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Abstract
We study geodesics on surfaces in the setting of classical differential geom-
etry. We define the curvature of curves and surfaces in three-space and use
the fundamental forms of a surface to measure lengths, angles, and areas.
We follow Riemann and adopt a more abstract approach, and use tensor no-
tation to discuss Gaussian curvature, Gauss’s Theorema Egregium, geodesic
curves, and the Gauss-Bonnet theorem. Properties of geodesics are proven by
variational methods, showing the connection between straightest and short-
est for curves on surfaces. The notion of intrinsic and extrinsic properties is
highlighted throughout.

Sammendrag
Vi studerer geodetiske kurver på flater i klassisk differensialgeometri. Vi
definerer krumning til kurver og flater i rommet, og bruker en flates fun-
damentalformer til å måle lenger, vinkler og areal. Vi følger Riemann i
hans mer abstrakte tilnærming og bruker tensornotasjon i vår diskusjon
av Gauss-krumningen, Gauss’ Theorema Egregium, geodetiske kurver og
Gauss-Bonnet-teoremet. Sammenhengen mellom korteste vei på flater og de
geodetiske kurvene demonstreres ved variasjonsregning. Forskjellen mellom
intrinsiske og ekstrinsiske egenskaper står sentralt.
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Chapter 1

Introduction

What can a mathematically inclined two-dimensional being living on a sur-
face figure out about the geometry of its world? What are the intrinsic
properties of a surface? These questions lay at the centre of a major break-
ing point in history, where mathematicians and physicists questioned the
structure of space itself. We will in this thesis develop the theory of curves
and surfaces in Euclidean space with the goal of finding the tools to answer
such questions. The key one will be the ‘straight’ lines of curved space: the
geodesics.

Central to the discussion is the distinction between intrinsic and extrinsic
properties of geometric objects. An intrinsic property is something that does
not depend on how, and in which context, we represent the object, while an
extrinsic property does. Imagine that you are holding an inelastic rope. No
matter how you hold the rope in space, the length stays the same. Thus, the
length is an intrinsic property. The curvature, however, will depend on how
we hold it. Keeping it straight gives the rope zero curvature, while coiling
it up gives it a lot, showing that this indeed is an extrinsic property.

We now outline the history of geometry up to the time of Bernhard Rie-
mann. This treatment is in no way complete and any book on the history of
mathematics will do a better job, e.g. the in-depth treatment, on which this
introduction is based, found in the recent book 5000 Years of Geometry [1].

Geometry has always fascinated the mathematician. Even the earliest
mathematical texts focus on geometric problems. The mathematicians and
philosophers of ancient Greece made substantial contributions to science, in
particular with the formal concept of ‘proof’. With Euclid’s Elements came
the most influential work on geometry of all time. These books became the
basis of mathematical education all the way to the mid-20th century [2]. The
Euclidean geometry1 is based on an axiomatic system, a set of true state-
ments about geometry. These appealing postulates allowed mathematicians
to prove a wealth of propositions concerning geometric objects.

A first leap forward came when René Descartes and Pierre de Fermat
started using algebraic techniques to study geometric problems in the early
1600s. This new analytic geometry, where reference to a coordinate system
is central, allowed for new reasoning with the axioms of algebra, not those
of geometry. In this paradigm, the relationship between algebraic equations

1The term Euclidean is of course added centuries later, as it at the time was the only
form of geometry.
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and curves and surfaces was extensively studied. After the introduction
of analytic geometry and Cartesian coordinates, the approach to geometry
without any coordinates was named synthetic geometry. Both methods are
in use today.

The first systematic treatment of the curvature of surfaces came with
Euler in 1767 [3]. At the time, they knew how to describe the curvature of
a curve. They used the osculating circle, which, informally, is the circle that
best matches the curve at a point (see section 2.1). Euler points out that,
although the curvature of a sphere should be that of a great circle, using
the sphere that locally best ‘matched’ a surface is inadequate, e.g. for a
cylinder or a saddle. Using cross sections, he arrives at what today is called
the principal curvatures (see section 3.3).

The first notion of intrinsic properties came with Gauss [4], who also
unified the theory of surfaces. He studied what it meant for a curve on a
surface to be ‘straight’, and found this to be a helpful tool. We will, for
the most part, follow in his footsteps, and in particular prove his remarkable
theorem showing that the curvature of a surface is intrinsic. This has a direct
application to cartography, as it shows why it is impossible to make a flat
map of Earth that does not distort at least some distances. Cartography and
geodesy were up to modern time the main forces behind the development of
geometry.

‘That, if a straight line falling on two straight lines makes the
interior angles on the same side less than two right angles, the
two straight lines, if produced indefinitely, meet on that side on
which are the angles less than the two right angles [5].’

This is a translation of Euclid’s fifth postulate, known as the parallel pos-
tulate. The parallel postulate has intrigued many mathematicians over the
years. It was not as self-evident as the rest of Euclid’s postulates, and many
tried to prove it from the other four. A geometry where the fifth postulate
does not hold is today known as a non-Euclidean geometry. The geometries
of the general surfaces of Gauss and his student Riemann are such examples.
As are the geometries of János Bolyai2 and Lobachevsky, who, at roughly
the same time, also developed new geometries. More details on the geometry
of Riemann will follow in chapter 6. The development of geometry has since
then exploded, with the most popular application being the sub-Riemmanian
geometry of Einstein’s general relativity.

The treatment presented here is close to the classical treatment of differ-
ential geometry, so for a reader in the know; we do not talk about the shape
operator, manifolds nor connections. We will, however, follow the works of
Gauss, and try to answer questions such as: How can we describe curves on
a surface? What are the straight lines of curved space? What can be found

2The history of father and son Bolyai’s dispute with Gauss is worth seeking out.
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out by intrinsic reasoning only? Can a two-dimensional being living on a
surface figure out the geometry of its world?

Chapter 2 lay out the elementary theory of curves and surfaces in three-
space. We define what we mean by a curve, and a curve’s arc length, speed,
curvature and torsion, and prove the fundamental theorem of space curves.
Then, we take a modern definition of a smooth surface by surface patches,
homeomorphisms, and transition maps. Describing curves on surfaces then
helps us define the intuitive version of a tangent space and normals to a
surface. The section ends with the first fundamental form, a tool that allows
us to measure lengths, angles and areas.

Chapter 3 is dedicated to the description of the curvature of surfaces.
After introducing tensor-notation, we connect the geometric structure of a
surface to the curves on the surface. We define the second fundamental form
and the different curvatures of a surface. Finally, the historically significant
Theorema Egregium is presented.

Chapter 4 concerns the geodesics on a surface, i.e. the curves that do
not bend relative to the surface. We show that the Christoffel symbols used
in the proof of Theorema Egregium depend only on the first fundamental
form, completing the proof of the Theorema Egregium. Then we describe
the geodesic curvature and show the geodesic equations, and connect the
geodesic equations to the length-minimising curves on a surface. The section
ends by defining geodesic coordinate systems and proving the Gauss-Bonnet
theorem.

Chapter 5 is a worked example trying to show that, even for an elemen-
tary surface, finding all geodesics is typically hard. The surface chosen is
the catenoid, a surface of revolution that also serves as the prototype of a
minimal surface.

Chapter 6 is devoted to bringing the main results of section 3 and 4
into the setting of Riemannian geometry. Here, we discuss the impact of
Riemann’s work and explain how his abstractions sparked the modern era
of geometry.

All vector graphics are made with the free editor Inkscape [6], while the
surface plots are generated in Matlab [7]. No code is included.
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Chapter 2

Curves and Surfaces

This introductory chapter will introduce and investigate real curves and
smooth surfaces in three-dimensional Euclidean space. The concepts pre-
sented here are elementary, but integral to formulating and understanding
the straight lines of curved space: the geodesics. It is an attempt to keep
the discussion short, while still being self-contained. For a full treatment
any introductory book on differential geometry will do. For a first reading
I would recommend the book Elementary Differential Geometry by A. N.
Pressley [8]. The notation used is an adoption of the notation found in that
book, in combination with that found in Differential Geometry and Rela-
tivity Theory by R. L. Faber [9] and Differential Geometry by E. Kreyszig
[10].

2.1 Curves in R3

In this section we introduce the terminology of space curves, derive the
Serret-Frenet formulas and prove the fundamental theorem of space curves.
The basic idea of a curve is shown in Figure 2.1.

Curves in R3 may be seen as paths traced out by a moving point. If α(t)
is the position vector at time t, the curve is described by the vector-valued
function α of the scalar parameter t.

Definition 1 (Curve). A smooth parameterised curve in R3 is a map
α : (a, b)→ R3

α(t) = (x(t), y(t), z(t)) t ∈ (a, b) (2.1.1)

where −∞ ≤ a ≤ b ≤ ∞ and each component is a smooth function of t.

In this text, all curves are assumed smooth in the sense that the coordinate
functions are sufficiently differentiable on the whole domain. The reason for
this is to avoid having details of differentiability obstruct the main discussion.
Further, all curves are assumed regular, i.e. its derivative never vanishes.
Or more intuitively, the moving point never come to a complete stop or
backtracks.

Definition 2 (Velocity vector). The velocity vector dα/dt = α′ is tangent to
the curve, points in the direction of increasing t, and is given by

α′(t) = (x′(t), y′(t), z′(t)).
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(a) (b)

Figure 2.1: The figure depicts two curves in R3. The small arrows indicate
the direction of increasing t. (b) is an example of a closed curve, i.e. a curve
for which there is a constant c > 0 such that α(t+ c) = α(t) for all t.

Definition 3 (Arc length). The arc length s = s(t) of a curve α measures the
length of the curve from initial point α(a) to the point α(t) and is given by

s(t) =
∫ t

a

‖α′(u)‖du, (2.1.2)

where ‖ · ‖ denotes the standard Euclidean norm.

With s being the arc length,

ds

dt
= d

dt

∫ t

a

‖α′(u)‖du = ‖α′(t)‖

by the fundamental theorem of calculus, and so ds/dt can be seen as the
speed of the curve at α(t).

Definition 4 (Unit-speed curve). If α is a curve, its speed at α(t) is ‖α′(t)‖
and α is a unit-speed curve if α′(t) is a unit vector for all t ∈ (a, b).

One can obviously have different parameterisations of the same curve. We
therefore say that two smooth curves α1 : I1 → R3 and α2 : I2 → R3 are
equivalent if there is a smooth bijective map ϕ : I2 → I1 whose inverse
ϕ−1 : I1 → I2 is also smooth and α2(t) = α1(ϕ(t)) for all t. If such a map
exist, α2 is a reparameterisation of α1. The most useful choice of parameter
is t = s where s is arc length. This gives ds/dt = 1 so that α(s) is a
unit-speed curve. We call α′(s) the unit tangent vector and define

t(s) = α′(s). (2.1.3)

The rate of change of this vector of constant length is a measure of the
curvature of α. The faster t turns, the larger the components of t′ are, and
thus we take the following definition.
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Definition 5 (Curvature). The curvature of α at α(s) is the length of t′(s).
We denote it by k(s) :

k(s) = ‖t′(s)‖ = ‖α′′(s)‖.

Another way of thinking is that the curvature measures how much a
curve differs from being a straight line in R3, since a curve being a straight
line has vanishing curvature.

Lemma 1. For a unit-speed curve α : (a, b) → R3 the following three condi-
tions are equivalent:

(i) k ≡ 0,

(ii) α′′ ≡ 0,

(iii) α is a straight line segment.

Proof. By the definition of k we have that (i) ⇔ (ii). Let us show that
(ii)⇔ (iii). Assuming α′′ ≡ 0, integration yields α′(s) = u where ‖u‖ = 1
and then α(s) = us+ v for the vectors u,v ∈ R3. For s ∈ (a, b) this is
a unit-speed parameterisation of a straight line segment. Conversely, any
unit-speed straight line can be given on the form α(s) = us + v for some
u,v ∈ R3 where ‖u‖ = 1. Differentiation gives α′′ ≡ 0. �

The unit vector in the direction of t′(s) = α′′(s) is called the principal
normal vector and is denoted by n(s). Hence we have

n(s) = t′(s)
‖t′(s)‖ = t′(s)

k(s)

and
t′(s) = k(s)n(s).

Where k(s) 6= 0, the curve may, at the point α(s), be approximated by
the circle of radius 1/k(s) that is tangent to the curve and lies in the plane
spanned by t(s) and n(s). This circle is called the osculating circle, and it
shares curvature, tangent vector and principal normal vector with the curve
at α(s). Figure 2.2 shows the idea. This circle is said to lay in the osculating
plane1. The unit normal to this plane is called the binormal vector and is
given by the cross product

b(s) = t(s)× n(s).

