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Preface

This is the concluding Master’s thesis of the 2 year Master study programme Subsea Technology
at NTNU. The work was carried out between January and June 2016.

In the last year of this study programme I had the chance to choose specialization in production
technology and automation, with focus on robotics. Given my earlier Bachelor degree in
automation engineering and my interest in the robotics field, this felt like the right choice for
me.

In my previous semester I had the opportunity to start researching in the robotics field to-
gether with a fellow student, where we developed robotic welding system without the use of
welding fixtures. This was done with the use of force control and 3D-vision. This work caught
my interest in researching and testing smarter 3D-vision systems for robotics, and resulted in
the topic "3D robot vision using multiple cameras".

Trondheim, May 31, 2016

Sindre Raknes
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Summary

3D computer vision has in recent years become more popular in regards to robotic vision
systems. This thesis looks into the possibility of using a multiple 3D camera setup for robotic
vision. The approach is to reconstruct a scene in 3D from multiple camera viewpoints, extract
an object from the scene and perform object recognition to find the position and orientation
of an object with a known 3D geometry.

The output point cloud from the cameras were merged together to reconstruct the entire scene.
To be able to reconstruct the scene, the extrinsic parameters for each camera was required.
A system was implemented to automatically calibrate the cameras extrinsic parameters, that
was further used to transform the point clouds.

A object recognition system was also implemented, based on the Point Cloud Library (PCL).
This system supports the required filters and algorithm to be able to detect an object to find
its position and orientation in the scene. Object recognition was achieved by implementing a
proposed recognition pipeline, based on local feature descriptors. The system is also interfaced
to a robot controller via Robot Operating System (ROS).

The experimental results indicate some variation in the objects position and less variation in
the objects orientation. This variation appears to originate due to poor repeatability in depth
measurements with the Microsoft Kinect™v2. The results are believed to be accurate enough
for a grasping task performed by a robot.
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Sammendrag

I de seneste arene har bruken av 3D kameraer for robotsyn blitt mer populeert. Denne avhan-
dlingen tar for seg robotsyn ved bruk af flere 3D-kamera. Fremgangsmaten gar ut pa a rekon-
struere et objekt og omgivelsene ved & kombinere bildeinformasjonen fra de ulike kameraene.
Fra dette skal et objekt med kjent 3D-geometri lokaliseres (posisjon og orientasjon) ut i fra de
kombinerte bildedataene.

Punktskyene fra de ulike kameraene ble slatt sammen for & rekonstruere omgivelsene. For a
oppna dette, ma man vite de eksterne parametrene til kameraene. Et system ble implementert
for & automatisk kalibrere desse parametrene for hvert kamera, som videre ble brukt til a
transformere punktskyene sammen.

I tillegg til dette ble et system for a gjenkjenne objekter implementert, basert pa biblioteket
Point Cloud Library (PCL). Dette systemet stotter de ngdvendige filter og algoritmer som er
ngdvendig for & gjenkjenne et objekt med kjent 3D-geometri. Gjenkjenningen ble oppnadd ved
a folge en foreslatt fremgangsmate basert pa lokale deskriptorer. Systemet er ogsa satt opp
ved hjelp av Robot Operating System (ROS), og har mulighet til & kontrollere roboter.

Eksperimentene viser at det forekommer variasjon i objektets posisjon. Derimot er det lite
variasjon i objekters orientering. Variasjonen set ut til stamme fra den darlige repeterbarheten
til dybdemalingen til 3D kameraet Kinect™v2. Resultatene antas likevel & veere ngyaktige nok
for a tas i bruk i en robotisert oppgave.
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Chapter 1: Introduction

1.1 Background

In the industry today, there are millions of arm-type robots built and put to work at tasks
such as welding, painting, loading and unloading, assembling, packing and palletising. In the
recent years the use of robots has led to increased productivity and improved product quality.
This is done without harming the job market, and has helped to keep the industry alive in
high-labour cost countries (Corke, 2011).

In high-labour cost countries, such as Norway, it is expensive to deal with low batch and high
value manufacturing. Thereby, there is a need of reducing manufacturing cost, increase produc-
tivity, improve production quality and eliminating dangerous tasks for human operators. This
can be achieved by using programmable automation and robotics. A programmable system is
more versatile and is capable of manufacturing different items, since it is reprogrammable and
can perform multiple functions (Siciliano et al., 2009).

Such solutions are more and more commonly available, and rely on good sensors and sensor
technology. Omne of these sensor technologies is the use of vision based systems. The most
common vision systems are based on using 2D cameras, but the increase of low-cost 3D sensors
(like the Microsoft Kinect™) has led to an increased work in 3D vision. 3D computer vision
offer new and exciting opportunities, like human pose estimation, activity recognition, object
and people tracking, 3D mapping and localization, etc.

These types of systems are often based on using a single 3D sensor, that can only capture a
scene and its surroundings from one viewpoint. By looking into the concept of combining the
output from multiple 3D sensors, to reconstruct a full scene, the quality and efficiency of the
vision system can be improved. The main focus in this thesis is to look into methods that can
combine the sensor data and use this combined data in an object recognition system.

1.2 Problem description

To reconstruct the geometry of an object from multiple cameras, the output information from
the different cameras must be combined. In this thesis, the objective is to study robotic vision
by using a multiple 3D camera setup.

The main objectives of this project work are
1. Describe methods to combine the output information from multiple 3D cameras.
2. Describe methods for recognition of objects with known 3D geometry.
3. Implement a system for automatic calibration of extrinsic camera parameters.
4

. Use the combined output information from multiple 3D cameras to find an objects posi-
tion and orientation.
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D.

1.3

Do experiments on the system at the laboratory at the Department of Production and
Quality Engineering (IPK), NTNU.

Structure of the report

The structure of this report is as follows:

The relevant theory and background information on 3D computer vision required for this
thesis is given in Chapter 2. Chapter 3 introduces some basic theory behind robotics,
kinematics and the Robot Operating System (ROS).

In Chapter 4, it follows a description of how the background and theory can be applied
to achieve the goal of this project.

Chapter 5 presents results from different experiments carried out during the project work.

Chapter 6 summarizes and discusses the results from Chapter 5. This chapter is based
on opinions and give reasoning for the results and what could have been done differently.

In Chapter 7, a brief conclusion of this project work is presented, along with recommen-
dations for further work.

The Appendix contains source code from the project work.



Chapter 2: 3D Computer Vision

2.1 Introduction

In recent years several range sensors (3D cameras) have been developed and introduced at
a reasonable price. The most common 3D camera in the market is the Microsoft Kinect™,
which has been developed in conjunction with the video game console Microsoft Xbox. The
first Kinect™was introduced with the Xbox 360 and is based on the range sensing principle
called Structured Light (SL), whereas the second Kinect™v2 (which is used in this thesis) is
based on Time-of-Flight (ToF).

SL is an active stereo-vision technique, where a known pattern (grids, laser, horizontal bars)
is projected towards a scene which is observed from a camera from a different direction. These
patterns deform when striking a surface, allowing extraction of depth information (Sarbolandi
et al., 2015).

ToF on the other hand, is based on measuring the time that light emitted by an illumination
unit requires to travel to a scene and back to the sensor (Grzegorzek et al., 2013).

2.2 Point Clouds

The output from a 3D camera is called a point cloud. A point cloud is described as a set of
data points defined in a coordinate system as

P={p1,....,pm} pl e RN (2.1)

where M is the number of points and N is the dimensionality of the space (Shao et al., 2014).

Equation 2.1 is known as a depth cloud, and in addition we are often provided with addi-
tional information regarding each point in the cloud. This additional information (feature) is
described as

F:{fla"'vfM} fTERK (22)

and is often called a feature cloud. By combining equation 2.1 and 2.2 we can acquire a point
cloud with XYZ-data together with a feature, for example RGB-data (color). This yields
additional information for further use in point cloud processing (Shao et al., 2014).

The resulting point cloud from a ToF 3D camera is classified as a organized point cloud, which
is a point cloud data-set organized by rows and columns in a logical manner. In contrast, an un-
organized point cloud have no organized structure. The advantages of a organized point cloud
is knowing the relationship between adjacent points, most point cloud processing operations
will be much more efficient and effective (PCL, 2012).
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2.3 Point Cloud Processing

Point Cloud Processing is the process of preparing a point cloud for more advanced algorithms.
This typically involves filtering, keypoint extraction and feature estimation. The Kinect™v2
has a depth resolution of 5122424, which gives a total of 217088 points in the raw point cloud
data. This raw point cloud can be subjected to noise measurements and consists of a massive
amount of data, which increases computation time and can reduce the effect of recognition
algorithms.

This Section (2.3) will give an introduction to the most common point cloud processing methods
used in this thesis.

2.3.1 Voxel Grid filter

A Voxel Grid filter is a down-sampling filter used to reduce the amount of points in a point
cloud. A reduced amount of points improves the computation time and the efficiency of other
algorithms. A woxel can be thought of as a tiny box in 3D space, whereas a vozel grid is
a set of tiny boxes in 3D space. Each voxel has a specified size (volume) which contains a
certain amount of points. These points present in each voxel will be approximated with their
centroid, and thereby reducing the amount of points in the cloud. Choosing the voxel centroid
instead of the voxel center as an average gives a more accurate representation. There are other
alternatives for down-sampling a point cloud, for example random sampling of points, but
those methods to not give the accuracy benefit like the voxel grid filter does (PCLvoxelgrid).

2.3.2 Passthrough filter

A passthrough filter is a very simple filter which cut off values along a specified dimension
(according to the camera coordinate system), inside or outside a given range. This is a very
fast filter that can remove large outlier noise as well as removing for example the floor from a
point cloud.

2.3.3 Outlier removal filter

3D point clouds are often prone to noise measurements, especially outliers which corrupt the
results. A version of an outlier removal filter is the statistical outlier removal filter, which
performs a statistical analysis on each points neighborhood, and trimming the points that
do not meet a certain criteria. The sparse outlier removal is based on the computation of the
distribution of point to neighbor distances in the point cloud. For each point, the mean distance
from the point to all neighbors are computed. It is assumed that the resulted distribution is
Gaussian, with a mean and standard deviation. All points whose mean distances are outside a
predefined interval defined by the global distances mean and standard deviation are removed
and considered as outliers (PCLoutlier).

2.3.4 Fast Bilateral filter

The bilateral filter is a nonlinear filter that smooths a signal (removes noise) while preserving
strong edges and is commonly used in 2D image processing. Paris and Durand (2006) proposed
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a fast bilateral filter in 2006 in higher dimensional space (3D point clouds) expressed as a
convolution followed by nonlinear operations:

linear : (w7 Wb = 9(0s,0r) @ (Wi, w) (2.3)
bf L.)ibf I
nonlinear : Izb,f =Y (p,bfp)l (p, 1) (2.4)
w®! (p, Ip)

The parameter o is the size of the spatial neighborhood per point, and o, controls how much
an near lying point is down-weighted due to intensity difference. The functions w®/i®/ and
wb! (equation 2.3) is evaluated at a point (p, Ip), and that operation is called slicing. The
second equation (2.4) is the division, which in this case slicing and dividing commutes since
the result is independent of their order due to gos, o,) is positive and w values are 0 and 1,
which ensures that w®f is positive.

2.3.5 Segmentation and Clustering

Processing and storing large point cloud data is often the biggest bottleneck of a 3D processing
system. In a general manner, given a point cloud P; with less points than a point cloud P,
processing P; will take less time and be more efficient.

The concepts segmentation and clustering are very similar, especially when used together to
achieve a goal (hereby referred to as segmentation). Segmentation is the process of breaking
apart a point cloud into two or more groups of points, which is called clusters. This gives
the advantage of processing each cluster independently of each other, reducing processing time
and ignoring other parts of the cloud. A simple example of how segmentation works, given a
cloud containing a table with 2 different parts on top, the result will give 3 different clusters:
the table, part 1 and part 2.

Segmentation can be achieved by a variety of methods:
e FEuclidean: using distance between points.
e Conditional euclidean: using distance between points including custom requirement.
e Region growing: using normals and curvatures.
e Color: using RGB data.
e Model fitting: Random Sample Consensus (RANSAC).

In this thesis, the object to be detected is located on top of a table and the goal of the seg-
mentation is to create a cluster of the object and remove the surroundings. The most common
way of creating a cluster of a table is using model fitting. Most model fitting algorithms are
based on RANSAC (Martin A. Fischler, 1981), which is an iterative method to determine if a
part (in this case, something in the cloud) fits a certain mathematical model, for example a
plane, sphere or circle. The plane fitting RANSAC algorithm is as follows (Konstantinos G.,
2010):
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Algorithm 1 RANSAC plane fitting

1: Select randomly three non-collinear unique points (needed for mathematical plane model).
2: Use the three points to solve the parameters for the plane model (ax + by + cz +d = 0).
3: Compute the distances from all p € P to the plane model.

4: Check if the distance d on all points p falls between a specified threshold 0 < |d| < |d;|, and
keep those points.

5: Repeat steps 1 through 4 until the best match of a plane is found (N times).

Once the table has been segmented through RANSAC, we can remove it from the point cloud,
making way for simple euclidean segmentation for the object. Euclidean segmentation checks
the distance d between two points and checks if the distance is within a specified maximum
distance d,,. If d < d,,,, both points are considered to be part of the same cluster. This process
is repeated until no new point can be added to the cluster.

2.4 Keypoints

Computing features (see Section 2.5) for every point in the point cloud requires a lot of com-
putation time, so it makes little sense to compute it for every point. Keypoints are distinctive
and repeatable points in the point cloud that are likely to be present in a point cloud regardless
of viewpoint, noise and time. Thus, computing features on keypoints allows efficient object
description and reduced error when estimating corresponding points.

A good keypoint detector should have the following properties:
e Sparseness - a small amount of the points in the cloud are keypoints.

e Repeatability - a keypoint should be found on multiple point clouds at a corresponding
location.

o Distinctiveness - the surrounding area around a keypoint should have a unique shape
that can be described by a feature descriptor.

An evaluation of keypoint detectors, from Filipe and Alex (2014), concluded that the Scale
Invariant Feature Transform (SIFT) yield the best scores in term of repeatability. SIFT was
originally developed for 2D images by Lowe (2004) and further derived for 3D in Point Cloud
Library (PCL) (Rusu and Cousins, 2011). The derivation to a 3D detector has been based
on replacing the role of the intensity of an pixel in the original 2D algorithm by the principal
curvature of a point within the 3D cloud (Hansch et al., 2014). Algorithm 2 gives a brief
overview over the major steps in the SIFT keypoint detector. SIFT keypoints are positioned
at the scale-space extrema of the Difference-of-Gaussian (DoG) function (equation 2.5).

D(x,y,z,aj) :G($7y72a0j+1) _G(x7y7z7aj> (2'5)

The Gaussian Scale-Space (first step of the algorithm) is created by filtering with a voxel grid
filter of different sizes and a blur filter by a radius search for each point, and then computing
the intensity as weighted average of the found neighbors. Further on, for each two adjacent
point clouds, a new DoG point cloud is computed. In this DoG point cloud, all of the resulting
points have the same position as in the involved point cloud, but their intensity value represent
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the difference of the intensity values of the original points. A point is marked as a keypoint
candidate if it has the lowest or highest DoG value among all its neighboring points. The
keypoint candidates are then examined for possible elimination if the local principal curvatures
of the intensity profile around the keypoint exceeds a specified threshold value.

Algorithm 2 SIFT Keypoint Detection

1: Create Gaussian Scale-Space.

2: Compute Difference-of-Gaussians.

3: Find keypoint candidates.

4: Remove keypoints in low curvature areas.

There is also a large amount of other notable keypoint detectors, such as:
o Harris (Harris and Stephens, 1988)
o Smallets Univalue Segment Assimilating Nucleus (SUSAN) (Smith and Brady, 1997)
o Intrinsic Shape Signatures (ISS) (Zhong, 2009)
o Uniform Sampling (Voxel Grid, see Section 2.3.1)
o Normal Aligned Radial Feature (NARF) (Steder et al., 2010)

2.5 Features

Applications that need to compare points in a point cloud require some characteristics and
metrics to be able to distinguish between geometric surfaces. This is where the concept of
features (also known as descriptors) has its role. To determine a feature of a query point in
a cloud p,, the information about the neighboring points PF¥ can be used to estimate a local
feature representation that captures the geometry of the underlying sampled surface around p,
(Rusu, 2010). Given a query point pg, a set of points nearby the query point P* = {p§...p5},
the concept of a neighbor is given as:

1P} — pylle < dim (2.6)

where d,,, is a specified maximum allowed distance from the query point to a neighbor, and
|| - ||z is an example L, Minkowski norm (other distance norms can be used). The number of
neighbors in P* can be limited to a value k, and the point feature can be described as a vector
function F that describes the local geometric information captured by P*, around Pq:

F(pg, P*) = {x1, 29, v3..0,,} (2.7)

where z;,7 € {1...n} is the dimension i of the resultant feature vector representation. Compar-
ing two different points p; and p2 results in comparing the point feature vectors I} and F3 in
some measure. Let I' be the comparing measure describing the difference between p; and p2,
and d the distance measure, then:

I =d(F, F) (2.8)
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The two points are considered to be similar if the distance d is close to 0, and considered
distinct if d is large.

A good point feature has the following properties:

e Rotation and translation in the point cloud should not influence the resultant feature
vector F'.

e The point feature should be resistant to varying sampling density.

e The point feature must retain the same or very similar values in its feature vector F' in
the presence of moderate noise.

The next sections will introduce some of the most common features used in registration (Section
2.6.1) and object detection (Section 2.7). An evaluation of feature descriptors were conducted
by Hansch et al. (2014), concluded that the Fast Point Feature Histogram (FPFH) and the
Signature of Histograms of Orientations (SHOT) are the best feature candidates available at
the time being.

2.5.1 Normals

The most common feature in 3D processing is the normal, which is used in most advanced algo-
rithms like rendering, making visibility computation, answering inside-outside queries, surface
reconstruction, etc (Mitra et al., 2003). Many different normal estimation methods exist, but
the simplest and most common one was proposed by Berkmann and Caelli (1994), which is
based on the first order 3D plane fitting. The normal estimation of a point on the surface
is approximated by the problem of estimating the normal of a plane tangent to the surface,
which in turn becomes a least-square plane fitting estimation problem in P* (Shakarji, 1998).
The plane is defined by two parameters,

x — a point on the plane

—

n — normal vector

where the distance from a point p; € P* is defined as d; = (p; — x) - 7. The values of x and
7. are computed in a least-square sense, so that d; = 0. Using

r=p=1 pi (29)

as the centroid of P¥, the solution for 7 is found by analyzing the eigenvalues and eigenvectors
of the covariance matrix C' € R3%3 of P*. The covariance matrix is expressed as

1 . L
C:%Z&(I)l—ﬁ)(pz—ﬁ)jﬂ, C’~vj:)\j-vj, i 6{0,1,2} (210)
=1

where ¢; represents a possible weight for p; (usually equals 1). C' is symmetric and positive
semi-definite, and its eigenvalues are real numbers (A\; € R). The eigenvectors ¥; form an
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orthogonal frame corresponding to the principal components of PEoIFO< N <\ < Ao, the
eigenvector Uy corresponding to the smallest eigenvalue A is therefore the approximation of
+7 = (ng, Ny, n.) or —ii (Rusu, 2009).

Even though estimating normals is extremely fast and simple to compute, they lack enough
detail to be used as a feature for matching since most point clouds will have many similar
normals regardless of neighboring points. Even though, they are often the foundation for or a
part of more advanced feature representations.

2.5.2 Point Feature Histograms

Point Feature Histogram (PFH) features are based on the relationship between k-neighboring
points and their estimated surface normals. In general, it attempts to estimate the best possible
surface variations by taking into consideration all the interactions between the direction of all
the k-neighboring estimated normals. The resulted hyperspace is thereby dependent on the
quality of the normal estimation step at each point (Rusu, 2009).

The first step in estimating the PFH is as mentioned estimating the surface normals. This step
can either be computed on demand, or as a prior on all points p; € P before estimating the
PFH. After the normals have been estimated, the next step is to compute the relative distance
between two points. Given two points, p; and p; along with their associated normals 73; and
1, a fixed Darboux coordinate frame is defined at one of the points (see Figure 2.1). For the
frame to be defined uniquely, given that ps is defined as the source point and ps as the target
point, we have that (Rusu et al., 2008):

if: arccos(i; - Pji) < arccos(#i;, Pji), Pji = Pj — Pis Pij = Pi — Pj

= p; i, = T
then {ps Pi, s = 1 (2.11)
Pt = pj. iy = 7

Ds = Dj 'fis =1
else e A
Pt =Pi, Tt =Ny

The selection of the source point p; is based on having the minimal angle between its associated
normal and the line connecting the two point. The Darboux frame is then defined as:

U= Ny

v:uxw (2.12)
Hpt—pSHQ

wW=1uXuv

Using the Darboux frame, we can express the difference between the two normals ng and ny
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by a set of angles as:

a=7""Nyg
¢:u.<Pt;Ps> (2.13)
0 = arctan(w - ng, u - M)

where the Euclidean distance d between the two points ps and p; is given as d = ||pt — ps||2-
This quadruplet, < «, ¢, 0, d >, is calculated for each point pairs in the k-neighborhood. In a k-
neighborhood P*, the number of quadruplets formed is k‘% with an theoretical computational
complexity of O(k?) (Rusu et al., 2008). This yields that the complexity of estimating PFH
on a point cloud dataset P with n points is O(nk?).

W=uUxV

Figure 2.1: A representation of the Darboux frame. (Rusu, 2009)

Figure 2.2 illustrates an influence region diagram of the PFH computation for a query point
(marked red) placed in the middle of a circle (sphere in 3D) with radius 7. The points pg1 to prs
are the k-neighbors and are located within the radius r. These points are fully interconnected
in a mesh structure.

