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Project Formulation

The goal is to design and build a drone with pickup and delivery capabilities. It should be pos-

sible to preprogram a pickup and delivery route based on GPS coordinates. The drone should

be able to pick up payloads of at least 400 grams. For safety reasons it should be possible to

override the preprogrammed routine with a regular RC remote. It should also be possible to

manually control the drone with the RC remote, with reference to global position (GPS) or roll,

pitch and yaw. This project will continue the progress from the fall project. The objectives are

listed under

1. Improve the orientation controller

2. Implement a position controller with necessary sensors

3. Implement a method for the drone to recognize objects to be picked up, and lock on to

the object

4. Implement a method for picking up an object

5. Do an overall test of all the objectives mentioned above

6. If there is enough time a collision detector system should be implemented
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Preface

This is a master’s thesis for Cybernetics and Robotics at Norwegian University of Science and

Technology (NTNU). This master thesis was executed during the spring semester of 2016.

Since I started to study Computer Science and Industrial Automation at HiT (Telemark Uni-

vercity Collage) I’ve had deep interest for programming and electronics. This thesis is an oppor-

tunity to combine microcontrollers and cybernetics in one project. With powerful electronics

cheaply available, it makes it easy to create really awesome stuff. I wanted to create a drone with

the capabilities to pick up an object from one location, and deliver it to another, this is what this

thesis is all about. Because of the price of electronics I am able to finance this project out of my

own pocket, and can keep developing it after I have delivered the thesis. This project has been a

learning experience where I can use theory in a practical environment. There have indeed been

some challenges along the way, but without this the project would be too simple, and maybe

boring.

This master’s thesis as a continuation of the pre-project executed during the fall semester of

2015, it is therefore recommended that the reader has also read the pre-project report for this

master, referred to in apendix B. An insight in electronics and microcontrollers, mathematics,

programming, Simulink and controller design is suggested as prerequisite for understanding

the contents of this report.

Trondheim, 05.06.16

Bjarne Kvæstad
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Summary and Conclusions

The objective with this project was to create an autonomous drone with the capability to pick

up, and deliver an object, without any human interference. This is an continuation of the work

done during the pre-project.

The obectives during this project were:

1. Improve the orientation controller

2. Implement a position controller with necessary sensors

3. Implement a method for the drone to recognize objects to be picked up, and lock on to the

object

4. Implement a method for picking up an object

5. Do an overall test of all the objectives mentioned above

6. If there is enough time a collision detector system should be implemented.

Before the orientation controller could be improved it was necessary to revise the orientation

data processing algorithms. After implementing a calibration routine, motor throttle compen-

sation, rollover compensation and acceptance test for the compass, and a tilt compensation

function for the gyroscope, the results were satisfying.

An LQR controller and cascade controller was tested in order to find the best alternative for

controlling the drone’s orientation. Both controllers were tested and tuned against the drone

model in Simulink before implemented on the drone’s MCU for further testing and tuning. The

cascade configuration was precise and responsive, and proved to be the superior controller de-

sign for this use. With this, the first objective was met.

In order for the drone to be implemented with a position controller the following new hard-

ware was installed.

• GNSS receiver, for measuring position and velocity

• Pressure sensor, for accurately measuring altitude

• Vision sensor, for detecting objects
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• IR sensor, for detecting the ground

In order to get a visual feedback of the current status of the drone, LED’s were installed. Appro-

priate drivers were developed for the new peripheral devices. Because of the new hardware a

new PCB design was necessary, the new design made the electronics more concealed, and the

drone more compact. A hook connected to a servo was suggested as a method for picking up

objects, but was not implemented due to controller issues.

In order for the visual representation of the drone’s position and -velocity to be easy to com-

prehend the GNSS data was converted to ENU coordinates, and pressure sensor data was recal-

culated to altitude. Sensor fusion with kalman filtering was implemented to filter the velocity

data, and a second order low-pass filter was used to filter the altitude data, this gave noise re-

duced measurements.

The controller design used for positioning was a cascade controller, and was tuned and

tested in the same manner as the orientation controller. The tuning of the position controller

had to be done outside, but due to harsh weather conditions, not enough time was spent on

tuning the controller, the parameters were therefore not optimal. The overall controller design

and implementation worked as planned, with this, the second objective was met.

The raw data from the vision sensor, object x- and y position and object width, was recal-

culated to a three dimensional position vector, so the object position data could be used in the

position controller. To make testing easier, the vision sensor was also modeled in Simulink.

The flight controller combines all the controller and data processing modules plus necessary

logic for the modules to cooperate. This was designed in Simulink because of the possibility to

simulate against the drone model. Four flight modes were implemented in the flight controller,

1. Manual mode, 2. Manual GNSS mode, 3. Autonomous mode, and 4. Autonomous object

mode. A battery monitoring system was also implemented for warning the user of low battery

via the LED’s.

A real-time operating system was implemented due the need for doing several operations at

the same time, and some modules having a strict execution deadline. There was implemented

a total of seven tasks and one interrupt routine. The operating system worked flawlessly.

All modes except "autonomous object mode" were tested on the physical drone, though the

functionality of all three modes worked as expected there was definitively room for improve-
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ments. When testing "manual mode" an issue arose, when given a roll- or pitch input the drone

was not able to hold its attitude over time, and would flatten out as it picked up speed. This af-

fected the drone’s top speed, which was noticeable on the performance in "autonomous mode"

and "manual GNSS mode", this issue affected the drone’s ability to hold its geographic position,

and move to another position. The root cause of this issue was tough to be poor controller pa-

rameters. Because of this issue there was no point in implementing the "autonomous object

mode" on the drone, this was rather simulated in Simulink, and the result was satisfying enough

to suggest the mode to be implemented on a later moment.

Due to the issues mentioned above, the "autonomous object mode" was never implemented

on the drone, there was no point in implementing this mode as the position controller was not

precise enough. With this, the third and fourth objective was not met, although much of the

work has been done. A test of all the implemented objectives was done, the fifth objective was

therefore met. There was no time to complete objective six.
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Chapter 1

Introduction

This chapter gives an introduction to the contents and objective of this master thesis.

1.1 Background

The main objective for this thesis is to create a drone with the capabilities to pick up an ob-

ject from a predetermined location, and deliver the object to another predetermined location

without any human interference.

This might not only be of interest for post offices, online stores, hospitals, etc, but also if

there is some object that is needed to be retrieved from a hazardous area. This project involves

lots of disciplines, for example cybernetics, electronics and programming, which also makes it

an interesting challenge for me to solve.

Raffaello D’Andrea’s work on Flight Assembled Architecture is about using quadrotors for

building large structures, where the quad rotor is picking up and placing building block to form

a structure, without any human interference. But in D’Andrea’s work, he uses a motion capture

system to obtain a very accurate indoor positioning system [12]. In Randal Beard’s paper on

Quadrotor Dynamics and Control, he uses a vision sensor to hold a quadrotor over a ground

based target [9].

In this paper we will combine the work of D’Andrea and Beard to design a drone that is able

to pick up and move a object outdoors, instead of using a motion capture system we will use a

GPS (global positioning system) receiver and vision sensor mounted on the drone.

2
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1.2 Objectives

This thesis is a continuation of the work done during the pre-project [17], the following objec-

tives were met during the pre-project

1. Design and build a drone

2. Design and build an orientation controller

3. Make the drone airborne by manual control

The objectives above were completed in such way that they gave a solid foundation for further

development of the drone’s pickup and delivery capabilities. A model of the drone was also de-

veloped during the pre-project which is often used in this thesis.

The objectives during this thesis are

1. Improve the orientation controller

2. Implement a position controller with necessary sensors

3. Implement a method for the drone to recognize objects to be picked up, and lock on to

the object

4. Implement a method for picking up an object

5. Do an overall test of all the objectives mentioned above

6. If there is enough time a collision detector system should be implemented



CHAPTER 1. INTRODUCTION 4

1.3 Approach

Before we start with the objectives mentioned in section 1.2, there is some improvements that

should be done, these are mentioned in the summary of the pre-project, and are listed under.

1. Different thrust from motors, find a way to improve this issue

2. Fix the electronic compass

3. New PCB (Printed Circuit Board) design with status LED (Light Emitting Diode).

The flight controller should be designed in Simulink, then it can be simulated against the

drone model derived during the pre-project. This is a self financed project, so a crash because

of a software bug can be fatal for this project.

When testing the physical drone it is necessary to implement different flight modes, where

more and more functionality is tested, this ensures that the testing is divided into less compre-

hensive objectives.

1.4 Structure of the Report

The rest of this report is organized as follows

Chapter 2 Presents issues with the orientation data processing implementation done during

the pre-project, and improves these issues.

Chapter 3 Tests different orientation controller designs in order to find the most precise and

efficient design.

Chapter 4 Presents the hardware upgrades necessary for meeting the objectives mentioned in

section 1.2.

Chapter 5 Presents the necessary algorithms for processing position and velocity data.

Chapter 6 Describes how the position controller was implemented, along with the design and

tuning of the controller.
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Chapter 7 Presents the necessary algorithms for calculating the position of an object using the

vision sensor, along with modeling of the vision sensor for testing purposes.

Chapter 8 Presents the complete hierarchy of the flight controller along with the different flight

modes.

Chapter 9 Explains how the functionality was implemented using a real-time operating system

on the microcontroller unit.

Chapter 10 Shows the test conditions and test results of the different modes.

Chapter 11 Discusses the results discovered in this report.



Chapter 2

Orientation Data Processing

As mentioned in the summary of the pre-project the compass did not work as it should, and later

it was uncovered that there were a few more issues with the implementation of the orientation

data processing from the pre-project, these issues will be presented and solved in this chapter.

Figure 2.1 shows each element in the orientation data process and in which order they are

executed, each element in this block diagram solves a particular issue, and will also be explained

in this chapter.

Figure 2.1: Data processing overview

The derivation of the accelerometer data processing, compass tilt compensation and kalman

filter can be found in the pre-project [17].

Screenshots of the Simulink implementation can be found in appendix C.

6
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2.1 Electronic Compass

The issues with the compass was traced to the data being offset due to a hard iron interference,

caused by one of the machine screws used to mount the PCB to the frame, the compass needed

to be re-calibrated.

Along with recalibration there were also some other issues, 1. motor interference, 2. the

compass jumps between π and −π when the compass point towards south. These issues are

also solved in this section.

Calibration

In order to test the magnitude the compass data offset, the MCU (Micro Controller Unit) was set

to log the x, y and z values measured from the compass, while the sensor was rotated around its

z axis. The data before and after calibration is presented in figure 2.2.

x
-1400 -1200 -1000 -800 -600 -400 -200 0 200

y

-700

-600

-500

-400

-300

-200

-100

0

100

200

300

not calibrated
calibrated

Figure 2.2: Compass data before and after calibration
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It is necessary to have the measured data points in a circle around the origin of the XY plot, with

this we can use the arctan function to calculate the heading. In this case we had an offset of

x = −1190 and y = −510. The calibration routine was also done for the y and z data (rotation

around x axis) in order to calibrate the z axis.

