example of an estimated mud weight window for a planned well on the
Norwegian Continental Shelf. Courtesy of Statoil [11].

An estimated mud weight window is illustrated in Figure 2.2. The two black triangles seen

on the depth axis represents the casing shoe depths, and from respectively left to right

the lines are: estimated collapse pressure gradient (c), estimated pore pressure gradient

(p), planned mud weights gradient (m), estimated minimum horizontal stress gradient (h),

estimated fracture pressure gradient (f) and the estimated overburden stress gradient (v).
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A brief introduction about the underground stress regime is presented in Section 2.2. On

the figure, it is seen that from roughly 1 900 to 2 300 meter depth, the collapse pressure

gradient exceeds the pore pressure gradient. This implies that the lower pressure margin

is governed by the collapse pressure in this interval. It is seen that casing strings are set

when it becomes challenging/impossible to continue the drilling operation with the current

mud weight. The placed casing seals off and protects the upper part of the well, enabling

the mud weight to be increased and drilling to continue. This illustrates the two most

important features for a stable borehole: The ability to adjust the wellbore pressure and

the casing program [11].

During the drilling phase, there is a relatively high possibility of encountering unexpected

pore and fracture pressure, potentially resulting in influx/losses. If the pressure margin

allows it, a kick is handled by increasing the wellbore pressure and losses are handled

by decreasing the wellbore pressure. However, if the wellbore pressure is touching the

limits set by the mud weight window, this may trigger the need to cease drilling and run

casing/liner earlier than planned. This may cause challenges in reaching target depth,

especially if several sections has to be cased and secured earlier than planned. In order to

handle the unexpected pressure gradients in a safe manner, various verification methods

and drilling techniques has been developed, aiming to reduce the uncertainties and handle

the encountered deviations in a safe manner.

2.1.1 Pressure gradients

When pressures are related to mud density, it is customary to convert the pressure value

at a specific depth to a density value. This is often referred to as an equivalent mud weight

(EMW) or a pressure gradient, making the mud weight window more comprehensible:

EMW =
Pressure

g · TV D
(2.2)

where, in SI-units, EMW is noted kg/m3, pressure in Pa (pascal), g is the gravity constant

(9,81 m/s2) and TVD is the total vertical depth in meters.

2.1.2 Well killing

The content in this section is taken from a previous paper written at NTNU in the unit

“TPG 4140 Naturgass” [14]. When a kick is experienced, it is important to take action to

prevent further loss of control of the well. For drillers it is important to be able to predict

gas behavior, as small volumes of gas can potentially be dangerous because of the huge

expansion.
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Provided that the maximum allowable annular surface pressure (MAASP) is larger than

the shut-in casing pressure (SICP), then killing the well is the standard procedure. The

MAASP value determines the maximum pressure that can be applied from the surface

before exceeding the fracture pressure at the casing shoe. When a kick is experienced, the

well is shut in (the blow out preventer (BOP) is closed) and the annular surface pressure

is read. In order to kill a well, a new overbalance in the borehole must be restored.

Pumping drilling mud with higher density restores this overbalance. There exists a number

of different killing methods, but the two main killing-methods used in the industry are:

• Driller’s method : The formation fluid is displaced before injecting the kill mud. This

is the most common method of restoring an overbalance after a kick has been detected.

• Engineer’s method, alternatively called the wait and weight method : Kill mud is

pumped into the well immediately and the formation fluids are circulated out of the

wellbore.

2.2 Underground stresses

Stress acting on a material is defined as force over area (σ =
F

A
) and is commonly divided

into a perpendicular and parallel stress vector. Respectively normal stress, σn, and shear

stress, τ . This is illustrated in Figure 2.3 [15].

Figure 2.3: Shear- and normal stress acting on a 1-dimensional plane [15].

For special orientations of the coordinate system, the stress state can be expressed in a

particularly simple form. This occurs when the coordinate system is oriented θ degrees so

that the shear stress vector vanishes. The total stress is then equal to the normal stress,
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which for this unique situation is referred to as principal stress, σi. This is illustrated for

a one-dimensional system in Figure 2.4 [15].

Figure 2.4: Illustration of principal stress [15].

The same principle applies in a three-dimensional system, such as the underground. The

difference being that the stress state is expressed by three principal stresses as opposed

to one. In the underground, these three principal stresses are called vertical stress, σv,

maximum horizontal stress, σH , and minimum horizontal stress, σh. Where the normal

case is that σv > σH > σh. The principal stresses acting on a vertical wellbore is illustrated

in Figure 2.5 [15].

Figure 2.5: Underground stresses acting on a vertical wellbore.
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2.2.1 Vertical stress

The vertical stress is fairly straightforward to estimate, whereas the two horizontal stresses

are slightly more complex. At a certain vertical depth, the vertical stress component is

estimated as follows [15]:

σv = Povb =

TV D∫
0

ρ · g · TV D dTV D (2.3)

where Povb is the overburden pressure and ρ is the overburden rock density. It is seen by

Equation 2.3 that the vertical stress at a particular point in the underground is solely given

by the densities of the overburden rocks [15].

2.2.2 Horizontal stress

The two horizontal stresses are also to a great extent determined by the overburden pres-

sure. However, as rocks has the ability to resist shear stresses, the three principal stresses

are commonly not of equal magnitude. Mainly caused by tectonic movement which induces

tectonic stresses in the underground. For simplicity, the maximum horizontal stress is often

assumed equal to the minimum horizontal stress, that is, σH = σh. This is often the case

because no straightforward method exists for accurate determination of σH . Estimation

and verification of the minimum horizontal stress is further discussed in Sections 2.4.2 and

2.4.3 [15].

2.3 Pore pressure

The pore pressure contained within a saturated formation is directly related to its burial

depth. Increased burial depth implies increased overburden pressure, which in turn, leads to

compaction of the sediments within the formation. If fluids are expelled from the saturated

formation with the same rate as the rate of compaction, a normal pore pressure gradient

will develop. That implies that the pore pressure is solely determined by the hydrostatic

head of fluid, most commonly saline water. However, if the rate of compaction is higher

than the rate of fluid expulsion, a higher-than-normal pore pressure is established, referred

to as abnormal pore pressure. Abnormal pore pressure may also be induced by tectonic

movement, pore fluid generation or expansion by a thermal or chemical process. A typical

pore pressure versus depth plot is illustrated in Figure 2.6. The depth scale on this plot is

in meters [11].



12 Chapter 2. Pressure control during drilling

Figure 2.6: Typical formation-pore pressure development in a sedimentary basin [16]

If an abnormally pressured zone is encountered unprepared during drilling, the outcome

may potentially be catastrophic. Problems related to collapsed boreholes, kicks, lost cir-

culation and stuck pipe may be experienced. In an attempt to battle the formation fluid

influx, the first response of the driller may be to increase the mud weight, as was discussed

in Section 2.1.2. This may potentially stop the influx, but at the same time induce a risk of

exceeding the fracture pressure further up in the wellbore. If the driller is unable to bring

this situation under control, it may develop to a blowout. From a safety and economical

point of view, accurate prediction and verification of the pore pressure is therefore a key

parameter, enabling a safe drilling operation and optimal well design [11, 16].

2.3.1 Pore pressure prediction

A predrill estimate of the underground pore pressure environment can be obtained from

seismic surveys. A seismic survey is performed by generating acoustic waves at the surface

and then transmitting them with a high speed through the earth’s upper crust. As the

waves are passing through the underground, a large amount of echoes are created. At the

surface, several acoustic receivers are mounted to record the wave velocity of the reflected

echoes, which primarily are used to map the structure of the underground. This information

can also be used to make a predrill estimate of the subsurface pore pressure environment

[11].

Eaton’s method from 1975 is the most frequently used method for making estimation of

the pore pressure based on acoustic wave velocity. The method derived by Eaton is an
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improvement of Hottman and Johnson’s method of equivalent depth, proposed in 1965.

Both of these methods rely upon Terzaghi’s effective stress principle from 1925. Terzaghi

defined the effective stress in a given direction, σ′i, to be equal to the total stress in the

same direction, σi, minus the support from pore fluid pressure, Pf [17]:

σ′i = σi − Pf (2.4)

Eaton’s method is based on Terzaghi’s principle in the vertical direction:

σ′v = σv − Pf (2.5)

As was defined by Equation 2.3, the vertical stress at a certain vertical depth is equal to

the overburden pressure. The pore fluid pressure at a given vertical depth can then be

expressed as:

Pf = Povb − σ′v (2.6)

In 1975, Eaton defined the pore pressure to be a function of the overburden pressure, the

hydrostatic normal pore pressure and the ratio between the observed versus normal acoustic

wave velocity. The following relationship is known as Eaton’s equation [17]:

Pf = Povb − ((Povb − Pnormal)(
∆tnormal

∆t
)3) (2.7)

where Pnormal is the normal pore pressure at the point of interest, ∆tnormal is the normal

acoustic wave velocity in m/s and ∆t is the actual acoustic wave velocity. The subscript

normal refers to the trend line the sonic log would follow in normally pressured environ-

ments. This normal trend is established by comparing log data from various wells in areas

where the mud weight indicates a normal pore pressure gradient [17]. This is however not

a straightforward process and, as Eaton said it: ”The methods used to establish normal

trends vary as much as the number of people who do it [17].”

When seismic measurements are used to predict the underground pressure environment,

one have to bear in mind that there are uncertainties related to the obtained values. This

uncertainty increases rapidly with increasing distance from a known control point such as

a well log. Basically, this means that if drilling is to be conducted in an unknown area,

such as often is the case during exploration drilling, the obtained values may be quite

uncertain. However, if the well is to be drilled in a well-known area, such as for a field

in production, the uncertainties are less substantial, as information from known control

points are available. It is important to determine and take these uncertainties into account

prior to a drilling operation. This will provide a better understanding of the potential
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challenges that may be encountered during drilling, and enables a more informed drilling

plan to be constructed. A case study, conducted in the Green Canyon in the Gulf of Mexico,

regarding the uncertainties in the estimated mud weight widow is illustrated in Figure 2.7.

This figure represents the P10-P50-P90 ranges for both pore and fracture pressure gradients

which are obtained through Eaton’s method. P10, P50 and P90 means that the chance of

encountering a lower pore pressure than these values are respectively: 10 %, 50 % and 90

%. Hence, the chance of encountering a pore pressure between the P10 and P90 values are

80 % [18].1 Estimation of the fracture pressure is discussed in Section 2.4.2.

Figure 2.7: P10-P50-P90 values for pore and fracture pressure gradients [18].

2.3.2 Pore pressure verification

Various methods has been developed to provide measurements and real-time information

about the pore pressure during drilling. If the measured pore pressure strongly deviates

from the predicted pore pressure, it entails that a non-optimal mud weight is being used.

This may potentially cause losses/influx to occur which may trigger the need to adjust

the mud weight and/or running the casing/liner earlier than planned. The following tech-

niques/properties are commonly used to verify the pore pressure during drilling [16]:

1John-Morten Godhavn, personal communication (e-mail), 15.04.2014.
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• Measurements while drilling (MWD)

• Rate of penetration (ROP)

• Mud properties

Measurements while drilling

In the later years, MWD has more or less replaced wireline logging, especially in expensive

offshore wells. A challenge with wireline logging is that logging cannot be commenced

before drilling of a section has been completed. As a result, the information obtained from

the logs are available long after the formations were actually drilled through. With the

MWD technology however, information is obtained almost instantaneous through pressure

pulses in the returning drilling fluid. The MWD tool, positioned approximately 15 meters

above the bit, is used to gather information such as pore pressure, well trajectory, mud

temperature and well pressure (referred to as pressure-while-drilling (PWD)). Real-time

pore pressure data provided by a MWD tool is based on the same principle as pore pressure

prediction from seismic data, that is, Eaton’s method. Eaton did, in addition to Equation

2.7, also derive relationships between pore pressure and respectively resistivity and the

dc-exponent [16, 17]:

Pf = Povb − ((Povb − Pnormal)(
R

Rnormal

)1,2) (2.8)

Pf = Povb − ((Povb − Pnormal)(
dc

dc,normal

)1,2) (2.9)

where R is the actual measured resistivity and dc is the dc-exponent (a drilling parameter

discussed below). Hence, pore pressure information can be obtained through either a sonic

log, a resistivity log or through the dc-exponent. This provides more accurate information

than the predictions obtained through seismic as the travel length of the waves are much

shorter. The subscript normal refers to the trend lines the different input logs would follow

in normally pressured environments [17].
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Rate of penetration/d’exponent

The rate of penetration during drilling is governed by the following parameters [16]:

• Rock properties

• Bottom hole cleaning

• Bit weight

• Rotary speed

• Fluid properties

• Bit type

• Bit wear

• Differential pressure between the

wellbore and the formation

The ROP is strongly related to the difference between pore and wellbore pressure. This

implies that if the other parameters are kept more or less constant, a change in pore pressure

will have an immediate effect on the ROP. The higher the differential pressure is between

the well and the formation (Pw − Pf ), the lower the ROP is, meaning that an increase in

pore pressure causes the ROP to increase (provided that the mud weight is kept constant).

This relationship is illustrated in Figure 2.8 [16].

Figure 2.8: ROP VS. ∆P at wellbore bottom [16].

The d’exponent is a way of normalizing the ROP to extract information about the drilla-

bility and hardness of the formation. The following relationship was developed by Jordan

and Shirley in 1966 [17]:

d =
log

ROP

60 ·RPM
log

12 ·WOB

106 · dbit

(2.10)
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where d represents the deviation in ROP induced by the differential pressure between the

wellbore and the formation, RPM is the rotary speed (revolutions per minute), WOB is

weight on bit and dbit is the bit diameter. As for many other parameters, drilling rate

will decrease with depth due to higher compaction, meaning that the normal trend line for

the d’exponent follows the normal compaction trend line. During drilling, real-time pore

pressure is estimated by comparing the measured d’exponent versus the normal d’exponent.

It was suggested by Rehm and McClendon in 1971 to use the dc-exponent rather than the

d’exponent. They corrected the d’exponent to also include variations in drilling fluid density

[16, 17]:

dc = d · Normal pressure gradient
ρm

(2.11)

where ρm is the drilling fluid density. A plot illustrating how the dc-exponent is used to

provide real-time pore pressure information is presented in Figure 2.9. It is seen that a

deviation from the normal trend occurs at the point marked Departure from trend line,

causing the pore pressure gradient to increase from roughly 1,1/1,2 kg/l to 1,4/1,5 kg/l. 1

kg/l is equal to 1 000 kg/m3.

Figure 2.9: Relationship between the dc-exponent and pore pressure [16].
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Mud properties

An early warning of increased pore pressure can be detected by measuring the gas content

and temperature of the returning mud. A permeable, abnormally pressured, gas-bearing

formation can be detected if the overlying sealing rocks contains gas and this is measured

in the returning drilling fluid. The gas has been present in the underground for millions

of years, making it reasonable to assume that a small portion of it has migrated up into

the overlying low-permeable rocks. When the overlying rocks are drilled through, gas will

follow the returning drilling fluid and, if measured, function as an early warning of the

abnormally pressured gas-bearing formation located beneath [16].

Regarding the measured mud temperature, it has been found that low compaction (which

is the case for abnormally pressured zones as the trapped fluids hinders further compaction

of the sediment) implies low thermal conductivity. Meaning that an abnormally pressured

zone will function as an isolator, causing the temperature in the overlying layers to be

lower than anticipated as illustrated in Figure 2.10. This implies that if the measured mud

temperature is lower than expected, an abnormally pressured zone may be encountered

[16].

Figure 2.10: Relationship between pore pressure and temperature [16].