Figure 2.2: Influence region diagram for PFH. (Rusu et al., 2009)

10
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The final PFH representation for the query point pq is a set of all quadruplets binned into a
histogram. Binning is done by dividing each features value range into subdivisions, counting
the number of occurrences in each sub-interval. Figure 2.3 shows an example of the PFH
feature at corresponding points, along with an comparison of histograms (Rusu et al., 2008).

— = e

Feature Histograms for Point Correspondences
2% : — —
Pl mP3
, ml mQ3
20

an

Ratio of points in one bin (%)

§ 10

Bins

f 1214 16 4 6 8 10

Figure 2.3: Point correspondences and histograms. (Rusu et al., 2008)

2.5.3 Fast Point Feature Histograms

From the previous Section, we have that the the theoretical computational complexity of the
PFH for a point cloud P with n points where k is the number of neighbors for each point
p € Pis O(nk?). For applications that require a fast computational time, computing PFH can
represent one of the major bottlenecks (Rusu et al., 2009).

Fast Point Feature Histograms (FPFH) is a simplified version of PFH that reduces the com-
putational complexity of the algorithm to O(nk), while preserving the power of PFH. The
simplification is done as following:

« For each query point pg, a set of tuples < «a, ¢, > is computed between the query point
and its neighbors (in the same way as in PFH). This is called the Simplified Point Feature
Histogram (SPFH).

e For each point, its k neighbors are re-determined, and the neighboring SPFH values is
used to weight the final histogram of the query point (FPFH, see equation 2.14).

11
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1¢&1
FPFH(py) = SPFH(pg) + — Y — - SPFH(py) (2.14)
k= wi

Figure 2.4: Influence region diagram for PFH. (Rusu et al., 2009)

In equation 2.14, wy, is the distance between the query point pg; and a neighboring point py
in a given metric space. Figure 2.4 presents the influence region diagram for the FPFH, and
illustrates the weighting and how the simplification has affected the diagram compared to
Figure 2.2.

Differences between PFH and FPFH (Rusu, 2009):

e FPFH does not create a fully interconnected mesh structure of all neighbors, and thereby
miss some value pairs that could contribute to capture the surrounding geometry more
accurate.

« PFH models a precisely determined surface around the query point p, inside the sphere
radius r. FPFH includes additional point pairs outside this radius.

e Due to the re-weighting, FPFH combines SPFH values and re-captures some of the point
neighboring value pairs.

e The computing complexity is greatly reduced with FPFH, making it viable for use in
real-time applications.

2.5.4 Signature of Histograms of Orientations

An evaluation of existing feature descriptors by Tombari et al. (2010) led to the conclusion
that one of the major problems of the ones evaluated is the definition of a single, unambiguous
and stable local coordinate system at each reference point. Based on this evaluation, the
authors suggested a new local coordinate system along with the Signature of Histograms of
Orientations (SHOT).

12



CHAPTER 2. 3D COMPUTER VISION 2.5. FEATURES

Algorithm 3 gives an overview over the computational steps for the SHOT feature at a reference
point p,.. The computation of the local coordinate system at p, is done through steps 1 to 3.
Given n neighbors p; around a reference point p,, the weighted covariance matrix C' is given
as:

n

C =230 ~llpi~pell) - (01— pr) - (s — )" (215)

i=1
where r is the spherical neighborhood radius.

The local coordinate system at p, is then defined by decomposition of eigenvalues to create
three orthogonal eigenvectors from the covariance matrix. The eigenvectors, v1,vo and vg, are
sorted in an decreasing order by their corresponding eigenvalue, representing the x—, y— and
z—axis. The direction of the X-axis is given by the orientation of the vectors from p, to the
neighboring points p;, as:

if —| < |SF
—vy, otherwise
where
Sy =A{pilpi —pr) -v1 >0

S, =A{pillpi — pr) - v1 <0}

The direction of the Z-axis is determined in the similar way as the X-axis, and the Y-axis is
determined by the cross product between X and Z (Z x X).

The final local coordinate system is used as a basis to divide the spatial environment of p, with
an isotropic spherical grid (Step 4 in Algorithm 3). Further on, on each point p; in a cell, the
angle (; = p; - pr is computed between the normals of the point p; and p,. The local distribution
of angles is subsequently described by one local histogram for each cell (Hansch et al., 2014).
Given a spherical grid that contains k different cells with local histograms and each histogram
contains b bins, the final histogram will contain k- b values. Figure 2.5 illustrates the structure
for the SHOT feature.

;:_'li[' -

Figure 2.5: Signature structure for SHOT. (Tombari et al., 2010)

13
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There also exist a SHOT-Color version (Tombari et al., 2011), that combines the SHOT feature
with color information. In this version, each cell in the spherical grid contains two local
histograms, one for the angle between the normals (as explained above) and one histogram
which consists of the sum of absolute differences of the RGB values between the points.

Algorithm 3 SHOT feature

Create a weighted covariance matrix of neighboring points.
Extract the eigenvectors of the weighted covariance matrix.
Reorient the eigenvectors to build a local coordinate system.
Create a spherical grid.

Create histograms for the grid cells.

Group the cell histograms to point histograms.

2.5.5 Viewpoint Feature Histogram

The Viewpoint Feature Histogram (VFH) is related to the FPFH feature, and was introduced
by Rusu et al. (2010). The main difference between the VFH feature compared to the ones
mentioned above, is that VFH is known as a global feature. A global feature is estimated for a
whole cluster to represent an object, not for individual points. The VFH feature contains two
main parts:

o A viewpoint direction component.

e An extended FPFH component.

The viewpoint direction component is computed by finding the objects centroid, which is the
point that results from averaging the X-, Y- and Z-coordinates of all the points. The second
step is to compute a vector between the centroid point and the viewpoint (position of the
3D camera), and normalize it. The final step is, for all the points in the cluster, to calculate
the angle between this vector and their normal. The final result is binned into an histogram.
When computing the angle, the vector is translated to each point to make the feature scale
invariant.

The extended FPFH component is computed in the same way as explained in Section 2.5.3, with
some variations. It is not computed for all the points in the cluster, but only for the centroid.
The computed viewpoint direction vector is used as the normal, with all the surrounding points
in the cluster as neighbors.

Figures 2.6 and 2.7 illustrates the VFH cluster as well as the extended FPFH representation.

14
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W=UxV

Figure 2.7: The extended Fast Point Feature Histogram representation. (Rusu et al., 2010)

2.6 Alignment

This Section will give an introduction of how to take advantage of processing methods (Section
2.3, keypoints (Section 2.4) and features (Section 2.5) for aligning point clouds.

2.6.1 Registration
The problem of aligning two or more clouds to create a complete model is known as registration.
The goal of registration is to find the relative positions and orientations of the separately

acquired views in a global coordinate framework, such that the intersecting areas between then
overlap perfectly (Rusu et al., 2008). Figure 2.9 gives an rough overview of how to register two

15
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clouds, Cloud 1 and Cloud 2. The first three steps involve the acquiring of point cloud data,
estimation of keypoints and feature descriptors (Explained in the previous sections).

The next step is then to find correspondences from the set of feature descriptors together
with their XYZ-positions in the two clouds, based on the similarities between the features
and positions. The set of correspondences is found by performing a k-nearest neighbor search,
from a kD-tree search algorithm. In an ideal world with a 3D-camera that will give perfect
data each time, estimation of correspondences will always give point-to-point correspondences.
This is unfortunately not the case, and correspondence estimation in noisy data will give
false correspondences. False correspondences contribute in a bad way towards transformation
estimation and thereby needs to be handled in some way.

Rejection of false correspondences can be done in multiple ways, where 4 of them are illustrated
in Figure 2.8. A list of available rejection methods is as follows:

e Rejection based on distance.

e Rejection based on median distance.

e Rejection based on pairs with duplicate target matches.
e Rejection based on normals.

e Rejection based on surface boundaries.

e Rejection based on RANSAC.

Most of these rejection methods are trivial and thereby it is advised to use a combination of
at least two methods to yield a good result (Holz et al., 2015).

Pi
(d)

Figure 2.8: Correspondence rejection methods. Rejection based on distance between points
(a). Rejection based on normals (b). Rejection based on duplicate matches (c). Rejection
based on boundary points (d). (Holz et al., 2015)
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The final step in the registration process is to estimate a rigid transformation based on the
remaining good set of correspondences between the two clouds. The two common methods to
estimate a transformation is:

o Singular Value Decomposition (SVD)
o Levenberg-Marquardt (LM)

The big difference between these estimation methods is that the LM estimation use an iterative
approach, whereas the SVD method use a closed-form solution based on the singular value
decomposition of a covariance matrix of the data. This means that unlike the iterative approach
(LM), SVD provides the best possible transformation estimation in a single step, and is thereby
preferred.

Cloud 1 Cloud 2
Data acquisition & Data acquisition &
preprocessing preprocessing
2 v
[ Estimate Keypoints ] [ Estimate Keypoints ]

A4 A4
Estimate feature Estimate feature
descriptors descriptors

L )

Correspondence
estimation

v
Reject bad
correspondences
\ 4

Transformation
estimation

Figure 2.9: The registration process.

2.6.2 Iterative Closest Point

In most cases, the registration process explained in Section 2.6.1 require some form of refined
alignment after the transformation estimation step. We often denote the transformation esti-
mation as the initial alignment, followed by a method for final alignment. The Iterative Closest
Point (ICP) method is an iterative approach for aligning data and was introduced by Chen
and Medioni (1992). The ICP algorithm has two data inputs (point clouds), target and source,

17
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which has either been initially transformed (from Section 2.6.1) or has an initial guess for the
transformation between them. The aim for ICP is to find the best transformation between two
datasets by minimizing the distance between corresponding points. This is done by iteratively
estimating the optimal transformation by generating pairs of corresponding points and mini-
mizing an error metric. Since the process is iterative, this procedure is continuously repeated
until its error metric reaches a local user chosen minimum (Rusinkiewicz and Levoy, 2001).

The ICP algorithm have many different variants, but the main approach for every variant can
be summarized in six steps (Rusinkiewicz and Levoy, 2001):

1. Selection of some set of points in one or both datasets.
Matching these points to samples in the other dataset.

Weighting the corresponding pairs appropriately.

- W

Rejecting certain pairs based on looking at each pair individually or considering the
entire set of pairs.

5. Assigning an error metric based on the point pairs.
6. Minimizing the error metric.

Given the two datasets, target (D) and source (M), the ICP algorithm aims to find the trans-
formation consisting of a rotation R and a translation ¢, which minimizes a cost function. The
cost function is given as (Nuchter et al., 2006):

|M| | D]

B(R,8) =Y 3 wiyllmi — (Rd; + 1)| (2.18)

i=1j=1
where w; ; is assigned 1 if the i-th point of M describes the same point in space as the j-th
point of D, otherwise w; ; is assigned 0.

In every iteration, the optimal transformation (R, has to be computed. Equation 2.18 can be
reduced to:

1 & )
E(R,t) x N;Hmi — (Rd; + t)]| (2.19)

M| —|D . .
where N = Z‘izll ZLZE wj j, since the correspondence matrix can be represented by a vector

containing the point pairs (Nuchter et al., 2006).

One of the most common variant of the ICP algorithm is the one based on Singular Value
Decomposition, based on the work of Arun et al. (1987). This variant minimizes equation
2.19, and the difficulty of the minimization is to enforce the orthonormality of the matrix R.
The new error function, E(R,t), is written as:

N
E(R,t) < Y |lm; — Rd;||” (2.20)
=1
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where t = ¢, — Rcy and

1N
Cn = lezlml, =5 Zdj (2.21)

The idea in this version is to decouple the calculation of the rotation R and the translation ¢,
using the centroids of the points belonging to the matching (equation 2.21).

2.7 Object detection

The previous sections has given an introduction into how simple point cloud processing can be
achieved, how features (descriptors) can be estimated on keypoints and how the registration
process can assemble a complete point cloud from multiple viewpoints. This Section will
explain the typical steps required to detect an object in a point cloud. These steps are often
referred to as the object detection pipeline.

Key Point Correspondence Absolute
Extraction Description Matching Grouping Orientation

ICP Hypothesis
Local Jpcl::Uniform Mpcl: :FPFHEstimation pcl .;earch pel: :Correspondence : : SampleConsensus Refinement Verification
Pipeline Sampling pcl: :SHCfl'Estj.rrBtion Grouping NbdelReglstratmn ‘ - -

Segmentation Description Matching Alignment

Figure 2.10: Proposal of a local and global recognition pipeline based on Point Cloud Library
(Aldoma et al., 2012).

There is no unique solution to a pipeline that will be the best solution in all scenarios, because
the pipeline will depend on the problem to be solved as well as the tools that are used.
Aldoma et al. (2012) suggested the pipeline in Figure 2.10, which is divided in two different
pipelines, local and global. The main difference between these pipelines is the descriptor used
for matching, where the local pipeline use local descriptors and the global pipeline use global
descriptors.

Most object recognition systems use one 3D camera to detect an object. This means that the
object to be detected is observed only from one viewpoint. The first step is then to train the
system, which in this case means creating a database of all the objects that are to be detected.
Each object in the database also needs to be captured from different viewpoints. This can be
done either by taking snapshots of the physical model from different viewpoints, from using
a rotating table, or by performing ray-tracing of a CAD-model. Ray-tracing is basically the
same as moving the camera around the object and taking snapshots, but it is done with a
virtual camera placed around the CAD-model.

The big difference between local and global descriptors are:
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» Local - Computed for individual points (keypoints).

e Global - Not computed for individual points, but for a whole cluster that represents an
object.

Looking at the global pipeline in Figure 2.10, the first step is segmentation. This is because
every object present in the captured scene must be split up in clusters. For each cluster, a
global descriptor has to be computed, to represent the entire object. The idea is then to match
each cluster towards every trained model in the system, and give that cluster a score. The
cluster with the best matching score will then most likely be the object that is present in the
scene.

In the local pipeline the process is almost identical, but it is instead based on local feature
descriptors. The last steps in both pipelines are somewhat similar, containing initial and final
alignment of the object model to the scene.

20



Chapter 3: Robotics

This chapter will give an introduction to basic kinematics. This includes how to achieve
transformation (rotation and translation), and different representation of orientation. The
chapter also explains the basics behind Robot Operating System (ROS).

3.1 Kinematics

A manipulator (robot) can be represented as a chain of rigid bodies (links) connected by means
of revolute or prismatic joints. The start point of the chain is constrained to a base, while the
end-effector is mounted on the end. The motion of the structure is obtained by composition of
the elementary motions of each link with respect to the previous one. In order to manipulate
an object in space, it is necessary to have a way of describing the end-effector position and
orientation (Siciliano et al., 2009).

3.1.1 Rotation matrix

A rotation matrix is a way of describing rotation (orientation) about an arbitrary axis in space
with respect to a reference frame. The 3x3 rotation matrices about axis X, Y and Z is given
below (Siciliano et al., 2009).

1 0 0
R.(y) =10 cosy —siny (3.1)
0 siny cosy

cosfp 0 sinf
R(B=| 0 1 0 (32)
—sinf 0 cosf

cosa —sina 0
R.(y) = | sinaw  cosa 0 (3.3)
0 0 1

Consider a point in vector coordinates
Pz

Pz
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which is located in a Cartesian coordinate system with respect to a reference frame. This
point can be rotated about an arbitrary axis by multiplying a rotation matrix with the point.
Consider the point p to be rotated by 45 degrees by its Z-axis (Siciliano et al., 2009).

cos4d —sindd 0 Pz
pr= | sindd cosdd5 0| | py (3.5)
0 0 1 Pz

3.1.2 Euler angles

Euler angles is a way of representing orientation of a rigid body. This is done by using a set
of three angles (Siciliano et al., 2009).

o=[o v o] (3.6)

The two most common sets of Euler angles are ZYZ angles and ZYX (roll, pitch, yaw) angles.
The RPY angle set originates from the nautical field. The resulting rotation from a RPY set
is obtained by the following sequence of rotation

» Rotate the reference frame by the angle ¢ about x-axis (yaw). Rotation described by
equation 3.1.

o Rotate the reference frame by the angle ¢ about y-axis (pitch). Rotation described by
equation 3.2.

o Rotate the reference frame by the angle ¢ about z-axis (roll). Rotation described by
equation 3.3.

which can be written as.
R(¢) = R.() Ry (V) Re(¥) (3.7)

R(¢) is a 3x3 matrix, which can be written as

Tl T2 T13
R= 1721 ra ro (3.8)
31 732 7133

The resulting inverse solution from R(¢) is given in two different sets of range for 9.

¥ in the range (—7/2,7/2):

o = Atan2(ra1,711)

¥ = Atan2(—rs1,\/r3y + 134 (3.9)

1/) = Atan2(r32, T33)
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¥ in the range (7/2,37/2):

Y = Atch(—rgl, —7“11)

¥ = Atan2(—rg1, —\/ 135 + 134 (3.10)

’QZJ = AtCLTLQ(—ng, —7’33)

3.1.3 Quaternions

Another way to represent orientation is the use of quaternions. The unit quaternion corre-
sponding to a rotation matrix R(f) can be represented as

q= m eR? (3.11)
where

n= cos(g) and €= ksin(g) (3.12)

n is called the scalar part of the quaternion, while € = [e; €, e€.]7 is called the vector part

of the quaternion. They are constrained by the condition n? + €2 + 62 + €, = 1, hence the name
unit quaternion (Siciliano et al., 2009).

The rotation matrix corresponding to a given quaternion is as follows:

2(772 + 63) -1 2(63661/ —nex)  2(ege + 7751/)
R(n,€) = | 2(exey +1me.) 2(0° +€2) — 1 2(eye. — neg) (3.13)
2(exer — 77€y) 2(eye. + ) 2(772 + 62) -1

The solution to the inverse problem to compute the quaternion corresponding to a given
rotation matrix (same as in equation 3.8 above) is:

1
n= 5\/7“11+7°22+7“33+1 (3.14)

sgn(rag — ro3)\/r11 — 22 — raz + 1
€= |sgn(ri3 —ra1)yra2 —rs3 —ru +1 (3.15)
sgn(reo1 — r12)\/133 — 111 — rog + 1

where sgn(z) = 1 for x > 0 and sgn(x) = —1 for x < 0. In equation 3.14 it is assumed
that n > 0, which corresponds to an angle v € [—-7 ], thus any rotation can be described
(Siciliano et al., 2009).
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3.1.4 Homogeneous transformation matrix

As explained above, it is necessary to describe both position and orientation for the end-effector
with respect to a reference frame. The position (translation) and orientation can be described
by the use of the 4x4 homogeneous transformation matriz. Consider two joints, joint 0 and
joint 1. The translation and rotation between the two joints is given as

RO 0
0 _ 1 P
AV = lOT 1] (3.16)

where R{ is the rotation from joint 0 to joint 1 and p{ is the translation (Siciliano et al., 2009).
3.2 Robot Operating System

Robot Operating System (ROS) is an open-source, meta-operating system for robots. It pro-
vides the common services of an operating system, including;:

o Hardware abstraction

e Low-level device control

e Implementation of commonly-used functionality
o Message-passing between processes

o Package management

ROS also provides the tools and libraries necessary for obtaining, building, writing and running
code across multiple computers. Currently, ROS only runs on Unix-based platforms, and is
primarily tested on Ubuntu and MAC OS X systems.

The ROS runtime graph is a peer-to-peer network of processes that are loosely coupled using
the communication infrastructure in ROS. The processes can either be running on a single
machine, or distributed across multiple machines (ROS). In every ROS system, one machine
has to run the ROS Master. The Master provides name registration and lookup to the rest of
the graph, and without the master, nodes are not able to find each other, exchange messages
or invoke services.

3.2.1 Nodes

A process in ROS is called a node, and serves a purpose of performing a task or computation.
Nodes are combined in the ROS graph and communicate with one another using topics and
services. A typical robot control system will consist of many different nodes. For example, one
node controls camera data acquisition, one node processes the camera data, one node controls
the robot motors, etc. This way of programming simple nodes that perform unique tasks
give the advantage of re-using nodes in multiple projects. Code complexity is also reduced in
comparison to a monolithic system.

Each node have a unique graph resource name to identify them to the rest of the system. For
example, /camera__pointcloud could be the name of the node that acquire a point cloud from
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the camera. A ROS node can either be programmed in C++4 or python. Running a node can
be done in the command line, for example as:

rosrun example_package example_ node

where rosrun is the command for running a node, example package is the package where the
node is located, and example node is the name of the node to be run.

It is also possible to start one or multiple nodes using the roslaunch tool. Roslaunch is specified
by a XML file that describe the nodes that should be run, parameters that should be set, and
other attributes. Starting a launch file can be done as follows:

roslaunch example_ package example xml.launch

where example _xml.launch is the launch file. The rest of the command is the same as in the
rosrun explanation.

3.2.2 Messages

Nodes communicate with each other by publishing messages to topics. A message is a simple
data structure, containing typed fields. Messages support the primitive data types (integer,
float, boolean) etc., as well as arrays of these types (ROSmessage).

3.2.3 Topics

Topics in ROS are named buses that nodes use to exchange messages. They have anonymous
publish/subscribe semantics, meaning that topics are decoupled from the nodes with regards
of information. Nodes are thereby not aware of who they are communicating with. Instead,
nodes that are interested in data subsribe to the relevant topic, and nodes that generate data
publish to the relevant topic. A topic can have multiple subscribers and publishers (ROStopic).