The rate of change in this vector-valued function, i.e. b′(s), gives information
on how much the osculating plane turns and tilts. We find, omitting (s) for
readability,

b′ = (t× n)′ = t′ × n + t× n′ = t× n′,
1The term osculating plane was first used by Tinseau in 1780, according to E. Kreysizg

on page 33 of his book Differential Geometry [10]
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where the last equality is due to t′ = kn and n×n = 0. This shows that b′
is orthogonal to both t and n′ and so it must be a multiple of n.

Definition 6 (Torsion). We define the torsion ofα to be the function τ = τ(s)
defined by the equation

b′ = −τn.

Figure 2.2: A curve living in the yz-plane, together with its osculating circle,
unit tangent vector t, principal normal vector n, and binormal vector b at
a point.

Example 1 (A circular helix). A circular helix can be described by the curve

β(t) = (a cos t, a sin t, bt), t ∈ R,

where a > 0 and b are constants. Let us compute a few of the quantities
defined above. First let us find the speed ‖β′(t)‖, and to this end compute

β′(t) = (−a sin t, a cos t, b)

and
‖β′(t)‖ =

(
(−a sin t)2 + (a cos t)2 + b2

)1/2 =
√
a2 + b2,

showing that the speed is constant. One turn of the helix, e.g. corresponding
to t going from 0 to 2π, is

L =
∫ 2π

0
‖β′(t)‖dt = 2π

√
a2 + b2.

Let us reparameterise in terms of arc length. Take s = t
√
a2 + b2 so that

ds/dt = ‖β′(t)‖. This gives the curve

α(s) =
(
a cos s√

a2 + b2
, a sin s√

a2 + b2
,

bs√
a2 + b2

)
and the unit tangent vector

t(s) = α′(s) = 1√
a2 + b2

(
−a sin s√

a2 + b2
, a cos s√

a2 + b2
, b

)
.
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Taking the derivative

t′(s) = k(s)n(s) = a

a2 + b2

(
− cos s√

a2 + b2
,− sin s√

a2 + b2
, 0
)

reveals the curvature
k(s) = a

a2 + b2

and principle normal vector

n(s) =
(
− cos s√

a2 + b2
,− sin s√

a2 + b2
, 0
)
.

In terms of t this vector is n(t) = −(cos t, sin t, 0) and so the principle normal
vector points inwards from the curve to the z-axis. To find the torsion, we
first compute the binormal vector

b = t× n = 1√
a2 + b2

(
b sin s√

a2 + b2
,−b cos s√

a2 + b2
, a

)
and its derivative

b′ = b

a2 + b2

(
cos s√

a2 + b2
, sin s√

a2 + b2
, 0
)

= τn.

This gives the torsion
τ = b

a2 + b2
.

The constant torsion for the circular helix is due to the fact that, for a
particle following the curve, the osculating plane turns at a constant rate.♣

The choice of parametric representation of a curve is of minor interest,
but that does not indicate that the point set traced out is what defines the
curve. Consider the two examples taken from Section 7 in [10] and shown in
Figure 2.3.

(a) (b)

Figure 2.3: Two point sets whose geometric properties depend on the order
of traversal.
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In 2.3a we see that according to our previous definition, we would not
get a smooth curve if we traverse the point set in the order ABDCBE.
The reason for this being that at the point B the first derivative of the
vector function does not exist. In 2.3b consider the two orders ABCDBE
and ABDCBE. Here, the tangent is continuous for both orders, but the
curvature is only continuous for the order ABDCBE. This example shows
that the geometric properties may be different for what appears to be the
same point set. Something else must be the defining factor.

Theorem 1 (Serret-Frenet formulas). Let α : (a, b) → R3 be a unit-speed
curve in R3 with k(s) 6= 0 for all s ∈ (a, b). Then the following system of
equations hold:

t′ = kn
n′ = −kt + τb
b′ = −τn

(2.1.4)

Proof. The first and last relations are already shown, but it remains to find
n′ expressed in terms of the basis {t,n,b}. This triple form a right-handed
orthonormal basis for R3 and so we have

t× n = b, n× b = t, and b× t = n

from which we find, using the anticommutative property of the cross product
and the product rule of differentiation,

n′ = (b× t)′ = b′ × t + b× t′ = −τ(n× t) + k(b× n) = τb− kt. �

The equations (2.1.4) are called the Serret-Frenet equations and the orthog-
onal system {t,n,b} the Frenet frame.

We now show in two parts what is known as the Fundamental Theorem
of Space Curves. Its essence is that a space curve is determined up to a
Euclidean motion of R3 by its curvature and torsion.

Definition 7 (Euclidean motion). Let y ∈ R3. A Euclidean motion of R3 is
an affine map F : R3 → R3 of the form

F (x) = Ax + y

for all x ∈ R3 where A is an orthogonal transformation.

Theorem 2 (Fundamental theorem, uniqueness). Let α1 and α2 be two unit-
speed curves in R3 defined on the same interval (a, b). Assume that they have
the same curvature k(s) > 0 and torsion τ(s) for all s ∈ (a, b). Then, there
is a Euclidean motion F that maps α1 onto α2.

Proof. Let {ti,ni,bi} be the Frenet frame of αi. These are well-defined
since we have non-zero curvature. Let s0 be some fixed value of s. Since
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{ti(s0),ni(s0),bi(s0)} (i = 1, 2) are two right-handed orthonormal bases for
R3 there is naturally a rotation A that takes t1(s0),n1(s0) and b1(s0) to
t2(s0),n2(s0) and b2(s0), respectively. There is also a translation that takes
α1(s0) to α2(s0). It is therefore no problem finding a Euclidean motion F
such that

F (α1(s0)) = α2(s0),
A(t1(s0)) = t2(s0), A(n1(s0)) = n2(s0), A(b1(s0)) = b2(s0).

(2.1.5)

Consider now the real valued function

f(s) = ‖(A◦t1)(s)−t2(s)‖2 +‖(A◦n1)(s)−n2(s)‖2 +‖(A◦b1)(s)−b2(s)‖2

for s ∈ (a, b). By construction f(s0) = 0 and so if we can show that f ′(s) = 0
for all s we can conclude that f vanishes, i.e. (2.1.5) holds, for all s. Let us
compute f ′(s):

f ′(s) = 2 ((A ◦ t1)′(s)− t′2(s)) · ((A ◦ t1)(s)− t2(s))
+ 2 ((A ◦ n1)′(s)− n′2(s)) · ((A ◦ n1)(s)− n2(s))
+ 2 ((A ◦ b1)′(s)− b′2(s)) · ((A ◦ b1)(s)− b2(s))

=− 2 ((A ◦ t1)′(s) · t2(s) + (A ◦ t1)(s) · t′2(s))
− 2 ((A ◦ n1)′(s) · n2(s) + (A ◦ n1)(s) · n′2(s))
− 2 ((A ◦ b1)′(s) · b2(s) + (A ◦ b1)(s) · b′2(s)) .

We can now use that (A ◦ t1)′(s) = (A ◦ t′1)(s) and similarly for ni and bi
in combination with the Serret-Frenet formulas (2.1.4) to find (omitting (s)
for readability)

f ′(s) =− 2 [k1An1 · t2 +At1 · n2

+A(−k1t1 + τ1b1) · n2 +An1 · (−k2t2 + τ2b2)
+ A(−τ1n1) · b2 +Ab1 · (−τ2n2)] .

By assumption k1(s) = k2(s) and τ1(s) = τ2(s) and so the expression in the
brackets cancels to 0. Hence (F ◦α1)′(s) = (A◦ t1)(s) = α′2(s) for all s, and
so there must exist some y ∈ R3 such that

(F ◦α1)(s) = α2(s) + y

for all s. By the construction of F we have y = 0, and so the Euclidean
motion F maps α1 onto α2. �

Theorem 3 (Fundamental theorem, existence). Let k : (a, b)→ R and
τ : (a, b)→ R be differential functions, and k > 0 on the whole domain.
Then, there exists a unit-speed curve α : (a, b) → R3 whose curvature is k
and torsion is τ . For some s0 ∈ (a, b) the value α(s0) can be prescribed
arbitrarily, and so can t(s0) and n(s0) as long as they are of unit length and
orthogonal.
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Proof. Let us set up a linear system with initial conditions so that they match
the Serret-Frenet formulas (2.1.4). Consider therefore the following system
of ODEs

α′ = t
t′ = kn
n′ = −kt + τb
b′ = −τn

which correspond to 12 differential equations, together with some prescribed
initial condition

α(s0) = α0 = (α1, α2, α3)0

t(s0) = t0 = (t1, t2, t3)0

n(s0) = n0 = (n1, n2, n3)0

b(s0) = b0 = t0 × n0 = (t2n3 − t3n2, t3n1 − t1n3, t1n2 − t2n1)0

where we require that ‖t0‖ = ‖n0‖ = 1 and t0 · n0 = 0. The subscript of
zero indicates that the values are constant. The theory of ODEs2 shows us
that such a system has a solution. Hence, the functions k and τ together
with the prescribed initial conditions define a unit-speed curve with k and
τ as curvature and torsion. �

2.2 Smooth Surfaces
The goal of this section is to precisely define what we mean by a surface.
Surfaces are the two-dimensional analogues of curves. Intuitively, a surface
should resemble a deformed plane when considering any sufficiently small
piece of it. Globally, however, surfaces may be more complicated. See for
instance the two examples at the end of this chapter (Figure 2.6 and 2.7).

As touched upon in the introduction we can either study surfaces ex-
trinsically or intrinsically. The extrinsic properties relate to the embedding
in Euclidean space, while the intrinsic properties belong to the geometric
object itself and will not change depending on how we represent it. We will
consider both as there are some fascinating and surprising results as to what
we can deduce with only intrinsic reasoning. Most of the reasoning will be
carried out by doing measurements along curves on the surface. We begin
with some definitions.

Definition 8 (Homeomorphism). The map f : A→ B is called a homeomor-
phism if it is continuous and bijective and that its inverse map f−1 : B → A
is also continuous. If there is a homeomorphism between two spaces, they
are said to be homeomorphic.

2See for instance Appendix A in Nonlinear Ordinary Differential Equations [11] or
Appendix I.1 in An Introduction to Differential Geometry [12].
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Definition 9 (Surface). We call M ⊂ R3 a surface if for every point x ∈ M
there is an open set D ⊂ R2 and an open set W ⊂ R3 containing x such
that D and M ∩W are homeomorphic.

With this definition, a surface M is equipped with a collection of home-
omorphisms

X : D →M ∩W,

which we will call surface patches.3 A collection of surface patches covering
the surface is, quite fittingly, called the atlas of M . To avoid that different
atlases could define the same surface; one can consider the maximal atlas,
i.e. the collection of all allowable surface patches. Such distinctions are,
however, not the most important for the applications here, and we instead
show the difference between a surface and a surface patch with a classic
example.

Figure 2.4: The standard patch X for a sphere with longitude u and latitude
v.

Example 2 (The sphere). The sphere of radius R > 0 is a surface. With
coordinates as in Figure 2.4 the natural parameterisation would be

X(u, v) = (R cosu cos v,R sin u cos v,R sin v).

To cover the whole sphere one could take u ∈ [−π, π] and v ∈ [−π/2, π/2],
but this does not give an open subset of R2 to fulfil our definition of a surface
patch. Taking the largest open set possible

D′ =
{

(u, v) ∈ R2| − π < u < π and − π

2 < v <
π

2

}
leaves half a great circle running down the back of Figure 2.4. This means
that X : D′ → R3 only cover a patch of the sphere. We can define a new

3The terms chart and local surface are also in use.
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patch by rotating the first one to cover the missing great circle. These two
together will then form an atlas for the sphere. ♣

Figure 2.5: Two surface patches X and X̃ with overlapping images.

As Example 2 shows, a point on a surface will generally lie in the image of
more than one surface patch. Let X : D →M ∩W and X̃ : D̃ →M ∩ W̃ be
as in Figure 2.5, and let x ∈M ∩W ∩ W̃ . Taking the inverse mapping of the
overlapping region, X−1(M ∩W ∩ W̃ ), gives an open set E ⊂ D. Similarly
for X̃−1 gives an open set Ẽ ⊂ D̃. We can now define the transition map
from X to X̃ to be the composite mapping X−1 ◦ X̃ : Ẽ → E. If we denote
the map by Φ then for all (ũ, ṽ) ∈ Ẽ we have X̃(ũ, ṽ) = X (Φ(ũ, ṽ)) .

We require some structure of the surface to be able to discuss patches
and curves on the surface. Let D be an open subset of Rm. We say that
the map f : D → Rn is of class Cr if all the partial derivatives of order r
(including mixed) of all components exist and are continuous. The map is
said to be smooth (C∞) if each component has continuous partial derivatives
of all orders. Our focus is the case m = 2 and n = 3, i.e. R2 → R3, and to
highlight the notation in use we write

X(u, v) = (x(u, v), y(u, v), z(u, v)),

∂X
∂u

(u, v) =
(
∂x

∂u
,
∂y

∂u
,
∂z

∂u

)
= Xu.