2.4 Borehole failure

Borehole failure is a result of rock deformation and rock failure around the borehole, caused

by the alterations inflicted on the underground during drilling. The consequence of borehole

failure is normally a deformed borehole of some kind. However, it is important to note that

such deformations not necessarily are dramatic from a drilling point of view. The term

borehole failure is therefore not synonymous with a lost well [11].
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When an underground formation is penetrated during drilling, it involves that rocks are

crushed, removed and replaced by drilling fluid. Hence, after drilling, the borehole wall is

only supported by the pressure exerted from the drilling fluid. This pressure is, however,

rarely equal to the in-situ formation pore pressure. According to Terzaghi’s principle does

this entail that the effective stress regime acting on the borehole has been altered. When

a rock is exposed to a certain amount of force/stress, it will experience deformation and

eventually failure of some kind. Rock failure induced during drilling is either a result of

shear or tensile failure. Shear failure occur at low well pressures, resulting in breakouts in

the borehole wall, and tensile failure occur at high well pressures, resulting in fractures.

An illustration of the direction for these two failure principles in a vertical borehole are

presented in Figure 2.11. Since tensile failure occurs at high well pressure and shear failure

at low pressure, these two failure modes are normally not observed at the same depth. This

may, however, be the case if the wellbore has been subjected to large variations in pressure

[10, 11, 15].

Figure 2.11: Illustration of shear and tensile failure around a vertical borehole [11].

2.4.1 Collapse pressure

A collapsed borehole occurs if the formation near the borehole fails mechanically due to

shear failure (occasionally caused by tensile failure), generally leading to a reduced borehole

diameter. The collapse pressure is then equal to the pressure at which shear failure will

occur. A rock will suffer shear failure if the shear stress along a plane is sufficiently high,

resulting in the development of a fault zone. Several methods exist for estimation of shear

failure, such as the Tresca criterion, the Mohr-Coulomb criterion, the Griffith criterion and

the Hoek-Brown criterion. The most general and frequently used criterion is the Mohr-

Coulomb criterion, which for shear failure is expressed as [11, 15]:
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σ′1 = C0 + σ′3tan
2β (2.12)

where σ′1 and σ′3 are respectively the maximum and minimum effective stress. If the right

hand side of the equation is equal to or larger than the maximum effective stress, then

shear failure will occur, potentially leading to a collapsed borehole. When referring to the

normal underground stress environment, the Mohr-Coulomb criterion becomes:

σ′v = C0 + σ′h · tan2β (2.13)

where C0 is the uniaxial compressive strength, which is the maximum stress a material

is able to withstand without loosing its strength, and β is the failure angle caused by

shear failure. Laboratory measurements of sand and sandstone has shown that the failure

angle typically lies in the range of 550 − 700. A plot referred to as Mohr’s circle is often

used to graphically illustrate the Mohr-Coulomb criterion, illustrated in Figure 2.12. The

increasing linear line seen on the figure is the failure line. If a rock holds combinations of

τ and σ′ located at or above this line, then shear failure will occur for these values. The

parameter S0 seen on the figure is the inherent shear strength (also known as cohesion) of

the material whereas the parameters ϕ (angle of internal friction) defines the angle of the

failure line. The following relationship applies between ϕ and β [11, 15].

ϕ+
π

2
= 2β (2.14)

Figure 2.12: The Mohr-Coulomb criterion illustrated in τ−σ′ space, the increasing linear
line is known as the failure line [11].
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Fjær et.al. 2008 argues that the risk of mechanical hole collapse increases if:

• The formation strength is low

• The failure angle is low, often encountered in shale where β is 50o - 55o.

• The pore pressure is high, often the case in the cap rock above the reservoir.

2.4.2 Fracture pressure

A rock will suffer tensile failure if the wellbore pressure exceeds the sum of the minimum

horizontal stress and the tensile strength of the rock, T0. In drilling language, the pressure

at which tensile failure occur is commonly referred to as the fracture pressure, which is

equal to [11, 16]:

Pfrac = σh + T0 (2.15)

A rocks tensile strength defines the maximum tension it can withstand before it parts.

“Most sedimentary rocks have a rather low tensile strength, typically only a few MPa or

less. In fact, it is a standard approximation for several applications that the tensile strength

is zero [11].“ This is typically the case if the formation contains natural fractures. A good

practice during drilling is therefore to keep the wellbore pressure below the minimum

horizontal stress to avoid fracturing the formation.2 The fracture pressure can then be

considered as approximately equal to the minimum horizontal stress [11, 15]:

Pfrac ≈ σh (2.16)

In 1982, Breckels and van Eekelen published various empirical relationships between min-

imum horizontal stress and vertical depth, derived for the U.S Gulf Coast, Venezuela and

Brunei. The relationships are based on empirical data, gathered from hydraulic fracture

operations. In addition to depth, the derived relationships also takes abnormal pore pres-

sure into account. Breckels and van Eekelen concluded that the relationship derived for

the U.S Gulf Coast also suits other normally pressured and tectonically relaxed areas such

as the North Sea [11, 19]:

σh = 0.0053D1.145 + 0, 46(Pf − Pnormal) (Depth < 3500 m) (2.17)

σh = 0.0264D − 31, 7 + 0, 46(Pf − Pnormal) (Depth > 3500 m) (2.18)

2John-Morten Godhavn, personal communication (e-mail), 14.01.2014.
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where D is the vertical depth in meters, Pf is the formation-pore pressure (can be predicted

with Eaton’s equation) in MPa (megapascal), Pnormal is the normal formation-pore pressure

(corresponding to a gradient of 10.5 MPa/km) and σh is the minimum horizontal stress in

MPa. The relationships presented above were developed at zero or shallow water depths.

According to Fjær et.al. 2008, it is experienced that these relationships provide fairly good

estimates for depths down to about 3 500 meters and in water depths of up to 300 meters.

If the water depth is above 300 meter, predictions of σh with these relationships should be

avoided [11].

It is quite difficult to determine the fracture pressure accurately prior to drilling, especially

if little or no information is available from previous wells in the area. The relationships

presented by Breckels and van Eekelen may provide reasonable estimates, but should always

be correlated and/or calibrated against known test data and fracture tests (discussed below)

performed during drilling [11].

2.4.3 Fracture tests

The only fully reliable method for accurate determination of the minimum horizontal stress

is achieved by pressurizing the formation until it fractures, and then record the pressure

at which the fracture closes. Several downhole test methods utilize the idea of applying

pressure on the formation, such as the Leak-Off Test (LOT), the Extended Leak-Off Test

(XLOT) and the Formation Integrity Test (FIT). Of which, the XLOT is the only one that

enables the minimum horizontal stress to be determined accurately [11].

The purpose of a LOT is to determine the maximum well pressure that can be applied

in the next section, without fracturing the formation and experience loss of drilling fluid.

After a casing has been run and cemented in place, the casing shoe is drilled out and a

few meters of the new formation is penetrated. Pressure is then applied from the surface,

performed by pumping fluid with a constant rate, until fluids begin to enter the formation

below the casing shoe. As pumping is performed with a constant rate, loss of fluid is

detected when the pressure response begins to deviate from the expected linear line. This

point is seen as the Leak-Off Pressure (LOP) in Figure 2.13. A LOT is normally ceased

shortly after this deviation is encountered and the LOP is used as the upper design value

for the mud density in the next section [11].

However, the LOP is not necessarily directly related to the minimum horizontal stress. If

the purpose is to determine this stress, then pumping must be continued beyond the LOP

and until a stable fracture propagation pressure (FPP) is achieved. This has led to the so-

called Extended Leak-Off Test. When a stable FPP is obtained, pumping is ceased and the
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minimum horizontal stress is determined by monitoring the shut-in phase and the flowback

phase of the fluid, locating the Fracture Closure Pressure (FCP) ∼ σh. An illustration of

an XLOT test is presented in Figure 2.13 [11].

When several wells has been drilled in a field, it is quite common to perform Formation

Integrity Tests rather than Leak-Off Tests. A FIT is conducted by increasing the wellbore

pressure up to a predefined level which is considered sufficiently high for drilling of the next

section. This implies that this test normally ends in the linear part prior to reaching the

LOP. A FIT can therefore not be used for stress determination, but it provides very useful

information with respect to the upper well pressure that can be applied in the next section

[11].

Figure 2.13: Illustration of an Extended Leak-Off Test. Modified after reference [11].





Chapter 3

Deepwater drilling

When drilling is conducted in deep waters rather than in shallow waters, a markedly change

in conditions is experienced. Not only does the water depth increase, but the sea bottom

and geology becomes more complex as well. On the continental shelf in shallow water

depths, there is generally a continuous deposition of sand and shale. As the water depth

increases beyond the continental shelves, the depositional environment changes and can be

largely dominated by turbidites. Turbidites are sediments that are deposited episodically

during underwater avalanches. This can create thick layers of very well sorted sand, yielding

attractive reservoir properties such as high porosity and high permeability. These properties

make turbidites some of the best oil and gas reservoirs with high production rates [20].

In the early 1990s, the petroleum industry discovered that huge amounts of hydrocarbons

are located beyond the continental shelves. In pursuit of these resources, drilling contractors

and engineers faced technological challenges unlike any previously experienced. “They

took on an operating environment nearly as foreign to them as deep space had been to

aeronautical engineers in the 1950s [4].” Due to the complexities of drilling in deep waters,

developing a major deepwater oil field can cost a tremendous amount of money, greatly

exceeding the cost of a shallow water development. To justify such developments from

an economical point of view, highly productive reservoirs and high-productivity wells are

required. This makes deepwater turbidite reservoirs an ideal target. A productive shallow

water well typically produce at rates of a few thousand barrels (1 barrel of oil is equivalent to

159 litres) of oil per day. Deepwater wells however, are able to produce at rates exceeding 10

000 barrels of oil per day. The high productivity experienced in deepwater reservoirs is not

only a product of favourable geology, it is also a reflection of the abnormally high pressures

often encountered deep below the surface. As illustrated in Figure 3.1, the majority of the

worlds proven and unproven deepwater reserves are located in North America (northern

part of Gulf of Mexico), South America (Brazil) and Africa (west Africa) [4, 20].
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Figure 3.1: Worlds deepwater proven and unproven reserves as of 2009 [3].

3.1 Deepwater challenges

Drilling in deep waters are commonly considered more challenging than drilling in shallow

waters due to [4]:

• Narrow mud weight windows

• High variations in temperature.

• Reservoirs occasionally located beneath vast amounts of salt.

As illustrated in Figure 3.1, a substantial amount of the deepwater reservers in respec-

tively the Gulf of Mexico and Brazil are located beneath vast amounts of salt, referred

to as subsalt. Before the intensified interest in drilling through salt arose, best practice

among drilling engineers were considered to avoid such zones. Salt tends to move in the

underground, forming an unstable rubble zone at the salts base and sides. One of the most

critical concerns occur when the salt zone is exited and the rubble zone entered. This be-

cause it is highly difficult to predict the pore pressure, fracture pressure and the extent of

natural fractures below the base of the salt. An overview of the average NPT experienced

in shallow water and deepwater wells are presented in Table 3.1. The information presented

are based on wells drilled in the Gulf of Mexico between 2004 and 2010. It is seen that
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the deepwater wells targeting subsalt formations were the most time-consuming to drill,

considerably associated with the high amounts of NPT induced by: kicks, lost circulation,

stuck pipe and borehole instability [4, 7].

Table 3.1: Average percentage for NPT caused by kicks, lost circulation, stuck pipe and
borehole instability for shallow and deepwater wells [7].

Cause of NPT 263 non-subsalt wells 99 non-subsalt wells 65 subsalt wells
WD < 600ft (180m) WD > 3000ft (910m) WD > 3000ft (910m)

% of total drill time % of total drill time % of total drill time

Kick 1,2 % 0,8 % 1,9 %
Lost circulation 2,3 % 2,0 % 2,4 %
Stuck pipe 2,2 % 0,7 % 2,9 %
Borehole instability 0,7 % 0,9 % 2,9 %
Other 5,6 % 12,6 % 19,9 %
Total NPT 12,0 % 17,0 % 30,0 %

Average days to drill 35 days 54 days 97 days

3.1.1 Narrow mud weight window

When drilling is conducted below deep water depths, the high column of water above the

seabed causes both the collapse and fracture pressure gradients to be reduced. As pointed

out in Section 2.1.1, it is customary to convert pressure values at a specific depth to density

values. When a wellbore is drilled offshore, this specific depth is given by the sum of the

water depth, Dw, and the depth measured from the seabed, Dformation, which yields the

following expression:

EMW =
Pressure

g · (Dformation +Dw)
(3.1)

The pressure at which a formation will suffer failure, either collapse or fracturing, is given

by the sum of the corresponding failure pressure in absence of water, Pi, and the hydrostatic

head of water, Pwater. In terms of EMW this yields [11]:

EMWi =
Pi + Pwater

g · (Dformation +Dw)
(3.2)

where the subscript i refers to the condition at which either collapse or fracturing occur.

As previously discussed, the pore pressure gradient is determined by the overlying hydro-

static head of fluid (provided normal pressure conditions), and is therefore not affected by

increasing water depth. At the seabed (Dformation=0), this implies that the mud weight

window is non-existent as the fracture, collapse and pore pressure gradients are given by
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the water density. At shallow depths below the seabed, the effect of water depth still domi-

nates. This causes the collapse and fracture pressure gradients to be lower than they would

have been if drilling took place onshore, or in shallow water for that matter. The effect

water depth has on the mud weight window is illustrated in Figure 3.2. Reaching target

depth under such conditions, with the technology available in the early days of deepwater

drilling, often required a high amount of casing stings to be run. This often resulted in a

very small production string diameter, and hence, the produced volumes were generally too

small to be justified from an economical point of view. As of today, new drilling techniques

and approaches has been developed, aiming to overcome the problems experienced when

drilling in narrow deepwater mud weight windows. This is further discussed in Chapter 4

[4, 11].

Figure 3.2: Mud weight window in shallow water compared to deep water [21].

3.1.2 Temperature variations

Drilling and completion fluids used in deepwater drilling are exposed to a roller coaster of

temperature variations. In pursuit of fluids able to handle such conditions, the oil industry

chemistry has been pushed to its limit. The fluids experiences everything from surface

temperature at the rig, near-freezing conditions at the seabed, and reservoir temperature

at target depth. In time, new drilling and completion fluids has been developed which are

able to operate under such conditions [4].

Similarly, produced reservoir fluids are also exposed to these extreme temperature varia-

tions. Reservoir fluid flows up to the wellhead, which is bathed in freezing waters, and is
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further transported through several kilometres of ocean-bottom flowlines. This may cre-

ate flow-assurance problems, especially if the production suddenly stops and the fluids are

cooled down to freezing conditions. When gas and water are mixed at a relatively high pres-

sure and low temperature, gas hydrates may form, illustrated in Figure 3.3. Gas hydrates

are solid ice-like structures containing gas molecules. This may potentially cause subsea

equipment and/or pipes to become clogged and cause flow-assurance problems. Such prob-

lems can be avoided through heated flowlines. In the event of planned stop in production,

antifreeze liquid can be injected into the pipeline [4, 14].

Figure 3.3: Gas hydrate phase diagram [14].

3.1.3 Drilling through vast layers of salt

The task of drilling into these deepwater reservoirs became even more daunting when it was

discovered that they are often buried beneath vast layers of salt. As illustrated in Figure

3.4, deepwater salt formations are present in areas targeting deepwater reservoirs such as

the Gulf of Mexico, Brazil and West Africa [4].

From a conventional point of view, drilling through salt is considered a risky business,

mainly due to its unique characteristics. As opposed to other solid materials, salt remains

a relatively low density even after burial. This entails that salt sheets tend to be less

dense than formations located above and below. If the overlying sediments provide little

resistance against salt migration, then salt rises. This movement generates an unstable
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Figure 3.4: Potential exploration targets buried beneath vast amounts of salt (marked
white) [4].

rubble zone below and at the sides of the salt, which is difficult to model. When salt is

drilled through, one of the most critical concerns occur when the salt is exited and the

rubble zone entered. It is highly difficult to predict the pore pressure, fracture pressure

and the extent of natural fractures below the salt, making pressure control a critical issue

when exiting the salt. When seismic waves encounter salt, they travel with a higher velocity

than in surrounding non-salt formations. Surface seismic surveys have therefore historically

provided only poor images below or near a salt structure. This leaves considerable margin

for error in estimating the properties of the salt itself and the formations located beneath.