3.2.4 Services

The communication in nodes with the publish/subscribe model is a flexible communication
method, but its many-to-many one-way transport is not appropriate for request/reply interac-
tions. This is done in ROS by using services. A service is defined by a pair of messages, one
for the request and one for the reply. (ROSservice)

3.2.5 RViz

RViz is a powerful 3D visualization tool for ROS. In RViz, you can visualize robots, point
clouds and many other ROS related utilities. It is possible to tweak the standard version of
RViz to fit the users robot cell setup (ROSrviz).
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4.1 Programming

Some of the questions when starting this thesis was:
1. What programming language to use?
2. What kind of libraries are available?
3. Which operating system to use?
4. What kind of programming environment is best suited for this thesis?

When dealing with data from one or more 3D-cameras, most of the available libraries are based
on programming with C+-+. The most common and most developed library is the Point Cloud
Library (PCL). PCL is a very large open project, supported by engineers and scientists from
many different organizations all around the world. It is release under the terms of the 3-clause
BSD license and is open source software, meaning it is free for commercial and research use.

Regarding the operating system, this thesis focuses on two main parts, computer vision in 3D
and robotics. The small robot cell at NTNU IPK contains two KR 6 R900 sixx (KR Agilus)
robots. This robot cell is set up to be compatible with ROS. Thus, the natural choice became
combining PCL with ROS, by programming in C++ and using Ubuntu as the operating system.

There are many different programming environments that handles C++ development, but since
the work in this thesis would end up in a lot of testing and developing, creating a graphical
user interface (GUI) would make this easier. The most common C++ GUI development
environment is Qt Creator, which is a combination of a standard programming environment
together with a drag-and-drop GUI builder.

The one thing that really distinguishes developing in Qt compared to other environments is
the signals and slots. Signals and slots are used for communication between objects, which
can be somewhat compared with listeners in other frameworks. GUI components in Qt are
called widgets. Widgets have two main components, a C++ class and a graphical design. The
C++ class can contain both signals and slots (both in widgets and in a normal class). Signals
and slots are exactly what they are named, meaning that a signal can be connected to a slot.
In fact, a signal can be connected to multiple slots in different classes. The big advantage
with signals and slots compared to listeners is dealing with GUI programming. Figure 4.1
illustrates an example of signals connected to slots in a clock. The blue connection shows that
the updated(QTime) signal from the clock is connected to the setTime(QTime) slot on the
current time box. The red connection shows the valueChanged(int) signal from the set time
zone box connected to the setTimeZone(int) in the clock. Using this type of technique requires
zero lines of programming, as long as the widgets are implemented.
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Figure 4.1: Example of signal and slot between widgets (QtSignalSlot).

The idea was then to combine the powerful tools in PCL with ROS, and develop a GUI in Qt
allowing real-time testing of point cloud processing tools.

4.2 Practical setup

The small robot cell at NTNU IPK contains the following:
« 2x KUKA KR 6 R900 sixx (KR Agilus) robots
¢ 2x KUKA KR C4 compact robot controller
e 2x Stationary computers running Ubuntu
o 1x Siemens PLC

In between the two robots, there is a table, as can be seen in Figure 4.2. On top of the table
is where the object to be detected will be placed.

Both of the computers are running ROS on Ubuntu 14.04. One of them is running the ROS
Master and is connected to the robot controllers. This computer runs the node that handles the
communication between the robot controller and the ROS Master, and requires a high priority
from the underlying kernel in Ubuntu. Thereby, this computer runs a real-time kernel where
you can set the priority of the nodes to real-time. Programs running on real-time priority will
always have the highest priority in the scheduler.
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Figure 4.2: The small robot cell at NTNU IPK.

To be able to detect an object from all directions and reconstruct a point cloud of the entire
model, at least three 3D-cameras were required. The initial setup is illustrated in Figure 4.3,
which illustrates roughly where the cameras could be placed in the robot cell with regards to
the robots and the table.

Inside the robot cell there is mounted a rail bar system, in which the cameras could be mounted.
To get the cameras to point downwards with a desired angle, a sketch for a bracket to fit the
Kinects was made in SolidWorks. This sketch was further on 3D-printed and the cameras
could be mounted. Figure 4.4 shows how the model of the bracket. Notice the incline on the
mounting surface and the bottom of the bracket is drawn to fit a rail system.

The final placement of the cameras mounted on the custom brackets can be seen in Figure 4.5.
The locations correspond to what is shown in Figure 4.3.
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Camera 2

Robot 1 Robot 2

<— Camera 3

T

Camera 1

Figure 4.3: Tllustration of the placement of the cameras in the robot cell.

Figure 4.4: Drawing of the bracket to mount the cameras on.
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(c) Camera number three.

Figure 4.5: Overview of where the cameras are placed.
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4.3 Point cloud acquisition

Since the Kinect™is created by Microsoft, who also produce the operating system Windows,
the Kinect™software development kit is only available on Windows. Libfreenect2 is a driver for
the Kinect™v2, created by Xiang et al. (2016), that runs on Windows, MACOS X and Linux
(Ubuntu). The installation steps for this driver is found at https://github.com/OpenKinect/
libfreenect2. To make libfreenect2 compatible with ROS, Thiemo Wiedemeyer from the
University of Bremen has created a bridge between the libfreenect2 and ROS, called Kinect2
Bridge. Installation notes for this is found at https://github.com/code-iai/iai_kinect2.

Kinect2 Bridge creates a ROS node that publishes the output point cloud to a topic, so that
other nodes can subscribe to the camera output. Running the node is done by using the
roslaunch command in ROS, where you can set a number of parameters.. To be able to
distinguish the output from all three cameras, the node name has to be unique. This is done

by:

roslaunch kinect2_ bridge kinect2_ bridge.launch base_name:="cameral"

where base name is the unique name for the node. This will give the output topic the name
/cameral/sd/points. One notable aspect with the Kinect2 Bridge is that it has the option to
use an built in bilateral filter as well as a edge awareness filter. This means that the output
point cloud will have less noise and sharper edges.

4.3.1 Subscribing to a topic

Subscribing to a topic is done using the ros::NodeHandle class. As the class name indicates,
the ros::NodeHandle handles nodes with regards to communication. Subscribing to a topic
requires a callback method. This method runs each time the node handler is aware that new
data has been published on the topic. An example of how to subscribe to the point cloud topic
is as following;:

ros :: NodeHandle n;
n.subscribe ("/cameral/sd/points", 1, &QNode:: callbackMethod , this);

where "/cameral/sd/points" is the name of the topic to be subscribed to, 1 is the incoming
message queue size, ()Node is the class name of the node and callbackMethod is the name of
the callback method.

4.4 Main program

The objectives in this thesis requires an implementation of different algorithms and filtering
methods. A main program (ROS node) was created with the following properties:

e A graphical user interface.
e Being able to visualize a point cloud.
o Being able to show a resulted point cloud after filtering/manipulation.

e Saving and loading point clouds to the visualizer.
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o Easy testing of filtering parameters.

o Easy testing of algorithms and objectives of this thesis.
e ROS communication, controlling robots.

e Logging

To distinguish the ROS part, the GUI part and the filtering/manipulation part, three different
classes were implemented, one for each part. This was done by following the typical object
oriented programming rules, where each class has its own responsibility. The ROS class and
the GUI class is also running as separate threads, so that ROS communication can run in
the background, not being disturbed by other computational tasks. The coupling between the
classes were also created in such a way that they are easy expandable, especially the filtering
class.

4.5 Camera calibration

One of the objectives in this thesis was to create a system for calibration of the extrinsic pa-
rameters of a multiple camera setup. This calibration system should be flexible, meaning that
a camera could be placed at any location inside the robot cell. This is one of the require-
ments to be able to reconstruct a full model from different viewpoints in a point cloud. The
extrinsic parameters of a camera is a homogeneous transformation matrix, which usually is
the transformation from the camera frame to the world coordinates. In the camera setup show
in Figure 4.3, Camera 1 is chosen as the master camera. The master camera is used as the
main reference to the other cameras. This means that the calibration system needs to find the
transformation matrices from Camera 2 and Camera 8 to Camera 1.

The extrinsic parameters can be found in different ways. One way is measuring the distance and
rotation between the cameras manually, but this is a very primitive method and will probably
give wrong transformations. Another way is translating and rotating the output point clouds
manually to fit each other, taking advantage of a visualizer to see when the clouds fit each
other. This is also a primitive approach and it is not easy to achieve a good result. These two
methods can instead be used to estimate a rough transformation between the cameras as the
first step in an more advanced approach.

For this objective, the goal is to create a ROS node that performs calculation for the extrinsic
parameters for one or many cameras. Two main approaches will be tested:

1. Calibrate using the theory behind registration from Section 2.6.1.

2. Calibrate using Alvar, an open source AR tag tracking library.
4.5.1 Approach 1

From Figure 4.3, we see that the viewpoint of camera 2 is rotated 180 degrees and camera 3 is
rotated 90 degrees with respect to camera 1. This means that the surroundings in the points
clouds from all the cameras differ. This led to the idea that to be able to calibrate the cameras
using registration, the point clouds would have to be more comparable than the raw output,
by segmenting out the tabletop and use that part for the registration process. If the tabletop
is perfectly aligned, then the remaining parts of the clouds will also align.
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The steps to prepare the point clouds for the registration process is given in Algorithm 4.
From the main program (see Section 4.4) it is possible to subscribe to a point cloud topic from
the Kinect2 Bridge and save it to a file. The first step of Algorithm 4 is to capture three
point clouds from each of the cameras. The next three steps are the filtering and segmentation
steps to create point clouds of only the tabletop from the raw data clouds. The last steps is
estimating the features on the tabletops to prepare the point clouds for further registration.

Algorithm 4 Preparation for calibration with registration

Read three saved point clouds from the different cameras.

Filter all point clouds with a PassThrough filter for a rough filtering.
Down-sample all point clouds with a Voxel Grid filter.

Segment the tabletops from the filtered cloud.

Estimate normals for the tabletops.

Estimate keypoints for the tabletops.

Estimate descriptors (features) for the tabletops.

Algorithm 5 gives an overview over the next steps after the preparations for registration has
been done. This algorithm provides the extrinsic parameters from a camera n to camera 1.
The first step in the algorithm is to compute the correspondences between the point cloud
from camera 1 (master camera) and camera n (camera 2 or camera 3 in this case). This set of
correspondences will have false correspondences and therefore one or more rejection methods
are used. After rejection, the set of good correspondences are used to estimate a transformation
from camera n to camera 1. This estimated transformation is used to transform the point cloud
so that both point clouds are initially aligned. The final step is to refine the alignment process
using Iterative Closest Point (ICP).

Algorithm 5 Calibration through registration

Compute correspondences between the point cloud from camera 1 and camera n.
Reject bad correspondences.

Estimate a transformation based on the good correspondences.

Transform the point cloud based on the estimated transformation.

Perform a refined alignment using ICP.

Save the transformation matrix (extrinsic parameters).

4.5.2 Approach 2

The second approach to calibrate the extrinsic parameters of the cameras is based on taking
use of a ROS package called ar_track alvar, which is a ROS wrapper for Alvar, an open source
Augmented reality (AR) tag tracking library. An AR tag can be related to qr-codes. The AR
tag tracking library has 4 main functions:

1. Generate AR tags.
2. Identify and track the pose of individual AR tags.

3. Identify and track the pose of a bundle of AR tags.
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4. Using camera image to automatically calculate spatial relationships between tags in a
bundle.

The idea in this approach is to attach AR tags to the tabletop and track them from each
camera. Tracking can either be done using an individual tag, or a bundle of tags. A bundle of
tags can allow for more stable pose estimates, is robust to occlusions and can track multi-sided
objects.

Generating an AR tag is done by running a node called createMarker. In this node you can
specify size, resolution and give the tag a unique ID (to be able to distinguish them). Figure
4.6 shows 3 different AR tags generated by the createMarker node, with ID 0, 1 and 2.

Figure 4.6: Examples of different AR tags.

This library also works with a 2D camera, but the depth information from a 3D camera is
integrated for better pose estimates.

Individual tracking

Tracking an individual AR tag only requires one AR tag to be attached to the table. This
approach is susceptible of occlusion errors and it can be difficult for a camera to detect the tag
at large distances. Tracking the tag is done by running a user specified ROS launch file, for
example:

roslaunch ar track alvar cameral.launch

where cameral.launch is the ROS launch file. This file needs to be specified to subscribe to
the correct camera topic and what size the AR tag to be tracked is.

Bundle tracking

Tracking a bundle of AR tags requires two or more tags to be attached to the table. Tracking
the bundle of tags is done in the same way as for individual tracking, with one exception.
Together with the launch file, the tag bundle has to be specified by an XML file that lists a
set of tag IDs and their positions relative to the master tag. The first tag in the XML file is
chosen as the master tag. The master tag defines the coordinate system for the rest of the
tags. This means that if a camera is able to track any of the tags in the bundle, the tracking
system knows where the master tag is located. Figure 4.7 shows an example of a XML bundle
file.
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<multimarker markers="4">

<marker index="8" status="1">
<corner x="-2,2" y="-2.2" z="8" />
<corner x="2.2" y="-2.2" z="@" />
<corner x="2.2" y="2.2" z="0" />
<corner x="-2.2" y="2.2" z="@" />

</marker>

<marker index="9"
<corner x="6.8" y="-2.2" z="@" />
<corner x="11.2" y="-2.2" z="8" />
<corner x="11.2" y="2.2" z="@" />
<corner x="6.8" y="2.2" z="0" /»

</marker>»

status="1">

<marker index="18" status="1">
<corner x="-2.2" y="-11.2" z="@" />
<corner x="2.2" y="-11.2" z="8" />
<corner x="2.2" y="-6.8" z="@" />
<corner x="-2.2" y="-6.8" z="8" />
</marker>

<marker index="16" status="1">
<corner x="-2.2" y="6.8" z="@" />
<corner x="2.2" y="6.8" z="0" />
<corner x="2.2" y="11.2" z="@" />
<corner x="-2.2" y="11.2" z="8" />
</marker>

</multimarker>

Figure 4.7: XML file that specifies a bundle of tags with ID 8, 9, 10 and 16, where 8 is the
master tag.

Extrinsic parameters

The ar__track__alvar topic (both individual and bundle) outputs a topic named ar_pose__marker.
This topic contains a message with information about which camera the output comes from, as
well as a pose defined by the X-, Y- and Z-coordinates and the orientation given in quaternion
of the tag. The full content of the message can be seen in Figure 4.8.

To decode this message, a ROS node was implemented that subscribes to this topic, extracts
the data from the published message and creates a homogeneous transformation matrix. Since
the message has the pose orientation given in quaternions, the quaternions were converted into
roll, pitch and yaw values to create a rotation matrix. This has to be done for each camera,
which will result in 3 different transformation matrices, from camera n to the tag. Knowing
this transformation for all cameras, we can also find the transformations between the cameras.
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std_msgs/Header header
uint32 seq
time stamp
string frame_id
uint32 id
uint32 confidence
geometry msgs/PoseStamped pose
std_msgs/Header header
uint32 seq
time stamp
string frame_id
geometry_msgs/Pose pose
geometry_msgs/Point position
float6d x
float6d y
float6d =z
geometry_msgs/Quaternion orientation
float6d x
floated y
float6d z
float6d w

Figure 4.8: The ar_track alvar message declaration. The bottom of the message contains the
pose information, position and orientation.

4.6 Registration

As explained in Section 4.5.1, registration can be used as a tool for extrinsic camera calibration.
Registration in general, can also be a very powerful tool in other types of applications, like
indoor and outdoor mapping of large areas. For example, reconstructing a point cloud of an
entire factor by capturing point clouds from a large amount of viewpoints. This can be a
tool for experimenting with new machinery, designing new solutions etc. without the need of
measuring and drawing the entire factory.

For a large-scale application like the example given, the Kinect (or in general, a 3D-camera)
may not be the suited sensor. A large amount of 3D-scanners are available with a very large
range and little noise compared to the Kinect. Regardless of the sensor, the registration process
is still the same. The set of algorithms presented in Section 4.5.1 are created with the intention
on solving one specific problem. Therefore, a more general approach were implemented in the
main program. The general approach is given in Algorithm 6. The tests were done with
one Kinect placed in the middle of the office room, taking many snapshots while rotating the
Kinect.
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Algorithm 6 Registration in general

Down-sample with a Voxel grid filter.

Estimate normals.

Estimate keypoints.

Estimate descriptors (features).

Compute correspondences between the n-th and (n+1)-th point cloud.
Reject bad correspondences.

Estimate a transformation based on the good correspondences.

Transform the (n+1)-th point cloud based on the estimated transformation.
Perform a refined alignment using ICP.

4.7 Object detection

Section 2.7 introduced two well known object detection pipelines, based on local and global
feature description. In both pipelines, it is assumed that the point cloud is captured from
a single viewpoint. From a single viewpoint, only a excerpt of the entire model is shown.
Detecting that excerpt part requires a training database, often up to 100 different models,
from different viewpoints to be able to match the output of the camera. Training can be done
either by ray-tracing or taking multiple pictures using a rotating table.

The objective in this thesis however, is to use the output from multiple cameras. By combining
the information from multiple cameras, it is possible to remove the downside of only being able
to see an excerpt of the entire model. Since the final output contains the entire model, there
is no longer the need of a training database. Only one model is needed to match the output
from the cameras.

As mentioned in Section 2.5, we categorize feature descriptors as local or global, where the local
is estimated for each point in the cloud and the global is estimated for a whole cluster. The
global feature descriptor also has a viewpoint direction component, derived from ray-tracing.
Since the combined data output from the cameras yield a fully reconstructed model, the view-
point component of the feature is not needed. This led to the proposed object recognition
pipeline for a multiple camera setup being based on using local feature descriptors. This type
of feature descriptors does not have a viewpoint component.

Figure 4.9 gives an overview over the major steps in the proposed object recognition pipeline.

Reconstruct Extract q .
model from reconstructed KE:tm;iar::s Esgge::tg fte:rt:re Matching Alignment
mutliple cameras model from table yP P

Figure 4.9: Proposed object recognition pipeline for a multiple 3D-camera setup.

The first step of the proposed object recognition pipeline is to use the results from the extrinsic
camera calibration (from Section 4.5) to reconstruct an entire model for the entire scene from
multiple camera viewpoints. This is done by transforming the point clouds from camera 2 and
camera 3 to the same viewpoint as in camera 1.

38



CHAPTER 4. METHOD 4.8. ROBOTICS

The next step is to extract the object cluster from the reconstructed scene. This can be
achieved by a combination of filtering methods. First, a passthrough filter is used to remove
most points of the point cloud besides the table and its content. The next step is to use planar
segmentation to remove the tabletop, and use cluster extraction to extract the object to be
detected.

After the object cluster is extracted from the full scene, we want to match that cluster towards
the an imported CAD model that has been converted to a point cloud. To be able to match
the two clouds, local feature descriptors are estimated at keypoints in both clouds.

The matching process is similar to the one in registration. First, correspondences are found
between all feature descriptors. A combination of correspondence rejection methods are used
to reject bad correspondences between points. Finally, alignment is achieved by estimating a
transformation based on the good correspondences. A refined alignment is done using ICP.

4.7.1 Experimental setup

To be able to test the proposed object recognition pipeline using multiple cameras, the object to
be detected was placed on measured locations on the tabletop. These measured locations were
measured relative to the master AR tag, described in Section 4.5.2. Regardless of the extrinsic
calibration method, the AR tracking method has to be used to know the transformation from
the main camera to the table. When moving the robot to the desired location, we need to find
the location of the object relative to the world or robot coordinate frame.

4.8 Robotics

As mentioned in Section 4.2, the real-time computer in the robot cell is running as the ROS
master. Here, the ROS node that handles the communication towards the robot controllers
are running. This node provides three different ROS services (for each robot):

e Service for planning a robot pose.
e Service for moving the robot to a pose.
e Service for opening and closing the end effector gripper.

These services were implemented as an extension on the previously developed node in collabo-
ration with fellow students working in the same robotic cell. Creating services for planning and
moving the robot allows faster and easier testing, and can easily be reused in future projects
at NTNU. There was also no current implementation of gripper manipulation available in the
robot cell in ROS. The services for planning and moving the robot requires pose information,
which is the X-, Y-, and Z-coordinates as well as rotation in roll, pitch and yaw relative to the
world coordinates. The ROS class in the main program sets up a connection to each of the
total six services at start-up. To specify the pose values to send to the service, input boxes
were implemented in the GUI class, as well as buttons to plan a pose and move to a pose.

When starting the ROS node that communicates with the robot controller, a predefined setup
of RViz starts up, that visualize the robots position in real-time. In this RViz window it is
possible to see where the robots position will be when calling the planning robot pose service.

39



4.8. ROBOTICS CHAPTER 4. METHOD

Visualizing robot movements is a good tool to prevent the robots to go to a pose that can be
dangerous for the surrounding environment and itself.
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5.1 Main program

The final main program graphical user interface (GUI) is shown in Figure 5.1. It is divided
into two main parts, the visualization part (left side) and the manipulation panel (right side).
The left side contains three parts, on top it is possible to subscribe to a published point cloud
topic, and the two large visualizers are point cloud visualizers. The visualizer on the left side
is the "main" visualizer that shows raw-data, and the visualizer on the right side shows a point
cloud that has been manipulated in some matter (filtering, normal estimation, etc.).

The right side of the GUI consists of a detachable manipulation panel. Detaching the panel
increases the size of the visualizers, which was a nice gimmick to have when using two monitors.
The manipulation panel consists of four tabs:

o Filters
e Log
e Tester
« Move Robots
In the filter tab it is possible to:
e Add a saved point clouds to the main visualizer.
e Save a filtered point clouds.
e Reload a filtered point cloud to the main visualizer.
e Filter the current point cloud in the main visualizer.