Definition 10 (Regular surface patch). A surface patch X : D → R3 is reg-
ular if it is a smooth map and Xu and Xv are linearly independent for all
(u, v) ∈ D.

Remark. This condition is equivalent to Xu ×Xv 6= 0 for all (u, v) ∈ D and
that the Jacobian matrix of the map has rank 2 for all (u, v) ∈ D.
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We are now in a position to define the surfaces that we will study in this
thesis. From now on the term ‘surface’ will be used meaning smooth surface.

Definition 11 (Smooth surface). A smooth surface is a surface whose atlas
consists of regular surface patches.

2.3 The Tangent Space
To study our surfaces we look at smooth curves that live on the surface. As
for space curves we can imagine the path of a moving point, but now forcing
the point to stay on the surface. If α : (a, b)→ R3 is contained in the image
of the surface patch X : D → R3, then there is a function (a, b) → D given
by t 7→ (u(t), v(t)) such that

α(t) = X(u(t), v(t)). (2.3.1)

So, if X is a surface patch of a surface, α given by (2.3.1) is a curve on that
surface.

With curves on a surface we are able to define tangent vectors and the
tangent space.

Definition 12 (Tangent vector). Let M be a surface. A vector v is called a
tangent vector to M at P if there exists a curve on M which passes through
P with velocity vector v at P .

Definition 13 (Tangent space). The tangent space of a surface M at P de-
noted TPM is the set of all tangent vectors to M at P .

Remark. This definition, via velocities of curves, is the most intuitive defi-
nition of the tangent space and is sufficient for our use. Other definitions,
via derivations or the cotangent space exist, but find their uses in a more
abstract setting.4

Proposition 1. Let X : D → R3 be a surface patch of the surface M and
let P be a point on the image of the patch. Then, the tangent space to the
surfaceM at P is the subspace of R3 spanned by Xu and Xv. Here, (u, v) are
coordinates in D and the derivatives are evaluated at the point (u0, v0) ∈ D
such that X(u0, v0) = P

Proof. For a smooth curve of the form (2.3.1) we have by the chain rule

d

dt
α = α′ = Xuu

′ + Xvv
′, (2.3.2)

4See section 2.3 in Modern Differential Geometry for Physicists [13] for a full discus-
sion.
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and since α′ is tangent to the curve it is tangent to the surface. So any tan-
gent vector at the point P = X(u0, v0) is a linear combination of Xu(u0, v0)
and Xv(u0, v0).

Conversely, any vector in the subspace of R3 spanned by Xu and Xv has
the form c1Xu + c2Xv for some real coefficients c1 and c2. Since D is open,
we can always choose t such that (u0 +c1t, v0 +c2t) ∈ D and hence the curve

α(t) = X(u0 + c1t, v0 + c2t)

is smooth on M , and for t = 0 we get α′ = aXu + bXv. This shows that
any vector in the span of Xu(u0, v0) and Xv(u0, v0) is the tangent vector of
some some curve on M passing through P . �

2.4 The Surface Normal and Orientability

The ‘orientation’ of a space curve (2.1.1) is straight forward; it goes from
α(a) to α(b), i.e. at each point in the direction of the unit tangent t. For
surfaces, we are left with a choice. Thinking of a surface, e.g. the sheet
of paper you are looking at, it is easy to believe that it has two sides. For
the paper the sides are ‘up’ and ‘down’, and for a sphere it is ‘in’ and ‘out’.
Such surfaces are said to be orientable, but a surface does not have to be
orientable. We now formalise this.

Since we consider regular surfaces, Xu and Xv are linearly independent
for the surface patch X and form a plane subspace of R3. This gives us the
opportunity to define a normal to this plane at a point P in the orthogonal
complement to the tangent space. Choosing

NX(u, v) = Xu ×Xv

‖Xu ×Xv‖
(u, v) (2.4.1)

and evaluating at the point P = X(u0, v0) gives a unit normal to the surface
M at P for the patch X. There is, of course, another unit vector that is
orthogonal to both Xu and Xv, i.e. the vector of opposite sign of NX.

Proposition 2. The unit normal NX at a point P depends on the choice of
surface patch X covering the point.

Proof. Let X : D → M ∩W and X̃ : D̃ → M ∩ W̃ be two surface patches
for the surface M covering the point P ∈ M ∩W ∩ W̃ . Let Φ denote the
transition map from X to X̃, so that (u, v) = Φ(ũ, ṽ) where (u, v) ∈ D and
(ũ, ṽ) ∈ D̃. The mapping Φ has Jacobian matrix

J(Φ) =
[
∂u
∂ũ

∂u
∂ṽ

∂v
∂ũ

∂v
∂ṽ

]
.
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We want to express NX̃ in terms of NX and therefore look at X̃ũ× X̃ṽ. The
chain rule gives

X̃ũ = ∂u

∂ũ
Xu + ∂v

∂ũ
Xv,

X̃ṽ = ∂u

∂ṽ
Xu + ∂v

∂ṽ
Xv.

Using that the cross product is anticommutative and distributive over addi-
tion it follows that

X̃ũ × X̃ũ =
(
∂u

∂ũ
Xu + ∂v

∂ũ
Xv

)
×
(
∂u

∂ṽ
Xu + ∂v

∂ṽ
Xv

)
=∂u

∂ũ

∂v

∂ṽ
(Xu ×Xv) + ∂v

∂ũ

∂u

∂ṽ
(Xv ×Xu)

=
(
∂u

∂ũ

∂v

∂ṽ
− ∂v

∂ũ

∂u

∂ṽ

)
(Xu ×Xv)

= det(J(Φ)) (Xu ×Xv) .

From (2.4.1) we find

NX̃ = X̃ũ × X̃ũ

‖X̃ũ × X̃ũ‖
= det(J(Φ)) (Xu ×Xv)
|det(J(Φ))| ‖Xu ×Xv‖

= sign
(

det
(
J(Φ)

))
NX.

This shows that two different surface patches may have different normal
vectors, depending on the sign of the Jacobian of the transition map. �

We now define the term orientable surface and give an example.

Definition 14 (Orientable surface). Let M be a smooth surface and let Φ be
any transition map between two patches in the atlas of M. The surface is
orientable if det(J(Φ)) > 0 where Φ is defined.
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Example 3 (Möbius strip). The Möbius strip is the standard example of a
non-orientable surface, as it is clear that it only has one ‘side’. Following a
path around the surface leaves you at the same point, but with a surface nor-
mal in the opposite direction. Figure 2.6 shows a Möbius strip parameterised
by the patch X(u, v) = (x(u, v), y(u, v), z(u, v)) for (u, v) ∈ (0, 2π)× (−1, 1),
where

x(u, v) = v

2 sin
(u

2

)
,

y(u, v) =
(

1 + v

2 cos
(u

2

))
cosu,

z(u, v) =
(

1 + v

2 cos
(u

2

))
sin u.

(2.4.2)
♣

Remark. From now on we write NX as just N since there is usually no
confusion.

Figure 2.6: The non-orientable Möbius strip from Example 3. The figure is
generated in Matlab [7] by the parameterisation (2.4.2).
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To conclude this chapter we include another surface plot. It is of an
orientable surface that looks like a seashell.

Example 4 (Seashell surface). The surface is given for (u, v) ∈ (0, 6π) ×
(0, 2π) by the patch X(u, v) = (x, y, z), where

x(u, v) = 2
[
1− eu/(6π)

]
cosu cos2(v/2),

y(u, v) = 2
[
eu/(6π) − 1

]
sin u cos2(v/2),

z(u, v) = 1− eu/(3π) − sin v + eu/(6π) sin v.

(2.4.3)
♣

Figure 2.7: The beautiful seashell surface from Example 4. The figure is
generated in Matlab [7] by the parameterisation (2.4.3).

2.5 The First Fundamental Form
Now that we have a notion of a surface, it is time to start doing mea-
surements. In Euclidean space, measuring distances is easy: We use the
Pythagorean Theorem to find the distance between two points. This ap-
proach does, however, not work if you want to measure distances on a sur-
face. Using a measuring stick to measure the length between two points on
a football seems like a bad strategy. We need something that curves along
the surface.
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Let us therefore consider the curve α on the surface patch X. From the
definition of arc length we have that ds/dt = ‖α′‖ which we can combine
with (2.3.2) to get(

ds

dt

)2
= ‖α′‖2

= (Xuu
′ + Xvv

′) · (Xuu
′ + Xvv

′)
= (Xu ·Xu)(u′)2 + 2(Xu ·Xv)u′v′ + (Xv ·Xv)(v′)2

= E

(
du

dt

)2
+ 2F

(
du

dt

dv

dt

)
+G

(
dv

dt

)2
.

Here we have introduced, in the notation of Gauss5,

E = Xu ·Xu, F = Xu ·Xv and G = Xv ·Xv. (2.5.1)

With this in place, we can find the length, L, of a curve α : (a, b) → R3

where α(t) = X(u(t), v(t)) by

L =
∫ b

a

√
E

(
du

dt

)2
+ 2F

(
du

dt

dv

dt

)
+G

(
dv

dt

)2
dt.

Definition 15 (First fundamental form). The first fundamental form is the
quadratic from given by

ds2 = Edu2 + 2Fdudv +Gdv2,

where E,F and G are functions given by (2.5.1).

The first fundamental form can be thought of as the generalisation of the
infinitesimal Pythagorean Theorem ds2 = dx2 + dy2 [14]. Also, taking the
square root of ds2 gives the infinitesimal arc length ds. Let us now show two
well-known metrics.

Example 5 (Polar coordinates). It is well known that the polar coordinates
r, θ for the Euclidean plane relates to the Cartesian coordinates x, y by the
formulas

x = r cos θ, and y = r sin θ.
Consider therefore the mapping

X(r, θ) = (r cos θ, r sin θ, 0).

This gives

Xr =(cos θ, sin θ, 0),
Xθ =(−r sin θ, r cos θ, 0)

5See for example Gauss’s own paper ‘Disquisitiones generales circa superficies curvas’
from 1827 [4].
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and for the coefficients of the first fundamental form:

E = Xr ·Xr = cos2 θ + sin2 θ = 1,
F = Xr ·Xθ = −r cos θ sin θ + r cos θ sin θ = 0,
G = Xθ ·Xθ = r2 cos2 θ + r2 sin2 θ = r2.

We thus see that the first fundamental form is the well known formula

ds2 = dr2 + r2dθ2. ♣

Example 6 (The sphere). ForR a positive constant, consider as in Example 2
the patch

X(u, v) = (R cosu cos v,R sin u cos v,R sin v),
where we take u ∈ (−π, π) and v ∈ (−π/2, π/2). We want to compute the
first fundamental form, and so with the formulas

Xu = (−R sin u cos v,R cosu cos v, 0)
Xv = (−R cosu sin v,−R sin u sin v,R cos v)

we compute

E = Xu ·Xu = R2 sin2 u cos2 v +R2 cos2 u cos2 v = R2 cos2 v

F = Xu ·Xv = R2 sin u sin v cosu cos v −R2 sin u sin v cosu cos v = 0
E = Xv ·Xv = R2 cos2 u sin2 v +R2 sin2 u sin2 v +R2 cos2 v

= R2 (sin2 v(cos2 u+ sin2 u) + cos2 v
)

= R2

and find the metric for the sphere to be

ds2 = R2 cos2 vdu2 +R2dv2. ♣

Let us look at what happens to a small area element, dA, on a given patch
X. The area spanned by the two infinitesimal vectors Xudu and Xvdv are
given by the cross product dA = ‖Xudu ×Xvdv‖ = ‖Xu ×Xv‖dudv. This
suggests the following definition.

Definition 16 (Surface area). Let X : D → R3 be a smooth surface patch
and let R be a compact subset of X(D). The area AX(R) of the region R is
then given by

AX(R) =
∫∫

X−1(R)
‖Xu ×Xv‖dudv. (2.5.2)

Remark. The expression dudv in (2.5.2) has a different meaning than that
of the first fundamental form. While the dudv in the first fundamental form
comes from the symmetric product Xu ·Xv, the one for dA is determined by
an antisymmetric product and should be written du× dv or with the wedge
(exterior product) du ∧ dv.
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Theorem 4. The first fundamental form enables us to measure lengths, an-
gles, and areas in a surface.