The electronic compass is not only extremely sensitive to other iron objects, but also its geo-

graphic location, as the direction of the earths magnetic field vector is not the same everywhere.

An automated calibration algorithm was therefore developed to make the compass calibration

easier. The user have to rotate the drone around its z axis, and x or y axis in order for the com-

pass to measure the minimum and maximum values, and from this the algorithm will calculate

and implement the offset parameters, see algorithm 2.1.
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1 void calComBias()

2 while |intGyrZ| < 2π do
3 delay(15ms)
4

5 getGyroData(zGyr)
6 intGyrZ = zGyr*15ms
7

8 getCompassData(xCom, yCom)

9 if xCom > xComMax then
10 xComMax = xCom
11 end
12 if yCom > yComMax then
13 yComMax = yCom
14 end
15 if xCom < xComMin then
16 xComMin = xCom
17 end
18 if yCom < yComMin then
19 yComMin = yCom
20 end
21 end
22

23 while (|intGyrX| < 2π) && (|intGyrY| < 2π) do
24 delay(15ms)
25

26 getGyroData(xGyr, yGyr)
27 intGyrX = xGyr*15ms
28 intGyrY = yGyr*15ms
29

30 getCompassData(zCom)

31 if zCom > zComMax then
32 zComMax = zCom
33 end
34 if zCom < zComMin then
35 zComMin = zCom
36 end
37 end
38

39 xComOffset = (xComMax - xComMin)/2 - xComMax
40 yComOffset = (yComMax - yComMin)/2 - yComMax
41 zComOffset = (zComMax - zComMin)/2 - zComMax

Algorithm 2.1: Compass calibration algorithm
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Motor throttle compensation

According to Ampère’s law, the integrated magnetic field around a closed electric loop, in this

case battery, wires and motors, relates to the current passing through the loop [21]. The elec-

tronic compass is affected by this magnetic field, more power to the motors have a greater im-

pact on the measured compass data. The magnitude of the disturbance with regards to motor

power can be seen in figure 2.3.
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Figure 2.3: Compass disturbance test with motor ramp from 100 to 1000

During the acquisition of the compass sensor data the drone was completely stationary, and

in an ideal scenario, the measured compass data should stay the same during the whole test.

Instead there is at the most an offset of approximately 500, -50 and -400 on the x, y and z mea-

surements, respectively.

To solve this issue the least square method was used to create a second order polynomial
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function with regards to the throttle. With this it is possible to use the throttle to compensate

the bias, as shown in function 2.1.

ci [k] =


ci [k] if u[k] < 130

ci [k]− fi (u[k]) if u[k] Ê 130

ci [k]− fi (600) if u[k] Ê 600

(2.1)

Where ci is the compass value of axis i , u[k] is the motor throttle, and fi (u[k]) is the second

order polynomial for axis i , shown in equation 2.2.

fi (u[k]) = a0 +a1u[k]+a2u[k]2 (2.2)

The coefficients, a0, a1 and a2, were found by using the matrix formalized least square method,

explained in Kristensen’s lecture notes [16]. See equation 2.3.


a0

a1

a2

= (
AT A

)−1 (
AT Y

)
(2.3)

Where

A =



1 u[1] u[1]2

1 u[2] u[2]2

...
...

...

1 u[k] u[k]2

 Y =



ci [1]− ci [1]

ci [2]− ci [1]
...

ci [k]− ci [1]


This was calculated in MATLAB, the final functions can be seen in 2.4 trough 2.6.

fx(u) =−13.93+0.14u +0.001u2 (2.4)

fy (u) =−0.44−0.02u −0.0001u2 (2.5)

fz(u) = 7.40−0.08u −0.0008u2 (2.6)
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A plot of fx(u), fy (u) and fz(u) with the compass data can be seen in figure 2.4.
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Figure 2.4: Compass data with compensation function

The results after implementing function 2.1 is shown in figure 2.5.
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Figure 2.5: Throttle compensated compass data

As seen in figure 2.5 the bias is gone, but the small spikes at t = 3 is a result of the current in-
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creasing to spin up the motors to the correct speed, this throttle rate of change, du
d t , is not taken

into account in the function for simplicity.

The spikes in the transitions from u[k] = 600 to u[k] = 0, at t = 33, will be filtered out by the

kalman filter.

Rollover compensation

When the compass points towards south, its processed heading is either−π orπ, this is of course

normal for a compass to do. This, however, makes it difficult to process in the kalman filter as

the filter would estimate the heading too slow between the jumps from −π to π. But the greatest

challenge would be to make the controller efficient and intelligent enough to take the shortest

way to the desired setpoint. E.g, the current heading and setpoint is −π or π (south). Because

of noise the actual heading value would jump rapidly between −π to π, the derivative part in

the controller would go out of control giving major inputs to the motors, and make the drone

unstable.

Therefore the best choice is to make the heading value count the total radians moved, with

this, there will be no sudden jumps in the heading value when the drone is pointing towards

north. The algorithm for recalculating the heading to an incremented heading is presented in

algorithm 2.2.
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1 double getHeading()
2 heading = atan(xcom ,ycom)

3

4 if isEmpty(prevHeading) then
5 prevHeading = heading
6 rounds = 0
7 end
8

9 if prevHeading - heading > π then
10 rounds = rounds + 1
11 else if heading - prevHeading > π then
12 rounds = rounds - 1
13 end
14

15 prevHeading = heading;
16 return heading + rounds*2π

Algorithm 2.2: Absolute heading algoritm

Figure 2.6 shows a plot where the drone was rotated around the z-axis (yaw) two times clock-

wise, and then three times counter clockwise. The plot compares the data before and after the

absolute heading algorithm.
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Figure 2.6: Heading with rollover versus absolute heading
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Acceptance test

As seen in the x axis plot in figure 2.5, due to noise, there is a pretty significant spike at t = 12.

This is not a problem for the controllers because it is filtered away in the kalman filter, it is

however a problem for the rollover compensation, because this uses the unfiltered compass

values. After some testing the drone did some unexpected 360’s along the yaw axis, this was

caused by spikes in the compass data that caused the rollover compensations to count an extra

round. To fix this a dynamic reasonable test was implemented on all compass axes [20], see 2.7.

ci [k] =


ci [k −1] if |ci [k]− ci [k −1]| Ê δ

ci [k] else
(2.7)

Where ci [k] is the compass data for axis i , and the rate of change limit, δ, was found by trial and

error, this was found to be 30.

This did remove most of the unexpected 360’s along the yaw axis, but can still happen if

the throttle increases rapidly, due to increased current to the motors, mentioned in the motor

throttle compensation subsection. Though this happens only under stress tests, and does not

seem to happen under normal flight.

2.2 Tilt Compensated Gyroscope Data

After thorough testing of the compass, and its function in the kalman filter a problem with the

gyroscope arose; when the drone is given a small negative pitch (to go forward) and then a input

on yaw (to turn while going forward), the gyroscope measures a rotation along the z axis and

y axis. This becomes an issue in the kalman filter because the angle velocity inputs is greatly

weighted due to its low noise variance. So in this scenario the kalman filter will estimate a sig-

nificant roll as well, this could make the drone unstable and unpredictable during flight.

To fix this problem, the angular velocity needs to be transformed from body frame to inertial

frame. See equation 2.9.
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ωi
i b = Rx(φ)Ry (θ)


0

0

ψ̇g yr

+Rx(φ)


0

θ̇g yr

0

+


φ̇g yr

0

0

 (2.8)

=


1 0 sinθ

0 cosφ −sinφcosθ

0 sinφ cosφcosθ



φ̇g yr

θ̇g yr

ψ̇g yr

 (2.9)

Where Rx(φ) and Ry (θ) are simple rotation matrices from the body system to the inertial system,

defined in the pre-project [17].



Chapter 3

Orientation Controller

In this chapter we will try out two different orientation controller designs in order to find the

best controller for this drone. The two controllers are cascade controller with PID (Proportional,

Integral, Derivative) controllers and a LQR (Linear Quadratic Regulator) controller. Both the

controllers were designed, tested and tuned in Simulink using the drone model designed during

the pre-project. After this the C code for the controller was auto generated, and implemented

on the drone’s MCU for further tuning. When tuning the physical drone the control parameters

were altered with a computer via Bluetooth, explained in section 9.6.

But first we need to revisit the controller implementation to solve the issue about different

thrust from the motors, mentioned in the pre-project [17].

Screenshots of the Simulink code can be found in appendix C.

3.1 Controller Implementation

As mentioned from the pre-project there were some issues regarding the motor thrust. The

thrust was measured on each motor, and the results are presented in table 3.1.

Table 3.1: Motor thrust
Motor Throttle Thrust

u1 350 282 g

u2 350 281 g

u3 350 302 g

u4 350 304 g

17
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This shows that there is some significant difference in the thrust from each motor, further testing

uncovered that there were small deviations in each propeller, which gave different thrust. To fix

this issue the integral effect should be increased on the orientation controller, this should give

the controller a bit more adaptiveness to the propeller deviations.

Because of this the controller implementation should also be changed, the setup proposed

in the pre-project is suboptimal as that design would compensate all four propellers just to com-

pensate the deviations in, for example, one propeller. The new proposal is presented in equation

3.1 trough 3.4.

u1 = ut +uψ+uA (3.1)

u2 = ut −uψ−uB (3.2)

u3 = ut −uψ+uB (3.3)

u4 = ut +uψ−uA (3.4)

Where un is the throttle for motor n, ut is the ascend power, uψ is the yaw controller output,

and uA and uB is the controller output for each pair of diagonal motors. Since the front of the

drone is still defined between motor one and two (ψ = π
4 , so called X-configuration), the new

controller setpoints are presented in function 3.7.


r A

rB

rψ

= RT
z

(π
4

)


rφ

rθ

rψ

 (3.5)

=


p

2
2

p
2

2 0

−
p

2
2

p
2

2 0

0 0 1




rφ

rθ

rψ

 (3.6)

=


p

2
2

(
rθ+ rφ

)
p

2
2

(
rθ− rφ

)
rψ

 (3.7)

Where RT
z

(
π
4

)
is the rotation matrix around the z axis from body to inertia system. The same
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functions are used for the controller input, y A, yB and yψ.

3.2 LQR Controller

In order to implement the LQR controller, two main things are needed, a complete model of the

drone, and all states of the model are known measured values [8]. In this case both requirements

are fulfilled, a complete model of the drone was made during the pre-project [17], and both

angle and angular velocity is measured for all attitudes. Due to the issues mentioned in section

3.1, three more states were added, and that was the integrated angle of each attitude, γ, ζ and ξ.

The non-linear differential equations of the drone is presented in 3.8.

