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Abstract

In this thesis we compare the power of tests of equality of success probabilities in
two independent binomial distributions for different sample sizes and significance
levels. We calculate the realisations of different p-values using enumeration and the
power functions are also evaluated using enumeration. We consider four different
methods for creating a p-value, the asymptotic (A) method, the estimation (E)
method, the conditional (C) method and the maximization (M) method. We also
consider combining the C, E, A or M method with the M method, resulting in the
C ◦M, E ◦M, A ◦M or M2 method. We emphasize that each p-value is a random
variable and also stress the concept of validity. A valid p-value may be used to
construct a test that never exceeds the significance level under H0. We found the
E and A p-values not to be valid.

For the power study under the alternative hypothesis we only considered the power
functions of the tests based on the remaining valid p-values. The power functions
where only evaluated at points at which at least one power function is above or
equal to 80%. The C ◦M p-value and the E ◦M p-value are found to give level
α tests that are the most powerful. The C ◦ M p-value is guaranteed to give a
test with power that uniformly equal to or greater than the test based on the C
p-value. The power increase is quite substantial under the alternative hypothesis
for the smallest sample sizes studied, both for the unbalanced design and the
balanced design. For the largest sample sizes studied the power functions of the
test based on the C ◦M, E ◦M and C p-values are found to take nearly the same
values in a majority of the parameters considered. Since the C method is less
computer intensive than the M method, we recommend using the C method for
large sample sizes. We recommend using difference plots to easily establish where
in parameter space the differences between the power functions occur and check if
the differences are in interesting parts of the parameter space. We also recommend
using the cumulative difference function in power studies.
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Sammendrag

I denne masteroppgaven sammenligner vi styrken til tester av likhet av sukses-
sannsynlighetene i to uavhengige binomiske fordelinger for forskjellige utvalgsstør-
relser og for forskjellige signifikansnivå. Vi beregner realisasjonene til forskjellige p-
verdier ved å bruke enumerering. Styrkefunksjonene blir også evaluert ved å bruke
enumerering. Vi betrakter fire metoder for å generere en p-verdi, den asymptotiske
(A) metoden, estimeringsmetoden (E), den betingede (C) metoden og maksimer-
ingsmetoden (M). Vi ser også på kombinasjoner av A, C, E eller metoden med M
metoden, som resulterer i A◦M, C◦M, E◦M eller M2 metoden. Vi understreker at
p-verdien er en stokastisk variabel og framhever også begrepet validitet. En “valid”
p-verdi kan brukes til å lage en test som aldri overstiger signifikansnivået under
nullhypotesen. Både A og E p-verdiene er funnet til å være ikke “valid”.

I styrkestudien under den alternative hypotesen betraktet vi kun styrkefunksjonene
til tester basert på de resterende “valid” p-verdiene. Vi betraktet kun styrke-
funksjonene i parameterpunkter hvor styrken til minst en av funksjonene er 80 %
eller høyrere. Vi har funnet at C◦M og E◦M p-verdiene gir nivå α tester med størst
styrke. Det er garantert at C◦M p-verdien gir en test med uniformt minst like høy
styrke som styrken til testen basert på C p-verdien. Økningen i teststyrke under
den alternative hypotesen er ganske stor for de minste studerte utvalgsstørrelsene,
både for balanserte og ubalanserte design. For de største studerte utvalgsstør-
relsene er det funnet at styrkefunksjonene til testene basert på C, C ◦M og E ◦M
p-verdiene tar tilnærmet de samme verdiene i storparten av de studerte punk-
tene i parameterrommet. Siden C metoden er mindre beregningskrevende enn M
metoden, anbefaler vi å bruke C metoden for store utvalgsstørrelser. Vi anbefaler å
bruke differanseplott for enkelt å finne ut hvor i parameterrommet det er forskjeller
i styrken til de ulike testene og finne ut om forskjellene er i interessante deler av
parameterrommet. Vi anbefaler også å bruke den kumulative differansefunksjonen
i styrkestudier.
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Chapter 1

Introduction

In this chapter we present the objective of this thesis and give an overview of the
different chapters.

1.1 Problem description

Background The simplest situation in hypothesis testing is when the null hy-
pothesis specifies only one point. Such a null hypothesis is called simple. How-
ever, when testing equality of the success probabilities in two independent bi-
nomial distributions, θ1 and θ2 respectively, the null hypothesis takes the form
H0 : θ1 = θ2 = θ. Now infinitely many values are possible for the common value
θ. Such a null hypothesis is called composite.

There exist different methods for creating tests of composite hypotheses in dis-
crete distributions. All of them are based on a test statistic. It is also possible
to transform this original statistic. The p-value is an example of such a transfor-
mation. The p-value can be computed using different methods. We first consider
four different methods of creating p-values when testing the specified composite
null hypothesis. One method uses the asymptotic distribution of the original test
statistic, which we call the A method. Another method, the E method, calculates
the maximum likelihood estimator of θ under the null hypothesis and analyse the
original test statistic based on this value. When using the tests resulting from
these methods there is no guarantee that the maximum probability of the type I
error is below or equal to a specified significance level α. One method that gives
a test with this property is given in Theorem 8.3.27 in Casella & Berger (2002,
p. 397). We call it the M method. Another method that gives a test with this
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property conditions the original test statistic on a sufficient statistic for the pa-
rameter θ under the null hypothesis. We call this the C method. It is also possible
to combine two methods. You then use the p-value generated from one method as
test statistic in the other method. You can for instance let the p-value from the A
method serve as test statistic in the M method. We consider combining the A, E,
C or M method with the M method.

Objective In the master thesis we consider testing equality of the success prob-
ability in two independent binomial distributions. We base the level α tests on
the p-values generated from the four mentioned methods (A, E, C and M) and
also the p-values resulting from letting the p-value from either the A, E, M or C
method serve as test statistic in the M method (i.e. we combine the A, C, M or E
method with the M method). We study and compare the power functions of these
tests for different α.

1.2 Overview of the different chapters

In Chapter 2 we review the traditional Neyman–Pearson approach to statistical
hypothesis testing and in Chapter 3 we review the p-value approach to hypothesis
testing when the null hypothesis is simple. In Chapter 4 we present the theory
needed for the power study in Chapter 5. We start Chapter 4 with presenting and
giving examples of the main topic of this thesis, testing equality of the success
probabilities in two independent binomial distributions. We then present the four
different methods (A, C, E, M) of creating p-values. One of the main goals of
this chapter is to familiarise the different methods of creating a p-value. We do
this for instance by showing how to calculate the p-value using each method, by
showing how to evaluate the power functions of tests based on the p-values and
by comparing the p-values from the different methods and trying to see how the
differences in the realisations of the p-values affect the power functions. We also
present the theory behind the methods and also show how we can simplify the
calculations in the power study.

The other main goal of Chapter 4 is to develop an understanding of the role of the
test statistic. We do this in several steps. We will see that the p-value from one
method can be regarded as a reasonable test statistic on its own. This means we
can use the p-value from one method as test statistic in another method. We also
consider how we should combine different methods and look at properties of some
of the combinations.
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Chapter 2

Neyman–Pearson approach to
statistical hypothesis testing: a
review

In this chapter we give a review of the steps in the traditional Neyman–Pearson
approach to statistical hypothesis testing.

2.1 Overview

The main steps of the Neyman–Pearson approach to statistical hypothesis testing
may be summarised in the following steps (which are loosely inspired from Oyana
& Margai (2016, p. 107–110) and from Borgan (2007)):

1. Formulate research hypothesis

2. Plan an experiment

3. Specify the null and alternative hypothesis

4. Choose an appropriate test and select the significance level

5. Perform the experiment and reject or accept the null hypothesis based on
the outcome of the test

In the next sections we take a closer look at the different steps.
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2.2 Research hypothesis

The research hypothesis is what the investigator(s) thinks is the relationship be-
tween two or more variables (Kiess 2007). We give two examples that we study in
this section. In the first example, we refer to it as example (a), two populations
are considered. One of the populations has brain cancer of type I and the other
has brain cancer of type II (Bland & Altman 2004). The investigators believe that
the lifetime of the two populations are different (i.e. the research hypothesis). In
the other example, example (b), a manufacturer of an ointment against a hand
rash has developed a new ointment (Borgan 2007). The manufacturer thinks that
the new product is better than the old one.

2.3 Plan an experiment

There are two main types of “experiments”: observational experiments and ran-
domized experiments (Altman 1991, p. 74–76). In observational experiments the
investigators only observe the subjects under consideration and measure variables
of interest without assigning treatments to the subjects. Differences between sub-
jects already exist and are beyond the control of the investigators. In randomized
experiments the investigators assign treatments to the subjects randomly and ob-
serve the effect of the treatments on them.

In example (a), the investigators follow 20 subjects with type I tumour and 31
subjects with the other type of tumour. This is thus an observational study. It
would be considered unethical to inflict study subjects with either kind of brain
cancer. In example (b) the manufacturer studies 16 subjects and asks them to
apply a chemical agent on both hands so that they develop rashes. Afterwards for
each study subject, one of the hands is randomly treated with one of the ointments
and the other hand is treated with the other ointment. The manufacturer keeps
track of which ointment has been used on each hand. This study is therefore a
randomized experiment.

To be able to use statistical hypothesis testing the investigators must consider
the outcomes in the experiments as realisations of random variables. In example
(a) the investigators treat the observed lifetimes Y1i of the study subjects from
population with tumour of type I as independent realisations of a random variable
T1, which has survival function R1(t) = Pr(T1 > t). Similarly they treat the
observed lifetimes Y2i of the study subjects from population with tumour of type
II as independent realisations of a random variable T2, where T2 has survival
function R2(t) = Pr(T2 > t).
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In example (b) the manufacturer hires a neutral doctor to decide after a specified
amount of time which of the two hands have recovered the best from the rashes for
each of the individuals in the experiment. The manufacturer defines a indicator
variable for each individual i where Xi = 1 if the new ointment is best and 0
otherwise. It also lets X = X1 + · · · + X16, i.e X is the number of individuals
where the new ointment is best. In one run of the experiment the value of X
could be 9, but if the manufacturer had repeated the experiment, it would most
likely have obtained another value, say the number 7. It is therefore natural to
consider X as a random variable, and this is necessary to be able to use statistical
hypothesis testing to answer the research hypothesis. One possible model for
X would be the binomial model with parameters n = 16 and unknown success
probability θ ∈ [0, 1].

2.4 Null and alternative hypothesis

After modelling the outcomes in the experiment as random variables, the exper-
imenters “translate” the research hypothesis into two contradictory hypotheses
about quantities of the random variables (Borgan 2007). The two hypotheses are
called the null hypothesis and the alternative hypothesis, denoted H0 and H1 re-
spectively. Usually the values of the quantities specified in H1 are the values which
supports the research hypothesis and the values specified in the null hypothesis do
not support the research hypothesis and usually these values support the hypoth-
esis of “no difference” or “no improvement” (Devore et al. 2012, p. 427).

In example (a) the investigators formulate the null hypothesis and the alternative
hypothesis as

H0 : R1(t) = R2(t), for all t,H1 : R1(t) 6= R2(t) for at least one t, (2.1)

so that the null hypothesis is that there is no difference in survival between the
two populations with different kinds of tumours while the alternative hypothesis
is that there is a difference in survival between them.

In example (b) the manufacturer formulates the hypotheses

H0 : θ ≤ 1
2 , H1 : θ > 1

2 , (2.2)

where H0 specifies no improvement (the old ointment is at least as good) and H1
that the new product is better.

As a note, we have chosen to differentiate between the research hypothesis and
the alternative hypothesis (Kiess 2007). This is not done in all textbooks, see for
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instance Devore et al. (2012, p. 426), Casella & Berger (2002, p. 373) or Walpole
et al. (2012, p. 321). There are two main reasons for this. The first one is that
the statistical hypothesis test is pure mathematical; it only concerns quantities of
theoretical models while the research hypothesis is about quantities from the real
world. This means we differentiate between hypotheses about quantities in the real
world and hypotheses about quantities in the chosen models of them. The model
you choose may not model the real world quantities well enough and then the
results of the hypothesis test tell you nothing about the research hypothesis. The
second reason is that there may be more than one possible model of the real world
quantities. Depending on which model you choose, the outcome of the hypothesis
test may change. In theory, one model may provide test results that support the
research hypothesis and another model may give test results that do not favour
the research hypothesis.

2.5 Parametric and non-parametric statistical hy-
pothesis tests

The hypotheses in Equation (2.1) and Equation (2.2) are of different kinds. The
null hypothesis and alternative hypothesis in Equation (2.2) are about a param-
eter in a specified distribution, the binomial, while the hypotheses in Equation
(2.1) do not involve parameters in a specified distribution. Statistical hypothe-
ses about parameters in distributions are called parametric hypotheses (Stuart
& Ord 1991, p. 795), while statistical hypotheses where no special distribution
parameters are specified are called non-parametric hypotheses. This means the
hypotheses in Equation (2.1) are non-parametric and the hypotheses in Equation
(2.2) are parametric.

2.6 Choose an appropriate test and select the
significance level

A test is a rule that tells us for which outcomes we should reject the null hypothesis
and for which outcomes we should accept it (Casella & Berger 2002, p. 374). In
example (a) the logrank-test may be appropriate to test the hypotheses in Equation
(2.1) (Bland & Altman 2004). However, in this thesis we will be concerned with
parametric hypothesis tests and will therefore not show how the log-rank test is
carried out.
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In example (b), a statistical test may be based on the value of X. A real valued
function of the data that is used to tell for which outcomes we should reject the
null hypothesis and for which outcomes we should accept it is called a test statistic
(Casella & Berger 2002, p. 374). We denote the test statistic by the letter T and
since is a function of the outcomes in the experiment T = T (X). In this example
we therefore have T (X) = X. Furthermore we divide the sample space S, i.e the
space of all possible outcomes in the experiment, into two different regions, the
acceptance region and the rejection region (Casella & Berger 2002, p. 374). (Some
would call the set of all possible realisations of the random variable X the support
of X. This is for example done in Taboga (2010), but we follow the convention
made of Casella & Berger (2002, p. 27) where we regard the random variable as
a function from the original sample space to a new sample space, the space of
all the possible realisations of the random variable.). We denote the rejection
region by R and the acceptance region by Rc (Casella & Berger 2002, p. 382-383).
The rejection region consists of the outcomes for which the test rejects the null
hypothesis and the acceptance region consists of the outcomes for which the test
accepts the null hypothesis. We use the values of T (X) to decide which outcomes
should be in R or Rc. Large values of X indicate that the alternative hypothesis
is true while small values indicate that the null hypothesis is true, so it seems
reasonable to reject the null hypothesis for large values of X and not reject the
null hypothesis for small values of X. Therefore small values of X should be in Rc

while large values should be in R. Before be describe what the significance level
is, we should take a closer look at the different situations that can occur when the
test either accepts or rejects the null hypothesis.

Depending on whether H0 or H1 is true and the outcome of the test (reject H0
or accept H0) one of four possible situations will occur. They are shown in Table
2.1. We see that two of the situations are correct decisions while the other two
are wrong decisions. We say that a type I error occurs when H0 is correct but
the test rejects the null hypothesis (Casella & Berger 2002, p. 382). A type II
error occurs when H1 is correct but the test accepts the null hypothesis (Casella &
Berger 2002, p. 382). The two types of errors are common for both parametric and
non-parametric hypothesis tests. In example (a) the logrank test commits a type
II error if the survival functions of the two groups really are different but the test
does not detect it. The logrank test commits a type I error if the survival functions
of the two populations are the same but the test rejects the null hypothesis. In
example (b) the test the manufacturer uses commits a type I error if it rejects the
null hypothesis (so that the manufacturer thinks the new ointment is better and
possibly accepts the research hypothesis) but really θ ∈ [0, 1

2 ]. The test commits
a type II error if it accepts the null hypothesis (so that the manufacturer thinks
the old ointment is the best and possibly rejects the research hypothesis), but

9



Table 2.1: The four different states that can occur when a statistical hypothesis test
either rejects or accepts H0 and in reality H0 is either true or false. Only one of the
states can be true for a given situation.

Test result Truth
H0 true H1 true

Accept H0 No error Type II error
Accept H1 Type I error No error

θ ∈ (1
2 , 1].

When considering parametric hypotheses it is possible to specify the hypotheses as
H0 : θ ∈ Θ0 and H1 : θ ∈ Θ1 (Casella & Berger 2002, p. 373), where Θ0 ∩Θ1 = ∅
(∅ is the empty set) and Θ0 and Θ1 are subsets of the parameter space. In many
cases Θ1 = Θc

0, i.e the complement of Θ0, so that the union of Θ0 and Θ1 is the
whole of the parameter space. We also let

Prθ0(X ∈ C)

denote the probability that X is in the set C when θ0 is the true value of the
parameter θ (Hogg et al. 2014, p. 440). Then the probability of a type I error
for each value of θ ∈ Θ0 is Prθ(reject H0) = Prθ(X ∈ R), while the probability
of a type II error for each value of θ ∈ Θ1 is Prθ(accept H0) = Prθ(X ∈ Rc) (?)=
1−Prθ(X ∈ R), where the equality in transition (?) follows since S = R∪Rc and
R ∩Rc = ∅ (so that Prθ(X ∈ S) = 1 = Prθ(X ∈ R) + Prθ(X ∈ Rc)). Then

Prθ(X ∈ R) =

probability of a type I error for each fixed θ ∈ Θ0,

1− probability of a type II error for each fixed θ ∈ Θ1.
(2.3)

Due to the previous observation we make the following definition: the power func-
tion of a parametric hypothesis test with rejection region R is a function of θ and
is defined to be (Casella & Berger 2002, p. 383)

γ(θ) = Prθ(X ∈ R). (2.4)

Since we do not know the value of θ before we do the hypothesis test, the power
function should be small, ideally 0, for most θ ∈ Θ0 and large, ideally 1, for most
θ ∈ Θ1 (Casella & Berger 2002, p. 383). We discuss the ideal situation γ(θ) ≈ 1
for most θ ∈ Θ1 in Section 2.7.

In Section 2.4 we stressed the difference between the research hypothesis and the
statistical hypotheses. We said that the statistical model could be wrong and

10



that the results from the statistical hypothesis test may tell nothing about the
research hypothesis. How then can then the statistical hypothesis test make a
correct or wrong decision in such cases? Should not the statistical test always be
wrong? When we use a statistical hypothesis test we assume that the underlying
statistical model is true. When H0 is correct the outcome of the experiment might
be a “very unlikely” realisation(s) from the probability distribution so that the
test wrongly rejects the null hypothesis. We always regard the outcome in the
experiment as a realisation from the probability distribution we have chosen to
model the real quantities with.

In the Neyman–Pearson approach to hypothesis testing we demand that the upper
bound on the maximum of the type I error probabilities of the test is below some
limit. This upper bound is called the significance level (Casella & Berger 2002,
p. 385) of the test. We say that a test with power function γ(θ) is a (significance)
level α test if

sup
θ∈Θ0

γ(θ) ≤ α (2.5)

Common significance levels are 0.05 or 0.01. From the definition of level α test, a
level 0.01 test is also a level 0.05 test. However, it is not common to say that a
level 0.01 test is a level 0.05 test. One of the reasons we define the level α test as
we have done becomes evident when we work with discrete distributions. Say that
you want a level 0.05 test. Due to the discreteness of the probability distribution
it may be that for a specific rejection region R you get supθ∈Θ0γ(θ) = 0.04, but
when you include one or more outcomes in R you get supθ∈Θ0γ(θ) = 0.06. We
then keep the first rejection region (assuming that is wisely constructed) since we
want a level 0.05 test. We also refer to supθ∈Θ0γ(θ) as the size of the test (Hogg
et al. 2014, p. 440).

The manufacturer in example (b) wants to do a traditional statistical hypothesis
test and sets the statistical significance level to 0.05. We know that large values
of X should be in R. We also know that we need to pick the θ ∈ Θ0 that
maximises Prθ(X ∈ R) = ∑

x∈R Prθ(X = x) when calculating the size of the
test. These two tasks, pick a rejection region and calculate supθ∈Θ0 Prθ(X ∈ R) =
supθ∈Θ0

∑
x∈R Prθ(X = x), might seem difficult to do at the same time. However,

the value of θ that will give the most probability mass on the outcomes that
potentially will be in the rejection region is θ = 1

2 . We have tried to illustrate
this in Figure 2.1. Here we have plotted the binomial distribution with 16 trials
for two different values of the success probability θ, θ = 0.4 and θ = 0.5. When
you decrease the value of θ from 0.5 less and less probability mass is placed on
the points that will be in the rejection region. We therefore only need to consider
γ(θ) = ∑

x∈R Prθ(X = x) for θ = 1
2 .
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We have that

Pr0.5(X = 11) + Pr0.5(X = 12) + Pr0.5(X = 13) + Pr0.5(X = 14)+
Pr0.5(X = 15) + Pr0.5(X = 16) ≤ 0.03841,

and also that

Pr0.5(X = 10) + Pr0.5(X = 11) + Pr0.5(X = 12) + Pr0.5(X = 13)+
Pr0.5(X = 14) + Pr0.5(X = 15) + Pr0.5(X = 16) ≤ 0.1051,

which means we should let the rejection region be R = {11, 12, 13, 14, 15, 16} to
get a (significance) level 0.05 test. The reason we select the significance level to
be as low as 0.05 is that when the test rejects the null hypothesis, we can be
quite certain that H1 is true (Borgan 2007) (if the statistical model is an adequate
model of the experiment). This also depends on the construction of the rejection
region and only holds if the rejection region consists of outcomes indicating that
H1 is correct. We could of course select outcomes with low value of X to be in
the rejection region, i.e possibly 0, 1 etc. However, since Pr0(X = 0) = 1 and
Pr0.065(X = 1) = 0.74, we would need to set R = ∅. Then the test would always
accept the null hypothesis and would never make a type I error. Even in cases
where 0 <supθ∈Θ0γ(θ) ≤ α this idea would not be a good one. We do control the
type I error probabilities, but the power will be much lower than if the rejection
rejection instead consists of points indicating that H1 is true.

As a note, if we choose to reject the null hypothesis we do not know the probability
of committing an error, since we do not know the true value of θ. Only under H0
we now the maximum type I error probability.

2.7 Perform the experiment and reject or accept
the null hypothesis

After choosing a test to be used in the parametric statistical hypothesis testing
procedure, which means selecting a test statistic and choosing an appropriate
rejection region so that the level of the test is below the significance level, and
after carrying out the experiment the test will tell you whether to accept or reject
the null hypothesis. In example (b), the outcome of the experiment is 10, which
means that the test at significance level 0.05 does not reject the null hypothesis.
However, if the new ointment really is better than the old one, how likely is it that
the manufacturer will discover it using the given test? To answer this question
we must look at γ(θ) for θ ∈ Θc

0. The power function is plotted in Figure 2.2
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Figure 2.1: Illustrations of the binomial probability mass function for two different
values of the success probability θ, but with the same number of trials, 16. The value of
θ used is given in the title of each subplot.
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for θ ∈ Θc
0. We see that the power function is a non-decreasing function for

θ ∈ Θ0. This makes intuitively sense: it should be easier to detect a larger success
probability compared to a smaller one (both above 1

2). We also see that the power
is above 80% when p ≥ 0.8 and it is about 1 when p ≥ 0.9. In Section 2.6 we
said that a theoretically desired property of the power function is that γ(θ) ≈ 1
for most θ ∈ Θ1. Should then the manufacturer be dissatisfied with the test? To
answer this question, we first look at three ways the manufacturer can increase
the power. The first way is to use a different test statistic resulting in a test with
better power properties. The second way is be to increase the significance level α
of the original test, since then the rejection region would be become bigger so that
we sum over more outcomes when we calculate the power. The third way is to
increase the number of trials in the experiment, i.e increase the sample size. With
the third approach the power still increases even if the significance level remains
the same. This also makes intuitively sense, since once you have more data it
should be easier to detect also “smaller” success probabilities (in Θc

0) compared to
when you have less data.

In Figure 2.3 we have plotted the power function γ(θ) for θ ∈ Θc
0 of the same

test (same test statistic T = T (X), the same significance level α, construction
region constructed similarly, same H0 and H1) but with n = 1000. We see that
γ(θ) ≈ 1 for θ ≥ 0.6 and that γ(θ) ≥ 0.8 for θ ≥ 0.58. From a pure mathematical
view, the power function depicted in Figure 2.3 is better than the one shown in
Figure 2.2 since the power is greater (or to be more exact; at least as great) at
each θ ∈ Θc

0. For instance, the power at θ = 0.6 is 1 when n = 1000 but below
0.20 when n = 16. It is therefore unlikely that the test with sample size 16 will
detect that the success probability is 0.6, but when n = 1000 this will be detected.
However, the manufacturer might prefer the sample size 16 over 1000. For starters
it is much cheaper to test less people, but more importantly it might be that the
manufacturer only wants the test to be able detect a success probability that is
higher than 0.8.

It is common practise to the set sample size large enough so that the power of
the test is at least 80 % at θ that are scientifically meaningful (Ambrosius 2007,
p. 70-72) (Sakpal 2004), i.e for the θ ∈ Θc

0 that the investigators want their test
to be able to detect. So in the ointment example when 1

2 < θ < 0.8 we could get
a statistically significant outcome when n = 1000, but if the manufacturer only
considers 0.8 ≤ θ ≤ 1 to be of practical importance, the result of the test would
not be considered practically significant. We do not know the true value of θ before
we do the statistical hypothesis test, otherwise it would not be necessary to do it.
We calculate power before we do the experiment to ensure that the power is high
enough (as mentioned, at least 80 %) for scientifically meaningful values of θ ∈ Θc

0
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and lower for the values that are not practically meaningful.

2.8 Simple and composite null hypotheses

In the null hypothesis in Equation (2.2) infinitely many values of the success
probability θ are possible and we call it a composite null hypothesis (Stuart &
Ord 1991, p. 795). If only one value is possible in the null hypothesis, such as
H0 : θ = 1

2 , H1 : θ 6= 1
2 , we call the null hypothesis for simple (Stuart & Ord 1991,

p. 795). Note that we do not make the same definitions for the alternative hypoth-
esis. The reason is that when we construct rejection regions we only consider the
distribution of the test statistic under the null hypothesis and the construction
is simpler when the null hypothesis is simple. Also later when we consider the
p-value, we will see that we calculate the p-value assuming the null hypothesis is
true and that it is easier to calculate the p-value when the null hypothesis is simple
compared to when it is composite.
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Figure 2.2: Power function for the hypothesis test with test statistic T (X) = X, X ∼
Binom(16, θ), and rejection region R = {x | 11 ≤ x ≤ 16}. The function is plotted for
θ ∈ Θc
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Figure 2.3: Power function for the hypothesis test with test statistic T (X) = X, X ∼
Binom(1000, θ), and rejection region R = {x | 526 ≤ x ≤ 1000}. The function is plotted
for θ ∈ Θc
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Chapter 3

The p-value approach to
statistical hypothesis testing
when the null hypothesis is
simple

The p-value approach to statistical hypothesis testing is an alternative to the
Neyman-Pearson approach. We start this section with presenting this method.
We then show how enumeration can be used to calculate the realisations of a p-
value and illustrate that the p-value is a random variable. We also introduce the
concept of validity.

3.1 Overview

An alternative approach to the traditional Neyman–Pearson approach to hypoth-
esis testing is the p-value approach. The main steps are the same as for traditional
hypothesis testing. However, we do not explicitly construct a rejection region and
do not reject or accept the null hypothesis depending on the value of the test
statistic. Instead we calculate the p-value. In this chapter we consider simple
null hypotheses when we define the p-value, i.e. we study null hypotheses of the
form

H0 : θ = θ0. (3.1)

The p-value can then be calculated as the probability (assuming the value of θ
in H0 to be the true value) of obtaining a value of the test statistic as least as
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contradictory to H0 as the value of the test statistic we get when we evaluate it in
the outcome of the experiment (Devore et al. 2012, p. 456). If the p-value is below
or equal to the significance level the test accepts the null hypothesis otherwise the
test rejects it. If we assume that large values of the test statistic T (X) indicate
that H1 is correct and the larger the value the stronger the indication, then the
p-value can be calculated as

p(x) = Prθ0(T (X) ≥ T (x)). (3.2)

Note that we have not explicitly specified an alternative hypothesis in Equation
(3.1). The reason is that the definition of p-value works for all types of alternative
hypothesis and that the calculation of the probability in Equation (3.2) does not
explicitly depend on the values of θ under H1. The choice of test statistic may
depend on the form of the hypothesis (this will hopefully become clear in Section
4.3), for instance we may prefer to use a different test statistic when H1 is two-
tailed, H1 : θ 6= θ0, compared to when it is one-tailed, H1 : θ < θ0 or H1 : θ > θ0,
but when the choice of test statistic has been made the values of θ in H1 do not
matter when we calculate the p-value

3.2 Use of enumeration to calculate p-values

When we consider discrete distributions where the sample space is finite we can
calculate the realisation of the p-value in Equation (3.2) by use of the exact distri-
bution of the test statistic, and not some large sample (asymptotic) distribution of
it, by using a method called enumeration, see for instance Verbeek & Kroonenberg
(1985). The steps in this method for calculating the p-value for a given outcome
x in the experiment are

1. List all the outcomes in the experiment (or list all elements in the sample
space of the random variable X).

2. Evaluate the test statistic in each outcome (and store these values).

3. For each outcome with test statistic greater than or equal to T (x), calculate
the probability of the outcome.

4. The realisation of the p-value is the sum of the probabilities calculated in
the previous step.

Mathematically we write the enumeration procedure as

p(x) = Prθ0(T (X) ≥ T (x)) =
∑

T (x′)≥T (x)
Prθ0(X = x′). (3.3)
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Table 3.1: Illustration of the enumeration method given in Section 3.2 used on example
(b) in Chapter 2 with simple null hypothesis H0 : θ = 1

2 instead of composite. The result
of step 1 is the leftmost table, the result of step 2 is the table in the middle and the
result of step 3 is the rightmost table. In step 4 the result is p(x) = p(10) = 0.227

x′

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

x′ T (x′)
0 0
1 1
2 2
3 3
4 4
5 5
6 6
7 7
8 8
9 9
10 10
11 11
12 12
13 13
14 14
15 15
16 16

x′ T (x′) Prθ0(X = x′)
0 0
1 1
2 2
3 3
4 4
5 5
6 6
7 7
8 8
9 9
10 10 0.12219
11 11 0.06665
12 12 0.02777
13 13 0.00854
14 14 0.00183
15 15 0.00024
16 16 0.00002

Sum 0.227

We illustrate this method when testing an adapted version of the hypotheses in
Equation (2.2) where we make H0 simple, i.e

H0 : θ = 1
2 , H1 : θ > 1

2 . (3.4)

The realisation in the experiment is still x = 10. The different steps are illustrated
in Table 3.1. If the manufacturer were to do the same calculations as we have done
it would get that the p-value is p(x) = p(10) = 0.227 so that the test would not
reject the null hypothesis at the 5% significance level.

As mentioned, the enumeration procedure works for all discrete distributions where
the sample space is finite. So the method can be used for instance either with the
multinomial or hypergeometric distribution. This also means that the procedure
does not work when the distribution is continuous such as when the outcome
follows the normal or chi square distribution.
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Table 3.2: The p-values for the different outcomes in the adapted version of the oint-
ment example where we test H0 : θ = 1

2 , H1 : θ ≥ 1
2 .

x′ Prθ0(X = x′)
0 0.99998
1 0.99974
2 0.99791
3 0.98936
4 0.96159
5 0.89494
6 0.77275
7 0.59819
8 0.40181
9 0.22725
10 0.10506
11 0.03841
12 0.01064
13 0.00209
14 0.00026
15 0.00002
16 0

3.3 The p-value as a random variable

In Table 3.2 we have calculated all the possible p-values in the adapted version
of the ointment experiment (where we consider the hypotheses in Equation (3.4))
using Equation (3.3)). Although we calculate the p-value as a probability, we see
from Table 3.2 that the p-value acts like a random variable. The reason we observe
this behaviour is that the “summation limit” T (x) in Equation (3.3) is a random
variable. We calculate the p-value using Equation (3.3) once we have observed
the realisation of T (x) in the experiment. This means that we calculate different
p-values if we in one run of the experiment observed T (x) = 10 compared to if we
observed T (x) = 13 in another run. Therefore the p-value should be considered a
random variable and not a fixed probability.

Since we calculate the p-value using Equation (3.3) we can view the p-value as a
special transformation of the test statistic T (X). Because the test statistic is a
function of the data, the p-value is also a function of the data. So it is natural
to consider the p-value as a test statistic, i.e p = p(X). Since we calculate the
realisations of p(X) as probabilities, p(X) takes values between 0 and 1. Is is
therefore more correct to refer to the calculated values p(1) or p(10) as realisations

21



of the p-value p(X) and not as the p-value itself. This is the same as differentiating
between the observed values of a random variable and the random variable itself,
which is common practise in statistics (see for instance Verzani (2013, p. 195) for
a brief note or Georgi (2014, p. 211) for a longer note). This practise does not
seem to be common for the p-value. For instance in Walpole et al. (2012, p. 334)
they say that “The P -value can be viewed as simply the probability of obtaining
these data given that both samples come from the same distribution.”. If we talk
of the p-value as a probability, then it should not change from experiment to
experiment. In this book they also say that “Compute the P -value based on the
computed value of the test statistic” (Walpole et al. 2012, p. 233). So we compute
the p-value but calculate the value of the test statistic. From now on we refer to
the different calculated values of p(X) as realisations or observations of p(X) to
hopefully make it clearer that p(X) is a random variable and not a probability.
One could argue that writing p = p(X) should be enough (since if X is a random
variable and p is a function of the random variable, p should be a random variable
as well), but we want to make the distinction between the two views as clear as
possible.

