
History matching of the Norne Field using 
the Ensemble based Reservoir Tool 
(EnKF/ES)

Daniel Aleksander Solheim

Master of Science in Engineering and ICT

Supervisor: Jon Kleppe, IPT
Co-supervisor: Richard Rwechungura, IPT

Department of Petroleum Engineering and Applied Geophysics

Submission date: April 2014

Norwegian University of Science and Technology



 



NORWEGIAN UNIVERSITY OF SCIENCE AND

TECHNOLOGY

History matching of the Norne Field
using the Ensemble based Reservoir

Tool (EnKF/ES)

by

Daniel Aleksander Solheim

A thesis submitted in partial fulfillment for the
degree of Master of Science

in the
The Faculty of Engineering Science and Technology

Department of Petroleum Engineering and Applied Geophysics

April 2, 2014

http://www.ntnu.edu
http://www.ntnu.edu
danieso@stud.ntnu.no
http://www.ntnu.no/ivt
http://http://www.ntnu.edu/ipt




Declaration of Authorship

I, Daniel Aleksander Solheim, declare that this thesis titled, History matching of
the Norne Field using the Ensemble Reservoir Tool (EnKF/ES), and the work
presented in it are my own. I confirm that:

� This work was done wholly or mainly while in candidature for a research
degree at NTNU.

� Where any part of this thesis has previously been submitted for a degree
or any other qualification at NTNU or any other institution, this has been
clearly stated.

� Where I have consulted the published work of others, this is always clearly
attributed.

� Where I have quoted from the work of others, the source is always given.
With the exception of such quotations, this thesis is entirely my own work.

� I have acknowledged all main sources of help.

� Where the thesis is based on work done by myself jointly with others, I have
made clear exactly what was done by others and what I have contributed
myself.

iii





NORWEGIAN UNIVERSITY OF SCIENCE AND TECHNOLOGY

Abstract
The Faculty of Engineering Science and Technology

Department of Petroleum Engineering and Applied Geophysics

Master of Science

History matching of the Norne Field using the Ensemble based

Reservoir Tool (EnKF/ES)

by Daniel Aleksander Solheim

In this thesis two stochastic algorithms, the Ensemble Smoother (ES) and the
Ensemble Kalman Filter (EnKF), have been utilized as automatic history match-
ing methods through the Statoil developed program the Ensemble based Reservoir
Tool. Statoil, through the IO Center at NTNU, provided real historical production
and pressure data. These data was used to condition on a parametrized ECLIPSE
reservoir model of the Norne field. Parameters conditioned on includes the field
parameters porosity, i-permeability, net-to-gross, and z-direction transmissibility
multiplier, as well as fault multipliers, region transmissibility multipliers, mini-
mum pore volumes and relative permeability endscaling options. The E-segment
model and the Full-field model were both studied.

With an ensemble size of 120 realizations for the E-Segment model and 80 re-
alizations for the Full-field model, both algorithms performed well. In most of
the results an initial high uncertainty in the prior provided the necessary cover-
age of the historical observed data. Overall the EnKF performed better than the
ES, which is natural comparing time and computational power required. Some
spurious correlations and one particular ensemble collapse were experienced. The
EnKF-analysed ensemble production rates provides a lot less uncertainty than
the initial ensemble, and for most plots a slightly better match than the reference
case. The EnKF-algorithm is shown to be vulnerable to small ensemble sizes versus
large amounts of conditioning parameters, as well as highly correlated historical
observations.
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NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET

Sammendrag
Fakultet for ingeniørvitenskap og teknologi

Institutt for petroleumsteknologi og anvendt geofysikk

Master of Science

Historietilpasning av Nornefeltet ved bruk av the Ensemble based

Reservoir Tool (EnKF/ES)

av Daniel Aleksander Solheim

I denne oppgaven ble to stokastiske algoritmer, the Ensemble Smoother (ES) og the
Ensemble Kalman Filter (EnKF), benyttet til historietilpasning. Algoritmene ble
brukt gjennom det eksternt utviklede programmet the Ensemble based Reservoir
Tool. Sanne produksjons- og trykkdata, gjort tilgjengelig av Statoil og IO Sen-
teret på NTNU, ble brukt for å kondisjonere på en parametrisert ECLIPSE reser-
voir model av Norne-feltet. Kondisjoneringsparametere inkluderer feltparameterne
porøsitet, i-permabilitet, net-to-gross og z-retning-transmissibilitetsmultiplikator,
samt også forkastningsmultiplikatorer, region-transmissibilitetsmultiplikatorer, min-
imum porevolumer og relativ permeabilitetsskaleringsinnstillinger. Både E-segment-
modellen og Fullfelts-modellen ble studert.

Med en ensemblestørrelse på 120 realisasjoner for E-segment-modellen og 80 re-
alisasjoner for Fullfelts-modellen produserte begge algoritmene gode resultater.
Størstedelen av resultatplottene inneholder en ensembleprognose med en god dekn-
ing av de historiske observerte dataene. Overordnet produserte EnKF bedre re-
sultater enn ES, noe som er logisk forskjellene i tidsbruk og nødvendig regnekraft
tatt i betraktning. En del mindre gode korrelasjoner, samt én spesielt grov en-
semblekollaps ble observert. De EnKF-analyserte ensemble-produksjonsratene har
generelt en mye mindre usikkerhet enn ensembleprognosen, og for størstedelen av
resultatplottene viser de EnKF-analyserte ensemble-produksjonsratene et bedre
resultatet enn referansemodellen. EnKF-algoritmen viser seg å være sensitiv for
små ensemblestørrelser sett i forhold til store mengder kondisjoneringsparametere,
samt høyt korrelerte historiske observasjoner.

danieso@stud.ntnu.no
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Chapter 1

Introduction

1.1 Aim and Objective

The aim of this thesis is to perform computer-assisted (semi-automatic) history

matching of the Norne Field, both the E-segment and the Full-field model. Two

separate algorithms will be used and comparative notes will be taken regarding

the two. Further discussion around the parametrization of a reservoir model and

conditioning done by pressure and production history will be thoroughly weighted.

The objective of this thesis is to better understand the task of computer-assisted

history matching, improve the behaviour and exactness of the Norne reservoir

model and lay grounds for future research in this area at NTNU.

1.2 Methodology

Various methodologies have long existed for better developing and improving reser-

voir models used for predictions of future field behavior. Uncertainty quantifica-

tion of these predictions have always been the major obstacle. The first research

done on what we now know as computer-assisted, or automatic, history matching

(AHM) was probably done by Kruger around 1960. He pointed out the obvious

fact that for a model to resemble a real life problem, the calculated and observed

1



Introduction 2

pressure data should be in agreement (Kruger, 1961). Kruger also saw it beneficial

to utilize these "electronic computers" for solving the non-unique inverse problem

that history matching is in an automated way. In the mid 1970s, optimal control

theory was heavily applied in obtaining history matched models (Chavent et al.,

1975), while in the early 1990s the simulated annealing technique as a global opti-

mization algorithm was introduced. Without the use of gradients, this technique

was different from most of the earlier methods (Ouenes and Saad, 1993).

From the middle of the 1990s a change was seen in the how the industry wanted

history matched reservoir models. From the search for a single global solution

there was now a desire for several local minima which made it easier to quantify

and control the uncertainty of the predictions. [It has been shown that the search

for a single true solution (global minimum) may in certain circumstances produce

very weak results compared to several local minima (Tavassoli et al., 2004)]. With

the explosive growth and accessibility of computational power, new AHM methods

were developed quickly. Stochastic methods were now favoured, and the simulated

annealing technique, evolutionary strategies and genetic algorithms were some of

the first stochastic HM methods (Romero et al., 2000, Schulze-Riegert et al., 2002,

Sen et al., 1995). The following years saw new methods emerge, such as the Mesh

Adaptive Direct Search (MADS), the Particle Swarm Optimization (PSO) and the

Generalized Pattern Search (GPS). The latest and most popular algorithms within

the stochastic methods has been the Ant Colony Optimization and Differential

Evolution (Hajizadeh et al., 2010).

Stochastic and derivative-free methods are often impractical in large or even

medium-scale history matching problems due to the large amount of simulator

responses required. The use of the adjoint method for calculating gradients was

introduced already in the mid-1970s (Chen and Seinfeld, 1975), but it was not

until 2003 the adjoint method was successfully extended to a 3D, three-phase flow

problem (Li et al., 2003). This breakthrough gave the gradient-based methods

much renewed interest and it is still an area subject to extensive research today

(Kahrobaei et al., 2013).



Introduction 3

The Ensemble Kalman Filter, introduced by Evensen in 1994 (Evensen, 1994) and

based on the Kalman filter (Kalman, 1960), laid foundations for a new category of

history matching methods, namely data assimilation. The 3DVAR, 4DVAR and

the Randomized Maximum Likelihood (RML) are other methods in this category.

These are derivative-free methods, however based on recursive Bayesian estimation

and probability distributions, they differ from other stochastic methods. Several

reports and papers over the last years discuss these types of AHM methods.

Seemingly, the discipline of history matching has gradually evolved into heavy

computerized tasks utilizing intricate mathematical and statistical algorithms. As

a result, this thesis will focus on automatic history matching of the Norne Field

with the use of the Ensemble Smoother and the Ensemble Kalman Filter. These

are made available through the Ensemble based Reservoir Tool (ERT) developed

at Statoil (Statoil and NCC, 2013). Conditioning will be performed with the use

of historical pressure and production rate data made available by Statoil through

the Norne Benchmark Case. The Norne reservoir model is originally created by

Statoil, however through the Norne Benchmark Case created in a collaborable

effort by Statoil and NTNU, the reservoir model are continually being improved

(IO Center, 2010). The computer load will be shared by the NTNU HPC Group’s

Kongull cluster, which is a CentOS 5.3 Linux cluster running Rocks on HP servers

with 2 AMD Opteron model 2431 6-core (Istanbul) processors per node.

1.3 Reservoir Simulation

Reservoir simulation is one of the most important performing tasks in the discipline

of reservoir engineering. It refers to the construction and operation of a model

where the behavior resembles the appearance of actual reservoir behavior (Coats,

1987). The main purpose when performing reservoir simulation is to acquire a

continuous prediction of future reservoir performance, creating a base for future

field decisions. This decision-making refer to decisions concerning e.g. future

production and injection schemes and economical investments in various reservoir
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projects. Important results of future field performance include, but are not limited

to, oil and gas recovery rates and economical outcome.

Reservoir simulation can only take place after the construction of an initial reser-

voir model from a geological model. The geological model is built with the use

of reservoir data, i.e., seismic data, well bore logging, core data, and with prob-

abilistic methods like Kriging populating a predefined grid with the given data.

To transform the geological model to a simulation model, the detailed geological

model must be upscaled so that the amount of grid cells is within the compu-

tational limit of existing software and hardware, or the reservoir engineer’s work

capability. Ideally, the reservoir simulation model is kept continuously up to date

with the geological reservoir description, i.e. as close as possible to how the geo-

physicists and reservoir engineers conceive the true state of the reservoir at all

times (Rwechungura, 2012). This is very hard to achieve with continuous changes

in the reservoir models due to production, injection and natural changes, i.e. com-

paction, fracturing, cementation, etc. Reservoir models can consist of several hun-

dred thousands, and even millions, of grid blocks. Although simplified from the

actual heterogeneity and upscaled from the much more detailed geological model,

useful reservoir models are seldom homogenous. This makes model updating a

very computationally expensive task.

1.4 Inverse Theory

Inverse theory is a general framework that is used to convert observed measure-

ments into information about a physical object or system. All our physical theories

allow us to make predictions - given a complete description of a physical system,

the outcome of some measurement can be predicted. This is called a forward

problem (Tarantola, 2005). The other way around, using the actual results of

some measurements to infer the values of the parameters that characterize the

system, is a so-called inverse problem (see Figure 1.1. Thus, the forward problem
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has one unique solution, while the inverse problem does not. As an example, con-

sider measurements of the gravity field around the Earth. Given the distribution

of mass inside the Earth, we can, by using physical laws and theories, uniquely

predict what the gravity field around the Earth looks like (forward problem). On

the other hand, there are different distributions of mass that give exactly the same

gravity field, therefore an inverse problem with multiple solutions would be to infer

the mass distribution inside the Earth from observations of the gravity field.

Simply stated, an inverse problem can be described as a problem in which the

answer is known but the question is not. As a result of this, for an inverse prob-

lem, one needs to make explicitly available any a priori information on the model

parameters and take care of representing the data uncertainties in a good way.

A priori information (or prior information) means information that is obtained

independently of the results of measurements. For example, a well-designed geo-

physical inverse problem should use the concepts of geostatistics and probability

densities to formulate the inverse problem (Tarantola, 2005).

Figure 1.1: Schematic difference of a Inverse and Forward Problem (Dadash-
pour, 2009)
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1.4.1 Optimization

Used in most fields of science, the task of optimizing is to select the best ele-

ment (with regard to some criteria) from some set of available alternatives. More

specifically, an optimization problem would be to find the best available values of

some objective function, i.e. either maximizing or minimizing the function, given

a defined domain. This is exactly what is sought after in history matching. Here

the objective function is defined as the difference between simulated and observed

data, and the purpose is to minimize this mismatch. Looking at an objective

function in economics, the purpose would be to maximize the profit.

The most important general approach to optimization is based on numerical meth-

ods. In these, iterative numerical procedures are used to generate a series of pro-

gressively improved solutions to the optimization problem, starting with an initial

estimate of the solution (Antoniou and Lu, 2007). What algorithm to use depends

on the objective function at hand, the possible constraints and the smoothness of

the function. Some algorithms make use of the first and second derivative of the

objective functions, while others are only able to find the local minimum/maxi-

mum. Time and computational power are also important factors when choosing

which algorithm to use.

Regardless of the specifics, all good algorithms should possess the following prop-

erties (Nocedal and Wright, 2006):

• Robustness: They should perform well over a wide variety of problems in

their class for all reasonable choices of the initial variables.

• Efficiency: They should not require too much computer time or storage.

• Accuracy: They should be able to identify a solution with precision without

being overly sensitive to errors in the data, or to the arithmetic rounding

errors that occur when the algorithm is implemented on a computer.
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1.5 General history matching

History matching is the process of adjusting a reservoir model until it closely

reproduces the same behavior as observed and measured petroleum data. The

accuracy of the HM depends on the quality of the reservoir model and both the

quality and quantity of all available historical reservoir data, i.e. production rates,

pressure measurements and 4D seismic data.

When an adequate reservoir model is constructed, reservoir simulation can begin.

Then the reservoir model, in an iterative process, is adjusted until the simulated

data matches the historical recorded data. This is achieved through the task of

optimization. When a desired criteria is reached, the model is ready to simulate

future reservoir performance. As more historical data is recorded, the simulation

model is continually updated. This makes it a continuous process often repeated

and enhanced throughout the lifetime of the petroleum field in question.