Selecting a filter from the drop-down list will update which parameters are available on that
current filter. In Figure 5.1, raw-data from the robot cell (from one camera) is shown in
the main visualizer, and the same point cloud filtered by a Voxel Grid filter is shown in the
right visualizer. There is also implemented a "Auto Filter" check-box. When this check-box
is checked, the currently selected filter will automatically run and update point cloud on the
right visualizer when adjusting the filter parameters. Figure 5.2a shows an excerpt of the filter
tab with the current filter being the passthrough filter.

When testing new filter combinations, it is often common to forget which parameters the last
filtering methods had. The log tab (shown in Figure 5.2b) creates a log of which filter was
used and what parameters were used. This log updates each time the filtered cloud is reloaded
to the main visualizer.

The tester tab in Figure 5.2c was created as a free space in the GUI to add tester buttons for
testing different approaches for objectives for this thesis.
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App
Manipulation Panel ®

Refresh topics Subscribe

Filters | Log Tester Move Robots

Filter VoxelGrid
Leaf size: | 0.020

Auto Filter Compute filter

MEANZ Reload filtered Cloud

Add PointCloud Save filtered Cloud

Quit

Figure 5.1: The graphical user interface of the main program.

The last tab, shown in Figure 5.2d, is the move robots tab. As you can see, there are input
boxes for the robots position and orientation. At the top it is possible to choose between the
two robots in the robot cell, Agilus I and Agilus 2. Pressing the Plan button will call the
planning service and visualize the planned motion in RViz. The Mowve button will move the
robot to the selected position and orientation.

The source code for the main program can be found in Appendix C, and on GitHub at https:
//github.com/sindreraknes/qt_master. In Appendix C, the graphical user interface class,
main_ window.cpp and main__window.hpp, is not included, but can be found in the digital
appendix.
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Manipulation Panel ®

Filters | Log Tester Move Robots

Filter | Passthrough =
Minimum: |0,000 - _O
Maximum: | 0,000 - _O

P —,

["] Auto Filter | Compute filter

[] MEAN Z | Reload filtered Cloud |

| Add PointCloud | | Save filtered Cloud |

Quit |

(a) Filter tab.

Manipulation Panel ®

Filters = Log | Tester | Move Robots

| TESTER

| Load STL file
Model to match | boxHole =
Align/Match selected model | Align and Match |

Manual select model/cloud | Makch Model and Cloud |

| Quit |

(c) Tester tab.

Manipulation Panel ®

Filters Log | Tester Move Robots

VoxelGrid filter, Leaf size : 0.021
Passthrough filter, Min:-3 Max: 1.5 Field: x
Passthrough filter, Min:-1.9 Max: 0.9 Field: y

. Quit |

(b) Log tab.
Manipulation Panel ®

Filters Log  Tester | Move Robots

Robot: | Agilus1 =
X | 0,00 :
Y. | 0,00 :
z | 0,00 N
Roll: | 0,00 B
Pitch: | 180,00 N
Yaw: |-23,50 N
| Plan | | Move |

| Open Gripper | | Close Gripper

| Quit

(d) Move Robots tab.

Figure 5.2: Overview of all four different tabs in the manipulation panel in the main program
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5.2 Camera calibration
5.2.1 Approach 1

The major steps for this approach, using registration, was explained in detail in Section 4.5.1.
This approach was the first test conducted in this thesis, and at the time, the table was in front
of the two robots in the robot cell. One of the cameras was also placed on another location.
The idea of using the tabletop as the part to use registration on, required all the cameras to
see the whole tabletop. This can be seen in Figure 5.6.

The initial tests were done with a clean table with no objects on top. It was quickly discovered
that this approach led to a major problem. The registration algorithm were not able to
distinguish if the table was upright or upside down. This led to poor and unstable results,
which is not something that is wanted for a calibration program.

The next tests were performed with 3 sections of a 60mm outer diameter pipe with the same
length, placed on top of the table. The intention with using these pipes was to lure the system
into knowing the difference between a upright and upside down tabletop. Most extrinsic camera
parameter calibration tools use some kind of known object or feature. This approach led to
more stable results, but in some cases the results were the same as in the initial tests.

From Section 4.5.1, we introduced Algorithm 5. The first step in the algorithm was to estimate
the correspondences between the feature descriptors. The results are shown in Figure 5.3.
The figure illustrates the correspondences by drawing lines between the corresponding points.
Figure 5.3a shows the correspondences before a rejection method has been applied, and Figure

5.3b shows the correspondences after.

(a) Before correspondence rejection. (b) After correspondence rejection.

Figure 5.3: Correspondences before and after rejection between two tabletops.

The next step in the algorithm is to estimate a transformation based on the good correspon-
dences, shown in Figure 5.3b. The results of the transformation estimation for camera 2 and
camera 3 to camera 1 is shown in Figure 5.4. The red point cloud in the figures is the tabletop
seen from camera 1.
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) Camera 2 to camera 1, before estimation. ) Camera 2 to camera 1, after estimation.
) Camera 3 to camera 1, before estimation. ) Camera 3 to camera 1, after estimation.

Figure 5.4: Transformation estimation based on good correspondences.

As you can see in Figure 5.4, the transformation resulted from the correspondences is not
adequate. The final step in Algorithm 5 is to use Iterative Closest Point (ICP) to find a
refined alignment. Figure 5.5 shows the three tabletops before (Figure 5.5a) and after (Figure
5.5b) refined alignment.

The final extrinsic parameters (transformation matrices to camera 0) for camera 2 and camera
3 were found to be:

0.0282082 —0.663595 0.747609 —1.78142
ama | 0.710821  0.539209  0.451709 —0.752916

Teami = | 070284 0.518611  0.486936  0.616017 (5.1)
0 0 0 1
0.0354387 0.469684 —0.88216  1.7342

peams _ | —0.702385 0.639638 031234 —0.67222 5:2)

caml = | (710945 0.608531 0.352557 0.816263
0 0 0 1
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(a) Before refined alignment. (b) After refined alignment.

Figure 5.5: Refined alignment after transformation estimation.

These matrices were then used to reconstruct the entire scene, shown in Figure 5.6. The
coordinate systems in the figure is the camera optical frame. The Z-axis is blue (optical axis),
Y-axis is green and the X-axis is red.

Figure 5.6: The reconstructed scene after camera calibration with registration.

5.2.2 Approach 2

The second calibration approach, explained in Section 4.5.2, is based on tracking known fea-
tures (AR tags) in the point cloud. The table was moved in between the robots before the
testing of this approach were conducted. It was moved to give the robots a larger workspace.
One of the cameras, the one to the far left in Figure 5.6, was also moved to a location behind
the two robots.

Tracking the AR tags could be done either individually, or as a bundle. After the table and
one camera was moved, tracking a individual tag that could be seen from all cameras were
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challenging due to occlusion. Thereby, tracking a bundle was chosen as the main approach
here. A bundle of nine AR tags of the same size with different ID were placed on the table.
Figure 5.7 shows the AR tags placed at the table. The AR tags were place according to a
predefined XML file. The predefined XML file can be seen in Appendix A.

Figure 5.7: AR tag placement on the top of the table.

It was early found out that the published topic by ar_track alvar sometimes published a
position and orientation that were not optimal to use. To deal with this problem, the ROS
node created for calibration of extrinsic parameters took the average of a user chosen number
of measurements. This led to more stable results. Tracking the master tag and averaging 100
measurements for each camera, gave the following results:

—0.0324064  0.999472  0.00236665 —0.236723
0.701194 0.0244224  —0.712552 —0.589319

caml __
ng | =0.712233  —0.0214317 —0.701615 1.82195 (5-3)
0 0 0 1
—0.0369295 —0.99916  0.0177825 0.174928
eam? _ —0.592998  0.00758757 —0.805168 0.016518 (5.4)
tag 7| 0.8043570 —0.0402794 —0.59278 0.945164 ’
0 0 0 1
—0.999718 —0.0224201 —-0.007764 0.604796
eam3 _ —0.0040468  0.483571  —0.875296 —0.256756 (5.5)
tag ™1 0.0233787  —0.875018 —0.483525  2.14104 ’

0 0 0 1
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These transformation matrices were then used to reconstruct the scene, which is shown in
Figure 5.8, along with the camera positions.

The source code for the entire calibration program can be found in Appendix B, and on GitHub
at https://github.com/sindreraknes/calib_robot_cell.

Figure 5.8: The reconstructed scene after camera calibration with AR tags.

5.3 Registration

The result from the general registration approach can be seen in Figure 5.9. One of the things
discovered by testing the general approach, is that the point clouds to be pairwise registered
need to overlap around 50%. If the point clouds have little overlap, the general registration
approach often find very few good correspondences. This leads to poor transformation esti-
mations, which again can alter the results of ICP. Running ICP on two point clouds that are
distant from each other will in most cases fail. This is mainly due to the parameters set for
the algorithm, such as maximum distance between points. Taking into account the problem
on the other hand, gave good results.
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Figure 5.9: The reconstructed office room using a general registration approach with multiple
point clouds.

5.4 Object detection

Section 4.7 proposed a object recognition pipeline based on local feature descriptors. This
pipeline is somewhat similar to the local pipeline mentioned in Section 2.7. The experiments
were carried out by placing a box with a hole in one of the sides on known locations on the
tabletop. The box to be detected is shown in Figure 5.10, both the real box and the point
cloud version. These locations were relative to the master AR tag. The three locations used
for testing were (The Z-coordinate is known):

e Position 1: X:61,7cm Y:29,0cm
e Position 2: X:61,7cm Y:58,6cm
e Position 3: X:47,7cm Y:29,0cm

The following is the walk-through of one of the conducted experiments, with more detailed
results in the end of this Section. The first step of the pipeline was to reconstruct the scene
(model) from multiple camera viewpoints. This was, in the end, done by using the AR tracking
calibration system. A top view of the reconstructed model from the calibration system is shown
in Figure 5.11. As can be seen in the figure, all four sides of the box is reconstructed to a
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complete model, including the top of the box.

(a) Real box. (b) CAD model of box converted to a point cloud.

Figure 5.10: The box to be detected.

Figure 5.11: Top view of the reconstructed model.
The next step is to extract the object from the full scene. The resulted model from the

cluster extraction and plane segmentation combination is shown in Figure 5.12 (The points
are enlarged for visualization purposes).
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Figure 5.12: The extracted model from the full scene.

When the model is extracted from the scene, keypoints and local feature descriptors are esti-
mated on the CAD model point cloud (in Figure 5.10b) and the extracted point cloud model.
As in the registration approach, correspondences are estimated between the local feature de-
scriptors on each keypoint. Figure 5.13 shows the estimated correspondences before and after
correspondence rejection. The red part of the figure is the CAD model point cloud, and the
blue part is the full scene (the full scene is showing for visualization purposes).

o1



5.4. OBJECT DETECTION CHAPTER 5. RESULT

(a) Correspondences before rejection.

(b) Correspondences after rejection.

Figure 5.13: Correspondences before and after rejection.
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After the good correspondences has been found, the next step is to use the correspondences to
estimate a initial transformation from the camera frame (camera 1) to the object on the table.
The initial transformation was found to be (All translation vectors are given in meters):

—0.777476  0.103337  0.620365  0.0462748
peamt _ | —0.488611 —0.720208 —0.492372 —0.178851 (56)
object = | (395967 —0.685925 0.610506  1.39579 '

0 0 0 1

Transforming the CAD model point cloud using matrix 5.6 is shown in Figure 5.14. The CAD
model point cloud is colored red. As you can see in the figure, the initial transformation does
not give a perfect match.

Figure 5.14: Initial alignment based on the good correspondences.

Since the initial transformation does not match the CAD model point cloud to the recon-
structed model, an iterative approach is used to refine the alignment to a perfect match. The
results from running ICP after the initial alignment is shown in Figure 5.15. The refined
alignment adjusted the initial transformation from camera 1 to the object into:

—0.778044 0.0223296  0.627831  0.0337993
peaml _ —0.469738 —0.684281 —0.557794 —0.161939 (5.7)
object 1 0.417148  —0.728898  0.542885 1.39309 ’

0 0 0 1
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Figure 5.15: Refined alignment with Iterative Closest Point.

Now that the final transformation from the camera to the object is found, we want to find the
position in table coordinates (for the experiments) and in world coordinates (for the robots).
From the AR tag tracking, the transformation matrix from camera 1 to the master tag was
found to be:

—0.0324064  0.999472  0.00236665 —0.236723
peamt _ | 0701104 0.0244224  —0.712552 —0.589319
tag = | _0.712233 —0.0214317 —0.701615  1.82195

0 0 0 1

(5.8)

By using basic kinematic knowledge, the transformation from the master AR tag to the object
is:

tag  __ - caml caml
Tobject = mverse(ng ) * Topiect (5.9)

—0.601271 0.0386085 —0.798129 0.596359

i |-0.T98045 0.0212276  0.602241 0290008 (5.10)
object = | 0.0401938  0.999045 0.0180465 —0.002995 '
0 0 0 1

To be able to find the objects coordinates in the world coordinate system, the transformation
from the world coordinate system to the master AR tag was needed. The world coordinate
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system is located on ground level in the middle of the robots. Measuring the distances from
the world coordinate system to the master AR tag gave the following transformation matrix
(No rotation, meaning identity matrix for the rotation part):

1 0 0 —0.084

tag |0 1 0 —0.292
Tworld “ 1o 0 1 0.87 (511)

0 00 1
The objects position in the world coordinate is then given by:
Tyortd — Teertd . 7ies (5.12)
—0.601271 0.0386085 —0.798129 0.512359
pworld _ —0.798045 0.0212276 0.602241 —0.00199163 (5.13)
object = 10.0401938  0.999045  0.0180465 0.867005 '

0 0 0 1

The final results is shown in Figure 5.16. In this figure you can see the CAD model object
placed in the correct position, and coordinate systems for the object origin, AR master tag
and world (seen under the table).

The final pose message that the robot needs to go to a position requires as explained earlier,
X-, Y- and Z-coordinates along with angles described by roll, pitch and yaw. From the theory
in Section 3.1.2, the roll, pitch and yaw angles from matrix 5.13 becomes:

» = 89.91° (roll)
¥ =-23° (pitch) (5.14)
P = —127.06° (yaw)

and the positions extracted from matrix 5.13:

X = 0.512m
Y = 0.002m (5.15)
Z = 0.867m
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Figure 5.16: Final visualization with detected object and coordinate system at object, AR
master tag and world.
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To test the robustness and accuracy of the system, experiments were conducted at the positions
mentioned at the start of this section. The experiments were carried out by placing the object
(the box) at the measured position, and running the proposed pipeline 10 times at the same
location. The experimental results are shown in Table 5.1, 5.2 and 5.3.

Table 5.1: Experiments in position 1.

Position 1
Test nr. | X [cm] | Y [cm] | Z [cm] | Roll [°] | Pitch [°] | Yaw [°]
1 59.64 29 0 89.91 -2.3 -127.06
2 60.98 28.51 0 89.74 -2.5 -127.2
3 59.85 29.47 0 89.71 -2.45 -127.09
4 60.45 28.91 0 89.76 -2.45 -127.03
) 60.87 29.16 0 89.95 -2.42 -127.1
6 59.84 29 0 89.77 -2.42 -127.08
7 60.57 29.07 0 90.1 -2.45 -126.98
8 60.76 28.31 0 89.72 -2.36 -127.04
9 60.78 28.46 0 90.02 -2.17 -126.99
10 60.06 29.21 0 89.89 -2.39 -126.89

Table 5.2: Experiments in position 2.

Position 3

Test nr. | X [cm] | Y [cm] | Z [cm] | Roll [°] | Pitch [°] | Yaw [°]
1 60.08 59.99 0 88.14 0.62 -65.93
2 61.6 59 0 88.18 0.54 -65.86
3 61.05 59.41 0 88.26 0.77 -66.13
4 61.68 58.45 0 88.17 0.44 -65.84
5 60.61 59.45 0 88.03 0.73 -65.74
6 60.71 58.9 0 88.04 0.6 -66
7 62.02 59.47 0 88.04 0.76 -65.89
8 60.87 59.02 0 88.12 0.56 -66.13
9 61.53 59.46 0 88.33 0.7 -66.1
10 61.67 58.03 0 88.22 0.46 -66.12
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Table 5.3: Experiments in position 3.

Position 3

Test nr. | X [cm] | Y [cm] | Z [cm] | Roll [°] | Pitch [°] | Yaw [°]
1 46.68 28.2 0 94.82 -0.86 126.13
2 47.93 29.01 0 94.68 -0.82 126.28
3 47.25 28.21 0 94.8 -1 126.1
4 48.03 29.64 0 94.77 -1.04 126.22
5 46.75 28.56 0 94.69 -0.95 126.32
6 46.69 29.67 0 94.99 -0.93 125.94
7 46.74 28.2 0 94.82 -0.86 126.29
8 46.75 30.12 0 95 -0.79 125.93
9 48.54 29.95 0 94.68 -0.86 126.06
10 47.63 28.42 0 94.72 -0.9 126.01

As you can see in the tables, the results show poor repeatability in regards to the positions
X, Y and Z, which can be a problem since robotic grasping requires high accuracy poses. The
orientation (roll, pitch and yaw) is not very affected by variation. Since the experiments were
carried out by not moving the object, these variations should not appear, and might originate
from the sensors. This led to the idea of looking into the repeatability of the Kinect™ by
measuring the Z-coordinate (depth) of a known point for a large number of point clouds, to see
if the sensor was causing the bad repeatability, which again will lead to false reconstruction of
the scene.

For each camera, 1000 measurements of the same point were made. The results for camera 1
are shown in Figure 5.17 (the other two results are somewhat the same). Table 5.4 summarizes
important data from the 3 cameras. The table shows the maximum measured, minimum
measured, the difference between maximum and minimum, and the average of the Z-values at
the same point. What is interesting to see in the table, is that there is a connection between the
average distance and the difference between maximum and minimum measurement. The larger
the average distance, the larger difference between maximum and minimum. For camera 2, this
means that the Z-coordinate for two consecutively acquired point clouds can have a variation
up to 2.3cm.

Another aspect noticed from Figure 5.17 is that it seems like the measured points follow a
typical result from a step response of some kind of regulator. It is known from Grzegorzek
et al. (2013) that ToF sensors can be affected by temperature variations, which might cause
this problem. In the first 500 points you can see that the Z-value is increasing in the start and
then decreasing to a more stable area. To check if this stable area really is stable for more
points, 20000 measurements on the same point were conducted for camera 3. The results are
shown in Figure 5.18. What is interesting to see in this figure is that the first 1000 points look
identical to the points in Figure 5.17. After this section, the Z-value increases and seems to
become stable around 10000 measurements. Even though it seems to be stable, there still is a
variation up to 1.5c¢m.

The consequences of these findings, that the Kinect™has poor repeatability, is that it in-
fluences the extrinsic parameters found in the camera calibration methods. This affects the
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reconstruction of the scene and model from the different cameras.

Table 5.4: Repeatability measurements of the Kinect™.

Camera | Max measured [m] | Min measured [m] | Difference [m] | Average [m]
1 1.149 1.138 0.011 1.144
2 2.012 1.989 0.023 1.999
3 1.914 1.897 0.017 1.905
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Figure 5.17: 1000 measurements from camera 1.
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Figure 5.18: 20 000 measurements from camera 3.

5.5 Robotics

From Section 5.4, we saw that the Kinect™had poor repeatability. This led to problems
reconstructing a whole model for a small enough object that could be grasped by the robot.
Using a larger object (like the box) is not as much affected by the poor repeatability, but this
object could not be grasped due to its size. Due to this, the robot that was supposed to grasp
an object was moved above the object pose found by the object recognition system. This was
mainly to test if the results from the object detection system could be used to move the robots
to the correct pose.

Figure 5.19 shows the robot placed above the pose found by the object detection system in
position 1. As you can see in the figure, the center of the tool is located directly above the ob-
jects origin coordinate system (as shown in the previous Section). The tool also has the correct
orientation according to the object coordinate system. This means that the transformation
from the object to the world coordinates are correct.
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Figure 5.19: Robot manipulator placed directly above the found objects origin.
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Chapter 6: Discussion

6.1 Camera calibration

Calibrating the extrinsic parameters for the cameras was a vital part in this thesis, since
reconstructing the scene laid the basis for the object recognition. Reconstructing the scene
was also more time consuming than initially planned. The first approach, using registration,
was found to be unstable and it was difficult to achieve good results. The large angular
difference between the cameras led to using an approach that was based on extracting the
tabletop from each cameras point cloud. When this approach gave bad results, it was usually
due to the matching of feature descriptors for the tabletops. This often led to one of the
cameras output were transformed upside-down.

Using an object or multiple objects along with the tabletop somewhat solved this problem,
but it still occurred on some occasions. Even though, this approach, using the tabletop, is not
very suitable for a general approach. This approach required the use of a passthrough filter to
remove the floor planes. If the floor planes are located in the point cloud, the plane extraction
algorithm might extract the floor instead of the tabletop, since the floor often is the largest
plane present. This means that moving one of the cameras will require manual passthrough
filtering beforehand. This approach is more of a situational approach, that needs some kind of
manual pre-processing before it can be used.

The second approach, using the AR Alvar library gave much more stable results. This ap-
proach, compared to the first, can be used as a general approach. The only requirement if a
camera is moved is that it has to be able to locate one of the AR tags. It is also easier to
locate a known position on the table or in the world coordinates, relative to the camera. The
downside with this approach is that the table is full of printed AR tags. If one of them are
damaged or moved slightly, wrong results can occur.

Other approaches

The practical setup in this thesis, using 3 Kinect™3D cameras, is not necessarily the best
solution to reconstruct a scene in 3D. The concept of registration is easier to achieve with
overlapping point clouds, rather than very unlike point clouds (which we had in this thesis).
Acquiring a large number of point clouds to reconstruct the scene can be achieved in two
different approaches:

o Using more cameras.
e Use one camera attached to a moving manipulator.