Therefore, extreme care must be taken when exiting the salt layer. The mud pit volume

must be continuously checked to monitor for gains or losses. A gain indicates a kick

whereas losses indicate lost circulation. After the base of the salt has been breached,

drilling is continued with a low ROP and a continuous focus towards losses/kicks and

borehole instability. The consequences of lost control at this point may potentially be

catastrophic, including loss of wellbore [4].

Penetrating salt during drilling presents a unique challenge. Under a continuous constant

stress, salt deforms significantly as a function of time. This effect is known as creep, and

allows salt to flow into the wellbore and replace the salt that previously has been removed

by the drill bit. Salt creep may occur quickly enough to cause the drill pipe to become stuck,

and the situation may be so severe that the operator is forced to either sidetrack or abandon

the well. For salt formations, the in-situ stresses are assumed equal in all directions and

only governed by the overburden pressure. The rate at which a wellbore closes due to salt

creep, increases with increasing temperature and difference between the wellbore pressure

and formation stress. Chloride and sulphate salts containing water are most prone to
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creep, whereas halite moves relatively slow and anhydrite and other carbonate evaporates

are considered immobile [4].

In the Gulf of Mexico, where the salt composition is up to 96 % halite, creep is a less

substantial problem than in other parts of the world. There has, however, been incidents

of casing collapse in a number of wells drilled in the Gulf of Mexico. As illustrated in

Figure 3.5, movement of salt can lead to severe casing displacement. Best practice to avoid

such situations include under-reaming (make a wellbore larger than its original drilled size),

proper drilling fluid composition and cementing particles that improve stress distribution

[4].

Figure 3.5: Casing displacement induced by salt movement [4].

The unique characteristics of salt does, however, offer certain advantages. A wide mud

weight window is often experienced when drilling through salt, which allows long sections to

be drilled between casing points. In addition, the low permeability of salt provides a reliable

hydrocarbon trapping mechanism. Hence, problems experienced in permeable formations,

such as kicks, are virtually non-existent within the salt itself. There may, however, be

permeable formations within the salt structure of higher or lower pore pressure than the
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surrounding salt. As a consequence, lost circulation or kick incidents may be experience if

such formations are encountered [4].

3.2 Deepwater concerns

If a blowout should occur when working deep below the surface, a myriad of problems

are experienced. Containment is a difficult task, as was experienced during the Deepwater

Horizon accident (further discussed below). Up to this accident, little attention was devoted

towards containment in the case of a blowout, mainly because it was considered so unlikely

to occur. The biggest risk is probably what made deepwater drilling so attractive in the

first place. The high pressures and associated high flow rates becomes the enemy in the

case of a blowout, as this will result in huge uncontrollable amounts of oil and gas released

to the environment [2].

Equipment placed in the deep offshore are exposed to higher pressures and lower temper-

atures than equipment placed in shallow waters or onshore. These effects in combination

with powerful underwater currents put extra stress on critical subsea equipment such as the

BOP. An article published in Drilling Contractors in 2007 describes the extreme operating

conditions a deepwater subsea BOP must deal with. “Today, a subsea BOP can be required

to operate in water depths of greater than 10,000 ft (3 048 meters), at pressures of up to

15,000 psi (1 035 ·105 Pa) and even 25,000 psi (1 724 ·105 Pa), with internal wellbore fluid

temperatures up to 4000 F (2040 C) and external immersed temperatures coming close to

freezing (340 F) (10 C) [22].” It is further said that for a single well, the subsea BOP can

be placed at the seabed for roughly 45 to 90 days. However, if drilling and completion on

multiple wells are required, the BOP may be placed at the seabed for more than a year.

In the case of an uncontrollable flow of hydrocarbons, the BOP is relied upon to function

as a last line of defence. It is the main barrier protecting human lives, equipment and the

environment from an uncontrollable flow of hydrocarbons. This entails that the BOP must

function flawless when it is relied upon to seal the wellbore [2, 22].

3.2.1 Deepwater Horizon accident

On the evening of April 20, 2010, a catastrophic well control incident occurred in the

deep waters of the Central Gulf of Mexico, known as the Deepwater Horizon accident.

At the time, Transocean’s semi-submersible drilling rig Deepwater Horizon was, on behalf

of BP and its partners, drilling the Macondo exploration well. The well had penetrated a

hydrocarbon-bearing zone, and it was decided to temporarily abandon it before completing

it as a production well later. As the well was prepared for temporarily abandonment, well
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control was lost and the BOP did not manage to seal the wellbore properly. This led to an

uncontrollable flow of hydrocarbons up through the wellbore and onto the drilling rig. The

hydrocarbons ignited and caused explosions and fire on board the rig. Eleven people lost

their lives and seventeen were injured. On the April 22, after burning for roughly 36 hours,

the rig sank to the seabed at approximately 5 000 feet (1 524 meters) below the surface.

Hydrocarbons were discharged uncontrolled to the environment until July 15, 2010, causing

an oil spill of national significance, estimated in the range of five million barrels (0,8 million

m3) [23, 24].

Figure 3.6: Deepwater Horizon accident [25].

Before April 20, it was a common belief that drilling might be safer in deep waters than

in shallow waters. As deepwater rigs are working farther off the coast, it was considered

that a potential leak would use longer time to reach the shore, and hence give more time

to take proper action. In the aftermath of the accident, however, speculations towards the

safety culture in the industry began. The National Commission (2011) on the accident

found [2, 24]:

“The immediate causes of the Maconde well blowout can be traced to a series of identifiable

mistakes made by BP, Halliburton, and Transocean that reveal systematic failures in risk

management that they place in doubt the safety culture of the entire industry [24].”

On May 27, 2010, the President of the United States, Barack Obama, announced a wide-

ranging moratorium (postpone) on deepwater drilling in the Gulf of Mexico. After this
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announcement, Secretary of the Interior, Ken Salazar issued an order on May 30, 2010 to

postpone all new deepwater wells (in this context, deepwater is considered deeper than 150

meters) for six months. Production on existing deepwater wells was not affected by this

order. The purpose of this moratorium was to postpone deepwater drilling until the risk

of these operations were better understood and appropriate steps to remedy them could

be identified and undertaken. On October 12, 2010 the moratorium was ended, allowing

new wells to be drilled if they followed the new safety rules. The drilling rigs must for

instance certify they have a working BOP and standards for well cementing. In addition,

containment resources must be available in the event of a blowout [26, 27].

The legacy after the Deepwater Horizon accident stays a strong reminder of the conse-

quences and potential risks of deepwater drilling. An article published in the Forbes, on

April 29, 2014, has the following predictions about the future for deepwater drilling: “Nev-

ertheless, in the absence of further major debacles in the near future, deepwater drilling

will continue apace, driven in large part by continuing increases in global demand for en-

ergy that may only intensify in coming years if emerging markets continue to grow robustly

[28].”
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Managed pressure drilling

4.1 Drilling techniques

The introduction of weighted drilling fluid, and thus overbalanced drilling in 1901, was

the first step towards today’s sophisticated and advanced drilling techniques. Over the

last century, the search for oil and gas has gradually moved into ever-more demanding

environments. This has led to the development of new and safe drilling techniques that

are able to cope with these situations. As of today, the various drilling techniques are

commonly differentiated between [12, 29]:

• Conventional drilling

• Underbalanced drilling (UBD)

• Managed Pressure drilling (MPD)

While conventional drilling is performed with an “open-to-the-atmosphere” drilling fluid

circulation system, both UBD and MPD are performed with a closed and usually pressur-

ized circulation system. As illustrated in Figure 4.1, one of the main differences between

these drilling techniques lies in the drilling operating pressures of the various techniques.

During an underbalanced operation, the annular pressure is maintained below formation-

pore pressure. Conversely, in conventional drilling the annular pressure is maintained far

above the pore pressure. Whilst in MPD, the annular pressure is maintained at, or just

above the formation pore pressure [30].
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Figure 4.1: Operational window for the different drilling techniques [29].

4.1.1 Conventional Drilling

Conventional drilling is performed with a bottom-hole wellbore pressure, BHP , higher

than the formation-pore pressure. This scenario is referred to as overbalanced drilling:

BHP > Pf (4.1)

During a drilling operation, the mud pumps are, for various reasons, turned off and on

frequently, for instance during tripping and connection operations. When circulation of

drilling fluid and cuttings are ceased, static wellbore conditions apply, whereas when cir-

culation occur, dynamic wellbore conditions apply. The static BHP during conventional

drilling is solely determined by the hydrostatic head of drilling fluid in the wellbore (Figure

4.2), expressed as:

BHPstat = Phydrostatic = ρm · g · TV D (4.2)

where BHPstat is the static bottom hole pressure, ρm is the drilling fluid density, g is

the gravity constant (9,81m/s2) and TV D is the total vertical depth. During dynamic

conditions, the term “equivalent circulating density” (ECD) is commonly used to describe

the actual density exerted on the formation. The dynamic bottom hole pressure, BHPdyn,

is then expressed as:
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BHPdyn = ECD · g · TV D (4.3)

According to the drilling lexicon provided by the IADC is ECD defined as: “The sum of

pressure exerted by hydrostatic head of fluid, drilled solids, and friction pressure losses in

the annulus divided by depth of interest [31].” Thus, ECD can be expressed as:

ECD = ρm +
PAF + PC

g · TV D
(4.4)

where PAF is the annular friction pressure, and PC is the pressure exerted by cuttings.

As illustrated by Figures 4.2 and 4.3, the wellbore pressure increases as circulation of

drilling fluid and transport of cuttings occur, thus BHPdyn > BHPstat. It is important

to consider both the static and the dynamic wellbore pressures during the planning- and

drilling phase of a well. The static wellbore pressure must be sufficient to keep the wellbore

pressure above the formation-pore pressure, whereas the dynamic wellbore pressure must

stay below the formation-fracture pressure. This may pose problems in narrow mud weight

windows, and thus cause losses/influx to occur which eventually may trigger the need for

setting casing/liner earlier than planned.

Figure 4.2: Static wellbore pressure
during conventional drilling

Figure 4.3: Dynamic wellbore pressure
during conventional drilling
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4.1.2 Underbalanced Drilling

Underbalanced drilling is, as opposed to conventional drilling, successfully achieved when

the effective circulating borehole pressure is less than the formation-pore pressure, thus

[32]:

BHP < Pf (4.5)

This implies that an influx of formation fluid is intentionally invited into the wellbore. In

order to accurately control and regulate the wellbore underbalance, and thus the amount of

formation fluid influx, external back pressure is applied from the surface (further explained

in Appendix A.2). The static bottom hole pressure during UBD is then expressed as [32]:

BHPstat = ρm · g · TV D + PBP,stat (4.6)

where PBP,stat is the amount of back pressure applied during static conditions. When the

mud pumps are turned on and circulation initiated, the bottom-hole pressure is expressed

as [32]:

BHPdyn = ECD · g · TV D + PBP,dyn (4.7)

where PBP,dyn is the amount of back pressure applied during dynamic conditions. As illus-

trated by Figure 4.4 and 4.5, the amount of back pressure applied during static and dynamic

conditions may be regulated so that a more stable bottom-hole pressure is obtained.

If a porous fluid containing formation is drilled through underbalanced, fluids will enter

the wellbore. This makes it more complicated to estimate the bottom-hole pressure during

both static and dynamic conditions. Especially if the formation fluid is gas, which will

displace and replace drilling fluid. This will cause the wellbore pressure to decrease as

gas normally has a lower density than drilling fluid. The relatively low density of gas

combined with fluid circulation, causes the gas to migrate towards the surface. As gas

rises and the hydrostatic fluid pressure decreases, the gas will expand and cause even more

drilling fluid to be displaced. From a conventional point of view, the situation described

above is considered as a kick, that is an uncontrolled influx of formation fluid. However,

during underbalanced drilling it is the intention to invite drilling fluid into the wellbore.

Through the invention of back pressure, such a situation can effectively be controlled in

a safe manner. If suddenly the flow of formation fluids exceeds a wanted value, the back

pressure can be increased slightly, thus avoiding an uncontrollable situation [32].
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Figure 4.4: Static wellbore pressure dur-
ing underbalanced drilling. Free after ref-
erence [32].

Figure 4.5: Dynamic wellbore pressure
during underbalanced drilling. Free after
reference [32].

Underbalanced drilling is normally more costly and time-consuming than conventional

drilling. Despite this, underbalanced drilling has evolved to become a relatively common

procedure. Mainly because an underbalanced well induces very little damage to the forma-

tion, which is especially appreciated when drilling the reservoir section. Oil/gas production

is thus enhanced and the need for expensive well stimulation is eliminated. In addition,

masked or subtle hydrocarbon pay zones may be discovered during underbalanced drilling

(reveals itself by generating a kick) [32, 33]. There are however some disadvantages asso-

ciated with UBD, such as [34, 35]:

• Increased overall production risk.

• Wellbore instability.

• Well control issues.

• Increased drill string vibration and higher torque and drag.

• Problems with the MWD mud pulse signals.

• Problems related to flaring, storing or injection of the formation fluids transported

to surface during drilling.
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4.1.3 Managed Pressure Drilling

In 2004, the IADC defined MPD as: “An adaptive drilling process used to precisely control

the annular pressure profile throughout the wellbore [9].“ The stated objectives are to:

“Ascertain the downhole pressure environment limits and to manage the annular hydraulic

pressure profile accordingly [9].” The IADC effectively differentiates MPD from UBD by

stating the following: “It is the intention of MPD to avoid continuous influx of formation

fluids to the surface. Any influx incidental to the operation will be safely contained using

an appropriate process [9].” In order to achieve this stated intention, MPD is performed

with a BHP at, or slightly above the pore pressure, thus:

BHP ≥ Pf (4.8)

The IADC further defines MPD as [9]:

• “MPD process employs a collection of tools and techniques which may mitigate the

risks and costs associated with drilling wells that have narrow downhole environmental

limits, by proactively managing the annular hydraulic pressure profile.

• MPD may include control of back pressure, fluid density, fluid rheology, annular fluid

level, circulating friction, and hole geometry, or combinations thereof.

• MPD may allow faster corrective action to deal with observed pressure variations.

The ability to dynamically control annular pressures facilitates drilling of what might

otherwise be economically unattainable prospects.”

The various equipment and software commonly used in an automated MPD operation

is presented in Appendix A. As stated by IADC, the BHP may be, but not necessarily,

adjusted and regulated through back pressure. Whether or not this is the case largely

depends on the variant of MPD being used. The various MPD variants are presented and

discussed in Section 4.3. The static and dynamic bottom hole pressure during MPD are

thus commonly equal to Equation 4.6 and 4.7.

MPD may either be used as a contingency plan or as a primary plan during a drilling

operation. These two various approaches are respectively referred to as the “Reactive

approach” and the “Proactive approach” [36].

Reactive approach

“Well is designed conventionally, but equipment is rigged up to quickly react to unexpected

pressure changes in the well [37].” This means that the reactive approach uses MPD meth-
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ods and/or equipment as a contingency, in case problems should arise during conventional

drilling. This approach does not fully utilize all the advantages provided by MPD, discussed

in Section 4.2 [36].

Proactive approach

“Equipment is rigged up to actively alter the annular pressure profile, potentially extending

or eliminating casing points [37].” This means that the entire drilling operation is planned

and conducted as MPD. This approach enables the wide range of tools and techniques

MPD provides to be utilized, thus all the advantages provided by MPD can be exploited

[36].

4.2 Advantages of MPD

MPD were primarily invented to overcome the following drilling related problems, com-

monly encountered in narrow mud weight windows [38]:

• Lost circulation

• Wellbore kicks

• Differential sticking

• Excessive amount of casing strings necessary to reach target depth

The overall advantages of MPD, achieved through mitigation of the aforementioned prob-

lems, are increased drillability in narrow mud weight windows, increased safety during

drilling and reduced costs caused by NPT [38].

4.2.1 Lost circulation and wellbore kicks

Problems related to lost circulation and wellbore kicks can to a great extent be mitigated

through MPD. If it is sensed that drilling fluid is being lost to the formation, the back

pressure can quickly be reduced to bring the wellbore pressure below the formation-fracture

pressure. The amount of drilling fluid actually lost and the damage exerted on the formation

is then very low due to the rapid response (further described in Appendix A.6). The

same principle applies if a kick is detected. The back pressure is increased to bring the

wellbore pressure above the formation-pore pressure, thus quickly bringing the situation

under control [38].
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Figure 4.6: Lost circulation to the left and a wellbore kick to the right, free after reference
[39].