HM usually requires numerous iterations making it a very costly operation based

on time spent and computational power used. It is a non-unique inverse problem

creating non-unique solutions, thus making future predictions of business deci-

sions non-unique (Dadashpour, 2009). These decisions can be critical and costly

investments like facility upgrades, workover schedules, stimulation of wells, wa-

ter flooding, development drilling and new EOR-methods. Information leading to

such a decision must be as exact as possible, as it is a well known fact in the oil

industry that the quality of a business decision depends largely on the quality of

the history matching.

We differ between manual HM and the more lately used semi-automatic HM (here

AHM) (see Figure 1.2). Manual HM requires experienced reservoir engineers who

analyze the difference between the simulated and observed value, and manually

change one or two parameters at a time to improve the match. Such trial and error

evaluation is seldom reliable for long periods of time, and is always associated

with large uncertainties. This is due to the engineers available time and the

hundreds of thousands of grid blocks in a simulation model, each with separate
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values which ideally should be re-calculated and updated. However, with the use of

AHM, computers and optimization techniques are utilized to speed up the process.

This gives the advantage of a much quicker convergence towards an acceptable

difference between model performance and reservoir performance. Optimization

methods frequently used in the past decades include gradient-based-, derivative

free-, stochastic search- and probabilistic methods. Common procedure for all the

methods is to estimate parameters, iteratively reduce an objective function, and

finally re-calculate estimated parameters.

Figure 1.2: Semi-Automatic HM vs. Manual HM (Rwechungura, 2012)

1.5.1 Objective Function

The definition of an objective function depends on the task at hand and it is in

most cases either a cost function or a utility function. In computer-assisted HM

cases cost functions are used to map values of variables onto a real number (here,

∆) representing the difference between observed data and the response of the

system, as predicted by the forward modelling [∆ = dobs − dcal]. These variables

can in HM cases be e.g. porosity, permeability, reservoir structure, fault systems,
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aquifers, and degree of homogeneity. The three most commonly used methods for

quantifying objective functions are the least square method, the weighted least

square method and the generalized least square method (Equation 1.1, 1.2 and

1.3, respectively).

F = ∆T∆ (1.1)

F = ∆TWD∆ (1.2)

F =
1

2
(1− β)∆TC−1d ∆ +

1

2
β[m1 −m0]

TC−1m [m1 −m0] (1.3)

where WD is a diagonal matrix that assigns individual weights to each measure-

ments. The weights for each data types are assigned as a function of the number

of available data points in a set, and on the uncertainty associated with each

type of measurement. The β factor is a weighting factor which expresses the rel-

ative strength of the belief in the initial model, while Cd is the covariance matrix

of the data providing information about the correlation among the data. Cm is

the covariance matrix of the parameters of the mathematical model (Dadashpour,

2009).

1.5.2 Mathematical Model

Equations like the Newton’s second law and the relativity theory is a result of

the human longing of understanding everything around us. Physical laws were

established, describing naturally occurring phenomenons. Put together and in-

cluded certain parameters, mathematical models describing and reproducing the

behavior of actual physical systems in numbers are created. Such a model is, as

earlier stated, a forward model and forward modelling for systems dealing with

parameters that are only implicitly available, as in earth sciences, creates more

difficult problems (Rwechungura, 2012).

The main purpose of the mathematical model (our forward model) is to predict

the behavior of the system with a reasonable accuracy under various conditions.

The following fundamental laws are relevant to the fluid dynamics in the reservoir
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and are put together creating an appropriate mathematical model (Dadashpour,

2009);

• Mass Conservation Law

• Darcy’s Law

• The Equation of State

• Relative Permeability and Capillary Pressure Relationships

1.6 Optimization Methods

There are hundreds of different methods and algorithms for optimizing or minimiz-

ing cost- or objective functions. Optimization is even a specific branch in applied

mathematics and continuous work is done to improve old algorithms and to invent

new ones.

A recent way of classifying HM methods is in terms of how the particular meth-

ods explore the parameter space vs. exploit the local regions of the parameter

space to find a minimum value of the objective function (Streamsim Technologies,

Inc., 2011). Figure 1.3 gives an overview of some algorithms. Exploration refers

to the search of different areas in the parameter space while exploitation is the

refinement of the previously visited regions to find better answers. In the earlier

days of AHM most of the focus was on single solution methods (exploitation),

although development has shown that exploration of the parameter space using

stochastic- and data assimilation optimization methods has become increasingly

popular. Multiple combinations of reservoir properties can provide good matches

to observed field behavior. In order to realistically quantify the uncertainty of pre-

dictions, multiple history-matched reservoir models are desired (Hajizadeh et al.,

2010).
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Figure 1.3: Schematic showing the difference of exploration vs. exploitation
optimization methods (Streamsim Technologies, Inc., 2011).

Algorithms for minimizing objective functions in HM can generally be divided into

three groups:

• Gradient-based Methods

• Stochastic/Non-gradient-based Methods

• Data Assimilation

Gradient-based methods are based on calculating local gradients to angle the pa-

rameter choice towards a location that minimizes some of the discrepancy between

observed and simulated values. Some of these methods only need to calculate

the first (Jacobian) derivative, while others also make use of the second (Hessian)

derivative which in many cases can be very tiresome to calculate. The gradients are
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most often approximated by finite difference approximation (Dadashpour, 2009).

Emphasise is here on robustness, quickness and local minima, which has the disad-

vantage of not likely finding the global minima and henceforth not the best history

match. Typically utilized gradient-based optimization methods are the steepest

decent method, the Gauss-Newton method, the conjugate gradient method and

the sequential quadratic method. Some of the latest and most promising develop-

ments and results in AHM has been seen with the use of gradient-based methods

coupled with the adjoint method for calculating the gradients (Kahrobaei et al.,

2013). In simplified terms the adjoint method introduces more variables to the

problem at hand, thus avoiding certain parts of the difficult gradient calculation.

The adjoint method is however not intuitively understood and requires intimate

knowledge and modifications of the simulator code itself, making it very difficult

to utilize in certain cases.

Stochastic optimization methods and derivative-free methods search for global so-

lutions and are normally able to avoid local minima. They include, but are not

limited to, genetic algorithms, evolutionary algorithms, the simulated annealing

technique, Tabu Search, particle swarm intelligence algorithms, Hooke-Jeeves Di-

rect Search. All of these methods treat the simulator like a "black box", where the

optimization loop does not require intimate knowledge of how the reservoir model

response is obtained (Streamsim Technologies, Inc., 2011). This can often be at-

tractive for reservoir engineers without a deep understanding of the mathematics

supporting the optimization method. As one can extensively control the behavior

of these algorithms, they provide the opportunity to balance the exploration and

exploitation while searching for optimal solutions (Hajizadeh et al., 2010). These

methods have been thoroughly studied, and proven robust and easy to adapt for

different problems. In the last 10-15 years, new stochastic algorithms like the

neighborhood algorithm, the ant colony optimization method and differential evo-

lution have been developed, tested and proven promising (Hajizadeh et al., 2010,

Mohamed et al., 2009, Schulze-Riegert et al., 2002). All this however comes at a

high computational cost as these methods may require hundreds or thousands of
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evaluations of the reservoir model response, which can virtually be impossible for

CPU-intensive reservoir models.

Data assimilation is an analysis technique in which the observed information is

accumulated into the model state by taking advantage of consistency constraints

with laws of time evolution and physical properties (Lorenc, 1986). Background

information in the form of an a priori estimate of the reservoir model state is neces-

sary to turn the under-determined analysis problem into a well-posed one. Better

yet, a set of different model states based on some assumptions of the reservoir

model (from physical laws and geological constraints to well logs, seismic data,

etc) makes an ensemble in which the observed data either can undergo sequen-

tially or non-sequentially, intermittent or continuous in time assimilation. The

Ensemble Kalman Filter (EnKF) introduced in 1994 has been the subject of mas-

sive attention the last 20 years (Evensen, 1994), and is probably the most used

data assimilation method to date.
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The Norne Field

The Norne Field is situated 80 km north of the Heidrun field and compromises the

license blocks 6608/10 and 6508/1 on the Norwegian Continental Shelf. This is

approximately 200 km offshore, about midway between Trondheim and Mo i Rana,

with a water depth of 370 to 390 meters. The field was discovered in December

1991, and the discovery well contained a total hydrocarbon column of 135 m -

a 110 meter oil column with an overlying gas cap. Two more wells was drilled

in the northern and eastern part of the structure in early 1993 and early 1994.

These confirmed the results from the discovery well, as well as giving an estimate

of the extension of the field to the north and east. Especially the eastern well hit

a structure with high potential, and the results from this well were important for

optimum sizing of the process facility (Steffensen and Karstad, 1996).

Oil production started November 6th 1997 with Statoil as operator and Eni Norge

AS and Petoro AS as partners. The field has been development with a produc-

tion and storage vessel, the "Norne FPSO", connected to seven subsea wellhead

templates named B, C, D, E, F and K (see Figure 2.1). Flexible risers carry the

wellstream to the ship, which rotates around a cylindrical turret moored to the

seabed. Risers and umbilicals are also connected to the turret. Gas export started

in 2001 after being re-injected into the formation in the earlier production years ,

and the gas is now transported through a dedicated pipeline to Åsgard and from

there through the Åsgard Transport Pipeline to Kårstø (NPD, 2012).

15
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Figure 2.1: Development of the Norne Field (Statoil, 2006).

Today (2012) Norne produces approximately 18.000 bbl oil, 0.16 billion Sm3 gas

and 0.02 million tonnes NGL per day. Production from the Norne Field has,

despite the production decrease later years (see Figure 2.2), been a huge success,

and it is one of the fields in the North Sea with the highest recovery rate at above

60 %.

Table 2.1: Recoverable reserves from the Norne Field (NPD, 2012)

Recoverable Reserves Original in place Remaining as of 31.12.2011

Oil 90.8 million Sm3 4.6 million Sm3

Gas 11.8 billion Sm3 5.4 billion Sm3

NGL 11.8 million tonnes 1.0 million tonnes
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Figure 2.2: Cumulative oil production per year of the Norne Field. Green
and red color representing "Oil, condensate and NGL production" and "Gas

production", respectively (NPD, 2012).

2.1 Geology

The Norne Field is situated on a horst block measuring approximately 9 km x 3

km, consisting of two separate oil components, the Norne main structure (C-, D-

and E-segment) and the Northeast segment (G-segment) as seen in Figure 2.3.

The reservoir is subdivided into four different formations from top to base; Garn,

Ile, Tofte and Tilje. 98 % of oil in place is situated in the Norne main structure,

and approximetely 80 % of this oil is located in The Ile and Tofte formation while

gas is found in the Garn formation (see Figure 2.4).
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Figure 2.3: Top reservoir map showing Norne horst block with the four seg-
ments (Morell, 2010).

The reservoir is found at a depth of 2500-2700 m, and the reservoir sandstones

are dominated by fine-grained and well to very vell stored sub-arkosic arenites (a

sedimentary clastic rock with sand grain size of 0.0625-2.0 mm). Despite ongoing

diagenetic processes affecting the sandstones quality, most of the sandstones are

good reservoir rocks with porosity in the range of 25-30 % and permeability varying

from 20 to 2500 mD. The source rocks are believed to be the Spekk Formation from

Late Jurassic and coal bedded Åre Formation from Early Jurassic. The cap rock,

sealing the reservoir and keeping the oil and gas in place, is the Melke Formation.

The Not Formation also behaves as a cap rock, preventing communication between

the Garn and Ile Formations (Rwechungura et al., 2010).
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Figure 2.4: Stratigraphical sub-division of the Norne reservoir (Statoil, 2001).

2.1.1 Zonation

The present [2006] geological model consists of 17 reservoir zones (Verlo and Het-

land, 2008). Today’s reservoir zonation is slightly altered from earlier subdivisions.
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The main differences is that the Ile and Tofte zones have been further subdivided,

the Tilje zones have been simplified and the Garn zones has changed name to

numbered Not zones (see Figure 2.5). The zonation from 2001 was made to cor-

respond as good as possible to the lithology changes seen in the reservoir, thus

zones were chosen with basis in sequence boundaries, maximum flooding surfaces

or distinct breaks in porosity or permeability correlating across the field as seen

in Figure 2.4 (Statoil, 2001).

Figure 2.5: Old and present zonation (Verlo and Hetland, 2008).

2.1.2 Reservoir Communication

Faults

Compartmentalization is a major factor in the Norne Field. One of reason for

this is the field location on a horst, resulting in many faults criss-crossing the

reservoir. Major faults can be discovered by studying seismic data, which together
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with known history of the area, contributes to confirm the positions of the faults.

Figure 2.6 illustrates cross sections through the Norne Field with fluid contacts

and major faults. A significant amount of lineaments are discovered from ESP

data including dip and azimuth maps generated at the Top Garn level. These

lineaments trend NNW-SSE and SW-NE parallell to the two main fault strike

directions on the field. Some of the lineaments are identified as small faults in the

seismic data, which lead to a more faulted field than shown in the structural maps

(Verlo and Hetland, 2008). The displacement of these faults is probably between

5 and 20 m (Statoil, 2001). Figure 2.14 shows how these faults are modelled in

the 2004 reservoir model.
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Figure 2.6: Structural cross-sections through the Norne Field with fluid con-
tacts (Statoil, 2001).

Stratigraphical barriers

Several stratigraphic barriers are present in the field. Continuous intervals which

restrict the vertical flow within the Norne Field are listed in table 2.2.
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Table 2.2: Intervals restricting the flow within the Norne Field [names corre-
sponding to the zonation from Norne 2002 (see Figure 2.4)]

Formation Comments

The Melke Formation Claystone formation, upper seal

Garn 3/ Garn 2 Carbonate cemented top layer at Garn 2

The Not Formation Claystone formation

Ile 3/Ile 2 Carbonate cementations and increased clay content at base Ile 3

Ile 2/Ile 1 Carbonate cemented layers at base Ile 2

Ile 1/Tofte 4 Carbonate cemented layers at top Tofte 4

Tofte 2/Tofte 1 Significant grain size contrast

Tilje 3/Tilje 2 Claystone formation

Pressure development in field clearly indicated what influence the stratigraphic

barriers have on the flow within the reservoir. The barriers affecting the flow most

distinctively are the Not Formation, the carbonate cemented layers which separate

the Ile 1 and the Tofte 4 formations, as well as the the claystone separating the

Tilje 3 and Tilje 2 formations (Statoil, 2001).

Further see (Verlo and Hetland, 2008) for an extensive geological description of

the Norne Field.

2.2 Wells

The Norne Field has 4 templates for production and 2 templates for injection. Each

template has 4 well slots available - 3 for production and 1 for injection/production.

Currently the field is exclusively developed with horizontal producers (NPD, 2012).