At the beginning of Section 3.1 we said that after having calculated the p-value in
an experiment, the test rejects H0 if p(x) ≤ α. We want this procedure to provide
a valid level α-test. We know from Equation (2.5) that a (significance) level α-test
satisfies

Prθ(reject H0) ≤ α

for all θ ∈ Θ0. Since Prθ(reject H0) = Prθ(p(X) ≤ α) in the p-value procedure, we
want that

Prθ(p(X) ≤ α) ≤ α, (3.5)

to hold for all θ ∈ Θ0 and all significance levels α ∈ [0, 1]. A p-value p(X) that
satisfies Equation (3.5) is said to be a valid p-value (Casella & Berger 2002, p. 397).
In Section 3.5 we show that the p-value defined in Equation (3.2) is valid.

We evaluate tests based on p-values in the same fashion as we evaluate other
hypothesis tests, i.e by considering the power function of the test. For a test based
on the p-value p(X) the power function takes the form

γ(θ) = Prθ(reject H0) = Prθ(p(X) ≤ α). (3.6)

We noted at the start of Section 3.1 that we do not construct a rejection region
when we use the p-value approach to statistical hypothesis testing. Furthermore,
we are not interested in knowing the exact distribution of the p-value for different
values of θ. So how do we evaluate the power function in Equation (3.6)? The
answer is that we use a process similar to that of enumeration:

22



1. Calculate all the realisations of the p-value for each outcome using the enu-
meration procedure outlined in Section 3.2

2. For each realisation of the p-value equal to or below α calculate the proba-
bility of the corresponding outcome where you use the value of θ at which
you want to evaluate the power function.

3. The value of the power function at θ is the sum of the probabilities in the
previous step.

Mathematically we write the previous procedure as

γ(θ) = Prθ(p(X) ≤ α) =
∑

p(x)≤α
Prθ(X = x).

If we use the outlined procedure to calculate the power in the test of Equation
(3.4), we see that we sum over the same outcomes as when we calculated the power
in the original example, see Table 3.2, since we consider the outcomes x = 11 to
x = 16 in both cases. This means the power functions are the same for θ ∈ Θc

0
and therefore Figure 2.2 also illustrates the power of both tests.

3.4 Interpretation of the p-value when the null
hypothesis is simple

Since we work in a frequentist setting we can interpret each realisation of the p-
value defined in Equation (3.2) as the long run proportion of experiments where
we get a test statistic as least as extreme as the original value of the test statistic
when H0 is true. We explain this interpretation in the setting of the ointment
experiment. Imagine that the manufacturer of the ointment is to do n independent
runs of the experiment. The probability Prθ(T (X) ≥ T (10)) is then the long-run
proportion of the independent trials where a test statistic as least as large as T (10)
is observed (i.e x ≥ 10). Since p(10) equals Prθ(T (X) ≥ T (10)), p(10) must have
the same interpretation as Prθ(T (X) ≥ T (10)).

We now make some comments about p-values that we hope clarify how they should
be interpreted when the null hypothesis is simple. The first comment is that the
p-value indicates how much evidence the data or outcome of the experiment gives
against the null hypothesis (Wasserstein & Lazar 2016). The smaller the realisation
of the p-value, the more evidence there is that the null hypothesis is false. So a
p-value of 0.0002 is stronger evidence against the null hypothesis than a p-value
of 0.01. The reason is that a lower p-value means the probability of observing
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a outcome as least as contradictory to H0 in a future run of the experiment as
the value we already have observed is lower compared to when the p-value is
higher (where we calculate the probabilities assuming the null hypothesis is true).
However, we cannot compare a p-value in an experiment with a p-value in another
experiment if the number of trials are different even if we compute both the p-values
using Equation (3.2) and use the same test statistic. The reason is that the sample
spaces are different so that the power functions may be different. Furthermore,
if we use different test statistics in the same experiment we cannot compare the
p-values since they order the sample space differently.

In Section 2.7 we said that a statistically significant result is not the same as prac-
tically significant result. The same holds for the p-value procedure for hypothesis
testing, so even if a p-value indicates how much evidence there is against the null
hypothesis, it does does not measure the the importance or practically signifi-
cance of a result (Wasserstein & Lazar 2016). We can demonstrate this fact in
the ointment example. Let us say that the manufacturer, hypothetically, performs
the experiment on 1,000,000 persons and the true value of θ is 0.51 (so that the
binomial model is indeed an appropriate statistical model and the true value of
the success probability is 0.51). After specifying a significance level we can cal-
culate the test power. Even if the manufacturer specifies the significance level as
low as for instance 5 · 10−10 the test power at 0.51 is 1. This means we observe
would observe a very small realisation of the p-value in the experiment (given that
θ = 0.51) (Lin et al. 2013). However, the success probability is most likely of no
practical importance.

Our last comment is about another quantity the realisations of p-values do not
measure. They do not tell you anything about the probability of the studied null
or alternative hypothesis being true (Wasserstein & Lazar 2016). Either θ ∈ Θ0 or
θ ∈ Θc

0 and θ is not a random variable (since we work in a frequentist setting). This
means statements such as Pr(H0) = 0.05, Pr(θ ∈ Θ0) = 0.05 or Pr(θ ∈ Θc

0) = 0.95
based on the realisation of the p-value being 0.05 are wrong. One could say that
Pr(θ ∈ Θ0) or Pr(H0) is 1 or 0 depending on whether the null hypothesis is true or
false (the same holds for Pr(θ ∈ Θc

0) or Pr(H1)), but the realisation of the p-value
does not tell you anything about these probabilities.
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3.5 Proof of Equation (3.2) defining a valid p-
value

We want to show that the p-value in Equation (3.2) is a valid p-value, i.e that

Prθ0(p(X) ≤ α) ≤ α, (3.7)

holds for all α ∈ [0, 1]. The proof is valid for all simple null hypotheses where we
use a test statistics for which large values indicate that the alternative hypothesis
H1 is true and the larger the value the stronger the indication.

We start by selecting a significance level 0 ≤ α ≤ 1 and set

tL = min{t | Prθ0(T (X) ≥ t) ≤ α}. (3.8)

There are two situations that can occur for a given α

1. The set on the right hand side of Equation (3.8) is non-empty

2. The set on the right hand side of Equation (3.8) is empty

Situation (2) can occur since Prθ0(T (X) = t) > α is possible for the largest possible
value of t when we consider discrete distributions.

We first consider situation (1). In Equation (3.8) we select the t so that Prθ0(T (X) ≥
t) is closest to α among the t so that Prθ0(T (X) ≥ t) ≤ α. We then have that
the test with rejection region R = {x | T (X) ≥ tL} is a level α-test and have as
large rejection region as possible (that is also wisely constructed). The realisations
of the p-value for the outcomes in the rejection region are lower than or equal to
α. For the outcomes in the acceptance region, the realisations of the p-value are
higher than α. The probability that the p-value is below or equal to α is therefore
given by

Prθ0(p(X) ≤ α) = Prθ0(T (X) ≥ tL) = Prθ0(reject H0) = Prθ0(X ∈ R) ≤ α,

since we have a level α-test.

In situation (2) it could for instance be that there exists tl and tu so that∑
T (tl)≤T (x)≤T (tu)

Prθ0(X = x) ≤ α,

However, we construct the rejection region by starting with the empty set and
then “adding” the outcomes by descending order of the test statistic. When we
add elements we begin with the most extreme value of the test statistic and then
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add outcomes until we have the test with size closet to (i.e smaller than) or equal
to α. In situation (2) the rejection region is empty since Prθ0(T (X) = t) > α for
the largest possible value of t. This means that all p-values are greater than α so
that

Prθ0(p(X) ≤ α) = 0 ≤ α.

The two situations we have considered for a given α will hold for all α ∈ [0, 1].
This means we have shown Equation (3.7) to hold for all α ∈ [0, 1], which means
the p-value is valid.
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Chapter 4

Theory: Testing equality of
binomial proportions

In this chapter we construct tests of equality of success probabilities in two inde-
pendent binomial distributions.

4.1 Introduction

This section is organized as follows: we start by introducing the hypotheses studied
when testing equality of success probabilities in two independent binomial distri-
butions, then we give examples where it is possible to study these hypotheses and
finally we introduce methods for creating p-values.

4.1.1 Null and alternative hypothesis and examples

When testing the equality of the success probabilities in two independent binomial
distributions the null and alternative hypothesis can be formulated as

H0 : θ1 = θ2, H1 : θ1 6= θ2, (4.1)

where X1 ∼ Binom(θ1, n1), X2 ∼ Binom(θ1, n2) and X1 and X2 are independent.
This means Θ0 = {(θ1, θ2) | θ1 = θ2, 0 ≤ θ1, θ2 ≤ 1} and Θc

0 = {(θ1, θ2) | θ1 6=
θ2, 0 ≤ θ1, θ2 ≤ 1}.

We now consider two examples where it is natural to compare two independent
binomial proportions. In the first example, example (c), researchers have developed
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Table 4.1: Reccurence of tumors in the patiens recieving tratment and the patients
reciveing placebo in example (c). The coloumn titles “Yes” and “No” referes to recurrence
of tumor.

Yes No Total
Treatment 17 121 138
Placebo 53 76 129

a new treatment to prevent recurrence of benign tumours in the big intestine and
the rectum (Meyskens et al. 2008). The researchers assign the treatment randomly
to 138 of the 267 study subjects and give placebo to the rest. This is thus a
randomized experiment. The results are summarised in the 2 × 2 table in Table
4.1. The number of study subjects receiving the treatment and the number of
subjects receiving the placebo are fixed by design. If the researchers were to do
another run of the experiment, the only quantities that can vary are the numbers of
subjects with recurrent tumours and non-recurrent tumours. It is therefore natural
to consider these numbers as realisations of random variables. One possibility is
to model each of the subjects receiving treatment as independent realisations of
Bernoulli random variables with same success probability θ1, where Ii1 = 1 if
a tumour recurs in subject i receiving treatment and 0 otherwise and let X1 =
I11 + · · · + In11 where n1 = 138. Similarly they can model each of the subjects
receiving placebo as independent realisations of Bernoulli random variables, with
the different success probability θ2 and let X2 = I12 + I22 + I32 + · · ·+ In22, where
Ii2 = 1 if the tumour recurs in subject i receiving placebo and 0 if no tumour recurs
and n2 = 129. Then X1 ∼ Binom(θ1, n1) and X2 ∼ Binom(θ2, n2) independently.
Since they want to know if the treatment has an effect on the recurrence of tumours
in the rectum and big intestine, they should consider the same null hypothesis as
in Equation (4.1). They could also study the same alternative hypothesis.1

In the other example, example (d), researches want to decide if certain genes can
cause severe near-sightedness (myopia) (Zhao et al. 2011). If you are unfamiliar
with genetics and want to understand this example, a short introduction to the
relevant concepts needed are given in Appendix A. The researches do a case control
study. This is an observational study. Here we sample individuals with and without
severe near-sightedness. The individuals with near-sightedness are called cases and

1However, it does not seem plausible that the treatment should be worse than placebo, so
they should not consider a two-sided alternative hypothesis but instead consider

H1 : θ1 > θ2.

This means the researchers should consider the same null hypothesis as in Equation (4.1) but a
different alternative hypothesis.
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those subjects without are called controls (Silva 1999). So when we sample cases
or controls we know beforehand that they have severe near-sightedness or not.
Afterwards we measure if cases and controls have unequal level of exposure to a
factor. In our case this means we want to find out if at some loci, the genotype
frequencies depend on the case/control status. If so then different genotypes are
likely to give contributions to the phenotype depending on the case/control status
and some of the genotypes could cause severe near-sightedness. Near sightedness is
a quantitative trait, which means that this trait is caused by both several genes and
environmental conditions that act together. This means for instance a single gene
cannot cause severe near sightedness by itself. The researchers have genotyped
several SNP-loci, but we only consider one of these. Furthermore, the researches
have studied 103 cases and 97 controls. The results are shown in Table 4.2.

If we were to genotype the same number of cases and controls as done in example
(d) but use different individuals, then we would most likely not obtain the same
values as in Table 4.2. It is therefore natural to consider the numbers as realisations
of random variables. One possibility is to model the data in each row as realisations
from two multinomial distributions (Balding et al. 2003, p. 944). Normally we
assume the SNP is in gametic disequilibrium with a causal locus and hope the
SNP is linked to the causal locus. However, if we assume that the SNP is the
causal loci and assume that the A-allele is dominant, then the individuals with the
AA genotype and the AB genotype get the same contribution to the trait from
this locus. This is called a dominant model (Ziegler & König 2010, p. 269) and
the model is studied in Zhao et al. (2011). Since individuals with genotypes AA
and AB get the same contribution to the trait from this locus, we should group
the individuals with these two genotypes together. By grouping the mentioned
genotypes together we get Table 4.3. One possibility is then to model each row
in Table 4.3 with the binomial model. If we let X1 denote the number of controls
with AA or AB genotypes, then we assume X1 ∼ Binom(θ1, 97). And if we let
X2 denote the number of cases with the AA or AB genotypes we assume that
X2 ∼ Binom(θ2, 103). We want to study whether or not it is more likely that one
of the two genotype groups makes contributions depending on case/control status,
i.e we want to find out if θ1 = θ2 or θ1 6= θ2. If θ1 6= θ2 this would indicate the
SNP-locus is associated with severe near-sightedness. We therefore want to study
the hypotheses in Equation (4.1).
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Table 4.2: The different numbers of genotypes at the studied SNP-locus in the myopia
study. We denote the alleles at the locus A and B.

AA AB BB Total
Controls 17 51 29 97
Cases 39 44 20 103

Table 4.3: A dominant model for the A allele is assumed at the studied locus in
the severe near-sightedness study, which means we put the individuals with AB or AA
genotypes in the same group.

AA+AB BB
Controls 68 29
Cases 83 20

4.1.2 Methods for calculating p-values when the null hy-
pothesis is composite

Under the null hypothesis in Equation (4.1) θ = θ1 = θ2 can take infinitely many
values, since all points on the line from (0, 0) to (1, 1) are possible values of (θ1, θ2).
In Figure 4.1 we have illustrated the parameter space. Since the null hypothesis is
composite we cannot use Equation (3.3) when calculating the realisation of the p-
value. We initially consider four different methods for generating a p-value. They
are

1. the maximisation (M) p-value, where we calculate the realisations as

pM(x) = sup
θ∈Θ0

Prθ(T (X) ≥ T (x)) (4.2)

Casella & Berger (2002, p. 397). Lloyd (2008) refers to this as the worst case
p-value since we calculate the realisation of the p-value in each simple null
hypothesis and pick the one that gives the largest value.

2. the estimation (E) p-value, where we replace θ0 in Equation (3.7) with the
maximum likelihood estimate of θ = (θ1, θ2) under H0 using the observed
outcome x in the experiment. Bayarri & Berger (2000) refer to this as the
plug-in p-value and Lloyd (2008) refer to this as the estimated p-value. The
realisations of the E p-value are therefore given by

pE(x) = Prθ̂(T (X) ≥ T (x)), (4.3)

where θ̂ is the maximum likelihood estimate of θ under H0 based on x.
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Figure 4.1: Illustration of the parameter space Θ = {(θ1, θ2) | 0 ≤ θ1 ≤ 1, 0 ≤ θ2 ≤ 1)}
when X = (X1, X2), X1 ∼ Binom(θ1, n1) and X2 ∼ Binom(θ2, n2). The parameter
space consists of the points on or inside the square with corners (0, 0), (1, 0), (1, 1), (0, 1).
Under H0 in Equation (4.1) only the points on the dotted line are possible.
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3. the conditional (C) p-value where we condition the test statistic on a suffi-
cient statistic S(X) for θ under H0 (Casella & Berger 2002, p. 399). So the
realisations of the C p-value are given by

pC(x) = Pr(T (X) ≥ T (x) | S(X) = S(x)), (4.4)

where the probability does not depend on θ since S(X) is sufficient under
H0.

4. the asymptotic (A) p-value where we use a large sample distribution of T (X)
under H0, which is free of θ (see for instance Walpole et al. (2012, p. 363–
364) or Høyland (1986, p. 80–81). We therefore calculate the realisations of
this p-value as

pA(x) = Pr(Y ≥ T (x)), (4.5)

where T (X) d→ Y .

In Section 4.6 we show that pA(X) and pE(X) are asymptotically valid and that
pC(X) and pM(X) are valid.

Before we illustrate how we calculate the realisations of the different p-values we
need a test statistic. We consider different candidates for the test statistic in
Section 4.3. We want to apply the different methods on only one test statistic. In
the next section we review some of the theory necessary to calculate the realisations
of the p-values and also the theory needed to find the large sample distribution of
a test statistic.
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4.2 Review of theory

In this section we give a review of the theory needed in the different methods
for creating a p-value and the theory needed to be able to find a large sample
distribution of a test statistic.

4.2.1 Sufficiency

A statistic S(X) is sufficient for a parameter θ if

Prθ(X = x | S(X) = s) = Pr(X = x | S(X) = s), (4.6)

holds for all values s such that Prθ(S(X) = s) > 0 (Casella & Berger 2002, p. 272–
273) i.e the conditional distribution of X given the value of the sufficient statistic
S(X) does not depend on the parameter θ.

When testing equality of independent binomial proportions the joint probability
mass function (pmf) under H0 is given by

Prθ(X1 = x1, X2 = x2) =
(
n1

x1

)(
n2

x2

)
θx1+x2(1− θ)n1+n2−(x1+x2). (4.7)

The joint pmf depends on θ. Equivalently we can think that outcomes from the
experiment (which are realisations distributed according to the stated pmf under
H0) carry information about θ. To understand this, we should try to picture the
joint pmf. In the figure in the lower panel of Figure 2.1 we have plotted the pmf
of X1 when θ = 0.5 and n1 = 16. The pmf of X2 will have a similar shape (in
the sense that it has a peak around n2θ, and since θ is the same the peak will be
around n2/2. The shape can be a little different since n2 need not equal n1, so that
it might appear either elongated or compressed.) When imaging the joint pmf it
may help to think that for each fixed value of x2, the shape of the pmf along the
x1-axis is exactly the same as in the figure in the bottom of Figure 2.1, but all the
values are multiplied with Prθ(X2 = x2). When θ → 0 more and more of the mass
of the joint mass function is concentrated around the origin and when θ → 1 more
and more of the mass is concentrated around (x1, x2) = (n1, n2). This also means
the long run frequency of each possible realisation from the joint distribution will
change as θ changes. It is therefore natural to think that the outcomes in the
experiment carry information about θ. This also means a function of the outcome
carry information about θ. We would like that the function of the outcome captures
all the information about θ there is, since when we know the value of this function
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there is no need to know the outcome in the experiment in order to get more
information about θ.

The sufficient statistic captures all the available information about θ there is in
the outcome X, since once we know this value the distribution of the outcome is
independent of θ. This means once we know the value of the sufficient statistic,
the outcome cannot tell us anything further about θ. To show that a statistic is
sufficient we can either guess a statistic and condition the outcome in the exper-
iment on it and show that this conditional distribution is independent of θ or we
can use the factorisation theorem.

Theorem 4.2.1 (Factorisation theorem) If f(x; θ) denotes the joint probabil-
ity mass function of the outcome in an experiment X then

S(X) is sufficient for θ

if and only if

There exists functions g(s; θ) and h(x) so that
f(x; θ) = g(S(x); θ)h(x) (4.8)

for all outcomes x and values of the parameter θ, see e.g Casella & Berger (2002, p. 276)

If we try to factor the joint probability mass in Equation (4.7) as done in the
factorisation theorem we get that

f(x; θ) =
(
n1

x1

)(
n2

x2

)
θx1+x2(1− θ)n1+n2−(x1+x2) = θS(x)(1− θ)n1+n2−S(x)h(x)

= g(S(x); θ)h(x),
(4.9)

where S(x) = x1 + x2 and h(x) =
(
n1
x1

)(
n2
x2

)
. This means that T (X) = X1 +X2 is

sufficient for θ under H0. We also want the conditional distribution ofX given the
value of the sufficient statistic. We have thatX1+X2 is binomially distributed with
parameters θ and n1 + n2 since the three conditions for the binomial distribution
are satisfied: 1) we have n1 + n2 independent trials since the n1 trials where X1
gives the number of successes are independent and independent of all the n2 trials
where X2 gives the number of successes. The same holds for the n2 trials. 2) In
each trial there are two outcomes, either success or failure. And 3) in each trial
the probability for success is θ. One should also note that X1 +X2 = s specifies a
line in the x1x2-plane. This line has slope −1, i.e X1 = s − X2 or X2 = s − X1.
Therefore the distribution of X = (X1, X2) given X1 +X2 = s is one dimensional.
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We get

Pr(X1 = x1, X2 = x2|S(X) = s) (?)= Prθ(X1 = x1, X2 = x2, X1 +X2 = s)
Prθ(X1 +X2 = s)

??= Prθ(X1 = x1, X2 = s− x2)
Prθ(X1 +X2 = s)

(???)= Prθ(X1 = x1)Prθ(X2 = s− x1)
Prθ(X1 +X2 = s)

(????)=

(
n1
x1

)
θx1(1− θ)n1−x1

(
n2
s−x1

)
θs−x1(1− θ)n2−(s−x1)(

n1+n2
s

)
θs(1− θ)n1+n2−s

=

(
n1
x1

)(
n2
s−x1

)
θs(1− θ)n1+n2−s(

n1+n2
s

)
θs(1− θ)n1+n2−s

=

(
n1
x1

)(
n2
s−x1

)
(
n1+n2
s

) ,

(4.10)
where we see that the resulting distribution is one dimensional, as previously
explained. We use Bayes rule in transition (?). Transition (??) is only valid if
x1 + x2 = s. We try to give some further insight into this transition. The event
{X1 +X2 = s} is the collection of all outcomes such that x1 +x2 = s. In the event
{X1 = x1} x1 can be any possible value of X1 and in the event {X2 = x2} x2 can
be any possible value of x2. When we intersect {X1 = x1} with {X2 = x2}, x1 and
x2 can still be any possible value of respectively X1 and X2 since X1 and X2 are
independent random variables. However, when we intersect {X1 = x1, X2 = x2}
with {X1 + X2 = s} the only possible outcome is (x1, x2) such that x1 + x2 = s.
This means only one of X1 or X2 is free to vary. We choose X1 to be the free
random variable. When X1 = x1 we know X2 must be s − x1. We could of
course have chosen X2 as the free random variable. Then the result would be(
n1
s−x2

)(
n2
x2

)
/
(
n1+n2
s

)
instead of the stated expression. In transition (? ? ?) we use

thatX1 andX2 are unconditionally independent and finally in transition (????) we
use that X1 ∼ Binom(θ, n1), X2 ∼ Binom(θ, n2) and X1 +X2 ∼ Binom(θ, n1 +n2)
under H0.

4.2.2 Maximum likelihood estimators of θ, θ1, θ2

When the outcome in an experiment is X and the joint probability mass function
is given by f(x;θ) the likelihood function is L(θ;x) = f(x;θ), i.e the likelihood
function has the same expression as the joint probability mass function but we
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view it as a function of θ and not as a function of x. The maximum likelihood
estimator (mle) is then defined as

θ̂ML = arg max
θ

L(θ;x) = arg max
θ

f(x;θ). (4.11)

To be more correct we find the realisation of the maximum likelihood estimator by
using Equation (4.11). The maximum likelihood estimator is found by replacing
x with X in the result in Equation (4.11). The observed value of the maximum
likelihood estimator is the value of the parameter θ that maximises the probability
of obtaining the observed outcome in the experiment (Christensen 1998, p. 252).
This holds for all observed outcomes.

From Equation (4.7) the likelihood function when testing equality of independent
binomial proportions under H0 is

L(θ;x) =
(
n1

x1

)(
n1

x2

)
θx1+x2(1− θ)n1+n1−(x1+x2).

We know θ ∈ [0, 1], which is a closed and finite interval. Furthermore L is a
continuous function of θ. From the extreme value theorem (Theorem 6) in Adams
& Essex (2010, p. 233) L(θ,x) must have an absolute maximum and minimum
on [0, 1]. We must look for candidates among 1) critical points, 2) singular points
and 3) endpoints. Since L(θ;x) is an infinitely many times differentiable function
of θ it has no singular points. Furthermore L(0;x) = L(1;x) = 0, which give the
values of the likelihood function at the two endpoints.

We have that ln u is a strictly increasing function of u, which means ln u1 < ln u2
if and only if u1 < u2. Therefore critical points of u are the same as critical points
of ln u. So when we want to find the critical points of L(θ;x) we can instead
find the critical points of ln L(θ;x), which is easier. By differentiating ln L with
respect to θ we get

d ln L(θ;x)
dθ

= d
dθ

(
ln
((

n1

x1

)(
n2

x2

))
+ (x1 + x2)ln θ + (n1 + n2 − (x1 + x2))ln(1− θ)

)

= x1 + x2

θ
− n1 + n2 − (x1 + x2)

1− θ .

Solving d lnL(θ;x)
dθ = 0 for θ gives

θCP = x1 + x2

n1 + n2
.
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We see that L(θCP ;x) > 0. Since the likelihood function is 0 at the endpoints,
θCP must give the absolute maximum of L(θ;x) on [0, 1]. The maximum likelihood
estimator of θ under H0 is then

θ̂ML = X1 +X2

n1 + n2
. (4.12)

By similar calculations we can show that the maximum likelihood estimator of θ1
is given by

θ̂1,ML = X1

n1
. (4.13)

and that the maximum likelihood estimator of θ2 is given by

θ̂2,ML = X2

n2
. (4.14)

4.2.3 Types of convergence

Convergence in probability

A sequence of random variables {Xn, n ≥ 1} = {X1, X2, . . .} converges in proba-
bility to the random variable X if for every ε > 0

lim
n→∞

Pr(|Xi −X| ≥ ε)→ 0, (4.15)

or equivalently
lim
n→∞

Pr(|Xi −X| < ε)→ 1, (4.16)

which we in shorthand notation write as Xn
p→ X (Casella & Berger 2002, p. 232).

It is important to realise that the limit in Equation (4.15) consists of real numbers
between 0 and 1 and that this sequence of numbers either converges to 0 or 1
depending on which of the two equivalent formulations we use. Roughly speaking,
when Xn

p→ X then Xi and X tend to take more and more similar values as i gets
larger.

Consistency

Consider a sequence {Tn, n ≥ 1} = {T1, T2, . . .}, where Ti = Ti(X1, . . . , Xi), of
estimators for some unknown real valued function φ(θ). We have that the given
sequence is consistent for φ(θ) if and only if

Tn
p→ φ(θ)

(Mukhopadhyay 2000, p. 380).

37



Convergence in distribution

A sequence of random variables {X1, X2, . . .} converges in distribution to a random
variables X if

lim
n→∞

FXn(x) = FX(x)

at all points x where FX(x) is continuous, which we write as

Xn
d→ X

(Casella & Berger 2002, p. 235). As noted in Casella & Berger (2002, p. 235)
it is really the sequence of pmfs and not the sequence of random variables that
converge. We also note that convergence in probability to a random variable X
is stronger than convergence in distribution. The reason is that when a sequence
of random variables converge in probability the Xi tend to take more and more
similar values as X when i increases but when the sequence converges in distri-
bution we only know that their distribution functions tend to be more and more
similar as i increases, which does not does tell us anything about how similar the
values of X and Xi are when i increases. In can be shown that convergence in
probability implies convergence in distribution (see for instance Casella & Berger
(2002, p. 236)).

4.2.4 Convergence results

Theorem 4.2.2 (The weak law of large numbers) If X1, X2, . . . , is a sequence
of iid random variables where E(Xi) = µ and Var(Xi) <∞, then

X̄ = 1
n

n∑
i=1

X̄
p→ µ

(Casella & Berger 2002, p. 233). According to Theorem 4.2.2 the sample mean X̄
is a consistent estimator for µ and is thus a natural estimator for µ. Note that if
X̄

p→ Y where for instance Y ∼ N(0, 1), then X̄ would be useless as an estimator
for µ since once given an infinite amount of information the estimator does not
produce the true value of µ.

Theorem 4.2.3 (The central limit theorem) If X1, X2, X3, . . . is a sequence
of iid random variables where E(Xi) = µ and Var(X) = σ2 < ∞ and we let
X̄ = 1

n

∑n
i=1Xi then

X̄ − µ√
Var(X̄)

=
√
n

(X̄ − µ)
σ

d→ N(0, 1)
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(Casella & Berger 2002, p. 238). We try to give some insight into Theorem 4.2.3.
From Theorem 4.2.2 we know that X̄ p→ µ. We have that Var(X̄) tends to 0 as
n→∞. This means we divide “oscillations” around the mean µ by a number that
tends to 0, which means we blow the oscillations up. The result is random variable
distributed as a standard normal variable. Alternatively, since we multiply X̄−µ

σ

by
√
n in Equation (4.2.3) we can think that we blow the oscillations up (i.e the

term X−µ
σ

) by multiplying with this term.

Theorem 4.2.4 (Slutsky’s Theorem) If Xn
d→ X and Yn

p→ a (a is a con-
stant) then YnXn

d→ aX (Casella & Berger 2002, p. 239–240).

Theorem 4.2.5 If the sequence {X1, X2, . . .} converges in probability to the ran-
dom variable X and if h(u) is a continuous function of u then the sequence
{h(X1), h(X2), . . .} converges to h(X) (Casella & Berger 2002, p. 233).

Proof:
Recall the definition of continuity. If f is continuous at a point a, then for every
ε > 0 there exists a δ > 0 such that (Adams & Essex 2010, p. 88)

|x− a| < δ ⇒ |f(x)− f(a)| < ε.

This means if h is continuous then for very ε > 0 there exists a δ > 0 such
that

Pr(|X − Y |) < δ ⇒ Pr(|h(X)− h(Y )| < ε.

Also recall the definition of a sequence that converges to a number L. We say that
lim xn = L if there for every ε > 0 exists a positive number k = k(ε) such that
|xn − L| < ε holds when n ≥ k (Adams & Essex 2010, p. 498).

To prove the theorem we need to show that there for every ε2 exists a number k2
such that

|Pr(|h(Xn)− h(X)|)− 1| < ε2

whenever n ≥ k2. Since h is continuous and Xn converges in probability to X, we
know we can find ε3 and k3 such that

|Pr(|Xn −X|)− 1| < ε3 ⇒ |Pr(|h(Xn)− h(X)|)− 1| < ε2

holds whenever n ≥ k3. This means h(Xn) converges in probability to h(X).

The result in Theorem 4.2.5 is very intuitive. We know that Xn converges to X
in probability so that Xn and X take more and more similar values as n grows,
and since h is continuous we should be able to get h(Xn) as “close” as we want to
h(X) by choosing n big enough.
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Theorem 4.2.6 We have that

Xn
p→ µ

if and only if
Xn

d→ X

where

FX(x) =

0 if x < µ

1 if x > µ

(Casella & Berger 2002, p. 236). Theorem 4.2.6 means convergence in probability
and convergence in distribution are equivalent when the limit is a constant.

Theorem 4.2.7 (Consistency of maximum likelihood estimators) Let
X1, X2, . . . , Xn be iid X where X has density function f(x; θ), define the likelihood
function by L(θ;x) = ∏n

i=1 f(xi; θ) and assume that θ̂ is the maximum likelihood
estimator of θ. Then, under some regularity conditions (see for instance Casella
& Berger (2002, p. 516))

τ(θ̂) p→ τ(θ).

(Casella & Berger 2002, p. 470). Theorem 4.2.7 states that τ(θ̂) is a consistent
estimator of τ(θ). Intuitively, when we get more and more data an estimator
should be able to estimate a parameter with better and better precision. It then
seems intuitive that the maximum likelihood estimator should tend to take values
closer and closer to τ(θ) (i.e the function of θ it is estimating) as the sample size
increases if it is to be regarded as a reasonable estimator for τ(θ). This is exactly
what the above result states.

4.3 Different test statistics

When using the different methods for creating a p-value we need a test statistic. In
this section we consider different candidates for the test statistic and find a large
sample distribution of each candidate. We want to use the same test statistic
in each of the four mentioned methods for creating a p-value given in Section
4.1.2.
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4.3.1 The test statistic |D|

When testing the hypotheses in Equation (4.1) an intuitive test statistic isD(X1, X2) =
θ̂1,ML− θ̂2,ML where θ̂1,ML is given by Equation (4.13) and θ̂2,ML is given by Equa-
tion (4.14), i.e we look at the difference between the maximum likelihood estima-
tors of θ1 and θ2 (Høyland 1986, p. 80). However, both large and negative numbers
with large magnitude indicate that H0 is not true. We only want large numbers to
indicate that H0 is not true, and the larger the value the stronger the indication.
One possible solution is to look at the absolute value of D, i.e consider

|D|(X1, X2) = |D(X1, X2)| =
∣∣∣∣X1

n1
− X2

n2

∣∣∣∣
Purpose of the test statistic

Before we consider the asymptotic distribution of |D|, we take a closer look at
the purpose of the test statistic. From Section 2.6 we know that the test statistic
T is a real valued function of the outcome X in an experiment (i.e T = T (X)
and ∀x ∈ S, T (x) ∈ R) and the higher the value of the test statistic, the stronger
the indication that the alternative hypothesis is true. Moreover, we say that the
test statistic orders the outcomes in the sample space (Royall 1997, p. 63). To
understand this property better, we compare the ordering given by the test statistic
|D| with the ordering induced by the test statistic |D|/10(X) = |D|(X)/10. We
set n1 = 2 and n2 = 2 and evaluate both test statistics in all of the possible
outcomes. For each outcome we put the outcome and the test statistics evaluated
in the outcome in a separate row in a table. If we order the rows according to
increasing value of |D|(x) from top to bottom we get Table 4.4.