4.2.2 Differential sticking

During overbalanced drilling in porous/permeable formations, a filter cake is formed along

the borehole wall. This filter cake consists of cuttings and precipitated particles from the

drilling fluid. The pressure gradient in the filter cake varies from wellbore pressure to pore

pressure at the borehole wall. If a sufficient amount of the drill string is embedded in the

filter cake, movement/rotation of it becomes impossible. This situation is referred to as a

differentially stuck pipe, illustrated in Figure 4.7. Differential sticking is the most frequent

stuck pipe cause, and thus a great contributor of NPT. As the wellbore overbalance is kept

very low during MPD, the occurrence of differential sticking is greatly reduced with this

drilling technique [30].

Figure 4.7: Illustration of differential sticking [38].
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4.2.3 Reducing casing strings

A problem encountered in narrow mud weight windows are the excessive amounts of cas-

ing strings sometimes required to reach target depth. The two MPD variants “Constant

Bottom-Hole Pressure” and “Dual Gradient Drilling” offers manipulation and real-time

adjustment of the bottom hole pressure. This enables the sections to be drilled deeper and

longer within the mud weight window. Ultimately, this extends and reduces the amount

of casing strings required to reach the desired depth. These two drilling techniques are

further explained in respectively Sections 4.3.1 and 4.3.3 [30, 38].

4.3 MPD variations

Several variations of MPD has been developed in recent time, with the aim towards precise

control of the annular pressure profile. The following four variants are commonly considered

as the main variations [40]:

• Constant Bottom-Hole Pressure (CBHP).

• Pressurized Mud-Cap Drilling (PMCD).

• Dual Gradient Drilling (DGD).

• Returns-Flow-Control (RFC).

– Alternatively called the health, safety and environmental (HSE) variant.

4.3.1 Constant Bottom-Hole Pressure

Generally, the MPD variant known as CBHP, refers to a process that enables the annular

pressure during drilling to remain more or less constant at a predefined depth. As discussed

in Section 4.1.1, the wellbore pressure during conventional drilling is frequently fluctuating

between dynamic and static conditions. When drilling is conducted in a narrow mud weight

window, this inconsistency in wellbore pressure may lead to problems. Sudden pressure

fluctuations may be sufficient to ”move“ the wellbore pressure out of the mud weight

window, thus potentially causing lost circulation or a kick to occur. A situation where mud

circulation “pushes” the wellbore pressure out of the mud weight window is illustrated in

Figure 4.8 [10].
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Figure 4.8: Downhole pressure gradients during conventional drilling. Free after reference
[10].

The CBHP variant has been developed to mitigate the aforementioned problems with

fluctuating wellbore pressure. A low density mud combined with annular back pressure

enables high flexibility and quick response to sudden underground pressure changes. During

static conditions, the BHP is expressed as:

BHPstat = ρm · g · TV D + PBP,stat (4.9)

whereas the dynamic BHP is:

BHPdyn = ECD · g · TV D + PBP,dyn (4.10)

The intention of this method is as mentioned to enable constant annular pressure at a

specific depth. This entails that at this depth, the static and dynamic wellbore pressures

must be of equal magnitude:

BHPstat = BHPdyn (4.11)

⇒ ρm · g · TV D + PBP,stat = ECD · g · TV D + PBP,dyn (4.12)

The point of constant annular pressure are usually set at bit depth. However, under
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certain conditions, it may be better to keep the annular pressure at the casing shoe depth

constant. This may typically be the case if the mud weight window at this depth is very

narrow whereas further down, it expands. As prevously discussed, this can be seen when

subsalt formations are encountered [41]. By replacing the ECD term in Equation 4.12 with

Equation 4.4 and removing the hydrostatic pressure contributions (equal during both static

and dynamic conditions), the following expression is found:

PBP,stat = PAF + PC + PBP,dyn (4.13)

As shown by Equation 4.13, it is through control of the back pressure that the BHP can

be maintained at a constant value. Figure 4.9 illustrates this scenario. The equipment and

software used to regulate, measure and adjust the applied back pressure are presented in

Appendix A [10].

Figure 4.9: Downhole pressure gradients with the CBHP MPD variant. Free after refer-
ence [10].

The CBHP MPD makes it possible to drill longer sections in narrow mud weight windows,

thus reducing the amount of casing strings required to reach target depth. An inherent

risk that is mitigated through CBHP is wellbore instability induced by fluctuating wellbore

pressure, making the wellbore more stable. A flow meter, if installed, enables quick detec-

tion and immediate reaction in case mud losses or influx occur. The flow meter compares

the measured flow rate out of the wellbore against a calculated, predicted flow rate. If the

two values differ with a certain amount, the choke manifold is signalled to either decrease
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or increase the back pressure slightly. The situation is then quickly and automatically

brought under control. See Appendix A.6 for further information about the flow meter

used in MPD [10, 30]

4.3.2 Pressurized Mud-Cap Drilling (PMCD)

The PMCD method, also variously called “pressured mud cap”, “light annular mud cap”

or “closed-hole circulation drilling”, allows drilling to continue in cases where extreme fluid

losses are encountered. This method is illustrated in Figure 4.10. Such drilling challenges

are most frequently encountered in highly depleted or naturally fractured carbonate for-

mations. If such a formation is encountered with conventional methods, common problems

are related to total loss of circulation, pressure control, increased NPT and a risk of never

reaching target depth. The PMCD technique has a slightly different approach towards

fluid losses than conventional methods. Instead of trying to avoid them they are encour-

aged [10, 42]. This method is by the IADC defined as:

“A variation of Managed Pressurised Drilling (MPD), that involves drilling with no returns

to surface and where an annulus fluid column, assisted by surface pressure (made possible

with the use of a Rotating Control Device (RCD)), is maintained above a formation that is

capable of accepting fluid and cuttings [43].”

Figure 4.10: Drilling with the PMCD technique. Both cuttings and sacrificial fluid is
injected into the fractured zone [30].
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In order for this technique to function properly, total loss of circulation must be present. As

stated by the IADC, PMCD is performed without any returns to surface. This implies that

the fractured or depleted formation must accept the entire accumulated volume of drilling

fluids and cuttings. If the losses are only partial or sustainable, then lost circulation

material (LCM) should be added prior to utilizing the PMCD method. A well planned

to be drilled with this method can either be drilled conventional, or with another MPD

variant, prior to total losses are encountered [42, 44].

When total losses are faced, PMCD is enabled by filling the annulus with mud of less density

than required to balance out the formation-pore pressure, referred to as light annular mud

(LAM). The LAM forms a mud cap in the annulus which functions as an annular seal, thus

preventing formation fluids from escaping up through the annulus. In order to ensure proper

pressure control, back pressure is applied on top of the mud cap. During static conditions,

the hydrostatic mud pressure combined with back pressure is equal to the formation-pore

pressure at the depth of the fractured zone, expressed as [42, 44]:

BHPstat = Pmud = ρLAM · g · htop frac + PBP,stat (4.14)

where ρLAM is the light annular mud density and htop frac is the vertical depth down to

the first fractured zone. Drilling is conducted through a rotating annular seal surface (see

Appendix A.1), enabling back pressure to be applied in the annulus. Sacrificial drilling

fluid (preferably an economical and non-damaging one, such as water) is pumped down the

drill string. Drilling is now conducted through the fractured zone and sacrificial fluids and

cuttings are forced into the loss zone [10].

During drilling, the annular surface pressure is read, and used as a continuous indicator

of the downhole situation. If the pressure begins to increase, gas has most likely entered

the annulus and is migrating upwards. When/if the annular pressure exceeds a predefined

limit, LAM is bullheaded down the annulus and the gas pushed back into the loss zone.

This implies that the annular pressure is raised above formation-pore pressure at the depth

of the fractured zone. When the annular pressure is brought back to its original level,

bullheading is ceased. This enables control over the well and avoids undesirable material

like hydrogen sulfide, H2S, from reaching the surface [10].

PMCD provides a safe and cost-efficient solution to drilling problems encountered in highly

depleted- or naturally fractured formations. A typical scenario encountered in such for-

mations are the kick-loss cycle. Such a cycle involves a very unstable wellbore which may

prove impossible to drill to the desired depth. This problem is effectively prevented by the

PMCD technique as the annulus fluid column is sealed off, thus annular pressure control is



48 Chapter 4. Managed pressure drilling

remained even when total losses occur. “In this manner, PMCD solves one of the most dif-

ficult challenges faced by conventional drilling methods. And in doing so, makes previously

undrillable wells drillable [45].“

4.3.3 Dual Gradient Drilling

The IADC defines DGD as: “Two or more pressure gradients within selected well sections

to manage the well pressure profile [9].” This means that DGD relies on two, or more, fluid

gradients to provide the same BHP normally provided by a single fluid gradient, illustrated

in Figure 4.11 [46]. The static BHP during DGD is then expressed as:

BHPstat = ρ1gh1 + ρ2gh2 (4.15)

where ρ1 is the upper fluid/gas density (usually sea water or air, dependent on the method

being used), h1 is the vertical height of the upper fluid/gas, ρ2 the lower fluid density and

h2 the vertical height of the lower fluid. During dynamic conditions, the following equation

applies:

BHPdyn = ρ1gh1 + ρ2gh2 + PAF + PC (4.16)

Figure 4.11: Basic static pressure profile
with the DGD method.

Figure 4.12: Basic dynamic pressure profile
with the DGD method.
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The idea of using dual gradients during drilling was first considered in the early 1960s.

At that time, the goal was to eliminate the need of drilling risers, thus the concept was

originally designated Riserless Drilling. However, the need for such a technique proved to

be quite limited as the water depths contemplated were shallow, thus conventional riser-

based drilling covered the needs [46].

In the early 1990’s however, several deepwater discoveries were made in the Gulf of Mexico.

This led to an increased interest in deepwater prospects, but the amount of rigs suited for

such water depths were limited. This motivated both operator and contractor companies

to find methods that would extend the capabilities of these shallow water rigs. The answer

became Riserless Drilling as this would eliminate the need of a heavy riser and reduce the

amounts of drilling fluid needed on board the rig, ultimately reducing the rig weight. This

would allow smaller rigs to move into deeper waters. A number of joint venture projects

and field trials were carried out, aiming towards success in utilizing this technique, but it

proved to be quite challenging [46].

The research and development performed on DGD in the 1990s revealed that the technique

had other, interesting qualities to offer besides reduced rig weight. This led to a slight

change in motivation for developing the technique. “Ultimately, the driver to developing

dual gradient drilling became the need to manage the narrow margin between pore pressure

and fracture pressure gradients in deepwater [46].” As Figure 4.13 illustrates, DGD over-

comes a significant deepwater drilling challenge. It enables a reduction in the amount of

casing strings required to reach target depth [46].

Figure 4.13: Comparison between conventional drilling and DGD in a narrow mud weight
window. As seen on the figure, the amount of casing strings required to reach target depth
is reduced from five to three through DGD [30].
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SubSea MudLift technique

The first successful field trial utilizing the principle of dual gradients was achieved in 2001.

It was the product of one of the largest and most significant joint industry projects (JIPs)

so-far experienced, named the “SubSea MudLift Drilling JIP”. The price tag on the project

was nearly fifty million dollars and it took in total five years to finalize it. A subsea pump

placed on the seabed, was used to pump the returning drilling fluid and cuttings back

to the rig. As for the riser, the original motivation was to eliminate it. However, after

various alternatives had been discussed, it was decided to keep it and use a marine drilling

riser filled with seawater. As Figure 4.14 illustrates, the drill string is filled with drilling

fluid whereas the marine riser is filled with seawater. This difference in pressure outside

and inside of the drill string induces a high risk of u-tubing to occur. In an attempt to

equalize the pressure difference, fluid will flow in the direction of least resistance. In this

case, that will be from the drill string and into the annulus. A Drillstring Valve (DSV)

(similar to a non return valve) was therefore installed in the bottom-hole assembly (BHA)

with the purpose to “arrest” this u-tube effect from occurring during static conditions. In

addition, a Rotating Diverter (similar to a RCD) was developed with the function to form

a mechanical seal between the wellbore and the riser. This hinders drilling fluid, cuttings

and formation fluids from entering into and mixing with the riser fluid [46].

Figure 4.14: The first successful field trial utilizing the dual gradient technique.

In the fall of 2001, the SubSea MudLift technique was successfully tested in the Green

Canyon Block 136 in the Gulf of Mexico, operated by Texaco. The water depth at the drill

site was 910 feet (275 meters), and the field trial was deemed a big success. In 2002, all
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the team members were honoured with the “Special Meritorious Awards for Engineering

Innovation.” “Field trial participants put the system through its paces: circulating, drilling,

tripping, running casing, cementing, and well control simulations. Aside from some in-

strumentation issues at the outset, the system performed as designed and even better than

expected [47].” Despite the success the Subsea MudLift technique was regarded as it never

reached the goal of becoming commercially developed. This new technique did not only

require extensive rig modifications, it also entailed a basic change in existing ideas and

methods. At the time the industry was not ready for such a paradigm shift [46, 47].

Half a decade later, in 2006, various operator and contractor companies had gained sig-

nificantly more experience with deepwater drilling. Chevron and a few other operator

companies had drilled wells in waters depths over 10 000 feet (3 050 meters). The total

depths of these wells lied in the range of 25 000 - 30 000 feet (7620 - 9140 meters). When

drilling these deep wells, a problem encountered was the high difference between static and

dynamic wellbore pressures. At total depth, the difference was often in the range of 0,5 - 1

ppg (pounds per gallen, 1 ppg = 119,8kg/m3), making it challenging to reach target depth.

This triggered several drilling engineers to reconsider the DGD concept [47].

“Today several developmental projects are under deployment on a commercial scale, pri-

marily in the Gulf of Mexico, the North Sea and several areas of the world [9].” As of

today, the only industrial commercially available DGD technique is the Riserless Mud Re-

turn (RMR) method, offered by AGR Subsea AS since 2003. As shown in Appendix B, the

RMR method is a “Pre-BOP” DGD approach, meaning that it can only be applied in the

upper wellbore sections. This method is further discussed below. Another interesting DGD

approach that is discussed in this thesis is the Controlled Mud Level system, also referred

to as Mid-Riser Pumping system. In Appendix B, this system is found below “Post-BOP”

DGD systems.

Riserless Mud Return

The RMR method is a top-hole drilling technique that utilizes a subsea pump to bring

drilling fluids and cuttings from the seabed to the drilling rig, see Figure 4.15. In this

manner, the RMR system is quite similar to the SubSea MudLift Technique, the difference

is that the RMR method is performed without a riser. The RMR method is therefore only

applied in the upper sections prior to installing the drilling riser and BOP. As of today,

the RMR method has been used in more than 200 wells all over the world. The majority

of these wells operated in less than 2 000 feet (610 meter) water depths, but the technique

has been tried in water depths close to 5 000 feet (1 525 meter). According to AGR,
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this method enables the top holes to be drilled more stable, with a higher quality and

low environmental impact as fluids and cuttings are brought back to the rig rather than

dumped on the seabed [10, 48].

Figure 4.15: Riserless Mud Return [49].

Controlled Mud Level

The Norwegian company “Ocean Riser Systems” (ORS) developed a technique called “Low

Riser Return System” (LRRS). From a conventional point of view, wellbore pressure is

adjusted and regulated through mud density control. The LRRS technique challenges this

mindset. Rather than adjusting the density, the mud level in the marine riser is adjusted.

A subsea pump placed in a separate conduit, transports drilling fluid and cuttings from

the marine riser and up to the drilling rig, see Figure 4.16. The mud level in the riser

is adjusted by changing the flow rate through the subsea pump. Reducing the flow rate

causes the mud level to increases whereas increasing the flow rate causes the mud level to

drop [50].