The following principles was decisive for the wellbore locations;

• Water injectors located at the flanks of the reservoir

• Gas injectors located at the structural heights of the reservoir
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• Oil producers located between gas and water injectors for delaying gas and

water breakthrough

To avoid gas inflow oil producers are located at some distance from major faults.

Wellbore locations were after initial placement optimized (branches, new perforation/shut-

ins or completely new drilling locations) with regards to gas and water break-

through by the use of reservor simulation studies. The wells are completed in

different formations depending on the current drainage strategy in use (see Figure

2.7). The total number of active wells in December 2006 was 17; 11 being oil pro-

ducers, 3 water injectors and 3 gas injectors, and a detail overview of the active

periods of each and every production well can be seen in Table 2.3.

Table 2.3: Overview producing wells. The active period is based on the ob-
served historical data, while the plugged date is based on (Verlo and Hetland,

2008).

Wells Active (Open - No production) Plugged
B-1H October 2005
Gas April 1999 - October 2005
Oil April 1999 - October 2005
Water August 2002 - October 2005
B-1BH N/A
Gas January 2006 - N/A
Oil January 2006 - N/A
Water May 2006 - N/A
B-2H N/A
Gas December 1998 - N/A
Oil December 1998 - N/A
Water January 2001 - N/A
B-3H N/A
Gas July 1999 - N/A
Oil July 1999 - N/A
Water August 2001 - N/A
B-4H May 2001
Gas April 1998 - Varying production from May 1999
Oil April 1998 - Varying production from May 1999
Water No water production
B-4BH September 2003
Gas August 2001 - December 2002
Oil August 2001 - December 2002
Water September 2001 - December 2002
B-4DH N/A
Gas July 2004 - N/A
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Oil July 2004 - N/A
Water December 2004 - N/A
D-1H September 2002
Gas November 1997 - August 2001
Oil November 1997 - August 2001
Water September 2000 - August 2001
D-1CH N/A
Gas November 2003 - N/A
Oil November 2003 - N/A
Water January 2005 - N/A
D-2H N/A
Gas December 1997 - N/A
Oil December 1997 - N/A
Water November 2004 - N/A
D-3AH June 2005
Gas August 2000 - June 2005
Oil August 2000 - June 2005
Water July 2002 - June 2005
D-3BH N/A
Gas February 2006 - N/A
Oil February 2006 - N/A
Water August 2006 - N/A
D-4H November 2002
Gas June 1998 - April 2002 (on-off from Aug 00)
Oil June 1998 - April 2002 (on-off from Aug 00)
Water April 2000 - April 2002 (on-off from Aug 00)
D-4AH N/A
Gas June 2003 - July 2006
Oil June 2003 - July 2006
Water January 2004 - October 2005
E-1H N/A
Gas September 1999 - N/A
Oil September 1999 - N/A
Water April 2002 - N/A
E-2H N/A
Gas November 1999 - July 2005
Oil November 1999 - July 2005
Water January 2002 - July 2005
E-2AH N/A
Gas August 2005 (no prod. Nov 05-Oct 06) - N/A
Oil August 2005 (no prod. Nov 05-Oct 06) - N/A
Water October 2006 - N/A
E-3H May 2000
Gas September 1998 - April 2000
Oil September 1998 - April 2000
Water November 1998 - April 2000
E-3AH January 2005
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Gas Dec 2000 (no prod. May 01-Jan 02) - Jan 2005
Oil Dec 2000 (no prod. May 01-Jan 02) - Jan 2005
Water May 2002 - January 2005
E-3CH N/A
Gas May 2005 - N/A
Oil May 2005 - N/A
Water July 2005 - N/A
E-4AH N/A
Gas June 2000 (no prod. Jun 01-Aug 02) - July 2005
Oil June 2000 (no prod. Jun 01-Aug 02) - July 2005
Water March 2004 - July 2005
K-3H N/A
Gas October 2006 - N/A
Oil October 2006 - N/A
Water October 2006 - N/A

Figure 2.7: Drainage strategy for the Norne Field. Vertical arrows = injection
streams, horizontal arrows = production streams. Blue fill = water, green fill =

oil, red fill = gas (Statoil, 2006).

2.2.1 Injection strategy

The water injection strategy is based on the following issues

• As good as possible areal distribution of the water injectors to maintain a

steady rise of the water level and hence good areal sweep.
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• Since the vertical communication in the Norne reservoir is poor, it was nec-

essary to convert the drainage strategy from vertical- to flank sweep. This

objective was obtained by placing the water injectors towards the flanks.

• The water injectors are conventional wells that inject water into the water

zone and lower part of the oil zone from Tilje 3 up to Ile 3. Tilje 1 is

considered to consist of unconsolidated sand, and is located below the tight,

laterally extensive shale in Tilje 2, and is not considered to be suited for

water injection.

• Three of the four water injectors are located in the Norne C-segment (see

Figure 2.3) which accounts for 60 % the STOIIP.

The initial strategy to maintain reservoir pressure was to re-inject produced gas

into the gas cap and water into the water zone (Steffensen and Karstad, 1996).

Since the gas cap had high pressure and was sealed off by the Not formation, the

gas injection was changed to the water zone and the lower part of the oil zone.

This change in strategy was successful, although making the prediction of gas flow

in the reservoir more complicated and uncertain. A higher GOR than expected

caused the production to be restricted by gas handling capacity. Gas export was

started in 2001 in order to obtain a balanced gas- and water injection strategy,

and prevent further increase in GOR. The deep gas injection ceased in 2005, and

the initial strategy was again partially implemented – in 2006 gas from the C-wells

started to inject into the gas cap to prevent pressure depletion (Morell, 2010).

Further see (Morell, 2010) for extended information about the well history of the

Norne Field.

2.3 Reservoir Model

The Norne field has been simulated by four different ECLIPSE-models:
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• The PDO Model - this model has grid dimensions 40x70x16 and is based on

a 1994 interpretation of the 3D seismic survey ST9203

• The 1998 Model - this model has grid dimensions 56x124x24 and is based

on a 1998 interpretation of the 3D seismic survey ST9203

• The 2004 Model - this model has grid dimensions 46x112x22 and is based

on a 2004 interpretation of the 4D seismic surveys ST0103, ST0305, ST0409

• The 2006 Model - this model has grid dimensions 55x136x32 and is based

on a 2006 interpretation of the 4D seismic surveys ST0103, ST0305, ST0409

and ST0603

Figure 2.8: Fault zonation PDO
model

Figure 2.9: Fault zonation 1998
model

Figure 2.10: Fault zonation 2004
model

Figure 2.11: Fault zonation 2006
model

All of these models are created and further developed by Statoil, and where made

available for NTNU through the Norne Benchmark Case (IO Center, 2010). The

fault zonation for each model can be seen in Figure 2.8, 2.9, 2.10 and 2.11.
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The ECLIPSE-model applied in this thesis is a modified version of the 2004-model.

Structurally the models are similar, but issues with the relative permeability scal-

ing, hysteresis and the rock functions have been addressed (Cheng, 2012).

2.3.1 Reservoir Model Specifics

The Norne Reservoir Simulation Model is three-phase, 3D, black-oil ECLIPSE

100 model. The modified 2004-model applied in this thesis is discretized by a

46x112x22 grid and is physically divided into two sections by the Not Shale For-

mation. The upper and lower sections consists of 3 and 18 stratigraphical layers

respectively.

E-segment model

The Norne Benchmark Case first made available a model focusing only on the

E-segment of the Norne Field [2011], coarsening and using multipliers for the rest

of the field so that the E-segment could be simulated as a stand-alone reservoir

model. Attempts was first made to build a separated E-segment model with flux

boundaries, but results showed that a coarsened model had fewer limitations with

regards to handling EOR applications, polymers, tracers and other special features

(Rwechungura et al., 2010). Therefore the coarsened model (see Figure 2.12) was

used for the first Norne Comparative Case Study.

Figure 2.12: The coarsened Norne E-segment Model (Rwechungura et al.,
2010).
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The Norne E-segment model consists of 8733 active cells with an average cell

blocks size of 80 to 100m in the horizontal direction.

Full-field model

The Norne Full-field model was released by the Norne Benchmark Case in 2013

compromising a full reservoir model of the Norne Field with 44431 active cells and

32 wells with accompanying information.

Figure 2.13: The Norne Full-field model including all drilled wells.

The most important properties of the oil and gas in the Norne Field is listed in

Table 2.4, and schematics showing the reservoir model interpretation of the faults

criss-crossing the Norne Field can be seen in Figure 2.14.
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Table 2.4: Existing Norne oil and gas properties modelled in the reservoir
model

Property Value

Initial Pressure 273 bar at 2639 m TVD

Reservoir Temperature 98 ◦C

Oil Density 859.5 kg/m3 (API=32.7 ◦)

Gas Density 0.854 kg/m3

Water Density 1033 kg/m3

Bo 1.32

Bg 0.0047

Rock Wettability Mixed

Pore Compressibility 4.84× 10−5 bar−1 at 277 bar

Figure 2.14: Schematics showing the interpretations of faults in the applied
ECLIPSE-model (Morell, 2010).





Chapter 3

The Ensemble Kalman Filter and

the Ensemble Smoother

3.1 Background

R.E. Kalman, together with other developers, published several papers in and

around 1960 establishing the mathematical foundations of the Kalman type fil-

ters. This is a type of optimization algorithms using series of measurements, tak-

ing into account random variations and other inaccuracies, to produce estimates of

unknown variables more precise than those based on a single measurement alone.

Modified versions of the original Kalman filter algorithms has applications in nu-

merous fields of technology, despite originally formulated only for linear system

models (Kalman, 1960) and most systems in engineering being nonlinear. The

Extended Kalman Filter, which is a series of algorithms concerning different ways

of treating the state and observation models, is probably the modification of the

Kalman filter most used.

In the Extended Kalman Filter (EKF) there is not a requirement of linear func-

tions, but the state transition- and observation models must be differentiable.

Approximations of the covariance evolution by multivariate Taylor Series expan-

sion and the discarding of higher orders, results in a linearization of the non-linear

33
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function around the current estimate. Thus, the usefulness of the EKF depends

on the properties of the model dynamics.

The Ensemble Smoother (ES), the Ensemble Kalman Smoother (EnKS) and the

Ensemble Kalman Filter (EnKF) are different from the EKF in that the system

model is only represented by a set of models based on a probability distribution

of certain critical parameters - an ensemble. These algorithms belong to a class

of particle methods which use a Monte Carlo or ensemble representation for the

probability distribution function (pdf), an ensemble integration using stochastic

models to model the time evolution of the pdfs, and different schemes for condi-

tioning the predicted pdf given the observations (Evensen, 2007). The assumption

of a Gaussian pdf for the model prediction makes it possible to represent the pdf

for the model prediction using only the mean and covariance of the pdf, resulting

in a linear update equation.

Ensemble An idealization consisting of a large number of virtual copies of a

system, each of which represents a possible state that the real system might

be in. In other words, here a statistical ensemble is a probability distribution

for the state of the system (Gibbs, 1902).

Monte-Carlo Methods A broad class of problem solving algorithms used to

approximate the probability of certain outcomes by running multiple simu-

lations using random variables in order to calculate those same probabilities

heuristically.

Particle Filters Algorithms making use of sequential Monte Carlo algorithms

for calculating posteriors in partially observable controllable Markov chains

with discrete time (Thrun, 2002).

The EnKF was introduced in 1994 (Evensen, 1994), however it was first adapted

to the problem of estimating reservoir variables or parameters (permeability and

porosity field) in 2003 (Vefring et al., 2003). Since its infancy EnKF has been

investigated thoroughly in reservoir characterization settings as well as for HM
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problems (Fahimuddin et al., 2010, Gao et al., 2006, Han et al., 2013), and although

the major consensus is that EnKF is a well-established and excellent method

for performing AHM, it may however produce biased results if not handled with

care. It has been shown that for strongly nonlinear problems EnKF can fail to

achieve an acceptable data match at certain times in the assimilation process (Li

and Reynolds, 2007). With a sufficiently large initial ensemble however, Li and

Reynolds stated that "each ensemble member of model parameters obtained at

each step of the EnKF is a linear combination of the initial ensemble". In other

words, with a large enough initial ensemble of a not too nonlinear problem, the

EnKF algorithm performs mostly very well.

3.2 Technical Description

Both the ES and the EnKF are Monte Carlo implementations of the Bayesian

update problem. Given a probability density function (pdf) of the state of the

modeled system (the prior, often called the forecast) and the data likelihood, the

Bayes theorem

f(ψ|φ) =
f(ψ)f(φ|ψ)

f(φ)
(3.1)

is used to obtain the pdf after the data likelihood has been taken into account (the

posterior, often called the analysis). The Bayesian update equation

f(ψ1, . . . , ψk, α, ψ0, ψb|d) ∝

f(α)f(ψ0)f(ψb)
k∏
i=1

f(ψi|{ψl 6=i}, α)
J∏
j=1

f(dj|ψi(j), α)
(3.2)

comes from formulating the combined parameter and state estimation problem

using Bayesian statistics. It can be shown that under the condition of measurement

error being independent in time and the dynamical model being a Markov process,

a recursive formulation can be used for Bayes’ theorem where measurements are

processed sequentially in time (Evensen, 2007).
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The Bayesian update equation (3.2) is further combined with advancing the model

in time, updating the model with measurement data from time to time - possibly

due to the recursive formulation of Bayes’ theorem. The original Kalman Filter

keeps track of the change of the mean and the covariance matrix by the Bayesian

update, and advances the covariance matrix in time provided the system is linear,

although maintaining the covariance matrix is not feasible computationally for

high-dimensional systems. This is where ES and EnKF makes use of the ensemble,

and replace the covariance matrix with the sample covariance

Cψψ = (ψ − ψ)(ψ − ψ)T (3.3)

computed from the ensemble. The ensemble mean ψ is regarded as the best-guess

estimate, while the ensemble spread defines the error variance. The covariance

(now 3.3) is now determined by the smoothness of the ensemble members (Evensen,

2007).

The difference between ES and EnKF can be found in how the measurement driven

updates are implemented in the system (see Figure 3.1 and 3.2). Where ES gathers

all the observed measurements into one large update of the predictions, the EnKF

updates the whole model every time new observed updates are implemented into

the system.
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Figure 3.1: Illustration of the update procedure used in the ES. The horizontal
axis is time and the measurements are indicated at regular intervals. The ver-
tical axis indicates the number of updates with measurements.The blue arrows
represent the forward ensemble integration, the red arrows are the introduction
of measurements, while the green arrow denotes the updating procedure from
ES. The purple line represents the updated model until the end of observed

measurements. Adapted from (Evensen, 2007).