ẋ = h (x,u) (3.8)

γ̇

φ̇

φ̈

ζ̇

θ̇

θ̈

ξ̇

ψ̇

ψ̈



=



φ

cosθφ̇+ sinθψ̇

− 1
Ix

(
θ̇ψ̇Iz − θ̇ψ̇Iy

)+ Fc L
Ix
p

2
uA

θ

sinφsinθ
cosφ φ̇+ θ̇− cosθ sinφ

cosφ ψ̇

− 1
Iy

(
φ̇ψ̇Ix − φ̇ψ̇Iz

)+ Fc L
Iy
p

2
uB

ψ

− sinθ
cosφ φ̇+ cosθ

cosφψ̇

1
Iz

(
φ̇θ̇Iy − φ̇θ̇Ix

)+Tc uψ



(3.9)

To solve the Riccati equation the non linear state space model needs to be linearized around

Φ= Φ̇= [0 0 0]T . This can be done by finding the jacobian of the matrices, this was done by

using MATLAB "jacobian" command, see 3.11.
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ẋ = Ax+Bu (3.10)

γ̇

φ̇

φ̈

ζ̇

θ̇

θ̈

ξ̇

ψ̇

ψ̈



=



0 1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0





γ

φ
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ζ

θ
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+



0 0 0

0 0 0

Fc L
Ix
p

2
0 0

0 0 0

0 0 0

0 Fc L
Iy
p

2
0

0 0 0

0 0 0

0 0 Tc




uA

uB

uψ

 (3.11)

To calculate the K matrix we need to define the weighed matrices, Q and R, see 3.12 and 3.13.

Q = diag([0.2 85 60 0.2 85 60 0.01 50 0.1]) (3.12)

R = diag([0.5 0.5 0.4]) (3.13)

The weighted matrices were found by simulating the controller towards the drone model devel-

oped in the pre-project, and optimized by doing several test flights on the drone. With this we

can use the MATLAB "lqr" command to find the 3x9 K matrix that is used in the feedback loop,

as shown in 3.14.

u = K (r−x) (3.14)

When testing the drone in manual mode with a RC (radio control) remote the drone reacted

slowly and was quite wobbly, not as responsive as demanded if it shall be able to pick up objects.

This is also reflected on the data logged via Bluetooth during flight, see figure 3.1.



CHAPTER 3. ORIENTATION CONTROLLER 21

2 4 6 8 10 12 14 16 18 20 22

P
os

iti
on

 [R
ad

]

-0.2

0

0.2

0.4

phi
SP

2 4 6 8 10 12 14 16 18 20 22

P
os

iti
on

 [R
ad

]

-0.5

0

0.5

theta
SP

Time [s]
2 4 6 8 10 12 14 16 18 20 22

V
el

oc
ity

 [R
ad

/s
]

-2

0

2

Dpsi
SP

Figure 3.1: Flight log from drone with LQR controller

The poor results should not come as a surprise as the LQR controller is quite similar to a

standard PID controller, which gave poor performance during the pre-project. The differences

are the method for tuning, and the "derivative" part of the LQR controller uses the actual angular

velocity measurements, and not the derivative position.

3.3 Cascade Controller

The cascade controller consists of two PID controllers, one controlling the angular velocity, and

one controlling the angular position. The controller regulating the angular position is connected

to the input of the controller who controls the angular velocity, this configuration is called a

cascade controller [15]. See figure 3.2.
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Figure 3.2: Cascade controller block diagram

The algorithm for the controllers are presented in 3.15 trough 3.19.

e[k] = r [k]− y[k] (3.15)

uP [k] = e[k] (3.16)

uI [k] = uI [k −1]+∆t e[k] (3.17)

uD [k] = e[k]−e[k −1]

∆t
(3.18)

u[k] = KP uP [k]+K I uI [k]+KD uD [k] (3.19)

Where y[k] is the measured angular velocity or angular position, r [k] is the setpoint, and u[k] is

the controller output. The controller tuning was done as recommended in Haugen’s "Reguler-

ingsteknikk", where the secondary controller was tuned first, then the primary controller [15].

The optimal PID parameters are presented in table 3.2.

Table 3.2: PID parameters

Attitude KP K I KD

Pitch position, φ 7.5 0 0

Roll position, θ 7.5 0 0

Yaw position, ψ 4 0 0

Pitch velocity, φ̇ 12 1 2.3

Roll velocity, θ̇ 12 1 2.3

Yaw velocity, ψ̇ 55 0.5 0.1
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When testing the drone in manual mode with a RC remote the drone felt precise and accurate,

the drone moved quickly to the desired attitude setpoint. This is also reflected on the data logged

via Bluetooth during flight, see figure 3.3.
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Figure 3.3: Flight log from drone with cascade controller

As seen from the plot the cascade controller performs best of both controllers and is the one

that will be used during further development in this project.



Chapter 4

Hardware

During the pre-project there was installed everything needed for the drone to be controlled by

manual control, this includes accelerometer, gyroscope, compass (though the compass was not

used), MCU, ESC (Electronic Speed Controller), RC signal receiver and motors with propellers.

In order for the drone to be able to hold its geographic position, and pick up an object at a

specified coordinate, a few hardware upgrades is needed, these upgrades are presented in figure

4.1 and 4.2. In this chapter we will explain how and why these new components were installed.

Figure 4.1: Drone, top

24
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Figure 4.2: Drone, bottom

4.1 GNSS Receiver

In order for the drone to be able to fly autonomously a GNSS (Global Navigation Satellite Sys-

tem) receiver is needed. The GNSS module used consists of a Neo 7M GNSS receiver, by Ublox,

and a built in electronic compass, though this is not used because this is already implemented

in the sensor module. The GNSS receiver is also capable of measuring the velocity [4]. Figure

4.3 shows the GNSS module.

Figure 4.3: GNSS module
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The GNSS receiver communicates with the MCU via UART (Universal Asynchronous Receiver-

Transmitter), using either the NMEA 0183 protocol (The National Marine Electronics Associa-

tion) or UBX (Ublox) protocol.

The NMEA protocol is a standard protocol for GNSS receivers and other marine electronics,

the protocol frame consists of the data presented as alphanumeric text, separated by commas.

The UBX protocol was created by Ublox, the protocol frame consists of data sent in raw

data bytes, which needs to be bit-shifted to create the required data formats, e.g. doubles and

integers. This protocol is therefore used because it takes less CPU (Central Processing Unit)

cycles to bit-shift four bytes together to make a double data type, than parsing a double from a

char array. The UBX protocol is also more compact than the NMEA protocol, which means less

IO interactions for the CPU[4].

The GNSS module is configured by sending commands via UART at MCU start-up, the set-

tings used for this module is presented in table 4.1.

Table 4.1: GNSS receiver setup

Setting Value Description

Baudrate 115200 b/s UART transmit/receive speed

Sample rate 90 ms GNSS receiver position update rate

Message transmit NAV-SOL
The NAV-SOL (Navigation Solution) data frame consists of

ECEF (Earth Centred Earth Fixed) position coordinates,
ECEF velocity, GPS status, position- and velocity accuracy

Position accuracy mask 10 meters Minimum accuracy for GNSS status to be OK

The length of the NAV-SOL message is 60 bytes, with this the MCU can be set up to generate an

interrupt when 60 bytes are received on the UART port, and the CPU utilization is more efficient.

The GNSS receiver is mounted directly on the PCB, and raised 10 centimeters for better satel-

lite reception, see figure 4.1.

The driver for the GNSS receiver, written in C, is referred to in appendix B.
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4.2 Digital Pressure Sensor

The GNSS-module does not meet the accuracy demands that allow the drone to fly and oper-

ate safely a few meters above the ground, a secure and accurate measurement of the altitude

is therefore needed. The digital pressure sensor, BMP085 by Bosch, was mentioned and imple-

mented during the pre-project, but was never used because it was not needed at that time. The

sensor can do approximately 40 measurements per second at "Ultra High Resolution"-mode,

and is accurate down to 0.25 m [5]. The sensor is soldered to the "GY-80" sensor module together

with the digital gyroscope, accelerometer and compass. A picture of this module is presented in

figure 4.4.

Figure 4.4: GY-80 sensor module, pressure sensor to the right (gray module)

For the barometer to be usable the data needs to be recalculated from its raw data, fetched via

the I2C interface. The recalculation also takes temperature in to account, the sensor is therefore

also equipped with a temperature sensor.

The driver for the pressure sensor can be found with the driver for the rest of the drivers for

the sensor on the GY-80 module, see appendix B.

4.3 Vision Sensor

For the drone to be able to detect an object, some sort of external sensor is necessary. The GNSS

receiver is not accurate enough to be used for flying close enough to an object for it to be picked

up.

The vision sensor used is a Pixy CMUcam5, which is fast, able to track objects at a rate of 50

Hz. The vision sensor can be programmed to track objects with color codes to display the object
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width, height, x-position and y-position in pixels. The sensor can also detect the rotation of the

object, and return its angle in degrees. The available communication interfaces are SPI (Serial

Peripheral Interface), UART and I2C (Inter-Integrated Circuit) [11]. A picture of the vision sensor

module can be seen in figure 4.5.

Figure 4.5: Vision sensor

The camera used on the vision sensor has a resolution of 1280x800, but only half of this resolu-

tion is used, the actual resolution is therefore 640x400. The vision sensor can detect color coded

objects as small as four pixels, given a measured resolution of 320x200 across the field of view.

The lens used has a 75 degrees horizontal, and 47 degrees vertical field of view [11].

The vision sensor is connected to the MCU with ten 2.54 mm pin headers to pixy’s commu-

nication port. SPI was chosen for the communication protocol due to its fast and full-duplex

interface. The vision sensor is secured underneath the drone with four machine screws, making

the vision sensor always pointing towards the ground, see figure 4.2.

The drivers for the vision sensor is referred to in appendix B.



CHAPTER 4. HARDWARE 29

4.4 LED’s

LED strips were mounted to the drone to be able to get a visual feedback about the status of the

drone, for example battery status and flight modes. The strips was mounted under each leg of

the drone as shown in figure 4.2. Figure 4.6 shows a picture of the LED strips used.

Figure 4.6: LED strips

The LED strip consists of RGB (Red, Green, Blue) LEDs connected in parallel (three LED’s are

connected in series), when all colors are illuminated each LED uses about 60 mA [2]. The drone

has mounted 6 LEDs on each leg, where three and three LED’s are connected in series. The total

power consumption if LED’s are illuminated is shown in 4.1.

P = 0.06 A ·11.1 V ·2 sets ·4 legs (4.1)

P = 5.3 W (4.2)

In order to control the color on each leg, 12 digital outputs are needed. The MCU’s GPIO (general

purpose input output) are not powerful enough to power the LEDs, a Darlington transistor array

is therefore needed, the ULA2803A by Texas Instruments was used for this task. The ULA2803A

is a eight channel Darlington transistor array, each channel capable of 500 mA at 50 V [7].

See section C7 and D7 in the schematics on how the LEDs and transistor arrays were con-
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nected. The schematics is found in appendix D.

The software driver for the LED’s is referred to in appendix B.