Proof. For lengths and angles, it is sufficient to show that the first fundamen-
tal form determines an inner product on the tangent space. Let us model it
on the dot product of R3. Let v = aXu + bXv and w = cXu + dXv be two
arbitrary tangent vectors at a point P of the surface M . Here a, b, c, d are
real numbers. The dot product of two such vectors are:

v ·w = (aXu + bXv) · (cXu + dXv)
= Eac+ F (ad+ bc) +Gbd

=
[
a b

] [E F
F G

] [
c
d

]
.

Since we, for a given point and patch, can represent the vectors v and w by
just v = (a, b) and w = (c, d) we can readily define the inner product

〈v, w〉P = vT
[
E F
F G

]
w.

This shows that the matrix [E F
F G ] determines an inner product, and hence

lengths and angles, of tangent vectors.
For the area we prove that

‖Xu ×Xv‖ = (EG− F 2)1/2, (2.5.3)

as this shows that the area in (2.5.2) is given by the coefficients of the first
fundamental form. From vector calculus we know

‖Xu ×Xv‖ = ‖Xu‖‖Xv‖ sin θ,
Xu ·Xv = ‖Xu‖‖Xv‖ cos θ,

so adding the squares of these identities gives

‖Xu ×Xv‖2 + (Xu ·Xv)2 = ‖Xu‖2‖Xv‖2(sin2 θ + cos2 θ) = ‖Xu‖2‖Xv‖2.

Rearranging shows the result

‖Xu ×Xv‖2 = (Xu ·Xv) (Xv ·Xv)− (Xu ·Xv)2

= EG− F 2.

Since the area of a surface patch is unchanged under a reparameterisation6, it
is clear that one can divide a surface, M , into pieces that each are contained
in a single surface patch, then use (2.5.2) to calculate the area of each piece
and finally add each contribution to find the total area of M . �

6We refer to Proposition 5.3 in [8] for a proof.
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Chapter 3

Curvature of Surfaces

In this section, we explore the curvature of a surface from an extrinsic view-
point, before concluding that one type of curvature is intrinsic. Describing
the curvature of a space curve was intuitive. By Lemma 1 the curvature at
a point measure of how much a curve differs from being a straight line at
that point. For a surface, we measure how much a small patch fails at being
a plane. We also use curves confined to the surface to define the Gaussian
and mean curvature.

3.1 Tensor Notation and the Einstein Sum-
mation Convention

Before continuing the discussion, we change the notation slightly. The rea-
sons for changing notation is to save space and also have a more robust
notation that easily extends to a higher-dimensional setting. Instead of us-
ing local coordinates u and v we instead write u1 and u2, and also define

gij = Xi ·Xj

so that E = g11, F = g12 = g21 and G = g22. Further, the determinant of
the matrix with coefficients gij will appear in some formulas and is given the
symbol

g = det(gij).

One advantage of this formulation is that we can adopt the Einstein
summation convention and omit the summation symbol in any sum where
the index of summation appears as both a subscript and a superscript. In
effect, we write

gijdu
iduj instead of

∑
i,j

gijdu
iduj .

A downside could have been writing the derivative as uj ′, but we combat
this using dot-notation, u̇j when possible.

The inner product of two tangent vectors v = viXi and w = wiXi at P
on the surface M , i.e. v,w ∈ TPM , is now

〈v, w〉P = v ·w =
∑
i,j

viwjXi ·Xj = gijv
iwj .
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We also introduce the notation gij for the element i, j of the inverse of the
matrix (gij)

(gij) = (gij)−1

so that for the two-dimensional case

(gij) = 1
g

[
g22 −g12
−g21 g11

]
.

3.2 The Second Fundamental Form
Let us now take an external view and try to relate the curvature of a curve
on a surface with the geometry of the surface itself. Consider the smooth
curve α(s) = X(u(s), v(s)), where s is arc length. We defined the curvature
of a space curve to be the length of α′′ and therefore decompose this vector
into two parts,

α′′ = α′′tan +α′′nor,

one tangent and one normal to the surface. For this section, denote d/ds
with a dot · to simplify notation.

With the summation convention in place, the chain rule gives

α̇ = u̇iXi

and
d

ds
α̇ = α̈ = üiXi + u̇i

d

ds
Xi

= ükXk + u̇iu̇jXij . (3.2.1)

The acceleration tangent to the surface will be spanned by the tangent
vectors X1 and X2 while the acceleration normal to the surface will be
a scalar of the unit normal N given by (2.4.1). Hence, we split Xij into
components with these as basis vectors and define functions Γkij and bij by
the Gauss formulas

Xij = ΓkijXk + bijN. (3.2.2)
Substituting (3.2.2) into (3.2.1) gives

α̈ = (ük + Γkij u̇iv̇j)Xk + (bij u̇iu̇j)N (3.2.3)

and so

α̈tan = (ük + Γkij u̇iv̇j)Xk, (3.2.4)
α̈nor = (bij u̇iu̇j)N. (3.2.5)

Notice that taking the dot product of Xij , defined in (3.2.2), and the surface
normal, N, gives

bij = Xij ·N (3.2.6)
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since N is orthogonal to X1 and X2. The values of bij are independent of
the curve under consideration and the quadratic form bijdu

iduj is called the
second fundamental form.

Definition 17 (The second fundamental form). The second fundamental form
of a surface patch is the quadratic form given by

b11(du1)2 + 2b12du
1du2 + b22(du2)2,

where bij is given by (3.2.6).

Let us show a geometric interpretation of this formula. To do so, consider
first the unit-speed curve α of the parameter s. When s increases to s+ ∆s
the curve moves off the tangent at α(s) by (α(s + ∆s) − α(s)) · n where
n is the principle normal vector. For sufficiently small ∆s the quadratic
approximation

α(s+ ∆s) ≈ α(s) + α̇(s)∆s+ 1
2 α̈(s)(∆s)2

is decent by Taylor’s theorem. Now, since α̇ · n = 0 and α̈ · n = kn · n = k
for unit-speed curves, we find

(α(s+ ∆s)−α(s)) · n ≈ 1
2k(∆s)2.

This shows that the deviation from the tangent line of α is dominated by
the term k(∆s)2.

Moving over to the surface patch X with unit normal N, let (u1, u2) be
the parameters of the patch. As they change slightly to (u1 +∆u1, u2 +∆u2)
the surface moves from its tangent plane at X(u1, u2) by(

X(u1 + ∆u1, u2 + ∆u2)−X(u1, u2)
)
·N.

The idea is shown in Figure 3.1.
The same approximation, but now in two variables, gives

X(u1 + ∆u1, u2 + ∆u2)−X(u1, u2) ≈

X1∆u1 + X2∆u2 + 1
2
(
X11(∆u1)2 +2X12∆u1∆u2 + X22(∆u2)2) .

Taking the scalar product with the unit normal, and using that Xi ·N = 0
and Xij ·N = bij results in(

X(u1 −∆u1, u2 + ∆u2)−X(u1, u2)
)
·N ≈

1
2
(
b11(∆u1)2 + 2b12∆u1∆u2 + b22(∆u2)2) .

This shows that the second fundamental form is in some sense to a surface
patch what curvature is to a unit-speed curve.
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Figure 3.1: A slight variation of the initial point X(u1, u2) moves the sur-
face patch away from the tangent plane. The tangent plane at X(u1, u2) is
illustrated in grey.

3.3 Principal, Mean and Gaussian Curvature
Let us continue the local study of the surface patch X. Let it be in the atlas
of the surface M , and consider a fixed point P on the surface. At P , the
surface normal together with any tangent vector v ∈ TPM define a plane.
The intersection of this plane and the surface gives a new curve αv called
the normal section of M at P in the direction v. See Figure 3.2 for an
illustration of the idea.

The curvature of the normal section is called the normal curvature, for
which we take the following formal definition:

Definition 18 (Normal curvature). Let v = viXi be a tangent vector to the
surface M at P , i.e. v ∈ TPM . Then, the normal curvature of M at P in
the direction v is given by

kn(v) = bijv
ivj

gmnvmvn
. (3.3.1)

Proposition 3. Let α(s) = X(u1(s), u2(s)) be a unit-speed curve on M with
surface patch X. Further, let the curve satisfy α(s0) = P and α̇(s0) = v
where v ∈ TPM then

kn(v) = α̈ ·N.

Proof. First, α̇(s0) = u̇iXi(u1(s0), u2(s0)) so that vi = u̇i. Second, since
α(s) is unit-speed, 1 = ‖α̇(s0)‖2 = ‖v‖2 = gmnv

mvn, equation (3.3.1) gives

kn(v) = bij u̇
iu̇j .
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Figure 3.2: A surface patch with a normal section αv (dotted line) defined
by the intersection of the surface with the plane (grey) generated by the
surface normal N and tangent vector v at P .

That bij u̇iu̇j = α̈ ·N follows directly from (3.2.3), since

α̈ ·N = (α̈tan + α̈nor) ·N = α̈nor ·N = bij u̇
iu̇j . �

Varying v gives different normal sections αv and hence different normal
curvatures. The maximum and minimum value of the normal curvature are
important and given individual names.

Definition 19 (Principal curvatures). Let k1 ≥ k2 be the maximum and min-
imum values of the normal curvatures, kn(v), of the surface M at P . Then,
k1 and k2 are called the principle curvatures of M at P . The directions for
which we find these, are called the principle directions.

Definition 20 (Mean curvature). The average of the principle curvatures,

H = H(P ) = 1
2(k1 + k2),

is the mean curvature of M at P.

Definition 21 (Gaussian curvature). The product of the principle curvatures,

K = K(P ) = k1k2,

is the Gaussian curvature of M at P.
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Lemma 2. The Gaussian curvature is given by

K = k1k2 = b

g
,

where b = b11b22 − b212 and g = g11g22 − g2
12.

Proof. The proof is based on Lagrange multipliers. We want to find the
extreme values of the normal curvature, kn(v), and consider only unit-speed
curves giving the constraint gmnvmvn = 1. We therefore construct the
Lagrangian

L(v1, v2, λ) = bijv
ivj

gmnvmvn
− λ(gmnvmvn − 1).

Where the Lagrangian L is stationary we have ∇v1,v2,λL = 0. The partial
derivative with respect to λ is just the constraint gmnvmvn = 1 which in
turn simplify the equations. We get

1
2
∂L
∂v1 = b11v

1 + b12v
2 − λg11v

1 − λg12v
2 = 0 (3.3.2)

and
1
2
∂L
∂v2 = b12v

1 + b22v
2 − λg12v

1 − λg22v
2 = 0. (3.3.3)

Taking v1 times (3.3.2) and adding v2 times (3.3.3) results in

b11(v1)2 + b12v
1v2 − λg11(v1)2 − λg12v

1v2

+b12v
1v2 + b22(v2)2 − λg12v

1v2 − λg22(v2)2 = 0.

Rearranging this gives that λ = kn(v) and so we have the following system
to solve, writing just kn for the normal curvature:[

b11 − kng11 b12 − kng12
b12 − kng12 b22 − kng22

] [
v1

v2

]
=
[
0
0

]
. (3.3.4)

A non-zero solution to this require the determinant to be zero, and so doing
the multiplication reveals

k2
n(g11g22 − (g12)2)− kn(g12b12 + g22b11 − g11b22) + b11b22 − (b12)2 = 0.

With the definition of g = g11g22 − (g12)2 and b = b11b22 − (b12)2 in place,
this equals

k2
n − kn

g12b12 + g22b11 − g11b22

g
+ b

g
= 0.

Now, since the principal curvatures, k1 and k2, are the roots of this polyno-
mial they must satisfy (kn − k1)(kn − k2) = 0 showing that

k1k2 = b

g
.

�
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Figure 3.3: A saddle-like surface (hyperbolic paraboloid) for which the prin-
cipal curvatures have opposite sign, and the Gaussian curvature is negative.

Example 7 (Gaussian curvature of some surfaces). For a plane any normal
section is a straight line. This means that the normal curvature is everywhere
zero, and so also the Gaussian curvature. For the sphere of radius R > 0
any normal section is a great circle with curvature 1/R, and so the Gaussian
curvature of a sphere is 1/R2. For the hyperbolic paraboloid in Figure 3.3 the
curves of principal curvatures at the origin are shown. Notice how these two
curves curve in opposite direction, giving a negative Gaussian curvature. ♣

We now present a remarkable1 result by Gauss. It is, according to Alfred
Gray, ‘one of the most celebrated theorems of the 19th century’ [14]. Its
essence is that the Gaussian curvature of a surface is an intrinsic property,
independent of the embedding in R3. This is in no way obvious, as each of
the normal curvatures are defined extrinsically.

Theorem 5 (Gauss’s Theorema Egregium). The Gaussian curvature is an in-
trinsic quantity only dependent on the first fundamental form.

Remark. Gauss’s original proof found in [4] is not the simplest and is omit-
ted. We do, however, include a result which is directly applicable to the
discussion of the geodesics, and serves as an alternative proof.