Figure 3.2: Illustration of the update procedure used in the EnKF. The blue
arrows represent the forward ensemble integration, the red arrows are the intro-
duction of measurements, while the green arrows is the EnKF update algorithm.
Thus, the blue arrows indicate the EnKF solution as a function of time, which is
updated every time measurements are available. Adapted from (Evensen, 2007).
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3.3 The Ensemble based Reservoir Tool

The Ensemble based Reservoir Tool (ERT) is a software developed by Statoil

for handling many ECLIPSE simulations at the same time, both for sensitivity

analysis and AHM purposes (Statoil and NCC, 2013). The ERT incorporates

both the EnKF, ES and the RML-EnKF algorithms, as well as tools for analysis,

ranking and plotting of results. The full ERT software is quite Linux (Posix)

specific, and although the support libraries for working with ECLIPSE files have

been successfully ported to Windows, this thesis has exclusively made use of the

ERT on a Linux-based platform. The ERT has a text user interface (TUI) (see

Figure 3.3) and is executed directly in the system bash with a configuration file

as only argument (see Subsection 3.3.1). The code is distributed under the GPL1

licence. The source code is located on GitHub2 and the daily management of

the code is a cooperation between the Norwegian Computing Center (NCC) and

Statoil.

3.3.1 Setup

Some preparatory steps must be taken to be able to use an ECLIPSE reservoir

model with the ERT, as well as creating a configuration and observation file. In

essence, the ECLIPSE data file needs to be modified so that it can be started

from any point in the file system, a non-unified restart and summary file must

be written at each report step and the layout of the grid can not change between

realizations (Statoil and NCC, 2013).The following modifications and additions

are obligatory to be able to use an ECLIPSE reservoir model with the ERT;

Use global INCLUDE and IMPORT statements The ERT does not run ECLIPSE

simulations in the folder where the original ECLIPSE files resides. Thus, it

is necessary that all paths to files in INCLUDE and IMPORT statements
1GNU General Public License. URL: http://www.gnu.org/licenses/gpl.html
2Build software better, together. URL: https://github.com/
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(expect for those files that will be generated by the ERT) in the original

ECLIPSE data file are global.

Initialization The SOLUTION section in the ECLIPSE data file is used to spec-

ify initial conditions for the ECLIPSE run or restart. In the case of an new

ECLIPSE run, initial conditions are either calculated from equilibrium con-

ditions using the EQUIL (and potentially SWATINIT) keyword, or given

explicitly using e.g. SWAT, SGAS, PRESSURE etc. If dealing with an

ECLIPSE restart, initial conditions are read from an ECLIPSE restart file

given with the RESTART keyword. As EnKF is sequential in its design and

starts and stops the simulation repeatedly when conditioning to observed

data, the ERT is originally meant to modify a large part of the SOLU-

TION section automatically to make ECLIPSE run smoothly. However, trial

and error show that by restarting the EnKF for each data update with the

ENKF_RERUN keyword, frequent terminal errors is exchanged in a slightly

longer simulation time. The ENKF_RERUN keyword has been used in this

thesis.

Separate SCHEDULE file The SCHEDULE section of the ECLIPSE data file

is used to control the temporal progression of the simulation and the ERT

depends heavily on the SCHEDULE data. Thus, the ERT requires that

the contents of the SCHEDULE sections is in a separate file as the ERT

will write an appropriate schedule file to the simulation folder. Naturally,

the INCLUDE statement used to source the contents of the SCHEDULE

sections should be local.

Configuration file

The ERT configuration file serves several purposes, including, but not limited

to; defining which ECLIPSE models to use, i.e. supplying paths to a data, grid

and schedule file, defining which observation file to use, defining how to run the

simulations, defining where to store the results, and creating a parametrization of

the given ECLIPSE model (see Section 4.2).
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The configuration file is a plain text file, with one statement per line. The first

word on each line is a specific keyword, which then is followed by a set of ar-

guments that are unique to the particular keyword. Similarly to ECLIPSE data

files, lines starting with ” − −” are treated as comments. The configuration file,

with accompanying keywords, used in this thesis can be seen in Section A.0.1,

whereas an overview of all existing keywords can be studied in detail at the ERT

homepage3.

Observation file

When using the ERT and one of the incorporated algorithms to condition on

dynamic data, it is a necessity to specify which data to condition on. Specifically,

for a given piece of data/parameter to condition on, the ERT need to to know the

actual measured value of the data, the uncertainty of the measured data, the time

of measurement, and how to simulate a response of the data given a parametrized

ECLIPSE model. This information is provided to the ERT through the observation

file, which is a plain text file containing different keywords associated with different

observations.

The only keyword used in this thesis is the HISTORY_OBSERVATION keyword

which is used for conditioning on observations from the WCONHIST and WCON-

INJH keywords in the SCHEDULE section of the ECLIPSE model. A typical

entry can look like this;

HISTORY_OBSERVATION WOPR:E-1H {ERROR_MODE=RELMIN;ERROR=0.1;ERROR_MIN=1000;};

where the name, WOPR:E-1H, must correspond to an ECLIPSE keyword written

to the SUMMARY files, the RELMIN is one of three error modes (RELMIN, REL

or ABS), the ERROR=0.1 is an estimated 10% error and the ERROR_MIN=1000

is here the lower threshold.
3URL: http://ert.nr.no/wiki/index.php/Creating_a_configuration_file_for_ERT
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Figure 3.3: ERT Main Menu and TUI.





Chapter 4

History Matching of the Norne Field

4.1 Historical data

In this thesis only production rates and pressure data have been used for assimila-

tion. These data have been made available by the IO Center at NTNU through the

Norne Benchmark Case (IO Center, 2010). The following data has been included

with the WCONHIST and WCONINJ keywords in the SCHEDULE section of the

ECLIPSE model; WWPRH, WGPRH, WOPRH, WBHPH and WTHPH for each

production well, as well as WGIRH and WWIRH for each injection well, for their

respectively active periods. The ERT observation file specifies that the ES and

EnKF will assimilate on these data when conditioning the ECLIPSE model, and

that all historical data have a relative error of 10 %.

4.2 Parametrization

An AHM algorithm like the EnKF and the EnKS needs specific information about

the types of reservoir model parameters it can change when assimilating on his-

torical observed data. Thus, a parametrization of the given ECLIPSE reservoir

model is required. The ERT has several parametrization keywords, but the ones

43
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used in this thesis is the FIELD and GEN_KW keywords. The following parame-

ters are made available for alteration in the Norne reservoir model, i.e. the EnKF

algorithm conditions on these parameters as it seems fit. The FIELD parame-

ters are briefly explained in subsection 4.2.1, while every GEN_KW parameter is

explained in detail in the following subsections.

4.2.1 FIELD parameters

The FIELD keyword is used to parametrize quantities which have extent over the

full grid. The following static FIELD parameters are initialized with the original

included or imported file found in the original Norne ECLIPSE data file. When

either EnKF or EnKS are utilized for history matching purposes, these parameters

are possibly changed for every update. Every FIELD parameter has one value for

each active grid block, i.e. approximately 45000 (44431) possible parameters to

alter.

PORO Specifies every grid block porosity values and is initially upscaled from

the geological model.

PERMX Specifies every grid block permeability value in the X-direction and is

initially upscaled from the geological model. In the Norne reservoir model

PERMY is sat equal to PERMX, while PERMZ is also sat equal to PERMX

however later altered in certain grid blocks to compensate for stratigraphical

barriers and layering.

NTG Specifies every grid block net-to-gross thickness ratio. The values specified

are used to convert from gross to net thicknesses, and act as multipliers of

grid block pore volumes and transmissibilities in the X- and Y-directions,

and also on DZ for the calculation of well connection transmissibility factors

(Schlumberger, 2009).

MULTZ Specifies every grid block transmissibility multiplier in the Z-direction.

Is a critical factor for determining vertical fluid flow together with PERMZ.
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4.2.2 MULTFLT

The MULTFLT keyword is used for modifying the transmissibility and diffusivity

across a fault previously defined using the FAULTS keyword (Schlumberger, 2009).

Only the transmissibility option has been used in this thesis. When defining a set of

faults with the FAULTS keyword fluid flow is not affected, i.e. the transmissibilites

are set to 1.0. As previously stated, the Norne Field has a great deal of faults criss-

crossing the reservoir, thus correct modelling of the fluid flow across these barriers

is a critical factor. Figure 2.14 gives an overview of the interpretations of faults

in the reservoir model, while Table 4.1 shows the MULTFLT values used in the

original Norne Full-field case. 60 possible parameters to alter.
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Table 4.1: Original Norne Full-field MULTFLT values, with fault names and
their respective transmissibility multiplier.

E_01 0.01 C_21_Ti 0.001

E_01_F3 0.01 C_22 0.001

DE_1 3.9 C_23 0.1

DE_1_LTo 0.01 C_24 0.1

DE_B3 0.00075 C_25 0.1

DE_2 0.015 C_26 0.1

DE_0 20 C_26N 0.001

BC 0.1 C_27 0.05

CD 0.1 C_28 1

CD_To 0.01 C_29 0.1

CD_B3 0.1 DI 0.1

CD_0 1 DI_S 0.1

CD_1 0.1 D_05 0.01

C_01 0.01 EF 1

C_01_Ti 0.01 GH 1

C_08 0.01 G_01 0.05

C_08_Ile 0.1 G_02 0.05

C_08_S 0.01 G_03 1

C_08_Ti 1 G_05 0.5

C_08_S_Ti 1 G_07 0.05

C_09 0.1 G_08 0.05

C_02 0.01 G_09 0.05

C_04 0.05 G_13 0.05

C_05 0.1 H_03 1

C_06 0.1 IH 1

C_10 0.01 m_east 1

C_12 0.1 m_east_2 1

C_20 0.5 m_north 1

C_20_LTo 0.5 m_northe 1

C_21 0.001 m_west 1
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4.2.3 MULTREGT

The MULTREGT keyword is used for setting a transmissibility multiplier between

regions. The regions in question must previously have been defined using keyword

FLUXNUM or MULTNUM in the GRID section (Schlumberger, 2009). In the

Norne reservoir model 20 flux regions have been defined with the FLUXNUM

keyword. Figure 4.1 shows the the MULTREGT values used in the original Norne

Full-field case. 85 possible parameters to alter.

Figure 4.1: Original Norne Full-field MULTREGT values.

4.2.4 MULTZ Modifier

The MULTZ keyword is used for specifying every grid block transmissibility mul-

tiplier in the Z-direction. However it is not uncommon to further modify this pa-

rameter with a script for sensitivity analysis or manual HM procedures. MULTZ

is a critical parameter in the modelling of fluid flow in the Norne reservoir model,

hence the extra attention. Figure 4.2 shows the the modified MULTZ values used

in the original Norne Full-field case. 48 possible parameters to alter.
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Figure 4.2: Original Norne Full-field modified MULTZ values.

4.2.5 MINPV

The MINPV keyword is used to declare a threshold pore volume that a cell must

exceed or it will be made inactive, i.e. this parameter alters how many active grid

blocks that are present in the model from realization to realization. Naturally

this makes it difficult to specify exactly how many available parameters the EnKF

can condition on, as this varies with the active grid blocks. The original Norne

Full-field case have a MINPV value of 500.

4.2.6 PERMZ Modifier

The PERMZ keyword specifies every grid block permeability in the Z-direction,

but is initially only a copy of the PERMX keyword. To account for stratigraph-

ical barriers and layering these values are modified for every grid block in the

Z-direction for better modelling the vertical fluid flow. Figure 4.3 shows the the
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modified PERMZ values used in the original Norne Full-field case. 21 possible

parameters to alter (NOT layer is not active).

Figure 4.3: Original Norne Full-field modified PERMZ values.

4.2.7 Relative Permeability Endscaling

The relative permeability of the Norne reservoir model is defined by the two key-

words SWOF and SGOF, both consisting of two tables of 4 columns. SWOF; Wa-

ter saturation, the corresponding water relative permeability, the corresponding oil

relative permeability and the corresponding oil-water capillary pressure. SGOF;

Gas saturation, the corresponding gas relative permeability, the corresponding

oil relative permeability and the corresponding oil-gas capillary pressure. These

values are acquired from laboratory work and special core analysis tests (SCAL)

performed on core plugs from the Norne Field. However, as with most field param-

eters, the relative permeability is only evaluated for certain parts of the reservoir

(wells), then stochastically estimated for the rest of the reservoir. This makes

sizable deviations quite possible.
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The ENDSCALE keyword enables the End-Point Scaling option in ECLIPSE

which allows one to scale the end-points of the relative permeability curves for

each grid block (Schlumberger, 2009). Using this is a convenient way of perform-

ing sensitivity analysis on the relative permeability, which again creates effective

parameters for history matching. As stated by Cheng; "...end-point values is

bearing uncertainty and may be used as tuning parameters in history matching"

(Cheng, 2012). The ENDSCALE keyword in the Norne Full-field reservoir model

is enabled with the NODIR and REVERS options. NODIR; The saturation table

end-point is non-directional, meaning that the same saturation table is used for

flow in the X, Y or Z direction. REVERS; The end-point scaling is reversible,

meaning that the same table is used whether the flow is from I to I+1 or from I

to I-1.

Figure 4.4 shows the the scaling endpoint values used in the original Norne Full-

field case. 15 possible parameters to alter (SGU and SGL are not parametrized).
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Figure 4.4: Original Norne Full-field scaling endpoint values. SWL = Con-
nate water saturation, SWCR = Critical water saturation, SGU = Maximum
gas saturation, SGL = Connate gas saturation, SGCR = Critical gas saturation,
SOWCR = Critical oil-to-water saturation, SOGCR = Critical oil-to-gas satura-
tion, SWU = Maximum water saturation and ISGCR = Critical gas saturation

(Imbibition).

4.3 Creating the initial ensemble

The construction of an initial, or prior, ensemble is a very important factor when

using either EnKF or ES. The EnKF and ES replaces the system state covariance

matrix with the sample covariance computed from the ensemble, and as the EnKF

assumes that all probability distributions involved in the data assimilation are

normal distributions, the ensemble has to be large enough for EnKF to be able to

sample it like a normal distribution (Evensen, 2007).
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4.3.1 Prior distributions

When defining a parametrization of an ECLIPSE model for use with the ERT, a

set of prior distributions are available. In this thesis the UNIFORM keyword has

been used, i.e. only uniformly distributed parameters. Other prior distributions

can be studied in detail at the ERT homepage1.

UNIFORM A stochastic variable is uniformly distributed if it has a constant

probability density on a closed interval. Thus, the uniform distribution is

completely characterized by its minimum and maximum value. An ERT

example, which assigns a uniform distribution between 0 and 1 to a variable,

is "<variable_name> UNIFORM 0 1" (Statoil and NCC, 2013).

"It can be shown that among all distributions bounded below by a and above

by b, the uniform distribution with parameters a and b has the maximal entropy

(contains the least information). Thus, the uniform distribution should be your

preferred prior distribution for robust modeling of bounded variables" (Statoil and

NCC, 2013).