4.5 PCB Design

The PCB designed in the pre-project was a prototype and not an optimal design as the electron-

ics was too exposed to weather and a possible drone crash. It was also hard to mount the battery

due to the PCB mounting solution.

The new PCB design removes these issues be replacing the bottom mounting plate on the

F450 frame with a PCB. This will hide the electronics from the environment inside the frame,

and also gives free access to mount the batteries with Velcro on top. This solution also gives the

possibility to make the mounting holes for the GNSS-receiver and vision sensor directly on the

PCB, making the drone design compact. The new PCB design has the following upgrades.

• LED drivers and outputs for visual confirmation and error signaling

• Easy access to MCU debug/programming port

• Holes for mounting the RC receiver with zip ties.

• One 330µF decoupling capacitor

The PCB layout can be seen in figure 4.7 and the corresponding schematics can be found in

appendix D.
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Figure 4.7: PCB layout with port labels

The schematics and PCB was developed in Cadsoft Eagle, and milled with NTNU’s milling

machine. The finished PCB with all the components soldered on can be seen in figure 4.8.
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Figure 4.8: Finished PCB

4.6 IR sensor

When the drone is flying in autonomous mode it is preferred that the drone automatically dis-

arms itself after landing, but due to varying terrain the altitude acquired from the pressure sen-

sor is not optimal to use when the drone is landing. The initial altitude is sampled where the

drone is at startup, and is considered as z = 0 m, it is not realistic to assume that the drone will

always land at the same height as its initial position.

For this reason an IR sensor from Sharp is used, this can measure a range from 10 to 80 cm, using

a analog output interface [3], a picture of the IR (infrared) sensor can be seen in figure 4.9.
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Figure 4.9: IR sensor

The IR sensor is mounted under the PCB, pointing downwards, as shown in figure 4.2. The sen-

sor is connected to one of the spare GPIO ports, shown in figure 4.7.

Some recalculation is needed to get the data measured in the correct format, in this case in

centimeters. By studying the output characteristics of the IR sensors, presented in figure 5 in

the data sheet, see appendix E, a function can be derived with regards of the measured voltage

on the ADC-port (analog to digital converter), see equation 4.3 trough 4.5.

V −V0 = V1 −V0

x1 −x0
(x −x0) (4.3)

V −0.42 = 2.12−0.42

0.081−0.013
(x −0.013) (4.4)

V = 25x +0.095 (4.5)

Where V is the measured voltage calculated from the 12-bit ADC input, y ADC . x is the inverse

number of distance, and L is the distance in centimeters, see equation 4.6 and 4.7.

V = 3.3 V

212
y ADC (4.6)

x = 1

L+0.42
(4.7)

By inserting 4.6 and 4.7 in 4.5 and solving the equation with regards to the distance L, we get

L = 25
3.3
212 y ADC −0.095

−0.42 (4.8)

This sensor can also, on a later moment, be used for a collision detection system.
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4.7 Object Pickup

For picking up an object a retractable hook should to be used, this design is easy and good

enough for this prototype. The idea is to mount a 3D-printed hook on a servo, the hook will be

lifted in an upwards position during takeoff and landing, so it does not come in conflict with the

ground. When an object is in range the hook will swing down so the object can be hooked on,

the object must be equipped with a loop for the hook to grab. When the object has been moved

to the correct location the hook will be lifted, and the object will fall off. See figure 4.10.

Figure 4.10: Hook setup

After doing some testing with the vision sensor the minimal range from the drone to the object

is approximately 20 cm, where the whole object is still in the field of view of the camera. The

hook should therefore be minimum 20 cm long, and the servo should have enough torque to

counteract the inertia of the hook and object.

This hook was not implemented due to the issues explained in chapter 10.
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Position Data Processing

In order for the drone to control its position, a barometer and GNSS receiver is used. Men-

tioned in section 4.1 the GNSS-module takes measurements every 90 ms, this is also going to be

the refresh rate for the position data processing algorithms. In this chapter we will process the

measured data from the sensors to a noise reduced signal that can be used as reference for the

position controllers, designed in chapter 6.

Figure 5.1 shows the different elements in the position data processing sequence, and the

order they are executed in. Each element in this block diagram will be derived and explained in

this chapter.

Screenshots of the Simulink implementation can be found in appendix C.

Figure 5.1: Position data processing overview

35
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5.1 Raw Data Processing

In this section we will recalculate the raw sensor data to a format that is more suited to this

purpose.

GNSS data

As mentioned in section 4.1, the data received from the GNSS module is in ECEF format, which

is a coordinate system with its origin fixed at the center of the earth [19]. Controlling the drone

with ECEF coordinates as reference is not practical as the z-axis points towards the North Pole.

To make it easier to read the position of the drone in real time, ENU (east north up) coordinates

are used.

The ENU format creates a local coordinate system where the drone takeoff point is the ori-

gin, x-axis points East, y-axis points North and z points up. The coordinate system is therefore

a local tangent plane, measured in meters. This would also make testing easier because we will

deal with smaller numbers. Function 5.2 shows the ECEF to ENU position transformation [13].
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xe −x0
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 (5.1)

=


−sin l0 cos l0 0

−cos l0 sinµ0 −sin l0 sinµ0 cosµ0

cos l0 cosµ0 sin l0 cosµ0 sinµ0




xe −x0

ye − y0

ze − z0

 (5.2)

Where xe , ye and ze are measured ECEF coordinates, and x0, y0 and z0 are ECEF coordinates

measured at the drone takeoff point. The function for transforming the ECEF velocity data to

ENU coordinates is done by multiplying the velocity vector with the rotation matrix in function

5.2. See function 5.3.
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vE

vN

vU

=


−sin l0 cos l0 0

−cos l0 sinµ0 −sin l0 sinµ0 cosµ0

cos l0 cosµ0 sin l0 cosµ0 sinµ0




ẋe

ẏe

że

 (5.3)

l0 and µ0 are longitude and latitude of the takeoff point, the rotation matrix is therefore only

calculated once. The ECEF to longitude transformation equation are presented in formula 5.4.

l = atan2

(
ye

xe

)
(5.4)

And the algorithm for calculating the latitude from ECEF coordinates is presented in algorithm

5.1.

1. p =
√

x2
e + y2

e

2. µ0 = ze

p
(
1−e2

)
3. N0 =

r 2
e√

r 2
e cos2µ0 + r 2

p sin2µ0

4. h = p

cosµ0
−N0

5. µ= tan−1
(

ze

p

(
1−e2 N0

N0 +h

)−1)
6. If µ0 6=µ then set µ0 =µ and continue from step 3. If µ0 =µ then µ is the final

latitude.

Algorithm 5.1: Latitude algorithm [19]

Where re , rp and e is the WGS-84 (World Geodetic System 1984) parameters, and are presented

in table 5.1.
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Table 5.1: WGS-84 paramteters [19]

Parameter Value Comments

re 6378137 m Equatorial radius of ellipsoid

rp 6356752 m Polar axis radius of ellipsoid

e 8.181919e−2 Eccentricity of ellipsoid

Digital pressure sensor data

The altitude is a function of a differential atmospheric pressure from a initial pressure, usually

the ground pressure, see equation 5.5 [5].

h = 44330

(
1−

(
p

p0

) 1
5.255

)
(5.5)

Where p is the measured pressure in Pascal and p0 is the initial pressure, measured at ground

level. h is the altitude measured in meters.

5.2 Filtering

In chapter 3 it was concluded that the cascade controller design was the best choice, this design

is particularly sensitive to a noisy input as it is two controllers connected in series. It is therefore

very important that the position and velocity data are filtered properly, so the sensor noise is not

amplified and cascading trough all the controllers, giving a noisy signal to the ESC’s. This can

cause a sluggish motor response.

In figure 5.2 the position and velocity data along the y-axis (North) is presented along with

the barometer data, z-axis position (Up). The negative value between t = 3 and t = 7 in the first

subplot is caused by the propellers creating a small over pressure at takeoff.
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Figure 5.2: Position and velocity measurements

As seen from figure 5.2 there is only need to filter the pressure sensor data and the velocity

data.

Velocity filtering

The velocity data was filtered using the same method as in the pre-project for the drone orien-

tation data [17]. By using a kalman filter where velocity, drone orientation and motor throttle as

input, we can create a noise reduced estimate of the velocity. The algorithm for the kalman filter

is presented in equation 5.6 trough 5.10 [10].
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Kk = P−
k HT (

HP−
k HT +R

)−1
(5.6)

x̂k = x̂−
k +Kk

(
zk −Hx̂−

k

)
(5.7)

Pk = (I−Kk Hk )P−
k (5.8)

x̂−
k+1 = Ax̂k (5.9)

P−
k+1 = APk AT +Q (5.10)

The drone will use one kalman filter for each position component, x, y and z. The state space

model of the correlations of the drone measurements are shown in equation 5.11 and 5.12.

xk+1 = Axk (5.11)

zk = Hxk (5.12)

Where

xk =
 ˙̃x

¨̃x

 A =
1 ∆t

0 1


Zk =

 ˙̃z

¨̃z

 H =
1 0

0 1


Where ∆t is the sample rate, 0.09 s, and z̃ is the measured data x, y or z, and x̃ is their estimates

x̂, ŷ or ẑ. The acceleration, ¨̃z, is calculated in function 5.13.


ax

ay

az

= RT
x (φ)RT

y (θ)RT
z (ψ)


0

0

u 4Fc
m

+


0

0

−g

 (5.13)

Where Fc is the force constant, found in the pre-project [17], m is the mass of the drone, g is the

gravitational acceleration and u is the motor throttle.

The system- and noise variance matrices, Q and R, were found by using the noise variance of
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the velocity and acceleration as base, a bit more tuning was needed. The matrices are presented

in 5.14 and 5.15.

Qx =
0.001 0

0 3.113e−4

 Qy =
0.001 0

0 3.488e−4

 Qz =
0.117 0

0 6.844e−7

 (5.14)

Rx =
0.027 0

0 1.563e−4

 Ry =
0.005 0

0 1.508e−4

 Rz =
0.006 0

0 9.438e−5

 (5.15)

Figure 5.3 shows the filtered velocity data from figure 5.2 using the kalman filter.
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Figure 5.3: Filtered velocity measurements

The results show there are some small deviations of approximately ±0.1 m/s, which is good

enough for our use. The velocity data is definitively noise reduced, and ready to be used in the

position controller.

Altitude filtering

As previously mentioned the altitude, or the z-component, is measured with a digital pressure

sensor, these measurements needs to be filtered. For a simple and efficient filtering, a second

degree low-pass filter is used. The filter transfer function is presented in 5.16.

H(s) = Y (s)

U (s)
= ω2

s2 +2ζωs +ω2
(5.16)
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Where ω is the cut off frequency, and ζ is the damping factor. The filter differential equation is

found by taking Laplace inverse on the transfer function, see 5.17 trough 5.19.