Imagine that we for each test statistic create boxes. We create one box for each
unique value of the test statistic. This means we create three boxes for each of
the two test statistics. We then place outcomes with the same value of the test
statistic in the same box. If we consider the boxes for |D|(X), the outcomes
(0, 0), (1, 1) and (2, 2) are placed in the same box, the outcomes (1, 0), (0, 1), (1, 2)
and (2, 1) are placed in another box and the remaining two outcomes (2, 0) and
(0, 2) are placed in the last box. We then order the boxes so that the box where
the outcomes have the smallest value of the test statistic comes first, then comes
the box with the second smallest value of the test statistic and thereafter comes
the box with the largest value of the test statistic. This means the box with the
outcome (0, 0) comes first and the box with the outcome (0, 2) comes last.

If we do a similar procedure for the boxes for the |D|/10-statistic we see that both
the elements of the boxes and the order of the boxes are the same as for the boxes
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for the |D|-statistic. What does this mean? When we calculate the realisation
of the p-value in an experiment and use the enumeration procedure to calculate
the realisation, or to be more exact use either the E or M method, we start with
computing the test statistic for all outcomes. Then we compare the value of the
test statistic and consider the outcomes with a least as large test statistic as the
outcome. In our box example it is possible to compare the value of the test statistic
with the value of the test statistic in each of the boxes. We start with the first box.
We compare the values of the test statistic until they are equal. Due to the ordering
of the boxes, we need to consider the box where the values of the test statistic are
equal and the remaining boxes when we calculate the realisation of the p-value.
Since the boxes of |D|(X) and of |D|/10(X) contain the same elements and are
ordered the same, the realisations of the p-values calculated using the different
test statistics must be the same. This means it is not the magnitude of the value
of the test statistic that matters when we calculate realisations of p-values using
the enumeration procedure, only the ordering induced matters. We say that |D|
and |D|/10 order the sample space in the same way. If two test statistics induce
the same ordering of the sample space and we use both test statistics in turn as
test statistic when calculating the realisation of the p-value for an outcome in the
experiment, we calculate the same realisation if we use the same method (E or M).
As a note, if we use the C-method then we only look at tables (y1, y2) such that
y1 + y2 = x1 + x2. This means we look at a subset of the original outcomes. We
can still order the outcomes in boxes as previously done. The result will be the
same: the number of boxes, the order of them and the outcomes in them will be
the same for the boxes for |D| and for |D|/10. This means we calculate the same
p-value when we use the C-method on the test statistics |D| and |D|/10.

We have seen that two test statistics that orders the sample space the same need
not take the same values. What matters is if the created imaginary boxes for the
unique values of the test statistics are ordered in the same way and contain the
same elements when we compare the boxes from one test statistic with the boxes
from the other. Mathematically we can write the condition as T1(x1) > T1(x2) if
and only of T2(x1) > T2(x2) for all outcomes x1, x2 and T1(x1) = T1(x2) if and
only if T2(x1) = T1(x2). If the two conditions hold, T1(x) and T2(x) orders the
sample space the same.

4.3.2 Asymptotic distribution of |D|

We need a large sample distribution of |D|(X1, X2) underH0 if we want to calculate
the A p-value with |D|(X1, X2) as test statistic. We know that X1 is a sum of n1
independent Bernoulli random variables with success probability θ under H0 and
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Table 4.4: Comparing the orderings induced by |D| and |D|/10 when n1 = 2 and
n2 = 2. The possible outcomes are given in the leftmost column. For each row the
second column gives the value of the test statistic |D| evaluated in the outcome in
the first column and the third column gives the value of |D|/10 evaluated in the same
outcome. The rows are ordered in increasing value of |D| from top to bottom .

x |D|(x) |D|
10 (x)

(0,0) 0 0
(1,1) 0 0
(2,2) 0 0
(1,0) 0.25 0.025
(0,1) 0.25 0.025
(1,2) 0.25 0.025
(2,1) 0.25 0.025
(2,0) 1 0.1
(0,2) 1 0.1

thatX2 is a sum of n2 Bernoulli random variables with the same success probability
under H0. By the weak law of large numbers it follows that

X1

n1

p→ θ (4.17)

and
X2

n2

p→ θ. (4.18)

Due to Equation (4.17) and Equation (4.18) it seems natural that

X1

n1
− X2

n2

p→ 0. (4.19)

We show Equation (4.19) by using Chebychev’s inequality (see for instance Casella
& Berger (2002, p. 122)). We get

Prθ
(∣∣∣∣X1

n1
− X2

n2
− 0

∣∣∣∣ ≥ ε
)

= Prθ
(∣∣∣∣X1

n1
− X2

n2

∣∣∣∣2 ≥ ε2
)

= Prθ
((

X1

n1
− X2

n2

)2
≥ ε2

)

(?)
≤

E
((

X1
n1
− X2

n2

)2
)

ε2
=

Var
(
X1
n1
− X2

n2

)
ε2

(??)=
Var(X1)
n2

1
+ Var(X2)

n2
2

ε2
=

n1θ(1−θ)
n2

1
+ n2θ(1−θ)

n2
2

ε2

=
θ(1− θ)( 1

n1
+ 1

n2
)

ε2
→ θ(1− θ)(0 + 0)

ε2
= 0,
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as n1, n2 →∞, where we use Chebychev’s inequality in transition (?) and equality
in transition (??) follows since X1 and X2 are independent.

We therefore know asymptotically that Pr(D(X1, X2) = 0) = 1 and Pr(D(X1, X2) 6=
0) = 0 under H0 . It therefore follows (asymptotically) Pr(|D|(X1, X2) = 0) = 1
and Pr(|D|(X1, X2) 6= 0) = 0. So, if we use the asymptotic distribution of
|D|(X1, X2) we always get the realisation 1 of the pA-value since the large sample
distribution of |D| is a constant under H0. This means the power function is 0 for
(θ1, θ2) ∈ Θc

0. We want an asymptotic test with better power properties.

4.3.3 The statistic Z2
p

One possibility to obtain a test statistic with better asymptotic properties than
|D| is to divide D(X1, X2) by the standard deviation of D(X1, X2) under H0. Since
each of X1 and X2 can be regarded as averages of Bernoulli random variables and
have the same expected value θ, it seems natural by the central limit theorem
that the resulting random variable converges to a standard normal variable. We
therefore consider

X1
n1
− X2

n2√
Var(X1

n1
− X2

n2
)

=
X1
n1
− X2

n2√
θ(1− θ)( 1

n1
+ 1

n2
)

(4.20)

We do not know the true value of θ, else there would be no need to perform the
hypothesis test and θ1 6= θ2 under H0. We therefore need to replace θ in Equation
(4.20) with some estimate. One possibility is to replace it with the maximum
likelihood estimator, which is given in Equation (4.12). Since this estimator cor-
responds to combining the data from the two binomial experiments it is called a
pooled estimator. We get

Zp(X) =
X1
n1
− X2

n2√
X1+X2
n1+n2

(1− X1+X2
n1+n2

)( 1
n1

+ 1
n2

)
, (4.21)

which is called the Z-pooled statistic since it has the form of a Z-statistic and we
use the pooled estimate of θ (Lydersen et al. 2012). We want only large values
of the test statistic to indicate that the null hypothesis is not true. Now both
negative numbers with large magnitude and large positive numbers indicate that
H0 is not true. If we square the statistic then only large values of the resulting
statistic indicate that H1 is true. We get

Z2
p(X1, X2) =

(X1
n1
− X2

n2
)2

X1+X2
n1+n2

(1− X1+X2
n1+n2

)( 1
n1

+ 1
n2

)
, (4.22)
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which we call the Z-pooled squared statistic. We note that Z2
p(n1, n2) and Z2

p(0, 0)
are undefined since we get the undetermined expression 0/0 in both cases. We set
Z2
p(n1, n2) = Z2

p(0, 0) = −99, so that we make these two outcomes the weakest
evidence against the null hypothesis.

Asymptotic distribution of Z2
p

We want to show that Z2
p defined in Equation (4.22) is asymptotically distributed

as a chi square distribution with one degree of freedom (Høyland 1986, p. 82).
We start by showing that Zp(X1, X2) defined in Equation (4.21) has the standard
normal distribution as n1 and n2 approach infinity.

We know n1 and n2 can approach infinity in numerous different ways. For instance,
n1 may approach infinity linearly, one example is n1 = 50 · t for t = 0, 1, 2, . . ., and
n2 may approach infinity exponentially, e.g n2 = 40 ·2t. In deriving the asymptotic
distribution of Zp(X1, X2) we set N = n1 + n2 and assume n1

N
→ ρ as n1, n2 →∞

where ρ > 0. Since n1
N

= n1
n1+n2

= 1
1+n2

n1
we have n2

n1
→ c > 0, which means that by

setting n1
N
→ ρ we demand that n1 and n2 approach infinity at the same speed.

This means we have limited the number of ways n1 and n2 can approach infinity.
For instance if n1 approaches infinity exponentially n2 must also approach infinity
exponentially and with the same base (i.e if n1 = c12t then n2 = c22t for some
constants c1, c2 > 0). In Equation (4.21) X1 is a sum of independent Bernoulli
random variables with the same success probability θ, i.e a sum of 0’s and 1’s. This
means that X

n1
may be considered the average of the n1 Bernoulli random variables.

A similar interpretation holds for X2
n2
. Since the variance of one Bernoulli random

variable is θ(1− θ) and the expectation is θ the central limit theorem gives

√
n1

X1
n1
− θ√

θ(1− θ)
→ N(0, 1) (4.23)

and
√
n2

X2
n2
− θ√

θ(1− θ)
→ N(0, 1). (4.24)

Since
√

N
n1
→ 1√

ρ
we have by definition that

√
N
n1

p→ 1√
ρ
. By Slutsky’s Theorem we

get

√
N

X1
n1
− θ√

θ(1− θ)
=
√
N

n1

√
n1

X1
n1
− θ√

θ(1− θ)
d→ 1
√
ρ
·N(0, 1) = N(0, 1

ρ
) (4.25)
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since√n1

X1
n1
−θ√

θ(1−θ)
d→ N(0, 1) by Equation (4.23) and

√
N
n1

p→ 1√
ρ
. Furthermore

N

N
= 1 = n1 + n2

N
= n1

N
+ n2

N
n2

N
= 1− n1

N

lim
n1,n2→∞

n2

N
= lim

n1,n2→∞
(1− n1

N
)

lim
n1,n2→∞

n2

N
= 1− ρ.

By definition we then have n2
N

p→ 1− ρ. By similar argumentation as in Equation
(4.25) we get

√
N

X2
n2
− θ√

θ(1− θ)
d→ 1√

1− ρN(0, 1) = N(0, 1
1− ρ) (4.26)

Since X1 and X2 are independent

√
N

X1
n1
− θ√

θ(1− θ)
−
√
N

X2
n2
− θ√

θ(1− θ)
=
√
N

X1
n1
− X2

n2√
θ(1− θ)

d→ N(0, 1
ρ(1− ρ)) (4.27)

by the addition property of independent normal distributions and since 1
ρ

+ 1
1−ρ =

1
ρ(1−ρ) . By expanding the expression for Zp(X1, X2) we get

Zp(X1, X2) =
X1
n1
− X2

n2√
X1+X2
n1+n2

(1− X1+X2
n1+n2

)( 1
n1

+ 1
n2

)

=

√
Nρ(1− ρ)θ(1− θ)√
Nρ(1− ρ)θ(1− θ)

X1
n1
− X2

n2√
X1+X2
n1+n2

(1− X1+X2
n1+n2

)( 1
n1

+ 1
n2

)

= 1√
N( 1

n1
+ 1

n2
)ρ(1− ρ)

√
θ(1− θ)√

X1+X2
n1+n2

(1− X1+X2
n1+n2

)

√
N

X1
n1
− X2

n2√
θ(1−θ)
ρ(1−ρ)

(4.28)

It may be tempting to use Theorem 4.2.5 to conclude that

1√
N( 1

n1
+ 1

n2
)ρ(1− ρ)

√
θ(1− θ)√

X1+X2
n1+n2

(1− X1+X2
n1+n2

)
p→ 1. (4.29)
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where

h(t) =

√
θ(1− θ)√

N( 1
n1

+ 1
n2

)ρ(1− ρ)t(1− t)

However, this would be incorrect since h(t) changes as n1 and n2 approach in-
finity so that h(t) is not continuous. (We note that

√
t is continuous, but that√

(1/n1 + 1/n2)t changes as n1, n2 → ∞ so that this function is not continuous.)
Instead we use Slutsky’s Theorem twice, or iteratively. The first time we use Slut-
sky, we start with considering X1+X2

n1+n2
. We know that this estimator is the maximum

likelihood estimator of θ under H0. We also know that maximum likelihood esti-
mators are consistent, which means that

X1 +X2

n1 + n2

p→ θ. (4.30)

This is easy to show directly in our case. We know from Section 4.2.1 that Y =
X1 +X2 is binomially distributed with parameters θ and n1 +n2. Therefore Y

n1+n2
can be considered the average of n1 + n2 independent Bernoulli trials each with
the same success probability θ. By the weak law of large numbers we then get
Equation (4.30). By using Theorem 4.2.5 it follows that√

θ(1− θ)√
X1+X2
n1+n2

(1− X1+X2
n1+n2

)
p→ 1 (4.31)

since f(x) =
√
θ(1−θ√
x(1−x)

is continuous.

By Equation (4.27) we have

√
N

X1
n1
− X2

n2√
θ(1−θ)
ρ(1−ρ)

d→ N(0, 1) (4.32)

By using Equation (4.31) and Equation (4.32) Slutsky’s Theorem gives√
θ(1− θ)√

X1+X2
n1+n2

(1− X1+X2
n1+n2

)

X1
n1
− X2

n2√
θ(1−θ)
ρ(1−ρ)

d→ 1 ·N(0, 1) = N(0, 1). (4.33)

Since
1√

N( 1
n1

+ 1
n2

)ρ(1− ρ)
→ 1√

(1
ρ

+ 1
1−ρ)ρ(1− ρ)

= 1
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as n1, n2 →∞, we have that

1√
N( 1

n1
+ 1

n2
)ρ(1− ρ)

p→ 1. (4.34)

Due to Equation (4.33) and Equation (4.34) Slutsky’s Theorem gives us

Zp(X1, X2) d→ 1 ·N(0, 1) = N(0, 1),

This means
Z2
p(X1, X2) d→ χ2

1,

which is the desired result.

4.3.4 The Pearson chi-squared statistic

It is also possible to calculate the expected cell frequencies in the 2×2 table under
the null hypothesis H0 in Equation (4.1) and calculate the difference between the
cell counts and the expected values. The larger any of the four differences is, the
stronger the evidence against the null hypothesis. This is the logical reasoning
behind the Pearson chi-square statistic, which is given by

χ2(X1, X2) =
2∑
i=1

(Xi − niθi)2

niθi
+ (ni −Xi − ni(1− θi))2

ni(1− θi)
,

see for example Kateri (2014, p. 11, 24). However, since θ1 and θ2 are unknown, we
replace them with the consistent maximum likelihood estimators given in Equation
(4.13) and Equation (4.14) respectively, so that we get

χ2(X1, X2) =
2∑
i=1

(Xi − niθ̂i)2

niθ̂i
+ (ni −Xi − ni(1− θ̂i))2

ni(1− θ̂i)
. (4.35)

Asymptotically (Kateri 2014, p. 11)

χ2(X1, X2) d→ χ2
1,

i.e the asymptotic distribution of the Pearson chi squared statistic is a chi squared
random variable with one degree of freedom.
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Equality of the statistics Z2
p(X1, X2) and χ2(X1, X2)

In this section we show that χ2(X1, X2) is the same as Z2
p(X1, X2). Firstly we

consider each of the four terms in Equation (4.35) in turn. By expanding the first
term we get

(x1 − n1
(x1+x2)
n1+n2

)2

n1
(x1+x2)
n1+n2

=
(x1(n1+n2)−n1x1−n1x2)2

(n1+n2)2

n1
(x1+x2)
n1+n2

= (x1n2 − n1x2)2

n1(x1 + x2)(n1 + n2) (4.36)

And by similar expansions of the third we get

(x2 − n2
(x1+x2)
n1+n2

)2

n2
(x1+x2)
n1+n2

=
(x2(n1+n2)−n2x1−n2x2)2

(n1+n2)2

n2
(x1+x2)
n1+n2

= (x2n1 − n2x1)2

n2(x1 + x2)(n1 + n2) (4.37)

We then consider the second term

(n1 − x1 − n1
n1+n2−(x1+x2)

n1+n2
)2

n1
n1+n2−(x1+x2)

n1+n2

= (n1 − x1)(n1 + n2)− n2
1 − n1n2 + n1(x1 + x2)

n1(n1 + n2 − (x1 + x2))(n1 + n2)

= (n2
1 + n1n2 − n1x1 − n2x1 − n2

1 − n1n2 + n1x1 + n1x2)2

n1(n1 + n2 − (x1 + x2))(n1 + n2)

= (n1x2 − n2x1)2

n1(n1 + n2 − (x1 + x2))(n1 + n2)
(4.38)

and finally the last term

(n2 − x2 − n2
n1+n2−(x1+x2)

n1+n2
)2

n2
n1+n2−(x1+x2)

n1+n2

= (n2 − x2)(n1 + n2)− n1n2 − n2
2 + n2(x1 + x2))

n2(n1 + n2 − (x1 + x2))(n1 + n2)

= (n1n2 + n2
2 − n1x2 − n2x2 − n1n2 − n2

2 + n2x1 + n2x2)2

n2(n1 + n2 − (x1 + x2))(n1 + n2)

= (n2x1 − n1x2)2

n2(n1 + n2 − (x1 + x2))(n1 + n2)
(4.39)

We see that the terms in Equation (4.36) to Equation (4.39) have the factors
(x1n2 − n1x2)2 and 1

n1+n2
in common. When we insert for Equation (4.36) to
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Equation (4.39) in Equation (4.35) we therefore get

χ2(x1, x2) =(x1n2 − n1x2)2

n1 + n2
( 1
n1(x1 + x2)

1
n2(x1 + x2) + 1

n1(n1 + n2 − (x1 + x2))+

1
n2(n1 + n2 − (x1 + x2))) = (x1n2 − n1x2)2

n1 + n2
( n2(n1 + n2 − (x1 + x2))
n1n2(x1 + x2)(n1 + n2 − (x1 + x2))+

n1(n1 + n2 − (x1 + x2)) + n2(x1 + x2) + n1(x1 + x2)
n1n2(x1 + x2)(n1 + n2 − (x1 + x2)) )

= (x1n2 − n1x2)2

n1 + n2

(n1 + n2)(n1 + n2)
n1n2(x1 + x2)(n1 + n2 − (x1 + x2))

=
n2

1n
2
2(x1
n1
− x2

n2
)2(n1 + n2)

n1n2(x1 + x2)(n1 + n2 − (x1 + x2)) =
n1n2(x1

n1
− x2

n2
)2(n1 + n2)

(x1 + x2)(n1 + n2 − (x1 + x2))

=
(x1
n1
− x2

n2
)2

x1+x2
n1+n2

(n1+n2
n1n2

)(1− x1+x2
n1+n2

) =
(x1
n1
− x2

n2
)2

x1+x2
n1+n2

( 1
n2

+ 1
n1

)(1− x1+x2
n1+n2

)
= Z2

p(x1, x2),

which is what we wanted to show.

4.4 Calculations of the different p values intro-
duced in Section 4.1.2 and evaluation of power
functions of tests based on the p-values.

We illustrate how to calculate the realisations of the A, E, C and M p-value,
introduced in Section 4.1.2, using Z2

p as test statistic and when n1 = 5, n2 =
5, x1 = 5, x2 = 2. We use 0.05 as significance level, i.e we reject when p(X) ≤ α.
We could of course have used the severe near-sightedness example, but n1 and n2
is much larger in that example, so that the example we study in this section is
more suitable when we want to illustrate how to calculate the realisations of the
p-values and also illustrate how to calculate the power functions.

4.4.1 Calculation of p-values

The A-method The value of the A p-value is from Equation (4.5) given by

pA(x) = 1− F (
(x1
n1
− x2

n2
)2

x1+x2
n1+n2

(1− x1+x2
n1+n2

)( 1
n1

+ 1
n2

)) = 1− F (4.2857) = 0.03843,
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where F is the cumulative distribution function of the chi square distribution with
one degree of freedom.

The E-method The maximum likelihood estimate of θ is from Equation (4.12)
θ̂ = 5+2

10 = 0.7. We use the enumeration procedure, given in Section 3.2, to
calculate the realisation of the E p-value. The first steps are illustrated in Table
4.5. The next step is to calculate the probabilities of the outcomes marked with
× and sum them to get pE(5, 2). We therefore have by Equation (4.3)

pE(x) =
∑

T (y)≥T (x)
Prθ̂(X = y) = Pr0.7(X = (3, 0)) + Pr0.7(X = (4, 0))

+ Pr0.7(X = (5, 0)) + Pr0.7(X = (5, 1)) + Pr0.7(X = (5, 2))
+ Pr0.7(X = (0, 3)) + Pr0.7(X = (0, 4)) + Pr0.7(X = (0, 5))
+ Pr0.7(X = (1, 5)) + Pr0.7(X = (2, 5))
= 0.0581.

The M method When calculating pM(5, 2) we consider the same sum of prob-
abilities as when calculating pE(5, 2). However, we use the θ that maximises this
sum and not θ̂. We numerically find the maximum by evaluating the sum of prob-
abilities in a equispaced grid from 0 to 1 and choose the value of θ that gives
the maximum value among the values we have calculated. We discuss how to
numerically find the maximum in Section 4.10.5. The procedure is illustrated
in Figure 4.2, where we have used a grid consisting of 100 points. The plot of
Pr(T (X) ≥ T (5, 2)) as a function of θ is called the profile of T (5, 2) by Lloyd
(2008). We see that the profile is symmetric around θ = 1

2 and that the maximum
occurs around 0.38 and 0.62. We then have from Equation (4.2)

pM(5, 2) = sup
θ∈Θ0

Pr(T (X) ≥ T (x)) = sup
θ∈Θ0

(Prθ(X = (3, 0)) + Prθ(X = (4, 0))

+ Prθ(X = (5, 0)) + Prθ(X = (5, 1)) + Prθ(X = (5, 2))
+ Prθ(X = (0, 3)) + Prθ(X = (0, 4)) + Prθ(X = (0, 5))
+ Prθ(X = (1, 5)) + Prθ(X = (2, 5)))
= 0.0618.

The C method When calculating pC(5, 2) we also use the enumeration proce-
dure, however, we only look at outcomes y that give the value S(5, 2) = 5 + 2 = 7
of the sufficient statistic. The first steps of the enumeration procedure are shown
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in Table 4.6. The next step in the enumeration procedure is to calculate the prob-
abilities of the outcomes marked with ?, which are given by Equation (4.10) where
s = 7. By summing these probabilities we get pC(5, 2). So from Equation (4.4) we
have

pC(5, 2) = Pr(T (X) ≥ T (x) | S(X) = 7) =
∑

T (y)≥T (x)
Pr(X = y | S(X) = 7)

= Pr(X = (2, 5) | S(X) = 7) + Pr(X = (5, 2) | S(X) = 7) = 0.1667.

Results of tests We reject the null hypothesis at the 0.05 significance level by
using the A p-value but do not reject the null hypothesis if we use any of the
remaining p-values. A natural question is then if the A p-value, which is only
asymptotically valid, is valid when n1 an n2 are as low as 5, i.e is it safe to use
asymptotic theory in our case? The realisation of the E p-value is the lowest one
of the three p-values above 0.05. Since this p-value is also only asymptotically
valid, it is also reasonable to question the validity of the p-value in our case. To
answer these questions we need to look at the power functions of the level α-tests
based on the p-values.

4.4.2 Evaluating the power functions

In this section we show how to calculate the power functions of the level 0.05
tests based on the p-values in Section 4.4.1. From Section 3.3 we know we first
must calculate all the values of the p-value when we want to evaluate the power
function. The realisations can be calculated in the same way we calculated the
single realisations of the p-values in Section 4.4.1. After calculating all the values
of each p-value, we consider for each p-value the realisations that are equal to or
below α = 0.05. In general, we denote by γi(θ1, θ2;α) the power function of the
level α test based on the i p-value evaluated in (θ1, θ2), where i=M,E,C, A.

In Table 4.7 we show the values of the p-values C, M and E that are equal to
or below 0.05 and in Table 4.8 we show the values of the A p-value that are
below or equal to 0.05. We observe that the same outcomes have E, C and M
p-value below or equal to 0.05. This means γC(θ1, θ2; 0.05) = γE(θ1, θ2; 0.05) =
γM(θ1θ2; 0.05) for all (θ1, θ2) ∈ Θ. We also observe that the set {x | pC(x) ≤ 0.05}
is a subset of the set {x | pA(x) ≤ 0.05)}, which means γA(θ1, θ2; 0.05) is least as
great as either of the other considered power functions for all (θ1, θ2) ∈ Θ. We
initially evaluate the power functions in an equispaced grid on [0, 1] × [0, 1] with
the same grid increment in both directions, where for instance the grid points are
0, 0.01, 0.02, 0.03, ..., 0.99, 1 along both the θ1- and the θ2-axis.
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Table 4.5: The first steps in the enumeration procedure when calculating pE(5, 2).
The possible outcomes are given in column 1 and 2 from the left. The values of the test
statistic are given in column 3. Outcomes for which the test statistic is least as large as
Z2
p(5, 2) are marked with × in column 4.

y1 y2 Z2
p(y1, y2) Z2

p(y1, y2) ≥ Z2
p(5, 2)

0 0 −99.0000
1 0 1.1111
2 0 2.5000
3 0 4.2857 ×
4 0 6.6667 ×
5 0 10.0000 ×
0 1 1.1111
1 1 0.0000
2 1 0.4762
3 1 1.6667
4 1 3.6000
5 1 6.6667 ×
0 2 2.5000
1 2 0.4762
2 2 0.0000
3 2 0.4000
4 2 1.6667
5 2 4.2857 ×
0 3 4.2857 ×
1 3 1.6667
2 3 0.4000
3 3 0.0000
4 3 0.4762
5 3 2.5000
0 4 6.6667 ×
1 4 3.6000
2 4 1.6667
3 4 0.4762
4 4 0.0000
5 4 1.1111
0 5 10.0000 ×
1 5 6.6667 ×
2 5 4.2857 ×
3 5 2.5000
4 5 1.1111
5 5 −99.0000
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Table 4.6: The first steps in the enumeration procedure when calculating pC(5, 2). The
possible outcomes are given in column 1 and 2 from the left. The values of Z2

p(y1, y2) are
given in column 3. Outcomes y for which the sufficient statistic equals 7, i.e y1 +y2 = 7,
are marked with × in column 4 and the outcomes among these where Z2

p(y1, y2) ≥
Z2
p(5, 2) are marked ? in the last column.

y1 y2 Z2
p(y1, y2) y1 + y2 = 7 (Z2

p(y1, y2) ≥ Z2
p(5, 2)) ∧ y1 + y2 = 7

0 0 −99.0000
1 0 1.1111
2 0 2.5000
3 0 4.2857
4 0 6.6667
5 0 10.0000
0 1 1.1111
1 1 0.0000
2 1 0.4762
3 1 1.6667
4 1 3.6000
5 1 6.6667
0 2 2.5000
1 2 0.4762
2 2 0.0000
3 2 0.4000
4 2 1.6667
5 2 4.2857 × ?
0 3 4.2857
1 3 1.6667
2 3 0.4000
3 3 0.0000
4 3 0.4762 ×
5 3 2.5000
0 4 6.6667
1 4 3.6000
2 4 1.6667
3 4 0.4762 ×
4 4 0.0000
5 4 1.1111
0 5 10.0000
1 5 6.6667
2 5 4.2857 × ?
3 5 2.5000
4 5 1.1111
5 5 −99.0000
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Figure 4.2: Plot of the profile Z2
p(5, 2) when evalutated in the grid of θ-values

0, 01, 0.02, · · ·, 0.99, 1 and n1 = n2 = 5.
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Table 4.7: The different realisations of the C, E and M p-values below 0.05 when
n1 = 5, n2 = 5. The outcomes in the experiment are given in the first two columns and
respectively the C, E and M p-values are given in the third, fourth and fifth column.

x1 x2 pC(x1, x2) pE(x1, x2) pM(x1, x2)
4 0 0.04762 0.01884 0.02148
5 0 0.00794 0.00195 0.00195
5 1 0.04762 0.01884 0.02148
0 4 0.04762 0.01884 0.02148
0 5 0.00794 0.00195 0.00195
1 5 0.04762 0.01884 0.02148

Table 4.8: The values of the A p-value that are below 0.05 when n1 = 5, n2 = 5. The
outcomes are given in the first two columns and the A p-value is in the third coloumn.

x1 x2 pA(x1, x2)
3 0 0.03843
4 0 0.00982
5 0 0.00157
5 1 0.00982
5 2 0.03843
0 3 0.03843
0 4 0.00982
0 5 0.00157
1 5 0.00982
2 5 0.03843
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By evaluating the power functions in the grid we get the two panels in Figure 4.3.
In both figures we observe that the power increases as we approach either of the
corners (1, 0) or (0, 1), which makes intuitively sense as it should be easiest to tell
the success probabilities 1 and 0 from each other. We also observe that the power
function γA(θ1, θ2; 0.05) takes at least as high values as the other power functions,
as explained earlier. The type I error probabilities of each test for the different
values of θ = θ1 = θ2 are given on the diagonal from (0, 0) to (1, 1) on each plot.
We observe that the size of the level 0.05 test based on the A value is higher than
0.05, which means pA(x) is not valid. We also see that the size of the other tests are
below the 0.05 level. In Figure 4.4 we have plotted the type I error probabilities,
i.e Prθ(pi(X) ≤ 0.05) where i is either A,E,C or M , for θ ∈ [0, 1]. It looks like
Prθ(pi(X) ≤ 0.5) is symmetric around θ = 1

2 . We observe that the size of the
tests based on either the E, C or M p-value is about 0.021, which is much lower
than the nominal level, and that the test size of the test based on the A p-value
is about 0.061. A test where the supremum of the type I error probabilities is
below the test level is said to be conservative and when it is higher it is said to be
anti-conservative or liberal (Krishnamoorthy 2015, p. 20). Therefore the level 0.05
tests based on the E, C and M p-values are conservative and the level 0.05 test
based on the A p-value is liberal. In Section 4.6 we prove that the level α-tests
based on the C or M p-value are guaranteed to not be liberal. And, we show that
the p-values A and E are only asymptotically valid (as the sample sizes approach
infinity), which means there is no guarantee that they are valid for finite sample
sizes and therefore no guarantee that the level α tests based on these p-values not
are liberal. For instance in Mehrotra et al. (2004) there are cases where the A
method gives a liberal test procedure and in Krishnamoorthy & Thomson (2004)
there are cases where the test procedure based on the E method is liberal.

By evaluating the power functions of the tests in the same grid while varying n1
and n2 but keeping α fixed at 0.05, it seems like the value of each of the power
functions in the point (θ̃1, θ̃2) is the same as the power function evaluated in the
point resulting from reflecting the original point(θ̃1, θ̃2) in (1

2 ,
1
2). This reflection

operation corresponds to rotating the point (θ̃1, θ̃2) 180 degrees around (1
2 ,

1
2).

In Appendix B we show that the new coordinates is (1 − θ̃1, 1 − θ̃2). When we
perform this rotation operation for all points, we can imagine that we have rotated
the solid triangle with corners (0, 0), (1, 0) and (1, 1), except from the line from
(0, 0) to (1, 1), 180 degrees around (1

2 ,
1
2) and that the line from (0, 0) to (1

2 ,
1
2) has

been rotated 180 degrees around (1
2 ,

1
2). This description of the rotation procedure

describes the symmetry in the plots of the power functions. We have tried to
illustrate the symmetry when n1 = 3, n2 = 25 and n1 = 30, n2 = 2, see respectively
Figure 4.5 and Figure 4.6. In Section 4.5 we show that this is true in general for
the power functions of the level α tests based on the considered p-values.
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(a) Plot of the power function γA(θ1, θ2; 0.05)
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(b) Plot of the power function γi(θ1, θ2; 0.05) where
i is either C,E or M .