4.3.2 MULTFLT

The initial parametrization of the MULTREGT keyword can be seen in Table 4.2,

and the template file the ERT uses to create importable files for ECLIPSE can be

seen in Table A.1.
1URL: http://ert.nr.no/wiki/index.php/Prior_distributions_available_in_enkf
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Table 4.2: Initial parametrization of the MULTFLT.

E_01 UNIFORM 0.002 0.05 C_21_Ti UNIFORM 0.0005 0.01

E_01_F3 UNIFORM 0.002 0.05 C_22 UNIFORM 0.0005 0.01

DE_1 UNIFORM 1 12 C_23 UNIFORM 0.02 0.5

DE_1_LTo UNIFORM 0.003 0.05 C_24 UNIFORM 0.02 0.5

DE_B3 UNIFORM 0.0001 0.005 C_25 UNIFORM 0.02 0.5

DE_2 UNIFORM 0.003 0.7 C_26 UNIFORM 0.02 0.5

DE_0 UNIFORM 5 60 C_26N UNIFORM 0.0005 0.01

BC UNIFORM 0.02 0.5 C_27 UNIFORM 0.05 0.3

CD UNIFORM 0.02 0.5 C_28 UNIFORM 0.3 3

CD_To UNIFORM 0.002 0.05 C_29 UNIFORM 0.01 0.5

CD_B3 UNIFORM 0.02 0.5 DI UNIFORM 0.01 0.5

CD_0 UNIFORM 0.3 3 DI_S UNIFORM 0.01 0.5

CD_1 UNIFORM 0.02 0.5 D_05 UNIFORM 0.001 0.05

C_01 UNIFORM 0.001 1.5 EF UNIFORM 0.3 3

C_01_Ti UNIFORM 0.002 0.05 GH UNIFORM 0.3 3

C_08 UNIFORM 0.002 0.05 G_01 UNIFORM 0.05 0.3

C_08_Ile UNIFORM 0.02 0.5 G_02 UNIFORM 0.05 0.3

C_08_S UNIFORM 0.002 0.05 G_03 UNIFORM 0.3 3

C_08_Ti UNIFORM 0.3 3 G_05 UNIFORM 0.1 1.5

C_08_S_Ti UNIFORM 0.3 3 G_07 UNIFORM 0.05 0.3

C_09 UNIFORM 0.02 0.5 G_08 UNIFORM 0.05 0.3

C_02 UNIFORM 0.003 0.1 G_09 UNIFORM 0.05 0.3

C_04 UNIFORM 0.01 0.3 G_13 UNIFORM 0.05 0.3

C_05 UNIFORM 0.002 0.5 H_03 UNIFORM 0.3 3

C_06 UNIFORM 0.002 0.5 IH UNIFORM 0.3 3

C_10 UNIFORM 0.002 0.1 m_east UNIFORM 0.3 3

C_12 UNIFORM 0.02 0.5 m_east_2 UNIFORM 0.3 3

C_20 UNIFORM 0.05 1.5 m_north UNIFORM 0.3 3

C_20_LTo UNIFORM 0.1 1.5 m_northe UNIFORM 0.3 3

C_21 UNIFORM 0.0005 0.01 m_west UNIFORM 0.3 3
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4.3.3 MULTREGT

The initial parametrization of the MULTREGT keyword can be seen in Table 4.3,

and the template file the ERT uses to create importable files for ECLIPSE can be

seen in Table A.2.
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Table 4.3: Initial parametrization of the MULTREGT.

MULTREGT0 UNIFORM 0.1 10 MULTREGT83 UNIFORM 0.1 10

MULTREGT1 UNIFORM 0.1 10 MULTREGT84 UNIFORM 0.01 1

MULTREGT2 UNIFORM 0.1 10 MULTREGT85 UNIFORM 0.01 1

MULTREGT3 UNIFORM 0.0005 0.05 MULTREGT86 UNIFORM 0.1 10

MULTREGT4 UNIFORM 0.1 10 MULTREGT87 UNIFORM 10 1000

MULTREGT5 UNIFORM 0.1 10 MULTREGT88 UNIFORM 0.1 10

MULTREGT14 UNIFORM 0.1 10 MULTREGT89 UNIFORM 0.1 10

MULTREGT19 UNIFORM 0.1 10 MULTREGT90 UNIFORM 0.1 10

MULTREGT20 UNIFORM 0.005 0.5 MULTREGT95 UNIFORM 0.01 1

MULTREGT25 UNIFORM 0.001 0.1 MULTREGT96 UNIFORM 0.01 1

MULTREGT26 UNIFORM 0.1 10 MULTREGT97 UNIFORM 0.01 1

MULTREGT27 UNIFORM 0.1 10 MULTREGT98 UNIFORM 0.01 1

MULTREGT32 UNIFORM 0.1 10 MULTREGT99 UNIFORM 0.1 10

MULTREGT33 UNIFORM 0.1 10 MULTREGT100 UNIFORM 0.1 10

MULTREGT34 UNIFORM 0.1 10 MULTREGT101 UNIFORM 0.1 10

MULTREGT35 UNIFORM 0.1 10 MULTREGT102 UNIFORM 0.1 10

MULTREGT40 UNIFORM 0.1 10 MULTREGT103 UNIFORM 0.1 10

MULTREGT41 UNIFORM 0.1 10 MULTREGT104 UNIFORM 0.1 10

MULTREGT42 UNIFORM 0.1 10 MULTREGT109 UNIFORM 0.001 0.1

MULTREGT43 UNIFORM 0.1 10 MULTREGT110 UNIFORM 0.01 1

MULTREGT44 UNIFORM 0.1 10 MULTREGT111 UNIFORM 0.01 1

MULTREGT49 UNIFORM 0.1 10 MULTREGT112 UNIFORM 0.01 1

MULTREGT50 UNIFORM 0.1 10 MULTREGT113 UNIFORM 0.1 10

MULTREGT51 UNIFORM 0.1 10 MULTREGT114 UNIFORM 0.1 10

MULTREGT52 UNIFORM 0.1 10 MULTREGT115 UNIFORM 0.1 10

MULTREGT53 UNIFORM 0.1 10 MULTREGT116 UNIFORM 0.1 10

MULTREGT54 UNIFORM 0.1 10 MULTREGT117 UNIFORM 0.001 0.1

MULTREGT59 UNIFORM 0.1 10 MULTREGT118 UNIFORM 0.1 10

MULTREGT60 UNIFORM 0.1 10 MULTREGT119 UNIFORM 0.1 10

MULTREGT61 UNIFORM 0.1 10 MULTREGT128 UNIFORM 0.0001 0.01

MULTREGT62 UNIFORM 0.1 10 MULTREGT132 UNIFORM 0.0008 0.008

MULTREGT63 UNIFORM 0.001 0.1 MULTREGT145 UNIFORM 0.1 10

MULTREGT64 UNIFORM 0.1 10 MULTREGT149 UNIFORM 0.01 1

MULTREGT65 UNIFORM 0.1 10 MULTREGT152 UNIFORM 0.1 10

MULTREGT70 UNIFORM 0.01 1 MULTREGT163 UNIFORM 0.0001 0.01

MULTREGT71 UNIFORM 0.01 1 MULTREGT167 UNIFORM 0.005 0.5

MULTREGT72 UNIFORM 0.01 1 MULTREGT169 UNIFORM 0.1 10

MULTREGT73 UNIFORM 0.01 1 MULTREGT170 UNIFORM 0.1 10

MULTREGT74 UNIFORM 0.1 10 MULTREGT182 UNIFORM 0.1 10

MULTREGT75 UNIFORM 0.1 10 MULTREGT186 UNIFORM 0.0001 0.01

MULTREGT76 UNIFORM 0.1 10 MULTREGT187 UNIFORM 0.01 1

MULTREGT77 UNIFORM 0.1 10 MULTREGT188 UNIFORM 0.1 10

MULTREGT82 UNIFORM 0.01 1 MULTREGT189 UNIFORM 0.1 10
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4.3.4 MULTZ Modifier

The initial parametrization of the MULTZ keyword can be seen in Table 4.4 for the

E-segment and in Table 4.5. The template file the ERT uses to create importable

files for ECLIPSE can be seen in section A.0.4.

Table 4.4: Initial parametrization of the MULTZ Modifier, Norne E-segment
model.

MULTZ1 UNIFORM 0.04 0.01 MULTZ28 UNIFORM 0.0004 0.0015

MULTZ2 UNIFORM 0.002 0.01 MULTZ29 UNIFORM 0.0004 0.0015

MULTZ3 UNIFORM 0.01 0.06 MULTZ30 UNIFORM 0.0004 0.0015

MULTZ4 UNIFORM 0.02 0.1 MULTZ31 UNIFORM 0.0004 0.0015

MULTZ5 UNIFORM 0.1 0.5 MULTZ32 UNIFORM 0.0004 0.0015

MULTZ6 UNIFORM 0.1 0.9 MULTZ33 UNIFORM 0.0004 0.0015

MULTZ7 UNIFORM 0.1 0.9 MULTZ34 UNIFORM 0.0004 0.0015

MULTZ8 UNIFORM 0.1 0.9 MULTZ35 UNIFORM 0.0004 0.0012

MULTZ9 UNIFORM 0.1 0.9 MULTZ36 UNIFORM 0.005 0.03

MULTZ10 UNIFORM 0.1 0.9 MULTZ37 UNIFORM 0.005 0.03

MULTZ11 UNIFORM 0.1 0.9 MULTZ38 UNIFORM 0.005 0.03

MULTZ12 UNIFORM 0.005 0.02 MULTZ39 UNIFORM 0.005 0.03

MULTZ13 UNIFORM 0.005 0.02 MULTZ40 UNIFORM 0.005 0.03

MULTZ14 UNIFORM 0.005 0.02 MULTZ41 UNIFORM 0.005 0.03

MULTZ15 UNIFORM 0.01 0.5 MULTZ42 UNIFORM 0.001 0.005

MULTZ16 UNIFORM 0.01 0.5 MULTZ43 UNIFORM 0.0015 0.006

MULTZ17 UNIFORM 0.01 0.5 MULTZ44 UNIFORM 0.0015 0.006

MULTZ18 UNIFORM 0.01 0.5 MULTZ45 UNIFORM 0.0015 0.006

MULTZ19 UNIFORM 0.001 0.01 MULTZ46 UNIFORM 0.7 1.2

MULTZ20 UNIFORM 0.001 0.01 MULTZ47 UNIFORM 0.05 0.2

MULTZ21 UNIFORM 0.001 0.01 MULTZ48 UNIFORM 0.7 1.2

MULTZ22 UNIFORM 0.001 0.01 MULTZ49 UNIFORM 0.7 1.2

MULTZ26 UNIFORM 0.7 1.2 MULTZ50 UNIFORM 0.05 0.2

MULTZ27 UNIFORM 0.001 0.05 MULTZ51 UNIFORM 0.05 0.2
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Table 4.5: Initial parametrization of the MULTZ Modifier, Norne Full-field
model.

MULTZ1 UNIFORM 0.04 0.01 MULTZ28 UNIFORM 0.0004 0.0015

MULTZ2 UNIFORM 0.002 0.01 MULTZ29 UNIFORM 0.0004 0.0015

MULTZ3 UNIFORM 0.01 0.06 MULTZ30 UNIFORM 0.0004 0.0015

MULTZ4 UNIFORM 0.02 0.1 MULTZ31 UNIFORM 0.0004 0.0015

MULTZ5 UNIFORM 0.1 0.5 MULTZ32 UNIFORM 0.0004 0.0015

MULTZ6 UNIFORM 0.2 1 MULTZ33 UNIFORM 0.0004 0.0015

MULTZ7 UNIFORM 0.2 1 MULTZ34 UNIFORM 0.0004 0.0015

MULTZ8 UNIFORM 0.2 1 MULTZ35 UNIFORM 0.0004 0.0012

MULTZ9 UNIFORM 0.2 1 MULTZ36 UNIFORM 0.005 0.03

MULTZ10 UNIFORM 0.2 1 MULTZ37 UNIFORM 0.005 0.03

MULTZ11 UNIFORM 0.2 1 MULTZ38 UNIFORM 0.005 0.03

MULTZ12 UNIFORM 0.005 0.02 MULTZ39 UNIFORM 0.005 0.03

MULTZ13 UNIFORM 0.005 0.02 MULTZ40 UNIFORM 0.005 0.03

MULTZ14 UNIFORM 0.005 0.02 MULTZ41 UNIFORM 0.005 0.03

MULTZ15 UNIFORM 0.02 0.1 MULTZ42 UNIFORM 0.0015 0.006

MULTZ16 UNIFORM 0.02 0.1 MULTZ43 UNIFORM 0.0015 0.006

MULTZ17 UNIFORM 0.02 0.1 MULTZ44 UNIFORM 0.0015 0.006

MULTZ18 UNIFORM 0.02 0.1 MULTZ45 UNIFORM 0.0015 0.006

MULTZ19 UNIFORM 0.002 0.01 MULTZ46 UNIFORM 0.7 1.2

MULTZ20 UNIFORM 0.002 0.01 MULTZ47 UNIFORM 0.05 0.2

MULTZ21 UNIFORM 0.002 0.01 MULTZ48 UNIFORM 0.7 1.2

MULTZ22 UNIFORM 0.002 0.01 MULTZ49 UNIFORM 0.7 1.2

MULTZ26 UNIFORM 0.7 1.2 MULTZ50 UNIFORM 0.05 0.2

MULTZ27 UNIFORM 0.002 0.01 MULTZ51 UNIFORM 0.05 0.2

4.3.5 MINPV

The initial parametrization of the MINPV keyword is defined as MIN_PV_GEN

UNIFORM 400 600, and the template file the ERT uses to create importable files

for ECLIPSE then look like this;
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MINPV

<MIN_PV_GEN> /

4.3.6 PERMX Modifier

The initial parametrization of the PERMZ keyword can be seen in Table 4.6 for the

E-segment and in Table 4.7. The template file the ERT uses to create importable

files for ECLIPSE can be seen in section A.0.5.

Table 4.6: Initial parametrization of the PERMZ Modifier, Norne E-segment
model.

PERMZ1 UNIFORM 0.02 0.5

PERMZ2 UNIFORM 0.005 0.1

PERMZ3 UNIFORM 0.02 0.7

PERMZ5 UNIFORM 0.01 0.4

PERMZ6 UNIFORM 0.01 0.4

PERMZ7 UNIFORM 0.01 0.4

PERMZ8 UNIFORM 0.01 0.4

PERMZ9 UNIFORM 0.01 0.3

PERMZ10 UNIFORM 0.001 0.25

PERMZ11 UNIFORM 0.002 0.5

PERMZ12 UNIFORM 0.002 0.3

PERMZ13 UNIFORM 0.1 2

PERMZ14 UNIFORM 0.1 2

PERMZ15 UNIFORM 0.1 2

PERMZ16 UNIFORM 0.1 2

PERMZ17 UNIFORM 0.1 2

PERMZ18 UNIFORM 0.002 0.05

PERMZ19 UNIFORM 0.0005 0.01

PERMZ20 UNIFORM 0.0005 0.01

PERMZ21 UNIFORM 0.2 2

PERMZ22 UNIFORM 0.2 2
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Table 4.7: Initial parametrization of the PERMZ Modifier, Norne Full-field
model.