The LRRS can be used in two application modes. In the first mode, the riser is filled

during static conditions and when mud circulation is initiated, the mud level decreased to

compensate for the annular friction and cuttings transport. The second technique involves

using a higher-than-conventional mud weight and a partly evacuated riser for both static
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and dynamic conditions. Both of these application modes improves the safety margins,

enables better pressure control and increased efficiency for most well operations [50].

Figure 4.16: Low Riser Return System [50].

In July 2012, Ocean Riser Systems AS merged with the Enhanced Drilling Solutions (EDS)

department of AGR and formed AGR EDS-ORS. The Enhanced Drilling department has

developed a DGD technique named “EC-Drill”, illustrated in Figure 4.17. This method,

which is designed for use on semi-submersible, jack-up and drilling ships, has been used

on several deepwater wells to date. The system is based on the same idea as the LRRS,

namely to alter the wellbore pressure through changing the mud level in the marine riser

[51].

The key feature enabled with the “Controlled Mud Level” approach is the ability to ma-

nipulate the mud level in the riser, and in that manner control the BHP. Through mud

level adjustments during static and dynamic conditions, a near constant BHP can be es-

tablished, hence ECD management. In addition, kicks/losses can be detected at an early

stage through volume management. All together, this results in increased flexibility with

respect to rapid down-hole pressure adjustment [52].
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Figure 4.17: The EC-Drill technique

A constant BHP is enabled as follow:

BHPstat = BHPdyn (4.17)

When Equation 4.15 is replaced with BHPstat and Equation 4.16 with BHPdyn, the fol-

lowing relationship is obtained:

(ρ1gh1 + ρ2gh2)stat = (ρ1gh1 + ρ2gh2)dyn + PAF + PC (4.18)

The medium above mud line commonly consists of air at atmospheric pressure, hence this

pressure is equal during both static and dynamic conditions and can thus be removed from

Equation 4.18:

(ρ2gh2)stat = (ρ2gh2)dyn + PAF + PC (4.19)

This can be written as:

ρ2 · g · (h2,stat − h2,dyn) = PAF + PC (4.20)

Which means that during mud circulation and cuttings transport, the riser mud line must

be lowered equivalent to:

∆h =
PAF + PC

ρ2 · g
(4.21)
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4.3.4 Returns-Flow-Control (RFC)

During conventional drilling, the drilling fluid return system is, as mentioned, open to

the atmosphere. Thus, chemicals and gasses contained in the drilling fluid can escape to

the atmosphere. If a formation containing high amounts of toxic gasses, like hydrogen

sulfide (H2S), is encountered with an open-to-atmosphere fluid returns system, it may

entail serious health, safety and environmental (HSE) concerns. Especially with respect to

the crew members on the rig [53].

A MPD variant, Returns-Flow-Control, has been developed for this particular situation.

The variant utilizes the closed-to-atmosphere fluid returns system and the RCD to safely

contain any toxic gasses within the drilling fluid. Hence, the primary objective of this

MPD variant is not increased downhole pressure control, but increased HSE during drilling

[30, 53].





Chapter 5

Case Study

In this chapter, a case study of a vertical deepwater exploration well drilled by Statoil in

the Gulf of Mexico is presented and discussed. My supervisor, John-Morten Godhavn, has

provided both expected and real pore and fracture pressure gradients for this well. First,

based on expected pore and fracture pressure gradients, drilling programs for respectively

conventional drilling, CBHP MPD and the CML MPD DGD approach are designed. The

well is then drilled theoretically, on paper, using the planned programs and real pore and

fracture pressure gradients. In this case study, a special focus is given towards MPD and

the additional flexibility this drilling technique offers in uncertain pressure environments.

The pressure gradients versus depth data provided by John-Morten Godhavn are given

in respectively ppg (pound per gallon) and feet. These units are used throughout this

Chapter. 1 feet is equivalent to 0,3048 meter and 1 ppg is equivalent to 119,8 kg/m3.

As previously discussed, both conventional drilling and MPD are performed overbalanced.

This entails that the planned wellbore pressure are bound by the following pressure bound-

aries:

Pf, est < Pwell,planned < Pfrac, est (5.1)

where Pf, est is the estimated formation-pore pressure, Pwell,planned is the planned wellbore

pressure and Pfrac, est is the estimated fracture pressure. In addition, internal and/or local

regulations may require additional margins between the wellbore pressure and the pressure

boundaries. In the Gulf of Mexico, the following requirements apply [8]:

• Minimum mud weight : Statoil requires that the minimum mud weight shall be 0,17

ppg higher than the maximum expected pore pressure gradient in that section.

• Maximum mud weight : The Bureau of Safety and Environmental Enforcement(BSEE)

and Statoil requires that the maximum mud weight shall be 0,5 ppg below the lesser
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of the casing shoe integrity test or the lowest estimated fracture pressure gradient in

that section. The ECD must be kept below the lesser of the casing shoe integrity test

or the lowest estimated fracture pressure gradient in that section.

The minimum horizontal stress is usually lower than the fracture pressure gradient. If the

wellbore pressure exceeds the fracture pressure, and drilling fluid is lost to the formation,

the fracture will not close before the wellbore pressure descends below the fracture closure

pressure, which is approximately equal to σh, see Section 2.4.3 and Figure 2.13. The mud

weight should therefore be kept below the minimum horizontal stress. In case losses should

occur during drilling, the mud pumps are turned off to bring the well pressure below the

σh, and hence close the initiated fractures. A good practice during drilling is therefore to

keep the mud weight below the minimum horizontal stress [8].

In terms of density, the pressure boundaries for the planned drilling program profile then

becomes:

ρf, est + 0, 17ppg < ρwell,planned < ρfrac, est − 0, 5ppg (5.2)

When the well is drilled in real pressure environment with an estimated drilling plan,

deviations from this plan are expected. This may lead to pressure related incidents like

fluid losses and/or formation fluid influx. Knowledge obtained through such situations are

used to continuously discuss the need for updating the drilling plan. During the theoretical

drilling part, real-time wellbore pressure is obtained through a PWD tool. In addition,

real-time pore pressure information has been assumed provided through MWD logs. The

lower pressure boundary is then dictated by the largest value of the estimated and measured

pore pressure. After a section has been cased and cemented, a Leak-Off Test is performed

which offers accurate fracture pressure information at the casing shoe depth. The fracture

pressure is then updated and checked prior to drilling a new section. This opens up for

modifications of the planned drilling program in case the deviations are of a substantial

magnitude. The pressure boundaries for the real drilling program then becomes:

(ρf, est or ρf, measured) + 0, 17ppg < ρwell,actual < (ρfrac, LOT or ρfrac, est)− 0, 5ppg (5.3)

where ρwell,actual is the actual well pressure gradient and ρfrac, LOT is the fracture pressure

gradient measured at the casing shoe depth. It has been decided to keep both the static

and dynamic well pressure gradients within this limit, even though it is not a requirement

to keep the dynamic well pressure 0,5 ppg below the lesser of the LOT or the lowest

estimated fracture pressure gradients. If either the static or dynamic well pressure exceeds
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the defined pressure boundaries, measures must be taken to bring the situation back within

the acceptance criteria. The static and dynamic pressure gradients presented in the drilling

programs are given in terms of equivalent mud weight, defined in Section 2.1.1.

The equations presented and derived for static and dynamic wellbore pressures in Section

4.3 are given in terms of EMW in the two following tables:

Table 5.1: Static well pressure gradients in terms of equivalent mud weight.

Drilling technique EMWstat

Conventional drilling: EMWstat = ρm

“Constant Bottom-Hole Pressure” MPD: EMWstat = ρm +
PBP, stat

g · TV D

“Controlled Mud Level” DGD, MPD: EMWstat =
ρ1 · h1 + ρ2 · h2

TV D

Table 5.2: Dynamic well pressure gradients in terms of equivalent mud weight.

Drilling technique EMWdyn

Conventional drilling: EMWdyn = ρm +
PAF + PC

g · TV D

“Constant Bottom-Hole Pressure” MPD: EMWdyn = ρm +
PAF + PC + PBP, dyn

g · TV D

“Controlled Mud Level” MPD, DGD: EMWdyn =
ρ1 · h1 + ρ2 · h2

TV D
+
PAF + PC

g · TV D

The pressure exerted by friction and cuttings in the annulus during drilling are mainly

governed by the fluid flow velocity. In vertical wells (< 600), an upper and lower boundary

condition, with respect to annular fluid flow velocity, are therefore commonly designed. The

upper one is normally designed so that turbulence flow does not develop around the drill

collars, whereas the lower one is set by the concentration of cuttings in the annulus. The

amount of cuttings with respect to drilling fluid must be lower than four volume percent.

If it gets higher, problems related to accumulation of cuttings (like stuck pipe) has shown

to occur with an increasing trend [54].

Pressure exerted by cuttings

In vertical wells, hole cleaning and transportation of cuttings are a matter of sufficient fluid

flow rate and velocity to counteract the vertical slipping velocity of cuttings. The amount

of cuttings, QC [m3/s], generated during drilling is found by multiplying the cross-sectional

area, A [m2], of the bit with the ROP [m/s]:
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QC = A ·ROP ⇒ QC =
π

4
· d2bit ·ROP (5.4)

During drilling, the initial concentration of cuttings, CC,i [%], are found by dividing the

amount of cuttings generated by the total annular flow rate, Qtot,a [m3/s]:

CC,i =
QC

Qtot,a

where Qtot,a = QC +Qm (5.5)

where Qm [m3/s] is the drilling fluid flow rate. In vertical wells, the slipping velocity of

cuttings, vslip [m/s], causes the concentration of cuttings in the borehole to increase. A

ratio known as the cuttings transport ratio, Rt, defines the impact the slipping velocity

has on the cuttings concentration. This ratio expresses the relationship between cuttings

transport velocity, vt [m/s], and average fluid velocity, v̄ [m/s] [54]:

Rt =
vt
v̄

where vt = v̄ − vslip (5.6)

The average concentration of cuttings in the well, C̄C [%], is found by dividing the initial

concentration of cuttings with the cuttings transport ratio [54]:

C̄C =
CC,i

Rt

(5.7)

In vertical holes, the cuttings transport ratio has a typical value of 0,75. The well discussed

in this case study is, as mentioned, a vertical well. This typical value of 0,75 has therefore

been applied for estimating the average cuttings concentration during drilling in the case

study [55].

The amount of cuttings generated during drilling alters the average annular density, ρ̄a.

As cuttings enters the annulus, a part equivalent to C̄C will consist of cuttings and 1-C̄C

of drilling fluid. This will cause the average annular density to increase, provided that the

density of the cuttings are larger than the drilling fluid density [54]:

ρ̄a = ρm · (1− C̄C) + ρC · C̄C (5.8)

where ρC is the cuttings density. At shallow depths, ρC may be as low as 2 000 kg/m3,

whereas at large depths (> 5000 meter TVD) in zero-porosity environments, ρC is typically

in the range of 2 800 kg/m3. According to Skalle, P, 2 300 kg/m3 is a good estimate of

the average cuttings density. The additional pressure exerted by cuttings during drilling

is found by subtracting the hydrostatic drilling fluid pressure from the average annular

hydrostatic pressure [54]:
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Pc = (ρ̄a − ρm) · g · TV D (5.9)

Annular friction pressure

As the upper boundary condition, with respect to annular flow velocity, is governed by

the flow pattern of the fluid. The Reynolds number, Re, must be calculated to determine

whether the flow is in a laminar or turbulent state [54]:

Re =
ρmud · v̄ · (do − di)

µeff

(5.10)

where v̄ is the fluid velocity, do the outer annulus diameter, di the inner annulus diameter

and µeff the effective fluid viscosity. If the Reynolds number is below 2 300, the flow is

commonly considered to be in a laminar state, whereas a Reynolds number above 4 000

implies turbulent flow. A Reynolds number between these two values are considered to be

in a transition state. The average fluid velocity in the annulus is expressed as:

v̄ =
Qtot,a

A
(5.11)

where Qtot,a is the total annular flow rate, see Equation 5.5, and A is the cross-sectional

area of the annulus:

A =
π · (d2o − d2i )

4
⇒ v̄ =

4 ·Qtot

π · (d2o − d2i )
(5.12)

Prior to calculating the effective fluid viscosity, it must first be determined which of the

following rheological models that best describes the drilling fluid behaviour [54]:

• Newtonian

• Bingham

• Power law

• Herschel Buckley

For the purpose of annular friction estimation and effective fluid viscosity, it is suggested to

simplify by choosing one of the aforementioned models and base the estimation of effective

fluid viscosity on the SI-approach. This will, according to Skalle, P, increase the accuracy

of the calculations [54].
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Figure 5.1: Flow curve of the different rheological models. τ is shear stress and γ is shear
rate [54]

Drilling fluids are commonly designed with an ability to form a gel-structure during static

conditions. This gel-structure causes the internal strength of the drilling fluid to increase at

still stand, often expressed as a fluids “gel strength”. The purpose of this gel-structure is to

keep drilling fluid particles and cuttings in suspension when circulation is ceased. The two

parameters shear stress, τ , and shear rate, γ, are used to quantify the flow performance of

a fluid. Shear stress is the force required to sustain a constant fluid velocity and shear rate

is the rate of change of velocity across the diameter of a fluid-flow. A fluids gel strength is

measured at low shear rate after a mud has been at rest for a period of time (commonly

either 10 minutes or 10 seconds). In other words, the higher the shear stress is at low

shear rates, the higher the gel strength of the fluid is. As illustrated on Figure 5.1, both

the Bingham and Herschel Buckley methods are suited for such fluids. For the purpose

to estimate annular friction in this case study, the Bingham model has been chosen. For

a Bingham fluid, the SI-approach for estimating the effective annular fluid viscosity is as

follows [54, 56]:

µeff,ann = µpl +
τ0 · (do − di)

8 · v̄
(5.13)

where µpl is the plastic viscosity of the fluid and τ0 is the yield shear stress at zero shear rate,

that is, the shear stress during static conditions. Plastic viscosity is defined as
∆τ

∆γ
, which

is equivalent to the slope for the Bingham model line seen in Figure 5.1. The Reynolds
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number for the Bingham fluid can now be calculated and the flow rate adjusted to keep the

flow in a laminar state. For a Bingham fluid in laminar flow, the annular friction pressure

is calculated with the following equation [54, 56]:

PAF =
48 · L · v̄ · µeff

(do − di)2
(5.14)

where L is the length of the drill collars/open-hole/casing/liner section being calculated.

When the well consists of several sections, independent friction calculations are required

for the various sections. This because the annular cross-sectional area is varying, causing

the velocity profiles and the effective fluid viscosities to change.

5.1 Planned drilling programs

Tables containing detailed information regarding the planned drilling programs are pre-

sented in Appendix C.1. The numbers given in brackets after the effective mud weight

represent the effective mud weight at casing shoe depth. The estimated mud weight win-

dow for this vertical exploration well is shown in Figure 5.2. As seen on the figure, the

estimated fracture pressure gradient begins to deviate from the seawater gradient at roughly

3 150 feet. The water depth at the drill site has therefore been assumed equal to 3 150 feet.

Further down, at an estimated depth of 6 920 feet, it is seen that the pore pressure density

suddenly drops from an abnormal state to a normal state, meanwhile the fracture pressure

is estimated to increase. This gives reason to believe that a thick salt layer is located below

this depth. At an estimated depth of 12 540 feet, the pore pressure suddenly increases from

a normal state to roughly 13,2 ppg whereas the fracture pressure has decreased slightly.

Based on these observations, a thick salt layer has been assumed present between 6 920

and 12 540 feet TVD.
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Figure 5.2: Estimated mud weight window.