Using more cameras has a big downside, since it requires more hardware and occupies space,
and is not a preferred solution. The idea of using one camera, attached to for example a robot,
has less downsides. One of the big advantages with this approach, is that you can find very
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precise transformations between the different acquired point clouds. This is of course since you
always know the pose of the end-effector of a robot. By using this known information, it is not
needed to perform registration or a registration like method to reconstruct the scene and the
model. An effective approach to this idea is to create a virtual sphere (top of the sphere) over
the table, and use this to automatically create poses for the robot. In this way you can scan
the table and its content from different angles and positions, at a closer distance. This might
not be as much affected by the Kinect™repeatability issues (see Section 6.3).

6.2 Registration

Scanning the office (shown in Section 5.3) was a small escapade in this thesis. The idea was
to test if the powerful tools in 3D computer vision along with a low cost camera can be used
to reconstruct an entire room, office, factory, etc. Scanning a whole factory can help engineers
during product development, quality inspection and in general construct the entire factory
environment. Scanning has become more and more popular and is usually done with a 3D
scanner instead of a 3D camera. 3D scanners have a much larger range (up to kilometers) and
normally has a very high repeatability. These scanners are more expensive than a Kinect™by
a large margin, and also come with finished software packages.

The increased popularity of the 3D scanners will probably mean that cheaper versions will
come along in the near future. A 3D scanner also outputs a point cloud, meaning you could
still use the tools of registration to perform reconstruction. Scanning a large factory can reduce
the time drastically compared to measuring every part of the factory.

Another thing that is quite interesting for the future to come, is to combine 3D point cloud
data with virtual reality (VR). VR is the big new thing at the moment, and it will become
easier to develop programs for it in the coming years. VR can be used to show customers or
colleagues the new ideas while virtually walking through it.

6.3 Object detection

Reconstructing the model from the scene was the most time consuming and problematic part
of this thesis. Initially, the idea was set up a pick-and-place or assembly task based on the
computer vision part. Due to the problems with the Kinect™, regarding the repeatability,
reconstructing objects that are small enough to be grasped in the robot cell was not achieved
in a good enough way that it was possible to detect it with acceptable precision. Since all
the cameras has this uncertainty, the reconstruction system has an accumulating error. It was
especially challenging to reconstruct a cylinder-like object, that lack sharp edges and corners.
Placing the cameras very close to the object could maybe have solved this issue, but choosing
a bit larger object still proved the point of this thesis. The results with the box are believed
to be accurate enough.

One aspect with converting a CAD model to a point cloud is that the resulted point cloud will
have perfectly uniform point density. This is not the case of the reconstructed model. This
can lead to a challenge when matching feature descriptors. To gain better results with regards
to matching, it could be an idea to scan the object and use that model in the object database.
This can be achieved with for example a rotating table. This will give more equal point clods
to for matching and give better results.
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An evaluation of the Kinect™depth data was conducted by Khoshelham and Elberink (2012).
This paper used the first Kinect™, based on structured light. The paper concluded that the
random error of depth measurements increases quadratically with increasing distance from the
sensor, and reaches 4cm at the maximum range of 5m. Also, the depth resolution decreases
quadratically with increasing distance from the sensor. These results are similar to the ones
conducted in this thesis, as shown in Section 5.4. The results in this thesis also show that the
depth repeatability issue increases with the distance from the measured location. This also
means that the Kinect™may not be the best 3D sensor for very accurate and precise robotic
vision systems.

A 3D object detection system is often combined by both pipelines mentioned in Section 2.7,
using both global and local feature descriptors. Since these system normally consist of one
camera, the global feature descriptors are used to find the correct model from the database,
while the local feature descriptors are used to estimate a transformation to the detected object.
Using a multiple camera setup and being able to reconstruct a object model has some benefits
compared to a single camera approach. The main advantages with a multiple camera setup is:

e Small object database compared to a ray-tracing database of objects. Only need one
model stored in the database, instead of a large number of models that contain only a
portion of the entire object.

e Global feature descriptors are not needed.
e Reduced computation time due to the two statements above.
e Possible to locate an object in an occluded scene.

One other aspect with a multiple camera setup is that it is possible to find the exact pose of a
cylinder-like object, for example a tunnel thruster welding job. Using a single camera setup to
detect the correct orientation of a pipe can be troublesome, since every ray-traced model will
be almost identical. In a case like this there has to be taken compromises, for example always
place the pipe in a specified pose so the camera can see the hole in the pipe. A multiple camera
setup is able to detect the features of an object that can help to identify a correct orientation,
regardless of which pose it initially has.

6.4 Features

Section 2.4 and 2.5 contained an introduction to keypoints and features. The choice of a
keypoint detector was based on Filipe and Alex (2014), which vouched for the SIFT 3D de-
tector. During the work on this thesis, the SIFT keypoint detector always gave good keypoint
estimations and is recommended to use in other future work.

The feature descriptors on the other hand, was based on Hansch et al. (2014). This paper
concluded that the FPFH and SHOT feature give the most reliable feature information. Both
variants were tested in registration and object recognition. After some testing, it turned out
that FPFH was best suited for registration, and SHOT was best suited for object recognition.

It was not allocated too much time during this thesis to test many parameters and different
keypoint detectors and feature descriptors. Basing your choices of previous thorough work is
a good approach for a large project work. It would be interesting to test other keypoint and
feature descriptor combinations and compare the results.
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Chapter 7: Conclusion

In this thesis, a solution was developed to perform object recognition from a multiple 3D
camera setup. The thesis resulted in two different programs, one for calibrating the extrinsic
parameters to reconstruct an object, and one to perform object recognition.

The experiments conducted shows that it is possible to reconstruct an object from multiple
camera viewpoints, and detect the objects position and orientation using a object recognition
pipeline based on local feature descriptors.

The results show some variation in the objects position and little variation in the objects
orientation. Tests were made regarding the repeatability of the Kinect™, and it shows that
the depth measurements can have a variation up to 2.3¢m from one point cloud to another,
if the camera is 2m from the measured point. The variation of the objects position in the
experiments appear to originate from the poor repeatability of the sensor.

Even though the results have some variation, it is believed that the results are accurate enough
for a grasping task performed by a robot. Another sensor with higher repeatability would
improve the system and increase the accuracy.

7.1 Further work

The experiments conducted were based on a single object to detect. It is yet to be implemented
more functionality to the object recognition system regarding multiple object detection. This
can be achieved by implementing grouping of correspondences and adding functionality that
matches the correct model to the right cluster. If this is achieved, it would also be interesting
to see how the system would perform in an occluded scene.

The reconstructed scene and object in this thesis is not considered to be perfect, and testing
another approach without updating the hardware should be studied. A promising approach
could be to mount the Kinect™on the end-effector of the robot and perform a scan close to
the object. This might remove most of the repeatability issues as occurred in this thesis, and
thereby improve the entire system. If this approach is not sufficient, trying a new 3D sensor
would be interesting.
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Appendix A: Bundle XML file

XML bundle

<?zml wversion="1.0" encoding="UTF-8" standalone="no" 2>
<multimarker markers="9">
<marker index="0" status="1">
<corner x="-9.5" y="-9.5" z="0.0" />
<corner x="9.5" y="-9.5" z="0.0" />
<corner x="9.5" y="9.5" z="0.0" />
<corner x="-9.5" y="9.5" z="0.0" />
< /marker>

<marker index="1" status="1">
<corner x="-9.5" y="52.1" z="0.0" />
<corner x="9.5" y="52.1" z="0.0" />
<corner x="9.5" y="71.1" z="0.0" />
<corner x="-9.5" y="71.1" z="0.0" />
< /marker>
<marker index="2" status="1">
<corner x="-9.5" y="-70.8" z="0.0" />
<corner x="9.5" y="-70.8" z="0.0" />
<corner x="9.5" y="-51.8" z="0.0" />
<corner x="-9.5" y="-51.8" z="0.0" />
< /marker>

<marker index="3" status="1">
<corner x="—68.1" y="-70.8" z="0.0" />
<corner x="-49.1" y="-70.8" z="0.0" />
<corner x="-49.1" y="-51.8" z="0.0" />
<corner x="-68.1" y="-51.8" z="0.0" />
< /marker>
<marker index="4" status="1">
<corner x="—68.0" y="52.1" z="0.0" />
<corner x="-49.0" y="52.1" z="0.0" />
<corner x="-49.0" y="71.1" z="0.0" />
<corner x="-68.0" y="71.1" z="0.0" />
< /marker>

<marker index="5" status="1">
<corner x="-38.8" y="-70.8" z="0.0" />
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<corner x="-19.8" y="-70.8" z="0.0" />
<corner x="-19.8" y="-51.8" z="0.0" />
<corner x="-38.8" y="-51.8" z="0.0" />

< /marker>

<marker index="6" status="1">
<corner x="-38.8" y="-9.5" z="0.0" />
<corner x="-19.8" y="-9.5" z="0.0" />
<corner x="-19.8" y="9.5" z="0.0" />
<corner x="-38.8" y="9.5" z="0.0" />

< /marker>

<marker index="7" status="1">
<corner x="-38.75" y="52.1" z="0.0" />
<corner x="-19.75" y="52.1" z="0.0" />
<corner x="-19.75" y="71.1" z="0.0" />
<corner x="-38.75" y="71.1" z="0.0" />

< /marker>

<marker index="8" status="1">
<corner x="—68.1" y="-9.5" z="0.0" />
<corner x="-49.1" y="-9.5" z="0.0" />
<corner x="—49.1" y="9.5" z="0.0" />
<corner x="—68.1" y="9.5" z="0.0" />

< /marker>

< /multimarker>
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Appendix B: Camera calibration

calibCell.hpp

#include
#include
#include
#include
#include
#include
#include
#include
#include
#include

ey

*

\brief The CalibrateCell

<ros/ros.h>
<string>
<sensor_msgs/PointCloud2.h>

<ar_track_alvar_msgs/AlvarMarkers.h>
<ar_track_alvar_msgs/AlvarMarker .h>

<geometry_msgs/PoseStamped.h>
<tf/tf.h>

<eigen3/Eigen/Core>
<iostream>

<fstream>

* camera to an AR tag.

*/

class CalibrateCell{

public:
/* 1

* \brief Constructor for CalibrateCell class.

class averages a number of pose messages
* from ar_track_alvar in ROS to find the exztrinsic parameters from the

* \param argc Initialization argument
* \param argv Initialization argument

*/

CalibrateCell (int argc,

/¥

* \brief Deconstructor for CalibrateCell class.

*/

virtual ~CalibrateCell();

/¥

* \brief Initialization method for the ROS node.
* \return Returns true <f initialization %s OK. Returns false 4f

* qnittalization fatils.

*/
bool

/¥

* \brief Starts the ROS node and loops.

*/

init () ;

void run();

/¥

* \brief Callback method from ar_track_alvar
* \param cam_pos position of the AR tag relative to the camera

*/

char** argv);
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void camPosCallbackl (const ar_track_alvar_msgs::AlvarMarkersConstPtr&
cam_pos) ;

private:

int init_argc; //!< Initialization arguments

char** init_argv; //!< Initialization arguments

ros::Subscriber subPose; //!< ROS subscriber to the pose message

int nr0fMsgs; //!< Number of messages to average

int msgs; //!< Current messages averaged

std::vector<tf::Vector3> positions; ///< Vector containing the pose
position (X,Y,Z)

std::vector<tf::Quaternion> quaternions; //!/< Vector containing the pose
ortentation in quaternions

std::string cameraName; //!< Name of the camera

std::vector<Eigen::Matrix4f> transformationMatrices; //!< Vector containing

the pose in transformation matrices

/¥
* \brief Converts a position and quaternion vector to a 4z4 transformation
matriz.
\param cameraID the mname of the camera
\param position the pose position vector
\param quaternion the pose orientation vector in quaternions
\return

* %X % %

*/
Eigen::Matrix4f calcTransformationMatrix(std::string cameralID, tf::Vector3
position, tf::Quaternion quaternion);

/*!
* \brief Adds a new transformation (position and orientation) to the
private vectors positions and quaternions.
* \param cameraID the name of the camera
* \param position the pose position vector
* \param quaternion the pose orientation vector im quaternions
*/
void addNewTransformation(std::string cameraID, tf::Vector3 position, tf::
Quaternion quaternion);

/¥ 1
* \brief Takes the average of the vector of position and orientation and
writes the
* result as a 4z4 transformation matriz to a .tzt file.
*/

void averageRotations ();
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calibCell.cpp

#include "../include/calibCell.hpp"

#include <iostream>

CalibrateCell::CalibrateCell (int argc,

init_argc (argc),
init_argv (argv)

{
CalibrateCell::~CalibrateCell ()
{
if (ros::isStarted ()) {
ros::shutdown () ;
ros::waitForShutdown () ;
}
}

bool CalibrateCell::init ()
{

char **argv):

std::cout << "Initing" << std::endl;

nr0fMsgs = 100;

msgs=0;

tf::Quaternion q(0, 0, O,
tf::Vector3 v(0,0,0);
positions.push_back(v);
quaternions.push_back(q);
cameraName = "";

0);

ros::init(init_argc,init_argv,"calib_cell");
if ( ! ros::master::check() ) {

return false;
}

ros::start () ;

ros::NodeHandle n;

subPose = n.subscribe<ar_track_alvar_msgs::AlvarMarkers,
ar_pose_marker", 10, &CalibrateCell::camPosCallbackl,

return true;

}

void CalibrateCell::run()
{

std::cout << "Running" << std::endl;

ros::Rate loop_rate (200);

while ( ros::o0k() ){
ros::spinOnce () ;
loop_rate.sleep();

}

void CalibrateCell::camPosCallbackl(const ar_track_alvar_msgs::AlvarMarkers

ConstPtr &cam_pos)
{
if (cam_pos->markers.size ()
return;

0{

7
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APPENDIX B. CAMERA CALIBRATION

}

}

// Camera ID

std::string cameralD = cam_pos->markers.at(0).header.frame_id;

// Position XYZ

geometry_msgs::Point positionMsg = cam_pos->markers.at (0).pose.pose.

position;

tf::Vector3 position(positionMsg.x, positionMsg.y, positionMsg.z);

// Rotation

geometry_msgs::Quaternion quatMsg = cam_pos->markers.at(0).pose.pose.
orientation;

tf::Quaternion q(quatMsg.x, quatMsg.y, quatMsg.z, quatMsg.w);

if (msgs == nr0fMsgs){
std::cout << "Im done" << std::endl;
subPose.shutdown () ;
averageRotations () ;
ros::shutdown () ;

}

addNewTransformation (cameralD,position,q);

Eigen::Matrix4f CalibrateCell::calcTransformationMatrix(std::string cameralD,

{

}

tf::Vector3 position, tf::Quaternion quaternion)

tf::Matrix3x3 rotation(quaternion);

Eigen::Matrix4f transTmp;
transTmp << rotation.getColumn (0) .getX (), rotation.getColumn(1l).getX(),
rotation.getColumn(2) .getX(), position.getX(),
rotation.getColumn (0) .getY (), rotation.getColumn(1l).getY(),
rotation.getColumn(2) .getY(), position.getY(),
rotation.getColumn (0) .getZ (), rotation.getColumn (1) .getZ (),
rotation.getColumn(2) .getZ(), position.getZ(),

0, 0, 0, 1;

double roll, pitch, yaw;

std::cout << "Rotation RPY: " << std::endl;
rotation.getRPY(roll, pitch, yaw);
std::cout << roll << std::endl;

std::cout << pitch << std::endl;

std::cout << yaw << std::endl;

return transTmp;

void CalibrateCell::addNewTransformation(std::string cameraID, tf::Vector3

{

position, tf::Quaternion quaternion)

if ( msgs < nr0fMsgs){
std::cout << "Added from: ";
std::cout << cameralID << std::endl;
std::cout << "Number: ";
std::cout << msgs << std::endl;
positions [0] += position;
quaternions [0] += quaternion;
msgs++;
calcTransformationMatrix (cameraID, position, quaternion);
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APPENDIX B. CAMERA CALIBRATION

}

cameraName = cameralD;

void CalibrateCell::averageRotations ()

{

std::vector<float> x(quaternions.size());
std::vector<float> y(quaternions.size());
std::vector<float> z(quaternions.size());
std::vector<float> w(quaternions.size());

std::vector<float> xPos(quaternions.size());
std::vector<float> yPos(quaternions.size());
std::vector<float> zPos(quaternions.size());

float div = 1.0f/(float)nr0fMsgs;

for (int i=0; i<quaternions.size(); i++){

x[i] = quaternions.at(i).getX()*div;
y[i]l = quaternions.at(i).getY () *div;
z[i] = quaternions.at(i).getZ()*div;
w[i]l = quaternions.at(i).getW()*div;
xPos[i] = positions.at(i).getX()*div;

yPos[i] = positions.at(i).getY()*div;
zPos [i] positions.at(i).getZ () *div;

}

for (int k=0; k<quaternions.size(); k++){

tf::Quaternion quat(x.at(k), y.at(k), z.at(k), w.at(k));

quat .normalize () ;

tf::Vector3 position(xPos.at(k), yPos.at(k), zPos.at(k));

Eigen::Matrix4f tmp = calcTransformationMatrix (cameraName ,position,
quat);
transformationMatrices.push_back (tmp) ;
}
char chars[] = "/";
for (unsigned int i = 0; i < strlen(chars); ++i)
{
cameraName.erase (std::remove(cameraName.begin(), cameraName.end(),
chars[i]), cameraName.end());
}
std::string tmp = "/home/minions/";

tmp . append (cameraName) ;
tmp.append (".txt");
std::ofstream file(tmp.c_str());

if (file.is_open())
{

for (int i=0; i<transformationMatrices.size(); i++){

file << "Matrix for: " << cameraName << ’\n’;
file << transformationMatrices.at(i) << ’\n’
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159 }

160 std::cout << "Done calibrating, wrote matrix to file: ";
161 std::cout << tmp << std::endl;
162

163 || }

164

165 || int main(int argc, char *xargv){
166 CalibrateCell cell(argc, argv);
167 cell.init ();

168 cell.run();

169 || ¥
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Appendix C: Main program

main.cpp

#include <QtGui>
#include <QApplication>
#include "../include/qt_master/main_window.hpp"

/¥
\brief Main method for the program. Starts the application.
* \param argc Arguments.
\param argv Arguments.
* \return Returns 1 4if shut down correct, O otherwise.
*/
int main(int argc, char **xargv) {
QApplication app(argc, argv);
qt_master::MainWindow w(argc,argv);

w.show () ;
app.connect (&app, SIGNAL(lastWindowClosed()), &app, SLOT(quit ()));
int result = app.exec();

return result;
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APPENDIX C. MAIN PROGRAM

qnode.hpp

#ifndef qt_master_QNODE_HPP_
#define qt_master_QNODE_HPP_

#include <ros/ros.h>
#include <string>

#include <QThread>

#include <QStringListModel>

#include <sensor_msgs/PointCloud2.h>

#include <pcl_conversions/pcl_
#include <pcl/point_cloud.h>
#include <pcl/point_types.h>

conversions.h>

#include <agilus_planner/Pose.h>
#include <kuka_rsi_hw_interface/write_8_outputs.h>

#include <math.h>

namespace qt_master {

/1

* \brief The QNode class %s a ROS mnode that deals with the communication

* between the robots, camera
*/
class QNode : public QThread {
Q_OBJECT
public:
/*!
* \brief Constructor for
* \param argc Initializat
* \param argv Initializat
*/

QNode (int argc, char*x*

/¥

outputs etc.

QNode <class.
ion argument
Ton argument

argv );

* \brief Deconstructor for QNode class.

*/
virtual ~QNode();

/*!

* \brief Initialization method for the ROS node.
* \return Returns true 4if initialization %s OK. Returns false 4f

* initialization fails.
*/
bool init ();

/¥

* \brief Starts the ROS node and loops.

*/

void run() ;

/*!
* \brief Callback method
* \param cloud_msg point
*/

void cloudCallbackl (const

/*!
* \brief Callback method

for point cloud from camera 1.
cloud message from camera 1.

sensor_msgs::PointCloud2ConstPtr& cloud_msg);

for point cloud from camera 2.
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56 * \param cloud_msg point cloud message from camera 2.

57 */

58 void cloudCallback2(const sensor_msgs::PointCloud2ConstPtr& cloud_msg);

59

60 /*!

61 * \brief Callback method for point cloud from camera 3.

62 * \param cloud_msg point cloud message from camera 3.

63 */

64 void cloudCallback3(const sensor_msgs::PointCloud2ConstPtr& cloud_msg);

65

66 /*!

67 * \brief Asks the ROS master for every available point cloud topic name.

68 * \return Returns a QStringList of available point cloud topics.

69 */

70 QStringList getTopics ();

71

72 /* !

73 * \brief Sets the parameters to the pose object.

74 * \param z position in x (meters)

75 * \param y position in y (meters)

76 * \param z position in z (meters)

7 * \param roll orientation in roll (radians)

78 * \param pitch orientation in pitch (radians)

79 * \param yaw orientation in yaw (radians)

80 */

81 void setPose(double x, double y, double z, double roll, double pitch,
double yaw);

82

83 /*!

84 ¥ \brief Calls the service for planning a pose with given parameters.

85 * \param = position in z (meters)

86 * \param y position in y (meters)

87 * \param z position in z (meters)

88 * \param roll orientation in roll (radians)

89 * \param pitch orientation in pitch (radians)

90 * \param yaw orientation in yaw (radians)

91 * \param robot selected robot, 0 is "Agilus 1" and 1 is "Agilus 2"

92 */

93 void planPose(double x, double y, double z, double roll, double pitch,
double yaw, int robot);

94

95 /*!

96 * \brief Calls the service for moving to a pose with given parameters.