Figure 4.3: Plots of the power functions γA(θ1, θ2; 0.05) and γi(θ1, θ2; 0.05) when n1 =
n2 = 5 and i is either E,C or M . We evaluate the functions in an equispaced grid
with the same grid increment in both directions and the θ1-axis is along the abscissa
and the θ2-axis is along the ordinate. For instance the grid points along the θ1-axis are
0, 0.01, 0.02, · · ·, 0.99, 1. The line θ1 = θ2 is also drawn. To the right of each plot there
is a legend that specifies the different colors for the different intervals of values used in
making the plots. The four lowest cut-points are 0, 0.03, 0.05, 0.06.
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Figure 4.4: Plots of Prθ(pi(X) ≤ 0.05) as a function of θ for i equal to M,A,C,E.
We evalute θ in the equispaced grid 0, 0.01, . . . , 0.99, 1. The plot of the type I error
probabilities are the same for the tests based on the M, C and E p-values and we have
used a filled circle as plotting symbol. We have used a filled rectangle as plotting symbol
when plotting the values of Prθ(pA(X) ≤ 0.05).
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(a) Plot of the power function γA(θ1, θ2; 0.05)
0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

E   3   25  

00.030.050.06
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b) Plot of the power function γE(θ1, θ2; 0.05)

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

C   3   25  

00.030.050.06
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(c) Plot of the power function γc(θ1, θ2; 0.05).
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(d) Plot of the power function γM (θ1, θ2; 0.05)

Figure 4.5: Plots of the power functions γi(θ1, θ2; 0.05) where i is either E,C,A or
M and n1 = 3, n2 = 25. The θ1-axis is along the abscissa and the θ2-axis is along the
ordinate. The line θ1 = θ2 is also drawn. To the right of each plot there is a legend that
specifies the different colors for the different intervals of values used in making the plots.
The four lowest cut-points are 0, 0.03, 0.05, 0.06.
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(a) Plot of the power function γA(θ1, θ2; 0.05)
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(b) Plot of the power function γE(θ1, θ2; 0.05)
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(c) Plot of the power function γC(θ1, θ2; 0.05).
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(d) Plot of the power function γM (θ1, θ2; 0.05)

Figure 4.6: Plots of the two power functions γi(θ1, θ2; 0.05) where i is either E,C,A
or M and n1 = 30, n2 = 2. The θ1-axis is along the abscissa and the θ2-axis is along
the ordinate. The line θ1 = θ2 is also drawn. To the right of each plot there is a legend
that specifies the different colors for the different intervals of values used in making the
plots. The four lowest cut-points are 0, 0.03, 0.05, 0.06.
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4.5 Symmetry of the power functions

We want to show

Pr(θ1,θ2)(pi(X) ≤ α) = Pr(1−θ1,1−θ2)(pi(X) ≤ α)

holds when i = A,C,E,M . For convenience, we drop the subscript i and all state-
ments made without the subscript are valid for all the mentioned p-values.

We consider an outcome y such that p(y) ≤ α, which means we consider a
realisation of the p-value that gives a that contributes to the power function
Pr(θ1,θ2)(p(X) ≤ α). The contribution at (θ1, θ2) is from Equation (4.7)

Prθ(X = y) =
(
n1

y1

)(
n2

y2

)
θ1
y1θ2

y2(1− θ1)n1−y1(1− θ2)n2−y2 ,

while the contribution to the power at (1− θ1, 1− θ2) is

Prθ(X = y) =
(
n1

y1

)(
n2

y2

)
(1− θ1)y1(1− θ2)y2θn1−y1

1 θn2−y2
2 ,

so that the contributions of p(y) to Prθ(p(X) ≤ α) at θ = (θ1, θ2) and θ =
(1− θ1, 1− θ2) are not the same. However, if also p(n1− y1, n2− y2) ≤ α then the
contribution to the power function at (θ1, θ2) from p(n1 − y1, n2 − y2) is

Pr(θ1,θ2)(X = (n1 − y1, n2 − y2)) =
(

n1

n1 − y1

)(
n2

n2 − y2

)
θn1−y1

1 θn2−y2
2 (1− θ1)y1(1− θ2)y2

=
(
n1

y1

)(
n2

y2

)
(1− θ1)y1(1− θ2)y2θn1−y1

1 θn2−y2
2

= Pr(1−θ1,1−θ2)(X = y),

since
(

n1
n1−y1

)
=
(
n1
y1

)
and

(
n2

n2−y2

)
=
(
n2
y2

)
. It therefore follows that the contribution

to the power at (1− θ1, 1− θ2) from p(n1 − y1, n2 − y2) is

Pr(1−θ1,1−θ2)(X = (n1 − y2, n2 − y2)) = Pr(θ1,θ2)(X = (y1, y2)).

So if p(y1, y2) ≤ α if and only if p(n1 − y1, n2 − y2) ≤ α then the two realisations
of the p-value jointly give the same contributions to the power at θ = (θ1, θ2) and
θ = (1 − θ1, 1 − θ2). The next step is to verify that p(y1, y2) ≤ α if and only if
p(n1 − y1, n2 − y2) ≤ α holds for the different p-values. If this holds then the set
{x | p(x ≤ α} consist of pairs of outcomes that give the same contribution to
the power function at (θ1, θ2) and at (1 − θ1, 1 − θ2), so that in total the power
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function is the same when evaluated in the two points. The first key observation
when demonstrating that p(y1, y2) ≤ α if and only if p(n1 − y1, n2 − y2) ≤ α holds
is

T (n1 − x2, n2 − x2) =
(n1−x1

n1
− n2−x2

n2
)2

n1−x1+n2−x2
n1+n2

(1− n1−x1+n2−x2
n1+n2

)( 1
n1

+ 1
n2

)

=
(1− x1

n1
− 1 + x2

n2
)2

(1− x1+x2
n1+n2

)(1− 1 + x1+x2
n1+n2

)( 1
n1

+ 1
n2

)

=
(x1
n1
− x2

n2
)2

x1+x2
n1+n2

(1− x1+x2
n1+n2

)( 1
n1

+ 1
n2

)
= T (x1, x2)

(4.40)

We next consider the different p-values in turn and calculate p(y1, y2) and p(n1 −
y1, n2 − y2).

A-method From Equation (4.5) we do the computations

pA(y1, y2) =
∫ ∞
T (y1,y2)

f(t)dt

and
pA(n1 − y1, n2 − y2) =

∫ ∞
T (n1−y1,n2−y2)

f(t)dt

Due to Equation (4.40) we have that pA(y1, y2) = pA(n1 − y2, n2 − y2).

M-method By Equation (4.2)

pM(y1, y2) = sup
θ∈[0,1]

∑
T (x)≥T (y1,y2)

Pr(θ,θ)(X = x) (4.41)

and

pM(n1 − y1, n2 − y2) = sup
θ∈[0,1]

∑
T (x)≥T (n1−y1,n2−y2)

Pr(θ,θ)(X = x) (4.42)

Since T (y1, y2) = T (n1 − y1, n2 − y2) due to Equation (4.40), we see that we
maximise the same sum in Equation (4.41) as in Equation (4.42). Therefore
pM(y1, y2) = pM(n1 − y1, n2 − y2)

63



E-method By Equation (4.3) we do the computations

pE(y1, y2) =
∑

T (x)≥T (y1,y2)
Prθ̂A(X = x) (4.43)

and
pE(n1 − y2, n2 − y2)

∑
T (x)≥T (n1−y1,n2−y2)

Prθ̂B(X = x), (4.44)

where θ̂A = (θ̂A, θ̂A), θ̂B = (θ̂B, θ̂B), θ̂A is maximum likelihood estimate of θ based
on (y1, y2) and θ̂B is the maximum likelihood estimate of θ based on (n1− y1, n2−
y2). Due to Equation (4.40) we sum over the same x in Equation (4.43) as in
Equation (4.44). From Equation (4.12) we know that

θ̂A = y1 + y2

n1 + n2

and also
θ̂B = n1 − y1 + n2 − y2

n1 + n2
= 1− y1 + y2

n1 + n2
= 1− θ̂A

so that θ̂A is not equal to θ̂B. We therefore use different values for θ when we
compute the probabilities in the sums in Equation (4.43) and in Equation (4.44).
It is therefore not obvious that pE(y1, y2) = pE(n1 − y1, n2 − y2). We now show
that this is still holds. We start by considering a point x which appears in the sum
in Equation (4.43) and in Equation (4.44), i.e we consider a point x = (x1, x2) so
that T (x) ≥ T (y1, y2) = T (n1 − y1, n2 − y2). From Equation (4.40) we also have
that the point (x1− n1, x2− n2) is in the sum in Equation (4.43) and in Equation
(4.44). From Equation (4.7) we have that

Prθ̂B(X = (x1, x2)) = θ̂x1+x2
B (1− θ̂B)n1+n2−x1−x2

= (1− θ̂A)x1+x2 θ̂n1+n2−x1−x2
A

= Prθ̂A(X = (n1 − x1, n2 − x2)),
(4.45)

which also gives that

Prθ̂B(X = (n1 − x1, n2 − x2)) = Prθ̂A(X = (x1, x2)). (4.46)

This means the joint contributions from (x2, x2) and (n1 − x1, n2 − x2) are the
same at θ̂A and θ̂B. Since this hold for all points x so that T (x) ≥ T (y1, y2) =
T (n1−y1, n2−y2), we sum the same probabilities in Equation (4.43) as in Equation
(4.44), which means that pE(y1, y2) = pE(n1 − y1, n2 − y2).

64



C-method If we let y1 + y2 = s, then n1 − y1 + n2 − y2 = n1 + n2 − (y1 + y2) =
n1+n2−s. When we calculate pC(y1, y2), we only look at tables x where x1+x2 = s.
Similarly, when we calculate pC(n1 − y1, n2 − y2) we only look at tables x such
that x1 + x2 = n1 + n2 − s. For each table x = (x1, x2) we consider when we
calculate pC(y1, y2) we consider the table (n1 − x1, n2 − x2) when we calculate
pC(n1 − y1, n2 − y2) since n1 − x1 + n2 − x2 = n1 + n2 − s. From Equation (4.40)
we know that the tables x = (x1, x2) and (n1− x1, n2− x2) give the same value of
the test statistic. So if we order the tables x where x1 +x2 = s in increasing value
of test statistic and do the same for the tables x where x1 + x2 = n1 + n2 − s and
consider a table z such that z1 + z2 = s, then the order number of the the tables
(z1, z2) and (n1 − z1, n2 − z2) is the same. We have illustrated this in Table 4.9
when n1 = n2 = 5 and the outcome in the experiment is (5, 2).

Table 4.9: The outcomes in the conditional experiments where n1 = 5, n2 = 5 and
x1 + x2 = 5 + 2 or x1 + x2 = n1 + n2 − 5 − 2 = 10 − 7 = 3. The outcomes for the
conditional experiment where x1 + x2 = 7 is given in the table on the left, while the
outcomes in the other conditional experiment are given on the right. Both tables are
ordered in increasing value of Z2

p .

x1 x2 Z2
p

4 3 0.4762
3 4 0.4762
5 2 4.2857
2 5 4.2857

x1 x2 Z2
p

1 2 0.4762
2 1 0.4762
0 3 4.2857
3 0 4.2857

We know that
(

n1
n1−x1

)
=
(
n1
x1

)
and that

(
n2

n2−x2

)
=
(
n2
x2

)
. Furthermore

(
n1+n2

n1+n2−(x1+x2)

)
=(

n1+n2
x1+x2

)
. This gives

Pr(X1 = n1 − x1 | X1 +X2 = n1 + n2 − (x1 + x2)) =

(
n1

n1−x1

)(
n2

n1+n2−(x1+x2)−(n1−x1)

)
(

n1+n2
n1+n2−(x1+x2)

)
=

(
n1
x1

)(
n2
x2

)
(
n1+n2
x1+x2

)
= Pr(X1 = x1 | X1 +X2 = x1 + x2),

which means the tables (x1, x2) and (n1 − x1, n2 − x2) have the same conditional
probability. So for each table we sum over when calculating pC(y1, y2) there is a
table with the same conditional probability when calculating pC(n1− y1, n2− y2).
This holds for all of the tables we consider when we calculate pC(n1− y1, n2− y2).
In total, pC(y1, y2) = pC(n1 − y1, n2 − y2).
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We have therefore shown that Pr(θ1,θ2)(p(X) ≤ α) = Pr(1−θ1,1−θ2)(p(X) ≤ α).

4.6 Proof of the different p-values being valid or
asymptotically valid

We want to test
H0 : θ ∈ Θ0, H1 : θ ∈ Θ1 (4.47)

where Θ0 is composite, θ may be a vector of parameters and θ is the common
value of the parameters in θ under H0. We use a test statistic T (X) for which
large values indicate that H1 is correct and the larger the value the stronger the
indication.

4.6.1 Proof of M p-value being valid

We want to show that pM(X) defined in Equation (4.2) is valid. We start by fixing
θ0 ∈ Θ0. From Section 3.5 we know that

p?(x) = Prθ0(T (X) ≥ T (x)) (4.48)

defines a valid p-value when testing

H0 : θ = θ0, H1 : θ 6= θ0,

where H0 is simple. Due to Equation (4.2) p?(x) is less than or equal to pM(x)
for each outcome x. In Table 4.10 we give a fictitious example to illustrate
this property, where we show some of the calculated p-values using either Equa-
tion (4.48) or Equation (4.2). We see that p?(x) ≤ pM(x) for all outcomes
shown. If we were to calculate the probability that either pM(X) or p?(X) is
less than or equal to 0.05 in the fictitious example when θ = θ0, we know by
using the enumeration procedure given in Section 3.3 that we should sum the
probabilities of the outcomes x1 to x4 when calculating Prθ0(p(X) ≤ 0.05) and
x1 to x5 when calculating Prθ0(pM(X) ≤ 0.05). In this example we thus have
Prθ0(pM(X) ≤ 0.05) < Prθ0(p?(X) ≤ 0.05) since we sum over a subset of the xi
used in calculating Prθ0(p?(X) ≤ 0.05) when we calculate Prθ0(pM(X) ≤ 0.05).
This observation holds in general, i.e we either use the same xi or a subset of the xi
used in calculating Prθ0(p?(X) ≤ α) = ∑

p?(x)≤α Prθ0(X = x) when we calculate
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Table 4.10: Fictitious example of the realisations of the p-values calculated using
Equation (4.48) and (4.2) for outcomes x1 to x6. The results are not shown for the rest
of the outcomes, but the p-values are larger than p?(x5) and p(x5) respectively.

x p?(x) p(x)
x1 0.01 0.15
x2 0.03 0.03
x3 0.04 0.042
x4 0.045 0.051
x5 0.061 0.063

Prθ0(pM(X) ≤ 0.05) = ∑
pM (x)≤α Prθ0(X = x). We thus have (Casella & Berger

2002, p. 398)
Prθ0(pM(X) ≤ α) ≤ Prθ0(p?(X) ≤ α). (4.49)

Since p?(X) is a valid p-value we have

Prθ0(p?(X) ≤ α) ≤ α,

which holds for all α ∈ [0, 1]. The above procedure can be carried out for all
θ0 ∈ Θ0. This means that

Prθ(pM(X) ≤ α) ≤ α (4.50)

holds for all α ∈ [0, 1] and all θ ∈ Θ0, so that pM(X) defined by Equation (4.2) is
a valid p-value.

4.6.2 Proof of E p-value being asymptotically valid

We want show that the E p-value defined in Equation (4.3) is asymptotically
valid. In Equation (4.3) we regard pE(x) a function of θ̂ and not of x. By using
the enumeration procedure in Section 3.2 we get

pE(x) = Prθ̂(T (X) ≥ T (x)) =
∑

T (x′)≥T (x)
Prθ̂(X = x′).

We assume that Prθ(X = x) is a continuous function of θ for each outcome
x. From Theorem 6 in Adams & Essex (2010, p. 80) we know that a sum of
continuous functions is continuous. Therefore pE(x) is a continuous function of
θ̂. Since maximum likelihood estimators are asymptotically consistent we know
that

θ̂
p→ θ̃, (4.51)
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where θ̃ is the true value of θ under H0. Theorem 4.2.5 then gives

pE(x) =
∑

T (x′)≥T (x)
Prθ̂(X = x′) p→

∑
T (x′)≥T (x)

Prθ̃(X = x′),

since p(x) = f(θ̂) is a continuous function of θ̂ and θ̂
p→ θ̃ by Equation (4.51).

From Section 3.5
pE(x) = Prθ̃(T (X) ≥ T (x))

defines a valid p-value when testing

H0 : θ = θ̃, H1 : θ 6= θ̃,

and therefore pE(x) is asymptotically valid, which is what we wanted to show.

4.6.3 Proof of A p-values being asymptotically valid

The A p-value is defined in Equation (4.5), where we use the asymptotic distri-
bution of T (X) under H0. This distribution does not depend on θ, so that the
probability on the right hand side of Equation (4.5) does not depend on θ. Since
the M p-value is valid, we know that the p-value defined in Equation (4.5) is valid
since

sup
θ∈Θ0

Pr(Y ≥ T (x)) = Pr(Y ≥ T (x)).

Therefore since the distribution of T (X) converges to the asymptotic distribution
of T (X), Y , the A p-value is asymptotically valid.

4.6.4 Proof of C p-value being valid

The C p-value is defined in Equation (4.4). The probability on the right hand side
of this equation does not depend on θ since S(X) is a sufficient statistic for θ. It
is important to realise that we do a unconditional experiment and condition on
the value of S(X) obtained in the experiment. We do not perform a conditional
experiment where it is given that S(X) = S(x). For instance when testing equality
of independent binomial proportions we know that the outcome X is given by
X = (X1, X2) where X1 ∼ Binom(θ, n1), X2 ∼ Binom(θ, n2) and X1 and X2 are
independent. However, given that S(X) = X1 + X2 = s the random variable
X follows a hypergeometric distribution, or to be more exact X is determined by
either ofX1 orX2 (since the other one is sminus the value of the former). We know
that X1 follows a hypergeometric distribution with total size n1 +n2, total number
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of possible successes n1 and s trials. We see that X is distributed differently in
the conditional experiment than in the unconditional experiment.

Consider a specific conditional experiment where it is given that S(X) = s. We
then know

ps(x) = Pr(T (X) ≥ T (X) | S(X) = s) (4.52)

defines a valid p-value since

sup
θ∈Θ0

Pr(T (X) ≥ T (x) | S(X) = s) = Pr(T (X) ≥ T (x) | S(X) = s)

and M p-values are valid from Section 4.6.1. For outcomes x such that S(x) = s we
calculate the same p-values using Equation (4.52) and Equation (4.4). Therefore
pC(x) defined in Equation (4.4) is valid given S(X) = s. This observation holds
for all the possible values of S(X). By the law of total probability we then have
(Casella & Berger 2002, p. 399)

Prθ(pC(X) ≤ α) =
∑
s

Prθ(S(X) = s)Pr(pC(X) ≤ α | S(X) = s)

(?)=
∑
s

Prθ(S(X) = s)Pr(ps(X) ≤ α | S(X) = s)

(??)
≤
∑
s

Prθ(S(X) = s) · α = 1 · α = α,

where equality in transition (?) follows since pC(X) and ps(X) give the same p-
value given S(X) = s and we have less than or equal to in transition (??) since
ps(X) given S(X) = s is valid. This means the C p-value is valid.

In column 3 in Table 4.18 we have calculated all the C p-values using Z2
p as test

statistic when n1 = n2 = 5. The rows are ordered in increasing value of the suffi-
cient statistic S(X) = X1 +X2. For each value of the sufficient statistic, the rows
are ordered in increasing value of Z2

p . From the above proof pC(X) is valid given
every value of the sufficient statistic S(X1, X2) = X1 +X2, but is also uncondition-
ally valid. The reason the C p-value is 1 when evaluated in other outcomes than
(0, 0) and (n1, n2) is that we calculate the realisations as conditional probabilities,
conditional on the value of the sufficient statistic obtained in the unconditional
experiment. In each conditional experiment the sum of the probabilities of the
outcomes must be 1. Each possible outcome in the unconditional experiment is
also the outcome in a conditional experiment. When we calculate all the realisa-
tions of pC(X) for the different outcomes in the unconditional experiment, we also
consider all outcomes in the different conditional experiments. When we consider
an outcome that is regarded as the weakest evidence against the null hypothesis
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in the conditional experiment the outcome is part of, the conditional probability,
which equals the realisation of the C p-value, must be 1.

As a note, we need to consider ps(X) given S(X) = s and not simply ps(X) since
the distribution of X is given unconditionally and the unconditional distribution
ofX is different from the conditional distribution (which means the sample spaces
are different). In the pure conditional setting, where it is given that S(X) = s, it
is possible to write

Pr(ps(X) ≤ α).
We can of course also write

Pr(ps(X) ≤ α | S(X) = s)

but this is not common practise. In the unconditional setting we need to write

Pr(ps(X) ≤ α | S(X) = s)

when we want to consider the p-value ps(X) in the conditional experiment.

4.7 Comparing Z2
p and |D|, part I

Even though we do not consider the test statistic |D| (since the asymptotic distri-
bution is a constant), we get a better understanding of the ordering property of
the test statistic by comparing the ordering induced by this test statistic with the
ordering induced by Z2

p . We should also consider the realisations of the p-values
generated by the same method using the two test statistics in turn as test statistic
since only differences between the realisations of the p-values can give differences
in the values of the power functions of the level α tests based on the p-values. We
first consider the situation where n1 = 3 and n2 = 3. In columns 3 and 4 from
the left in Table 4.11 we have evaluated the test statistics in the different out-
comes and have ordered the rows in increasing value of |D|(x1, x2). If we imagine
creating boxes for the unique values of the test statistics and ordering the boxes
for each test statistic, we see that the elements in the boxes (when we compare
the boxes from one test statistic with the other) are either the same or we can
think that we have split the box of the D-statistic in two to get the boxes for the
Z2
p -statistic.

To get a more precise statement we introduce the notion of refinement from set
theory. Firstly, a partition of a sample space S is a set P = {B1, . . . Bn} of non-
empty subsets Bi of S such that the subsets are disjoint (Bi ∩ Bj = ∅ for i 6= j)
and the union of them is the sample space (B1 ∪ B2 ∪ · · · ∪ Bn = S) (Roman
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2012, p. 41). A partition Q = {C1, . . . , Cm} is called a refinement of a partition
P = {B1, . . . , Bn} of the sample space S if each set Ci is completely contained in
one of the Bi, or equivalently if Bi is the union of unique sets from Q (Roman 2012,
p. 42). In Figure 4.7 we have illustrated a partition of a sample space and also
a refinement of the partition. The figures are inspired from Figure 3.1 in Roman
(2012, p. 42).

We can think that the test statistic creates a partition of the sample space where
each subset consists of sample points with the same value of the test statistic,
which is almost equivalent to the box analogy. Some informations is lost however
when we use the concept of partition instead of the box analogy, since the sets in
a partition are not ordered. More importantly, when n1 = 3 and n2 = 3 we can
imagine the partition generated by Z2

p is a refinement of the partition generated
by |D|. Does this fact have any practical consequences? To answer the question
we study the p-value generated in this case by the M method. We postpone the
treatment of the C and E p-values to Section 4.9.

In Table 4.11 we have also computed the M p-value where we have used |D| as test
statistic and the M p-value where we have used Z2

p as test statistic. We observe
the M step reverses the ordering of the test statistic. This means the M p-value
partitions the sample space the same as the original test statistic. However, if
we make boxes and put outcomes with the same value of the p-value in the same
box and order them in increasing value of the p-value, then the boxes appear
in opposite order compared to if we order them using the original test statistic.
This holds in general, i.e for any n1 and n2 when we use either |D| or Z2

p as test
statistic. When we consider the M p-value care must be taken. We maximise
Prθ(T (X) ≥ T (x)) over θ ∈ [0, 1], i.e including 0 and 1. From Equation (4.7)
Pr(0,0)(X1 = 0, X2 = 0) = 1, Pr(1,1)(X1 = n1, X2 = n2) = 1 and both equals
0 if we change θ1 or θ2. From this equation we also have that 0 < Prθ(X1 =
x1, X2 = x2) < 1 for 0 < θ1, θ2 < 1 and x not equal to either (0, 0) or (n1, n2).
We first consider Z2

p . For a given outcome x = (x1, x2), if Z2
p(x1, x2) < Z2

p(n1, n2)
or Z2

p(x1, x2) < Z2
p(0, 0) the realisation of the p-value is 1 since we consider the

outcomes (0, 0) and (n1, n2) when calculating the realisation of the p-value, which
is the same as the realisation when the outcome is either (0, 0) or (n1,n2). If this
is possible, the ordering of the M p-value is not the opposite of the ordering of
the original test statistic. However, Z2

p(n1, n2) and Z2
p(0, 0) both give the lowest

possible value of the test statistic. This also means that supθ∈[0,1] Prθ(T (X) ≥
T (x)) will occur at θ ∈ (0, 1) when we calculate the realisation of the p-value for
outcomes with a larger test statistic than Z2

p(n1, n2) and Z2
p(0, 0). If we consider

y1 and y2 where T (y1) > T (y2) > Z2
p(n1, n2) = Z2

p(0, 0) we sum over least as
many outcomes x when calculating pM(y2) as when calculating pM(y1) and since
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(a) The partition P = {B1, . . . , Bn} of the sample
space S.

(b) The partition Q = {C1, . . . , Cm} of the sample
space S.

Figure 4.7: Examples of two paritions P and Q of the sample space S, where the
partition Q is a refinement of P since B1 = C1, B2 = C2, B3 = C2 ∪ C3 ∪ C4 ∪ C5, B4 =
C6 ∪C7, B5 = C8, B6 = C9 ∪C10 (so that each Bi is a union of unique subsets from Q).
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0 < Prθ(x) < 1 for θ ∈ (0, 1) and x 6∈ {(0, 0), (n1, n2)} for each x, we must have
pM(y2) > pM(y1). This means the ordering of the negative of the M p-value is
the same as the ordering of Z2

p . If we replace Z2
p with |D| almost all the previous

statements will hold. The only difference is that there might be outcomes with
the same value of the test statistic as either (0, 0) or (n1, n2). If we evaluate the
M p-value in these outcomes, it will of course be 1. So, the M step reverses the
ordering of Z2

p and |D|.

If we make a set of the all the different values of the p-value generated using the
|D|-statistic that are less than or equal to α and make a similar set of the values
of the p-value generated by the Z2

p -statistic, then the first set is a subset of the
other for all α. The reason is that the M step reverses the ordering of the original
test statistic and that the partition given by Z2

p is a refinement of the partition
given by |D|. Roughly speaking we get the same realisations of the p-value with
Z2
p as test statistic as with |D| as test statistic and some additional ones. When

we calculate the power, we sum over at least as many outcomes for a given α when
considering the p-value created by using the M step on Z2

p compared to when we
use the p-value resulting from using the M method on |D|. This means the power
function is least as high of the level α test based on M p-value generated by using
Z2
p as test statistic as the power function of the level α test based on the M p-value

generated by using |D| as test statistic for all θ1, θ2 and α. Mathematically, we
can write the last statement as γ1(θ1, θ2) ≥ γ2(θ1, θ2) for all α where γ1(θ1, θ2) is
the power function of the level α test based on M p-value where Z2

p has been used
as test statistic and γ1(θ1, θ2) is the power function of the level α test based on
the M p-value where |D| has been used as test statistic. So if a test statistic T1
gives a partition of the sample space that is a refinement of the partition given
by another test statistic T2 and if we place the elements from the different sets in
boxes and combine boxes for which the union of the elements give the sets in the
partition given by T2, the test statistic T2 orders these boxes the same as its own
boxes, then the power function of the level α test based on the M p-value where
T1 is used as test statistic is least as large as the power function of the level α test
based on the M p-value where T2 is used as test statistic.

Instead of introducing the concept of refinement, it is also possible to say that Z2
p

is less discrete than |D|, meaning the former test statistic takes on more unique
values than the latter (Mehrotra et al. 2004). Based on this, the M p value where
Z2
p has been used as test statistic takes more unique values than the M p-value

where |D| has been used as test statistic. It is therefore expected that the power
function of the level α-test based on the p-value generated by Z2

p takes least as
high values as the power function of the level α-test based on the p-value generated
by |D| when we use the same method to create the p-value. However, this also
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depends on the ordering induced by the test statistics. If a test statistic takes
less unique values but induce a better ordering on the sample space than another
test statistic that takes more unique values, it is not easy to compare the power
function of the test based on the p-value where the first statistic is used as test
statistic with the power function of the test based on the p-value where the second
test statistic is used as test statistic for different α.

To illustrate this, we could compare the values of the p-values generated by the
same enumeration method using Z|D| and −Z2

p as test statistics. If we use the
M method then the only realisation of the p-value where −Z2

p is used as the test
statistic would be 1 since (0, 0) and (5, 5) have the largest value of the test statistic
and supθ∈[0,1] Pr(X1 = 0, X2 = 0) = 1 = supθ∈[0,1] Pr(X1 = 5, X2 = 5). The p-value
where one uses |D| as test statistic takes more unique values. Note that −Z2

p takes
more unique values than |D|. This means we also need to compare the orderings
induced by the test statistics and not only the number of unique values of the test
statistics when we want to compare the power functions of tests based on p-values
created by the same method. We will see in Section 4.9 that discreteness of the
test statistic is only certain to give discreteness in the possible values of the p-value
when we use the M-method, meaning that the statement “. . . Z2

p is less discrete
than |D| . . . The p value generated from Z2

p takes more unique values than the
p-value generated from |D| when using the same method to create the p-value” is
only true when we use the M-method to create the two p-values.

We also consider the M step when n1 = 3 and n2 = 4. By creating a new table in
the same fashion as Table 4.11 was created, we get Table 4.12. Now we observe
that the partition generated by Z2

p is not a refinement of the partition generated by
|D|. The reason is that the outcomes (2, 1) and (1, 3) (which give the same value
of each of the test statistics) are considered stronger evidence against H0 than the
outcomes (1, 0) and (2, 4) (both of which give the same value of each test statistic)
by Z2

p and not as weaker evidence by |D|. Therefore the set {x | pM1(x) ≤ α}
is not a subset of the set {x | pM2(x) ≤ α} for all 0 ≤ α ≤ 1. This means
comparisons of the power functions based on the two p-values is not easy without
doing computer simulations (of course, even if one of the sets is a subset of the
other, you do not know how big difference there is between the power functions at
different (θ1, θ2) without evaluating the power functions).

However, when n1 = 3 and n2 = 4 the orderings induced by the two test statistics
are the same except for the order of the set of pairs of outcomes B1 = {(2, 1), (1, 3)}
and B2 = {(1, 0), (2, 4)}, see Table 4.11. If we use the box analogy, the difference
between the orderings is that the box with the elements {(1, 0), (2, 4)} comes just
before the box with elements {(2, 1), (1, 3)} when considering the boxes of Z2

p and
that only the two mentioned boxes are reversed when we consider the boxes of
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the other test statistic. This means only one realisation of the p-value generated
by Z2

p is different from the realisations of the other p-value. The same holds
when we compare the realisations of the other p-value with the realisations from
the first p-value. This is verified by examining columns 4 and 5 of Table 4.11,
where we see that only two realisations differ. This means the two power functions
will be equal for some α. In fact, the power functions are equal except when
α ∈ [30.54, 45.31).

Table 4.11: The M p-values where |D| and Z2
p are used as test statistic when n1 = 3

and n2 = 3. For each row the first two columns from the left give the outcome, the third
gives the value of |D|-statistic, the fourth column gives the value of the Z2

p -statistic, the
fifth and sixth cloumns give the M p-value where respectively |D| and Z2

p is used as test
statistic. We have ordered the rows in increasing value of |D| from top to bottom.

x1 x2 |D|(x1, x2) Z2
p(x1, x2) pM1(x1, x2) pM2(x1, x2)

0 0 0.0000 −99.0000 1.0000 1.0000
1 1 0.0000 0.0000 1.0000 0.9687
2 2 0.0000 0.0000 1.0000 0.9687
3 3 0.0000 −99.0000 1.0000 1.0000
1 0 0.3333 1.2000 0.6875 0.5096
0 1 0.3333 1.2000 0.6875 0.5096
2 1 0.3333 0.6667 0.6875 0.6875
1 2 0.3333 0.6667 0.6875 0.6875
3 2 0.3333 1.2000 0.6875 0.5096
2 3 0.3333 1.2000 0.6875 0.5096
2 0 0.6667 3.0000 0.2187 0.2187
0 2 0.6667 3.0000 0.2187 0.2187
3 1 0.6667 3.0000 0.2187 0.2187
1 3 0.6667 3.0000 0.2187 0.2187
3 0 1.0000 6.0000 0.0312 0.0312
0 3 1.0000 6.0000 0.0312 0.0312

To sum up so far, a test statistic partitions the sample space. In each subset of the
partition the elements have the same value of the test statistic. If we consider a
test statistic T1 that gives a refinement of the partition of the sample space given
by a test statistic T2, then the power function of the level α test based on the
M p-value where T1 is used as test statistic is least as high as the power function
of the level α test where one instead of T1 uses T2 as test statistic. There is one
necessary condition for the previous statement about the power functions to be
true. In the box analogy, if we make new boxes for T1 where we combine boxes so
that the set of elements in each box is one of the subsets in the partition of T2, then
it is necessary that the boxes are ordered the same by the two test statistics. If
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Table 4.12: The M p-values where |D| and Z2
p are used as test statistic when n1 = 3

and n2 = 4. For each row the first two columns from the left give the outcome, the third
gives the value of |D|-statistic, the fourth column gives the value of the Z2

p -statistic, the
fifth and sixth cloumns give the M p-value where respectively |D| and Z2

p is used as test
statistic. We have ordered the rows in increasing value of |D| from top to bottom.

x1 x2 |D| Z2
p pM1 pM2

0 0 0.0000 −99.0000 1.0000 1.0000
3 4 0.0000 −99.0000 1.0000 1.0000
1 1 0.0833 0.0583 0.9844 0.9844
2 3 0.0833 0.0583 0.9844 0.9844
2 2 0.1667 0.1944 0.7969 0.7969
1 2 0.1667 0.1944 0.7969 0.7969
0 1 0.2500 0.8750 0.5635 0.5635
3 3 0.2500 0.8750 0.5635 0.5635
1 0 0.3333 1.5556 0.4531 0.3054
2 4 0.3333 1.5556 0.4531 0.3054
2 1 0.4167 1.2153 0.4063 0.4531
1 3 0.4167 1.2153 0.4063 0.4531
0 2 0.5000 2.1000 0.2188 0.2188
3 2 0.5000 2.1000 0.2188 0.2188
2 0 0.6667 3.7333 0.1250 0.1250
1 4 0.6667 3.7333 0.1250 0.1250
3 1 0.7500 3.9375 0.0781 0.0781
0 3 0.7500 3.9375 0.0781 0.0781
3 0 1.0000 7.0000 0.0156 0.0156
0 4 1.0000 7.0000 0.0156 0.0156

76



the boxes are ordered the opposite, the statement made about the power functions
is no longer valid. In Section 4.9 we consider the C and E method.