PERMZ1 UNIFORM 0.02 0.7

PERMZ2 UNIFORM 0.005 0.2

PERMZ3 UNIFORM 0.02 0.8

PERMZ5 UNIFORM 0.02 0.6

PERMZ6 UNIFORM 0.02 0.6

PERMZ7 UNIFORM 0.02 0.6

PERMZ8 UNIFORM 0.02 0.6

PERMZ9 UNIFORM 0.01 0.4

PERMZ10 UNIFORM 0.001 0.35

PERMZ11 UNIFORM 0.002 0.6

PERMZ12 UNIFORM 0.002 0.4

PERMZ13 UNIFORM 0.1 2.5

PERMZ14 UNIFORM 0.1 2.5

PERMZ15 UNIFORM 0.1 2.5

PERMZ16 UNIFORM 0.1 2.5

PERMZ17 UNIFORM 0.1 2.5

PERMZ18 UNIFORM 0.002 0.07

PERMZ19 UNIFORM 0.0005 0.02

PERMZ20 UNIFORM 0.0005 0.02

PERMZ21 UNIFORM 0.2 2.5

PERMZ22 UNIFORM 0.2 2.5

4.3.7 Relative Permeability Endscaling

The initial parametrization of the keywords available with the ENDSCALE option

can be seen in Table 4.8 , and the template file the ERT uses to create importable

files for ECLIPSE can be seen in section A.0.6.
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Table 4.8: Initial parametrization of the keywords available with the END-
SCALE option.

endpoint1 UNIFORM 0.01 0.1

endpoint2 UNIFORM 0.01 0.1

endpoint3 UNIFORM 0.05 0.25

endpoint4 UNIFORM 0.05 0.25

endpoint5 UNIFORM 0.01 0.1

endpoint6 UNIFORM 0.05 0.25

endpoint7 UNIFORM 0.12 0.03

endpoint8 UNIFORM 0.01 0.1

endpoint9 UNIFORM 0.05 0.25

endpoint10 UNIFORM 0.03 0.15

endpoint13 UNIFORM 0.01 0.08

endpoint14 UNIFORM 0.05 0.25

endpoint15 UNIFORM 0.01 0.1

endpoint17 UNIFORM 0.15 0.3
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Results

5.1 E-segment

The E-segment ES- and EnkF-assimilation was performed with an ensemble con-

sisting of 120 ECLIPSE realizations, with ES- and EnKF-updates for every 25th re-

port step [258 in total]. An ensemble size with a lower bound of approximately 100

members ensure a non-biased sampling by the ES- and EnKF-algorithm (Natvik

and Evensen, 2003). The reference case and the historical data records begins

at the 14th of November 1997 and ends at the 1st of December 2004, while the

ensemble and ES- and EnKF-assimilation simulates and predicts for 4 more years

until the 1st of November 2008. With 120 realization members the execution run-

time was ∼4 hours for the initial ensemble and the ES, and ∼20 hours for the

EnKF1. ∼55GB of data was generated for each set of realizations (initial ensemble,

analyzed ensemble (ES) and analyzed ensemble (EnKF)).
1Note: The bigmem queue on the Kongull cluster was utilized, running maximum 40 real-

izations simultaneously. 1 node (2 AMD Opteron model 2431 6-core (Istanbul) processors, 2400
GHz core speed and 667 MHz bus frequency) per realization.
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Figure 5.1: Oil production rate for well E-1H with mismatch plot. X-axis =
Time. Y-axis = STB/DAY.

Figure 5.2: Gas production rate for well E-1H with mismatch plot. X-axis =
Time. Y-axis = MSCF/DAY.



Results 63

Figure 5.3: Water production rate for well E-1H with mismatch plot. X-axis
= Time. Y-axis = STB/DAY.

Figure 5.4: Plots for the FIELD rates, based on the coarsened E-segment
model. X-axis = Time. Y-axis = STB/DAY, MSCF/DAY, STB/DAY, respec-

tively.
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Figure 5.5: PERMZ, E-segment. Left: Origi-
nal Norne case. Right: EnKF-analyzed ensem-
ble member #60. Well E-3H perforated in in-

dicated cell (12, 72, 5).

Figure 5.6: Gas saturation 1st of May
2000, E-segment. Left: Original Norne
case. Right: EnKF-analyzed ensemble

member #60.

In the included EnKF_analyzed_models.zip the EnKF-analyzed ensemble mem-

ber #60 (ECLIPSE.DATA-file with importable files) may be studied in further

depth.

5.2 Full-field

The Full-field ES- and EnkF-assimilation was performed with an ensemble con-

sisting of 80 ECLIPSE realizations, with ES- and EnKF-updates for every 50th

report step [266 in total]. The low number of ensemble members and fairly large

update step are due to the size of the Full-field model. A single simulation run of

the original Full-field Norne model has a runtime of ∼1.5 hrs. However, certain en-

semble members initialized with abnormal parameters made the model very dense,

thus resulting in longer convergence time for ECLIPSE. The consequence of this

was runtimes of more than 6 hrs. The time limit on this thesis, available compu-

tational capacity and a consistent ensemble collapse while assimilating, made it
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necessary with preliminary measures like smaller ensemble size and larger EnKF

update step.

The reference case and the historical data records begins at the 14th of November

1997 and ends at the 1st of December 2006, while the ensemble and ES- and EnKF-

assimilation simulates and predicts for 1.25 years more until the 1st of March 2008

(the EnKF-assimilation had to be cut half a year early due to a technical mishap).

With 80 realization members the execution runtime was ∼25 hours for the initial

ensemble and the ES, and approximately 1 week for the EnKF2. ∼140GB of data

was generated for each set of realizations (initial ensemble, analyzed ensemble (ES)

and analyzed ensemble (EnKF)).

Figure 5.7: Oil production rate for well E-1H with mismatch plot. X-axis =
Time. Y-axis = STB/DAY.

2Note: The bigmem queue on the Kongull cluster was utilized, running maximum 30 real-
izations simultaneously. 1 node (2 AMD Opteron model 2431 6-core (Istanbul) processors, 2400
GHz core speed and 667 MHz bus frequency) per realization.
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Figure 5.8: Gas production rate for well E-1H with mismatch plot. X-axis =
Time. Y-axis = MSCF/DAY.

Figure 5.9: Water production rate for well E-1H with mismatch plot. X-axis
= Time. Y-axis = STB/DAY.
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Figure 5.10: Oil production rate for well D-2H with mismatch plot. X-axis =
Time. Y-axis = STB/DAY.

Figure 5.11: Gas production rate for well D-2H with mismatch plot. X-axis
= Time. Y-axis = MSCF/DAY.
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Figure 5.12: Water production rate for well D-2H with mismatch plot. X-axis
= Time. Y-axis = STB/DAY.

Figure 5.13: Oil production rate for well B-2H with mismatch plot. X-axis =
Time. Y-axis = STB/DAY.
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Figure 5.14: Gas production rate for well B-2H with mismatch plot. X-axis
= Time. Y-axis = MSCF/DAY.

Figure 5.15: Water production rate for well B-2H with mismatch plot. X-axis
= Time. Y-axis = STB/DAY.
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Figure 5.16: Plots for the FIELD rates, based on Full-field model. X-axis =
Time. Y-axis = STB/DAY, MSCF/DAY, STB/DAY, respectively.

In the included EnKF_analyzed_models.zip the EnKF-analyzed ensemble mem-

ber #40 (ECLIPSE.DATA-file with importable files) may be studied in further

depth.

5.3 E-segment vs. Full-field

The Norne E-segment model consists, as earlier stated, of a fine-gridded E-segment

and coarsened, large grid blocks for the rest of the field. Nevertheless, the coars-

ened E-segment model is, as the Norne Full-field model, meant to resemble the

actual Norne reservoir model, and should produce reasonable matched estimates

compared to the Full-field model. Comparison of these two is therefore of high

interest.
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Figure 5.17: Oil production FIELD rates with mismatch plot, E-segment
EnKF-assimilation vs. Full-field EnKF-assimilation. X-axis = Time. Y-axis

= STB/DAY.

Figure 5.18: Gas production FIELD rates with mismatch plot, E-segment
EnKF-assimilation vs. Full-field EnKF-assimilation. X-axis = Time. Y-axis =

MSCF/DAY.
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Figure 5.19: Water production FIELD rates with mismatch plot, E-segment
EnKF-assimilation vs. Full-field EnKF-assimilation. X-axis = Time. Y-axis =

STB/DAY.
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Discussion & Conclusion

6.1 Discussions

The results from the ES and EnKF history matching of the Norne E-segment

model and the Norne Full-field model are shown in Figures 5.1-5.16. Production

rate plots for oil, gas and water per well and FIELD are created. Mismatch plots

are plots where the curves’ distance from zero denotes mismatch. The wells B-

2H, D-2H and E-1H are the longest producing wells in their respective segment,

hence the results from these three wells can be assumed representative for the rest

of the wells in the field. The location of these wells can be seen in Figure 2.13.

The blue curves represent the 120/80 (E-segment/Full-field) realizations of the

initial ensemble, the cyan curves are the 120/80 ES-analyzed ensemble members,

while the red curves represent the 120/80 EnKF-analyzed ensemble members. The

historical observations are represented by the black dots and the Norne reference

case from 2013 is represented by the yellow line.

The initial uncertainty in the parametrization of model parameters leads to a sig-

nificant uncertainty in the simulated production. This is illustrated by the initial

ensemble spread in the oil, gas and water production rates. Ideally the spread

should cover the historical observations at all points in time, which is more or

less achieved for all production rates. If one chooses to look at the ES and EnKF

73
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update as a linear regression problem, the importance of initial ensemble, or prior,

coverage is evident; with coverage the update problem becomes linear interpola-

tion, without coverage it becomes linear extrapolation. Without prior coverage it

is therefore much harder for the ES- and EnKF-algorithm to perform a successful

update analysis of the ensemble and better condition the model. However, if the

historical observed data and the unknown conditioning parameters are highly cor-

related, extrapolation may be as successful as interpolation. This exception can

be seen in Figure 5.3.

The difference in correctness (and performance) of the Ensemble Smoother versus

the Ensemble Kalman Filter is clearly seen in the results. The ES does one pass of

the ensemble and incorporates all observed historical values into this pass, hence

a significant amount of time and computational power is saved compared to the

EnKF which restarts the simulation for every 25th (E-Segment) and 50th (Full-

field) report step. However, the large amount of time and computational power

required by the EnKF is made up for in much better results in terms of higher

correlation with the historical observed data. This is unquestionable for both the

E-segment and Full-field results.

Looking at the actual history matching, the first impression is that the model

matching can be ordered from water rates, best match, to gas rates, worst match.

The oil rates are situated mostly somewhere in between these. This is highly ev-

ident for the E-segment, but not so much for the Full-field model. The results

for the Full-field model suggest that the highest uncertainty is found in the water

production rates (see Figure 5.9, 5.12 and 5.15), including a most probably biased

EnKF-analyzed ensemble result in Figure 5.12. The exact reason for the biased

result is hard to explain without a thorough numerical analysis of the data assim-

ilation for the D-segment, but a probable cause could be a filter divergence. The

ensemble size used for the Full-field model is unfortunately in the lower threshold,

and an insufficient ensemble size can typically cause an underestimation of the

error variances. This may ultimately lead to a filter divergence when the filter

trusts its own forecast and ignores the information provided by the observations.

This is caused by ensemble members aligning with the most unstable parameter
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directions and is exacerbated by large observational noise (Gottwald and Majda,

2013). A more technical analysis of the biased result can be provided with the

help of an equation from (Sætrom and Omre, 2013):

Let x(i) and x(j) represent two realizations in my posteriori ensemble. The covari-

ance between these two realizations (the underlying linear dependency between

the two) are, under Gaussian assumptions, given as

Cov(x(i),x(j)) =
Tr[Var(d)−1(do − E[d])(do − E[d])T ]

ne − nd − 2
Var(x|d) (6.1)

where Tr denotes the trace value, Var denotes the variance, the d denotes the

true historical observations, the do denotes the measured historical observations

(do = d + εd), E[d] denotes the expected historical observations, the x denotes

the ensemble members, the ne denotes the ensemble size and the nd denotes the

number of historical observations.

Looking at equation 6.1, the covariance will increase:

1. If the true historical observations are co-linear, i.e. many Var(d) are nearly

singular which leads to high values in the Var(d)−1

2. With a large mismatch between measured historical observations, do, and

the expected historical observations, E[d]

3. With a large number of historical observations, nd

4. With a small ensemble size, ne, relative to the nd

5. With a large Var(x|d), which implies high-dimensional x with true observa-

tions d, that carry little information about x

Since the expectation value of the empirical covariance matrix is given as E[σx̂] =

Cov(x(i)) − Cov(x(i),x(j)), an ensemble collapse is inevitable if one of the factors

described above increases too much. In the case of the biased result in Figure 5.12,

factor number two comes into play. The prior ensemble is very "skewed" compared
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to the historical observed data, hence more "dependency" (bigger Cov(x(i),x(j)))

is introduced after each and every EnKF-update. In the end, this results in an

ensemble collapse and an EnKF-analyzed ensemble "off the chart".

Out of all the wells plotted in the Full-field model, E-1H has the overall best

match, suggesting that the E-segment is the best matched part of the reservoir.

This is not an illogical result, as the E-segment is the part of the Norne Field

given the most attention with regards to data gathered and model detail. Figures

5.7 and 5.9 however, showing the oil and water production rate for well E-1H for

the Full-field model, are the only plots where the ES-analyzed ensemble may be

interpreted with a slightly better match than the EnKF. Although, looking at the

spread, or the uncertainty, of the two analyzed ensembles, the EnKF is a lot more

certain than the ES. The mean value of the ES-analyzed ensemble could be close

or even worse than the mean value of the EnKF, even though the results seems to

show otherwise. Nonetheless, these results are more coincidental than a tendency,

as it is not seen in the rest of the results.

A fairly large error for both the ES- and EnKF-analysed realizations can be seen

around November 2000 to February 2001. This error is most significant for well

E-1H, but can be detected in nearly all the plots for both models. It is clearly seen

in Figures 5.1, 5.2, 5.7 and 5.8. The original Norne case does not seem to have

this error, and the question is what happens with the ensemble initialization and

analysis in this period to cause this inaccuracy. The 22nd of September 2000 the

injection well F-3H starts injecting water for the first time. This well is located in

close proximity to the well E-1H (see Figure 2.13), hence an undesirable incorpo-

ration of the historical observed data from well F-3H may be a reason. Another

reason may be the closing and plugging of well E-3H the 1st of April 2000, located

right in the middle of the gas displacement front. An abrupt change in data at

this point may have lead to numerical difficulties for the ES- and EnKF-algorithm.