L −1
{

s2Y (s)+ sY (s)2ζω+Y (s)ω2 =U (s)ω2
}

(5.17)

ÿ(t )+ ẏ(t )2ζω+ y(t )ω2 = u(t )ω2 (5.18)

ÿ(t ) = u(t )ω2 − ẏ(t )2ζω− y(t )ω2 (5.19)

The differential equation 5.19 was implemented in Simulink, and simulated by inputting data

previously recorded during a flight, the parameters, ω and ζ, were found by trial and error. The

optimal parameter values are

ω= 2.3 ζ= 0.6

The output of this second degree low-pass filter can be seen in figure 5.4, where the barometer

data from figure 5.2 was used as input.
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Figure 5.4: Filtered altitude measurements

As seen from the plot above the filtered altitude is delayed with about 0.5 seconds, this should

not be a problem as long as the altitude controller parameters are not too aggressive.
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Position Controller

In order to make the drone autonomous the drone needs a position controller which uses the

sensor data processed in chapter 5. As it is not straight forward to implement the position con-

troller, this chapter will describe how to controller was implemented, along with the design and

tuning of the position controller.

Screenshots of the Simulink implementation can be found in appendix C.

6.1 Implementation

When implementing the position controller the outputs (u) will be connected to the setpoint

inputs on the orientation controller (r ), but first the position controller outputs needs to be

converted so that if the drone’s heading is 0 (north) the position controller output gives the cor-

rect input to the orientation controller. E.g. a forward motion along the y-axis (north), would

mean that the orientation controller must get a negative pitch (φ) setpoint, which is the first

element in the orientation vector, Φ = [
φ θ ψ

]T . By using this method of thinking and the

right-hand rule we can derive a transformation matrix, see function 6.1.


r ′
φ

r ′
θ

r ′
ψ

=


0 −1 0

1 0 0

0 0 1




ux

uy

rψ

 (6.1)

43



CHAPTER 6. POSITION CONTROLLER 44

Where ux and uy is controller output for the x- and y-axis, and r is the setpoint for each atti-

tude. This setup will only work if the drone is heading north, the amount of roll and pitch for

reaching the setpoint depends on the current heading, we need to take this into account. We

must therefore transform the controller output from inertial system to body system, we can do

this by using the rotation matrix around the z-axis (yaw), see function 6.2.


rφ

rθ

rψ

=


cosψ sinψ 0

−sinψ cosψ 0

0 0 1




r ′
φ

r ′
θ

r ′
ψ

 (6.2)

By inserting 6.1 in 6.2 we get


rφ

rθ

rψ

=


sinψ −cosψ 0

cosψ sinψ 0

0 0 1




ux

uy

rψ

 (6.3)

The controller outputs ux and uy are limited to -0.35 and 0.35 radians in order to avoid that the

drone does a too steep roll or pitch.

The controller output for altitude, uz , is connected directly to the propeller output together

with the orientation controller outputs, see function 6.4.

ut = uz +uo (6.4)

Where ut is the motor throttle, represented in equation 3.1 trough 3.4, and uo is the take off

throttle value, currently set to 285.

6.2 Controller

The main purpose of the position controller is to navigate using the filtered GNSS receiver- and

altitude data as feedback. The position controller was designed in the same manner as the ori-

entation controller, by designing and tuning the controller in Simulink, and auto generating C

code for implementation in the MCU.
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Two controller designs were tested, one PID controller for each axis, and two PID controllers

for each axis in cascade configuration. The single PID controller performed so bad during simu-

lation that no more time was used on this controller configuration. The bad performance makes

sense since the drone will not slow itself down before it has passed the setpoint, making the

drone oscillate around the setpoint. This could of coarse be damped enough by using a high

derivative parameter, but that would also mean that the sensor noise would be amplified, and

cascading trough the orientation controllers.

The cascade PID controller proved to give the best results, and is the configuration used in

this project. The cascade controller for positioning works in the same manner as the orienta-

tion controller, explained in section 3.3. Where the secondary PID controller is controlling the

drone’s velocity and the primary PID controller is controlling the drone’s position. See figure 6.1.

Figure 6.1: Cascade controller block diagram

The controller algorithms are the same used in the orientation controller, presented in 3.15

trough 3.19.

The position controller was tuned towards the drone model derived in the pre-project [17],

the controller parameters found during this simulation were a rough estimate, and were a bit too

aggressive when implemented on the drone. This due to the fact that the measurement delay

in the GNSS-module and pressure sensor was not modeled, after a bit more tuning by trial and

error, better parameters were found, see table 6.1.
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Table 6.1: PID parameters
Axis KP K I KD

x position 0.45 0 0

y position 0.45 0 0

z position 0.28 0 0

x velocity 0.06 0.2 0.025

y velocity 0.06 0.2 0.025

z velocity 58 6 2

The control parameters were altered with a computer via Bluetooth when tuning the drone,

explained in section 9.6.

Figure 6.2 shows a flight where the setpoint was set to 10 meters north (y = 10m), and 4 me-

ters up (z = 4m). During this test there was a light breeze from west (−x), explaining the positive

bias on the x-axis.
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Figure 6.2: Drone position
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As seen in the second subplot (y) in figure 6.3, the drone has trouble flying faster than 1 m/s, de-

spite the high integrator parameter on the velocity controller. This issue is discussed in chapter

10.
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Figure 6.3: Drone velocity

Because of this issue the testing- and tuning conditions are quite straight as the testing must

be outside for optimal GNSS reception, with little to no wind. When the weather conditions

are good in Trondheim, which is rare, there is a small flying window of about 30 minutes be-

fore the batteries needs to be recharged. The controller parameters are therefore not optimal as

there simply has not been enough time to tune the controller. The plots show however that the

controller setup works as it should.
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Object Tracking

As mentioned in section 4.3 a Pixi CMUcam5 was chosen as the vision sensor for object detec-

tion, from this we get the height, width, x position and y position of the object in pixels, along

with the current object angle in degrees. To make it easier to design and test the necessary al-

gorithm for converting this data to x, y and z coordinates, the vision sensor is also going to be

modeled in Simulink.

Screenshots of the Simulink code can be found in appendix C.

7.1 Data Processing

An optimal approach is to convert the data from the vision sensor to the same format as the

position data processing algorithms, that way we can use the same position controller for the

vision sensor data.

Object Position

We start by creating a simple sketch of the current setup with the drone and vision sensor, see

figure 7.1.
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Figure 7.1: Vision sensor scetch

Where n is the field of view for the x- or y-axis, and Px , Py and Pz is the position of the

object in body frame. The object angle, A, is calculated from the functions inspired from Randal

Beard’s paper on Quadrotor Dynamics and Control [9]. See function 7.1 and 7.2

Ax = εx
nx
Mx

2

(7.1)

Ay = εy
ny

My

2

(7.2)

Where Mx and My is the vision sensor resolution for the x- and y-axis, εx and εy is the object

position in pixels. As seen in figure 7.2, εx and εy needs to be recalculated to body frame from

the raw values ρx and ρy , where the origin (0,0) is in the top left corner in the field of view. See

equation 7.3 and 7.4.
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Figure 7.2: Vision sensor field of view

εx = ρx − Mx

2
(7.3)

εy =
My

2
−ρy (7.4)

With this we can use basic trigonometry to calculate Px and Py , see function 7.5 and 7.6.

Pxb = tan(Ax)Pzb (7.5)

Pyb = tan
(

Ay
)

Pzb (7.6)

Where Pz can be calculated in the same manner as Px and Py , by using the vision sensors ability

to measure the width of the object we can calculate how far away the object is if we know the

true width of the object, see functions 7.7 and 7.8.
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Aw = ρw
nx

Mx
(7.7)

Pzb =
Pw

tan Aw
(7.8)

Where ρw is the object width in pixels. Pw is the real object width in meters, for this to work it

is important that the object has a square surface, as the measured object width depends on the

yaw ,ψ, of the drone.

Finally we can combine all the equations in this section and correct for the drone orientation

with the rotation matrix, see function 7.9.

ri
ob = Ri

b(Φ)rb
ob = Ri

b(Φ)


Pxb

Pyb

Pzb

= Ri
b(Φ)


tan

(
ρx

2nx
Mx

−nx

)
tan

(
ρy

2ny

My
−ny

)
1

 Pw

tan
(
ρw

nx
Mx

) (7.9)

As mentioned in section 4.3 the vision sensor resolution, Mx and My , is 320 and 200 respectively.

The field of view, nx and ny , is 75 π
180 radians and 47 π

180 radians, respectively.

Object Angle

Since the drone is going to use a hook to pick up an object the angle difference between the

drone and object (ψob) matters, or else the hook will miss the handle mounted to the object. A

small recalculation to the object angle acquired from the vision sensor needs to be done before

it can be used in the controller, see function 7.10.

ψbo =−ψob
π

180
(7.10)

7.2 Modeling

In order to make testing easier the vision sensor is also going to be modeled, a block diagram

was made in order to give an overview of the inputs and outputs of this model, see 7.3.
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Figure 7.3: Vision sensor model block diagram

The notation of the symbols in this block diagram can be found in table 7.1.

Table 7.1: Notation

Symbol Description

Φ= [
φi b θi b ψi b

]T Drone orientation vector

ri
i b = [

x y z
]T Drone position vector

δ Vision sensor object detected output

ρx Vision sensor object position in x-axis in pixels.

ρy Vision sensor object position in y-axis in pixels.

ρw Vision sensor object width in pixels.

ψi o Vision sensor object orientation in degrees

Dynamics

For the model dynamics we can reverse the data processing algorithms 7.9 and 7.10 and add a

floor function, see 7.11 trough 7.13.

ρx =
⌊

Mx

2nx

(
tan−1

(
Pxb

Pzb

)
+nx

)⌋
(7.11)

ρy =
⌊

My

2ny

(
tan−1

(
Pyb

Pzb

)
+ny

)⌋
(7.12)

ρw =
⌊

Mx

nx
tan−1

(
Pw

Pzb

)⌋
(7.13)
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Where

rb
ob = Rb

i (Φ)ri
ob (7.14)

Pxb

Pyb

Pzb

= Rb
i (Φ)




Pxi

Pyi

Pzi

− ri
i b

 (7.15)

The modeled angle, ψb
ob , is presented in function 7.17.

ψob =
⌊
−ψbo

180

π

⌋
(7.16)

ψob =
⌊(
ψi o −ψi b

) 180

π

⌋
(7.17)

Logic

Obviously the vision sensor will not be able to track the object if it is out of line of sight, we

therefore need some logic in our model to set the "object detected" output, δ. See function 7.18.

δ=



0, if ρx < 0 or ρx > Mx

0, if ρy < 0 or ρy > My

0, if ρw ≤ 1 or ρw > Mx

1, else

(7.18)



Chapter 8

Flight Controller

The flight controller is one Simulink subsystem that includes the orientation controller, position

controller, orientation data processing, position data processing and object data processing, all

five modules are already mentioned in previous chapters, see figure 8.1.