5.1.1 Conventional drilling

The planned drilling program for conventional drilling is shown in Figure 5.3 and the details

are presented in Table C.1 and C.2. The planned bit, casing and liner sizes presented in

Appendix C are based on information from the Drilling data handbook. Both the 36” and

the 26” holes are drilled riserless, this implies that cuttings and drilling fluids are dumped

on the seabed, referred to as the Pump and dump method. This approach is planned

identical for the two upper sections in all the three different variants. The 36” hole is

planned drilled with a mud weight equivalent to that of seawater (8,60 ppg), whereas the

26” hole is planned drilled with a mud weight of 9,50 ppg. Sections drilled prior to running

the riser and BOP may be composed of two gradients, provided that the density of the

drilling fluid is different from the seawater density. This approach has been chosen for the

26” section to better fit the estimated mud weight window. The effective static mud weight

for this section has therefore been calculated as follow:
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EMWstat =
8, 60 ppg · 3 150 feet+ 9, 50 ppg · (TV D − 3 150 feet)

TV D
(5.15)

where 8,60 ppg is the seawater gradient, 3 150 feet is the estimated water depth and 9,50

ppg is the drilling fluid density used in this section. The effective dynamic mud weight in

this section then becomes:

EMWdyn = EMWstat +
PAF + PC

g · TV D
(5.16)

Figure 5.3: Planned drilling program using conventional drilling.

As seen on Figure 5.3, this causes the static and dynamic pressure profiles for this section

to be different from the vertical pressure profiles in the other sections. After the 20”

surface casing has been run and cemented at 4 600 feet TVD, a BOP is run on a 22”

drilling riser. This enables cuttings and drilling fluids to be transported up to the rig, and
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conventional drilling is initiated. As seen on the figure, the mud weight window below 12

000 feet becomes relatively narrow, roughly in the range of one to one and a half ppg. This

makes it challenging to maintain both the static and dynamic wellbore pressures within

the acceptance criteria. Therefore, after the 13 3/8” casing has been run and cemented, the

five inch drill pipe used in the upper sections is replaced with a four inch drill pipe. This

will reduce the annular friction loss as the annular cross-sectional area has been increased.

According to the drilling plan, a total of nine sections must be drilled and cased if the

target depth is to be reached with conventional drilling.

As seen in Table C.1, the planned static and dynamic mud weights does occasionally exceed

the acceptance criteria. The narrow mud weight window, in combination with a target

depth of 27 000 feet, made it very challenging to plan a conventional drilling program

without ever exceeding these limits. In an attempt to reduce the equivalent circulating

density, the ROP has been set relatively low to reduce the effect of cuttings, averagely

around 50 feet/hour.

5.1.2 Constant Bottom-Hole Pressure MPD

A proposed drilling program using the CBHP MPD variant is illustrated in Figure 5.4 and

the details presented in Table C.3. When comparing the planned programs for respectively

conventional drilling and CBHP MPD, the most apparent difference is seen below the salt

zone. With conventional methods, a total of five sections are required to reach target depth

from the lower salt zone. However, if the CBHP variant is chosen, the amount of sections

required are reduced from five to three, and the total amount of sections required to reach

target depth is reduced from nine to seven. This makes it possible to reach target depth

with a larger wellbore diameter and enables a bigger production liner to be set. In this

case a 75/8” production liner is planned at target depth. This is beneficial from both a

production and economical point of view. A large production diameter will enhance the

production of hydrocarbons due to increased production diameter. Further, a reduction in

casing strings leads to less time spent on tripping, casing and cement operations in addition

to less steel used in the wellbore, which ultimately reduces the cost of the drilling operation.

During drilling, the dynamic back pressure has been set at a constant pressure of 5 ·105 Pa,

with the exception of the 181/2” section. This enables both the static and dynamic wellbore

pressure to be reduced, equivalent to 5 · 105 Pa, in case the wellbore pressure exceeds the

fracture pressure and lost circulation occurs. In this particular case, a disadvantage of

this approach is seen, especially in the upper wellbore sections. In terms of EMW, the

additional pressure applied during dynamic condition decreases with depth, expressed as:
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EMW =
PBHP, dyn

g · TV D
(5.17)

As seen in Table C.3, this causes the effective dynamic mud weight to decrease with in-

creasing depth in the 181/2”, 141/2” and the 121/4” sections. However, in the lower two

sections, it is seen that the dynamic mud weight begins to increase with depth. This is

because the increasing dynamic mud weight induced by annular friction and cuttings are

larger than the decreasing trend induced by a constant dynamic back pressure, expressed

as:

PAF + PC

g · TV D
>
PBHP, dyn

g · TV D
(5.18)

Therefore, due to the relatively narrow mud weight window above the salt zone, the dynamic

back pressure has been set at a constant pressure of only 1 · 105 Pa in the 181/2” section.

The effect described above may not necessarily be a negative one. In this case, the pore

and fracture pressure gradients are expected to increase with respect to depth, with the

exception of pore pressure in the salt layer. This effect has therefore been described as a

negative one in this context as it counteracts the natural development of the underground

pressure regime.

The static effective mud weight has been calculated as described in Table 5.1:

EMWstat = ρm +
PBP, stat

g · TV D
(5.19)

And the dynamic effective mud weight as presented in Table 5.2:

EMWdyn = ρm +
PAF + PC + PBP, dyn

g · TV D
(5.20)

To compensate for the effect of cuttings, annular friction and dynamic back pressure, the

back pressure applied during static conditions is equal to:

PBP, stat = PC + PAF + PBP, dyn (5.21)

where PC and PAF are calculated using Equations 5.9 and 5.14. The pressures exerted by

cuttings and friction increases with increasing depth and reduced annular size (the diameter

gets lower for every casing/liner that is run). To compensate for these effects, the static

back pressure is continuously increased to keep the bottom hole pressure at a constant level.

At the target depth of 27 000 feet, the dynamic back pressure is 5 · 105 Pa, the annular

friction pressure is 80, 7 · 105 Pa and the effect of cuttings is 2, 9 · 105 Pa. This results in an
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additional pressure gradient of 0,92 ppg. To compensate for this during static conditions,

the back pressure applied during still stand is 88, 6 · 105 Pa.

Figure 5.4: Planned drilling program using the MPD variant CBHP.

5.1.3 Controlled Mud Level DGD, MPD

As mentioned in Section 4.3.3, the CML approach can be used in two application modes. In

the first mode, the riser is filled during static conditions. When mud circulation and drilling

is initiated, the mud level is decreased to compensate for the annular friction and cuttings

pressure. The second mode uses a partly evacuated riser during static conditions. When

mud circulation and drilling is initiated, the mud level is decreased further to compensate

for annular friction and cuttings transport effect. Both of these application modes are

presented and discussed below.

AGRs EC-drill is in its current state able to deliver ECD management, and not a “full-
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DGD” capability. The application mode, which uses a filled riser, illustrates the current

state of this technique. Whereas the application mode with a partly evacuated riser illus-

trates the possible future, and the advantages it will entail to develop this technique to

“full-DGD” capability [60].

Filled riser during static conditions

The advantage of using a filled riser during static conditions presents itself if the subsea

pump should fail. If this occurs with a filled riser, the operation can proceed as a conven-

tional drilling operation with conventional well control procedures. In this case, the subsea

pump is attached to the riser at a depth of 1 476 feet (450 meters). The planned drilling

program for this application mode is presented in Figure 5.5 and the details are given in

Table C.4.

As the static mud level is kept at the rig floor, the static effective mud weight is equal to

mud weight being used:

EMWstat = ρm (5.22)

When the mud pumps are turned on and the riser level is reduced, two different pressure

gradients are formed in the riser. The upper one consists of air at atmospheric pressure,

and the lower one is given by the mud weight. Hence, the following equation applies during

dynamic conditions:

EMWdyn =
ρ1 · h1 + ρ2 · h2

TV D
+
PAF + PC

g · TV D
(5.23)

In order to compensate for the effect of annular friction and cuttings, the dynamic mud

level is reduced according to:

h1,dyn =
PAF + PC

g · TV D
(5.24)

As seen in Table C.4, the dynamic mud level is continuously decreased to compensate for

the pressures induced by annular friction and transportation of cuttings. At the target

depth of 27 000 feet, the annular friction pressure is 77, 6 · 105 Pa and the effect of cuttings

is 2, 9 · 105 Pa. To compensate for this, the mud level is reduced to 415 meters (1 362 feet).

As illustrated on Figure 5.5, the dynamic mud weights in this variant bends slightly from

left to right. This causes the wellbore pressure during dynamic conditions to better follow

the underground pore presure than the CBHP variant does. As seen in Figure 5.4, with the

CBHP method the well pressure profile bends from right to left, which is in the opposite
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direction of the pore pressure gradient.

Figure 5.5: Planned drilling program using the CML DGD, MPD approach and a full
riser during static conditions.

Partly evacuated riser during static conditions

In this application mode, the subsea pump is attached to the riser slightly deeper than in

the previous mode. The subsea pump has been placed at a depth of 600 meters (1 969

feet), enabling a high degree of flexibility regarding regulation and adjustments of the mud

level in the riser. The planned drilling program for this application mode is presented in

Figure 5.6 and the details are given in Table C.4. When Figure 5.5 and 5.6 are compared,

it is seen that a partly evacuated riser during static condition enables the wellbore pressure

to better follow the underground pressure environment.
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The effective static mud weight for this approach is given by:

EMWstat =
ρ1 · h1 + ρ2 · h2

TV D
(5.25)

The equation used for calculating the dynamic effective mud weight is the same as in the

previous application. In order to compensate for the effect of cuttings and friction, the

dynamic mud level is reduced with the following amount:

h1,dyn =
PAF + PC

g · TV D
+ h1,stat (5.26)

Figure 5.6: Planned drilling program using the CML DGD, MPD approach and a partly
evacuated riser during static conditions.

In this case, the riser mud level is continuously regulated to provide a constant BHP at all

times. During static conditions, the mud level is kept at a predefined fixed level. However,

when drilling is initiated, this level is lowered to compensate for the ever-increasing friction



72 Chapter 5. Case Study

and cuttings effect. This induces a decreasing trend in the dynamic effective mud weight

upwards in the wellbore. Good information about the formation-pore pressure is therefore

important to avoid a situation where the dynamic pressure decreases below the formation-

pore pressure.

5.2 Actual drilling programs

The well is now drilled in theory using the planned drilling programs in real pressure

environments. Tables containing detailed information regarding the updated actual drilling

programs are presented in Appendix C.2. Any event that has led to updates during drilling

are marked with bold text in these tables. In case the effective mud density drops below or

is equal to the pore pressure margin, this is marked with a blue colour. If the effective mud

weight either exceeds or is equal to the fracture pressure margin measured at the casing

shoe depth, this is marked with a red colour. The numbers presented in brackets after the

effective mud weight represents the effective mud weight at the casing shoe depth.

5.2.1 Conventional drilling

The actual drilling program for conventional drilling is illustrated in Figure 5.7 and the

details are presented in Table C.6. The first deviation encountered is the estimated sea-

water depth. This depth was estimated to 3 150 feet. However, when the real pressure

environment is investigated, it is seen that the fracture pressure gradient begins to deviate

from the normal trend at 3 240 feet rather than at 3 150 feet. The seawater depth at the

drill site has therefore been updated to 3 240 feet. Apart from this deviation, the two

upper sections are drilled as planned.

After the 20” surface casing has been run and cemented at the planned depth of 4 600 feet,

the riser and BOP is run. A LOT is conducted prior to drilling the 181/2” hole, which

measured a fracture pressure of 10,30 ppg. Since this is a lower value than the estimated

fracture pressure of 10,47 ppg, the upper well pressure margin is set to 9,80 ppg (10,30

ppg - 0,5 ppg). In order to cope with this reduced margin, the static mud weight has

been lowered to 9,50 ppg and the ROP reduced from 25 to 20 feet/hour. When drilling is

initiated with this reduced MW and ROP, the dynamic mud weight is estimated to 9,79

ppg, which is 0,01 ppg below the fracture margin. At a depth of 4 800 feet, the MWD

tool records a sudden increase in the pore pressure from 9,27 to 9,55 ppg. This will lead

to a kick during static conditions, provided that the formation is permeable. The kick is

circulated out and the 16” liner is run at this depth, 500 feet earlier than planned.
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Figure 5.7: Actual drilling program using conventional drilling.

After the aforementioned liner has been set and cemented, a LOT is performed which

measures the fracture pressure margin to 10,18 ppg (10,68 - 0,5 ppg), which is only 0,46

ppg above the lower well pressure margin. The static mud weight is set to 9,90 ppg, the

ROP to 20 feet/hour and the 14 1/2” hole is initiated with a dynamic mud weight of 10,17

ppg. At 5 160 feet, the formation-pore pressure is measured to 9,74 ppg which means that

the lower acceptable well pressure is 9,91 ppg. This will not result in a kick, but drilling

is stopped as the static mud weight is below the pore pressure margin. The 133/8” casing

is set at 5 160 feet, and the five inch drill pipe is replaced with a four inch drill pipe to

reduce the dynamic mud weight. The next sections are drilled with the same strategy as

explained above, and casing/liners are run much earlier than planned.

At 5 500 feet, the 95/8” liner is run and a LOT is performed. This reveals that the acceptable

pressure margin between pore and fracture pressure is only 0,40 ppg. As this margin is

not sufficiently large for both static and dynamic pressure conditions, the operation has
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been ceased at this depth. The planned versus actual well design is shown in Figure 5.8.

It is seen from this figure that there are quite substantial deviations from the planned well

design to the actual one. If the target depth is to be reached with this method, the pressure

boundaries set for this case would have to be exceeded and the well drilled with potentially

extreme losses/influx situations.

Figure 5.8: Planned versus actual well design for conventional drilling.

5.2.2 Constant Bottom-Hole Pressure, MPD

A remarkable improvement is seen when the well is drilled with CBHP rather than con-

ventional drilling. The two upper sections are drilled according to plan with the exception

of the updated water depth. The updated drilling program is shown in Figure 5.9 and the

details are presented in Table C.7 and C.8.

The LOT conducted after running the 20” casing indicates a fracture margin of 9,80 ppg,

which led to a slight change in the actual drilling program. The mud weight has been

reduced from 9,40 ppg to 9,35 ppg and the ROP from 50 to 25 ft/hr, whereas the dynamic
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back pressure is kept at the planned 1 · 105 Pa. This results in a static and dynamic mud

weight of 9,72 ppg, which is 0,08 ppg below the fracture margin and 0,95 ppg above the

pore pressure margin. The 181/2” hole is then initiated. At 4 820 feet, the formation

pore pressure margin is recorded to 9,73 ppg. At this depth, the static back pressure has

increased with 0, 2 · 105 Pa to compensate for the increased annular friction and cuttings

effect. This has caused the static effective mud weight at the 20” casing shoe to increase

from the previous value of 9,72 to 9,74 ppg, which is 0,06 ppg below the fracture margin. To

cope with the increasing pore pressure at 4 820 feet, the dynamic back pressure is increased

from 1 · 105 Pa to 1, 8 · 105 Pa. This causes the static back pressure to increase with the

same value, resulting in an increase of EMWstat at the 20” casing to 9,79 ppg, only 0,01

ppg below the fracture margin. Drilling is then continued with this increased back pressure

until 4 900 feet. At this depth, the measured pore pressure margin is 9,78 ppg whereas

EMWstat and EMWdyn equals 9,77 ppg. As the effective static mud weight at the 20”

casing shoe is only 0,01 ppg from the fracture margin, it was decided to set the 16” liner

at this depth.

It is seen that with the CBHP MPD variant, the 16” liner is run 100 feet deeper than

what was possible with conventional drilling. This example illustrates how this variant

quickly and effectively is able to adapt to uncertain and narrow pressure margins in the

underground. A change of back pressure is conducted in seconds and drilling can proceed

uninterrupted. The LOT performed at 4 600 feet indicated a maximum allowed wellbore

pressure of 9,80 ppg whereas the pore pressure at 4 900 feet indicated a minimum allowed

wellbore pressure of 9,78 ppg. That is a difference of only 0,02 ppg, which illustrates the

narrow pressure margin this technique is able to operate within.

After the 16” liner has been run and cemented at 4 900 feet, a LOT is performed. This

indicates a fracture margin of 10,26 ppg, triggering the need to reduce the planned mud

weight and ROP for this section. In addition, since the measured formation-pore pressure

increases with a rapid pace, the initial dynamic back pressure is reduced to 1 · 105 Pa as

opposed to the planned 5 · 105 Pa. This will reduce the aforementioned decreasing effect

dynamic back pressure has on EMWdyn. Drilling is then initiated from 4 900 feet and the

strategy described above regarding regulation of back pressure is followed. Dependent on

the situation, the dynamic back pressure is either increased or decreased, aiming to keep

the wellbore pressure within the acceptance criteria.