Figure 5.6 shows the gas saturation in layer five in the E-segment model the 1st

of May 2000. Large differences can be seen for swept area, and more specifically,

the transition area of the gas sweeping in the EnKF-analyzed model is much less
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than in the original model. This implies a higher mobility ratio for the gas in the

EnKF-analyzed model, at least for layer five.

Comparing the FIELD rates of the E-segment versus the Full-field model the

results are generally as expected. As of Figure 5.17, 5.18 and 5.19 none of the

models are able to get a perfect fit. In addition, the uncertainty of the EnKF-

analyzed ensemble is not insignificant for either case. A slight uncertainty in the

EnKF-analyzed ensemble means that the assimilation could have been better and

that the algorithms are still sampling Gaussian distributed parameters within a

smaller bounded interval than for the initial ensemble. There is no doubt that

with only 80 ensemble members updated every 50th report step for the Full-field

EnKF-assimilation the match could have been better for the Full-field model.

Nonetheless, an overall slightly better match are acquired for the FIELD rates with

the Full-field EnKF-assimilation, which is according to theory and expectations.

As seen in Figure 5.5 the EnKF algorithm has done rather large modifications to

the static PERMZ parameter of the E-segment. Similar changes are seen in the

other static parameters, also the Full-field model, hence proving that the EnKF

has conditioned on the parameters chosen. The fact that the ES- and EnKF-

algorithms get to have complete control of the large amount of parameter chosen to

condition on, is positive with regards to correctness and correlation of parameters

in the model. Although, it can also be a negative thing. When performing manual

HM a reservoir engineer needs to acquire in depth knowledge of every aspect

of the model - down to cell level. He or she can then begin to history match by

altering each and every parameter in question. This is time-consuming and initially

seldom successful. However, after some initial work the increasing knowledge of the

reservoir should provide an experienced reservoir engineer the necessary feedback

to be able to pin-point certain critical parameters. With AHM it is easy to lose

control and blindly trust the mathematics behind the algorithms. If the results

end up being illogical it is not easy to troubleshoot and find errors in an algorithm

not fully understood or in a reservoir model of only basic knowledge.
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The EnKF is an efficient AHM algorithm, but it has some drawbacks. The en-

semble and ensemble size in the EnKF needs to be selected carefully such that

uncertainty is sufficiently captured. To avoid high computational costs, a rela-

tively small ensemble size may be necessary (as for the Full-field model) which

is small compared to the number of unknown parameters (in this thesis; in the

number of model grid blocks). The assimilation of large amounts of data with rel-

atively small ensembles can lead to spurious correlations and/or filter divergence,

which may lead to unphysical updates of model parameters (see especially Figure

5.12). However, in spite of some illogical results most of the EnKF-analysed pro-

duction rates show a slightly better match than the reference case, as well as a

lot less uncertainty than the initial ensemble. This should lead to the conclusion

that both the ES-assimilation and especially the EnKF-assimilation are in fact

performing well.

6.2 Conclusions & Recommendations

In this thesis two stochastic algorithms, the Ensemble Smoother (ES) and the

Ensemble Kalman filter (EnKS), has been utilized as automatic history matching

methods through the Statoil developed program the Ensemble based Reservoir

Tool. Real historical production and pressure data, provided by Statoil through IO

Center NTNU, has been used to condition on a parametrized ECLIPSE reservoir

model of the Norne Field. Parameters conditioned on includes the field parameters

porosity, i-permeability, net-to-gross, and z-direction transmissibility multiplier, as

well as fault multipliers, region transmissibility multipliers, minimum pore volumes

and relative permeability endscaling options. The stand-alone E-segment model

and the Full-field model were both studied.

With an ensemble size of 120 realizations for the E-Segment model and 80 real-

izations for the Full-field model both algorithms performed well. In most of the

results an initial high uncertainty in the prior provided the necessary coverage of

the historical observed data. Overall the EnKF performed better than the ES,
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which is natural comparing time and computational power required. Some spu-

rious correlations and one particular ensemble collapse were experienced. The

EnKF-analysed ensemble production rates provides a lot less uncertainty than

the initial ensemble, and for most plots a slightly better match than the reference

case. The EnKF-algorithm is shown to be vulnerable of small ensemble sizes versus

large amounts of conditioning parameters, as well as highly correlated historical

observations.

In the last years 4D seismic data has become a valuable tool for reservoir engi-

neers. The higher resolution and more frequently shot seismic gathers provide

them with another view of the fluid movement inside the reservoir. Where pres-

sure and production data give detailed, but localized, information, 4D seismic

data provides coarse, but global information. The research on 4D seismic data

has naturally become a large part of the literature, and several articles have been

published dealing with the subject of EnKF-assimilation and 4D seismic data,

e.g. (Fahimuddin et al., 2010) and (Han et al., 2013). The general consensus of

these articles is that the quantitative 4D seismic data complements the qualitative

production- and pressure data very well, resulting in significantly better history

matching of reservoir models. EnKF is especially suited for history matching with

4D seismic data due to the efficient incorporation of the large amount of assimi-

lation data in such cases. As a proposal for further research on the Norne Field,

automatic history matching using EnKF and incorporating both the available 4D

seismic data and the pressure- and production data would be the next natural

step.





Appendix A

The ERT specific files

A.0.1 Configuration file

-- ==========================================================================
--
--

-- N O R N E F U L L - F I E L D M O D E L 2 0 1 4 - ERT CONFIG FILE
--
--
-- ==========================================================================
--

-- Ensemble Reservoir Tool (ERT) configuration for the Norne full-field model

-- Daniel A. Solheim - 2014 - danieso@stud.ntnu.no

-- Documentation:

-- See the README file. Keywords used in this file are documented at:

--

-- http://sdp.statoil.no/wiki/index.php/res:enkf

-- http://ert.nr.no

-- ==========================================================================

-- Using the DEFINE keyword to avoid overwriting simulations

DEFINE <USER> $USER

DEFINE <SCRATCH> /work/danieso/Scratch

DEFINE <CASE> TEST2_FULLF_FULLPARA

DEFINE <PWD> $PWD
81



-- Do some magic to set ECLBASE and RUNPATH

ECLBASE FIRST_GEN_NORNE-<CASE>-%d

RUNPATH <SCRATCH>/<CASE>/realization-%d

ENSPATH <SCRATCH>/Storage/<CASE>

-- Make sure ECLIPSE gets the right path to the include files like the relperm
etc.

DEFINE <ECLPATH> /work/danieso/norne/Norne_ATW2013/

-- Name of .SCH file we are using in the current setup

DEFINE <SCHEDULE_FILE_NAME> BC0407_HIST01122006_NEW2.SCH

-- Use the record storage system

DBASE_TYPE BLOCK_FS

-- Set the number of realizations to run

NUM_REALIZATIONS 80

--Use the TORQUE queue system for running simulation on Kongull

QUEUE_SYSTEM TORQUE

QUEUE_OPTION TORQUE QSUB_CMD /home/danieso/ert/Scripts/myqsub.sh

QUEUE_OPTION TORQUE NUM_NODES 1

QUEUE_OPTION TORQUE NUM_CPUS_PER_NODE 1

QUEUE_OPTION TORQUE MAX_RUNNING 40

QUEUE_OPTION TORQUE KEEP_QSUB_OUTPUT 1

QUEUE_OPTION TORQUE ASSUME_MISSING_COMPLETE TRUE

-- Set image type for the plots generated

IMAGE_TYPE png

-- Load the .EGRID file

GRID /work/danieso/norne/Norne_ATW_2013/NORNE_ATW2013.GRID

-- Location of the ECLIPSE .DATA

DATA_FILE /work/danieso/norne/Norne_ATW_2013/NORNE_ATW2013_CORRECT_MOD.DATA

--Alltid starte EnFK fra tidssteg 0 etter oppdatering

ENKF_RERUN TRUE

ENKF_MERGE_OBSERVATIONS TRUE

--Only do updates on report steps specified in schedule file

ENKF_SCHED_FILE /home/danieso/etc/EnKF_update_setup.txt



ENKF_LOCAL_CV TRUE

ENKF_CV_FOLDS 7

KEEP_RUNPATH 0-79

-- Parametrization:

-- Uncertainty in MULTFLT

GEN_KW MULTFLT templates/MULTFLT.tmpl MULTFLT.INC parameters/MULTFLT.txt

--UNcertainty for MULTZ Equals stuff

GEN_KW MULTZ_KW templates/MULTZ.tmpl MULTZ_KW.INC parameters/MULTZ2.txt

-- Uncertainty in MULTREGT

GEN_KW MULTREGT templates/MULTREGT.tmpl MULTREGT.INC parameters/MULTREGT.txt

-- Testing sensitivity of MINPV (UNIFORM 400-600)

GEN_KW MINPV templates/minpv.temp MINPV.INC parameters/minpv_params.txt

--Testing sensitiviy of PERMZ

GEN_KW PERMZ templates/multiply_permz.temp PERMZ.INC parameters/PERMZ4.txt

--Testing sensitivty of RELPERM through ENDPOINTS

GEN_KW ENDPOINTS templates/ENDPOINTS.tmpl ENDPOINTS.INC

parameters/ENDPOINTS.txt

--Adding a porosity field (unbounded)

FIELD PORO PARAMETER PORO.INC

INIT_FILES:/work/danieso/norne/Norne_ATW_2013/INCLUDE/PETRO/PORO_0704.prop

--Adding a permeability field

FIELD PERMX PARAMETER PERM.INC

INIT_FILES:/work/danieso/norne/Norne_ATW_2013/INCLUDE/PETRO/PERM_0704.prop

--Adding a net-to-gross field

FIELD NTG PARAMETER NTG.INC

INIT_FILES:/work/danieso/norne/Norne_ATW_2013/INCLUDE/PETRO/NTG_0704.prop

--Adding a MULTZ field

FIELD MULTZ PARAMETER MULTZ.INC

INIT_FILES:/work/danieso/norne/Norne_ATW_2013/INCLUDE/PETRO/MULTZ_HM_1.INC

-- Load historic data from a reference case. This is needed to get the



historic accumulated production, as ERT is not able to compute it from

the schedule file.

HISTORY_SOURCE REFCASE_HISTORY

REFCASE /work/danieso/norne/Norne_ATW_2013/NORNE_ATW2013.DATA

--Need observations to be able to plot and assimilate the historic data.

OBS_CONFIG /home/danieso/etc/observations2.txt

-- Collect non-observed summary variables for monitoring

SUMMARY FOIP

SUMMARY TCPU

SUMMARY FPR

SUMMARY FOPT

SUMMARY FGPT

SUMMARY FWPT

SUMMARY FOPR

SUMMARY FGPR

SUMMARY FWPR

PLOT_REFCASE FALSE

REFCASE_LIST /work/danieso/norne/Norne_ATW_2013/NORNE_ATW2013.DATA

IMAGE_VIEWER /d/proj/bg/enkf/bin/noplot.sh

--Plot error bar

PLOT_ERRORBAR_MAX 100

--Location of the SCHEDULE file

SCHEDULE_FILE

/work/danieso/norne/Norne_ATW_2013/INCLUDE/BC0407_HIST01122006_NEW2.SCH

-- Install the custom jobs

--INSTALL_JOB MULTIPLY_PERMZ_DOE jobs/MULTIPLY_PERMZ_DOE

-- Definition of the forward models.

-- 1.0 Replace the ECLPATH data in the generated ECLIPSE DATA file (not necessary)

-- 4.0 If necessary, copy runpath folder

-- 7.0 Perform a so-called Design Of Engineering matrix sensitivity run

on XXXX (not in final AHM)

-- 10 Run Eclipse in parallel/single mode



-- 1.0

--FORWARD_MODEL REPLACE(<FROM>=__ECLPATH__ , <TO>=<ECLPATH> , <FILE>=<ECLBASE>.DATA)

-- 4.0

--FORWARD_MODEL COPY_FOLDER(<copyfrom> = <CONFIG_PATH>

/../rms/rmsIMPORT/ipl_lib, <copyto> = <RUNPATH>/rms/rmsIMPORT/)

-- 7.0

--Do DOE sensitivity on the PERMZ multiplyer

--FORWARD_MODEL MULTIPLY_PERMZ_DOE(<TEMPLATE> =

/home/danieso/ert/templates/multiply_permz.temp,<PARAMETERS> =

/home/danieso/ert/parameters/multiply_permz.txt, <IENS> = <IENS>)

-- 10

FORWARD_MODEL ECLIPSE100_2011.1(<ECLBASE>=<ECLBASE>,<NUM_CPU>=1)

A.0.2 MULTFLT

Table A.1: The MULTFLT template file.

MULTFLT
’E_01’ <E_01> /
’E_01_F3’ <E_01_F3> /
’DE_1’ <DE_1> /
’DE_1_LTo’ <DE_1_LTo> /
’DE_B3’ <DE_B3> /
’DE_2’ <DE_2> /
’DE_0’ <DE_0> /
’BC’ <BC> /
’CD’ <CD> /
’CD_To’ <CD_To> /
’CD_B3’ <CD_B3> /
’CD_0’ <CD_0> /
’CD_1’ <CD_1> /
’C_01’ <C_01> /
’C_01_Ti’ <C_01_Ti> /
’C_08’ <C_08> /
’C_08_Ile’ <C_08_Ile> /
’C_08_S’ <C_08_S> /
’C_08_Ti’ <C_08_Ti> /
’C_08_S_Ti’ <C_08_S_Ti> /
’C_09’ <C_09> /
’C_02’ <C_02> /
’C_04’ <C_04> /
’C_05’ <C_05> /
’C_06’ <C_06> /



’C_10’ <C_10> /
’C_12’ <C_12> /
’C_20’ <C_20> /
’C_20_LTo’ <C_20_LTo> /
’C_21’ <C_21> /
’C_21_Ti’ <C_21_Ti> /
’C_22’ <C_22> /
’C_23’ <C_23> /
’C_24’ <C_24> /
’C_25’ <C_25> /
’C_26’ <C_26> /
’C_26N’ <C_26N> /
’C_27’ <C_27> /
’C_28’ <C_28> /
’C_29’ <C_29> /
’DI’ <DI> /
’DI_S’ <DI_S> /
’D_05’ <D_05> /
’EF’ <EF> /
’GH’ <GH> /
’G_01’ <G_01> /
’G_02’ <G_02> /
’G_03’ <G_03> /
’G_05’ <G_05> /
’G_07’ <G_07> /
’G_08’ <G_08> /
’G_09’ <G_09> /
’G_13’ <G_13> /
’H_03’ <H_03> /
’IH’ <IH> /
’m_east’ <m_east> /
’m_east_2’ <m_east_2> /
’m_north’ <m_north> /
’m_northe’ <m_northe> /
’m_west’ <m_west> /
/

A.0.3 MULTREGT

Table A.2: The MULTREGT template file.