Figure 8.1: Flight controller block diagram

The subsystem also implements flight modes and all the necessary logic to support the modules

under one Simulink block, this makes it easier to implement on the drone by using the Simulink

code generator feature. This also gives an advantage of testing towards the drone model be-

fore implementing the flight controller on the actual drone, reducing the chance of unwanted
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situations during flight, like bugs and programming errors.

In this chapter we will talk about the functionality of each flight mode, and also the bat-

tery monitoring system, which is not a part of the same subsystem as the rest of modules, but

implemented directly on the MCU.

Screenshots of the Simulink implementation can be found in appendix C.

8.1 Modes

Different flight modes were implemented to make testing easier and safer. When testing an au-

tonomous drone it is important to have the possibility to switch to manual mode during flight

if the drone where to fly away. The flight controller was programmed with four different flight

modes, by implementing more features on each mode will a full scale test be more manageable.

It is possible to change between modes by using the auxiliary switches on the RC remote. The

four modes and its functions are presented in table 8.1.

Table 8.1: Flight modes

No. Control source Name Functions

0 RC remote Manual mode • Control angular position, Roll (θ), Pitch (φ)

• Control angular velocity, yaw (ψ̇)

• Throttle is controlled directly

1 RC remote Manual GNSS-mode • Control angular position, Roll (θ), Pitch (φ)

• Control angular velocity, yaw (ψ̇)

• Control altitude velocity (ż)

• Position hold

2 Bluetooth Autonomous mode • A flight plan is loaded to drone pre-flight

• The drone will fly to loaded waypoints

• Automatically takeoff/land

3 Bluetooth Autonomous object mode • Object coordinate is loaded to drone pre-flight

• The drone will fly to object and pick it up

• Deliver object at takeoff point
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Manual mode

When using manual mode the position controller is disabled, and the drone’s orientation is con-

trolled from a RC remote, where roll and pitch is controlled directly, and yaw is controlled by

setting the angular velocity. The throttle is controlled directly from the RC remote. In this mode

the drone will never be able to hover stable in one geographic position when ψ= θ = 0 because

of wind and small deviations in sensors, motors and propellers, due to no geographic position

feedback. It is possible to switch to this mode from all the other modes during flight. The flow

chart in figure 8.2 shows the control sequence for this mode.

Figure 8.2: Manual mode flow chart

Manual GNSS-mode

In this mode the position controller is partly enabled, and using the RC remote to control the

drone’s orientation, roll, pitch and yaw, in the same manner as "manual mode". Unlike the

"manual mode" throttle is now controlled by adjusting the ascend/descend rate, ż. When rφ =
rθ = 0 the flight controller will lock on the current x and y position, and when r ż = 0 the flight

controller will lock on to the current z position. With this there is no need to do manual altitude
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corrections when altering roll or pitch, as needed in "manual mode". It is possible to switch to

this mode from "autonomous mode" and "autonomous object mode" during flight. The flow

chart in figure 8.3 shows the control sequence for this mode.

Figure 8.3: Manual GNSS-mode flow chart
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Autonomous mode

In this mode the position controller is fully enabled. The flight plan, in ENU format, is uploaded

to the drone pre-flight via Bluetooth, this mode can only be activated via a computer or a smart

phone. The drone will automatically calculate the correct heading between coordinates, see

function 8.1.

ψ′
SP = atan2

(
rx − rxSP

ry − rySP

)
(8.1)

In order for the drone to always correct its heading by taking the shortest path to ψ′
SP , we need

to correct for the fact that drone heading can be more than π or less than −π, because of the

rollover compensation, explained in section 2.1. See function 8.2.

ψSP =


2π+n ·2π+ψ′

SP , if
∣∣ψ−n2π+ψ′

SP

∣∣>π
n ·2π+ψ′

SP , else
(8.2)

Where n is total rotations the drone has done around its z-axis, see 8.3.

n =
⌊ ψ

2π

⌋
(8.3)

It is possible to cancel a flight mission during execution by changing to "manual mode" or

"manual GNSS-mode". The flow chart in figure 8.4 shows the control sequence for this mode.



CHAPTER 8. FLIGHT CONTROLLER 59

Figure 8.4: Autonomous mode flow chart

Autonomous object mode

In this mode the drone will be fully Autonomous, and use the GNSS-receiver to fly to a pre-

loaded coordinate to search for an object using the vision sensor. When an object is detected

the flight controller will automatically lock on to the position of the object and fly close enough

for the drone to pick it up using the retractable hook, the correct yaw angle between coordinates
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will be automatically calculated. When the object is picked up the drone will fly to the takeoff

point to drop off the object. The flow chart in figure 8.5 shows the control sequence for this

mode.

Figure 8.5: Autonomous object mode flow chart

It is always possible to switch to "manual mode" or "manual GNSS-mode" during flight.
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8.2 Battery Monitoring

A battery monitoring system is important for the drone to be capable to warn the user of a low

battery level, and automatically land by itself before the battery level gets too low for a soft land-

ing. The ESC will automatically cut off power to the motors at 2.9 V per LiPo-cell (Lithium Poly-

mer) [1], meaning a cut-off voltage of 3×2.9 = 8.7 V, because the batteries used has three cells.

How the battery voltage is measured is explained in the pre-project [17].

Two battery level limits are defined, "Low" and "Low Low". Ideally we want the drone to land

by itself if the battery is too low, a function implemented without much effort, but during this

project this feature is not implemented so the battery capacity can be exploited.

Figure 8.6 shows a plot of the battery discharge during a bench-test and the battery level

limits.
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Figure 8.6: Battery discharge test, where u1 = u2 = u3 = u4 = 355

As seen from the figure above the "Low" limit is at about 10.45 V and "Low Low" at 10.32 V, the

flight time left from "Low"-limit will be approximate 1.5 minutes and 0.5 minutes from "Low

Low". The drone will signal "Low" and "Low Low" limits via the LED’s, mentioned in section 4.4.
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Implementing a Real-time Operating

System

If all the equipment and its functionality is going to be implemented and working together in

a predictable manner, a RTOS (real-time operation system) is needed. This was also recom-

mended in the "Future work" section in the pre-project due to some periodic tasks has a strict

deadline.

There are many different RTOSs to chose from, but in this case FreeRTOS V. 8.2.1 was chosen

due to the available support network online, many functionalities, small footprint and compat-

ibility with the MCU [14]. An overview of each task and its functionality is listed in table 9.1.
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Table 9.1: Tasks

Task Type Priority Description

GNSS receive interrupt Aperiodic 7 Receives GNSS data and controls checksum

Hardware initiate task Sporadic 6 Initiate hardware

Flight controller task Periodic, 15 ms 5
Executes all the necessary calculations to
keep the drone airborne

Altitude acquisition task Aperiodic 4
Acquire pressure sensor data and calculates
the altitude

Serial receive task Aperiodic 3
Receives commands sent via Bluetooth and
processes it to instructions

Serial transmit task Aperiodic 2 Sends data via Bluetooth

Battery monitoring task Periodic, 1000 ms 1 Monitors the battery voltage

LED control task Periodic, 500 ms 0
Controls the LED’s for displaying current
status

How these tasks communicates between each other is presented in the UML (unified mod-

eling language) diagram, see figure 9.1.

Figure 9.1: UML diagram
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In order to synchronize the data flow between the tasks, functionalities such as mutexes, semaphores

and queues are used.

The sections below provide a wider overview of how each task works. The software imple-

mentation of the tasks, written in C, can be found in appendix B.

9.1 GNSS Receive Interrupt Routine

Though this is not a task it still serves an important purpose. As mentioned in section 4.1 the

data sent from the GNSS receiver is 60 bytes long, and is sent every 90 ms. With this knowledge

we can create a routine that creates a interrupt when 60 bytes are received on the serial port.

When a interrupt has been generated the microcontroller will check the received data and find

the current GNSS status, but first the check-sum is controlled, see algorithm 9.1.

1 void checksum(data)
2 CKA = data[58]
3 CKB = data[59]
4 crcA = 0
5 crcB = 0
6

7 for i = 0; i < 58; i++ do
8 crcA += data[i]
9 crcB += crcA

10 end
11

12 if (crcA = CKA) && (crcB = CKB) then
13 checksum = OK
14 end

Algorithm 9.1: Check-sum controlling algorithm [4]

The process for finding the current GNSS status and conditions for using the received data is

presented in the flow chart in figure 9.2.
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Figure 9.2: Interrupt routine flow chart
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9.2 Hardware Initiate Task

The hardware initiate task is used to allocate memory and set the initial values for the flight

controller, send the correct settings to the sensors and activate hardware interrupts. This task

has the highest priority because no other task is allowed to run before this task is done, after the

task is done it will delete itself, and the flight controller task will have the highest priority. A flow

chart of this task is can be seen in figure 9.3.

Figure 9.3: Hardware initiate flow chart
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9.3 Flight Controller Task

As mentioned in chapter 8 the flight controller algorithm is auto generated code from Simulink,

and contains one struct which contains all the input and output data, this struct is used as a

parameter in a "step" function, which calculates the correct output from the data on the inputs.

In this case the output is the motor throttle for each motor, this is therefore the most important

task running, and has the highest priority after the hardware initiate task has been deleted. It is

important that this task always runs in such manner that it executes the flight controller algo-

rithm every 15 milliseconds, or else the drone will get unstable, and in worst case, crash. A flow

chart of this task is can be seen in figure 9.4.

Figure 9.4: Flight controller flow chart
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9.4 Altitude Acquisition Task

The altitude acquisition task’s purpose is to retrieve and calculate the drone altitude. This is a

separate task because it takes about 30 milliseconds to retrieve the pressure data, due to the

processing rate in the pressure sensor [5]. The altitude data is needed approximately every 90

ms, because this is the rate the position controller is working at. The task is triggered by the

flight controller task trough a semaphore, and the data is sent to the flight controller task trough

a queue, see figure 9.5.

Figure 9.5: Altitude acquisition flow chart
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9.5 Serial Transmit Task

The serial transmit task synchronizes the outgoing data traffic that is going to the serial port.

This is done by using the FreeRTOS tool, queue, which is using a using a FIFO (first in first out)

principle [6]. If the queue is empty the task will wait, utilizing more of the CPU to the other

tasks, when some data has been put on the queue the thread will wake up and print the data,

see figure 9.6.

Figure 9.6: Serial transmit flow chart
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9.6 Serial Receive Task

The serial receive task receives and processes the commands sent via Bluetooth, this is done

by using a CLI (command line interface), a feature integrated in the RTOS [14], the command

set is implemented by the user. A table of the commands implemented on the drone can be

found in appendix F. The task will wait on a semaphore, this semaphore will be incremented by

a serial receive interrupt routine, when a command is received the task will check if it is a known

command, and process it accordingly, see figure 9.7.