4.8 Interpretation of the p-value when the null
hypothesis is composite

By definition a valid p-value satisfies

sup
θ∈Θ0

Prθ(p(X) ≤ α) ≤ α

for all α ∈ [0, 1]. If we use a valid p-value to create a level α-test testingH0 : θ ∈ Θ0
against an alternative hypothesis, the realisation of the p-value we calculate after
performing the experiment gives us the lowest significance level we could have spec-
ified before performing the experiment so that we would reject the null hypothesis.
If we had specified a lower significance level, then we would not have rejected the
null hypothesis. This is one possible interpretation of the p-value.

In Section 3.4 we gave a long run interpretation of the realisation of the p-value in
an experiment, where we said that p(x) (and x is the outcome in the experiment) is
the long run proportion of experiments where we get a value of the test statistic at
least as extreme as the original value of the test statistic. We call this interpretation
for interpretation (a). When the null hypothesis is composite we do not know
the true value of θ under the null hypothesis. Under H0 only one value can
be the true value of θ. When calculating Prθ(T (X) ≥ T (x)) we get different
numbers if we use different θ possible under H0. The long run frequency converges
to the number calculated using the true value of θ, which is unknown to the
experimenter. The different four methods of calculating the realisations of a p-
value when the null hypothesis is composite, given in Section 4.1.2, deal with this
issue in different manners. In the E method we assume that the realisation of
the maximum likelihood estimator for θ in the experiment is the true value of θ
under H0. If this holds, then interpretation (a) holds. In the M method we use
the value of θ possible under H0 that maximizes Prθ(T (X) ≥ T (x)). If this value
of θ is the true value of θ under H0, interpretation (a) holds. In the A method
we use the large sample distribution of the test statistic, which is free of θ. If
this distribution is the true distribution of the test statistic, then interpretation
(a) holds. When considering the C method we must be a little careful, since we
calculate the realisations as conditional probabilities. Interpretation (a) holds if
the repeated runs of the experiments are conditional experiments conditioned on
the sufficient statistic being equal to the value in the original experiment. So
interpretation (a) may also hold when the null hypothesis is composite.
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In each of the four methods of calculating the realisations of a p-value when the
null hypothesis is composite, we always calculate the realisation as a probability
of obtaining a least as extreme test statistic that was obtained in the experiment.
Exactly how we calculate the probability differers from method to method. This
also means the lower the realisation we calculate the more evidence there is against
the null hypothesis. From Section 3.3 we know we can view the p-value as a test
statistic. This means we can view each of the four p-values, each created by
one of the different methods in a specific experiment using one test statistic as a
test statistic, as a test statistic for which low values of it indicate that the null
hypothesis is false and the lower the realisation of the p-value we calculate for an
outcome in the experiment the stronger the evidence the outcome provides against
the null hypothesis (according to the p-value statistic). We want high values of a
test statistic to indicate that a null hypothesis is wrong and the higher the value
the stronger the evidence. So if we use the negative of the p-value the higher the
value the stronger the evidence against the null hypothesis. So we can view the
negative of a p-value as a test statistic. And we can possibly regard the negative
of a p-value as a competing test statistic against the original test statistic which
was used in the calculation of the p-value. We can also compare the different p-
value statistics obtained from the four different methods of calculating the p-value.
However, we need to investigate further if the ordering of the negative of any of
the p-values are different from the original test statistic. If the orderings induced
are the same, the power function of each of the new tests is the same as the power
function of the corresponding original test.

When the null hypothesis is simple the ordering of the initial test statistic is the
same as the ordering of the negative of the p-value. So we have that T (x1) <
T (x2) if and only if −p(x1) < −p(x2). The reason is that we sum over more
outcomes when calculating p(x1) than when calculating p(x2) and use the same
θ when calculating Prθ(T (X) ≥ T (x1)) as when computing Prθ(T (X) ≥ T (x2))
(which means we use the same probability distribution of the test statistic when
we calculate the different realisations of the p-value).

Let us reason if the ordering of the negative of the different p-values are the same
as that of the original test statistic when testing the hypotheses in Equation (4.1)
using the Z2

p statistic. We start with the negative of the A p-value. Since we
calculate all the realisations of the A p-value using the same distribution of the
test statistic, the ordering of the negative of the A p-value must be the same as
the ordering induced by the original test statistic (assuming that the asymptotic
distribution is not a constant, which is not the case when we consider the asymp-
totic distribution of Z2

p). The only two exceptions are for the outcomes (0, 0) and
(n1, n2). We have defined Z2

p(0, 0) = Z2
p(n1, n2) = −99, but a chi square random
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variable cannot be less than 0, meaning we integrate the chi square distribution
from 0 and not from -99 when we calculate pA(0, 0) and pA(n1, n2). So the out-
comes (0, 0) and (n1, n2) are regarded as equal evidence against the null hypothesis
as the outcomes x where Z2

p(x1, x2) = 0 by −pA.

When we calculate the realisations of the E p value we possibly use different values
of θ̂ when we calculate Prθ̂(T (X) ≥ T (x)) for different outcomes x. This means
we possibly use different distributions of the test statistic when calculating the
different realisations, so that the ordering of the negative of the E p-value does not
need to be the same as the ordering of the original test statistic. When calculating
the realisations of the C p-value, we possibly consider different conditional distri-
butions of the test statistic when calculating pC(x1) and pC(x2) for two different
outcomes x1 and x2. This means the ordering induced by the negative of the
C p-value does not need to be equal to the ordering induced by the original test
statistic.

The above discussion indicates that the ordering of the negative of the E and C
p-values can be different from the ordering of Z2

p and that the ordering of the
negative of the A p-value is the same as the ordering induced by Z2

p except for the
outcomes (0, 0) and (n1, n2). From Section 4.7 we know the M step reverses the
ordering of Z2

p , so that the ordering of the negative of the M p-value is the same as
the ordering induced by Z2

p . We illustrate the mentioned properties in the example
with n1 = 5, n2 = 5. We calculate all the realisations of the p-values using the four
different methods. The results are shown in Table 4.13. As expected, we observe
that the negative of the M p-value and the Z2

p -statistic orders the sample space
exactly the same. As previously noted, the ordering induced by the negative of the
A p-value is almost the same as the ordering induced by the negative of the M p-
value and the Z2

p -statistic, where the difference is that not only the outcomes (0, 0)
and (n1, n2) are regarded as the weakest evidence against the null hypothesis but
also the outcomes (i, i) for 0 ≤ i ≤ 5. We also observe that the ordering induced
by the negative of the E p-value differs from the ordering induced by the other test
statistics, where the outcome (1, 1) is regarded as stronger evidence against the
null hypothesis than (2, 2) and (3, 3) and not the same evidence as by the other
test statistics. We also observe that the negative of the C p-value statistic is −1
for many outcomes, which means that the ordering induced by this statistic differs
from the order induced by the other test statistics. The reason we get so many
−1’s is given in Section 4.6.4.

We have illustrated that it is possible to use the negative of one of the four p values
as a tests statistic and that the ordering of this test statistic may be different from
the ordering induced by the original test statistic. We can then use the test statistic
in one of the mentioned four procedures of calculating a p-value to create a new
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Table 4.13: The negative of the four different p-values, pA(X), pM (X), pE(X) and
pC(X), when n1 = n2 = 5. Column 1 and 2 give the outcomes in the experiment. Col-
umn 3 gives the value of the Z2

p statistic. Column 4 to 8 give the negative of respectively
the A, M, C and E p-value statistics. The rows are ordered in increasing value of Z2

p

starting from the top.

x1 x2 Z2
p −pA −pM −pC −pE

0 0 −99.0000 −1.0000 −1.0000 −1.0000 −1.0000
5 5 −99.0000 −1.0000 −1.0000 −1.0000 −1.0000
1 1 0.0000 −1.0000 −0.9980 −1.0000 −0.8926
2 2 0.0000 −1.0000 −0.9980 −1.0000 −0.9938
3 3 0.0000 −1.0000 −0.9980 −1.0000 −0.9938
4 4 0.0000 −1.0000 −0.9980 −1.0000 −0.8926
3 2 0.4000 −0.5271 −0.7539 −1.0000 −0.7539
2 3 0.4000 −0.5271 −0.7539 −1.0000 −0.7539
2 1 0.4762 −0.4902 −0.6648 −1.0000 −0.6468
1 2 0.4762 −0.4902 −0.6648 −1.0000 −0.6468
4 3 0.4762 −0.4902 −0.6648 −1.0000 −0.6468
3 4 0.4762 −0.4902 −0.6648 −1.0000 −0.6468
5 4 1.1111 −0.2918 −0.5156 −1.0000 −0.4893
4 5 1.1111 −0.2918 −0.5156 −1.0000 −0.4893
1 0 1.1111 −0.2918 −0.5156 −1.0000 −0.4893
0 1 1.1111 −0.2918 −0.5156 −1.0000 −0.4893
3 1 1.6667 −0.1967 −0.3437 −0.5238 −0.3326
1 3 1.6667 −0.1967 −0.3437 −0.5238 −0.3326
4 2 1.6667 −0.1967 −0.3437 −0.5238 −0.3326
2 4 1.6667 −0.1967 −0.3437 −0.5238 −0.3326
2 0 2.5000 −0.1138 −0.1874 −0.4444 −0.1778
0 2 2.5000 −0.1138 −0.1874 −0.4444 −0.1778
5 3 2.5000 −0.1138 −0.1874 −0.4444 −0.1778
3 5 2.5000 −0.1138 −0.1874 −0.4444 −0.1778
4 1 3.6000 −0.0578 −0.1094 −0.2063 −0.1094
1 4 3.6000 −0.0578 −0.1094 −0.2063 −0.1094
5 2 4.2857 −0.0384 −0.0618 −0.1667 −0.0581
2 5 4.2857 −0.0384 −0.0618 −0.1667 −0.0581
3 0 4.2857 −0.0384 −0.0618 −0.1667 −0.0581
0 3 4.2857 −0.0384 −0.0618 −0.1667 -0.0581
4 0 6.6667 −0.0098 −0.0215 −0.0476 −0.0188
5 1 6.6667 −0.0098 −0.0215 −0.0476 −0.0188
0 4 6.6667 −0.0098 −0.0215 −0.0476 −0.0188
1 5 6.6667 −0.0098 −0.0215 −0.0476 −0.0188
5 0 10.0000 −0.0016 −0.0020 −0.0079 −0.0020
0 5 10.0000 −0.0016 −0.0020 −0.0079 −0.0020
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Table 4.14: Excerpt of the realisations of −pE(X) where Z2
p is used as test statistic

and n1 = 90, n2 = 150. For each row, the the third coloumn gives the value of the
test statistic when evaluated in the outcome given in the two leftmost coloumns and
the fourth coloumn gives the realisation of the negative of the E p-value statistic when
evaluated in the outcome. The rows are ordered increasingly in Z2

p from top to bottom.

x1 x2 Z2
p −pE(x)

44 73 0.001112 −0.9867
46 77 0.001112 −0.9867
43 72 0.001113 −0.9782
47 78 0.001113 −0.9782
41 68 0.001121 −0.9777
49 82 0.001121 −0.9777
40 67 0.001124 −0.9747
50 83 0.001124 −0.9747
38 63 0.001140 −0.9775
52 87 0.001140 −0.9775
37 62 0.001146 −0.9745
53 88 0.001146 −0.9745
55 92 0.001170 −0.9773
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p-value. The question is then which of the four methods to use. We know that
the A p-value and the E p-value can be liberal, so that they are not valid. We
therefore do not consider these two methods. The remaining two p-values, the C
or M p−value, are valid. This means that applying a C or M step to either the E
or A p value will make it valid. The M method is preferred over the C method.
The reason is given by the following theorem

Theorem 4.8.1 Let p(X) be any p-value statistic. We know that the lower the
value of this statistic, the stronger the evidence against the null hypothesis. Let
pM(X) denote the p-value when we use −p(X) as test statistic in the M method,
i.e pM(x) = supθ∈Θ0 Prθ(−p(X) ≥ −p(x)) for all possible outcomes x. We then
have (Bakke & Langaas n.d.)

1. pM(X) is a valid p-value

2. If p(X) is a valid p-value, then pM(x) ≤ p(x) for all outcomes x.

The proof is as follows

1. We have that pM(X) is valid since the original p-value can be considered an
ordinary test statistic and the M-method gives a valid p-value. See Section
4.6.1 for a proof of the M method producing a valid p-value.

2. If p(x) is valid, we know that Prθ(p(X) ≤ α) ≤ α holds for all θ ∈ Θ0 and
all α ∈ [0, 1]. This must also hold if we set α equal to the original p-value
statistic evaluated in a particular outcome x, i.e Prθ(p(X) ≤ p(x)) ≤ p(x).
This holds for all outcomes x. Then we must also have (Bakke & Langaas
n.d.) supθ∈Θ0 Prθ(p(X) ≤ p(x)) ≤ p(x) for all outcomes x, which means
pM(x) = supθ∈Θ0 Prθ(−p(X) ≥ −p(x)) = supθ∈Θ0 Prθ(p(X) ≤ p(x)) ≤ p(x)
so that pM(x) ≤ p(x) for all outcomes x when p(x) is valid, which is what
we wanted to show.

Care must be taken when we consider applying an M-step to the negative of any p-
value. Since if the outcomes (0, 0) and (n1, n2) are not considered the least evidence
against the null hypothesis by the negative of the p-value, then applying a M step
top the negative of the p-value might not reverse the ordering of the negative of
the p-value. We know from Section 4.7 that pM(n1, n2) = pM(0, 0) = 1 and we
have that pA(0, 0) = pA(n1, n1) = 1 since we integrate the chi square distribution
from 0 to infinity. Also pC(0, 0) = pC(n1, n2) = 1 since (0, 0) or (n1, n2) is the only
outcome with the corresponding value of the sufficient statistic and the sum of the
outcomes in the conditional experiment must be 1. When (x1, x2) = (0, 0) then
θ̂ = 0 from Equation (4.12) and since Pr(0,0)(X = (x1, x2)) = 1 from Equation (4.7)
it follows from Equation (4.3) that pE(0, 0) = 1. Since (n1 − 0, n2 − 0) = (n1, n2)
(and from Section 4.5 we know the realisations of the p-values comes in the pairs
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p(x1, x2) and p(n1−x1, n2−x2) with the same value of the p-value) pE(n1, n2) = 1.
We have shown that (n1, n2) and (0, 0) are considered (among, there could also be
other outcomes with the same value of the test statistic) the least evidence against
the null hypothesis when we use the negative of either of the A, C, M or E p-
value. This means the M-step reveres the ordering of the negative of the p-values.
When we use a p-value as test statistic in any method, we always use the negative
of the p-value as test statistic. We therefore say that the M step maintains the
ordering.

We denote by E ◦ M the p-value obtained by first using the C method on the
original test statistic and then using the M method on the negative of the resulting
E p-value. We introduce this notation to avoid confusion with the EM-algorithm.
This notation applies to any of the four introduced methods (A, E, C or M). For
instance C2 ◦M means that we apply the C step two times before we apply the M
step. As previously mentioned, the M step maintains the ordering of the original
statistic, so applying the M step more than once in succession will produce the
same p-value. If we try to apply the C step more than once in succession, the
realisations of the p-value will also not change. We now explain why. Say that
we get the outcome (x1, x2) in an experiment. When applying the C method we
consider all tables (y1, y2) where y1 + y2 = x1 + x2 = s. From Equation (4.10) we
know that the probability of such a table is given by

Pr(X1 = y1 | S(X) = s) =

(
n1
y1

)(
n2
s−y1

)
(
n1+n2
s

)
And because s− y1 = y2

Pr(X1 = y1 | S(X) = s) =

(
n1
y1

)(
n2
y2

)
(
n1+n2
s

) > 0

since 0 ≤ x1 ≤ n1, 0 ≤ x2 ≤ n2. It therefore follows that when we calculate the
different conditional tail probabilities, the conditional ordering is reversed. Since
we use the negative of the C p-value and consider the same outcomes (y1, y2) such
that y1 + y2 = s when calculating the C p-value evaluated in (x1, x2) the second
time, the resulting value is unchanged. This holds for all outcomes, meaning the
C2 p-value is the same as the C p-value.

When we compute the E p-value the ordering induced by the negative of the
this p-value is likely to be different than from the original ordering, as previously
explained. If we try to apply the E method a second time, we use the same value
of θ when calculating the tail probability for the same outcome. However, there
is still no reason to expect that the ordering is maintained with the E method.
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So when we calculate the realisation of the E2 p-value for a specific outcome, we
possibly consider different outcomes than when we calculate the realisation of the
E p-value for the same outcome. Therefore there is no reason the E2 p-value should
equal the E p-value.

We have illustrated that the ordering induced by the negative of the p-value may
be different from the ordering induced by the original test statistic. We strongly
recommend the reader to ponder the examples given until this becomes clear.
For instance Günther et al. (2009) state that a test static T (x) has the prop-
erty that for all x ∈ S and θ ∈ Θ0, Prθ(p(X) ≤ p(x)) = Prθ(T (X) ≥ T (x)).
We know Prθ(p(X) ≤ p(x)) is the profile of −p(x) and that Prθ(T (X) ≥ T (x))
is the profile of T (x), which means the above statement says the two profiles
are equal for all outcomes and all θ ∈ Θ0. This would imply that the E ◦
M p-value would equal the M p-value, since if the above relation holds we must
have supθ∈Θ0 Prθ(pE(X) ≤ pE(x)) = supθ∈Θ0 Prθ(T (X) ≥ T (x)). This means
Prθ(p(X) ≤ p(x)) = Prθ(T (X) ≥ T (x)) does not hold in general. The general
argument for this is that the partition given by the negative of the p-value does not
need to be the same as the partition given by the test statistic (where the boxes
are ordered the same) or give a refinement of the partition (where the “combined”
boxes need to be ordered the same). For another example, see Table 4.19. We see
for the given excerpt of outcomes the set of x for which |D|(x) ≥ |D|(51, 41) is
not the same as the set of outcomes x for which pC2(x) ≤ pC2(51, 41).

By considering Table 4.13 it may look like the negative of the E p-value gives a
refinement of the partition of the sample space given by Z2

p . If this is generally
true, i.e true for any n1 and n2, then the power function of the level α test based
on the EM p-value will be least as great as the power function of the level α test
based on the M p-value for any α, θ1 and θ2. However, this is not the case which
we illustrate when n1 = 90 and n2 = 150. In Table 4.14 we have given a part
of the values of the test statistic and the values of the negative of the E p-value.
The rows are ordered in increasing value of Z2

p from top to bottom. We observe
that the outcomes (40, 67) and (50, 83) are considered less evidence against the
null hypothesis than (38, 63) and (52, 87) by the negative of the E p-value and not
weaker as by the Z2

p -statistic. This means the negative of the E p-value does not
give a refinement of the partition given by Z2

p .

The idea of using the negative of the p-value from one method as a test statistic
in another method is not new. Boschloo (1970) applies the M step on the negative
of the Fisher conditional p-value, which can be considered a C step, resulting in
a C ◦M p-value. In Fisher’s conditional test we condition on the same sufficient
statistic as in our C step, but the outcomes are ordered increasingly in the negative
of the probability of the different outcomes. For instance if (x1, x2) = (1, 1) when
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n1 = 4, n2 = 10, the ordering of the different relevant outcomes in the Fisher test
is given in Table 4.15. We have also included the Z2

p -statistic evaluated in each of
the outcomes in the same row as the probability for each outcome. We see that
the ordering induced by the two test statistics are not the same. This means the
p-values are not the same.

Table 4.15: Comparing the orderings induced by Z2
p and −Pr(X1 = x1 | T (X) = 2)

when n1 = 4 n2 = 10 and where we only consider outcomes such that x1 + x2 = 2.
Column 1 and 2 give the outcomes x1 and x2 that satisfy x1 + x2 = 2. Column 3
gives the negative value of the conditional probability of the outcome, where we have
conditioned on the sufficient statistic T (X1, X2) = X1 + X2 for θ. Column 4 gives the
value of the Z2

p statistic evaluated in each outcome in the table. The rows are ordered
in increasing value of the negative of the probabilities given in the third column from
top to bottom.

x1 x2 −Pr(X1 = x1 | T (X) = 2) Z2
p(x1, x2)

0 2 −0.5238 0.8392
1 1 −0.4190 0.6425
2 0 −0.0571 6.3462

According to Theorem 4.8.1 we have that pCM(x) ≤ pC(x) for all outcomes x, i.e
the C ◦M p-value is less than or equal to the C p-value for each outcome x. We
have illustrated this in Figure 4.8 where we have plotted the C◦M p-value against
the C p-value for each outcome x when n1 = 5, n2 = 5. We have also plotted the
line pCM = pM . For a point below this line pCM(x) is less than pM(x). We note
that more than one outcome may have the same value of both pCM and pM , so
it is possible that a point in the plot corresponds to the pair of p-values for more
than one outcome x. Since n1 = 5, n2 = 5 we compute 36 pairs of pCM and pM
(each outcome gives one unique pair). By considering the plot we see that there
are only 7 unique values, so that more than one outcome must have the same pair
of p-values. We also observe that all points on the plot in Figure 4.8 are below
or on the line pM = pCM , which means pCM(x) ≤ pC(x) for each outcome x,
and this is exactly what Theorem 4.8.1 predicts. It is important to realise that
pCM(x) ≤ pM(x) for all outcomes x means that {x | pM(x) ≤ α} is a subset of
{x | pCM(x) ≤ α} for all 0 ≤ α ≤ 1. This means γCM(θ1, θ2;α) ≥ γC(θ1, θ2;α) for
all (θ1, θ2) and all 0 ≤ α ≤ 1.

Lloyd (2008) also compares two independent binomial distributions where n1 = 47
and n2 = 283. The null hypothesis is the same as in Equation (4.1), but the
alternative hypothesis studied is θ1 > θ2. As test statistic, Zp is used. The
author compares the E ◦M p-value and the M p-value. When the outcome in the
experiment is (14, 48) the profile Prθ(Zp ≥ Zp(x1, x2)) has a spike around θ = 0.
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Figure 4.8: The C ◦M p-value plotted against the C p-value for each outcome x when
n1 = n2 = 5, i.e plot of pCM (x) against pC(x). The ordinate is the C ◦M p-value and
the abcissa is the C p-value.

86



When one instead considers the profile of the estimated p-value, i.e Prθ(−pE(X) ≥
−pE(x1, x2)), the profile is almost flat and the maximum value of the profile is
lower than the spike in the profile of Zp. Therefore the M p-value evaluated in
the outcome is greater than the E ◦ M p-value evaluated in the outcome in the
studied situation. We also observe the same phenomena when n1 = 90, n2 =
150, x1 = 60, x2 = 109 and the alternative hypothesis is two-sided. We have
drawn the profile of pE(60, 109) in Figure 4.9 and the profile of Z2

p(60, 109) in
Figure 4.10. When comparing the figures we see that pEM(60, 109) is smaller than
pM(60, 109) since supθ∈[0,1] Prθ(Z2

p(X) ≥ Z2
p(60, 109)) > supθ∈[0,1] Prθ(−pE(X ≥

−pE(60, 109)).

One reasonable follow-up question to Lloyd’s observation is if the E ◦M p-value is
less than the M p-value in general, i.e is pEM(x) ≤ pM(x) for all outcomes x? In
Figure 4.11 the E ◦M p-value is plotted against the M p-value for each outcome x
where the realisations of either of the two p-values are below or equal to 0.10 in the
example where n1 = 90 and n2 = 150. We observe that not all points are below the
line pEM = pM , which means that pEM(x) ≤ pM(x) does not hold in general. Since
pEM(x) ≤ pM(x) or vice versa does not hold in general for all outcomes x, four
situations may occur when comparing the power functions for a given α. Either
(1) γEM(θ1, θ2;α) ≥ γM(θ1, θ2;α) for all (θ1, θ2), (2) γEM(θ1, θ2;α) ≤ γM(θ1, θ2;α)
for all (θ1, θ2), (3) γEM(θ1, θ2;α) = γM(θ1, θ2;α) for all (θ1, θ2) (4) combinations of
situations (1) to (3) occur, for instance situation (1) might occur for some (θ1, θ2),
situation (2) might occur for other (θ1, θ2) and for the remaining (θ1, θ2) situation
3 might occur.

When we want to calculate γEM(θ1, θ2;α) for 0 ≤ α ≤ 0.1 we consider the outcomes
that give a point in Figure 4.11 below the horizontal line pEM = α and when we
want to calculate γM(θ1, θ2;α) we consider all the outcomes which have a point in
Figure 4.11 below the vertical line pM = α. (Note: α can of course be above 0.10,
but in our situation it needs to be less than or equal to this value since we have only
plotted the realisations of the pEM - or pM -value where either one is below 0.10.)
All the listed situations in the previous paragraph are possible when n1 = 90 and
n2 = 150. We have tried to illustrate this in Figure 4.12. We see that situation
(1) occurs when α = 0.08 since the set of outcomes where pM(x) ≤ α is a subset
of the set of outcomes where pEM(x) ≤ α, situation (2) occurs when α = 0.058
since then the set of outcomes where pEM(x) ≤ 0.058 is a subset of the outcomes
where pM(x) ≤ 0.058, situation (3) occurs when α = 0.0273 since then the set
of outcomes where pEM(x) ≤ 0.0273 is the same as the set of outcomes where
pM(x) ≤ 0.0273 and situation (4) occurs when α = 0.0276 since then the set of
outcomes where pEM(x) ≤ 0.0276 and the set of outcomes where pM(x) ≤ 0.0276
differ by two at least elements (there are at least two elements, at least one from
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each set that is only in this set and not in the other. The reason that there is at
least two points and not exactly two points, which the lower right plot in Figure
4.12 gives the impression of, is that more than one outcome can have the same
E ◦M and M p-value). We see that we get different results when comparing the
power functions for fixed n1, n2 for different α. This means power comparisons in
general only are valid for the studied α-values and are in fact heavily dependent
on these values. Even if we find that one power function takes higher values than
another for all (θ1, θ2) and does this for say α = 5 · 10−k for k = 2, 3..., 8 it is
still possible that the other power function takes higher values than the first one
(possibly for all (θ1, θ2) ∈ Θ or for some (θ1, θ2)) for other values of α.

4.9 Comparing Z2
p and |D|, part II

In this section we consider using the E and C method with Z2
p or |D| as test statis-

tic. We first consider the E method. In Table 4.16 we have calculated realisations
of the p-values using the E step on either Z2

p (giving pE1) or |D| (giving pE2) when
n1 = 5, n2 = 5. We observe that the number of subsets in the partition of the
sample space given by pE2 is much larger than the number of subsets in the parti-
tion given by |D|. If we exclude the realisations of the p-values that corresponds
to outcomes where the test statistics are 0, pE1 and pE2 give the same partitions.
If we consider the entire sample space (i.e also consider the outcomes where Z2

p

or |D| is 0), pE1 gives a refinement of the partition given by pE2. We therefore
observe that pE2 is much less discrete than |D| and if we had applied a M step on
pE1 and pE2 we would get almost the same values (only for the outcomes where Z2

p

or |D| is 0 the values of the resulting p-values differ). However pE1(x) ≤ pE2(x)
for all x meaning the power function of the level α test based on pE1 is least as
great as the power function of the level α-test based on pE2 since for each α the
set of x where pE2(x) ≤ α is a subset of the set of x where pE1(x) ≤ α for all
α.

We also observe that pE2 is less discrete than |D| for other n1 and n2 (data not
shown). However since we use different θ̂ when calculating Prθ(T (X) ≥ T (x)) for
different outcomes x we cannot expect that the ordering induced by the negative
of the E p-value is the same as the ordering induced by the original test statistic
or gives a refinement. And since Z2

p is not in general a refinement of |D| and the
E method also does not give a refinement of the partition given by the original
test statistic, we cannot expect in general that the p-value resulting from using E
on Z2

p is a refinement of the p-value where one uses E on |D|. We have illustrated
these observations in Table 4.17, where an excerpt of the E p-values using either
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Figure 4.9: Profile of −pE(60, 109), i.e plot of Prθ(−pE(X1, X2) ≥ −pE(60, 109) as a
function of θ, where pE is the estimation p-value, n1 = 90, n2 = 150 and where we test
equality of independent binomial proportions and the alternative hypothesis is two-sided.
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Figure 4.10: Profile of Z2
p(60, 109) when n1 = 90, n2 = 150.
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Figure 4.11: The E◦M p-value plotted against the M p-value for each outcome x when
n1 = 90, n2 = 150 and where we only consider realisations of the p-values were either
one is below or equal to 0.10.
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Figure 4.12: Comparing the sets {x | pEM (x) ≤ α} and {x | pM (x) ≤ α} for four
different values of α, where pEM is the E ◦ M p-value and pM is the M p-value in
the example where n1 = 90 and n2 = 150. We consider the values α1 = 0.08, α2 =
0.058, α3 = 0.0273 and α4 = 0.0276 of α. We have zoomed in on Figure 4.11 in four
different regions to help with the comparisons, which give the four plots of the figure.
Along the abscissa is the M p-value and along the ordinate is the E ◦M p-value. The
plots are ordered from left to right and the first plot starts on the top of the figure.
In each plot we have drawn a vertical and horizontal line equal to α to help with the
comparison of the sets. In the first plot the the lines equal α1 and in the last plot they
equal α4.
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Table 4.16: The realisations of the p-values when we use the E step on Z2
p or |D| and

n1 = 5, n2 = 5. The outcomes are given in the first two columns from the left. The
value of Z2

p is given in the third column and the value of |D| in the fourth column. The
E p-value where Z2

p is used as test statistic is given in the fifth column and the p-value
where |D| is used as test statistic is given in the sixth column. The rows are ordered in
increasing value of Z2

p from top to bottom.

x1 x2 Z2
p |D| pE1 pE2

0 0 −99.0000 0.0000 1.0000 1.0000
5 5 −99.0000 0.0000 1.0000 1.0000
1 1 0.0000 0.0000 0.8926 1.0000
2 2 0.0000 0.0000 0.9938 1.0000
3 3 0.0000 0.0000 0.9938 1.0000
4 4 0.0000 0.0000 0.8926 1.0000
3 2 0.4000 0.2000 0.7539 0.7539
2 3 0.4000 0.2000 0.7539 0.7539
2 1 0.4762 0.2000 0.6468 0.7284
1 2 0.4762 0.2000 0.6468 0.7284
4 3 0.4762 0.2000 0.6468 0.7284
3 4 0.4762 0.2000 0.6468 0.7284
5 4 1.1111 0.2000 0.4893 0.5383
4 5 1.1111 0.2000 0.4893 0.5383
1 0 1.1111 0.2000 0.4893 0.5383
0 1 1.1111 0.2000 0.4893 0.5383
3 1 1.6667 0.4000 0.3326 0.3326
1 3 1.6667 0.4000 0.3326 0.3326
4 2 1.6667 0.4000 0.3326 0.3326
2 4 1.6667 0.4000 0.3326 0.3326
2 0 2.5000 0.4000 0.1778 0.2224
0 2 2.5000 0.4000 0.1778 0.2224
5 3 2.5000 0.4000 0.1778 0.2224
3 5 2.5000 0.4000 0.1778 0.2224
4 1 3.6000 0.6000 0.1094 0.1094
1 4 3.6000 0.6000 0.1094 0.1094
5 2 4.2857 0.6000 0.0581 0.0785
2 5 4.2857 0.6000 0.0581 0.0785
3 0 4.2857 0.6000 0.0581 0.0785
0 3 4.2857 0.6000 0.0581 0.0785
4 0 6.6667 0.8000 0.0188 0.0188
5 1 6.6667 0.8000 0.0188 0.0188
0 4 6.6667 0.8000 0.0188 0.0188
1 5 6.6667 0.8000 0.0188 0.0188
5 0 10.0000 1.0000 0.0020 0.0020
0 5 10.0000 1.0000 0.0020 0.0020
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Z2
p or |D| as test statistic are given when n1 = 148 and n2 = 132. We observe

that pE1 and pE2 do not give partitions that are refinements of each other. We
also observe that pE2 is much less discrete than |D|.