MULTREGT
2 1 <MULTREGT0> /
3 1 <MULTREGT1> /
3 2 <MULTREGT2> /
4 1 <MULTREGT3> /
4 2 <MULTREGT4> /
4 3 <MULTREGT5> /
5 1 0.0 /



5 2 0.0 /
5 3 0.0 /
5 4 0.0 /
6 1 0.0 /
6 2 0.0 /
6 3 0.0 /
6 4 0.0 /
6 5 <MULTREGT14> /
7 1 0.0 /
7 2 0.0 /
7 3 0.0 /
7 4 0.0 /
7 5 <MULTREGT19> /
7 6 <MULTREGT20> /
8 1 0.0 /
8 2 0.0 /
8 3 0.0 /
8 4 0.0 /
8 5 <MULTREGT25> /
8 6 <MULTREGT26> /
8 7 <MULTREGT27> /
9 1 0.0 /
9 2 0.0 /
9 3 0.0 /
9 4 0.0 /
9 5 <MULTREGT32> /
9 6 <MULTREGT33> /
9 7 <MULTREGT34> /
9 8 <MULTREGT35> /
10 1 0.0 /
10 2 0.0 /
10 3 0.0 /
10 4 0.0 /
10 5 <MULTREGT40> /
10 6 <MULTREGT41> /
10 7 <MULTREGT42> /
10 8 <MULTREGT43> /
10 9 <MULTREGT44> /
11 1 0.0 /
11 2 0.0 /
11 3 0.0 /
11 4 0.0 /
11 5 <MULTREGT49> /
11 6 <MULTREGT50> /
11 7 <MULTREGT51> /
11 8 <MULTREGT52> /
11 9 <MULTREGT53> /
11 10 <MULTREGT54> /
12 1 0.0 /
12 2 0.0 /



12 3 0.0 /
12 4 0.0 /
12 5 <MULTREGT59> /
12 6 <MULTREGT60> /
12 7 <MULTREGT61> /
12 8 <MULTREGT62> /
12 9 <MULTREGT63> /
12 10 <MULTREGT64> /
12 11 <MULTREGT65> /
13 1 0.0 /
13 2 0.0 /
13 3 0.0 /
13 4 0.0 /
13 5 <MULTREGT70> /
13 6 <MULTREGT71> /
13 7 <MULTREGT72> /
13 8 <MULTREGT73> /
13 9 <MULTREGT74> /
13 10 <MULTREGT75> /
13 11 <MULTREGT76> /
13 12 <MULTREGT77> /
14 1 0.0 /
14 2 0.0 /
14 3 0.0 /
14 4 0.0 /
14 5 <MULTREGT82> /
14 6 <MULTREGT83> /
14 7 <MULTREGT84> /
14 8 <MULTREGT85> /
14 9 <MULTREGT86> /
14 10 <MULTREGT87> /
14 11 <MULTREGT88> /
14 12 <MULTREGT89> /
14 13 <MULTREGT90> /
15 1 0.0 /
15 2 0.0 /
15 3 0.0 /
15 4 0.0 /
15 5 <MULTREGT95> /
15 6 <MULTREGT96> /
15 7 <MULTREGT97> /
15 8 <MULTREGT98> /
15 9 <MULTREGT99> /
15 10 <MULTREGT100> /
15 11 <MULTREGT101> /
15 12 <MULTREGT102> /
15 13 <MULTREGT103> /
15 14 <MULTREGT104> /
16 1 0.0 /
16 2 0.0 /



16 3 0.0 /
16 4 0.0 /
16 5 <MULTREGT109> /
16 6 <MULTREGT110> /
16 7 <MULTREGT111> /
16 8 <MULTREGT112> /
16 9 <MULTREGT113> /
16 10 <MULTREGT114> /
16 11 <MULTREGT115> /
16 12 <MULTREGT116> /
16 13 <MULTREGT117> /
16 14 <MULTREGT118> /
16 15 <MULTREGT119> /
17 1 0.0 /
17 2 0.0 /
17 3 0.0 /
17 4 0.0 /
17 5 0.0 /
17 6 0.0 /
17 7 0.0 /
17 8 0.0 /
17 9 <MULTREGT128> /
17 10 0.0 /
17 11 0.0 /
17 12 0.0 /
17 13 <MULTREGT132> /
17 14 0.0 /
17 15 0.0 /
17 16 0.0 /
18 1 0.0 /
18 2 0.0 /
18 3 0.0 /
18 4 0.0 /
18 5 0.0 /
18 6 0.0 /
18 7 0.0 /
18 8 0.0 /
18 9 0.0 /
18 10 <MULTREGT145> /
18 11 0.0 /
18 12 0.0 /
18 13 0.0 /
18 14 <MULTREGT149> /
18 15 0.0 /
18 16 0.0 /
18 17 <MULTREGT152> /
19 1 0.0 /
19 2 0.0 /
19 3 0.0 /
19 4 0.0 /



19 5 0.0 /
19 6 0.0 /
19 7 0.0 /
19 8 0.0 /
19 9 0.0 /
19 10 0.0 /
19 11 <MULTREGT163> /
19 12 0.0 /
19 13 0.0 /
19 14 0.0000001 /
19 15 <MULTREGT167> /
19 16 0.0 /
19 17 <MULTREGT169> /
19 18 <MULTREGT170> /
20 1 0.0 /
20 2 0.0 /
20 3 0.0 /
20 4 0.0 /
20 5 0.0 /
20 6 0.0 /
20 7 0.0 /
20 8 0.0 /
20 9 0.0 /
20 10 0.0 /
20 11 0.0 /
20 12 <MULTREGT182> /
20 13 0.0 /
20 14 0.0 /
20 15 0.0 /
20 16 <MULTREGT186> /
20 17 <MULTREGT187> /
20 18 <MULTREGT188> /
20 19 <MULTREGT189> /
/

A.0.4 MULTZ Modifier

-- Layer 8

EQUALS

’MULTZ’ <MULTZ1> 6 13 30 50 8 8 /

/

-- MZ layer 10

EQUALS

’MULTZ’ <MULTZ2> 6 14 11 18 10 10 / C-3H

’MULTZ’ <MULTZ3> 14 29 11 25 10 10 / C south east



’MULTZ’ <MULTZ4> 14 25 26 30 10 10 / C-segm mid/B-2H

’MULTZ’ <MULTZ5> 6 29 11 37 10 10 / C-segm middle

’MULTZ’ <MULTZ6> 17 17 42 54 10 10 / C north west

’MULTZ’ <MULTZ7> 6 12 38 39 10 10 / C north west

’MULTZ’ <MULTZ8> 8 12 40 40 10 10 / C north west

’MULTZ’ <MULTZ9> 10 12 41 43 10 10 / C north west

’MULTZ’ <MULTZ10> 18 33 38 54 10 10 / C1, D4 & D3

’MULTZ’ <MULTZ11> 6 13 44 52 10 10 / B-4AH

’MULTZ’ <MULTZ12> 13 13 48 59 10 10 / D-segm mid (B-4BH)

’MULTZ’ <MULTZ13> 14 14 49 59 10 10 / D-segm mid (B-4BH)

’MULTZ’ <MULTZ14> 15 16 51 59 10 10 / D-segm mid (B-4BH)

’MULTZ’ <MULTZ15> 17 19 55 99 10 10 / E1

’MULTZ’ <MULTZ16> 14 14 60 62 10 10 / E1

’MULTZ’ <MULTZ17> 15 15 60 65 10 10 / E1

’MULTZ’ <MULTZ18> 16 16 60 69 10 10 / E1

’MULTZ’ <MULTZ19> 6 9 52 60 10 10 / F-3H/E-2H

’MULTZ’ <MULTZ20> 9 9 53 57 10 10 / F-3H/E-2H

’MULTZ’ <MULTZ21> 10 10 54 58 10 10 / F-3H/E-2H

’MULTZ’ <MULTZ22> 11 11 55 58 10 10 / F-3H/E-2H

/

-- MZ layer 15

EQUALS

’MULTZ’ 0.00003 6 29 11 21 15 15 / C south

’MULTZ’ 0.00005 6 29 22 39 15 15 / C middle

’MULTZ’ 0.000001 19 29 39 49 15 15 / C-1H

’MULTZ’ <MULTZ26> 19 29 38 45 17 17 / C-1H

’MULTZ’ <MULTZ27> 16 19 48 61 15 15 / E-1H/D-3H

’MULTZ’ <MULTZ28> 8 18 40 40 15 15 / C north

’MULTZ’ <MULTZ29> 9 18 41 41 15 15 /

’MULTZ’ <MULTZ30> 10 18 42 43 15 15 /

’MULTZ’ <MULTZ31> 11 18 44 44 15 15 /

’MULTZ’ <MULTZ32> 12 18 45 45 15 15 /

’MULTZ’ <MULTZ33> 13 18 46 47 15 15 /

’MULTZ’ <MULTZ34> 14 15 48 48 15 15 /

’MULTZ’ <MULTZ35> 15 15 49 50 15 15 /

’MULTZ’ <MULTZ36> 12 12 46 56 15 15 / D-segm



’MULTZ’ <MULTZ37> 13 13 48 59 15 15 / D-segm

’MULTZ’ <MULTZ38> 14 14 49 62 15 15 / D-segm

’MULTZ’ <MULTZ39> 15 15 51 65 15 15 / D-segm

’MULTZ’ <MULTZ40> 16 19 62 69 15 15 / D-segm

’MULTZ’ <MULTZ41> 17 19 70 99 15 15 / D-segm

’MULTZ’ <MULTZ42> 6 7 40 60 15 15 / D, E west

’MULTZ’ <MULTZ43> 8 8 41 60 15 15 /

’MULTZ’ <MULTZ44> 9 9 42 52 15 15 /

’MULTZ’ <MULTZ45> 10 10 44 49 15 15 /

/

-- D-1H water

EQUALS

’MULTZ’ <MULTZ46> 22 24 21 22 11 11 /

’MULTZ’ <MULTZ47> 21 25 17 19 15 15 /

’MULTZ’ <MULTZ48> 22 24 17 19 17 17 /

’MULTZ’ <MULTZ49> 22 24 15 17 18 18 /

/

-- B-1 & B-3 water

EQUALS

’MULTZ’ <MULTZ50> 12 13 34 35 15 15 /

/

-- RFT D_-H

EQUALS

’MULTZ’ <MULTZ51> 16 19 47 53 18 18 / D-3H

/

A.0.5 PERMZ Modifier

MULTIPLY

’PERMZ’ <PERMZ1> 1 46 1 112 1 1 / Garn 3

’PERMZ’ <PERMZ2> 1 46 1 112 2 2 / Garn 2

’PERMZ’ <PERMZ3> 1 46 1 112 3 3 / Garn 1

’PERMZ’ 0 1 46 1 112 4 4 / Not (inactive anyway)

’PERMZ’ <PERMZ5> 1 46 1 112 5 5 / Ile 2.2

’PERMZ’ <PERMZ6> 1 46 1 112 6 6 / Ile 2.1.3



’PERMZ’ <PERMZ7> 1 46 1 112 7 7 / Ile 2.1.2

’PERMZ’ <PERMZ8> 1 46 1 112 8 8 / Ile 2.1.1

’PERMZ’ <PERMZ9> 1 46 1 112 9 9 / Ile 1.3

’PERMZ’ <PERMZ10> 1 46 1 112 10 10 / Ile 1.2

’PERMZ’ <PERMZ11> 1 46 1 112 11 11 / Ile 1.1

’PERMZ’ <PERMZ12> 1 46 1 112 12 12 / Tofte 2.2

’PERMZ’ <PERMZ13> 1 46 1 112 13 13 / Tofte 2.1.3

’PERMZ’ <PERMZ14> 1 46 1 112 14 14 / Tofte 2.1.2

’PERMZ’ <PERMZ15> 1 46 1 112 15 15 / Tofte 2.1.1

’PERMZ’ <PERMZ16> 1 46 1 112 16 16 / Tofte 1.2.2

’PERMZ’ <PERMZ17> 1 46 1 112 17 17 / Tofte 1.2.1

’PERMZ’ <PERMZ18> 1 46 1 112 18 18 / Tofte 1.1

’PERMZ’ <PERMZ19> 1 46 1 112 19 19 / Tilje 4

’PERMZ’ <PERMZ20> 1 46 1 112 20 20 / Tilje 3

’PERMZ’ <PERMZ21> 1 46 1 112 21 21 / Tilje 2

’PERMZ’ <PERMZ22> 1 46 1 112 22 22 / Tilje 1

/

A.0.6 Relative Permeability Endscaling

EQUALS

SWL <endpoint1> 1 46 1 112 1 1 /

SWL <endpoint2> 1 46 1 112 2 2 /

SWL <endpoint3> 1 46 1 112 3 3 /

SWL <endpoint4> 1 46 1 112 4 4 /

SWL <endpoint5> 1 46 1 112 5 10 / Ile 2.2.2 and Ile 2.2.1,

Ile 2.1.3, Ile 2.1.2, and Ile 2.1.1, Ile 1.3 and Ile 1.2

SWL <endpoint6> 1 46 1 112 11 12 / Ile 1.1 and Tofte 2.2

SWL <endpoint7> 1 46 1 112 13 15 / Tofte 2.1

SWL <endpoint8> 1 46 1 112 16 16 / Tofte 1.2.2

SWL <endpoint9> 1 46 1 112 17 22 / Tofte 1.2.1,

Tofte 1.2.1, Tofte 1.1, Tilje

/

COPY

SWL SWCR /

SWL SGU /



/

ADD

SWCR <endpoint10> 1 46 1 112 1 22 /

/

--SGU = 1 - SWL

MULTIPLY

SGU -1 1 46 1 112 1 22 /

/

ADD

SGU 1.0 1 46 1 112 1 22 /

/

EQUALS

SGL 0.0 1 46 1 112 1 22 /

SGCR <endpoint13> 1 46 1 112 1 22 /

SOWCR <endpoint14> 1 46 1 112 1 22 /

SOGCR <endpoint15> 1 46 1 112 1 22 /

SWU 1.0 1 46 1 112 1 22 /

/

--Hysteresis input

EHYSTR

0.1 0 0.1 0.3 BOTH /

COPY

’SWCR’ ’ISWCR’ 1 46 1 112 5 22 /

’SGU’ ’ISGU’ 1 46 1 112 5 22 /

’SWL’ ’ISWL’ 1 46 1 112 5 22 /

’SWU’ ’ISWU’ 1 46 1 112 5 22 /

’SGL’ ’ISGL’ 1 46 1 112 5 22 /

’SOGCR’ ’ISOGCR’ 1 46 1 112 5 22 /

’SOWCR’ ’ISOWCR’ 1 46 1 112 5 22 /

/

EQUALS

ISGCR <endpoint17> 1 46 1 112 1 22 /

/
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