97 * \param z position in x (meters)

98 * \param y position in y (meters)

99 * \param z position in z (meters)

100 * \param roll orientation in roll (radians)

101 * \param pitch orientation in pitch (radians)

102 * \param yaw orientation in yaw (radians)

103 * \param robot selected robot, 0 is "Agilus 1" and 1 <s "Agilus 2"

104 */

105 void movePose(double x, double y, double z, double roll, double pitch,
double yaw, int robot);

106

107 /*!

108 * \brief Opens the gripper at the end effector of the selected robot.

109 * \param robot selected robot, 0 ts "Agilus 1" and 1 %s "Agilus 2"
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*/

void openGripper (int robot);

/¥

* \brief Closes the gripper at the end effector of the selected robot.

* \param robot selected robot, 0 1is

*/

void closeGripper (int robot);

/¥

* \brief Subscribes to all 3 point cloud topics (cameral,

camera3) .
*/

void subscribe3Clouds () ;

"Agilus 1"

and 1 2s "Agilus 2"

camera2 and

* \brief QtSignal for sending 3 aquired point clouds to another class (GUI

Q_SIGNALS:

/¥
* \brief Shuts down the ROS mnode in the correct manner.
*/

void rosShutdown () ;

/¥

class)

* \param clouds a list of 3 point clouds

*/

void send3Clouds(std::vector<pcl::PointCloud<pcl::PointXYZRGB>::Ptr> clouds

)
public Q_SLOTS:

private:

int init_argc;

char**x init_argv;

ros::Subscriber pointCloudSubl;
message from camera 1

ros::Subscriber pointCloudSub2;
message from camera 2

ros::Subscriber pointCloudSub3;
message from camera 3

bool gotCloudl; //!< Flag
recieved

bool gotCloud2; //!< Flag to check
recieved
bool gotCloud3; //!< Flag to check

recieved

//!< Initialization arguments

//!< Initialization arguments
//!< ROS subscriber
//!< ROS subscriber

//!< ROS subscriber

to the point cloud
to the point cloud

to the point cloud

to check tf a point cloud from camera 1 1is
tf a point cloud from camera 2 s

if a point cloud from camera 3 1is

pcl::PointCloud<pcl::PointXYZRGB>::Ptr cloudl; //!/< Point cloud for camera
1

pcl::PointCloud<pcl::PointXYZRGB>::Ptr cloud2; //!< Point cloud for camera
2

pcl::PointCloud<pcl::PointXYZRGB>::Ptr cloud3; ///< Point cloud for camera
3

agilus_planner::Pose pose;
ortentation in TpYy

ros::ServiceClient planAgl;
1
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ros::ServiceClient moveAgl; //!/< ROS service for moving motion for Agilus 1

ros::ServiceClient planAg2; ///< ROS service for planning motion for Agilus
2

ros::ServiceClient moveAg2; //!< ROS service for moving motion for Agilus 2

kuka_rsi_hw_interface::write_8_outputs gripperState; //!/< Digital Output
object to open/close gripper

ros::ServiceClient gripperAgl; //!< ROS service for gripper handling for

Agilus 1
ros::ServiceClient gripperAg2; //!< ROS service for gripper handling for
Agilus 2
3
}
#endif
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qnode.cpp

#include <ros/ros.h>

#include <ros/network.h>

#include <string>

#include <std_msgs/String.h>

#include <sstream>

#include "../include/qt_master/qnode.hpp"

namespace qt_master {

QNode:: QNode (int argc, char** argv )
init_argc (argc),
init_argv (argv),
cloudl (new pcl::PointCloud<pcl::PointXYZRGB>()),
cloud2(new pcl::PointCloud<pcl::PointXYZRGB>()),
cloud3(new pcl::PointCloud<pcl::PointXYZRGB>())

QNode : :~QNode () {
if (ros::isStarted ()) {
ros::shutdown () ;
ros::waitForShutdown () ;
}
wait () ;
}

bool QNode::init () {
ros::init(init_argc,init_argv,"qt_master");
if ( ! ros::master::check() ) {
return false;
}
ros::start () ;
ros::NodeHandle n;

planAgl = n.serviceClient<agilus_planner::Pose>("/robot_service_agl/
plan_pose");

moveAgl = n.serviceClient<agilus_planner::Pose>("/robot_service_agl/
go_to_pose");

planAg2 = n.serviceClient<agilus_planner::Pose>("/robot_service_ag2/
plan_pose");

moveAg2 = n.serviceClient<agilus_planner::Pose>("/robot_service_ag2/

go_to_pose");

gripperAgl = n.serviceClient<kuka_rsi_hw_interface::write_8_outputs>("/agl/

kuka_hardware_interface/write_8_digital_outputs");

gripperAg2 = n.serviceClient<kuka_rsi_hw_interface::write_8_outputs>("/ag2/

kuka_hardware_interface/write_8_digital_outputs");
gotCloudl = false;
gotCloud2 = false;
gotCloud3 = false;
start () ;
return true;

¥
void QNode::run() {

ros::Rate loop_rate (10);
int count = O0;
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while ( ros::o0k() ) {
if (gotCloudl && gotCloud2 && gotCloud3){

std::vector<pcl::PointCloud<pcl::PointXYZRGB>::Ptr> clouds;
clouds.push_back(cloudl);
clouds.push_back(cloud2);
clouds.push_back(cloud3);
Q_EMIT send3Clouds(clouds);
pointCloudSubl.shutdown () ;
pointCloudSub2.shutdown () ;
pointCloudSub3.shutdown () ;
std::cout << "Done taking pictures" << std::endl;
gotCloudl = false;
gotCloud2 false;
gotCloud3 false;

}
ros::spinOnce ();
loop_rate.sleep();
++count;
}
std::cout << "Ros shutdown, proceeding to close the gui." << std::endl;
Q_EMIT rosShutdown(); // used to signal the gui for a shutdown (useful to
ros launch)

}

QStringlList QNode::getTopics ()
{
QStringList list;
QString tmp;
ros::master::V_TopicInfo master_topics;
ros::master::getTopics (master_topics);
for (ros::master::V_TopicInfo::iterator it = master_topics.begin() ; it !=
master_topics.end(); it++) {
const ros::master::TopicInfo& info = *it;
tmp = QString::fromUtf8(info.datatype.c_str());
if (QString::compare(tmp, "sensor_msgs/PointCloud2", Qt::Caselnsensitive
) == 01
list.append (QString::fromUtf8(info.name.c_str()));

}

return list;

void QNode::setPose(double x, double y, double z, double roll, double pitch,
double yaw)

{
pose.request.header.frame_id = "/world";
pose.request.set_position = true;
pose.request.set_orientation = true;
pose.request.position_x = x;
pose.request.position_y = y;
pose.request.position_z = z;
pose.request.orientation_r = roll*M_PI/180.0;
pose.request.orientation_p = pitch*M_PI/180.0;
pose.request.orientation_y = yaw*M_PI/180.0;

}

void QNode::planPose(double x, double y, double z, double roll, double pitch,
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double yaw, int robot)

{
setPose(x,y,z,ro0ll ,pitch,yaw);
if (robot == 0){
//Agilusi
planAgl.call(pose);
}
else if (robot == 1){
//Agilus2
planAg2.call(pose);
}
}

void QNode::movePose(double x, double y,
double yaw, int robot)

{
setPose(x,y,z,roll ,pitch,yaw);
if (robot == 0){
//Agilusi
moveAgl.call (pose);
}
else if (robot == 1){
//Agilus2
moveAg2.call(pose);
}
}

void QNode::openGripper (int robot)
{
gripperState.request.outl = false;
gripperState.request.out4 true;
gripperState.request.out2 true;
if (robot == 0){
gripperAgl.call(gripperState);

}

else if (robot == 1){
gripperAg2.call(gripperState);

}

}

void QNode::closeGripper (int robot)
{
gripperState.request.outl = true;
gripperState.request.out4 = false;
gripperState.request.out2 true;
if (robot == 0){
gripperAgl.call(gripperState);

}

else if (robot == 1){
gripperAg2.call(gripperState);

}

}

void QNode::subscribe3Clouds ()
{

ros::NodeHandle n;

double z, double roll, double pitch,

pointCloudSubl = n.subscribe<sensor_msgs::PointCloud2, QNode>("/NUC1/sd/
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points", 10, &QNode::cloudCallbackl, this);

pointCloudSub2 = n.subscribe<sensor_msgs::PointCloud2, QNode>("/NUC2/sd/
points", 10, &QNode::cloudCallback2, this);

pointCloudSub3 = n.subscribe<sensor_msgs::PointCloud2, QNode>("/PC/sd/
points", 10, &QNode::cloudCallback3, this);

void QNode::cloudCallbackl (const sensor_msgs::PointCloud2ConstPtr &cloud_msg){
pcl::PointCloud<pcl::PointXYZRGB>::Ptr tmp(new pcl::PointCloud<pcl::
PointXYZRGB>());
pcl::fromROSMsg(*cloud_msg, *tmp);
pcl::copyPointCloud (*tmp, *cloudl);
gotCloudl = true;
}

void QNode::cloudCallback2(const sensor_msgs::PointCloud2ConstPtr &cloud_msg){
pcl::PointCloud<pcl::PointXYZRGB>::Ptr tmp(new pcl::PointCloud<pcl::
PointXYZRGB>());
pcl::fromROSMsg (*cloud_msg, *tmp);
pcl::copyPointCloud (*tmp, *cloud2);
gotCloud2 = true;

void QNode::cloudCallback3(const sensor_msgs::PointCloud2ConstPtr &cloud_msg){
pcl::PointCloud<pcl::PointXYZRGB>::Ptr tmp(new pcl::PointCloud<pcl::
PointXYZRGB>());
pcl::fromR0OSMsg (*cloud_msg, *tmp);
pcl::copyPointCloud (*tmp, *cloud3);
gotCloud3 = true;
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PointCloudManipulator.hpp

#ifndef qt_master_POINT_CLOUD_MANIPULATOR_H
#define qt_master _POINT_CLOUD_MANIPULATOR_H

#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include

<QStringList>
<pcl/visualization/pcl_visualizer.h>
<pcl/visualization/histogram_visualizer.h>
<pcl/filters/passthrough.h>
<pcl/filters/voxel_grid.h>
<pcl/filters/median_filter.h>
<pcl/filters/statistical_outlier_removal.h>
<pcl/filters/fast_bilateral.h>
<pcl/filters/shadowpoints.h>
<pcl/features/normal_3d.h>
<pcl/features/integral_image_normal.h>
<pcl/common/transforms.h>
<pcl/keypoints/iss_3d.h>
<pcl/keypoints/narf_keypoint.h>
<pcl/range_image/range_image_planar.h>
<pcl/features/range_image_border_extractor.h>
<pcl/visualization/range_image_visualizer.h>
<pcl/features/narf_descriptor.h>
"pcl/point_types.h"

"pcl/point_cloud.h"

"pcl/io/pcd_io.h"
"pcl/kdtree/kdtree_flann.h"
"pcl/features/normal_3d.h"
"pcl/features/normal_3d_omp.h"
"pcl/features/pfh.h"

"pcl/features/fpfh.h"
"pcl/features/fpfh_omp.h"
"pcl/keypoints/sift_keypoint.h"
"pcl/keypoints/iss_3d.h"
<pcl/registration/transforms.h>
<pcl/registration/ia_ransac.h>
<pcl/registration/correspondence_estimation.h>

<pcl/registration/correspondence_estimation_normal_shooting.h>

<pcl/registration/correspondence_rejection.h>

<pcl/registration/correspondence_rejection_distance.h>
<pcl/registration/correspondence_rejection_sample_consensus.h>
<pcl/registration/correspondence_rejection_one_to_one.h>
<pcl/registration/correspondence_rejection_organized_boundary.h>
<pcl/registration/correspondence_rejection_median_distance.h>

<pcl/features/shot.h>
<pcl/features/shot_omp.h>

<pcl/registration/transformation_estimation_svd.h>
<pcl/registration/transformation_estimation_lm.h>
<pcl/registration/transformation_estimation_point_to_plane_1lls.h>
<pcl/registration/transformation_estimation_point_to_plane_weighted.h>
<pcl/registration/transformation_estimation_point_to_plane.h>

<pcl/registration/icp.h>
<pcl/registration/icp_nl.h>
<pcl/registration/lum.h>
<pcl/registration/elch.h>
<pcl/segmentation/sac_segmentation.h>
<pcl/filters/extract_indices.h>
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56 || #include <pcl/segmentation/extract_clusters.h>

57 ||#include <pcl/surface/vtk_smoothing/vtk_utils.h>

58 || #include <pcl/io/ply_io.h>

59 || #include <pcl/io/vtk_1lib_io.h>

60 || #include <pcl/recognition/cg/hough_3d.h>

61 || #include <pcl/recognition/cg/geometric_consistency.h>

62

63 || namespace qt_master {

64

65 || /*!

66 # \brief The PointCloudManipulator class contains a number of filtering

methods ,

67 * algorithms and matching methods.

68 */

69 || class PointCloudManipulator : public QObject

70 || {

71 Q_OBJECT

72 || public:

73 /x1!

74 * \brief Constructor for PointCloudManipulator class.

75 * \param parent ui parent

76 */

77 explicit PointCloudManipulator (QObject *parent = 0);

78

79 /x1!

80 * \brief Deconstructor for PointCloudManipulator class.

81 */

82 ~PointCloudManipulator ();

83

84 /*!

85 * \brief Aquires mnames the available filters in the class.

86 * \return o QStringList of available filters

87 */

88 QStringlList getFilters();

89

90 /*!

91 * \brief Runs the selected filter on a point cloud.

92 * \param selectedFilter the selected filter

93 * \param tnCloud input point cloud object

94 * \param outCloud output point cloud object

95 * \param d1 parameter 1

96 * \param d2 parameter 2

97 * \param d3 paramter 3

98 * \param zyz parameter for passthrough filter

99 */

100 void runFilter (int selectedFilter ,pcl::PointCloud<pcl::PointXYZRGB>::Ptr
inCloud ,pcl::PointCloud<pcl::PointXYZRGB>::Ptr outCloud, double dil,
double d2, double d3, QString xyz);

101

102 /*!

103 * \brief Creates the required indexes for the selected filter, and

104 * sends them to the GUI. (label text, scaling etc)

105 * \param selectedFilter the selected filter

106 */

107 void getNewIndexInfo(int selectedFilter);

108

109 /*!
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\brief Implementation of the PassThrough filter for a point cloud.
\param inCloud input point cloud object

\param outCloud output point cloud object

\param limitMin minimum limit (in meters)

\param limitMaz mazimum Llimit (in meters)

\param field the azis to be cut (z, y or z)

* %X ¥ ¥ %X %

*/
void filterPassThrough(pcl::PointCloud<pcl::PointXYZRGB>::Ptr inCloud, pcl
::PointCloud<pcl::PointXYZRGB>::Ptr outCloud, double limitMin, double
limitMax, QString field);

/*!
* \brief Implementation of the VozelGrid filter for a point cloud.
* \param inCloud input point cloud object
* \param outCloud output point cloud object
\param leafSize the specified leaf size (volume) for the filter
*/
void filterVoxelGrid(pcl::PointCloud<pcl::PointXYZRGB>::Ptr inCloud, pcl::
PointCloud<pcl::PointXYZRGB>::Ptr outCloud, double leafSize);

/¥ 1
* \brief Implementation of the median filter for a point cloud.
* \param inCloud input point cloud object
* \param outCloud output point cloud object
* \param windowSize window size of the median
* \param mazMovement mazimum allowed movement for the median
*/

void filterMedian(pcl::PointCloud<pcl::PointXYZRGB>::Ptr inCloud, pcl::
PointCloud<pcl::PointXYZRGB>::Ptr outCloud, double windowSize, double
maxMovement) ;

/* 1
* \brief Implementation of normal estimation for a point cloud.
* \param inCloud input point cloud object
* \param radius radius of search in normal estimation
* \param nrToDisplay nr. of normals to return (for exzample 1/10)
*/
void filterNormal(pcl::PointCloud<pcl::PointXYZRGB>::Ptr inCloud, double
radius, double nrToDisplay);

/1
* \brief Implementation of the bilateral filter for a point cloud.
* \param %inCloud input point cloud object
* \param sigmaS sigma S wvalue in the filter
* \param sigmaR sigma R value in the filter
*/
void filterBilateral(pcl::PointCloud<pcl::PointXYZRGB>::Ptr inCloud, double
sigmaS, float sigmaR);

\brief Transforms a point cloud with given parameters.
\param inCloud input point cloud object to transform
\param rX rotation in =

\param rY rotation in y

\param rZ rotation in z

\param tX translation in

\param tY translation in y

X % ¥ %X X ¥ * *
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160 * \param tZ translation in 2z

161 */

162 void translateCloud(pcl::PointCloud<pcl::PointXYZRGB>::Ptr inCloud, double
rX, double rY, double rZ, double tX, double tY, double tZ);

163

164 /*!

165 * \brief Resets a visualizer and send it to the GUI.

166 * \param selectedFilter selected filter to wuse

167 */

168 void getNewVisualizer (int selectedFilter);

169

170 /*!

171 * \brief Get the last used filter.

172 * \return Returns a QString name of the last filter used

173 */

174 QString getLastFiltered () ;

175

176 /*!

177 * \brief Alignes point clouds using registration. Visualizes the process.

178 * \param fileNames filenames of saved point clouds

179 */

180 void alignClouds (QStringList fileNames);

181

182 /*!

183 * \brief Alignes the robot cell at NTNU IPK wusing registration. Visualizes

the process.

184 * \param fileNames filenames of saved point clouds

185 */

186 void alignRobotCell (QStringlist fileNames) ;

187

188 /x1!

189 * \brief Refines the alignment of the robot cell at NTNU IPK using

Iterative Closest Point.

190 * \param fileNames filenames of saved point clouds

191 */

192 void refineAlignment (QStringList fileNames);

193

194 /*!

195 * \brief Implementation of the VozxelGrid filter for a point cloud.

196 * \param inCloud input point cloud object

197 * \param leafSize the specified leaf size (volume) for the filter

198 * \return Returns a point cloud object that has been filtered

199 */

200 pcl::PointCloud<pcl::PointXYZRGB>::Ptr filterVoxel(pcl::PointCloud<pcl::
PointXYZRGB>::Ptr inCloud, double leafSize);

201

202 /*!

203 * \brief Implementation of the PassThrough filter for a point cloud.

204 * \param inCloud input point cloud object

205 * \param outCloud output point cloud object

206 * \param limitMin minimum limit (in meters)

207 * \param limitMaz mazimum limit (in meters)

208 * \param field the azis to be cut (z, y or z)

209 * \return Returns a point cloud object that has been filtered

210 */

211 pcl::PointCloud<pcl::PointXYZRGB>::Ptr filterPassThrough(pcl::PointCloud<
pcl::PointXYZRGB>::Ptr inCloud, double 1limitMin, double limitMax,
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QString field);

/¥
* \brief Implementation of the ShadowPoint removal filter for a point
cloud.
* \param inCloud input point cloud
* \param mnormals normals of the point cloud
* \param threshold threshold to remove points
* \return Returns a point cloud object that has been filtered

*/
pcl::PointCloud<pcl::PointXYZRGB>::Ptr filterShadowPoint (pcl::PointCloud<
pcl::PointXYZRGB>::Ptr inCloud,pcl::PointCloud<pcl::Normal>::Ptr
normals, double threshold);

/1
* \brief Implementation of the Outlier removal filter for a point cloud.
* \param inCloud input point cloud
* \return Returns a point cloud object that has been filtered
*/
pcl::PointCloud<pcl::PointXYZRGB>::Ptr filterOutlier (pcl::PointCloud<pcl::
PointXYZRGB>::Ptr inCloud) ;

\brief Implementation of mormal estimation for a point cloud.
\param inCloud input point cloud object

\param radius radius of search in normal estimation

\param nrToDisplay nr. of normals to return (for exzample 1/10)
\return Returns a point cloud normal object containing the normals

* % ¥ %X X %

*/
pcl::PointCloud<pcl::Normal>::Ptr computeSurfaceNormals(pcl::PointCloud<pcl
::PointXYZRGB>::Ptr input, float radius);

/*!
* \brief Implementation of surface point normal estimation for a point
cloud

\param input input point cloud object

\param surface surface of point cloud object

\param radius radius of search in normal estimation

\return Returns a point normal object contatining the normals

* %X ¥ %

*/
pcl::PointCloud<pcl::PointNormal >::Ptr computeSurfacePointNormals (pcl::
PointCloud<pcl::PointXYZRGB>::Ptr input,pcl::PointCloud<pcl::PointXYZ
RGB>::Ptr surface, float radius);

/*!
* \brief Implementation of cluster exztraction.
* \param input input point cloud object
* \param distance maxzimum distance allowed to be outside a cluster
* \return Returns a list of point cloud clusters that are found
*/
std::vector<pcl::PointCloud<pcl::PointXYZRGB>::Ptr> extractClusters (pcl::
PointCloud<pcl::PointXYZRGB>::Ptr input, double distance);

/%1
* \brief Implementation of SIFT keypoint detector.
* \param points input point cloud object
* \param minScale minimum scale in SIFT
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* \param nrOctaves number of octaves in SIFT

* \param nrScalesPerOctave number of scales per octave in SIFT

* \param minContrast minimum allowed contrast in SIFT

* \return Returns a point cloud object containing the SIFT keypoints
*/

pcl::PointCloud<pcl::PointXYZRGB>::Ptr detectSIFTKeyPoints (pcl::PointCloud<
pcl::PointXYZRGB>::Ptr points, float minScale,int nrOctaves, int
nrScalesPerOctave, float minContrast);

/* 1

\brief Implementation of FPFH feature descriptor estimation.