Corollary 1. The Gaussian curvature of a (smooth) surface is given by the
formula

K = − 1
√
g

[
∂

∂u1

(√
g

g11
Γ2

12

)
− ∂

∂u2

(√
g

g11
Γ2

11

)]
, (3.3.5)

1The name ‘remarkable’ has stuck after it was called ‘Theorema Egregium’ (remarkable
theorem) by Gauss himself in his Disquisitiones generales circa superficies curvas [4]
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where the Γkij’s are the Christoffel symbols defined by the Gauss formulas
(3.2.2).

Proof. The proof is based on chapter 46 in Differential Geometry by Erwin
Kreyszig [10]. We want to find a different expression for

K = b

g

and start by rewriting b. Differentiating the relation Xi ·N = 0 gives

Xij ·N + Xi ·
∂N
∂uj

= 0

so that
bij = −Xi ·Nj ,

when using (3.2.6) and defining Nj = ∂N/∂uj . This gives

b = b11b22 − b212 = (−X1 ·N1)(−X2 ·N2)− (X1 ·N2)(X2 ·N1)
= (X1 ×X2) · (N1 ×N2),

and hence, by using (2.4.1) and (2.5.3), we find

√
gK = b

√
g

= N · (N1 ×N2).

Let us now introduce an arbitrary unit vector, T, in the tangent space of
the surface and define the vector

M = T×N so that N = M×T.

This gives
√
gK = (M×T) ·(N1×N2) = (M ·N1)(T ·N2)−(M ·N2)(T ·N1). (3.3.6)

Differentiating the relations M ·N = 0, T ·N = 0 and M ·M = 1 shows that

M ·Ni = −Mi ·N, T ·Ni = −Ti ·N, M ·Mi = 0.

This helps us rewrite (3.3.6) in the following way:
√
gK = (M1 ·N)(T2 ·N)− (M2 ·N)(T1 ·N)

= M1 · [(T2 ·N)N]−M2 · [(T1 ·N) ·N]
= M1 · [(T2 ·N)N + (T2 ·M)M]−M2 · [(T1 ·N) ·N + (T1 ·M) ·M]
= M1 ·T2 −M2 ·T1

= M1 ·T2 + M ·T12 −M2 ·T1 −M ·T12

= ∂

∂u1 (M ·T2)− ∂

∂u2 (M ·T1),
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so that
K = 1

√
g

(
∂

∂u1 (M ·T2)− ∂

∂u2 (M ·T1)
)
. (3.3.7)

We are free to choose the unit vector in the tangent space, T, but choosing

T = X1

‖X1‖
= X1√

g11

gives

Ti = X1i√
g11

+ X1
∂

∂ui

(
1
√
g11

)
so that

M ·Ti =
(

X1√
g11
×N

)
·
(

X1i√
g11

+ X1
∂

∂ui

(
1
√
g11

))
.

Now, since (X1 ×N) ·X1 = 0 we get

M ·Ti =
(

N× X1√
g11

)
· X1i√

g11

= 1
g11

(X1i ×X1) ·N, (3.3.8)

where in the last equality we used the cyclic property of the vector triple
product.

Recall the Gauss formulas (3.2.2):
Xij = ΓkijXk + bijN.

Taking the vector product of this formula with X1 gives
X1i ×X1 = Γ1

1i(X1 ×X1) + Γ2
1i(X2 ×X1) + b1i(N×X1)

= −Γ2
1i
√
gN,

and then combining with (3.3.8) shows that

M ·Ti = −
√
g

g11
Γ2

1i.

Insert this into (3.3.7) to arrive at

K = 1
√
g

[
∂

∂u1

(
−
√
g

g11
Γ2

12

)
− ∂

∂u2

(
−
√
g

g11
Γ2

11

)]
,

which is the result after pulling the minus sign outside the brackets. �

Remark. In the next chapter, we show that the Christoffel symbols only
depend on the coefficients of the first fundamental form and their derivatives.
This means that they are intrinsic, and hence, this derivation provides an
alternative proof of the Theorema Egregium.
Remark. We can find a similar expression to (3.3.5), involving g22 and Γ1

ij

instead of g11 and Γ2
ij , by a slight modification of the derivation above.
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Chapter 4

Geodesics

As indicated earlier (see for example (3.2.3)-(3.2.5)), the curvature of a curve
α on a surfaceM comes from two sources. First, if the surface itself is curved
then α generally bends alongM as seen from the surrounding 3-dimensional
space. An easy example to visualise is a bug living on a sphere going straight
ahead. Albeit going ‘straight’ it will follow a great circle, and so its path will
curve since the sphere is curved. And second, regardless of the curvature
of M , the curve α may bend within M . This latter curvature is called the
geodesic curvature. An example here is a circle on a flat plane. This curve
has curvature that does not come from the surface itself, as the plane is flat.

In this chapter, we begin by showing that the Christoffel symbols only de-
pend on the first fundamental form. We then turn to discussing the geodesic
curvature and the geodesic equations and show the connection between van-
ishing geodesic curvature and the length-minimising curves on a surface.
After demonstrating that there are geodesics in any direction radiating from
a point on a surface, we use this to introduce coordinate systems on the sur-
face where the coordinate curves are geodesics. These new coordinates help
us prove the Gauss-Bonnet theorem. The chapter ends giving a strategy to
measure the Gaussian curvature for the two-dimensional being mentioned in
the introduction.

4.1 The Christoffel Symbols
Before going further with the discussion of the geodesics curve, we take a
pause to discuss the Christoffel symbols1. In particular, Γrij defined by the
Gauss formulas (3.2.2). It turns out that the Christoffel symbols belong to
the intrinsic geometry of M despite being defined extrinsically.

Theorem 6 (Intrinsic property of Christoffel symbols). The Christoffel sym-
bols Γrij depend only on the coefficients of the first fundamental form.

Proof. To help with the calculations define the Christoffel symbols of the
first kind by

Γijk = Γrijgrk,
1What we call the Christoffel symbols here are more precisely the Christoffel symbols

of the second kind. They were originally introduced by Elwin Bruno Christoffel in ‘Über
die Transformation der homogenen Differentialausdrücke zweiten Grades’ [15]
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so that Γrij = Γijkgrk. Notice that this is symmetric in its first two indices.
Take now the Gauss formulas

Xij = ΓrijXr + bijNX

and take the scalar product with Xk

Xij ·Xk = ΓrijXr ·Xk = Γrijgrk = Γijk. (4.1.1)

Taking the partial derivative of gik with respect to uj gives

∂gik
∂uj

= ∂

∂uj
(Xi ·Xk) = Xij ·Xk + Xi ·Xkj = Γijk + Γkji,

and changing the indices gives the similar relations

∂gji
∂uk

= Γjki + Γikj = Γkji + Γikj

and
∂gkj
∂ui

= Γkij + Γjik = Γikj + Γijk.

Collecting in a clever way shows that

∂gik
∂uj

+ ∂gkj
∂ui

− ∂gji
∂uk

= (Γijk + Γkji) + (Γikj + Γijk)− (Γkji + Γikj)

= 2Γijk,

or explicitly written

Γijk = 1
2

(
∂gik
∂uj

+ ∂gkj
∂ui

− ∂gji
∂uk

)
.

To get back to Γrij , multiply by gkr and sum over k:

Γrij = 1
2g

kr

(
∂gik
∂uj

+ ∂gjk
∂ui

− ∂gij
∂uk

)
. (4.1.2)

This shows that the Christoffel symbols are given in terms of the gij ’s and
their derivatives. �

4.2 Geodesic Curvature and the Geodesic Equa-
tions

Let us return to the discussion of the curve α(s) = X(u1(s), u2(s)) on the
surface M . As before, let s be arc length and a dot denote d/ds. Since we
defined

α̈ = α̈tan + α̈nor = (ür + Γrij u̇iu̇j)Xr + (bij u̇iu̇j)N

34



it follows that α̈tan is orthogonal to both N and α̇. Clearly α̈tan ·N = 0 and
α̈tan · α̇ = (α̈tan + α̈nor) · α̇ = α̈ · α̇ = 1

2
d
ds (α̇ · α̇) = 1

2
d
ds1 = 0 where we use

that α̇ is of unit length. Therefore, α̈tan is proportional to the unit vector
N× α̇. Let us call the proportionality factor the geodesic curvature.

Definition 22 (Geodesic curvature). Let α(s) be a unit-speed curve on the
surface M with local patch X and normal vector N. Then, the geodesic
curvature is the function kg defined by

α̈tan = kg(N× α̇). (4.2.1)

There is another way to express this. Take the dot product of (4.2.1) and
the vector N × α̇. This gives kg = α̈tan · (N × α̇) = α̈ · (N × α̇), which is
a vector triple product. Such products exhibit cyclic permutations and we
can thus write

kg = N · (α̈× α̇). (4.2.2)

Theorem 7 (Intrinsic property of the geodesic curvature). The geodesic cur-
vature kg, given in (4.2.2), of a curve α contained in the surface patch X of
M depends only on the first fundamental form of M.

Proof. A direct computation of N·(α̈×α̇) shows the result. Recall α̇ = u̇rXr

and equation (3.2.3) for α̈. This gives

α̇× α̈ =u̇rXr ×
(
(ük + Γkij u̇iv̇j)Xk + (bij u̇iu̇j)N

)
=(u̇1X1 + u̇2X2)×(

(ü1 + Γ1
ij u̇

iu̇j)X1 + (ü2 + Γ2
ij u̇

iu̇j)X2 + (bij u̇iu̇j)N
)
.

Now Xi ×Xi = 0, and from (2.4.1) we have X1 ×X2 = ‖X1 ×X2‖N and
in the new notation equation (2.5.3) gives ‖X1 ×X2‖ = √g. This gives

X1 ×X2 = √gN and X2 ×X1 = −√gN.

In total N · (α̈× α̇) gets the form

N ·
(
u̇1(ü2 + Γ2

ij u̇
iu̇j)√gN− u̇2(ü1 + Γ1

ij u̇
iu̇j)√gN + u̇rbij u̇

iu̇j(Xr ×N)
)
.

Use now N ·N = 1 and for the last term N · (Xr ×N) = Xr · (N×N) = 0
to arrive at

kg = √g
[
Γ2

11 (u̇1)3 + (2Γ2
12 − Γ1

11)(u̇1)2u̇2

−(2Γ1
12 − Γ2

22)u̇1(u̇2)2 − Γ1
22(u̇2)3 + u̇1ü2 − u̇2ü1] (4.2.3)

with everything written out. By Theorem 6, the Christoffel symbols and
hence kg is given by the first fundamental form of the surface M . �
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Remark. Although kg was defined for unit-speed curves it is easy to change
the parameter from arc length, s, to some allowable parameter t. Denote by
primes derivatives with respect to t then for the last term in the parenthesis:

ü1u̇2 = u1′′u2′( dt
ds

)3 = u1′′u2′ṫ3.

Similarly, every term in (4.2.3) would get the factor ṫ3.

We are now in a position to define the straight curves on a surface: the
geodesics. We will call a curve a geodesic if it has no acceleration tangential
to the surface.

Definition 23 (Geodesic curve). Let M be a surface and α a unit-speed
curve on M . The curve is a geodesic on M if α̈tan = 0 at every point
of α.

From the above, α is a geodesic if either

ür + Γrij u̇iu̇j = 0, r = 1, 2 (4.2.4)

or
kg = N · (α̇× α̈) = 0

holds. The equations in (4.2.4) are called the Geodesic equations.

4.3 Length-Minimising Properties of Geodesics
In the last section we focused on geodesics as ‘straightest’ curves; now we
show their character as ‘shortest’. We consider the problem of finding the
curve of shortest length connecting two points on a surface, and conclude that
the geodesic equations are the Euler-Lagrange-equations of this minimisation
problem.

Theorem 8. Let α : [a, b]→M be a curve on the surface M with metric gij.
If α is the shortest curve on M connecting P = α(a) and Q = α(b), then α
is a geodesic.

Proof. The length of α is

L(α) =
∫ b

a

√
gij u̇iu̇jdt, (4.3.1)

which is invariant under a reparameterisation. The assumption that α is
the shortest curve connecting P and Q translates to

L(α) ≤ L(β) for all β : [a, b]→M with β(a) = P and β(b) = Q.
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Let us compare the length of the curve α with that of its variations, βε, of
the form (for i = 1, 2)

ui(t) + εηi(t) with ηi(a) = ηi(b) = 0 for i = 1, 2.

Here, ε is small in absolute value and ui are the local coordinates. Since for
ε = 0 we have the shortest curve, we have

L(β0) ≤ L(βε) for all ε.

This in turn gives the condition

d

dε
L(βε)

∣∣∣∣
ε=0

= 0.