Figure 9.7: Serial receive flow chart

The C code, implementing the CLI is referred to from appendix B.
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9.7 Battery Monitoring Task

The battery monitoring task is checking the battery voltage one time per second, if the battery

voltage is low the task will send a command to the LED control task, so the user can get a visual

representation about the battery status. How the battery voltage is checked is mentioned in

the pre-project [17]. The task will define the battery status as "Low" or "Low Low" when five

consecutive measurements are below a given battery limit. See figure 9.8.

Figure 9.8: Battery monitoring flow chart



CHAPTER 9. IMPLEMENTING A RTOS 72

9.8 LED Control Task

The LED control task controls the LED strips connected underneath the drone, mentioned in

section 4.4. Each flight mode, battery status and setup sequence has a different LED sequence,

all the sequences are explained in appendix G. The task will wait for 500 milliseconds for a new

LED sequence from the battery monitoring task or flight controller task, if no such sequence is

received the task will continue on to maintain the LED blinking of the current LED sequence.

See figure 9.9

Figure 9.9: LED contror flow chart
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Full-scale Testing

Kristiansten Fortress in Trondheim was chosen to be the testing ground because of if its big

open area and good GNSS reception. In this chapter we will test all flight modes, except the au-

tonomous object mode, which is going to be simulated. As mentioned in chapter 6 the weather

conditions for testing and flying were strict due to issues with the drone top speed, which is also

going to be investigated in this chapter.

When flying the drone, sensor data, setpoints and controller outputs was logged via Blue-

tooth every 15 ms, by using MATLAB we can create good graphical representation of the data for

further analyzing.

10.1 Manual mode

The objective with this mode is to be able to control the drone’s orientation manually with the

RC remote, the drone should always reach the setpoint efficiently and with minimal deviation,

explained in detail in section 8.1.

To test this, the drone was flown normally outside where there is good space for testing hov-

ering and speed flights.

The drone felt responsive and precise, this was also proved in chapter 6, though the drone

was not able to hold the pitch or roll setpoint over longer time, as seen in figure 10.1. A video

from this flight is referred to in appendix B named "manual mode".
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Figure 10.1: Pitch position

For simplicity we are only going to focus on the pitch motion, as the pitch and roll controllers

have the same PID parameters.

Seen at t = 13.5, t = 16 and t = 19 the controller is very responsive to rapid setpoint change,

it seems that the derivative part (D) of the controller is too big.

As seen at t = 13 the pitch setpoint is altered to -0.4 radians, and the drone seems to respond

well, but when the drone is starting to get a forward momentum it flattens out, seen at t = 14.

The reason why can be seen in the angle velocity plot, see figure 10.2.
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Figure 10.2: Pitch velocity

As mentioned in chapter 3 the angle position controller (primary controller) is controlling the
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setpoint of the angle velocity controller (secondary controller). So in this case iSP = ui , where i

is φ, θ and ψ.

When investigating figure 10.2 we can see that the there is not much response when there is

an stationary error e[k]. We can track this issue further down to the orientation controller out-

put, u, see figure 10.3.
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Figure 10.3: Pitch controller output

The setpoint change, φSP = −0.4, happening at t = 13, and as seen in the plot the controller

is giving a big negative impulse (due to the derivative part of the PID controller), and another

big positive impulse about 250 milliseconds after, due to the negative error rate. As the drone

flattens out at t = 14, controllers integral part is winding up, making the controller output in-

creasing, see 10.3 from t = 14 to t = 16. The controller power output is approximately -50 (10%

of the whole power area), which according to chapter 3 means -50 on front propellers and +50

on back propellers. In a hover scenario this is more than enough for the drone go to a desired

orientation setpoint, but if it is in forward motion the propeller wash from the front propellers

(in the direction of motion) might have an effect on the back propellers, making them loose lift,

and the drone will flatten out.

In order to test this, the drone was tied down, it could only rotate along its x axis (pitch),

removing the chance of propeller wash. A video of this bench test is referred to in appendix B,

named "manual mode bench test". See figure 10.4.
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Figure 10.4: Benchtest results

As seen in the figure, when removing the chance of propeller wash disturbing the back pro-

pellers the drone and controller performed much better. The controller also performs well dur-

ing simulations, but this is because aerodynamics is not modeled, for simplicity.

The overall functionality of this mode works as expected, there was good performance in the

yaw (ψ) controller, but not roll and pitch when the drone was in motion. It might be worth a try

to increase the P and I parameter of the angular velocity controller (secondary controller), and

decrease the P parameter on the angular position controller (primary controller).

It is worth to mention that Kristoffer Gryte, a drone expert at NTNU, explained that the ESC’s

has a lot to do with the drone responsiveness, and using a ESC with SimonK firmware is the best
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choice because it is designed specifically for multirotors [18]. The ESC’s currently used is quite

unknown, and the quality is not guaranteed to be the best, due to the lack of a proper data sheet.

10.2 Manual GNSS mode

The objective with this mode is to be able to control the drone’s orientation manually with the RC

remote, when there is no input from the RC remote the drone shall hold its current geographic

position, explained in detail in section 8.1.

To test this the drone was powered up outside, when the GNSS receiver accuracy was ap-

proximately down to 3 meters the testing begun. The drone was flown up to speed, and then the

ordered to stop (no RC remote input) to see if the drone held the position. Tests also included

to manually pull the drone away from its position and see if it flew back to setpoint, seen in the

video referred to in appendix B, named "manual GNSS mode".

During flight the drone did behave as expected, by giving the drone maximum pitch/roll,

the drone came up to speed, and when there was no input from the RC remote, the drone did

aggressive but precise maneuvers to counteract its linear momentum. See figure 10.5, the drone

is controlled by the RC remote when the setpoint equals the measured value.
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Figure 10.5: Drone position

When studying the controller error in the position plot, from t = 5 to t = 30, we can see

that the controller accuracy is about ±0.5 meters for the horizontal plane, and ±1 meter for the

vertical plane. As mentioned in chapter 6 when testing outside the weather conditions need to

be close to perfect (no rain, no wind), making the controller tuning opportunity rare, so there

should be some accuracy improvements by perfecting the controller parameters.

It is also worth to mention that at t = 2 in z-axis plot in the position plot the altitude suddenly

goes negative, the reason for this is that the propellers creates a high pressure at takeoff, which

is affecting the pressure sensor.

The linear velocity for the drone was also logged during flight, see figure 10.6.



CHAPTER 10. FULL-SCALE TESTING 79

0 5 10 15 20 25 30 35 40 45 50

V
el

oc
ity

 [m
/s

]

-2

0

2
x
x

SP

0 5 10 15 20 25 30 35 40 45 50

V
el

oc
ity

 [m
/s

]

-2

0

2
y
y

SP

Time [s]
0 5 10 15 20 25 30 35 40 45 50

V
el

oc
ity

 [m
/s

]

-1

0

1 z
z

SP

Figure 10.6: Drone velocity

As mentioned in chapter 6 the position controller (primary controller) is controlling the set-

point of the velocity controller (secondary controller). So in this case iSP = ui , where i is x, y

and z.

As seen from the second subplot (y) in figure 10.6 the drone used about two seconds to de-

celerate the speed from about 3 m/s to 0 m/s, a quite good performance. But in the third subplot

(z) at t = 3 to t = 15, the setpoint is controlled from the RC remote, as explained in subsection

8.1. The z-axis velocity controller does not perform so good, this could however be because of

the integrator parameter being too low, increasing it should give better results.

The overall functionality of this mode works as expected, but it is also proved that the posi-
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tion controllers also need some more tuning. Though the drone deceleration is fast and precise

when it is commanded to stop its linear speed, there is definitively room for improvements,

especially for the z axis controller.

10.3 Autonomous mode

The objective with this mode is being able to load a flight plan to the drone via Bluetooth before

takeoff, when executed the drone will fly to each waypoint with an accuracy of ±1 meter, the

heading between waypoints will be calculated during execution. The drone should also be able

to land and disarm the motors by itself. The functionality of this mode is explained in detail in

section 8.1.

To test this mode the drone was powered up outside and the following flight plan was loaded

1. (0,10,4), fly 4 meters up then 10 meters north.

2. (10,10,4), fly 10 meters east.

3. (10,0,4), fly 10 meters south.

4. (0,0,0), fly 10 meters west, then land.

The result of this flight plan is that the drone shall fly in a square which is 10×10 meters, and

land the same place it started, the heading shall also be altered by π
2 between waypoints. The

waypoints were marked on the ground at the test site in order to see if the drone actually flew

the correct distance, see figure 10.7.
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Figure 10.7: Test setup

During flight the drone did behave as expected, which does not come as a surprise as the

flight controller was simulated against the model in Simulink before implemented on the drone.

But, as before, the drone is a bit slow to move from waypoint to another. A video from this flight

is referred to in appendix B, named "autonomous mode". The position plots can be seen in

figure 10.8.
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Figure 10.8: Drone position
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As seen in the position plot the drone hits the setpoints quite accurately, but it is slow, using

about 15 seconds to fly 10 meters. The issue becomes clear by taking a closer look at the velocity

plot, see figure 10.9.
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Figure 10.9: Drone velocity

Though the velocity setpoint (primary controller output) is quite high, the drone is not able to

fly that fast because of the issue discussed in section 10.1.

The drone did, however, alter its heading automatically between waypoints, see figure 10.10.
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Figure 10.10: Drone heading
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The smooth transitions in the heading setpoint, ψSP , is done by feeding the setpoint trough a

low-pass filter, and avoid quick and aggressive motor inputs, which is not needed for heading

change. This function is also visible in the video referred to in appendix B.

The functionality of this mode seems to work flawlessly, but, as explained, the drone is very

slow. During this test there was almost no wind, but during other tests the drone had some

problems holding its position if there was more wind than 1 m/s.

A bird’s eye view of this test can be seen in figure 10.11.
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Figure 10.11: XY plot of drone trajetory

As seen from the XY plot the drone does hit the way-points within the minimum of one meter

before it moves on to next way-point. The drone landed a bit over 1 meter from where it started,

though the setpoint was to land at (0,0,0) it is still quite good.
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10.4 Autonomous object mode

The objective with this mode is to load a coordinate of the location of an object to the drone via

Bluetooth, the drone will go to this coordinate and search for the object, once found, the drone

will lock on to the object and fly close enough to pick up the object. Once the object is picked up

the drone will fly back to where it took off and drop the object. The functionality of this mode is

explained in detail in section 8.1.

Due to the issues explained in section 10.1 the drone has not been accurate enough to test

this mode, this test will therefore be simulated. We will not simulate the whole sequence as

explained in section 8.1, but test the equations derived in chapter 7. With this we can test the

most uncertain element of this mode; can the drone get close enough to the object using a

vision sensor? The closer the object is to the vision sensor the narrower the field of view gets,

so position precision is important here. If good results are far off by simulating, it might not be

worthwhile implementing on the drone.