\param points input point cloud object

\param mormals normals of input point cloud object

\param keyPoints keypoints of point cloud object

\param featureRadius radius to search in FPFH estimation

\return Returns a FPFHSignature33 histogram of the estimated FPFH

feature descriptors

* % % %X X ¥ *

*/
pcl::PointCloud<pcl::FPFHSignature33>::Ptr computelLocalDescriptorsFPFH(pcl
::PointCloud<pcl::PointXYZRGB>::Ptr points, pcl::PointCloud<pcl::Normal
>::Ptr normals ,pcl::PointCloud<pcl::PointXYZRGB>::Ptr keyPoints, float
featureRadius) ;

\brief Implementation of the SHOTColor feature descriptor estimation.

\param points input point cloud object

\param mormals normals of <input point cloud object

\param keyPoints keypoints of point cloud object

\param featureRadius radius to search in SHOT estimation

\return Returns a SHOT1344 histogram of the estimated SHOTColor feature
descriptors

% % ¥ %X X % *

*/
pcl::PointCloud<pcl::SHOT1344>::Ptr computelocalDescriptorsSHOTColor (pcl::
PointCloud<pcl::PointXYZRGB>::Ptr points, pcl::PointCloud<pcl::Normal
>::Ptr mnormals ,pcl::PointCloud<pcl::PointXYZRGB>::Ptr keyPoints,float
featureRadius) ;

/1
* \brief Implementation of estimating an initial alignment of FPFH feature
descriptors

* \param sourcePoints input point cloud of cloud 1

* \param sourceDescriptors input FPFH descriptors for cloud 1

* \param targetPoints input point cloud of cloud 2

* \param targetDescriptors tinput FPFH descriptors for cloud 2

* \param minSampleDistance minimum sample distance in alignment estimation

* \param maxCorrespondenceDistance mazimum correspondence distance in
alignment estimation

* \param nrIterations nr of iterations to run before "giving up"

* \return Returns a 4xz4 transformation matriz of the estimated
transformation

*/

Eigen::Matrix4f computeInitialAlignmentFPFH(pcl::PointCloud<pcl::PointXYZ
RGB>::Ptr sourcePoints, pcl::PointCloud<pcl::FPFHSignature33>::Ptr
sourceDescriptors ,pcl::PointCloud<pcl::PointXYZRGB>::Ptr targetPoints,
pcl::PointCloud<pcl::FPFHSignature33>::Ptr targetDescriptors,float
minSampleDistance, float maxCorrespondenceDistance, int nrIterations);
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/*!
* \brief

Implementation of estimating an initial alignment of SHOTColor

feature descriptors

\param
\param
\param
\param
\param
\param

* %X ¥ ¥ %X %

sourcePoints input point cloud of cloud 1

sourceDescriptors input SHOTColor descriptors for cloud 1
targetPoints tnput point cloud of cloud 2

targetDescriptors input SHOTColor descriptors for cloud 2
minSampleDistance minimum sample distance in alignment estimation
mazxCorrespondenceDistance mazimum correspondence distance 1in

alignment estimation

*

\param
* \retur

nrlterations nr of tterations to run before "giving up"
n Returns a 4z4 transformation matrixz of the estimated

transformation

* \retur
*/
Eigen::Ma

n

trix4f computeInitialAlignmentSHOTColor (pcl::PointCloud<pcl::

PointXYZRGB>::Ptr sourcePoints, pcl::PointCloud<pcl::SHO0T1344>::Ptr
sourceDescriptors ,pcl::PointCloud<pcl::PointXYZRGB>::Ptr targetPoints,
pcl::PointCloud<pcl::SHOT1344>::Ptr targetDescriptors,6float
minSampleDistance, float maxCorrespondenceDistance, int nrIterations);

/x1!
* \brief
* \param
* \param
* \retur
*/
pcl::Poin

Implementation of plane segmentation.
inCloud input point cloud object
radius radius to search

n Returns the point cloud without the plane

tCloud<pcl::PointXYZRGB>::Ptr extractPlane(pcl::PointCloud<pcl::

PointXYZRGB>::Ptr inCloud, double radius);

/x!
* \brief
* \param
* \param
* \retur
*/
pcl::Poin

Implementation of plane segmentation.
inCloud input point cloud object
radius radius to search

n Returns the plane

tCloud<pcl::PointXYZRGB>::Ptr extractPlaneReturnPlane (pcl::

PointCloud<pcl::PointXYZRGB>::Ptr inCloud, double radius);

/*!
* \brief

The PointCloud Features struct, contains the total points,

* normals, keypoints and feature descriptor for one point cloud. Reduces
* the amount of total code for each operation.

*/
struct Po
pcl:
pcl:
pcl:
pcl:
pcl:
s
/*!
* \brief

intCloudFeatures

:PointCloud<pcl::PointXYZRGB>::Ptr points;
:PointCloud<pcl::Normal>::Ptr normals;
:PointCloud<pcl::PointXYZRGB>::Ptr keyPoints;
:PointCloud<pcl::FPFHSignature33>::Ptr localDescriptorsFPFH;
:PointCloud<pcl::SHOT1344>::Ptr localDescriptorsSHOTColor;

Computes the selected feature descriptor and keypoints for a

point cloud

* \param
* \param

points tnput point cloud object
keyPoints mname of the keypoint detector (for ezample "SIFT")
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* \param descriptors mname of the feature descriptor estimator (for exzample
"FPFH")
* \return
*/
PointCloudFeatures computeFeatures(pcl::PointCloud<pcl::PointXYZRGB>::Ptr
points, QString keyPoints, QString descriptors);

/¥
* \brief Estimate correspondences between two feature descriptor
histograms (FPFH).

\param sourceDescriptors source cloud feature descriptors

\param targetDescriptors target cloud feature descriptor

\param correspondencesOut output correspondences

\param correspondenceScoresOut output correspondences score

* ¥ % X%

*/
void findFeatureCorrespondences (pcl::PointCloud<pcl::FPFHSignature33>::Ptr
sourceDescriptors, pcl::PointCloud<pcl::FPFHSignature33>::Ptr
targetDescriptors ,std::vector<int> &correspondencesOut, std::vector<
float> &correspondenceScoresQOut);

/¥ 1
* \brief Visualizes the correspondences between two point clouds.
* \param pointsl input point cloud 1
* \param keyPointsl input keypoints from point cloud 1
* \param points2 input point cloud 2
* \param keyPoints2 input keypoints from point cloud 2
* \param correspondences correspondences between feature descriptors
* \param correspondenceScores correspondence scores between feature

descriptors
* \param maxzToDisplay maxzimum correspondences to display
*/
void visualizeCorrespondences (pcl::PointCloud<pcl::PointXYZRGB>::Ptr

pointsl, pcl::PointCloud<pcl::PointXYZRGB>::Ptr keyPointsl,pcl::
PointCloud<pcl::PointXYZRGB>::Ptr points2, pcl::PointCloud<pcl::
PointXYZRGB>::Ptr keyPoints2,std::vector<int> &correspondences, std::
vector<float> &correspondenceScores, int maxToDisplay);

ey

*

\brief Estimates correspondences between FPFH feature descriptors.
* \param sourceDescriptors source FPFH feature descriptors
* \param targetDescriptors target FPFH feature descriptors
* \return Returns a Correspondences object with the correspondences found.
*/
pcl::CorrespondencesPtr findCorrespondences (pcl::PointCloud<pcl::
FPFHSignature33>::Ptr sourceDescriptors, pcl::PointCloud<pcl::
FPFHSignature33>::Ptr targetDescriptors);

/*!
* \brief Estimates correspondences between SHOT feature descriptors.
* \param sourceDescriptors source SHOT feature descriptors
* \param targetDescriptors target SHOT feature descriptors
* \return Returns a Correspondences object with the correspondences found.
*/
pcl::CorrespondencesPtr findCorrespondencesSHOT (pcl::PointCloud<pcl::
SHOT1344>::Ptr sourceDescriptors, pcl::PointCloud<pcl::SHOT1344>::Ptr
targetDescriptors) ;
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/¥
* \brief Implementation of a correspondence rejector based on distance.
* \param correspondences input correspondences to reject
\param sourceKeyPoints source cloud keypoints
\param targetKeyPoints target cloud keypoints
\param mazimumDistance mazimum allowed distance before rejection
\return Returns a Correspondences object with the good correspondences.

* % ¥ %

*/
pcl::CorrespondencesPtr rejectCorrespondencesDistance(pcl::Correspondences
Ptr correspondences, pcl::PointCloud<pcl::PointXYZRGB>::Ptr
sourceKeyPoints ,pcl::PointCloud<pcl::PointXYZRGB>::Ptr targetKeyPoints,
float maximumDistance) ;
/*!
* \brief Implementation of a correspondence rejector based on RANSAC.
* \param correspondences input correspondences to reject
\param sourceKeyPoints source cloud keypoints
\param targetKeyPoints target cloud keypoints
\param inlierTreshold treshold for inliers
\param maxzIterations maxzimum allowed iterations
\return Returns a Correspondences object with the good correspondences.

* ¥ ¥ % %

*/
pcl::CorrespondencesPtr rejectCorrespondencesSampleConsensus (pcl::
CorrespondencesPtr correspondences, pcl::PointCloud<pcl::PointXYZRGB>::
Ptr sourceKeyPoints ,pcl::PointCloud<pcl::PointXYZRGB>::Ptr
targetKeyPoints, float inlierTreshold, int maxIterations);
/*!
* \brief Implementation of a correspondence rejector based on one-to-one.
* \param correspondences input correspondences to reject
* \return Returns a Correspondences object with the good correspondences.
*/
pcl::CorrespondencesPtr rejectCorrespondencesOneToOne (pcl::Correspondences
Ptr correspondences) ;

/*!
* \brief Implementation of a correspondence rejector based on median
distance.
* \param correspondences input correspondences to reject
* \param meanDistance mean distance to reject
* \return Returns a Correspondences object with the good correspondences.
*/
pcl::CorrespondencesPtr rejectCorrespondencesMedianDistance (pcl::
CorrespondencesPtr correspondences, double meanDistance);

/*!
* \brief Visualizes the correspondences between two point clouds.
* \param sourcePoints input source point cloud
\param targetPoints input target point cloud
\param sourceKeyPoints tinput source keypoints on point cloud
\param targetKeyPoints input target keypoints on point cloud
\param correspondences total correspondences
\param goodCorrespondences good correspondences after rejection

* % ¥ % X%

*/
void visualizeCorrespondences (pcl::PointCloud<pcl::PointXYZRGB>::Ptr
sourcePoints, pcl::PointCloud<pcl::PointXYZRGB>::Ptr targetPoints ,pcl::
PointCloud<pcl::PointXYZRGB>::Ptr sourceKeyPoints, pcl::PointCloud<pcl
::PointXYZRGB>::Ptr targetKeyPoints ,pcl::CorrespondencesPtr
correspondences, pcl::CorrespondencesPtr goodCorrespondences);
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/¥
* \brief Implementation of transformation estimation based on Singular
Value Decomposition.

* \param sourcePoints input source point cloud

* \param targetPoints input target point cloud

* \param correspondences correspondences between the two point clouds

* \return Returns a 4z4 transformation matriz with the estimated
transformation

*/

Eigen::Matrix4f estimateTransformationSVD(pcl::PointCloud<pcl::PointXYZRGB
>::Ptr sourcePoints, pcl::PointCloud<pcl::PointXYZRGB>::Ptr
targetPoints ,pcl::CorrespondencesPtr correspondences);

/¥ 1
* \brief Implementation of transformation estimation based on
LevenbergMarquardt.

* \param sourcePoints input source point cloud

* \param targetPoints input target point cloud

* \param correspondences correspondences between the two point clouds

* \return Returns a 4z4 transformation matriz with the estimated
transformation

*/

Eigen::Matrix4f estimateTransformationLM(pcl::PointCloud<pcl::PointXYZRGB
>::Ptr sourcePoints, pcl::PointCloud<pcl::PointXYZRGB>::Ptr
targetPoints ,pcl::CorrespondencesPtr correspondences);

/*!
* \brief Visualizes a transformation between two point clouds.
* \param sourcePoints input source point cloud
* \param targetPoints input target point cloud
* \param transform a 4z4 transformation matriz
*/
void visualizeTransformation(pcl::PointCloud<pcl::PointXYZRGB>::Ptr
sourcePoints, pcl::PointCloud<pcl::PointXYZRGB>::Ptr targetPoints,
Eigen::Matrix4f transform);
/*!
\brief Samples a .STL file to a point cloud.
\param path path to point cloud file
\param resolution resolution of sampling
\param tess_level tessalation level of sampling
\return Returns a point cloud object of the sampled .STL file

* % ¥ %X X %

*/
pcl::PointCloud<pcl::PointXYZRGB>::Ptr sampleSTL(QString path, int
resolution, int tess_level);

/*!
* \brief Performs object recognition between a model and a scene.
* \param model the model point cloud
* \param scene the scene point cloud
*/
void matchModelCloud(pcl::PointCloud<pcl::PointXYZRGB>::Ptr model, pcl::
PointCloud<pcl::PointXYZRGB>::Ptr scene);

/¥

* \brief Automatic object recognition by subscribing to the point cloud
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topics.
* \param clouds input point clouds, scene and model
*/
void alignAndMatch(std::vector<pcl::PointCloud<pcl::PointXYZRGB>::Ptr>
clouds) ;
/1

* \brief Refines the alignment of 3 point clouds in the robot cell.
* \param cloudsIn list of 3 point clouds
* \return Returns the reconstructed point cloud scene
*/
pcl::PointCloud<pcl::PointXYZRGB>::Ptr alignCloudsRefined(std::vector<pcl::
PointCloud<pcl::PointXYZRGB>::Ptr> cloudsIn);

Q_SIGNALS:

/*!
* \brief Signal to send new information to the GUI
* \param labels label text for the GUI
* \param show which labels are showing %in the GUI
* \param stepsAndRange step and range for input boz/slider
*/

void sendNewIndexInfo (QStringlList labels, QList<bool> show, QList<double>

stepsAndRange) ;

/1
* \brief Signal to send a new visualtizer to the GUI.
* \param vis the visualizer to send

*/
void sendNewVisualizer (boost::shared_ptr<pcl::visualization::PCLVisualizer>
vis) ;
/!

* \brief Signal to send a new point cloud to the GUI.
* \param cloud the cloud to send
* \param name name of the cloud in the visualizer (meeds to be unique)
*/
void sendNewPointCloud(pcl::PointCloud<pcl::PointXYZRGB>::Ptr cloud,
QString name);

public Q_SLOTS:

private:

QStringlist filterList; //!< List containing available filters

pcl::PassThrough<pcl::PointXYZRGB> passThroughFilter; //!/< PassThrough
filter object

pcl::PassThrough<pcl::PointXYZRGB> passThroughFilterRGB; ///< PassThrough
filter object

pcl::VoxelGrid<pcl::PointXYZRGB> voxelGridFilter; //!< VozelGrid filter
object

pcl::VoxelGrid<pcl::PointXYZRGB> voxelGridFilterRGB; ///< VozelGrid filter
object

pcl::ShadowPoints<pcl::PointXYZRGB, pcl::Normal> shadowPointsFilter; //!<
ShadowPoint removal filter object

pcl::MedianFilter<pcl::PointXYZRGB> medianFilter; ///< Median filter object

pcl::StatisticalOutlierRemoval<pcl::PointXYZRGB> statOutlierFilter; ///<
Outlier removal filter object
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pcl::FastBilateralFilter<pcl::PointXYZRGB> bilateralFilter;

filter object

//!< Bilateral

boost::shared_ptr<pcl::visualization::PCLVisualizer> visualizer; //!<

Visualizer object

QString lastFiltered;
3
}

#endif

//1< Last used filter
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PointCloudManipulator.cpp

#include "../include/qt_master/PointCloudManipulator.hpp"

namespace qt_master {

PointCloudManipulator::PointCloudManipulator (QObject *parent)
Q0bject (parent)
{

}
PointCloudManipulator::~PointCloudManipulator () {}

QStringList PointCloudManipulator::getFilters ()
{
filterList.append("Passthrough");
filterList.append("VoxelGrid");
filterList.append("Median");
filterList.append("Normals");
filterList.append("Plane extraction");
filterList.append("Bilateral");
return filterList;

void PointCloudManipulator::runFilter (int selectedFilter ,pcl::PointCloud<pcl::
PointXYZRGB>::Ptr inCloud,pcl::PointCloud<pcl::PointXYZRGB>::Ptr outCloud,

double d1, double d2, double d3, QString xyz)

pcl::PointCloud<pcl::PointXYZRGB>::Ptr cloud (new pcl::PointCloud<pcl::

PointXYZRGB>) ;

switch(selectedFilter)

{

case O:
// PASSTHROUGH FILTER
filterPassThrough(inCloud, outCloud, dl, d2, xyz);
lastFiltered = "Passthrough filter, ";
lastFiltered.append(" Min: ");
lastFiltered.append (QString::number (d1));
lastFiltered.append (" Max: ");
lastFiltered.append(QString::number (d2));
lastFiltered.append (" Field: ");
lastFiltered.append(xyz);
break;

case 1:
// VOXEL GRID FILTER
filterVoxelGrid(inCloud, outCloud, dil);
lastFiltered = "VoxelGrid filter, ";
lastFiltered.append (" Leaf size : ");
lastFiltered.append(QString::number (dl));
break;

case 2:
// MEDIAN FILTER
filterMedian(inCloud, outCloud, di, d4d2);
lastFiltered = "Median filter, ";
lastFiltered.append (" Window size: ");
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53 lastFiltered.append(QString::number (dl));
54 lastFiltered.append(" Max allowed movement: ");
55 lastFiltered.append (QString::number (d2));
56 break;

57 case 3:

58 // NEW VISUALIZER

59 // Send new vis with normals filtered shit
60 filterNormal (inCloud, d1, d2);

61 lastFiltered = "Normals filter, ";

62 lastFiltered.append (" Radius: ");

63 lastFiltered.append (QString::number (d1));
64 lastFiltered.append(" Nr. to display: ");
65 lastFiltered.append (QString::number (d2));
66 break;

67 case 4:

68 // Plane eztraction

69 cloud = extractPlane(inCloud, di);

70 Q_EMIT sendNewPointCloud(cloud, "filteredCloud");
71 lastFiltered = "Plane extraction, ";

72 lastFiltered.append (" Radius: ");

73 lastFiltered.append (QString::number (dl));
74 break;

75 case b5:

76 filterBilateral (inCloud, di, d2);

77 lastFiltered = "Bilateral filter, ";

78 lastFiltered.append (" SigmaS: ");

79 lastFiltered.append (QString::number (dl));
80 lastFiltered.append (" SigmaR: ");

81 lastFiltered.append (QString::number (d2));
82 break;

83 default:

84 ;

85 }

86 || }

87

88 || void PointCloudManipulator::getNewIndexInfo(int selectedFilter)
89 || {

90 QList<QString> labels;

91 labels.append ("");

92 labels.append ("");

93 labels.append ("");

94 QList <bool> show;

95 show.append (false);

96 show.append (false) ;

97 show.append(false);

98 show.append (false);

99 QList <double> stepsAndRange;

100 stepsAndRange .append (0.1) ;

101 stepsAndRange .append (0.1) ;

102 stepsAndRange .append (0.1) ;

103 stepsAndRange . append (-5) ;

104 stepsAndRange . append (5) ;

105 stepsAndRange . append (-5) ;

106 stepsAndRange . append (5) ;

107 stepsAndRange.append (-5) ;

108 stepsAndRange . append (5) ;

109
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switch(selectedFilter)

{

case O:
// PASSTHROUGH FILTER
labels.replace (0, "Minimum:");
labels.replace (1, "Maximum:");
show.replace (0, true);
show.replace (1, true);
show.replace (3, true);
Q_EMIT sendNewIndexInfo(labels, show, stepsAndRange);
break;

case 1:
// VOXEL GRID FILTER
labels.replace (0, "Leaf size:");
show.replace (0, true);
stepsAndRange .replace (0, 0.001);
stepsAndRange .replace(3, 0.001);
stepsAndRange .replace(4, 0.2);
Q_EMIT sendNewIndexInfo(labels, show, stepsAndRange);
break;

case 2:
// MEDIAN FILTER
labels.replace (0, "Window size:");
labels.replace (1, "Max movement:");
show.replace (0, true);
show.replace(l, true);
stepsAndRange .replace (0, 1);
stepsAndRange .replace (3, 0);
stepsAndRange .replace (4, 100);
stepsAndRange .replace(5, 0);
stepsAndRange .replace(6, 10);
Q_EMIT sendNewIndexInfo(labels, show, stepsAndRange);
break;

case 3:
// NORMALS
labels.replace (0, "Radius:");
labels.replace(l, "Nr. Normals");
show.replace (0, true);
show.replace(l, true);
stepsAndRange .replace (0, 0.001);
stepsAndRange .replace(1l, 1);
stepsAndRange .replace (3, 0.001);
stepsAndRange .replace(4, 0.5);
stepsAndRange .replace(5, 1);
stepsAndRange .replace (6, 10);
Q_EMIT sendNewIndexInfo(labels, show, stepsAndRange);
break;

case 4:
// TRANSLATION
labels.replace (0, "Radius: ");
show.replace (0, true);
stepsAndRange .replace (0, 0.01);
Q_EMIT sendNewIndexInfo(labels, show, stepsAndRange);
break;

case b:

labels.replace (0, "Sigma S");
labels.replace(1l, "Sigma R");
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show.replace (0, true);
show.replace (1, true);
stepsAndRange .replace (0, 1);
stepsAndRange .replace (1, 0.001);
stepsAndRange .replace (3, 0);
stepsAndRange .replace (4, 10);
stepsAndRange .replace(5, 0);
stepsAndRange .replace(6, 0.1);