The mud weight window above the salt zone is more narrow in real life than what was

initially estimated. The strategy described above for dynamic back pressure has therefore

been applied in all sections prior to entering the salt zone. In case a lost circulation incident
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Figure 5.9: Actual drilling program using the MPD variant CBHP.

should be experienced, this enables the wellbore pressure to be decreased equivalent to

1, 0 · 105 Pa. In case a lost circulation incident should be experienced, a decrease in BHP

equivalent to 1, 0 · 105 Pa, may not be enough. However, both the estimated and real

pore and fracture pressure gradients are increases continuously above the salt layer. The

incidents leading to updated drilling programs are therefore caused by the ever-increasing

formation-pore pressure gradient and the continues struggle to stay below the fracture

margin measured at the casing shoe depth. This entails that lost circulation will not occur

above the salt zone as long as the wellbore pressure is kept below the casing shoe fracture

margin.

It is experienced that also this drilling technique is struggling in the narrow mud weight

window above the salt zone. The plan was to enter this layer with a 141/2” hole. However,

when the real pressure gradients are used, this layer is entered with a 81/2” hole which,

according to the plan, originally was designated for the target depth. The top of salt is
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encountered at a depth of 6 680 feet rather than the expected 6 920 feet. As shown in Table

C.8, at a depth of 7 200 feet, EMWstat at the 95/8” shoe reaches its maximum allowed

level. The measured mud weight window above the salt layer is rather narrow, making it

difficult to continue drilling. To cope with this situation, it has been decided to switch the

point of constant wellbore pressure from the bit to the 95/8” casing shoe. The estimated

mud weight window in this layer is very wide, enabling safe pressure fluctuations at the bit

depth. EMWstat is set equal to EMWdyn (11,68 ppg) at 6 540 feet, and drilling continues

uninterrupted until 12 000 feet is reached. The 75/8” liner is set at this depth, according

to the plan, as the pressure environment below the salt layer is highly uncertain.

At 12 000 feet, it has been decided to drill a contingency section. A LOT is performed

and a 67/8” hole is drilled with CBHP set at the bit depth. As the estimated fracture

margin below the salt layer is 14,53 ppg, it has been decided to stay below this value when

exiting the salt. At 12 140 feet, the formation-pore pressure margin suddenly increases

from 8,77 to 14,72 ppg, indicating that the salt is exited. The wellbore pressure gradient

at this point is only 14,15 ppg, which is 0,57 ppg below the margin. To cope with this

situation, the dynamic back pressure is increased from 5, 0·105 to 35, 0·105 Pa, which brings

the effective mud weights up to 14,84 ppg. It is experienced that the real pore pressure

below the salt layer is 1,50 ppg higher than initially estimated. It has therefore been

assumed that also the fracture pressure is higher than originally estimated. The fracture

pressure measured at the LOT is therefore used as the upper limit for the continued drilling

operation. Drilling proceeds to a depth of 13 200 feet, continuously increasing the dynamic

back pressure to compensate for the increasing formation-pore pressure. At this depth,

it becomes challenging to continue safe drilling and the 65/8” liner is run. It would be

possible to drill yet another contingency section (53/4”), but is seems highly unlikely that

this would be sufficient to reach the target depth of 27 000 feet. The drilling operation has

therefore been ceased at this depth. The planned versus actual well design for the CBHP

MPD variant is presented in Figure 5.10. It is seen that this variant is able to drill longer

section than conventional drilling was, but the target depth of 27 000 feet was not reached.
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Figure 5.10: Planned versus actual well design for CBHP MPD.

5.2.3 Controlled Mud Level DGD, MPD

Filled riser during static conditions

The actual drilling program for the CML variant with a filled riser during static conditions

is illustrated in Figure 5.11 and the details are presented in Table C.9 and C.10. The well

pressure profile for this variant looks quite similar to the CBHP MPD variant. Also this

variant requires four sections to be drilled in the upper, narrow mud weight window.

After the surface casing has been set at 4 600 feet, the riser and BOP has been run and the

LOT conducted, drilling is initiated with the CML approach. The LOT measures a lower

fracture prssure margin than estimated (9,80 ppg) and the mud weight is therefore set to

9,80 ppg to avoid fracturing the formation during drilling. The operation is commenced

and drilling proceeds until 4 960 feet. At this depth, the pore pressure margin increases to

9,81 ppg which triggers the need to stop drilling and run the 13 3/8” casing.
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Figure 5.11: Actual drilling program using the CML DGD, MPD approach and a full
riser during static conditions.

It is experienced that also this technique is struggling prior to entering the salt layer. A

total of four sections are required from 4 600 feet to 6 540 feet, which is equivalent to the

CBHP variant. At 6 680 feet, the top of salt is entered with a 81/2” hole and drilling

proceeds until 7 850 feet. At this depth, the dynamic mud weight is equal to the pore

pressure margin at 6 560 feet (11,51 ppg). To cope with this situation, the same strategy

as was performed with the CBHP variant has been chosen. The dynamic mud level is set

to a fixed level of 87 meters, which causes the dynamic and static effective mud weights to

be equal at the casing shoe. This enables drilling to continue until 12 000 feet and a 7 5/8”

liner is set at this depth.

The LOT performed at 12 000 feet indicates a higher fracture pressure margin than es-

timated, 15,63 ppg as opposed to the estimated 15,31 ppg. In order to stay below the

estimated fracture margin when exiting the salt, the mud weight is set to 14,50 ppg and
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67/8” contingency hole is drilled. When the base of salt is breached at 12 140 feet, the

measured pore pressure margin is 14,72 ppg which results in a kick. A mud weight with

a density of 14,80 ppg is circulated into the wellbore to bring the well in overbalance and

drilling is continued. At 12 240 feet, the pore pressure margin is measured to 14,82 ppg,

which triggers the need to increase the mud weight further. It has been chosen to increase

the mud weight to 15,10, which enables drilling to continue until 13 140 feet. At this

depth, the pore pressure margin is measured to 15,15 ppg. It has been decided to cease the

operation at this depth as the actual fracture pressure in this interval is highly uncertain.

The disadvantage experienced with this technique is the inability to increase or decrease

the wellbore pressure without changing the mud weight. However, if riser is kept partly

evacuated during static conditions, this would have been possible as is demonstrated in the

next case.

Figure 5.12: Planned versus actual well design for the CML DGD, MPD with a full riser
during static conditions.
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Partly evacuated riser during static conditions

The actual drilling program for the CML variant, with a partly evacuated riser during

static conditions, is illustrated in Figure 5.13. The details are presented in Table C.11

and C.12. The advantages offered by this technique are in particular seen in the upper

wellbore sections. As seen in the figure, the downhole wellbore pressure is manipulated to

better match the measured pore and fracture gradients. Ultimately, this makes it possible

to drill each section longer prior to setting casing, compared to any of the aforementioned

techniques.

Figure 5.13: Actual drilling program using the CML DGD, MPD approach and a partly
evacuated riser during static conditions
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After the surface casing has been set at 4 600 feet, the riser and BOP has been run and the

LOT conducted, drilling is initiated with the partly evacuated CML approach. As seen on

the actual drilling program, no changes are performed at this point and drilling is initiated

according to the plan until 5 500 feet is reached. At this depth, the measured formation-

pore pressure is 10,33 ppg whereas the effective mud weights are 10,28 ppg. A possible

solution to this scenario would be to increase the static mud level in the riser. However,

as the effective static mud level at the casing shoe is only 0,04 ppg below the maximum

level, another approach has been selected. A more dense drilling fluid is circulated into the

wellbore (15,00 ppg), while gradually lowering the static mud level to 490 meter. As seen

in Table C.11, this causes the effective mud weights at 5 500 feet to increase, whereas the

effective static mud weight at the casing shoe depth is kept constant. Drilling is resumed

until 6 540 feet. According to the plan, this section was intended to cease at 6 200 feet, but

it was decided to continue drilling with the updated drilling plan until 6 540 feet. Between

6 520 and 6 540 feet, the pore pressure margin suddenly increases from 10,95 to 11,39 ppg.

This triggered the need to set the 16” liner at this depth, making this section 340 feet

longer than planned. When the well is drilled with this dual gradient variant, only one

section is required after the surface casing prior to entering the salt layer.

After the 16” liner has been set, a LOT is carried out at 6 540 feet, indicating a fracture

margin of 11,78 ppg. This section is drilled with the updated mud weight of 15,00 ppg and a

static mud level of 450 meter. At 6 680 feet, the pore pressure suddenly drops to a normal

pressure gradient, indicating that the salt layer has been entered. Drilling is continued

uninterrupted until 8 300 feet. The ever-decreasing dynamic mud level has caused the

effective dynamic mud weight at 6 560 feet to decrease below the measured formation-

pressure margin. To cope with this situation, the same approach has been selected here

as was performed with the aforementioned CML application mode. The point of constant

wellbore pressure is changed from the bit depth to the 16” liner shoe depth. This enables

drilling to continue until the planned depth of 12 000 feet in the salt layer.

The 121/4” section is initiated according to the plan and the well pressure is kept below

the estimated fracture margin at the base of the salt. When the salt layer is exited at 12

140 feet, 400 feet earlier than estimated, the measured pore pressure margin is 14,72 ppg.

This triggered the need to increase the static mud level from 400 to 200 meter as the pore

pressure is much higher than expected. As drilling advances, it is experienced that the pore

pressure continues to increase. To compensate for this, the static mud level is gradually

increased. When the bit reaches 17 700 feet, the effective dynamic mud weight at 13 200

feet is equal to the measured pore pressure margin, and the effective static mud weight is

only 0,01 ppg below the fracture margin. This triggered the need to cease drilling and run
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the 113/4” liner.

As seen in Table C.12, the 95/8” casing is set at 20 580 feet, whereas the 75/8” liner is set

at 21 900 feet. The real pore and fracture pressure information ends at this depth, and the

operation has therefore been ceased. Of the discussed drilling techniques, it is seen that

this variant best matches the planned well design.

Figure 5.14: Planned versus actual well design for the CML DGD, MPD with a partly
evacuated riser during static conditions.





Chapter 6

Discussion and evaluation

The case study showed clear advantages of using MPD over conventional drilling in narrow

and uncertain pressure regimes. CBHP and both applications of CML were able to drill

through, and past the (presented) salt layer. Where the latter of the CML mode shows

the advantage of using a partly evacuated riser in a narrow and rapidly increasing pressure

environment.

As illustrated in Figure 6.1, production of oil and gas from deep waters has steadily in-

creased since the race for deepwater reservoirs began in the early 1990s. By 2015, it is

expected that the oil production from deep water reservoirs will reach 10 million bar-

rels/day, which will cover approximately 10 % of the global demand for oil. Drilling in

these conditions are often associated with narrow and unpredictable mud windows, high

amounts of costly NPT and increased risk. The oil and gas industry works determined

to minimize the costs and risks related to the development of deep water fields. With

unique challenges, such as unstable boreholes and vast amounts of salt, there is a need for

innovative techniques to develop these areas in a safe and effective manner [8].

The Deepwater Horizon accident serves as a strong reminder of the catastrophic outcome

an uncontrollable event in deep waters may entail. Eleven people lost their lives, seventeen

were injured and nearly five million barrels (0,8 m3) of oil were released to the environment.

As a consequence of this, there has been an increased focus on enhancing the safety in

deepwater drilling. The International Oil and Gas Technology concluded in their annual

report, as of 2011, that [59]: “The industry is still recovering from the repercussions of

the Macondo incident in the Gulf of Mexico. Many operators now consider that the use

of MPD techniques on the Macondo well might have facilitated the early identification of

an imminent “kick”, which would have allowed the implementation of effective mitigation

action [59].”
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Figure 6.1: Illustration of global hydrocarbon production from deep waters [57].

6.1 Interpretation of results

Implementing MPD in a deepwater well in the Gulf of Mexico (ref. Chapter 5) showed

clear advantages in terms of target depth. A tighter mud window than expected brought

conventional drilling to a standstill after 5 500 feet whereas CBHP and both applications

of CML were able to drill through, and past the (presented) salt layer to a total depth of

roughly 13 000 feet. Drilling with CML and a partly evacuated riser would allow drilling

to continue all the way to 21 900 feet.

As can be seen on Figure 6.2, the real mud weight window is narrower than the predicted,

which makes conventional drilling both risky and uneconomical. The most noticeable differ-

ence took place in the narrow and rapidly increasing pressure regimes around 4 600 to 6 600

feet. With conventional drilling it becomes impossible to drill this section without defying

the defined pressure boundaries, and face potentially huge amounts of fluid loss/influx.

The same challenges as CBHP MPD were experienced when the CML method was used

with a static filled riser. Conventional drilling proved inadequate in this interval and both

the CBHP and CML had to use four sections to complete the interval. A significant

difference was experienced when the static riser level was reduced. This allowed the narrow

pressure regime from 4600 to 6600 feet to be drilled with only one section. This was

achieved by lowering the riser lever and using a dense drilling fluid, which enabled the

well pressure profile to better “follow” the underground pressure environment. With the

current technology you need AGRs RMR method to allow for this approach to be taken.



6.1. Interpretation of results 87

Figure 6.2: The real mud weight window presented in the case study

Figure 6.3 below shows a typical Dual Gradient mud profile when the RMR method is

implemented. The 30x32” hole would be in this case be limited to 8,9 ppg if the well was

drilled with a riser, and can with RMR be increased to 10,5 ppg. RMR allows for the 26”

hole to be drilled with 13,5 ppg, where it previously was limited to 11,0 ppg. The effect

of this, is increased drilling margins, allowing extended hole depths. The optimal solution

for the well presented would be to implement AGRs RMR method in the upper section,

and then proceed with the CBHP variant. This would enable the top hole sections to be

drilled with a pressure profile that better “follows” the pore and fracture pressure gradients.

Whereas the lower sections would be drilled with the operation flexibility offered by CBHP

[60].

The next step will be to develop the AGRs CML variant, EC-drill, into a “full DGD” post-

BOP capability. This will be a logical next step after the successful field trial of AGRs

CML variant, EC-drill, conducted on the Troll field in the spring of 2014 [60]. On May

13, 2014, the enhanced drilling department of AGR published a press release regarding the

Troll pilot, stating that: “EC-Drill made it possible for Statoil to minimise losses, while

the amount of drilling mud used was reduced by approximately 70 per cent in relation to

comparable wells. Following the Troll Pilot, Statoil is due to introduce EC-Drill to the Gulf

of Mexico later in the year, on the Maersk Developer, for a multi-well project [61].”
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Figure 6.3: Typical mud profile for the RMR method, notice how this method is able to
manipulate the mud profile to better match the mud weight window [60]

The development of the EC-drill technique into a “full DGD” technique will require mod-

ified well control procedures to enable a kick to be circulated out of the wellbore without

fracturing the formation. Ziegler et.al 2013 states that it will be possible to develop the

EC-drill technology into a “full DGD” Controlled Annular Mud Level with modified well

control equipment. As discussed in this thesis, this will enable increased operational flexi-

bility in narrow and rapidly increasing pressure environments [62].



Chapter 7

Conclusion

The concluding remarks of this thesis are summarized below:

• To meet the worlds increasing demand for oil and gas, the petroleum industry has ex-

tended its portfolio to also include deepwater reservoirs. However, drilling under these

conditions are risky, and a huge responsibility lies upon the production companies in

doing so in a safe manner.

• MPD increases the drillability and safety while reducing the amount of costly NPT

in narrow and unpredictable mud weight windows. This makes MPD a sustainable

candidate for safe and cost-effective drilling in deep water depths.

• Development of AGRs EC-drill into a “full DGD” technique will enable the well

pressure profile to better “follow” and adapt to the underground pore and fracture

pressure gradients. The overall advantage of this will be a reduction in the amount

of casing strings required to reach target depth.