Table 4.17: Excerpt of the realisations of the p-values where one uses the E step on
either Z2

p or |D| and where n1 = 148 an n2 = 132. The outcomes are given in the two
first columns on the left. The values of the Z2

p statistic when evaluated in the outcomes
are given in column three and the corresponding values for |D| are given in column
four. The E p-value where Z2

p is used as test statistic is given in column five and the E
p-value where |D| is used as test statistic is given in column 6. The rows are ordered in
increasing value of |D| from top to bottom.

x1 x2 Z2
p |D| pE1 pE2

41 41 0.3799 0.0336 0.5431 0.5406
70 58 0.3170 0.0336 0.5769 0.5763
78 74 0.3170 0.0336 0.5769 0.5763
107 91 0.3799 0.0336 0.5431 0.5406
115 107 0.4790 0.0336 0.4882 0.4922
144 124 1.9178 0.0336 0.1735 0.1667
32 33 0.4467 0.0338 0.5051 0.5060
42 33 0.4061 0.0338 0.5283 0.5268
69 66 0.3189 0.0338 0.5747 0.5747
79 66 0.3189 0.0338 0.5747 0.5747
106 99 0.4061 0.0338 0.5283 0.5268
116 99 0.4467 0.0338 0.5051 0.5060
143 132 4.5405 0.0338 0.0298 0.0328
5 0 4.5405 0.0338 0.0298 0.0328
51 41 0.3654 0.0340 0.5499 0.5486
60 58 0.3306 0.0340 0.5685 0.5682
14 8 1.1133 0.0340 0.2974 0.2959
23 25 0.5675 0.0340 0.4563 0.4541
88 74 0.3306 0.0340 0.5685 0.5682
97 91 0.3654 0.0340 0.5499 0.5486
125 107 0.5675 0.0340 0.4563 0.4541

We now consider the C method. In Table 4.18 we give the realisations of the
C p-values obtained by using the C method with Z2

p and |D| as test statistic.
We observe that we calculate exactly the same p-value. This also holds when
n1 = 148, n2 = 132. We give an excerpt of the realisations of the p-values in Table
4.19. So the discreteness of |D| does not affect the power properties of the test
when one applies the C step on this statistic when we compare with the power of
the test resulting from using the same method on the less discrete test statistic
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Z2
p . The reason must be that conditional on any value of the sufficient statistic,

Z2
p and |D| order the outcomes the same.

To sum up the observations made in this section, we have seen that discreteness of
the original test statistic does not necessarily mean the p-value where one has used
this test statistic as the test statistic is less discrete than the p-value where one
has used the same method on a less discrete test statistic. This is only guaranteed
if one uses the M method to generate the p-value (which has been demonstrated
in this section and in Section 4.7).

4.10 Notes

In this section we give various notes. We give a note on a property of the power
functions, notes on properties of some of the power functions, notes on the E
method and notes on how to numerically calculate the realisations of the M p-
value.

4.10.1 Notes on symmetry of the power functions based
on the i ◦M p-values

AM-method, EM-method, CM-method From Section 4.5 we know that the
realisations of the A, E and C p-values come in pairs p(y1, y2) and p(n1−y1, n2−y2)
for all outcomes y where the values in each pair satisfies p(y) = p(n1−y1, n2−y2).
When we calculate pi◦M(y1, y2) and pi◦M(n1 − y1, n2 − y2) we therefore maximise
the same sum of probabilities, so that pi◦M(y1, y2) = pi◦M(n1 − y1, n2 − y2). We
also know that from Section 4.5 that the joint contribution of pi◦M(y1, y2) and
pi◦M(n1−y1, n2−y2) to Prθ(pi◦M(X) ≤ α) is the same at (θ1, θ2) and (1−θ1, 1−θ2).
Since this holds for all y such that pi◦M(y) ≤ α, the power function is the same
when evaluated at (θ1, θ2) and (1− θ1, 1− θ2).

4.10.2 Notes on the type I error probabilities

Since the power function of the level α tests based on either the A, E, C, M, E◦M,
A◦M or C◦M p-values is the same when evaluated at (θ1, θ2) and (1−θ1, 1−θ2), the
power function is symmetric around θ = 1

2 when we intersect the graph of the power
function with the plane θ1 = θ2, i.e when we consider the type I error probabilities.
This can be formally shown as follows. We know that Pr(θ1,θ2)(p(X) ≤ α) =
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Table 4.18: The realisations of the C p-values where either Z2
p or |D| is used as test

statistic and n1 = 5, n2 = 5. The outcomes are given in column 1 and 2 from the left.
The value of the sufficient statistic S(X1, X2) = X1 + X2 for θ = θ1 = θ2 under H0 is
given in coloumn 3. The value of Z2

p and |D| is given in respectively column 4 and column
5. The C p-value where Z2

p and |D| is used as test statistic is given in respectively column
6 and column 7. The rows are ordered in increasing value of S from top to bottom. For
each value of the sufficient statistic, the rows are ordered in increasing value of Z2

p from
the top.

x1 x2 S Z2
p |D| pC1 pC2

0 0 0 −99.0000 0.0000 1.0000 1.0000
0 1 1 1.1111 0.2000 1.0000 1.0000
1 0 1 1.1111 0.2000 1.0000 1.0000
1 1 2 0.0000 0.0000 1.0000 1.0000
0 2 2 2.5000 0.4000 0.4444 0.4444
2 0 2 2.5000 0.4000 0.4444 0.4444
1 2 3 0.4762 0.2000 1.0000 1.0000
2 1 3 0.4762 0.2000 1.0000 1.0000
0 3 3 4.2857 0.6000 0.1667 0.1667
3 0 3 4.2857 0.6000 0.1667 0.1667
2 2 4 0.0000 0.0000 1.0000 1.0000
1 3 4 1.6667 0.4000 0.5238 0.5238
3 1 4 1.6667 0.4000 0.5238 0.5238
0 4 4 6.6667 0.8000 0.0476 0.0476
4 0 4 6.6667 0.8000 0.0476 0.0476
2 3 5 0.4000 0.2000 1.0000 1.0000
3 2 5 0.4000 0.2000 1.0000 1.0000
1 4 5 3.6000 0.6000 0.2063 0.2063
4 1 5 3.6000 0.6000 0.2063 0.2063
5 0 5 10.0000 1.0000 0.0079 0.0079
0 5 5 10.0000 1.0000 0.0079 0.0079
3 3 6 0.0000 0.0000 1.0000 1.0000
2 4 6 1.6667 0.4000 0.5238 0.5238
4 2 6 1.6667 0.4000 0.5238 0.5238
5 1 6 6.6667 0.8000 0.0476 0.0476
1 5 6 6.6667 0.8000 0.0476 0.0476
2 5 7 4.2857 0.6000 0.1667 0.1667
5 2 7 4.2857 0.6000 0.1667 0.1667
3 4 7 0.4762 0.2000 1.0000 1.0000
4 3 7 0.4762 0.2000 1.0000 1.0000
4 4 8 0.0000 0.0000 1.0000 1.0000
5 3 8 2.5000 0.4000 0.4444 0.4444
3 5 8 2.5000 0.4000 0.4444 0.4444
4 5 9 1.1111 0.2000 1.0000 1.0000
5 4 9 1.1111 0.2000 1.0000 1.0000
5 5 10 −99.0000 0.0000 1.0000 1.0000
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Table 4.19: Excerpt of the realisations C p-values where either Z2
p or |D| is used as

test statistic and n1 = 148, n2 = 132. The possible outcomes in the experiment are
given in the two first columns on the left, the values of the Z2

p when evaluated in the
outcomes are given in column three and the values of |D| are given in column four. The
C p-value where Z2

p has been used as test statistic is given in column five. The values
we get by applying the C method on |D| are given in column six. The rows are ordered
in increasing value of Z2

p from top to bottom.

x1 x2 Z2
p |D| pC1 pC2

41 41 0.3799 0.0336 0.5992 0.5992
70 58 0.3170 0.0336 0.6311 0.6311
78 74 0.3170 0.0336 0.6311 0.6311
107 91 0.3799 0.0336 0.5992 0.5992
115 107 0.4790 0.0336 0.5554 0.5554
144 124 1.9178 0.0336 0.2379 0.2379
32 33 0.4467 0.0338 0.5711 0.5711
42 33 0.4061 0.0338 0.5892 0.5892
69 66 0.3189 0.0338 0.6321 0.6321
79 66 0.3189 0.0338 0.6321 0.6321
106 99 0.4061 0.0338 0.5892 0.5892
116 99 0.4467 0.0338 0.5711 0.5711
143 132 4.5405 0.0338 0.0623 0.0623
5 0 4.5405 0.0338 0.0623 0.0623
51 41 0.3654 0.0340 0.6106 0.6106
60 58 0.3306 0.0340 0.6280 0.6280
14 8 1.1133 0.0340 0.3750 0.3750
23 25 0.5675 0.0340 0.5258 0.5258
88 74 0.3306 0.0340 0.6280 0.6280
97 91 0.3654 0.0340 0.6106 0.6106
125 107 0.5675 0.0340 0.5258 0.5258
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f(θ1, θ2) and that f(θ1, θ2) = f(1 − θ1, 1 − θ2). We consider θ1 = θ2 = θ and
introduce the shift of coordinates θ̃ = θ − 1

2 , which means θ = θ̃ + 1
2 . Then

f(θ, θ) = g(θ) = g(θ̃ + 1
2) (?)= g(1− θ) = g(1− θ̃ − 1

2),

where we have used g(θ) = g(1− θ) in transition (?). This means

g(θ̃ + 1
2) = g(1

2 − θ̃),

where we have shifted the coordinates of θ in the old coordinate system to θ̃ in
the new coordinate system. Since the new coordinate system is centred in θ = 1

2 ,
g is symmetric around 1

2 .

From Figure 4.4 it looks like the power at (0,0) and (1,1) is 0. In fact, this holds
for all n1, n2, which we now show. We know from Section 4.8 that p(n1, n2) =
p(0, 0) = 1 for the considered p-values. At (0, 0) we have Prθ(X = x) > 0 only for
x = (0, 0) and Prθ(X = (0, 0)) = 1, which means the power function evaluated at
(0, 0) it is 0 when α < 1 and 1 if α = 1. Since Pr(θ,θ)(p(X ≤ α) is symmetric in
α = 1

2 , we also know that γ(1, 1;α) = Pr(1,1)(p(X ≤ α) is 0 when α < 1 and 1 if
α = 1.

We note that the observation of symmetry of the power functions does not appear
to be new. For instance in Mehrotra et al. (2004) they only calculate type I error
probabilities for 0 ≤ θ ≤ 1

2 and when they evaluate the power functions they only
evaluate them at (θ1, θ2) above the line θ1 = θ2 (without making any comments
about the power symmetry).

4.10.3 Comparing γEM with γE and γAM with γA

From Section 4.8 we know the ordering induced by negative of the E ◦M or A ◦M
p-value is the same as the ordering induced by respectively the negative of the E
or A p-value. This means the sets {x | pA(x) ≤ α} and {x | pAM(x) ≤ α} are
either the same or one of them is a proper subset of the other. The same holds for
the sets {x | pE(x) ≤ α} and {x | pEM(x) ≤ α}. When supθ∈[0,1] γA(θ, θ;α) > α,
then γA(θ1, θ2) ≥ γAM(θ1, θ2) for all (θ1, θ2) ∈ Θ since {x | pAM(x) ≤ α} must be a
proper subset of {x | pA(x) ≤ α}. The reason the set {x | pAM(x) ≤ α} must be
a proper subset of {x | pA(x) ≤ α} is that the condition supθ∈[0,1] γAM(θ, θ;α) ≤ α
must be fulfilled. Similarly, γE(θ1, θ2;α) ≥ γEM(θ1, θ2;α) for all (θ1, θ2) ∈ Θ when
supθ∈[0,1] γE(θ, θ;α) > α. Since the A ◦M p-value is the same as the M p-value,
γA(θ1, θ2;α) ≥ γM(θ1, θ2;α) when supθ∈[0,1] γA(θ, θ;α) > α.
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We know from Theorem 4.8.1 that pCM(x) ≤ pC(x) for all outcomes x. One
reasonable question is then if similar results holds for the E ◦M and E p-values
and for the A◦M and A p-values. In Figure 4.13 we plot pEM(x) against pE(x) for
each outcome x when n1 = n2 = 10. We see that not every point is below or on the
line pEM = pE, so that pEM(x) ≤ pE(x) does not hold in general. In Figure 4.14 we
plot pM = pAM against pA for each outcome x also when n1 = n2 = 10, but we only
plot pairs of realisations of the p-values for which both are below 0.005. Not every
point is below or on the line pM = pA, which means pA(x) ≤ pAM(x) = pM(x)
does not hold in general. So it is not possible in general to establish similar results
for either the E ◦M and E p-values or the A ◦M and A p-values as for the C ◦M
and C p-values.

4.10.4 The E method

As noted in the proof of the asymptotic validity of the E method, see Section 4.6.2,
the null hypothesis in Equation (4.47) changes asymptotically when we use the E
method to

H0 : θ = θ̃, (4.53)
where θ̃ is the true value of θ under H0. The reason is that we use the mle of θ
which converges in probability to the true value of θ under H0. For finite sample
sizes, however, the null hypothesis is still given by Equation (4.47) since the mle
has most likely not converged to the true value of θ under H0. In fact we use
different values of θ when we calculate the different realisations of pE(X). There
is therefore no reason the E p-value should be valid for finite sample sizes.

A sufficient condition for validity of a p-value is

p(x) ≥ pM(x), (4.54)

for all outcomes x where pM(X) is the M p-value, since then we can replace
pM(x) in Equation (4.49) and Equation (4.50) with p(x) so that p(X) is valid.
This condition is not satisfied for the E p-value since

pE(x) ≤ pM(x), (4.55)

which follows from the fact that when calculating pE(x) we use the mle of θ
based on x but when calculating pM(x) we pick the value of θ that maximizes
the tail probability Prθ(T (X) ≥ T (x)). The condition in Equation (4.54) is not
a necessary condition for validity, so that pE(x) ≤ pM(x) for all outcomes x does
not imply anything about the validity of pE(X). If this condition was necessary,
γEM(θ1, θ2;α) ≤ γM(θ1, θ2;α) for all (θ1, θ2) ∈ Θ for each fixed α ∈ [0, 1]. As we
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Figure 4.13: The E◦M p-value plotted against the E p-value for each outcome x when
n1 = n2 = 10, i.e plot of pEM (x) against pE(x). The ordinate is the E ◦M p-value and
the abcissa is the M p-value.
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Figure 4.14: The A◦M p-value plotted against the A p-value for each outcome x when
n1 = n2 = 10 and only realisations between 0 and 0.005 for each p-value are shown, i.e
plot of pAM (x) against pA(x) when 0 ≤ pAM (x), pA(x) ≤ 0.005. The ordinate is the
A ◦M p-value and the abcissa is the A p-value.
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will see in Chapter 3, this does not hold in general. However, as previously noted
the E p-vale is in general not valid.

Due to Equation (4.55) the set {x | pM(x) ≤ α} is either a proper subset of or equal
to the the set {x | pE(x) ≤ α} for all α, which means γE(θ1, θ2;α) ≥ γM(θ1, θ2 : α)
for all (θ1, θ2) ∈ Θ and for each fixed α ∈ [0, 1].

4.10.5 How to numerically perform the M-step

When calculating the realisation of the M p-value for an outcome x with Z2
p(X) as

test statistic we need to find the supremum of Pr(θ,θ)(T (X) ≥ T (x)) over θ ∈ [0, 1].
There are at least two ways this can be done. The first way is to use some numerical
optimisation procedure. If we use R (R Core Team 2014) we can use the function
optim. Since we want to do restricted maximisation, we should for instance use
the method L-BFGS-B which allows for box constraints, i.e that the maximum is
attained at parameter value that satisfies 0 ≤ θ ≤ 1. The method is a limited
memory quasi-Newton optimisation procedure. However, since the function to be
optimised as a function of θ is not concave down, there is no reason to expect that
the maximum found by the procedure is the maximum on [0, 1] (i.e the function
may return a local maximum). We illustrate this when n1 = 90, n2 = 150, x1 = 60
and x2 = 109. The profile of Z2

p(60, 109) is drawn in Figure 4.10. If we set the start
value to θ = 0.10, then the function returns the local maximum 0.336 attained
at the parameter value 0.0789. However, the true maximum is 0.421 attained at
either 0.01299 or 0.987. If we use the start value 0.6, the function returns an
error message. We therefore see that even if the function returns a candidate for
a maximum value, there is no guarantee that this is the maximum on [0, 1]. We
have investigated several cases and the above results apply when the profile is not
concave down (data not shown).

The second way to compute supθ∈[0,1] Prθ(T (X) ≥ T (x)) numerically is to calculate
Prθ(T (X) ≥ T (x)) at a grid of values of θ over [0,1] and choose the largest of the
values calculated. We will use this method when calculating the M p-value.

When investigating the mentioned other cases the profile of T (x) appears to be
symmetric around θ = 1

2 . If this holds in general we can restrict the search area for
a maximum to either [0,0.5] or to [0.5,1]. Since the M step maintains the ordering of
the initial test statistic we know that Pr(θ,θ)(Z2

p(X) ≥ Z2
p(x)) = Pr(θ,θ)(pM(X) ≤

pM(x)) for all outcomes x. Since Pr(θ,θ)(pM(X) ≤ pM(x)) is symmetric around
θ = 1

2 , Pr(θ,θ)(Z2
p(X) ≥ Z2

p(x)) is symmetric around θ = 1
2 . We can therefore

restrict the search for the maximum to [0, 1
2 ] when using Z2

p as test statistic.

We know from the previous subsection that Pr(θ,θ)(p(X) ≤ α) is symmetric around
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θ = 1
2 , where p(X) is either the M, E, A or C p-value. This means we can restrict

the search area for a maximum to [0, 1
2 ] when calculating supθ Pr(θ,θ)(p(X) ≤

p(x)) = supθ Pr(θ,θ)(−p(X) ≥ −p(x)), i.e when calculating the M, E ◦M, A ◦M
or C ◦M p-value.
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Chapter 5

Power study: Testing equality of
two binomial proportions

In this chapter we study the power functions of level α tests testing the null
hypothesis specified in Equation (4.1) against the alternative hypothesis specified
in the same equation. We base the tests on p-values. We know from Section
4.8 that the ordering induced by the A p-value equals the ordering induced by
the M p-value except for the largest realisations of the p-values. This means we
do not consider the pAM -value since it will be equal to pM except for the largest
realisations of the p-values (which are not important when evaluating the power
functions). We also know that the M2 p-value is equal to the M p-value, so that the
M2 p-value is not considered. We consider the p-values pA, pM , pEM , pC , pCM .

We know 0.05 is a commonly used significance level. In genome wide association
studies multiple hypotheses are tested and to control the familywise error rate
a commonly used significance level for a single test is 5 · 10−8, see for instance
Dudbridge & Gusnanto (2008) or Panagiotou & Ioannidis (2012). We consider the
significance levels 5 · 10−k, k = 2, . . . , 8 to get a spectrum of levels. We also need
to consider specific values of n1 and n2. We study both balanced designs, where
n1 = n2, and unbalanced designs , where n1 6= n2, and use the values considered
in Mehrotra et al. (2004, p. 445) in addition to (97, 103), where the latter are the
sample sizes in example (d) in Section 4.1.1. The studied configurations are given
in Table 5.1. We see that all unbalanced designs are of the form n2 = 4n1 (the
configuration (97, 103) is considered a balanced design since n1 ≈ n2). This is
the maximum number of controls per case recommended in the literature, see for
instance Wacholder et al. (1992).

We cannot evaluate the power functions in every point of the continuous param-
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Table 5.1: The configurations of n1 and n2 used in the power study. The first row gives
the balanced configurations and the second row gives the unbalanced configurations.

Balanced (10, 10) (25, 25) (50, 50) (97, 103) (150, 150)
Unbalanced (4, 16) (10, 40) (20, 80) (60, 240)

eter space. We therefore only evaluate the functions in a grid of values. From
Section 4.10.2 we know we only need to consider the type I error probabilities,
or equivalently the power functions under H0, for θ ∈ [0, 1/2] and from Section
4.5 and Section 4.10.1 we know we only need to consider the power functions un-
der H1 for θ2 > θ1. We use a grid with different grid increments under H0 and
H1. Under H0 we consider the values 0, 0.05, . . . , 0.45, 0.5 of θ and under H1 we
use θ2 = θ1 + δ, where δ = 0.01, 0.02, . . . , 0.99, 1 and for each fixed value of δ,
θ1 = 0, 0.01, 0.02, . . . , 1− δ. We illustrate the grid in Figure 5.1.

When calculating the realisations of a p-value by using a M step, we know from
Section 4.10.5 that we only need to do the maximization over [0, 0.5] and not over
the entire interval [0, 1]. We use a equispaced grid over [0, 5] with grid increment
5 ·10−6. The code used in the power study for generating the C and A p-values are
given in Appendix C and have been programmed in R (R Core Team 2014). The R
implementations of the M and E-values have been replaced with already existing
implementations in C++ by Øyvind Bakke that are much faster. For instance the
program for calculating the M p-values use parallel computing. We have evaluated
the power functions in the mentioned grid using a C++-program made by Øyvind
Bakke. We use enumeration both when when calculating the realisations of each
p-value and also when evaluating the power functions, see Section 3.2 and Section
3.3.

In the power study we can change n1, n2, k, θ1 and θ2 (under H0 we change θ =
θ1 = θ2). We call (θ1, θ2) either a point in the parameter space or a parameter
point. In the rest of the chapter we discuss the results of the power study, first
the results under H0 and then under H1.

5.1 Assessing validity of the p-values and sim-
ple comparison of the power functions under
H0

In this section we check validity of the p-values and also take a first look at the
size of the tests and do a simple comparison of the power functions. We start
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Figure 5.1: Illustration of the grid used in the power calculations, where θ2 is along
the ordinate and θ1 is along the abcissa. There are extra points under H1 not shown.
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with considering validity of the different p-values, which is the main topic of this
section. In Table D.1 in Appendix D we show the type I error probabilities at
selected values of θ and n1, n2, k. From this table we observe that the A and E
p-values in general are not valid, as noted in Section 4.4.2. The maximum observed
type I error probabilities are highest for unbalanced designs. The A p-value is in
general found to be more liberal than the E p-value, but there are cases where
E is liberal and A is not, for instance when n1 = n2 = 150 and k = 5, 6. The
highest observed value of the type I error probabilities for the A p-value is 24 times
higher the significance level and is observed when n1 = 60, n2 = 240, k = 8 and
θ = 0.05. It is important to notice that the type I error probability in this case is
120.54 ·10−8 = 1.2054 ·10−6 and not 120.54%, which of course would be impossible.
The type I error probabilities of the E p-value are never found to be higher than
1.12 times the significance level (which occurs when n1 = 97, n2 = 103, k = 6, θ =
0.15).

From Table D.1 we also observe that γE(θ) ≥ γM(θ), as explained in Section 4.10.4.
As pointed out in Section 4.10.3, either (1) γA(θ;α) ≥ γM(θ;α), (2) γA(θ;α) ≤
γM(θ;α) or (3) γA(θ;α) = γM(θ;α) for all θ ∈ [0, 1] for a specific choice of α, n1 and
n2. All three situations occur in Table D.1. For instance situation (1) occurs when
n1 = n2 = 25, k = 2, situation (2) occurs when n1 = n2 = 50, k = 8 and situation
(3) occurs when n1 = 4, n2 = 16, k = 5. We also know from Theorem 4.8.1 that
γC(θ;α) ≤ γCM(θ;α) for all θ and all choices of n1, n2, α. For instance we see that
γCM(θ;α) is several times γC(θ;α) for many values of θ when n1 = n2 = 10 for the
studied values of k in the table and also when n1 = 4, n2 = 16, k = 5. In many
of the remaining cases we also observe a power increase. In several of these cases
the power increment is roughly about 1 · 10−k, but the power increase can be both
lower and higher than this number.

As expected, we observe from Table D.1 that pC(X), pCM(X), pEM(X) and pM(X)
are valid. We know this holds in general from Section 4.6 and Theorem 4.8.1. The
reason we observe this from Table D.1 is that this table shows every situation where
at least one of the power functions exceeds the significance level on the specified
grid and no case where either of γC , γM , γCM or γEM exceeds the significance level
is shown.

From Table D.1 we observe that the test sizes are in general going to be closer to
α when n1, n2 increases for the valid p-values. (Note: the entries in the table are
based on a sparse grid of θ on [0, 1], so that the largest value we calculate for a
specific α, n1 and n2 is only a lower bound on the test size.) We now try to explain
why. We consider a single binomial experiment Y , i.e Y ∼ Binom(θ, n) and θ ∈
(0, 1). The results will generalize to our experiment with two independent binomial
experiments. We know the mode(s) of the pmf of Y is close to the expected value
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of Y for all n. The probability of the mode(s) must become smaller and smaller
as n increases. The reasons are as n increases we (1) get more outcomes with
positive probability (when θ ∈ (0, 1)), (2) must still have ∑Prθ(Y = y) = 1 and
(3) Var(Y ) = nθ(1− θ) increases. If for instance the probability of the mode was
increasing and the pmf became more and more concentrated around the mode(s),
then the variance would need to be decreasing with increasing n to get a behaviour
similar to that of a random variable whose limiting distribution is a constant in
the mode(s) and is zero for rest of the outcomes. The shape of the pmf cannot
remain unchanged as we get more outcomes with positive probability. In total,
the probability of the mode(s) is decreasing with increasing n for θ ∈ (0, 1).

As n increases, (1) we get more outcomes y where Prθ(Y = y) > 0 (θ ∈ (0, 1)),∑Prθ(Y = y) = 1, (2) the probability of the mode decreases and (3) Var(Y ) in-
creases. Due to the mentioned facts, the values of the probabilities of the outcomes
must in general become smaller as n increases. Note that we do not compare the
probabilities outcome-wise, i.e we do not compare the probabilities of each fixed
outcome when n increases. This would be much harder as more outcomes are
possible with increasing n and as the mode and expected value changes with in-
creasing n. Since the values of the probabilities of the different outcomes in general
become lower with increasing n and the test statistic takes more unique values with
increasing n, there are greater chances of (1) observing lower values of the p-value,
(2) observing that the distances between the realisations of the p-value decrease
and (3) observing that the p-value takes more unique values. This also holds when
testing equality of two independent binomial proportions and n1 and n2 increase.
The mentioned facts also imply that that there are greater chances of getting a
test size closer to α as n1, n2 increases when considering the level α test based on
the p-value. This is perhaps easiest to understand when considering the M p-value
since Z2

p(X) and −pM(X) where Z2
p is used as test statistic order the sample space

the same. Since −pM(X) and Z2
p(X) order the sample space the same we must

have that supθ∈[0,1] Prθ(p(X) ≤ p(x)) = supθ∈[0,1] Prθ(Z2
p(X) ≥ Z2

p(x)). Since
supθ∈[0,1] Prθ(Z2

p(X) ≥ Z2
p(x)) = p(x), supθ∈[0,1] Prθ(p(X) ≤ p(x)) = p(x). We

know the chances of pM(X) taking more unique values on the whole of [0, 1] are
increasing with increasing n1, n2, meaning the chances of pM(X) taking values
closer and closer to a given α increase as n1, n2 increase, so that the chances of the
test size of the level α test based on pM(X) being closer to a given significance
level α increase.

Comparing the power functions of the level α tests based on the remaining three
valid p-values, i.e γCM , γEM and γM , is much harder than comparing γC with γCM .
They are in general more similar than γC and γCM . None of the power functions
takes the largest in all parameter points under H0 when considering all of the
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studied sample sizes and significance levels in Table D.1. Since γCM , γEM and γM
are similar under H0, we get similar results when comparing either of γEM or γM
with γC as when comparing γCM with γC .

It is important to realize that we compare the power functions in the previous ex-
planations and each entry of Table D.1 in the same parameter point. One could for
instance only compare test sizes, i.e compare supθ∈[0,1] γi(θ;α) and supθ∈[0,1] γj(θ;α)
for different i and j. However, this can be problematic as the maximum value of
γi(θ;α) may occur in another point than the maximum value of γj(θ1;α). Only
one value of θ on [0, 1] is possible under H0, which means we should compare
power functions in the same point. Only comparing test sizes also means we only
do one comparison of the two power functions in possibly two different points
(we do one comparison, where we compare γi(θ1;α) with γj(θ2;α) where possibly
θ1 6= θ2).

5.2 Comparing the power functions under the
alternative hypothesis

As mentioned in Section 2.7 it is common practise to only consider sample size(s)
large enough so that the power of the test is at least 80 % at θ that are scientif-
ically meaningful under the alternative hypothesis. When comparing the power
functions under the alternative hypothesis we compare two power functions at the
same (θ1, θ2). We consider all possible pairwise comparisons and compare power
functions at points at which at least one of the tests has power 80 % or greater.
This also means we compare the power functions in all possible pairs of the studied
power functions in the same set of points, even if both tests in one pair have power
lower than 80 % at some of the studied points. The reason is simply that per-
forming all the pairwise comparisons is equivalent to comparing all of the studied
power functions at once. Since we consider all points at which one power function
is at least 80, we should compare all of the power functions in these points.

We compare the power functions in different ways. In Section 5.2.1 we divide the
differences into four intervals for each value of n1, n2, k and calculate the proportion
of points giving the differences in each interval. In Section 5.2.2 we study plots
of the power functions and also study plots telling where in parameter space the
different differences occur. Finally in Section 5.2.3 we look at the distribution of
the differences between the power functions in each pair of power functions.
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5.2.1 Considering the differences of the power functions in
four intervals

One reasonable question when comparing two power functions in a point is when
the two power functions should be considered equal. If the two power functions
are exactly the same, the two power functions should of course be considered
equal in that point. If the difference between the two power functions is small we
should also regard the two power functions as equal. The next question is then
what “small” means. Since we only study points at which one power functions is
above 80, one possible choice of small is 2 %. This means we regard two power
functions whose absolute difference is smaller than 2 pp. in a point as equal in
that point.

When comparing two power functions the differences must be on the interval
(−∞,∞). We divide this interval into the four disjoint intervals (−∞,−2], (−2, 0),
[0, 2), [2,∞). We have chosen to split the interval (−2, 2), where the two power
functions are regarded as equal, into two intervals. The reason is that γCM(θ1, θ2;α)−
γC(θ1, θ2;α) ≥ 0, so that no points should give a negative difference. Afterwards,
after classifying which of four intervals the difference of the two power functions
belongs to for each considered point, we calculate the percentage of points classi-
fied into each of the intervals. We do this for all pairs of power functions and each
considered value of n1, n2 and k. The results are presented in Table 5.2. We also
show the number of points considered in each case in this table. If the number
of points considered for a specific choice of n1, n2 and k is less than 50 we do not
consider comparing the tests since only a few points give power that is 80 % or
greater. This will be points close to (θ1, θ2) = (0, 1). The percentage numbers in
these cases are included for completeness.

EM, CM and M vs. C We observe that γCM , γEM , γM are much larger than
γC for the small sample sizes (10, 10) and (4, 16), i.e. both for balanced and
unbalanced designs. The power increase is also large for the sample sizes (25, 25)
and (50, 50), but not as large as for the smallest sample sizes. For unbalanced
designs γCM and γEM are also much larger than γC when (n1, n2) = (10, 40)
and (n1, n2) = (20, 80), but again not as great as for the smallest sample sizes.
Actually γC is larger than γM in a relatively large percentage of points when
(n1, n2) = (10, 40), k = 6, (n1, n2) = (20, 80), k = 3, . . . , 8 and for (n1, n2) =
(60, 240), k = 4, . . . , 8. We observe that all studied power functions are very similar
in the large balanced designs (n1, n2) = (97, 103) and (n1, n2) = (150, 150). We
have that γEM , γCM and γC are very similar and larger than γM in the large
unbalanced designs (n1,2 ) = (20, 80), (n1, n2) = (60, 240), with one exception for
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the last mentioned design when k = 2. In the mentioned exception all studied
power functions are very similar.

EM and CM vs. M For balanced designs γCM , γEM and γM are very similar.
Three notable exceptions are (n1, n2) = (25, 25), k = 6 and (n1, n2) = (50, 50), k =
7, 8, where γCM , γEM are larger than γM in a relatively large percentage of points.
For unbalanced designs γCM and γEM are larger than γM except when (n1, n2) =
(10, 40), k = 2, 8, (n1, n2) = (20, 80), k = 2 and (n1, n2) = (60, 240), k = 2, 3.
When (n1, n2) = (10, 40), k = 8 the proportion of points where γM is larger than
γCM is larger than the proportion of points where γCM is larger than γM . In this
case γM and γEM are very similar.

EM vs. CM For balanced designs γCM and γEM are very similar. For unbal-
anced designs they are also very similar, but there are some exceptions. When
(n1, n2) = (10, 40) and k = 2, 3, 8 γEM is larger than γCM (when k = 8 there
are also some points where γCM wins over γEM , but γEM wins in a greater
proportion of points). This also holds for (n1, n2) = (20, 80), k = 3. When
(n1, n2) = (10, 40), k = 7, γCM is larger than γEM in 14 % of the points.
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5.2.2 Plots of four different intervals in parameter space
and plots of the power functions

When finding differences between two power functions in a large proportion of
points it is also important to establish where in the parameter space the power
functions are different. If they are different in points that are unlikely values of the
success probabilities (θ1, θ2) under the alternative hypothesis, the differences are
most likely of little importance. In this subsection we take a closer look at some of
the plots of the power functions and what we call difference plots. In the difference
plots we plot which points gives power differences in each of the four intervals for
each possible pair of power functions considered. In the difference plots we divide
the interval (−∞,∞) into almost the same intervals as in Section 5.2.1, the only
difference is the intervals (−∞, 2], [2,∞). For instance if the minimum of the
differences is below −2, we replace (−∞, 2] with (min(γi − γj),−2] and if the
minimum is above −2 we replace (−∞,−2] with (−4,−2]. The reason is that we
want to use the same colouring scheme for the points in the different plots. When
comparing the difference plots across n1, n2, k is is important to realize that 10 %
of the points in one figure is not equal to 10 % in another figure if the number
of points where the power of the tests is 80 % or greater differ. The number
corresponding to each figure can be found in Table 5.2

(n1, n2) = (10, 10), k = 2 In Figure 5.2 we have plotted the power functions
when (n1, n2) = (10, 10) and k = 2, and in Figure 5.3 we have plotted the differ-
ences between the power functions in each possible combination of power functions.
We see from Figure 5.2 that the power is highest in the region close to (0, 1), which
makes intuitively sense as it should be easiest to tell these success probabilities
from one another. We see that the power increase of γCM , γEM and γM compared
with γC is in the region of the studied points that most likely is of most practical
importance.