We are going to simulate a flight where the drone ascends to 4 meters, and flies towards the

same coordinate as the object, in this case 10 meters north from takeoff point (0,10,0). Once the

drone has arrived it will descend slowly to 0.2 meters, we are going to check when the object is

out of view for the vision sensor. See figure 10.12.
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Figure 10.12: Simulation of r i
ob

The simulation went as expected, and as seen in figure 10.12 the drone could get down to

0.2 meters from the object, but at t = 60 the object went out of view. This means that at 0.2 m

the drone is so close that the object is just barely in view, this could of course be fixed by using a

longer hook, mentioned in section 4.7.
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Because we are using the object width to measure the distance from the object, we get a

poor resolution when the object is far away, see the third subplot in figure (zi
ob) in figure 10.12.

This happens because the object covers fewer pixels in the vision sensor, but the resolution gets

better as the object gets closer to the drone. Good resolution is important when the drone is

close to the object because of the reduced field of view, this is therefore not something to worry

about.

When studying the first subplot (xi
ob) in figure 10.12, we can see there is some deviation from

modeled and real value. The reason for this can we see in function 7.9, the calculated distance

is used to calculate the object position, mentioned in the previous paragraph. As seen from the

subplot it gives an inaccuracy of approximately 20 centimeters when the drone is about 3 me-

ters away from the object, but this inaccuracy gets less and less the closer the drone gets to the

object, making the inaccuracy negligible.

By analyzing the x- and y data the precision is down to approximately ±0.2 meters, which

in our case is not optimal unless we are using a really big loop on the object. The drone model

does, however, not take air resistance in account making it more likely to move faster in the x-

or y direction for small deviations in roll or pitch, which is modeled as white noise.

With this we can conclude that the simulation was successful and definitively worth trying

to implement on the drone.



Chapter 11

Discussion and Recommendations for

Further Work

In this chaper we will discuss the results found during this project at recommendations for fur-

ther work.

11.1 Discussion

There is room for improvement when it comes to the motor throttle compensation, explained

in section 2.1. Instead of creating a function with regards to motor throttle, we could move the

electronic compass further away from the wiring and motors. As mentioned in 4.1, the GNSS

module has a built in compass, which could yield better results.

The roll and pitch issues mentioned in section 10.1 was thought to be due to propeller wash,

but Kristoffer Gryte meant that the propeller wash issue was negligible and should not be the

root cause of the problem presented here. During the bench test the drone performed well,

so in this case it looks like the propeller wash does have an impact on the performance, but

this is probably because of suboptimal orientation controller parameters. The tuning of the

orientation controller was done during winter times, which means not ideal flying conditions

outside due to the risk of getting snow in the electronics. The tuning was therefore done inside

with limited space for flying at high velocity, and the issue was not noticed. Because of this it is

87
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suggested to revisit the controller parameters.

This made the drone very vulnerable to wind, because the position controller was not able

to do small attitude corrections to counteract the wind.

Although objective three and four was never met, much of the work has already been done,

the vision sensor was installed to the drone and drivers were developed. Data processing algo-

rithms were designed and tested, with good results. The method for picking up an object, along

with the control sequence, was also suggested. When the roll- and pitch issue is fixed it should

be straight forward to implement the last flight mode.

As explained in section 4.6, the necessary sensor for completing objective six, has also been

installed, but is at the moment only used in the landing sequence. This sensor could also be

used for a collision detection system.

11.2 Recommendations for Further Work

The following objectives were not met

1. Implement a method for the drone to recognize objects to be picked up, and lock on to

the object

2. Implement a method for picking up an object

3. If there is enough time a collision detector system should be implemented.

The correct approach to finish these objectives would be

1. Re-tune the orientation controller.

2. Do a precision test of the position controller, does the position controller track the set-

point with centimeter precision? If not, improve this, maybe use the accelerometer?

3. Implement the object data processing algorithms, found in chapter 7.

4. Test the object tracking ability, is it precise enough?

5. Implement the hook, as explained in section 4.7.



Appendix A

Acronyms

GPS Global Positioning System

PCB Printed Circuit Board

MCU Micro Controller Unit

PID Proportional, Integral, Derivative

LQR Linear Quadratic Regulator

RC Radio Control

ESC Electronic Speed Controller

GNSS Global Navigation Satellite System

UART Universal Asynchronous Receiver-Transmitter

NMEA The National Marine Electronics Association

UBX Ublox

CPU Central Processing Unit

NAV-SOL Navigation Solution

ECEF Earth Centred Earth Fixed
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SPI Serial Peripheral Interface

I2C Inter-Integrated Circuit

LED Light Emitting Diode

RGB Red, Green, Blue

GPIO General Purpose Input Output

IR Infrared

ADC Analog to Digital Converter

LiPo Lithium Polymer

ENU East North Up

WGS-84 World Geodetic System 1984

RTOS Real-Time Operation System

OS Operating System

UML Unified Modeling Language

FIFO First In First Out

CLI Command Line Interface



Appendix B

Project Files

Under is a list of the location of the attached files.

1. Keil uVision project (MCU Project files)

Project Files/Source/FreeRTOSV8.2.3 FreeRTOS files

Project Files/Source/Drivers HAL Drivers

Project Files/Source/Simulink Necessary Simulink code generation files

Project Files/Source/Src/CLI-commands Command line interface implementations

Project Files/Source/Src/gps GPS driver

Project Files/Source/Src/LED LED driver

Project Files/Source/Src/myTasks All tasks

Project Files/Source/Src/pixy Vision sensor drivers

Project Files/Source/Src/PPMcontrol RC remote and ESC driver

Project Files/Source/Src/sensors Sensor drivers

Project Files/Source/Src/main main file (mostly hardware setup)

2. MATLAB / Simulink project files

Project Files/Matlab/Common Block library and parameters file

Project Files/Matlab/Data Processing Data processing blocks
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Project Files/Matlab/Model Quadcopter model

Project Files/Matlab/Orientation Controller Orientation controller blocks

Project Files/Matlab/Flight Controller Flight controller block

Project Files/Matlab/flightController_grt_rtw Auto generated C code

3. Videos

Project Files/Videos/manual mode Test flight in manual mode

Project Files/Videos/manual mode bench test Bench test manual mode

Project Files/Videos/manual GNSS mode Test flight manual GNSS mode

Project Files/Videos/autonomous mode Test flight autonomous mode

4. Eagle project files (Schematics)

Project Files/Schematics/FlightController/FlightController.brd PCB file

Project Files/Schematics/FlightController/FlightController.sch Schematics

Project Files/Schematics/FlightController/board PCB screenshot

Project Files/Schematics/FlightController/board Schematics screenshot

5. Datasheets

Project Files/Datasheets/5050LED LED’s

Project Files/Datasheets/Bluetooth module Bluetooth

Project Files/Datasheets/uln2803a Darlington transistor array

Project Files/Datasheets/MCU Microcontroller datasheets

Project Files/Datasheets/ESC Picture of ESC datasheet

Project Files/Datasheets/Sensors/ADXL345 Accelerometer

Project Files/Datasheets/Sensors/BMP085 Pressure sensor

Project Files/Datasheets/Sensors/GP2D12 IR sensor

Project Files/Datasheets/Sensors/HMC5883L Compass
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Project Files/Datasheets/Sensors/L3G4200D Gyroscope

Project Files/Datasheets/Sensors/u-blox7-V14 GNSS receiver

6. Pre-project report

Project Files/pre-project report Fall project report

7. Master thesis

Project Files/Master Master thesis
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Simulink Screenshots

The Simulink project files is referred to in appendix B.

C.1 Orientation Data Processing

Figure C.1: Orientation data processing block
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Figure C.2: Inside orientation data processing block
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Figure C.3: Inside compass acceptance test block

Figure C.4: Inside data processing block
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Figure C.5: Inside compass tilt compensation block
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C.2 Orientation Controller

Figure C.6: Orientation controller block
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Figure C.7: Inside orientation controller block
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Figure C.8: Inside velocity controller block
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C.3 Position Data Processing

Figure C.9: Position data processing block
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Figure C.10: Inside position data processing block
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Figure C.11: Inside second order filter block
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C.4 Position Controller

Figure C.12: Position constoller block
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Figure C.13: Inside position controller block
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C.5 Object Tracking

Data Processing

Figure C.14: Object data processing block
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Figure C.15: Inside object data processing block
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Model

Figure C.16: Object model block
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Figure C.17: Inside object model block
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C.6 Flight Controller

Figure C.18: Flight controller block
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Figure C.19: Inside flight controller block
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Figure C.20: Inside orientation block
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Figure C.21: Inside position block
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Figure C.22: Inside RC management block



Appendix D

Schematics

A picture of the schematics is presented on the next page. The Eagle project files are also referred

to in appendix B.
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Appendix E

IR sensor output characteristics

The characteristics are presented on the next page. The full datasheet for the IR sensor is reffered

to in appendix B.
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Figure E.1: IR sensor output characteristics



Appendix F

List of commands

Table F.1: Commands
Command Parameter 1 Parameter 2 Parameter 3 Parameter 4 Description

orctrlparam

’ppitchroll’,
’pyaw’,

’vpitchroll’
or ’vyaw’

’p’, ’i’ or ’d’ <value> N/A
Set orientation
controler PID

parameters

listorctrlparam N/A N/A N/A N/A
Print orientation

controler PID
parameters

poctrlparam
’pxy’, ’pz’, ’vxy’

or ’vz’
’p’, ’i’ or ’d’ <value> N/A

Set position
controler PID

parameters

listorctrlparam N/A N/A N/A N/A
Print position
controler PID

parameters

setprop
propeller FL

<value>
propeller FR

<value>
propeller RL

<value>
propeller RR

<value>
Manually set

propeller power

log ’on’ or ’off’ N/A N/A N/A
Turn logging

on/off

getbatvolt N/A N/A N/A N/A
Print battery

voltage

loadflight
x coordinate

(East)
y coordinate

(North)
y coordinate

(Up)
N/A Load flight plan

exeflightplan N/A N/A N/A N/A Execute flight plan

clearflightplan N/A N/A N/A N/A Delete flight plan

getflightplan N/A N/A N/A N/A Print flight plan

getgpsstatus N/A N/A N/A N/A Print GPS status

119



Appendix G

List of LED sequences

Table G.1: LED sequences
Status LED FL leg LED FR leg LED RL leg LED RR leg Description

Ilde Blue Blue Blue Blue
LED’s flashes in a ring,
from FL leg to RL leg

Idle GPS lock OK Green Green Green Green
LED’s flashes in a ring,
from FL leg to RL leg

Armed manual mode Green Green Yellow Yellow
Front LED constant,

back LED flashes
two times per second

Armed GNSS mode Green Green Blue Blue
Front LED constant,

back LED flashes
two times per second

Armed autonomous
mode

White White White White
LED’s flashes in a ring,
from FL leg to RL leg

Low battery N/A N/A Red Red
Back LED flashes one

time per second

Low low battery N/A N/A Red Red
Back LED are
constant on

Calibrate compass
z axis

Green Off Green Off Constant

Calibrate compass
x- and y axis

Green Off Off Green Constant

Calibrate compass
OK

Green Green Green Green Constant

Calibrate compass
RC remote

White White White White Constant
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