Let us show that this condition is equivalent to the geodesic equations (4.2.4)
by repeating a famous derivation credited to Joseph-Louis Lagrange. It
becomes clearer in a general setting, so consider the integral

I(α) =
∫ b

a

f(u̇(t),u(t))dt

where we write u = u(t) = (u1(t), u2(t))) to shorten notation. We find

0 = d

dε
L(βε)

∣∣∣∣
ε=0

= d

dε

∫ b

a

f(u̇ + εη,u + εη)dt

∣∣∣∣∣
ε=0

where we also write η = (η1(t), η2(t)) to keep it compact. Bringing the
derivative inside the integral and evaluating at ε = 0 results in

0 =
∫ b

a

(
∂f

∂ui
η̇i + ∂f

∂ui
ηi
)
dt for i = 1, 2.

Integration by parts and using that η(a) = η(b) = 0 gives the condition

0 =
∫ b

a

(
− d

dt
fu̇i + fui

)
ηidt. (4.3.2)

Here, the subscripts indicate which argument of f the partial derivative is
taken with resepect to. Since (4.3.2) holds for all η it must be true, by the
fundamental lemma of calculus of variations (see e.g. lemma 1.1.1 in [16]),
that

− d

dt
fu̇i(u̇(t),u(t)) + fui(u̇(t),u(t)) = 0

and, taking the derivative with respect to t,

fu̇iu̇j (u̇(t),u(t))üj(t) + fu̇iuj (u̇(t),u(t))u̇j(t) = fui(u̇(t),u(t)) for i = 1, 2.
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Let us insert for

f(u̇(t),u(t)) =
√
gij(u(t))u̇i(t)u̇j(t)

to get to to the original problem (4.3.1). We find the system of equations

1
f

(
grkü

r + ∂gik
∂uj

u̇iu̇j
)
− 1
f2
df

dt
gkru̇

r = 1
2f

∂gij
∂uk

u̇iu̇j

for k = 1, 2. Choosing a curve of constant speed gives f =const. so that
df/dt = 0 and the equations reduce to

0 =1
2
∂gij
∂uk

u̇iu̇j − ∂gik
∂uj

u̇iu̇j − grkür

=
[

1
2
∂gij
∂uk

− ∂gik
∂uj

]
u̇iu̇j − grkür.

Equation (4.1.1) lets us introduce the Christoffel symbols into this expres-
sion. Note that Γikj u̇iu̇j = Γjkiu̇iu̇j since this is just interchanging summa-
tion indices. We get

0 =
[

1
2(Γikj + Γjki)− (Γijk + Γkji)

]
u̇iu̇j − grkür

=
(

1
2Γjki + 1

2Γjki − Γjki
)
u̇iu̇j − Γijku̇iu̇j − grkür

so that shortest curves must satisfy

grkü
r + Γijku̇iu̇j = 0.

We can multiply by grk and sum over k to get

ür + Γrij u̇iu̇j = 0.

This shows that α satisfy the geodesic equations, and thus is a geodesic
curve. �

Remark. The converse of this theorem does not always hold. It is in general
not true that a geodesic gives the minimum distance between two end points
on a surface. Example: The geodesics on a sphere are great circles. For
two points, not diametrically opposed, there is obviously two portions of the
great circle through the points. One short, and one longer, where the longer
takes the long way around the sphere. The longer curve is a geodesic, but it
is not the curve of shortest length. When we loosen the restrictions of the
smoothness of the patch, there is no guarantee that a geodesic exists between
two points. The most common example being the plane with the origin
removed and trying to connect two points symmetric around the origin.
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We now include a theorem stating that through any point and in any
direction on a surface there is a unique geodesic. This allows us to define
geodesic coordinate systems in the next section.

Theorem 9. Let P be a point on M and v a unit tangent vector at P. Then,
there is a unique geodesic α such that α(s0) = P and α̇(s0) = v.

Proof. Let us write out the geodesic equations in (4.2.4):

ü1 + Γ1
11(u̇1)2 + 2Γ1

12u̇
1u̇2 + Γ1

22(u̇2)2 = 0,

ü2 + Γ2
11(u̇1)2 + 2Γ2

12u̇
1u̇2 + Γ2

22(u̇2)2 = 0.

These are second order non-linear ODEs of the form

ü1 = f1(u1, u2, u̇1, u̇2),
ü2 = f2(u1, u2, u̇1, u̇2),

(4.3.3)

where f1 and f2 are smooth functions of the variables, and in particular
Lipschitz. So, by the Picard-Lindelöf theorem (see e.g. chapter 8.2 in [17]),
there exists a unique solution to (4.3.3) satisfying

u1(s0) = a, u2(s0) = b,

u̇1(s0) = c, u̇2(s0) = d,
(4.3.4)

for constants a, b, c, d and being such that ui is smooth in a small neighbour-
hood of s0.

Suppose that P is in the patch X(u1, u2) of M. Let P = X(a, b) and
v = cX1(a, b)+dX2(a, b). The curve α(s) passes through P at s = s0 if and
only if u1(s0) = a and u2(s0) = b, and it has tangent vector v if and only if

cX1 + dX2 = v = α̇(s0) = u̇1(s0)X1 + u̇2(s0)X2,

i.e. u̇1(s0) = c and u̇2(s0) = d. Finding a geodesic passing through P at
s = s0 with tangent vector v at P is, thus, equivalent to solving (4.3.3)
with initial values (4.3.4), and since this has a unique solution the proof is
complete. �

4.4 Geodesic Coordinates
This section is in preparation for the fascinating Gauss-Bonnet theorem. To
prove the theorem, we will use our results for the geodesics to introduce new
coordinates. We seek a coordinate system where the coordinate curves, i.e.
the curves where only one coordinate varies, are geodesics. We now show that
such a coordinate system exists locally around a point and how it simplifies
the expressions for the Gaussian curvature and the geodesic curvature. We
follow Erwin Kreyzsig’s treatment in Differential Geometry [10].
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Definition 24. A coordinate system on a surface is orthogonal if and only if
for any point on the surface

g12 = 0.

Proposition 4. In orthogonal coordinates the Gaussian curvature takes the
form

K = − 1
√
g11g22

[
∂

∂u1

(
1
√
g11

∂
√
g22

∂u1

)
+ ∂

∂u2

(
1
√
g11

∂
√
g11

∂u2

)]
. (4.4.1)

Proof. For g12 = 0 it should be clear that g = √g11g22 and gii = 1/gii. This
proposition is a special case of (3.3.5), and we therefore compute Γ2

11 and
Γ2

12 from (4.1.2):

Γ2
12 = 1

2g
k2
(
∂g1k

∂u2 + ∂g2k

∂u1 −
∂g12

∂uk

)
= 1

2g22

∂g22

∂u1

and similarly
Γ2

11 = −1
2g22

∂g11

∂u2 .

This gives
√
g

g11
Γ2

12 =
√
g11g22

g11

1
2g22

(
∂g22

∂u1

)
= 1
√
g11

1
2√g22

∂g22

∂u1 = 1
√
g11

∂
√
g22

∂u1

and √
g

g11
Γ2

11 = −1
√
g22

∂
√
g11

∂u2 .

Inserting these two relations into (4.1.2) yields the result. �

Let us study the coordinate curves, curves where one of the coordinates
are fixed while the other varies. In particular, let u1 = const. so that u̇1 = 0
and u̇2 = 1/√g22. This significantly simplifies the expression for the geodesic
curvature (4.2.3):

kg = −Γ1
22

√
g

g
3/2
22

when u1 = const. (4.4.2)

If we in addition have orthogonal coordinates, Γ1
22 has a simple expression.

The result is that

kg = 1
2g22
√
g11

∂g22

∂u1 when u1 = const. and g12 = 0. (4.4.3)

The same can be done with u2 = const. which yields

kg = Γ2
11

√
g

g
3/2
11

when u2 = const. (4.4.4)
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and

kg = − 1
2g11
√
g22

∂g11

∂u2 when u2 = const. and g12 = 0. (4.4.5)

Definition 25 (Field of geodesics). A one-parameter family of geodesics on
a surface M is called a field of geodesics in M ′ ⊂ M if through every point
of M ′ there passes exactly one of those geodesics.

(a) (b) (c)

Figure 4.1: (a) and (b) depicts two fields of geodesics in the plane. Recall
that geodesics in the plane are straight lines. (a) is a family of parallel lines
while (b) is straight lines with origin at a point not contained in M ′. (c)
depicts the generating lines of a cylinder, which form a field of geodesics on
the whole cylinder.

This definition is illustrated in Figure 4.1. We remark that there is no
field of geodesics for the whole sphere, since any two great circles intersect.
For a smaller patch, we may, of course, find such a field.

For a sufficiently small region of a surface, we may introduce geodesic
parallel coordinates in the following way. Choose a field of geodesics as
coordinate curves û2 = const. and take their orthogonal trajectories as the
coordinate curves û1 = const. Since û1 and û2 are orthogonal, ĝ12 = 0. Also,
since it is a geodesic the geodesic curvature vanishes and (4.4.5) gives that
∂ĝ11/∂û

2 = 0 so that ĝ11 depends only on û1. We can therefore let

u1 =
∫ û1

0

√
ĝ11dû

1, u2 = û2

which is a transformation of coordinates that leaves the geodesic parallel
curves unchanged.

This shows that a first fundamental form corresponding to the coordi-
nates u1, u2 from above is given by

ds2 = (du1)2 + g22(u1, u2)(du2)2. (4.4.6)

We now introduce Riemann normal coordinates in the following propo-
sition.
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Proposition 5. Through an arbitrary point P on a smooth surface M there
is exactly one geodesic in every direction. These geodesics form a field of
geodesics in U \ P where U is a small neighbourhood of P .

Proof. This proposition is similar to Theorem 9, but let us take a different
approach. Introduce on the surface the coordinates ũ1, ũ2 with origin at P
satisfying g̃ij = δij . Take ũi = hi(s; c1, c2) (i = 1, 2) to be the solutions to
the geodesic equations (4.2.4) satisfying the initial conditions

ũ1(0) = 0, ∂ũ1

∂s

∣∣∣∣
s=0

= c1

ũ2(0) = 0, ∂ũ2

∂s

∣∣∣∣
s=0

= c2.

We want to show that the solutions hi(s; c1, c2) may be represented on the
form φi(sc1, sc2), for some functions φi. Consider the parameter transform
s = kt. This transformation leaves the geodesic equations unchanged and
hence if hi(s; c1, c2) is a solution, then so is hi(t; c̃1, c̃2) for new constants c̃i.
Now, by the chain rule and boundary conditions

∂ũi

∂t
= ∂ũi

∂s
k and ∂ũi

∂t

∣∣∣∣
t=0

= cik for i = 1, 2

showing that hi(s; c1, c2) = hi(t; c1k, c2k). For the case t = 1 we have
hi(s; c1, c2) = hi(k; c1, c2) = hi(1; c1k, c2k) and then, inserting s for k gives

hi(s; c1, c2) = hi(1; c1s, c2s) := φi(v1, v2),

where we have defined vi = cis. Hence, the transformation ũi = φi(v1, v2)
introduces the coordinates v1, v2 on M . These are called Riemann normal
coordinates or geodesic normal coordinates on M with center P .

Let us show that this transformation is allowable in a neighbourhood of
P . The boundary condition is

ci = ∂ũi

∂s

∣∣∣∣
s=0

and by the chain rule

∂hi

∂s

∣∣∣∣
s=0

=
(
∂φi

∂vj
∂vj

∂s

)
v1=v2=0

=
(
∂φi

∂vj
cj
)
v1=v2=0

.

Combining these shows that

c1 = ∂φ1

∂v1 c
1 + ∂φ1

∂v2 c
2

c2 = ∂φ2

∂v1 c
1 + ∂φ2

∂v2 c
2
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where the partial derivatives are evaluated at v1 = v2 = 0. This gives

∂φi

∂vj

∣∣∣∣
v1=v2=0

= δij

and hence the Jacobian of the transform at P is the identity matrix. Since
the Jacobian is continuous its determinant does not vanish at a sufficiently
small neighbourhood of P .

The geodesics through P have the representation vi = cis, and assuming
that (c1)2 + (c2)2 = 1 the parameter s is the arc length of those geodesics.
The values of s, c1, c2 corresponding to a point in U \P is obviously uniquely
determined. In other words: there exist only one geodesic joining this point
and P . This is precisely what it means to have a field of geodesics on U \P .�

Returning to the coordinates ũ1, ũ2 in the proof above, we note that these
have origin at P and that the first fundamental form satisfy g̃ij = δij at P .
Call the coefficients of the first fundamental form of the coordinates v1, v2

by ĝij . At P these must be equal showing that

ĝij |v1=v2=0 = δij .