(n1, n2) = (10, 40), k = 3 Figure 5.4 shows the plots of the power functions,
and Figure 5.5 shows the difference plots. We observe from Figure 5.5 that γEM
is larger than γC in the region of the studied points that most likely is of most
practical significance. The same also holds when comparing γM with γC and γEM
with γM , but the regions are smaller compared to the region first considered. When
comparing γCM with γC and γEM with γCM we observe that the points where the
first mentioned power functions are larger than the last mentioned power function
are divided into several regions. The regions are still in the part of interesting
points that is most likely of most practical significance. The points where γCM is
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larger than γM are also divided into two regions. The total mass of the regions
is smaller than in the other plots. They are in the interesting part of the points
considered. We also observe that there is a region where γM is larger than γCM ,
which is of size almost equal to the regions where γCM is larger than γM and which
is also in the interesting region of points considered.

(n1, n2) = (97, 103), k = 2 The power functions are plotted in Figure 5.6, and
in Figure 5.7 the difference plots are plotted. We see that the power is greater or
equal to 80 % in a larger proportion of the points for the different power functions
compared with the same plots with smaller sample sizes. This makes intuitively
sense. With larger sample sizes it should be easier to tell smaller success probabili-
ties from one another compared to when the sample sizes are smaller. In Figure 5.7
we observe that there are only small differences between the power functions.

(n1, n2) = (60, 240), k = 8 Figure 5.8 shows the plots of the power functions
and Figure 5.9 shows the difference plots. We observe in Figure 5.9 that the regions
where γC is larger than γM , γEM is larger than γM and γCM is larger than γM are
in the region of studied of points that most likely is of most scientific importance.
The differences between the remaining power functions are relatively small.

In total, we observe that there are differences between some of the power functions
in regions which can be of practical importance. It therefore makes sense to try to
obtain more precise statements about the differences between the power functions,
which we try to do in the subsequent two subsections.

5.2.3 Plots of the empirical cumulative difference func-
tions

One drawback with only knowing the proportions of points in each of the intervals
(−∞,−2], (−2, 0), [0, 2), [2,∞) is that we do not know the distributions of the
differences. For instance when n1 = n1 = 10, k = 2 and we consider γEM − γCM
the fraction of points in the interval [0, 2) is 1 from Table 5.2 , but we do not know
for instance if the two power functions are exactly equal for most of the points
or if most differences are close to 2%. The empirical cumulative function may
then be of use. This function returns the proportion of points equal to or below
the point in which it is evaluated. For instance if we evaluate the function in 0
when considering the differences of two power functions, the function returns the
proportion of points where the differences between the two power functions are
equal to or smaller than 0.
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Figure 5.2: Plots of the different power functions when n1 = n2 = 10 and α = 5 · 10−2

(k = 2). In the title of each panel is the name of the power function shown. For instance
“EM” means γEM (θ1, θ2) is illustrated. The power function is only evaluated in the grid
specified at the beginning of this chapter. To the right of each panel there is a legend
specifying the different colors used for the different intervals of values in making the plot.
The different cut points are 80, 82, 94, . . . , 98, 100. The θ1-axis is along the abscissa and
the θ2-axis is along the ordinate of each panel.
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Figure 5.3: Plots of points in the parameter space that gives differences between to
power functions in four considered intervals when n1 = n2 = 10 and k = 2. In each
panel we consider the differences between two power functions. For instance “EM vs C”
means we consider the differences γCM − γC and consider which points give differences
in the four intervals considered. We always consider four intervals, even if there are no
points in some of them. This is to ensure that the same color is used for the equivalent
intervals for different pairs of power functions. The θ1-axis is along the abscissa and
the θ2-axis is along the ordinate. We only consider grid points in which the power of at
least one of all power functions is 80 % or greater and where the grid is specified at the
beginning of this chapter. To the right of each panel there is a legend specifying which
colors have been used for points that give differences in the four intervals of differences
considered when creating the plot.
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Figure 5.4: Plots of the different power functions when n1 = 10, n2 = 40 and α =
5 · 10−3 (k = 3). In the title of each panel is the name of the power function shown. For
instance “EM” means γEM (θ1, θ2) is illustrated. The power function is only evaluated in
the grid specified at the beginning of this chapter. To the right of each panel there is a
legend specifying the different colors used for the different intervals of values in making
the plot. The different cut points are 80, 82, 94, . . . , 98, 100. The θ1-axis is along the
abscissa and the θ2-axis is along the ordinate of each suplot.
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Figure 5.5: Plots of points in the parameter space that gives differences between to
power functions in four considered intervals when n1 = 10, n2 = 40 and k = 3. In each
panel we consider the differences between two power functions. For instance “EM vs C”
means we consider the differences γCM − γC and consider which points give differences
in the four intervals considered. We always consider four intervals, even if there are no
points in some of them. This is to ensure that the same color is used for the equivalent
intervals for different pairs of power functions. The θ1-axis is along the abscissa and
the θ2-axis is along the ordinate. We only consider grid points in which the power of at
least one of all power functions is 80 % or greater and where the grid is specified at the
beginning of this chapter. To the right of each panel there is a legend specifying which
colors have been used for points that give differences in the four intervals of differences
considered when creating the plot.
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Figure 5.6: Plots of the different power functions when n1 = 97, n2 = 103 and α =
3 · 10−2 (k = 2). In the title of each panel is the name of the power function shown. For
instance “EM” means γEM (θ1, θ2) is illustrated. The power function is only evaluated in
the grid specified at the beginning of this chapter. To the right of each panel there is a
legend specifying the different colors used for the different intervals of values in making
the plot. The different cut points are 80, 82, 94, . . . , 98, 100. The θ1-axis is along the
abscissa and the θ2-axis is along the ordinate of each panel.
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Figure 5.7: Plots of points in the parameter space that gives differences between to
power functions in four considered intervals when n1 = 97, n2 = 103 and k = 2. In each
panel we consider the differences between two power functions. For instance “EM vs C”
means we consider the differences γCM − γC and consider which points give differences
in the four intervals considered. We always consider four intervals, even if there are no
points in some of them. This is to ensure that the same color is used for the equivalent
intervals for different pairs of power functions. The θ1-axis is along the abscissa and
the θ2-axis is along the ordinate. We only consider grid points in which the power of at
least one of all power functions is 80 % or greater and where the grid is specified at the
beginning of this chapter. To the right of each panel there is a legend specifying which
colors have been used for points that give differences in the four intervals of differences
considered when creating the plot.
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Figure 5.8: Plots of the different power functions when n1 = 60, n2 = 240 and α =
3 · 10−8 (k = 8). In the title of each panel is the name of the power function shown. For
instance “EM” means γEM (θ1, θ2) is illustrated. The power function is only evaluated in
the grid specified at the beginning of this chapter. To the right of each panel there is a
legend specifying the different colors used for the different intervals of values in making
the plot. The different cut points are 80, 82, 94, . . . , 98, 100. The θ1-axis is along the
abscissa and the θ2-axis is along the ordinate of each panel.
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Figure 5.9: Plots of points in the parameter space that gives differences between to
power functions in four considered intervals when n1 = 60, n2 = 240 and k = 8. In each
panel we consider the differences between two power functions. For instance “EM vs C”
means we consider the differences γCM − γC and consider which points give differences
in the four intervals considered. We always consider four intervals, even if there are no
points in some of them. This is to ensure that the same color is used for the equivalent
intervals for different pairs of power functions. The θ1-axis is along the abscissa and
the θ2-axis is along the ordinate. We only consider grid points in which the power of at
least one of all power functions is 80 % or greater and where the grid is specified at the
beginning of this chapter. To the right of each panel there is a legend specifying which
colors have been used for points that give differences in the four intervals of differences
considered when creating the figure.
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One reasonable question is why we use the empirical cumulative function and not
for instance histograms. For starters it is easy to read of the median, percentiles
and quartiles of a plot of this function. This is much harder to do for a plot of
the histogram. Another reason is that the histogram is sensitive with respect to
the bin size. Depending on the chosen number of bins the resulting histograms
may differ significantly (plots not shown). It is also easier to compare several
different cumulative difference functions when plotting them in the same figure
than comparing histograms on top of each other.

In this section we consider some of the combined plots of the cumulative difference
functions. In each of the plots we have plotted the functions for a specific choice
of n1, n2, k. Along the abscissa in these plots are the difference in power in percent
points and along the ordinate are the values of the cumulative difference functions.
This function is only evaluated in the unique differences of the power functions
considered, which means the spacing along the abscissa between the points of
the cumulative difference functions need not be constant. In each figure the dot
thickness is modulated so that all aspects of the curves are visualized.

(n1, n2) = (10, 10), k = 2 We see in Figure 5.10 that γEM = γCM , γEM =
γM , γCM = γM since the cumulative difference function is 1 in the point 0, so that
γEM = γCM = γM . We therefore observe that the differences between either of
γCM , γEM , γM with γC are exactly the same. When considering either one of the
these differences we can see from the plot that the minimum difference is 0, that
the maximum difference is about 22.5 and that the median difference is about 8.
The median difference is quite high, which means performing an M-step on the C
p-value will most likely give a test with significantly higher power.

To get a better understanding of the plot of the cumulative difference function it
may help to picture a continuous function drawn between the points of the cu-
mulative distribution function. When the slope of this function is large a higher
proportion of points have the difference between the power function at this point
than if the slope is smaller. When considering this imaginary curve for the cu-
mulative difference function for the difference between any of the power functions
with γC , we observe that the imaginary curve has greatest slope around 0 and
smallest slope from about 17.5 to 22, which means the most frequently occurring
difference is about 0 and that not many points give differences in the interval 17.5
to 22.

(n1, n2) = (10, 40), k = 3 In Figure 5.11 we see that none of the power func-
tions are exactly equal in all the points, which is in agreement with Table 5.2. We
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also observe that the differences between the power functions γEM and γC appear
to be larger than for the other power functions since the slope of the imaginary
line for the blue points is less in the interval (0, 6) than for the other imaginary
lines and most of the functions takes values on [0,∞). The difference function
illustrated by the ochre points also takes negative values, but the proportion of
these points is very small and smaller than the proportion of points in the interval
(0, 6) for the differences of power functions given by the blue points.

(n1, n2) = (97, 103), k = 2 We see in Figure 5.12 that for all plots of the cu-
mulative difference functions the differences are concentrated around 0, since the
curves either start close to the difference of 0 or the difference functions takes val-
ues close to zero when evaluated in points smaller than zero and then the steeply
rise to 1 for differences a little larger than 0 in both cases. We also observe that
the cumulative difference function for the differences γEM − γC and γEM − γCM
takes values for differences as large as about 30. However, we observe that the
proportion of points that give these differences is very small in both cases.

(n1, n2) = (60, 240), k = 8 We observe in Figure 5.13 that the differences be-
tween γEM and γC , γEM and γCM , γM and γC and γCM and γC are very small,
since the plots of the cumulative difference functions of these differences change
from about 0 to about 1 in a small region around the difference 0. This means
γEM ≈ γCM ≈ γC . We also observe that γM is smaller than γC in about 25 % of
the points and for about 12 % of the points in total the difference is smaller than
−12%. The proportion of points where γM is greater than γC is negligible. We can
also observe that the two distributions of the differences between γCM and γM and
γEM and γM are very similar. We see that about 25% of the points give positive
differences between the mentioned power functions and that the differences are
larger than 12% for about 12.5% of the points in total. It is important to under-
stand that even if the distributions of the differences between γCM and γM and
γCM and γM are very similar, we do not know if the same points in the parameter
space give the same differences within each of the two pairs of mentioned power
functions by only considering the plots of the two cumulative difference functions
alone. However, since we have also plotted the cumulative difference functions for
the differences between γEM and γCM and this function is found to change from
about 0 to about 1 in a small region around the difference 0, in most of the points
the difference between γCM and γM is very close to the difference between γEM
and γM .
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Figure 5.10: Combined plots of the cumulative difference functions for the differences
between the power functions in each possible pair of power functions when n1 = 10, n2 =
10, k = 2. The differences are long the abcissa and the values of the cumulative difference
functions are along the ordinate. To the right of the plot there is a legend specifying
which color has been used in plotting each cumulative difference function. For instance
the black dot in front of “CM vs. C” means the cumulative difference function of
γCM − γC has been plotted using black color. In the title of the plot the number of
points where we have taken the differences between the power functions in each pair of
power functions are shown. This number corresponds to the number of points where
at least one of the power functions has power 80 % or greater. We observe that the
cumulative difference functions of respectively γCM −γC , γEM −γC and γM −γC are on
top of each other. The same holds for the cumulative difference functions of respectively
γEM − γCM , γCM − γM and γEM − γM . 127



Figure 5.11: Combined plots of the cumulative difference functions for the differences
between the power functions in each possible pair of power functions when n1 = 10, n2 =
40, k = 4. The differences are long the abcissa and the values of the cumulative difference
functions are along the ordinate. To the right of the plot there is a legend specifying
which color has been used in plotting each cumulative difference function. For instance
the green dot in front of “EM vs. CM” means the cumulative difference function of
γEM − γCM has been plotted using green color. In the title of the plot the number of
points where we have taken the differences between the power functions in each pair of
power functions are shown. This number corresponds to the number of points where at
least one of the power functions has power 80 % or greater.
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Figure 5.12: Combined plots of the cumulative difference functions for the differ-
ences between the power functions in each possible pair of power functions when
n1 = 97, n2 = 103, k = 2. The differences are long the abcissa and the values of the
cumulative difference functions are along the ordinate. To the right of the plot there
is a legend specifying which color has been used in plotting each cumulative difference
function. For instance the blue dot in front of “EM vs. C” means the cumulative dif-
ference function of γEM − γC has been plotted using blue color. In the title of the plot
the number of points where we have taken the differences between the power functions
in each pair of power functions are shown. This number corresponds to the number of
points where at least one of the power functions has power 80 % or greater.
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Figure 5.13: Combined plots of the cumulative difference functions for the differ-
ences between the power functions in each possible pair of power functions when
n1 = 60, n2 = 240, k = 8. The differences are long the abcissa and the values of the
cumulative difference functions are along the ordinate. To the right of the plot there
is a legend specifying which color has been used in plotting each cumulative difference
function. For instance the black dot in front of “CM vs. C” means the cumulative dif-
ference function of γCM − γC has been plotted using black color. In the title of the plot
the number of points where we have taken the differences between the power functions
in each pair of power functions are shown. This number corresponds to the number of
points where at least one of the power functions has power 80 % or greater.
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5.2.4 Median power differences

In Table 5.4 the median differences between the power functions in each pair of
power functions are shown. We have only taken the median of power differences in
points where the power of at least one of all of the power functions is equal to or
greater than 80%. We observe that median power differences only are substantially
greater than 0 when one of the power functions considered is γC . We also observe
that the median power increase is greatest for the two smallest designs considered,
i.e (10, 10) and (4, 16). When considering the median power differences in the
balanced design the number of points studied is below 50 when k = 5, 6, 7, 8 and
in the unbalanced design when k = 4, . . . , 8, so that these cases are most likely
of no practical importance (since the points in parameter space corresponding to
these points are most likely of no practical importance). However, for the other
values of k the power increase compared to γC is quite large and may be of practical
importance.

One sensible question to ask is why we have chosen the median to summarize the
differences in power between power functions. When the differences are unique
and there is an odd number of points, the median can be shown to minimize the
following total loss function (proof not given)

Ltot(s) =
∑
xi

L1(xi, s), (5.1)

where s is the number summarizing the numbers xi, i = 1, . . . , n and

L1(xi, s) = |s− xi| (5.2)

is called the absolute error loss and gives the cost of summarizing the number xi
with s, i.e the cost incurred by the potential discrepancy between s and xi. The
loss function given in Equation (5.2) is not the only possible loss function. Another
possible loss function is the squared error loss function

L2(xi, s) = (s− xi)2

(Casella & Berger 2002, p. 348–349). The minimizer of Equation (5.1) when
replacing L1 with L2 is the mean of xi, i = 1, . . . , n, which is also a commonly used
summary statistic (proof not shown).

We now compare the two loss functions L1 and L2 to better understand why we use
the median and not the mean as a summary statistic. All loss functions are non-
negative and L(a, a) = 0, meaning no cost occurs when summarizing the number a
with itself. For the two considered loss functions L(a, xi) = L(xi, a), which means
summarizing the number xi with s1 is equally bad as summarizing the number xi

131



with the number s2 when s1 > xi, s2 < x2 and |xi − s1| = |xi − s2|. In fact, L1 and
L2 are metrics. However, loss functions need not be metrics in general since they
need not be symmetric, i.e L(xi, s) = L(s, xi) does not need to hold. This occurs
for instance when it considered to be more imprecise to summarize the number
with s2 than with s1 in the example given. Since |ε| > ε2 when ε ∈ (−1, 1) we have
that L1 > L2 when |xi − s| < 1. And since |ε| < ε2 when ε ∈ (−∞,−1) ∪ (1,∞),
we have that L1 < L2 when |xi − s| ∈ (1,∞). This means L1 places more weight
on small differences compared to L2 which places relatively more weight on larger
differences. Alternatively, if we increase the distance between xi and s by one
unit the increase in cost by using L1 is 1 and is independent of the initial distance
between s and xi. However, when using L2 the loss is greater if the original distance
between xi and s is large compared to when it is small. We do not regard values of
(θ1, θ2) that give large differences in power between two power functions as more
likely values of (θ1, θ2) underH1. We therefore consider L1 as a better cost function
than L2 and therefore use the median and not the mean as the summary statistic.
We could of course weigh the different L1(xi, s) differently than done in Equation
(5.1). One possibility would be to weigh them according to some prior belief of the
true values of (θ1, θ2) under H1, where we place more weight on more likely values
and less weight on the remaining values of (θ1, θ2). By using the expression for the
total loss in Equation (5.1) we regard each value of (θ1, θ2) in which we consider
the differences in power as an equally likely value of (θ1, θ2) under H1.

5.3 Example (d) in Section 4.1.1 revisited

In this section we create the realisations of the different p-values in example (d) in
Section 4.1.1. Since the A and E p-values are not valid, we should not use these
p-values to create a level α-test. We choose α = 0.05. In Table 5.6 the different
realisations of the valid p-values considered in this thesis are shown. From Section
5.2.3 we know that γCM ≈ γC ≈ γEM ≈ γM when n1 = 97, n2 = 103, k = 2 in
points where the power of at least one of the power functions is above or equal
to 80%. Which one of the p-values should then be used? Is it in general wise to
calculate the different realisations of the different p-values, as we have done in this
example, and then choose the p-value that has the lowest realisation since the power
functions are almost equal in (hopefully) the interesting part of the parameter
space? Could this procedure be used when performing multiple hypothesis tests?
Since each p-value is valid is seems at first glance reasonable that the new p-value
should be valid.

If we always choose the smallest realisation of the p-values for all outcomes we are
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Table 5.4: Median power differences of the power functions in all of the points where
the power of at least one power function is equal to or larger than 80 %. Column 1
gives the sample sizes in the experiment, column 2 gives the significance level specified
as 5 · 10−k and k ranges from 2 to 8, column 3 gives the number of points in which we
evaluate the differences of the power functions (which means we consider the same points
when taking the differences of all of the possible power functions) columns 4 to 9 each
give the median power differences where we consider the difference between the leftmost
power function in the column and the rightmost power function in the same column.
For instance “EM vs. C” means we consider the median of γEM (θ1, θ2;α)− γC(θ1, θ2;α)
over the grid of (θ1, θ2) under H1 where the power of at least one test for the specified
values of n1, n2 and k is above or equal to 80 %.

(n1, n2) k No. points EM vs. C CM vs C M vs. C EM vs. M CM vs. M EM vs. CM
(10,10) 2 977 8.048 8.048 8.048 0.000 0.000 0.000

3 384 11.459 11.459 11.459 0.000 0.000 0.000
4 136 20.787 20.787 20.787 0.000 0.000 0.000
5 45 33.720 33.720 33.720 0.000 0.000 0.000
6 6 86.114 86.114 86.114 0.000 0.000 0.000
7 0
8 0

(25, 25) 2 2160 0.367 0.365 0.367 0.000 0.000 0.000
3 1531 0.991 0.898 0.898 0.001 0.000 0.001
4 1081 1.976 1.885 1.885 0.000 0.000 0.000
5 745 1.024 1.024 0.738 0.003 0.003 0.000
6 512 2.177 2.177 0.884 0.213 0.213 0.000
7 362 1.935 1.935 1.935 0.000 0.000 0.000
8 242 5.541 5.541 5.541 0.000 0.000 0.000

(50, 50) 2 2966 0.023 0.020 0.021 0.000 -0.000 0.000
3 2394 0.036 0.033 0.033 0.000 0.000 0.000
4 1987 0.104 0.104 0.104 0.000 0.000 0.000
5 1650 0.112 0.112 0.063 0.000 0.000 0.000
6 1400 0.255 0.250 0.165 0.000 0.000 0.000
7 1178 0.250 0.137 0.013 0.051 0.019 0.025
8 988 0.353 0.312 0.091 0.039 0.000 0.020

(97,103) 2 3571 0.000 0.000 0.000 0.000 0.000 0.000
3 3135 0.000 0.000 0.000 0.000 0.000 0.000
4 2800 0.000 0.000 0.000 0.000 0.000 0.000
5 2520 0.000 0.000 0.000 0.000 0.000 0.000
6 2289 0.000 0.000 0.000 0.000 0.000 0.000
7 2091 0.001 0.001 0.000 0.000 0.000 0.000
8 1907 0.001 0.001 0.000 0.000 0.000 0.000

(150, 150) 2 3836 0.000 0.000 0.000 0.000 0.000 0.000
3 3470 0.000 0.000 0.000 0.000 0.000 0.000
4 3192 0.000 0.000 0.000 0.000 0.000 0.000
5 2952 0.000 0.000 0.000 0.000 0.000 0.000
6 2755 0.000 0.000 0.000 0.000 0.000 0.000
7 2568 0.000 0.000 0.000 0.000 0.000 0.000
8 2415 0.000 0.000 0.000 0.000 0.000 0.000

(4,16) 2 642 6.669 6.669 6.669 0.000 0.000 0.000
3 194 9.895 9.895 9.895 0.000 0.000 0.000
4 25 20.074 20.074 20.074 0.000 0.000 0.000
5 8 86.838 86.838 86.838 0.000 0.000 0.000
6 0
7 0
8 0

(10,40) 2 1731 0.861 0.426 0.758 0.003 0.000 0.008
3 1064 1.539 0.562 0.178 0.082 0.013 0.323
4 653 3.462 3.462 0.710 0.116 0.116 0.000
5 414 4.514 4.514 1.770 0.044 0.044 0.000
6 241 6.438 5.947 3.589 0.008 0.008 0.000
7 129 8.635 9.698 5.678 0.035 0.040 -0.005
8 60 7.067 5.112 7.067 0.000 -0.556 0.556

(20,80) 2 2535 0.102 0.030 0.064 0.004 -0.000 0.012
3 1916 0.253 0.086 0.003 0.061 0.004 0.050
4 1484 0.380 0.191 -0.484 0.990 0.611 0.027
5 1167 0.583 0.312 -0.082 0.817 0.369 0.071
6 910 0.731 0.575 -0.021 0.512 0.364 0.091
7 718 0.884 1.019 -0.005 0.449 0.449 0.000
8 555 0.897 1.210 -0.002 0.125 0.146 -0.042

(60,240) 2 3538 0.000 0.000 0.000 0.000 0.000 0.000
3 3110 0.000 0.000 0.000 0.000 0.000 0.000
4 2767 0.000 0.000 -0.000 0.001 0.001 0.000
5 2483 0.000 0.000 -0.000 0.002 0.001 0.000
6 2246 0.001 0.000 -0.005 0.009 0.005 0.000
7 2046 0.001 0.001 -0.001 0.006 0.004 0.000
8 1869 0.001 0.002 -0.003 0.010 0.007 0.000
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Table 5.6: The different realisation of either of the C, M, C ◦ M or E ◦ M p-values.
In the first row the different P -values considered are shown and on the second row the
realisations of the p-values are given.

p-value pC pCM pM pEM
p(x) 0.101 0.0897 0.0914 0.0864

Table 5.7: Type I error probabilities of the level 0.05 test based on pmin(X) when
n1 = 97, n2 = 103 at the grid of θ-values used under H0

θ 0 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50
Prθ(pmin(X) ≤ 0.05) 0 5.01 4.72 4.99 5.08 5.09 5.09 5.13 4.82 4.76 4.94

in fact using the test statistic

pmin(X) = min(pM(X), pEM(X), pCM(X), pC(X))

When calculating Prθ(pmin(X)) we sum over least as many outcomes by con-
struction as when calculating each of the corresponding probabilities for the other
p-values. So, if Prθ(p(X) ≤ α) = α for one of the p-values and we sum over one
additional outcome with positive probability when calculating Prθ(pmin(X) ≤ α)
compared to when calculating Prθ(p(X) ≤ α) we have that pmin(X) is not valid.
In Table 5.7 we show the type I error probabilities when n1 = 97, n2 = 103, k = 2
and when using pmin(X) to create the level 0.05 test. We see that pmin(X) is not
valid.

We see that γCM ≈ γC ≈ γEM ≈ γM in points where the power of at least
one of the tests is above 80 % does not necessarily mean that the realisations
of the p-values are the same when evaluated in the same outcomes. What does
then γCM ≈ γC ≈ γEM ≈ γM mean? Given that the true values of the success
probabilities are in the considered region over parameter space, i.e the region where
at least one of the power functions has power at least 80 %,γCM ≈ γC ≈ γEM ≈ γM
means the long frequencies we observe realisations of the p-values below or equal
to 0.05 for all of the p-values will almost be the same. So in the long run we will
get almost the same estimates of the type II error probabilities using either one of
the tests (given that the (θ1, θ2) is in the considered region of the parameter space)
(also recall that Prθ(type I error) = 1− γ). To sum up, we must choose one valid
p-value in a given set-up. In this example we have chosen α = 0.05. We therefore
will not reject the null hypothesis using any of the p-values. We note that Zhao
et al. (2011) use a lower significance level than we do since they perform multiple
tests.
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5.4 Further work

In this section we present topics that can be part of further work.

5.4.1 Better comparison of power functions under H0

In Section 5.1 we did simple comparisons of the power functions under H0. The
main focus was to show that the A and E p-values in general not are valid and
that the remaining p-values are. In many situations we observed that the power
functions γM , γEM and γCM take almost the same values and that these values are
higher than the values taken by γC . It is of interest to quantify the power increase
also under H0 and see if γC ≈ γCM ≈ γEM holds in general under H0 or if patterns
similar to the ones observed under H1 also hold under H0. One possible approach
would be to use the same grid along θ1 = θ2 as the grid increment used under H1
and thereafter create similar tables and figures for the power functions as the ones
created under H1.

5.4.2 More smaller, balanced and unbalanced designs

We have observed that the power functions γEM , γCM , γM are significantly greater
than γC for small unbalanced and balanced designs. These changes were greatest
for the two designs (10, 10) and (4, 16). It is of interest to know if similar results
hold for smaller designs than (10, 10) and (4, 16) and if so how large the power
increases are. We could also study other unbalanced designs than n2 = 4n1, for
instance n2 = 3n1 and n2 = 2n1.

5.4.3 The Berger and Boos p-value

When calculating the realisations of the M p-value we maximize the tail probability
over the entire parameter space possible for the nuisance parameter θ under H0.
Berger & Boos (1994) suggest instead maximizing over a confidence set for θ under
H0. The p-value is given by

pBB(x) = sup
θ∈Cβ

Prθ(T (X ≥ T (x)) + β,

where Cβ is a 1 − β confidence set for θ under the null hypothesis. One possible
confidence set for θ underH0 in our case is the Pearson-Clopper confidence interval,
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see for instance Casella & Berger (2002, p. 454). Berger & Boos (1994) show that
this p-value is valid. This method may be preferred over the M method when the
set of values possible for θ under H0 is unbounded, since maximization over the
entire parameter space may be impossible. If we use −pC(X) as test statistic in
the BB method we get

pCBB(x) = sup
θ∈Cβ

Prθ(−pC(X) ≥ −pC(x)) + β

= sup
θ∈Cβ

Prθ(pC(X) ≤ pC(x)) + β

≤ pC(x) + β,

since Prθ(pC(X) ≤ α) ≤ α holds for all α ∈ [0, 1] as pC(X) is valid and we can
replace α with pC(x). Therefore applying a BB step on the C p-value does not
necessarily give a test with uniformly at least as high power as the test with the
same level test based on the C p-value. This is one potential drawback with the
method. However, applying the BB method on any test statistic will result in
a valid p value since the p-value is valid, meaning it is possible to make the A
p-value and E p-value valid by applying a BB step on them (or to be more correct
we use the negative of either the A p-value and E p-value as test statistic in the
BB method).

5.4.4 Different null and alternative hypothesis

Instead of the null hypothesis in Equation (4.1), one could consider

H0 : |θ1 − θ2| ≤ ε,

where ε is the magnitude of the biggest difference of no practical significance. The
alternative hypothesis then takes the form

H1 : |θ1 − θ2| > ε,

and all (θ1, θ2) ∈ Θc
0 are of practical importance. When we consider different

hypothesis tests testing the above null hypothesis against the alternative hypoth-
esis we want tests with as high power as possible for all (θ1, θ2) ∈ Θc

0 since all
(θ1, θ2) ∈ Θc

0 now are practically important. With the new null hypothesis there
is therefore no need to check that the power is low at parameter values that are
not practically significant.
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Under the new null hypothesis the joint pmf is

f(x; θ1, θ2) =
(
n1

x1

)(
n2

x2

)
θx1

1 θ
x2
2 (1− θ1)n1−x1(1− θ)n2−x2

=θs1
1 θ

s2
2 (1− θ1)n1−s1(1− θ2)n2−s2

(
n1

x1

)(
n2

x2

)

so that S(X1, X2) = (X1, X2) is sufficient for (θ1, θ2) by the factorization theorem.
The entire data set is always sufficient. We then have

Pr(X1 = x1, X2 = x2 | S(X) = (s1, s2)) =

1 if x1 = s1, x2 = s2

0 else
,

which means the C p-value realisations are 1 for any test statistic. This means
the power of the test based on the C p-value will be 0 for all (θ1, θ2) under the
alternative hypothesis. We therefore should try to find another sufficient statistic
for (θ1, θ2) under the null hypothesis that gives a test with better power proper-
ties.
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Chapter 6

Short discussion and conclusion

In this chapter we give a short overall discussion and conclusion. We have done
most of the discussion in the previous chapters so that the discussion and conclu-
sion presented in this chapter are meant to give an overview.

We know the p-value is a random variable and not a constant probability, see
Section 3.3. This may be hard to understand since many introductory texts in
statistics teach that the p-value is a probability. For instance Devore et al. (2012,
p. 456) define the p-value as “The P-value is the probability, calculated assuming
that the null hypothesis is true, of obtaining a value of the test statistic at least
as contradictory to H0 as the value calculated from the available sample.” and
they emphasize that “The P -value is a probability.”. Another example has already
been given in Section 3.3, where we said that Walpole et al. (2012, p. 333–334)
clearly view the test statistic as a random variable and the p-value as not. One
may question if introductory texts is the first place students should be taught
that the p-value is a random variable. One of the reasons is that students may
not understand the distinction between a random variable and the realisations
of the random variable. This if fairly easy to understand, where for instance a
discrete random variable X takes the different possible realisations x according
to a probability distribution. This means before an experiment the outcome is
undecided and that in the experiment the random variable X takes the different
realisations with certain probabilities. With this knowledge it should be easy to
understand that when obtaining two different outcomes in two runs of an experi-
ment we potentially sum over different outcomes when calculating the realisations
of a particular p-value, so that the realisations of the p-value may not be the same
value. Perhaps the most straightforward exercise would be to evaluate the p-value
in all the possible outcomes when the set of outcomes is finite, as done in Section
3.3.
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Casella & Berger (2002, p. 397–399) define the p-value as a random variable and
also define validity. This is a commonly used book in theoretical statistics courses1.
The section in the book is fairly short and the book is written at a high theoretical
level. This may make it harder for the students to realise that the p-value is not
a probability but a random variable, even if they are at a more advanced level.
One issue with first introducing the p-value as a random variable in a theoretical
statistics course is that far from all users of statistics take such a course. If one does
not understand that the p-value is a random variable it is highly likely that one
neither understands the concept of validity and that not all p-values are valid. It
is also highly unlikely that one understands that there exist different p-values and
that the tests based on these p-values may have different power functions.

We have seen in Section 5.1 that the concept of validity is important. It is the
foundation for creating tests that never exceed the chosen significance level under
the null hypothesis. We have seen that pM , pC , pCM , pEM are valid and that pA
and pE are not. The most severe examples where either of the test based on pA or
pE exceed the significance levels are found in unbalanced designs. The maximum
relative type I probability found for the A p-value is 1.2054 · 10−6 and occurs
when n1 = 60, n2 = 240, α = 5 · 10−8 and θ = θ1 = θ2 = 0.05. The maximum
relative type I probability found for the E p-value is 5.60 · 10−6 and occurs when
n1 = 97, n2 = 103, α = 5 · 10−6 and θ = θ1 = θ2 = 0.15.