Nomenclature

Symbol

β Failure angle caused by shear failure

∆h Difference in height

∆t Acoustic wave velocity

∆tnormal Normal acoustic wave velocity

µeff Effective fluid viscosity

µeff,ann Effective annular fluid viscosity

µpl Plastic viscosity

ρ Density

ρ̄a Average annular density

ρc Cuttings density

ρlam Light annular mud density

ρm Drilling fluid density

ρ1 Upper fluid/gas density

ρ2 Lower fluid density

σ Total stress

σh Minimum horizontal stress

σH Maximum horizontal stress

σi Principal stress

σn Normal stress

σv Vertical stress

σ′i Effective principal stress

σ′h Effective minimum horizontal stress

σ′v Effective vertical stress

σ′1 Maximum effective stress

σ′3 Minimum effective stress

τ Shear stress

τ0 Yield shear stress

Continued on next page
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– Continued from previous page

Symbol

ϕ Angle of internal friction

A Area

C0 Uniaxial compressive strength

C̄c Average concentration of cuttings

Cc,i Initial concentration of cuttings

d d’exponent

dc dc-exponent

dc,normal dc-exponent in a normally pressured formation

dbit Bit diameter

di Inner annulus diameter

do Outer annulus diameter

D Vertical depth

Dformation Depth below seabed

Dw Water depth

F Force

g Gravity constant

htop,frac Vertical depth down to first fractured zone

h1 Vertical height of upper fluid/gas

h2 Vertical height of lower fluid

h1,dyn Vertical height of upper fluid/gas during dynamic conditions

h1,stat Vertical height of upper fluid/gas during static conditions

h2,dyn Vertical height of lower fluid during dynamic conditions

h2,stat Vertical height of lower fluid during static conditions

L Length

PAF Annular friction pressure

PBP,dyn Surface back pressure applied during dynamic conditions

PBP,stat Surface back pressure applied during static conditions

PC Pressure exerted by cuttings

PCollapse Collapse pressure

Pf Formation-pore pressure

Pf,est Estimated formation-pore pressure

Pfrac Fracture pressure

Pfrac,est Estimated fracture pressure

Phydrostatic Hydrostatic head of drilling fluid

Continued on next page
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Symbol

Pi Rock failure pressure

Pnormal Normal pore pressure

Povb Overburden pressure

Pw Well pressure

Pwater Hydrostatic head of water

Pwell,actual Actual well pressure

Pwell,planned Planned well pressure

Qc Amount of cuttings generated during drilling

Qm Drilling fluid flow rate

Qtot,a Total annular flow rate

R Resistivity

Rnormal Resistivity in a normally pressured formation

Re Reynolds number

Rt Cuttings transport ratio

S0 Inherent shear strength

To Tensile strength

v̄ Average fluid velocity

vslip Slipping velocity of cuttings

vt Cuttings transport velocity
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Abbreviations

BHA Bottom-hole assembly

BHP Bottom-hole pressure

BHPdyn Dynamic bottom-hole pressure

BHPstat Static bottom-hole pressure

BOP Blow out preventer

BSEE Bureau of Safety and Environmental Enforcement

CBHP Constant Bottom-Hole Pressure

CCS Continuous circulation system

CML Controlled Mud Level

DAPC Dynamic Annular Pressure Control

DGD Dual Gradient Drilling

DSV Drillstring valve

ECD Equivalent circulating density

EDS Enhanced Drilling Solutions

EMW Equivalent mud weight

E&P Exploration and production

FCP Fracture Closure Pressure

FIT Formation integrity test

FPP Fracture propagation pressure

GOM Gulf of Mexico

HSE Health, safety and environment

IADC International Association of Drilling Contractors

LAM Light annular mud

LCM Lost circulation material

LOP Leak-Off Pressure

LOT Leak-Off Test

LRRS Low Riser Return System

MAASP Maximum allowable annular surface pressure

MPA Megapascal

MPD Managed Pressure Drilling

MWD Measurements while drilling

NOV National Oilwell Varco

NPT Non-Productive Time

NTNU Norwegian University of Science and Technology

ORS Ocean Risers System

Continued on next page



95

– Continued from previous page

Abbreviations

PMCD Pressurized Mud-Cap Drilling

PWD Pressure-while-drilling

RCD Rotating Control Device

RFC Returns-Flow-Control

RMR Riserless Mud Return

ROP Rate of penetration

RPM Revolutions per minute

SICP Shut-in casing pressure

TVD Total vertical depth

UBD Underbalanced drilling

WOB Weight on bit

WD Water depth

XLOT Extended Leak-Off Test
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Appendix A

MPD equipment/software

Table A.1: Required/optional equipment and software used in an automated CBHP MPD
operation [63].

Equipment/software Use Optional/required
Annular seal Provide back pressure Required
Chokes Adjust back pressure Required
Hydraulic model Compute back pressure Required
Control System Adjust choke Required
Back pressure pump Adjust back pressure without circulation Optional
Flow meter Detect kicks/losses Optional
Continuous circulation Provide circulation and hole cleaning Optional
system during connections

Figure A.1: Illustration of the Dynamic Annular Pressure Control (DAPC) closed circu-
lation system. The DAPC system is designed to manage the BHP during both static and
dynamic conditions [10, 64].
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A.1 Annular seal

During all types of well operations (drilling, production, intervention and plug and aban-

donment operations) two independent pressure barriers are normally required [65]. Ac-

cording to the well integrity standard, NORSOK D-010, a well barrier is defined as:

“An envelope of one or several barrier elements preventing fluids or gasses from flowing

unintentionally from the formation, into another formation or to surface [66].”

During a drilling operation, the primary pressure barrier consists of the hydrostatic drilling

fluid pressure exerted on the formation. In case the primary pressure barrier should fail,

a drilling blow out preventer functions as the secondary pressure barrier. In addition,

elements such as a high pressure riser, wellhead, the last casing installed and the casing

cement forms part of the secondary well barrier envelope [65, 66].

An essential part of MPD is to generate a surface back pressure in the annulus. This requires

a seal to be formed between the flowing pressurized fluid in the annulus and surface during

the drilling operation. A drilling BOP can offer such a sealing capability, but only as a

temporary solution. If used as a more permanent solution, the stationary sealing elements

in the BOP will be worn down due to drill string rotation. To cope with this problem, the

industry has developed rotating annular seals. A rotating annular seal does not function

as a replacement for the BOP, but as a supplement. Thus, the primary barrier during

a MPD operation consists of hydrostatic drilling fluid pressure and the rotating annular

seal, whereas the drilling BOP (placed below the rotating annular seal) functions as the

secondary barrier. [65, 67].

The following two variations of rotating annular seals are in use [10]:

• Rotating control device (passive system)

• Rotating annular preventer (active system)

The main difference between the passive and active system, is that the passive system

utilizes well pressure to apply sealing, whereas the active system uses external hydraulic

pressure. Of which the passive system is by far the most commonly used. High-pressure

RCDs make up more than 90 % of the rotating annular seals used in MPD operations, the

RCD is further described below [30, 67].
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A.1.1 Rotating control device (RCD)

The RCD is a rotating packer that seals around the drill pipe using an annular sealing

element. This causes the returning, pressurized drilling fluid to be diverted to the choke

manifold, see Figure A.2. The sealing element used in the RCD is deliberately undersized

with 1/2” - 7/8” to the drill pipe diameter, and it must therefore be forced onto the pipe.

This forms a tight seal around the pipe in the annulus, even at zero-pressure conditions.

Increasing differential pressure across the element causes the sealing capability to be en-

hanced. This is described as a passive activation system. The annular seal element rotates

with the pipe, thus limiting rotational wear, and is sealed into a bearing assembly, which

is cooled and lubricated by a circulating hydraulic system [10].

Figure A.2: Rotating control device [64].

The most common failure mode for passive RCDs are low-pressure leakage in the sealing

element around the drill pipe or drill collar. Packers get worn down over time, and at a

certain point it is no longer able to provide sealing at low pressures. Such a leak is often

detected on the drill floor during a tripping or connection operation [10, 67].

A.2 Chokes

The choke is another vital equipment used in MPD. Its function is to regulate the surface

back pressure exerted in the annulus. One or two choke valves, placed downstream of the

rotating seal (see Figure A.1), carries out this task through choking the returning fluid
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flow from the wellbore. The annuli back pressure is then adjusted through regulating the

opening of the choke valve, see Figure A.3 [10, 30].

The choke valve can either be controlled manually or automatically. Of which, the auto-

matic option enables a more accurate and fast response to unexpected pressure changes,

than the manual. As a redundancy, two chokes are often installed in parallel downstream

of the rotating annular preventer. This allows for one of them to regulate the flow rate

whereas the other is closed. If the one regulating the flow rate fails, the other can take

over. The failed choke is taken out and either replaced or repaired [10, 30].

Figure A.3: M-I SWACO 10K Super Choke and choke plates [10].

A.3 Hydraulic model

An essential part of an automated MPD system is the hydraulic model, which provides

continuous real-time estimates of the BHP. The hydraulic model compares the estimated

BHP against the desired BHP, and provides an estimate of the choke pressure required

to match the BHP set point. This estimate is then transmitted to the control unit which

regulates the choke position, see Figure A.4 [68].

The hydraulic model is in many cases the limiting factor when it comes to pressure accuracy

in a MPD operation. Much effort has therefore been invested into developing advanced
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models that takes into account all the aspects of the drilling hydraulics. Despite the effort

put into these models, some parameters are difficult to predict as they are highly uncertain

and slowly changing. Such as the friction coefficients along the wellbore, the amount of

gas dissolved in the drilling fluid, or external boundary conditions like uncertain reservoir

temperature. Continuous calibration is hence a vital part of a real-time hydraulic model,

used to accurately predict the BHP. Valuable calibration information is gathered from

topside and downhole presure measurements [68].

A.4 Control system

In an automated MPD system, a control system provides automatic and continuous regula-

tion of the choke valves position. Based on information from the hydraulic model, combined

with a feedback algorithm, the control system adjusts the choke valves position. Continu-

ously attempting to provide the requested back pressure. As illustrated in Figure A.4, the

control system automatically controls the back pressure pump, further described in Section

A.5 [68].

Figure A.4: Workflow schematic of an automated MPD operation, illustrating how the
hydraulic model and the control system communicates and provides back pressure [68].
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A.5 Back pressure pump

As long as a sufficient volume of mud flows through the aforementioned choke valve(s),

there will be back pressure. When the flow rate slows down, the choke begins to close,

attempting to keep a stable back pressure. However, if the flow rate should suddenly

stop, the choke will close completely to trap the remaining back pressure. The amount

of back pressure trapped depends on how quickly the choke reacted and responded to the

non-existent flow rate scenario. However, in the event of a sudden and unexpected loss

of wellbore pressure, it is unlikely that the choke will respond and close fast enough to

trap the entire back pressure. Lost back pressure stays lost until flow from the well is

either resumed or provided from another source. A lost back pressure scenario implies loss

of pressure control in the wellbore, and possibly also total loss of well control if the mud

weight window is narrow [10].

One solution to this problem is to provide fluid flow from an external source. Some MPD

systems are therefore equipped with its own on-demand back pressure pump (See Figure

A.1). The back pressure pumps used in the DAPC-system is a low volume, triplex pump

connected to the choke manifold, and automatically controlled by the control system. If the

control system senses that the choke is unable to provide the requested back pressure, the

back pressure pump is automatically turned on. The pressure and fluid flow through the

choke then increases and the requested back pressure from the hydraulic model is delivered.

A scenario involving lost back pressure, is in such a manner effectively avoided [10].

Figure A.5: A DAPC back pressure pump [10]
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A.6 Flow meter

A flow meter is an optional, but nevertheless a very useful equipment used in MPD. Its

purpose is to measure the flow rate downstream of the choke, illustrated in Figure A.1. A

flow meter, in combination with an automated control system, enables quick detection and

immediate reaction if mud losses or fluid influx occur. This is performed by comparing

the actual flow rate, measured by the flow meter, against the predicted flow rate. Actions

are taken if the two values differ with a certain amount. Mud losses or influx are typically

detected before the lost or gained volume reaches 0,5 barrels, which is approximately 80

litres. The automatic control system then signals the choke valves to either open (mud

lost) or throttle (fluid influx) dependent on the situation. In the case of a kick, the choke

valves are signalled to throttle until sufficient amount of back pressure is applied and the

influx stops. The situation is typically brought under control before the total lost or gained

volume has reached 2 barrels, which is approximately 320 litres [30, 63].

The Coriolis flowmeter is, as opposed to other flow meter types, able to provide very

accurate flow rate measurements of fluids containing solids. This makes it ideal for use

on returning drilling fluid as they contain cuttings. A Coriolis flowmeter used in a MPD

operation is illustrated in Figure A.6 [10].

Figure A.6: Coriolis flow meter used in a MPD operation [69].
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A.7 Continuous circulation system

A continuous circulation system (CCS) enables the BHP to remain more or less constant

during drill pipe connections. The system minimizes the positive and negative pressure fluc-

tuations encountered during drill pipe connections. This results in shorter total connection

time, improved wellbore stability and improved hole cleaning. In addition, problems related

to gas migration during connections are reduced [10].

A CCS set-up is shown in Figure A.7, the system is developed by National Oilwell Varco

(NOV). When a connection is to be made, the lower and upper pipe rams, illustrated on

the figure, closes around the drill pipe and creates a sealed chamber. Mud is then pumped

into the sealed chamber, through the black hoses on the figure, until the pressure outside

the drill string is equal to the pressure inside it. The drill pipe connection is then broke

and the loose drill string raised. When the raised drill string is clear of the blind ram, it

closes and circulation from the top drive is stopped. Mud is then circulated from the lower

black hose into the open-end drill pipe, and hence, circulation is maintained. Pressure is

bled off in the upper pressure-section and the upper pipe ram opened. The drill pipe is

then lifted out of the CCS-unit, and a new stand of drill pipe is guided into the unit. The

sequence described above now repeats itself in reverse order, which allows a new stand

to be connected to the open-end drill pipe. Drilling then continuous with uninterrupted

wellbore circulation, and a stable ECD. [70].

Figure A.7: Continuous circulation system set-up, developed by NOV [71].

The CCS has proven to be a safe and reliable system, enabling successful drilling in high-
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pressure/high-temperature fields and wells drilled in narrow mud weight windows. The

system has also proved valuable when drilling into reservoirs. Problems experienced with

formation damage and impaired production in the reservoir can be reduced with a contin-

uous circulation system [10].
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Figure B.1: Dual gradient drilling approaches and systems [9].





Appendix C

Case study

C.1 Planned drilling programs

The following parameters are used in the planned drilling programs:

• Hole size: The hole diameter of the section in inches (1 inch = 0,0254 meters).

• Casing/liner size: The diameter of the casing/liner in inches.

• TVD : The total vertical depth in feet (1 feet = 0,3048 meters).

• EMW stat: Effective static mud weight in ppg (1 ppg is 119,8 kg/m3).

• ROP : Rate of penetration in feet/hour (1 feet/hour = 8, 47 · 10−5).

• Qm: The flow rate delivered by the mud pump in litres per minute.

• C̄C : The average concentration of cuttings in the borehole during drilling in %.

• PAF : The annular friction pressure caused by circulation, noted in Pascal.

• PC : The pressure exerted by the weight of cuttings in the borehole, noted in Pascal.

• EMW dyn: Effective dynamic mud weight in ppg.

• ρf, est: The estimated pore pressure margin (pore pressure + 0,17 ppg).

• ρfrac, est: The estimated fracture pressure margin (fracture pressure - 0,5 ppg).

• PBP,stat: The static back pressure applied in the CBHP MPD variant, noted in Pascal.

• PBP,dyn: The dynamic back pressure applied in the CBHP MPD variant, noted in Pascal.

• h1, stat: The static mud level in the riser with the CML DGD variant, noted in meters.

• h1, dyn: The dynamic mud level in the riser with the CML DGD variant, noted in meters.
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C.2 Actual drilling programs

These additional parameters are introduced in the actual drilling programs:

• LOT: The Leak-Off Test conducted prior to drilling a new section, given in terms of

fracture pressure margin (LOT - 0,5 ppg).

• ρf real: The measured pore pressure during drilling, given in terms of pore pressure

margin (pore pressure + 0,17 ppg)
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