We now go on to discussing geodesic polar coordinates, which is an im-
portant player in the proof of the Gauss-Bonnet theorem. Let v1, v2 be
Riemann normal coordinates with centre P . If we set

v1 = u1 cosu2, v2 = u1 sin u2 (4.4.7)

the coordinates u1, u2 are called the geodesic polar coordinates on M with
centre at P . In this coordinate system, the coordinate curves u2 = const.
correspond to the geodesics through P and the curves u1 = const. are the
orthogonal trajectories to these geodesics. Figure 4.2 shows the idea.

Figure 4.2: The geodesic polar coordinates with centre at P . Why the curves
u1 = const. are called the geodesic circles should be clear.

In the proof of the Gauss-Bonnet theorem we will shrink a geodesic circle
to the point P , and we are therefore interested in the limiting behaviour of
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the first fundamental form as we approach P . The coordinates u1 and u2 are
geodesic parallel coordinates by construction and hence the first fundamental
form is given on the form (4.4.6). From this we have g11 = 1 and g12 = 0,
but the behaviour of g22 at P requires further study. Working with (4.4.7)
we find

dv1 = cosu2du1 − u1 sin u2du2, dv2 = sin u2du1 + u1 cosu2du2,

and so the first fundamental form becomes

ĝ11(dv1)2 + 2ĝ12dv
1dv2 + ĝ22(dv2)2 =

ĝ11
(
cos2 u2(du1)2 − 2 cos2 u1 sin2 u2du1du2 + (u1)2 sin2 u2(du2)

)
+

2ĝ12
(
cosu2 sin u2(du1)2 + u1 cos2 u2du1du2−
u1 sin2 u2du1du2 − (u1)2 cosu2 sin u2(du2)2)+

ĝ22
(
sin2 u2(du1)2 + 2 sin2 u1 cos2 u2du1du2 + (u1)2 cos2 u2(du2)

)
.

Collecting the coefficients in front of (du2)2 gives

g22 = (u1)2(ĝ11 sin2 u2 − 2ĝ12 cosu2 sin u2 + ĝ22 cos2 u2),

from which if follows that
lim
u1→0

g22 = 0. (4.4.8)

Since it is needed later we also want to look at

lim
u1→0

∂
√
g22

∂u1 . (4.4.9)

Recall that the geodesic equations in coordinates v1, v2 are v̈r+Γ̂rij v̇1v̇2 = 0.
Since vi can be written as cis close to P , we find v̇i = ci and v̈i = 0 so that
Γ̂rijcicj = 0. This holds for all values of ci, so the Christoffel symbols must
be zero at P . From (4.1.2) it follows in turn that all partial derivatives
∂ĝij/∂u

r must vanish at P .
Returning to (4.4.9) we find

lim
u1→0

∂
√
g22

∂u1 =

lim
u1→0

1/2
√
g22

(
2u1 + ∂

∂u1 (ĝ11 sin2 u2 − 2ĝ12 cosu2 sin u2 + ĝ22 cos2 u2)
)

=

lim
u1→0

u1
√
g22

+ 0 =

lim
u1→0

(
ĝ11 sin2 u2 − 2ĝ12 cosu2 sin u2 + ĝ22 cos2 u2)−1/2

.

Now, as u1 shrinks to P , ĝij → δij and the above formula gives

lim
u1→0

∂
√
g22

∂u1 = (sin2 u2 + cos2 u2)−1/2 = 1. (4.4.10)

44



4.5 The Gauss-Bonnet Theorem

In this section, we prove the Gauss-Bonnet theorem. There are many ver-
sions of the theorem. We do not present the most famous version, involving
the Euler characteristic, which connects the geometry of a surface to its
topology. We are concerned with the local version, for which the proof is
slightly involved. With the general theorem in place, we explore a strategy
to answer a question posed in the introduction: Can a two-dimensional being
on a surface figure out the geometry of its world?

Theorem 10 (Gauss-Bonnet). Let S be a simply connected portion of a sur-
face M represented by the smooth surface patch X(u1, u2) whose boundary
C is a simple closed curve with representation X(u1(s), u2(s)) where s is the
arc length of C. Let kg be the geodesic curvature of this curve and K be the
Gaussian curvature of S. Then∫

C

kgds+
∫∫

S

KdA = 2π, (4.5.1)

where dA is the element of area of S and the integration along C is carried
out such that S stays on the left side.

Proof. The outline of this proof is in three parts. First, we introduce orthog-
onal coordinates u1, u2 on the surface. Then, we pick an arbitrary point and
make a small geodesic circle around it. At last, we observe what happens to
the integrals in the theorem as the circle reduces to the point.

Let us introduce allowable orthogonal coordinates u1, u2. The existence
of such coordinates will be covered as a remark to the theorem. Let P be an
arbitrary point on S and let C0 be a sufficiently small geodesic circle with
centre at P so that u1, u2 are polar geodesic coordinates inside C0. We also
assume that for the boundary curve C we have u1 = 1 so that along this
curve u2 is equal to the arc length s.

Since we have orthogonal coordinates and c1 = 1 on C, equation (4.4.3)
gives

kg(C) = 1
2g22
√
g11

∂g22

∂u1 = 1
√
g11g22

(
1

2√g22

∂g22

∂u1

)
= 1
√
g11g22

∂
√
g22

∂u1

and since, in addition, on this curve u2 = 1, we have g22 = 1. This gives∫
C

kgds =
∫
C

1
√
g11

∂
√
g22

∂u1 du2. (4.5.2)

Let S′ denote the region bounded by the two curves C0 and C. Let us
study the surface integral over this region. With dA = √gdu1du2 and the
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help of (4.4.1) we find∫∫
S′
KdA =−

∫∫
S′

∂

∂u1

(
1
√
g11

∂
√
g22

∂u1

)
du1du2

−
∫∫

S′

∂

∂u2

(
1
√
g22

∂
√
g11

∂u2

)
du1du2.

The second integral in this expression is zero since integration with respect
to u2 is along closed curves. For the first integral we find∫∫

S′
KdA = −

∫
C

1
√
g11

∂
√
g22

∂u1 du2 +
∫
C0

1
√
g11

∂
√
g22

∂u1 du2.

We recognise the first term here as the total geodesic curvature along C as
in (4.5.2), and so∫

C

kgds+
∫∫

S′
KdA =

∫
C0

1
√
g11

∂
√
g22

∂u1 du2.

Let us now take the limit as C0 shrinks to the point P . Then, the integral
over the region S′ goes to S and∫

C

kgds+
∫∫

S

KdA = lim
C0→P

∫
C0

1
√
g11

∂
√
g22

∂u1 du2.

In the region inside C0, we had by construction geodesic polar coordi-
nates, for which g11 = 1. In addition (4.4.10) gives

lim
C0→P

∫
C0

1
√
g11

∂
√
g22

∂u1 du2 = lim
C0→P

∫
C0

du2 = 2π.
�

Remark. The existence of the orthogonal coordinate system used in the the-
orem is not obvious. One way to show it is to find a conformal mapping
from our simply connected portion of a surface to a region where orthogo-
nal coordinates are easy to introduce. A conformal mapping is just another
name for angle-perserving,2 so in particular orthogonal coordinates under
a conformal mapping stay orthogonal. The map we want can be found in
two steps. First we use Theorem 62.1 in [10] which states that ‘Any simply-
connected portion of a surface which has a representation of class r ≥ 3 can
be conformally mapped into a plane.’ Our smooth surface patch is indeed
‘of class r ≥ 3’ so this applies here. Let S∗, C∗ and C∗0 be the images of S,
C and C0 under this mapping.

Now that our region is in the plane, we can rely on results for analytic
functions in complex analysis. Consulting the classic text Complex Analysis

2The name conformal was introduced by German astronomer and geographer Schubert
as early as 1789 [18].
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Figure 4.3: The conceptual idea of the existence argument for the orthogonal
coordinates. This shows only the mapping from S∗ to S∗∗ which is based on
a theorem from complex analysis. Notice how in the sketch the connected
line on the lower part stays orthogonal to the dotted lines.

by Lars V. Ahlfors [19], we find in chapter 6.5 the result we want. His
Theorem 10 assures us that there exists a one-to-one conformal mapping
from the region S∗ to some annulus S∗∗. Figure 4.3 shows the idea. On the
annulus, it is easy to introduce orthogonal coordinates by taking concentric
circles that cover S∗∗ and their orthogonal trajectories. Taking the inverse
images of the two mappings results in orthogonal curves on S, if we in
addition use the geodesic circles and their orthogonal geodesics inside C0.

If the curve C is simply connected and continuous but has finitely many
corners, we can still use the Gauss-Bonnet theorem after a slight modifica-
tion. A corner is a discontinuity in the derivative, with P in Figure 4.4 being
an example. In a neighbourhood of the point P we replace the curve C by a
portion of a geodesic circle of radius r, which we will call Cg. We choose r
such that for two points Q and R close to P the tangents of the two curves
C and Cg are equal, see Figure 4.4a.

As Q and R approach P , the geodesic circle approaches a perfect circle
of radius r. Now, call a length element of the geodesic circle by dŝ. We find
that

lim
r→0

∫
Cg

kgdŝ = lim
r→0

∫
Cr

1
r
rdθ = α

where we have used that the curvature of a circle is 1/r and the length
element is rdθ. In this expression, Cr denotes the circular arc from Q to
R. The angle α is shown in Figure 4.5 and is the angle between the two
tangents at P turning in the direction of the curve C. The interior angle
β = π − α is also shown in the same figure.
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(a) (b)

Figure 4.4: (a) and (b) depicts the same corner P of the curve C. At the
points Q and R the tangent of the geodesic circle Cg and the original curve C
coincide. In (b) the points have moved closer to the corner and the geodesic
circle approaches a perfect circle. The segment of the circle between Q and
R we call Cr. For a circle, integration of arc length is trivial.

Figure 4.5: The exterior angle α is the directed angle of rotation of the
tangent to the curve C at the corner P . The interior angle, β = π − α, is
also shown.

Now, assuming that the curve C has n corners P1, P2, . . . , Pn we find a
corrected version of the Gauss-Bonnet theorem by replacing total geodesic
curvature in (4.5.1) with the geodesic curvature of the line elements plus the
exterior angles αi(i = 1, 2, . . . n). This results in∫

C

kgds+
n∑
i=1

αi +
∫∫

S

KdA = 2π,

or ∫
C

kgds+
∫∫

S

KdA =
n∑
i=1

βi − (n− 2)π, (4.5.3)

if we want the interior angles.
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From (4.5.3) we find that if the curves between the corners are geodesics,
i.e. kg = 0 along C, ∫∫

S

KdA =
n∑
i=1

βi − (n− 2)π. (4.5.4)

In the case n = 3 we have a geodesic triangle, and get∫∫
S

KdA = β1 + β2 + β3 − π. (4.5.5)

It is worth stressing that this only holds when the triangle is formed by
three geodesics. Equation (4.5.5) is in agreement with the fact from plane
geometry saying that the sum of the angles of a triangle always is π, since for
a plane any straight line is a geodesic and K = 0 everywhere so the integral
curvature vanishes. If, however, the curvature is positive at every point, the
sum of the angles will be greater than π. An example of this is the sphere.
On the sphere of radius R we have the constant Gaussian curvature 1/R2

and so the surface area of a geodesic triangle, ∆, is

Area(∆) = R2[(β1 + β2 + β3 − π)] = R2E.

The amount by which the sum of the angles exceeds π is called the spherical
excess, E, and was already published by Albert Girard in 1629 [20].

In theory, a two-dimensional object living on any surface could use the
excess of a geodesic triangle to measure the Gaussian curvature at a point.
Let ∆k be a geodesic triangle with internal angles β(k)

1 , β
(k)
2 and β

(k)
3 , and

containing a point P . The index k is used since we want to create smaller
and smaller triangles containing P . See Figure 4.6 for an illustration. Now
(4.5.5) gives, dividing by the area of ∆k,∫∫

∆k
KdA∫∫

∆k
dA

= β
(k)
1 + β

(k)
2 + β

(k)
3 − π∫∫

∆k
dA

.

Let us now make a sequence (∆k)k∈N such that for each k the area of ∆k+1 is
less than the area of ∆k. We require that all triangles are geodesic triangles
and contain the point P . In the limit as k increases to infinity, the geodesic
triangle reduces to P , and since the Gaussian curvature varies continuously

lim
k→∞

∫∫
∆k

KdA∫∫
∆k

dA
= K(P )

and

K(P ) = lim
k→∞

β
(k)
1 + β

(k)
2 + β

(k)
3 − π∫∫

∆k
dA

.