Under the alternative hypothesis, the E ◦ M and C ◦ M p-values are found in
general to give level α tests with highest power (only tests based on valid p-values
studied). We have also observed that the power differences occur in the region(s)
of the points considered that most likely is(are) of greatest scientific importance.
In balanced designs for the largest designs studied, i.e (97, 103) and (150, 150), the
level α tests based on all the studied p-values, i.e the E ◦ M, C ◦ M, C and M
p-values have power functions that take almost identical values in the majority of
parameter points studied. In unbalanced designs the differences between E ◦M,
C ◦M, C are found to be small in the largest studied design, (60, 240). For the
two smallest designs studied, (n1, n2) = (4, 16) and (n1, n2) = (10, 10) the power
increase of γCM compared with γC can be quite substantial. So the M step may
increase the power substantially for designs with small sizes. We get similar results
when compare γEM or γM with γC as when comparing γCM with γC .

The M step is theoretically optimal since (1) it makes a invalid p-value valid (if we
let the negative of the p-value serve as test statistic in the M method) and (2) if we

1This book has for instance been used in STAT210 at the University of Bergen in the spring
of 2016, in the course TMA4295 Statistical Inference at NTNU in numerous of past years, see re-
spectively http://www.uib.no/emne/STAT210 and http://www.ntnu.edu/studies/courses/
TMA4295#tab=omEmnet for further information.
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let the negative of a valid p-value serve as test statistic in the M method the power
function of the level α test based on the resulting p-value will be uniformly least as
high as the power function of the test with same level based on the original p-value.
We have seen that the M step maintains the ordering of the test statistic. This
means that it is the ordering induced by the test statistic that determines if the
power of the level α test based on the p-value will have good or bad properties. The
C p-value also have a good property; it is valid. The C method is in general also
faster to compute than the M method since in the M method we must calculate the
tail probability in a grid of values of θ1 = θ2 and we must consider more outcomes
when calculating the tail probabilities. The E ◦ M and C ◦ M methods are also
more time consuming than the C method since all the realisations of the E or
C p-values must be calculated when considering respectively the E ◦M or C ◦M
methods. For instance it takes 36 seconds, 7 minutes and 42 seconds, 11 minutes
and 39 seconds and 8 minutes and 16 seconds to calculate all the realisations of
respectively the C, M, E ◦M, C ◦M p-values when n1 = n2 = 150. Using the R
implementation of the M method takes 5 hours, 21 minutes and 44 seconds. When
using the R implementation the grid on [0, 1/2] has increment 0.05, which gives a
much sparse grid than the grid used in the power study. We see that the M method
is quite computationally intensive and clearly benefits from parallel programming.
However, due to better and better computers the M step becomes more and more
relevant.

Since the C method is quicker than the M method and γC ≈ γCM ≈ γEM for the
largest study designs, we recommend using the C step for large sample sizes. For
medium to small sample sizes we recommend using either the E ◦ M or C ◦ M
p-value as they in general are found to give tests which are the most powerful and
more powerful than the test with the same level based on the C p-value. It might
be tempting to calculate the realisations of all studied p-values in this thesis and
choose the one with the smallest realisation. In Section 5.3 we have seen that this
approach gives a p-value that is not valid. We therefore not recommended using
the “minimum” p-value.

When comparing the studied power functions we have used both tables and graph-
ical aids. By plotting where in parameter space the differences in power occur, we
can easily see if the points are of scientific interest. For instance if most of the
points where there are great differences in power had been close to (1, 0), then the
power differences would most likely be of little practical importance. However, we
have seen that among the studied points the power differences are in the interesting
part of the parameter space. This is much harder to do by only comparing power
functions in the same grid point and trying to eyeball which points in parameter
space are of interest. The dataset quickly becomes unmanageable if one shrink
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the grid increment in the power study. Also, by only doing this comparison of the
power functions, one can only make a table with a selection of values of the power
functions showing interesting features or differences between the power functions.
There is limited amount of information in such tables. Only Table D.1 in this
thesis has been constructed in this way. The reason we have included the table,
when we know there is limited information in such a table, is that the purpose of
it is to show each case where one of the power functions exceeds the significance
level. We note that the entries in Table D.1 may not reflect the overall trends of
the power functions. Table 5.2 and the difference plots provide much more infor-
mation about the differences between the power functions than Table D.1 does.
Increasing the parameter points under H1 will not make it any harder to construct
the difference plot or Table 5.2, but increasing the dataset under H0 will make
it more time consuming to make Table D.1. Constructing tables similar to Table
D.1 with the aim of power comparisons will be infeasible with increasing number
of parameter points.

When comparing power functions we have also plotted the cumulative difference
functions. The plots of the cumulative difference functions carry much more infor-
mation about the differences than Table 5.2. For instance if the fraction of points
that give differences in the interval 0 to 2 % is 1, we do not know the distribution
of the differences within this interval. It could be that most points give differ-
ences close to 0 or that most differences are close to 2. The use of difference plots
and plots of the cumulative difference functions have proved to be quite helpful
in comparing power functions. We therefore recommend using these tools when
comparing power functions. We note that it does take time to create the plots of
the cumulative difference functions, where one needs to set the dot sizes and plot-
ting order so that each function is visible in the figure. We also note that it takes
times to construct the difference plots and the plots of the power functions. The
hardest part is to understand how to create a matrix of the differences or power
values that the plotting function will accept. Despite the mentioned difficulties,
we strongly recommend creating these plots.
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Appendix A

Basic definitions and concepts in
biology and population genetics

In this appendix we give a short introduction to the definitions and concepts needed
to understand example (d) in Section 4.1.1. This introduction is a revised version
of Appendix B in the projet’s thesis Aanes (2016).

DNA DNA (deoxyribonucleic acid) is a long sequence made up of the four bases
adenine (A), guanine (G), cytosine (C) and thymine (T). Two sequences of
DNA lines up with one another to form a spiral that is called a double helix.
The two sequences lines up so that A or T from one sequence is paired up with
respectively C or G from the other sequence. Given one of the sequences we
can tell the other one (i.e if we look at the excerpt ATCG from one sequence,
we know that it is paired up with TAGC). We therefore only consider one of
the sequences (National Human Genome Research Institute 2015b).

Chromosome The structure in which a single DNA molecule is stored is called
the chromosome. A human has 46 chromosomes. The chromosomes pairs
up so that each human has 23 pairs. In each pair, one chromosome is inher-
ited from the father and one is inherited from the mother (National Human
Genome Research Institute 2015a). One of the pairs consists of the sex chro-
mosomes. The rest of the pairs are called autosomes (Ziegler & König 2010,
p. 3).

Gene A gene is a sequence of DNA that codes for a protein (Ziegler & König
2010, p. 7).

Locus A locus (plural loci) is a sequence of DNA that may or may not code for
a protein (Halliburton 2004, p. 28). An autosomal locus is a locus on one of
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the autosomes.

Allele: An allele is an alternative form (i.e alternative sequence) of a locus (Hal-
liburton 2004, p. 28).

Genotype: The chromosomes are ordered in pairs. When we consider the same
locus on each of the two chromosomes in a pair, two alleles are present.
The pair of alleles (considered unordered) is said to be the genotype for a
particular individual at the locus. For instance, if a locus has two alleles
labelled R and T and if an individual has the two alleles R and R, the
genotype of the individual will be RR (Thompson 1986, p.2).

SNP In a SNP, single nucleotide polymorphism, a single base in one sequence of
DNA is substituted with another base. For instance the base A could be
replaced by G. Since for a SNP one base is replaced by another, four alleles
are possible. However, most SNPs have only two alleles (we say that they are
diallelic) (Ziegler & König 2010, p. 54). We only consider diallelic SNP-loci
in this thesis.

Law of segregation The law of segregation states that for a particular locus in
an individual, one allele is inherited from the mother and the other allele is
inherited from the father (Thompson 1986, p. 1).

Phenotype A phenotype is the expression of a trait in an individual, i.e the trait
we can observe (Genetics Home Reference 2015). There are two types of
traits, qualitative traits and quantitative traits (Halliburton 2004, p. 525).
Qualitative traits show discrete phenotypes and are controlled by mostly one
gene. Quantitative traits show a continuous distribution of phenotypes and
are controlled by many genes and by environmental factors. Eye color is an
example of a qualitative trait and blue eyes is then a possible phenotype.
Weight is an example of a quantitative trait and the actual weight of an
individual is then the phenotype for that individual.

Gametes A gamete is the reproductive cell of an organism (The Editors of En-
cyclopædia Britannica 2016). Humans have either sperm cells or egg cells.
Each gamete carry only one copy of one of the chromosomes in each pair.

Genetic marker A genetic marker is a locus with known location and that is
polymorphic (Ziegler & König 2010, p. 47), i.e there exists more than one
allele at the locus in the population (Halliburton 2004, p. 28).

Law of independent assortment When an indivudal passes on a gamete to an
offspring, the law of independent assortment states that which of the two
chromosomes is passed on in one pair is independent of which of the two
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chromosomes that is passed on in the other(Ziegler & König 2010, p. 22).

Recombination Recombination is any process that results in the set of alleles an
individual passes on to an offspring is not the same as the set of alleles the
individual inherited from either the mother or the father(Halliburton 2004,
p. 91). For instance, we know that an offspring gets for each of the auto-
somal chromosomes one of the chromosomes from the father and the other
from the mother. If we consider two different pairs of chromosomes the law
of independent assortment tells us that which of the two chromosomes is
passed on in one pair is independent of which of the two chromosomes that
is passed on in the other. This means the individual may pass on one chro-
mosome inherited from the father and another chromosome inherited from
the mother, so that new combinations of alleles are passed on. Other types
of recombination are also possible. Let us consider two loci on a chromosome
which is passed on to an offspring. It is possible that the allele on one of
the two loci on this chromosome and the allele at the same loci in the other
chromosome (i.e the other chromosome in the pair) have been swapped dur-
ing meiosis (the process where gametes are made) but the alleles at the other
considered loci have not been swapped (Ziegler & König 2010, p. 9). This
means the chromosome in the individual and the copy of it which is passed
on to the offspring differ by one allele (assuming the alleles that have been
swapped are different).

Linkage When we consider two loci on the same chromosome and if the alleles
at these two loci are not passed on to an individual according to the law of
independent assortment (so that which allele is passed on to the offspring is
not independent of which allele is passed on at the other loci), we say the
two loci are linked (Halliburton 2004, p. 94). Otherwise they are unlinked.
The closer the two loci are, the less likely it is the two loci will act according
to the law of independent assortment. This means the closer the two loci are
the more likely it is that the alleles at the two loci are inherited together.

Linkage disequilibrium Two loci are in linkage disequilibrium if the alleles at
one of the loci are not randomly associated with the alleles at the other
loci, i.e they do not act according to the law of independent assortment
(Halliburton 2004, p. 93–94). Note that the two loci can be on two different
chromosomes, so that linkage is not a necessary condition to have linkage
disequilibrium. This means the law of independent assortment does not
always hold, even if the two loci considered are on two different chromosomes.
The four forces of evolution can cause gametic disequilibrium.

Association study The goal of an association study is to determine if any of
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the considered genetic markers are associated with the disease under study.
These studies are based on historical recombination. The recombination
uncouples all but the most tightly linked markers from the causal locus.
When one finds a genetic marker that is associated with a disease, it is
hopefully tightly linked to the causal locus, since if so further studies may
localize the causal locus. If not, so that the genetic marker and locus only
are in linkage disequlibirum, the localization will be much harder, if not
impossible Mackay et al. (2009).
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Appendix B

New coordinates of point rotated
180 degrees around (1/2,1/2)

In this section we show that the new coordinates of a point (θ1, θ2) that has been
rotated 180 degrees around (1/2, 1/2) is given by (1 − θ1, θ2). From Lay (2012,
p. 140) the new coordinates of a point (θ1, θ2) that has been rotated x degrees
counter-clockwise around the origin is(

θ̃1
θ̃2

)
=
(

cos(x) sin(x)
− sin(x) cos(x)

)(
θ1
θ2

)
(B.1)

To find the new coordinates of the rotated point we do three steps: 1) make a shift
of coordinates where we move the original point to the origin, 2) use Equation
(B.1) on the translated point and 3) transform the coordinates of the rotated
point, which are expressed in the new coordinate system, to coordinates in the
original system.

The coordinate in the new coordinate system are given by

(ψ1, ψ2) = (θ1 −
1
2 , θ2 −

1
2) (B.2)

If we want to go back to original coordinates we use the formula

(θ1, θ2) = (ψ1 + 1
2 , ψ2 + 1

2) (B.3)

When we rotate the point in the new coordinate system 180 degrees around the
origin, the new coordinates become from Equation (B.1)(

ψ̃1
ψ̃2

)
=
[

cos(180) sin(180)
− sin(180) cos(180)

](
ψ1
ψ2

)
=
[
−1 0
0 −1

](
θ1 − 1

2
θ2 − 1

2

)
=
(
−θ1 + 1

2
−θ2 + 1

2

)
(B.4)
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In Equation (B.4) the coordinates of the rotated point are in the new coordinate
system, but we have written them as a function of the original point (θ1, θ2). By
using Equation (B.3) we get the coordinates of the rotated point in the original
coordinate system (

θ̃1
θ̃2

)
=
(
ψ̃1
ψ̃2

)
+
(

1
2
1
2

)
=
(

1− θ1
1− θ2

)
(B.5)
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Appendix C

R-code used in Section 5

In this appendix we show an excerpt of the code used in the the power calculations.
We show for instance how the A and C p-values can be calculated. For the E and
M p-values we recommend using parallel programming.

1 cases=c(10 ,10)
2 cases=rbind(cases ,c(25 ,25))
3 cases=rbind(cases ,c(50 ,50))
4 cases=rbind(cases ,c(97 ,103))
5 cases=rbind(cases ,c(150 ,150))
6 cases=rbind(cases ,c(4 ,16))
7 cases=rbind(cases ,c(10 ,40))
8 cases=rbind(cases ,c(20 ,80))
9 cases=rbind(cases ,c(60 ,240))

10
11
12 for(kn in 1: dim(cases)[1])
13 {
14 n1=cases[kn ,1]
15 n2=cases[kn ,2]
16
17 # Create all possible tables
18 y<-expand .grid(seq(from =0,to=n1),seq(from =0,to=n2))
19
20
21 # write tables to file , which later will be used by the E, N

and power programs
22 write.table(y,"tab.txt",row=F,col=F)
23
24 # Create table of the values of the test statistic
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25 t2 <-0
26 t2=(y[,1]/n1 -y[,2]/n2)^2/((y[ ,1]+y[ ,2])/(n1+n2)*(1-(y[ ,1]+y

[ ,2])/(n1+n2))*(1/n1+1/n2))
27 t2[is.na(t2)]= -999
28
29 write.table(t2 ,"z.txt",row=F,col=F)
30
31 # Calculate p_A and p_C and write to files that later will

be used in power calculations :
32
33 # Calculate A:
34 avals =1- pchisq (t2 ,df =1)
35
36 # Calculate C:
37
38 cvals=rep(NA , length = length (t2))
39 for ( i in 1: length (t2))
40 {
41 sufficient _ statistic =y[i ,1]+y[i ,2]
42 T_ observed =t2[i]
43 cond_ outcomes _bool=y[ ,1]+y[ ,2]== sufficient _ statistic & t2

>=T_observed -10^( -10)
44 cvals[i]= sum( dhyper (y[cond_ outcomes _bool ,1],n1 ,n2 ,

sufficient _ statistic ))
45 }
46
47
48 write.table(-avals ,paste("Z-",n1 ,"-",n2 ,"-","A.txt",sep=""),

row=F,col=F)
49 write.table(-cvals ,paste("Z-",n1 ,"-",n2 ,"-","C.txt",sep=""),

row=F,col=F)
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Appendix D

Table of type I error
probabilities

In Table D.1 we show the type I error probabilities at selected values of θ = θ1 = θ2
and n1, n2, k studied in Chapter 5.

Table D.1: Type I error probabilities at selected θ = θ1 = θ2 and significance
levels 5 · 10−k, where k can take the values 2, 3, . . . , 8. When the significance level
is 5 × 10−k the probabilities of type I error are divided by 10−k. The first col-
umn specifies the sample sizes n1 and n2, the second column gives θ · 100, the
third column gives the value of k in 5 · 10−k and column 4 to 9 gives respectively
γE(θ, θ;α), γC(θ, θ;α), γA(θ, θ;α), γM (θ, θ;α), γCM (θ, θ;α) and γEM (θ, θ;α). We show
all cases where one of the power functions exceeds the level and also a selection of other
points. The different values are calculated using enumeration.

(n1, n2) k θ E A M C CM EM
(10,10) 2 5 0.00 0.00 0.00 0.00 0.00 0.00

15 0.04 0.04 0.04 0.00 0.04 0.04
25 0.58 0.58 0.58 0.04 0.58 0.58
35 2.18 2.18 2.18 0.19 2.18 2.18
45 3.77 3.77 3.77 0.37 3.77 3.77
50 4.02 4.02 4.02 0.40 4.02 4.02

6 5 0.00 0.00 0.00 0.00 0.00 0.00
15 0.00 0.00 0.00 0.00 0.00 0.00
25 0.11 0.00 0.11 0.00 0.11 0.11
35 0.74 0.00 0.74 0.00 0.74 0.74
45 1.72 0.00 1.72 0.00 1.72 1.72
50 1.91 0.00 1.91 0.00 1.91 1.91

Continued on next page
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(n1, n2) k θ E A M C CM EM
(25,25) 2 15 3.81 5.46 3.81 1.89 3.08 3.81

20 3.92 5.49 3.91 2.22 3.77 3.91
25 4.18 5.41 4.16 2.18 4.14 4.16
30 4.63 5.37 4.48 2.29 4.48 4.48
35 5.06 5.60 4.63 2.60 4.63 4.63
40 5.08 6.02 4.36 2.95 4.36 4.36
45 4.72 6.36 3.93 3.20 3.93 3.93
50 4.49 6.49 3.73 3.28 3.73 3.73

3 40 4.99 5.71 4.97 2.24 4.97 4.99
45 4.89 6.36 4.89 2.50 4.89 4.89
50 4.76 6.61 4.76 2.61 4.76 4.76

8 5 0.00 0.00 0.00 0.00 0.00 0.00
15 0.00 0.00 0.00 0.00 0.00 0.00
25 0.32 0.02 0.32 0.04 0.32 0.32
35 3.07 0.21 3.07 0.48 3.07 3.07
45 4.98 0.45 4.98 0.94 4.98 4.98
50 4.99 0.48 4.99 0.96 4.99 4.99

(50,50) 2 10 4.84 5.06 3.83 1.79 3.22 4.84
15 4.74 5.50 4.18 2.39 3.61 4.74
20 4.85 5.22 4.27 2.82 4.04 4.85
25 4.74 5.07 4.47 3.02 4.08 4.74
40 5.05 5.24 4.88 3.21 4.87 4.88
45 4.93 5.57 4.52 3.43 4.52 4.52
50 4.69 5.69 4.19 3.52 4.19 4.19

3 25 4.83 5.06 4.18 2.62 4.18 4.83
30 4.67 5.23 4.39 2.80 4.39 4.66
35 4.80 5.25 4.68 2.81 4.68 4.72
40 5.17 5.52 4.81 3.03 4.81 4.81
45 4.85 5.45 4.32 3.37 4.32 4.32
50 4.45 5.18 3.97 3.52 3.97 3.97

5 30 5.00 3.40 4.19 2.18 4.26 4.26
8 5 0.00 0.00 0.00 0.00 0.00 0.00

15 0.25 0.01 0.02 0.06 0.25 0.33
25 2.51 0.64 0.85 0.82 2.32 3.74
35 4.48 1.80 2.75 1.50 2.98 4.55
45 4.37 2.38 4.01 1.59 4.02 4.37
50 4.20 2.19 4.11 1.66 4.11 4.20

(150,150) 2 5 4.84 4.84 4.84 2.43 3.44 4.84
10 4.79 4.98 4.79 3.30 3.87 4.79

Continued on next page
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(n1, n2) k θ E A M C CM EM
15 4.76 4.93 4.76 3.41 4.36 4.76
20 4.90 5.03 4.75 3.55 4.48 4.74
25 4.90 5.04 4.83 3.73 4.64 4.68
30 4.97 5.03 4.78 3.77 4.74 4.74
35 4.89 4.89 4.71 3.69 4.71 4.71
40 5.16 5.17 4.94 3.91 4.94 4.94
45 5.16 5.53 4.48 4.21 4.48 4.48
50 4.64 5.66 4.33 4.31 4.33 4.33

3 30 4.88 5.06 4.81 3.48 4.81 4.18
35 5.00 5.02 4.82 3.48 4.82 4.32
40 5.04 5.17 4.88 3.61 4.88 4.24

4 10 5.06 3.54 3.54 2.33 3.54 4.71
25 5.02 4.86 4.60 3.07 4.46 4.46
40 5.08 5.05 4.91 3.30 4.91 4.83
45 5.05 4.85 4.65 3.54 4.65 4.46

5 45 5.12 4.91 4.69 3.52 4.69 4.69
6 35 5.01 4.55 4.79 2.94 4.79 4.79

40 5.10 4.63 4.94 2.95 4.94 4.94
7 15 5.35 1.89 2.19 2.24 3.75 4.89

20 5.07 2.70 3.29 2.48 4.47 4.15
8 5 0.19 0.00 0.00 0.05 0.05 0.19

15 3.80 1.12 1.70 1.83 3.48 3.80
25 4.79 2.97 3.21 2.31 4.08 4.75
30 5.03 3.27 3.96 2.56 4.28 4.69
35 4.85 3.65 4.19 2.57 4.70 4.71
45 5.06 4.03 4.99 2.83 4.99 4.99
50 4.60 3.46 4.60 3.19 4.60 4.60

(4,16) 2 5 1.15 8.69 1.15 0.64 1.15 1.15
10 2.85 8.25 2.85 1.19 2.85 2.85
15 3.73 6.47 3.73 1.42 3.73 3.73
20 3.86 5.07 3.86 1.48 3.86 3.86
45 3.34 5.36 3.34 1.41 3.34 3.34
50 3.39 5.57 3.39 1.42 3.39 3.39

3 5 0.39 6.35 0.39 0.22 0.39 0.39
10 1.95 10.95 1.95 0.75 1.95 1.95
15 3.66 10.90 3.66 1.14 3.66 3.66
20 4.56 8.88 4.56 1.28 4.56 4.56
25 4.56 6.67 4.56 1.24 4.56 4.56

4 10 0.51 7.19 0.51 0.19 0.51 0.51
Continued on next page
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(n1, n2) k θ E A M C CM EM
15 1.44 9.96 1.44 0.38 1.44 1.44
20 2.25 9.46 2.25 0.45 2.25 2.25
25 2.48 7.18 2.48 0.39 2.48 2.48

5 5 0.28 0.28 0.28 0.00 0.28 0.28
15 3.76 3.76 3.76 0.00 3.76 3.76
25 3.92 3.92 3.92 0.00 3.92 3.92
35 1.52 1.52 1.52 0.00 1.52 1.52
45 0.31 0.31 0.31 0.00 0.31 0.31
50 0.19 0.19 0.19 0.00 0.19 0.19

(10,40) 2 5 3.79 7.84 3.79 1.77 1.77 3.79
25 4.70 4.70 4.09 3.35 4.29 4.70
40 4.75 5.11 4.25 2.67 4.39 4.75
45 4.68 5.40 4.16 2.66 3.78 4.68
50 4.61 5.51 4.11 2.68 3.49 4.61

3 5 2.05 14.49 2.05 0.44 1.79 2.05
10 4.10 11.04 4.10 1.65 2.51 4.10
15 4.13 7.05 4.12 2.25 2.67 4.13
20 3.71 5.27 3.59 2.31 3.16 3.71

4 5 0.90 15.02 0.90 0.040 0.90 0.90
10 3.50 21.73 3.50 0.59 3.50 3.50
15 3.88 15.06 3.87 1.13 3.88 3.88
20 3.82 10.56 3.70 1.43 3.82 3.82
25 3.60 7.78 3.08 1.55 3.60 3.60
30 3.49 5.48 2.28 1.54 3.49 3.49

5 5 0.90 15.02 0.90 0.04 0.90 0.90
10 3.71 32.12 3.71 0.42 3.71 3.71
15 4.82 26.22 4.81 1.04 4.82 4.82
20 4.84 17.74 4.77 1.45 4.84 4.84
25 4.36 12.24 3.99 1.54 4.36 4.36
30 3.78 8.04 2.78 1.49 3.78 3.78

6 5 0.38 8.95 0.38 0.01 0.38 0.38
10 2.90 35.27 2.90 0.22 2.90 2.90
15 4.63 36.39 4.63 0.69 4.63 4.63
20 4.72 24.64 4.69 1.06 4.72 4.73
25 4.08 15.30 3.83 1.17 4.08 4.22
30 3.34 9.05 2.51 1.16 3.34 4.00

7 10 1.63 28.27 1.63 0.07 1.63 1.63
15 3.35 38.95 3.35 0.31 3.37 3.36
20 3.45 28.07 3.45 0.59 3.74 3.58
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(n1, n2) k θ E A M C CM EM
25 2.62 15.52 2.62 0.74 3.95 3.13
30 1.56 7.69 1.56 0.66 4.31 2.45

8 10 0.74 16.25 0.74 0.08 0.62 0.74
15 2.91 33.41 2.91 0.47 1.80 2.91
20 4.52 33.67 4.52 0.89 2.36 4.52
25 3.74 23.64 3.74 0.86 2.33 3.74
30 1.86 11.99 1.86 0.51 1.76 1.86
40 0.13 1.04 0.13 0.05 0.31 0.13
50 0.00 0.04 0.00 0.00 0.02 0.00

(20,80) 2 15 5.19 4.67 4.19 2.84 3.98 4.75
20 4.79 5.01 4.58 3.23 4.23 4.69
25 4.85 5.06 4.59 3.22 4.60 4.83
35 4.97 4.97 4.35 3.16 4.65 4.72
45 4.74 5.01 4.18 3.86 3.95 4.69
50 4.63 5.07 4.08 3.96 3.97 4.62

3 5 3.36 8.40 3.36 0.95 1.88 3.36
4 5 3.47 18.76 3.41 0.78 1.21 3.47

10 4.39 12.67 2.74 1.87 2.64 4.39
15 4.89 10.05 1.77 2.35 2.72 4.89
20 4.36 7.43 1.09 2.29 3.44 4.36
25 4.33 5.31 0.85 2.25 4.22 4.33
40 4.65 3.93 0.41 2.41 4.69 4.65
50 4.43 3.95 0.33 2.55 4.01 4.43

5 5 4.59 29.78 4.59 0.83 0.88 4.59
10 3.85 16.69 3.27 1.70 2.59 3.85
15 4.76 12.39 2.54 2.05 2.87 4.76
20 4.89 9.25 1.92 2.02 3.32 4.89
25 4.77 6.91 1.25 1.92 3.50 4.77
30 4.82 5.79 0.75 1.95 3.70 4.82
50 4.21 2.51 0.15 2.35 4.53 4.21

6 5 0.83 45.89 0.83 0.61 0.79 0.83
10 3.86 32.74 3.85 1.44 2.56 3.86
15 4.57 25.40 4.18 1.52 3.41 4.57
20 4.32 19.18 2.41 1.54 3.57 4.32
25 4.26 12.51 1.24 1.61 3.29 4.26
30 3.90 7.54 0.75 1.67 3.15 3.90
50 4.47 1.50 0.05 1.59 4.42 4.47

7 5 0.63 57.07 0.63 0.04 0.63 0.63
10 3.29 57.87 3.29 0.60 3.30 3.30
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(n1, n2) k θ E A M C CM EM
15 3.74 42.80 3.69 1.61 4.04 4.04
20 3.35 24.07 2.60 2.01 4.39 4.39
25 3.92 12.36 1.52 1.63 4.60 4.60
30 4.26 7.51 0.78 1.39 4.40 4.40
50 3.58 0.54 0.02 1.95 4.78 3.58

8 5 0.41 57.84 0.41 0.02 0.41 0.41
10 3.79 92.49 3.79 0.51 3.51 3.51
15 5.00 71.00 4.97 1.18 3.49 3.45
20 3.79 42.03 3.36 1.38 3.31 2.84
25 2.91 19.81 1.42 1.48 3.74 2.58
30 3.23 10.45 0.55 1.35 3.97 2.50
35 3.37 5.35 0.22 1.36 4.28 2.57
50 1.84 0.29 0.00 1.29 2.77 1.84

(60,240) 3 5 5.57 4.49 3.66 3.12 3.45 4.49
35 4.96 5.01 4.55 4.11 4.88 4.71
40 4.95 5.01 4.51 3.71 4.69 4.78
45 5.05 5.18 4.53 3.92 4.03 4.69
50 4.87 5.29 4.62 4.02 4.02 4.63

3 5 3.91 5.98 3.65 2.05 2.96 3.91
10 5.02 5.09 3.61 3.02 3.78 4.75
15 4.99 5.03 3.45 3.39 4.07 4.93
35 4.93 4.85 3.40 3.91 4.40 4.93
50 4.92 4.91 3.38 3.38 4.16 4.92

4 5 4.28 10.62 2.92 1.94 2.99 4.28
10 4.58 7.32 1.73 2.43 3.29 4.58
15 4.79 5.90 1.41 2.90 3.78 4.78
20 5.10 5.46 1.15 3.06 4.14 4.80
25 4.75 5.24 0.99 3.28 4.33 4.61
40 4.86 4.69 0.78 3.43 4.73 4.86
50 4.65 4.40 0.81 4.25 4.26 4.65

5 5 4.94 17.76 4.12 1.83 3.14 4.69
10 4.20 10.28 2.36 2.33 3.27 3.96
15 5.11 8.25 1.67 2.71 3.63 4.35
20 4.67 6.74 1.18 2.84 4.08 4.59
25 4.40 5.83 0.85 3.11 4.37 4.39
30 4.81 5.02 0.67 3.18 4.30 4.68
40 4.81 4.41 0.53 3.07 4.87 4.74
50 4.86 3.88 0.43 3.73 3.79 4.85

6 5 4.65 30.62 3.59 1.64 1.64 4.65
Continued on next page
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(n1, n2) k θ E A M C CM EM
10 5.18 18.20 1.52 2.72 2.73 4.86
15 4.61 13.38 1.02 2.38 2.83 4.48
20 4.76 9.48 0.54 2.54 3.21 4.66
25 5.24 7.63 0.36 2.60 3.70 4.93
30 5.00 6.38 0.24 2.71 3.52 4.75
40 4.77 3.92 0.13 3.28 4.05 4.72
50 4.77 3.39 0.09 2.66 4.99 4.57

7 5 5.00 54.01 4.90 1.50 2.57 3.64
10 4.08 35.27 2.71 1.93 3.73 4.06
15 4.61 20.33 1.64 2.27 3.94 4.61
20 4.63 13.57 0.82 2.43 3.84 4.62
25 4.79 9.12 0.49 2.56 3.86 4.51
30 4.97 7.21 0.31 2.58 4.18 4.77
40 4.72 3.72 0.11 2.93 4.95 4.72
50 4.64 2.93 0.07 2.83 4.65 4.64

8 5 4.61 120.54 4.61 1.10 2.79 4.61
10 4.64 60.03 3.10 2.17 3.81 4.54
15 4.88 31.20 1.36 2.44 4.13 4.49
20 4.57 20.01 0.71 2.24 4.57 4.56
25 4.92 13.16 0.42 2.23 4.92 4.59
30 4.78 7.62 0.24 2.32 4.80 4.46
40 4.63 3.55 0.07 2.74 4.94 4.10
50 4.34 2.16 0.03 3.54 4.73 4.31

(97,103) 2 5 5.01 5.08 4.89 2.85 3.52 4.51
15 4.98 4.98 4.80 3.90 4.46 4.59
25 4.95 5.06 4.92 4.09 4.89 4.70
30 4.98 5.15 4.79 4.16 4.87 4.58
45 4.84 4.94 4.75 4.64 4.66 4.62
50 4.96 5.26 4.94 4.76 4.76 4.59

3 30 5.06 5.06 4.74 3.88 4.75 4.75
35 5.15 5.23 4.84 3.95 4.92 4.97
50 4.84 5.26 4.83 4.59 4.60 4.84

4 40 4.95 5.06 4.75 3.79 4.93 4.78
45 4.96 5.06 4.81 3.66 4.64 4.81
50 5.02 5.05 4.96 3.74 4.08 4.96

5 10 5.46 1.90 1.51 2.61 3.43 4.54
15 5.09 2.91 2.61 3.18 3.54 4.68
20 5.12 3.58 3.44 3.16 4.08 4.44
35 4.82 4.40 4.12 3.61 4.59 4.25

Continued on next page
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(n1, n2) k θ E A M C CM EM
45 4.98 4.98 4.85 3.54 4.66 4.26
50 5.03 5.03 5.00 3.58 4.10 4.46

6 15 5.60 2.03 2.28 2.90 3.86 4.82
7 15 5.06 1.05 1.26 2.58 3.61 4.51

25 5.02 2.77 3.66 3.25 4.29 4.84
35 5.03 3.79 4.75 3.33 4.29 4.97
45 4.85 4.06 4.85 3.27 4.74 4.75
50 4.72 4.06 4.72 2.97 4.71 4.71
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