The effect of this is that, assuming you could measure angles and areas,
by forming smaller and smaller geodesic triangles around a point P you

49



could make a sequence of numbers that would in the limit approximate the
Gaussian curvature at P . In popular terms: A two-dimensional being on a
surface can figure out the geometry of its world.

Figure 4.6: From left to right: Examples of smaller and smaller geodesic
triangles around a point on a surface. This could be used to measure the
Gaussian curvature at the point.
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Chapter 5

Example: The Catenoid

In this chapter we explore the catenoid in some detail. A catenoid is a
surface obtained from rotating a catenary curve around its directrix. We
will compute its fundamental forms and curvatures, and discuss its geodesics.
The catenoid may be parameterised by the patch X : U → R3:

X(u, v) = (a cosh(v
a

) cos(u), a cosh(v
a

) sin(u), v), (5.0.1)

where a > 0 is a constant and we, for simplicity, take 0 < u < 2π and
−1 < v < 1. The angle u and height v is shown in Figure 5.1 below. We use
gij to denote the coefficients of the first fundamental form in this chapter,
but use (u, v) = (u1, u2) for the coordinates.

Figure 5.1: The catenoid given by (5.0.1)

5.1 Geodesics on a v-Clairaut Patch
As stated earlier, it is in general difficult to find solutions to the geodesic
equations (4.2.4). There are, however, surfaces where finding solutions re-
duces to computing integrals. The catenoid is such an example. The catenoid
is a surface of revolution, for which we have the general form

X(u, v) = (f(v) cos(u), f(v) sin(u), g(v)), (5.1.1)
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for functions f(v) and g(v). Let us assume that f(v) is positive, so that it can
be thought of as the radius of the parallel u 7→ (f(v) cos(u), f(v) sin(u), g(v)).
We also have the meridian where the angle u is fixed. The idea of this is
shown in Figure 5.2.

(a) (b)

Figure 5.2: The catenoid is a surface of revolution. In (a) a parallel is
shown and (b) depicts a meridian. On such a surface the meridians can be
parameterised as geodesics. This can we understand geometrically. Since
any meridian would be a plane curve in the plane spanned by the surface
normal N and the axis of rotation, its acceleration only happen in the normal
direction which is a characteristic of a geodesic. When parallels (a) are
geodesics is discussed below.

Let us compute the coefficients of the first fundamental form of the gen-
eral surface of revolution (5.1.1). We find

g11 = X1 ·X1 = f2(v),
g12 = X1 ·X2 = 0,
g22 = X2 ·X2 = (f ′(v))2 + (g′(v))2.

Since g12 = 0, we have orthogonal coordinates and can use what we found
in the section 4.4. When, in addition to g12 = 0, the relations

∂g11

∂u
= ∂g22

∂u
= 0

hold, we have what is called a v−Clairaut patch [14]. This simplifies the
Christoffel symbols and thus gives us a better chance at solving the geodesic
equations. Doing the calculations, one can show that for a v−Clairaut patch
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the Christoffels symbols are

Γ1
11 = 0,

Γ1
12 = 1

2g11

∂g11

∂v
,

Γ1
22 = 0,

Γ2
11 = −1

2g22

∂g11

∂v
,

Γ2
12 = 0,

Γ2
22 = 1

2g22

∂g22

∂v
.

These formulas give, by (4.2.4), the geodesic equations

ü+ g11 ∂g11

∂v
u̇v̇ = 0 (5.1.2)

and
v̈ − 1

2g
22 ∂g11

∂v
u̇2 + 1

2g
22 ∂g22

∂v
v̇2 = 0. (5.1.3)

As indicated in the Figure 5.2 we can consider two types of geodesics
directly without solving the geodesic equations. For a coordinate curve, we
have either a meridian or a parallel. For u = u0 = const. we found in (4.4.3)
that

kg = 1
2g22
√
g11

∂g22

∂u
when u = const. and g12 = 0.

Since ∂g22
∂u = 0 for the type of patch we consider, the meridians are thus

geodesics. A direct geometric interpretation is given in caption of Figure
5.2. Similarly, for v = v0 = const. we found in (4.4.5) that

kg = − 1
2g11
√
g22

∂g11

∂v
when v = const. and g12 = 0.

This shows that a parallel is a geodesic if and only if ∂g11
∂v (u, v0) is zero along

the curve u 7→ X(u, v0).
For the remaining curves, the geodesics equations reduce to solving an

integral. We adopt Corollary 18.29 in [14], but give a direct proof.

Proposition 6. Let X be a v-Clairout patch for the surface M. A curve
α : (a, b)→M of the form

α(v) = X(u(v), v)

is a pregeodesic if and only if there is a constant c such that

du

dv
= ±c

√
g22

g11(g11 − c2) . (5.1.4)

Remark. A pregeodesic is just a reparameterisation of a geodesic.
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Proof. To prove this, we make the following observation:

d

ds
(g11u̇) =dg11

ds
u̇+ g11ü

=∂g11

∂v
v̇u̇+ ∂g11

∂u
u̇2 + g11ü.

Since ∂g11/∂u = 0 for a v-Clairout patch, we are left with

d

ds
(g11u̇) = ∂g11

∂v
v̇u̇+ g11ü = 0

where the last equality comes from the geodesic equations (5.1.2). This
shows that

g11u̇ = c = const. (5.1.5)
Take now a unit-speed curve α(s) = X(u(s), v(s)) on the surface patch , i.e.

1 = ‖α̇‖2 = g11u̇
2 + 2g12u̇v̇ + g11.

Using that g12 = 0 and (5.1.5) we find

c2

g11
+ g22v̇

2 = 1

or

v̇ = ±

√
1− c2/g11

g22
.

Now, we can combine the equations for u̇ and v̇ to find

u̇

v̇
= du

dv
= ±c

√
g22

g11(g11 − c2) . �

5.2 Fundamental Forms and Curvatures
With all of this in place, let us return to the catenoid. Comparing (5.0.1)
and (5.1.1) we find:

f(v) = a cosh(v
a

),

g(v) = v.

The coefficients of the first fundamental form are thus

g11 = f2(v) = a2 cosh2(v
a

)

and
g22 = (f ′(v))2 + (g′(v))2 = sinh2(v

a
) + 1 = cosh2(v

a
).
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For the second fundamental form we need the normal vector N and com-
pute

X1 ×X2 =
(
a cosh(v

a
) cos(u), a cosh(v

a
) sin(u),−a cosh(v

a
) sinh(v

a
)
)

so that by (2.4.1)

N = X1 ×X2

‖X1 ×X2‖
=
(
sech(v

a
) cos(u), sech(v

a
) sin(u),−sech(v

a
) sinh(v

a
)
)
.

This gives us the chance to compute the coefficients of the second funda-
mental form by equation (3.2.6):

b11 = −a,
b12 = 0,

b22 = 1
a
.

The Gaussian curvature is, by Lemma 2,

K = b

g
= −1
a2 cosh4( va )

.

For the principal curvatures, we showed earlier that they were the roots of
the determinant of the matrix (3.3.4):[
b11 − kng11 b12 − kng12
b12 − kng12 b22 − kng22

]
=
[
−a− kna2 cosh2( va ) 0

0 1/a− kn cosh2( va )

]
.

From this, we compute

k1 = 1
a cosh2( va )

and k2 = −1
a cosh2( va )

,

and hence find a vanishing mean curvature

H = 1
2(k1 + k2) = 0.

The vanishing mean curvature is sufficient for a surface to be a minimal
surface [14].

5.3 The Geodesic Curves
Let us, at last, consider the geodesic curves on the catenoid. First, we have
that the meridians for a fixed value of the angle u are geodesics. Second, for
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the parallels to be geodesics we needed ∂g11
∂v to vanish for all values of u. We

find
∂g11

∂v
= a sinh(2v

a
) = 0 for v = 0,

and so only the parallel at the thinnest point of the catenoid is a geodesic.
This is in agreement with our intuition since at any other height the parallel
curve must curve within the surface to stay on path. Or, in other words,
v = 0 is the only height for which the acceleration of the parallel curve is
exclusively in the direction of the surface normal N.

For the other geodesics we use (5.1.4) to find

du

dv
= ±c

√
cosh2(v/a)

a2 cosh2(v/a)(cosh2(v/a)− c2)
= ±c/a√

cosh2(v/a)− c2
. (5.3.1)

Integrating this to find the function u = u(v) does not come without difficul-
ties, and looking for the correct reduction to an elliptic integral we can solve
(e.g. in the Handbook of Elliptic Integrals for Engineers and Scientists [21])
is outside the scope of this thesis. However, since we are curious as to what
the geodesics may look like we had a go at the geodesics going through the
point (u, v) = (0, 0). Ignoring all possible problems with the integral an
attempt at solving it numerically for a = 1 and for a few values of c < 1 is
shown in Figure 5.3. There, we also include the meridian and parallel.
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Figure 5.3: Some geodesics on the catenoid (5.0.1) going through the point
(u, v) = (0, 0), for a = 1. The numerical integration was carried out in
Matlab with using the ODE solver ode45 (see [22]) for different values of c.
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Chapter 6

Riemannian Geometry

We end this thesis returning to some historical aspects of the theory of
surfaces and show that a lot of the classic results we have demonstrated
transfer into the abstract setting of Riemannian geometry. Let us begin on
a historical note.

Bernhard Riemann held in 1854 a famous lecture ‘On the hypotheses
which lie at the bases of geometry’. It was a mathematical lecture on ge-
ometry, with no illustrations and with barely any formulas, which today is
recognised as one of the most important contributions to mathemathics. On
why it had such a wide effect, Jürgen Jost writes in a book dedicated to the
lecture [23]:

‘This is because its position is at the intersection of mathematics,
physics and philosophy, and it not only founds and establishes
a central mathematical discipline, but also paves way for the
physics of the twentieth century and at the same time represent
a timeless refutation of certain philosophical concepts of space.’

Riemann’s teacher, Gauss, had at the time discovered interesting con-
nections between intrinsic and extrinsic properties of surfaces. In particular,
the remarkable result that curvature could be intrinsic. Inspired by this,
Riemann took in his work an abstract and intrinsic view of geometry, a ge-
ometry no longer confined to objects in Euclidean space. This approach was
fruitful and, in addition to vast developments in mathematics, the theory
was later essential to Einstein’s celebrated work connecting gravity to the
geometry of space and time. We now try to connect this abstract approach
to the results shown in the previous chapters.

In Riemannian geometry, we study manifolds1 of arbitrary dimension,
n, given by local coordinates u = (u1, u2, . . . , un) where u ∈ U ⊂ Rn. As
pointed out in the remark following Definition 13, there are different ways
of viewing tangent vectors. Since we want to remove the connection to
Euclidean space, we no longer define tangent vectors as vectors in Euclidean
space. A better way is to view tangent vectors as differential operators.

With this abstraction, we can define an almost arbitrary inner product
on the tangent space, i.e. between tangent vectors. Riemannian geometry
considers inner products that vary smoothly from point to point. The inner

1A concept we do not define, but note that our definitions of a surface in section 2.2
by patches, atlases, transitions maps and homeomorphisms are key components.
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product allows us, as before, to discuss angles, volumes, lengths of curves,
and more. With reference to a patch on the manifold with local coordinates
u, two tangent vectors can be considered as v = vi∂/∂ui and w = wi∂/∂ui

with inner product
〈v,w〉 = gij(u)viwj .

A lot of the results concerning curves on surfaces extends to this higher
dimensional abstract setting. The speed of the curve in a manifold M ,
α : (a, b) → M , at t ∈ (a, b) is ‖α′(t)‖ = 〈α′(t),α′(t)〉1/2 and, with s being
arc length,

ds2 = gijdu
iduj .

The geodesic equations (4.2.4)

ür + Γrij u̇iu̇j = 0, r = 1, 2, . . . , n

still describe locally length-minimising ‘straight’ curves. This becomes ap-
parent if we go back to the proof provided in section 4.3 and realise that it
is intrinsic, and easily extends to higher dimensions. The same can be said
about Theorem 9 and 10, and also the results of section 4.4. The Christof-
fel symbols, originally defined by the Gauss formulas (3.2.2), can now take
(4.1.2) as definition.

If we restrict ourself to two-dimensional manifolds of the above structure,
called Riemannian surfaces, we can define the Gaussian curvature directly,
e.g. by (3.3.5). However, not all concepts can be discussed in this setting.
Talking about normal directions, principal curvatures and mean curvature
does not make sense. Here we still need an embedding in Euclidean space.

Riemann did more than what we have outlined here, and later Beltrami,
Bianchi, Levi-Civita, Ricci and others further developed the theory into
modern Riemannian geometry where connections and parallel transport are
central [24]. As an introduction to the modern theory, the book Riemannian
Geometry and Geometric Analysis by Jürgen Jost [25] looks like a natural
next step.
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