Q_EMIT sendNewIndexInfo(labels, show, stepsAndRange);
default:
}
}

void PointCloudManipulator::filterPassThrough(pcl::PointCloud<pcl::PointXYZRGB
>::Ptr inCloud, pcl::PointCloud<pcl::PointXYZRGB>::Ptr outCloud, double
limitMin, double limitMax, QString field)

{
passThroughFilter.setInputCloud (inCloud) ;
passThroughFilter.setFilterFieldName (field.toStdString());
passThroughFilter.setFilterLimits (limitMin, limitMax);
passThroughFilter.setKeepOrganized (true) ;
passThroughFilter.filter (¥outCloud) ;
Q_EMIT sendNewPointCloud (outCloud, "filteredCloud");

}

void PointCloudManipulator::filterVoxelGrid(pcl::PointCloud<pcl::PointXYZRGB>::
Ptr inCloud, pcl::PointCloud<pcl::PointXYZRGB>::Ptr outCloud, double

leafSize)
{
float leaf = leafSize;
voxelGridFilter.setInputCloud (inCloud);
voxelGridFilter .setLeafSize (leaf, leaf, leaf);
voxelGridFilter.filter (xoutCloud) ;
Q_EMIT sendNewPointCloud (outCloud, "filteredCloud");
}

void PointCloudManipulator::filterMedian(pcl::PointCloud<pcl::PointXYZRGB>::Ptr
inCloud, pcl::PointCloud<pcl::PointXYZRGB>::Ptr outCloud, double
windowSize, double maxMovement)

int windowSizeTmp = (int)windowSize;
medianFilter.setInputCloud(inCloud) ;
medianFilter.setWindowSize (windowSizeTmp) ;
medianFilter.setMaxAllowedMovement (maxMovement) ;
medianFilter.applyFilter (¥outCloud) ;

Q_EMIT sendNewPointCloud (outCloud, "filteredCloud");

void PointCloudManipulator::filterNormal (pcl::PointCloud<pcl::PointXYZRGB>::Ptr
inCloud, double radius, double nrToDisplay)
{
int tmpDisplay = (int) nrToDisplay;
visualizer.reset(new pcl::visualization::PCLVisualizer ("viewer2", false));
pcl::PointCloud<pcl::Normal>::Ptr normals_out (new pcl::PointCloud<pcl
::Normal>) ;

105



216

217
218
219
220
221
222
223

224

225
226
227
228

229
230

231
232
233
234
235
236
237
238

239
240

241
242
243
244
245
246

247
248

249
250
251
252
253
254
255
256
257
258
259
260
261
262

APPENDIX C. MAIN PROGRAM

pcl::search::KdTree<pcl::PointXYZRGB>::Ptr tree (new pcl::search::KdTree<
pcl::PointXYZRGB> ());

pcl::NormalEstimationOMP<pcl::PointXYZRGB, pcl::Normal> norm_est;

norm_est.setSearchMethod (tree) ;

norm_est.setKSearch (10) ;

norm_est.setInputCloud (inCloud);

norm_est.compute (*normals_out);

visualizer->addPointCloud<pcl::PointXYZRGB> (inCloud, "filteredCloud");

visualizer->addPointCloudNormals<pcl::PointXYZRGB, pcl::Normal> (inCloud,
normals_out, tmpDisplay, 0.05, "normals");

visualizer ->setPointCloudRenderingProperties(pcl::visualization::
PCL_VISUALIZER_COLOR, 0.0,0.0,1.0, "normals");

Q_EMIT sendNewVisualizer (visualizer);

}

void PointCloudManipulator::filterBilateral(pcl::PointCloud<pcl::PointXYZRGB>::
Ptr inCloud, double sigmaS, float sigmaR)

{
pcl::PointCloud<pcl::PointXYZRGB>::Ptr filteredCloud (new pcl::PointCloud<
pcl::PointXYZRGB>) ;
bilateralFilter.setInputCloud(inCloud) ;
bilateralFilter.setSigmaS (sigma$S);
bilateralFilter.setSigmaR (sigmaR) ;
bilateralFilter.filter (xfilteredCloud) ;
Q_EMIT sendNewPointCloud(filteredCloud, "filteredCloud");
}

void PointCloudManipulator::translateCloud(pcl::PointCloud<pcl::PointXYZRGB>::
Ptr inCloud, double rX, double rY, double rZ, double tX, double tY, double

tZ)
{
pcl::PointCloud<pcl::PointXYZRGB>::Ptr translatedCloud (new pcl::PointCloud
<pcl::PointXYZRGB>);
Eigen::Matrix4f transform = Eigen::Matrix4f::Identity();
double x = M_PI/180*rX;
double y = M_PI/180%*rY;
double z = M_PI/180*rZ;
transform << cos(y) * cos(z), -cos(y) * sin(z), sin(y), tX,
(cos(x) * sin(z)) + (cos(z) * sin(x) * sin(y)), (cos(x) * cos(z)) -
(sin(x) * sin(y) * sin(z)), -cos(y) *
sin(x), tY,
(sin(x) * sin(z)) - (cos(x) * cos(z) * sin(y)), (cos(z) * sin(x)) +
(cos(x) * sin(y) * sin(z)), cos(x) *
cos(y), tZ,
0.0, 0.0, 0.0, 1.0;
pcl::transformPointCloud (¥inCloud, *translatedCloud, transform);
Q_EMIT sendNewPointCloud(translatedCloud, "translatedCloud");
}

void PointCloudManipulator::getNewVisualizer (int selectedFilter)

{
visualizer.reset(new pcl::visualization::PCLVisualizer ("viewer2", false));
Q_EMIT sendNewVisualizer (visualizer);
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263 || QString PointCloudManipulator::getLastFiltered ()
264 || {
265 return lastFiltered;
266 || ¥
267
268 || pcl::PointCloud<pcl::Normal>::Ptr PointCloudManipulator::computeSurfaceNormals (
pcl::PointCloud<pcl::PointXYZRGB>::Ptr input, float radius)
269 || {
270 pcl::NormalEstimationOMP<pcl::PointXYZRGB, pcl::Normal> normal_estimation;
271 pcl::PointCloud<pcl::Normal>::Ptr normals (new pcl::PointCloud<pcl::Normal
>);
272 pcl::search::KdTree<pcl::PointXYZRGB>::Ptr tree (new pcl::search::KdTree<
pcl::PointXYZRGB> ());
273 normal_estimation.setNumberOfThreads (8);
274 normal _estimation.setSearchMethod (tree);
275 normal _estimation.setRadiusSearch (radius);
276 normal_estimation.setKSearch (10);
277 normal_estimation.setInputCloud (input);
278 normal_estimation.compute (*normals);
279 return (normals);
280 || ¥
281
282 || pcl::PointCloud<pcl::PointNormal>::Ptr PointCloudManipulator::
computeSurfacePointNormals (pcl::PointCloud<pcl::PointXYZRGB>::Ptr input,pcl
::PointCloud<pcl::PointXYZRGB>::Ptr surface, float radius)
283 || {
284 pcl::NormalEstimationOMP<pcl::PointXYZRGB, pcl::PointNormal>
normal_estimation;
285 pcl::PointCloud<pcl::PointNormal>::Ptr normals (new pcl::PointCloud<pcl::
PointNormal >) ;
286 pcl::search::KdTree<pcl::PointXYZRGB>::Ptr tree (mew pcl::search::KdTree<
pcl::PointXYZRGB> ());
287 normal _estimation.setNumberOfThreads (8) ;
288 normal _estimation.setSearchSurface(surface);
289 normal _estimation.setSearchMethod (tree);
290 normal _estimation.setRadiusSearch (radius);
291 normal_estimation.setInputCloud (input);
292 normal_estimation.compute (*normals);
293 return (normals);
294 || ¥
295
296 || std::vector<pcl::PointCloud<pcl::PointXYZRGB>::Ptr> PointCloudManipulator::
extractClusters (pcl::PointCloud<pcl::PointXYZRGB>::Ptr input, double
distance)
297 || {
298 pcl::PointCloud<pcl::PointXYZRGB>::Ptr cloud_f (new pcl::PointCloud<pcl::
PointXYZRGB>), outcloud(new pcl::PointCloud<pcl::PointXYZRGB>);
299 pcl::PointCloud<pcl::PointXYZRGB>::Ptr incloud (new pcl::PointCloud<pcl::
PointXYZRGB>) ;
300 pcl::copyPointCloud (*input ,*incloud) ;
301
302 pcl::SACSegmentation<pcl::PointXYZRGB> seg;
303 pcl::PointIndices::Ptr inliers (new pcl::PointIndices);
304 pcl::ModelCoefficients::Ptr coefficients (new pcl::ModelCoefficients);
305 pcl::PointCloud<pcl::PointXYZRGB>::Ptr cloud_plane (new pcl::PointCloud<pcl
::PointXYZRGB> ());
306 seg.setOptimizeCoefficients (true);
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seg.setModelType (pcl::SACMODEL_PLANE);
seg.setMethodType (pcl::SAC_RANSAC);
seg.setMaxIterations (100);
seg.setDistanceThreshold (distance);

int i=0, nr_points = (int) incloud->points.size ();

while (incloud->points.size () > 0.3 * nr_points)
{
seg.setInputCloud (incloud);
seg.segment (xinliers, *coefficients);
if (inliers->indices.size () == 0)
{
std::cout << "Could not estimate a planar model for the given
dataset." << std::endl;
break;
}
pcl::ExtractIndices<pcl::PointXYZRGB> extract;
extract.setInputCloud (incloud);
extract.setIndices (inliers);
extract.setNegative (false);
extract.filter (*cloud_plane);
extract.setNegative (true);
extract.filter (*cloud_f);
*incloud = *cloud_f;
}
pcl::search::KdTree<pcl::PointXYZRGB>::Ptr tree (new pcl::search::KdTree<
pcl::PointXYZRGB>);
tree->setInputCloud (incloud);
std::vector<pcl::PointIndices> cluster_indices;
pcl::EuclideanClusterExtraction<pcl::PointXYZRGB> ec;
ec.setClusterTolerance (0.02);
ec.setMinClusterSize (200);
ec.setMaxClusterSize (25000) ;
ec.setSearchMethod (tree);
ec.setInputCloud (incloud) ;
ec.extract (cluster_indices);

std::vector<pcl::PointCloud<pcl::PointXYZRGB>::Ptr> clusters;
for(int i = 0; i< cluster_indices.size(); i++){
pcl::PointCloud<pcl::PointXYZRGB>::Ptr tmpcloud (new pcl::PointCloud<
pcl::PointXYZRGB>) ;
pcl::copyPointCloud (*incloud,cluster_indices[i] ,*tmpcloud);
clusters.push_back (tmpcloud) ;
}

pcl::PointCloud<pcl::PointXYZRGB>::Ptr clusterCloud (new pcl::PointCloud<
pcl::PointXYZRGB>);

for(int i = 0; i< clusters.size(); i++){
*clusterCloud += *clusters.at(i);

}
Q_EMIT sendNewPointCloud(clusterCloud, "filteredCloud");

return (clusters);

pcl::PointCloud<pcl::PointXYZRGB>::Ptr PointCloudManipulator::
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pcl

{

pcl:

pcl:

pcl

detectSIFTKeyPoints (pcl::PointCloud<pcl::PointXYZRGB>::Ptr points, float
minScale ,int nrOctaves, int nrScalesPerOctave, float minContrast)

pcl::SIFTKeypoint<pcl::PointXYZRGB, pcl::PointWithScale> siftDetect;

siftDetect.setSearchMethod(pcl::search::Search<pcl::PointXYZRGB>::Ptr (new
pcl::search::KdTree<pcl::PointXYZRGB>));

siftDetect.setScales(minScale ,nrOctaves ,nrScalesPerOctave);

siftDetect.setMinimumContrast (minContrast) ;

siftDetect.setInputCloud (points) ;

pcl::PointCloud<pcl::PointWithScale> tmpKeyPoints;

siftDetect.compute (tmpKeyPoints) ;

pcl::PointCloud<pcl::PointXYZRGB>::Ptr keyPoints (new pcl::PointCloud<pcl::
PointXYZRGB>);

pcl::copyPointCloud (tmpKeyPoints, *keyPoints);

return keyPoints;

::PointCloud<pcl::PointXYZRGB>::Ptr PointCloudManipulator::filterVoxel (pcl::

PointCloud<pcl::PointXYZRGB>::Ptr inCloud, double leafSize)

float leaf = leafSize;

pcl::PointCloud<pcl::PointXYZRGB>::Ptr filteredCloud (new pcl::PointCloud<
pcl::PointXYZRGB>());

voxelGridFilterRGB.setInputCloud (inCloud) ;

voxelGridFilterRGB.setLeafSize (leaf, leaf, leaf);

voxelGridFilterRGB.filter (*filteredCloud) ;

return filteredCloud;

:PointCloud<pcl::PointXYZRGB>::Ptr PointCloudManipulator::filterShadowPoint
(pcl::PointCloud<pcl::PointXYZRGB>::Ptr inCloud,pcl::PointCloud<pcl::Normal
>::Ptr normals, double threshold)

pcl::PointCloud<pcl::PointXYZRGB>::Ptr filteredCloud (new pcl::PointCloud<
pcl::PointXYZRGB>());

shadowPointsFilter.setInputCloud(inCloud);

shadowPointsFilter.setKeepOrganized (true);

shadowPointsFilter.setNormals (normals) ;

shadowPointsFilter.setThreshold (threshold) ;

shadowPointsFilter.filter (xfilteredCloud);

return filteredCloud;

:PointCloud<pcl::PointXYZRGB>::Ptr PointCloudManipulator::filterQOutlier (pcl
::PointCloud<pcl::PointXYZRGB>::Ptr inCloud)

pcl::StatisticalOutlierRemoval<pcl::PointXYZRGB> sor;

pcl::PointCloud<pcl::PointXYZRGB>::Ptr cloud_filtered (new pcl::PointCloud<
pcl::PointXYZRGB>());

sor.setInputCloud (inCloud);

sor.setMeanK (20);

sor.setStddevMulThresh (1.0);

sor.filter (*cloud_filtered);

return cloud_filtered;

::PointCloud<pcl::PointXYZRGB>::Ptr PointCloudManipulator::filterPassThrough
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(pcl::PointCloud<pcl::PointXYZRGB>::Ptr inCloud, double limitMin, double
limitMax, QString field)

pcl::PointCloud<pcl::PointXYZRGB>::Ptr filteredCloud (mnew pcl::PointCloud<
pcl::PointXYZRGB>());

passThroughFilterRGB.setInputCloud (inCloud) ;

passThroughFilterRGB.setFilterLimits (limitMin, limitMax);

passThroughFilterRGB.setFilterFieldName (field.toStdString ());

passThroughFilterRGB.setKeepOrganized (true);

passThroughFilterRGB.filter (xfilteredCloud);

return filteredCloud;

pcl::PointCloud<pcl::FPFHSignature33>::Ptr PointCloudManipulator::
computelLocalDescriptorsFPFH(pcl::PointCloud<pcl::PointXYZRGB>::Ptr points,
pcl::PointCloud<pcl::Normal>::Ptr normals ,pcl::PointCloud<pcl::PointXYZRGB
>::Ptr keyPoints, float featureRadius)

pcl::FPFHEstimationOMP<pcl::PointXYZRGB, pcl::Normal, pcl::FPFHSignature33>
fpfhEstimation;

fpfhEstimation.setNumber0fThreads (8) ;

fpfhEstimation.setSearchMethod(pcl::search::Search<pcl::PointXYZRGB>::Ptr (
new pcl::search::KdTree<pcl::PointXYZRGB>));

fpfhEstimation.setRadiusSearch(featureRadius);

fpfhEstimation.setSearchSurface (points);

fpfhEstimation.setInputNormals (normals) ;

fpfhEstimation.setInputCloud (keyPoints);

pcl::PointCloud<pcl::FPFHSignature33>::Ptr localDescriptors (new pcl::
PointCloud<pcl::FPFHSignature33>);

fpfhEstimation.compute (*localDescriptors) ;

return localDescriptors;

pcl::PointCloud<pcl::SHOT1344>::Ptr PointCloudManipulator::
computelLocalDescriptorsSHOTColor (pcl::PointCloud<pcl::PointXYZRGB>::Ptr
points, pcl::PointCloud<pcl::Normal>::Ptr normals ,pcl::PointCloud<pcl::
PointXYZRGB>::Ptr keyPoints,float featureRadius)

pcl::SHOTColorEstimationOMP<pcl::PointXYZRGB, pcl::Normal, pcl::SHOT1344>
shot ;

pcl::PointCloud<pcl::SHOT1344>::Ptr localDescriptors (new pcl::PointCloud<
pcl::SHOT1344>);

shot.setNumber0OfThreads (8) ;

shot.setInputCloud (keyPoints) ;

shot.setSearchSurface (points);

shot.setInputNormals (normals) ;

shot.setRadiusSearch(featureRadius);

shot.compute (xlocalDescriptors) ;

return (localDescriptors);

}

Eigen::Matrix4f PointCloudManipulator::computeInitialAlignmentFPFH(pcl::
PointCloud<pcl::PointXYZRGB>::Ptr sourcePoints, pcl::PointCloud<pcl::
FPFHSignature33>::Ptr sourceDescriptors,pcl::PointCloud<pcl::PointXYZRGB>::
Ptr targetPoints, pcl::PointCloud<pcl::FPFHSignature33>::Ptr
targetDescriptors ,float minSampleDistance, float maxCorrespondenceDistance,

int nrIterations)
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}

pcl::SampleConsensusInitialAlignment <pcl::PointXYZRGB,

pcl::PointXYZRGB,

pcl::FPFHSignature33> sacInitAlign;

sacInitAlign.
sacInitAlign.
sacInitAlign.
sacInitAlign.
sacInitAlign.
sacInitAlign.
sacInitAlign.

setMinSampleDistance (minSampleDistance);
setMaxCorrespondenceDistance (maxCorrespondenceDistance) ;
setMaximumIterations (nrIterations) ;

setInputSource (sourcePoints) ;

setSourceFeatures (sourceDescriptors) ;

setInputTarget (targetPoints) ;

setTargetFeatures (targetDescriptors) ;

pcl::PointCloud<pcl::PointXYZRGB> reglOutput;

sacInitAlign.

align(regOutput);

return (sacInitAlign.getFinalTransformation());

Eigen::Matrix4f PointCloudManipulator::computeInitialAlignmentSHOTColor (pcl::

pcl:

PointCloud<pcl::PointXYZRGB>::Ptr sourcePoints,

pcl::PointCloud<pcl::

SHOT1344>::Ptr sourceDescriptors ,pcl::PointCloud<pcl::PointXYZRGB>::Ptr

targetPoints,
minSampleDistance,

pcl::SampleConsensusInitialAlignment <pcl::PointXYZRGB,

pcl::PointCloud<pcl::SHOT1344>::Ptr targetDescriptors,float
float maxCorrespondenceDistance, int nrIterations)

pcl::PointXYZRGB,

pcl::SHOT1344> sacInitAlign;

sacInitAlign.
sacInitAlign.
sacInitAlign.
sacInitAlign.
sacInitAlign.
sacInitAlign.
sacInitAlign.

setMinSampleDistance (minSampleDistance) ;
setMaxCorrespondenceDistance (maxCorrespondenceDistance) ;
setMaximumIterations (nrIterations) ;

setInputSource (sourcePoints);

setSourceFeatures (sourceDescriptors) ;

setInputTarget (targetPoints) ;

setTargetFeatures (targetDescriptors) ;

pcl::PointCloud<pcl::PointXYZRGB> reglOutput;

sacInitAlign.

align(regOutput);

return (sacInitAlign.getFinalTransformation());

:PointCloud<pcl::PointXYZRGB>::Ptr PointCloudManipulator::extractPlane (pcl
::PointCloud<pcl::PointXYZRGB>::Ptr inCloud,

pcl::PointCloud<pcl::PointXYZRGB>::Ptr cloud_plane (new pcl::PointCloud<pcl

double radius)

::PointXYZRGB>) ;

pcl::PointCloud<pcl::PointXYZRGB>::Ptr cloud_no_plane (new pcl::PointCloud<

pcl::PointXYZRGB>);
pcl::ModelCoefficients::Ptr coefficients (new pcl::ModelCoefficients);

pcl::PointIndices::Ptr inliers

(new pcl::PointIndices);

pcl::SACSegmentation<pcl::PointXYZRGB> seg;

seg.
seg.
seg.
seg.
seg.
seg.
seg.

setOptimizeCoefficients
setModelType (pcl::SACMODEL_PLANE);
setMethodType (pcl::SAC_RANSAC);
setMaxIterations (100) ;
setDistanceThreshold (radius);
setInputCloud (inCloud) ;

segment (xinliers,

(true);

*coefficients) ;

pcl::ExtractIndices<pcl::PointXYZRGB> extract;
extract.setInputCloud (inCloud);
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extract.setIndices (inliers);
extract.setNegative (false);
extract.filter (*cloud_plane);
extract.setNegative (true);
extract.filter (*cloud_no_plane) ;

return (cloud_no_plane);

pcl::PointCloud<pcl::PointXYZRGB>::Ptr PointCloudManipulator::
extractPlaneReturnPlane (pcl::PointCloud<pcl::PointXYZRGB>::Ptr inCloud,
double radius)

pcl::PointCloud<pcl::PointXYZRGB>::Ptr cloud_plane (new pcl::PointCloud<pcl
::PointXYZRGB>) ;

pcl::ModelCoefficients::Ptr coefficients (new pcl::ModelCoefficients);

pcl::PointIndices::Ptr inliers (new pcl::PointIndices);

pcl::SACSegmentation<pcl::PointXYZRGB> seg;

seg.setOptimizeCoefficients (true);

seg.setModelType (pcl::SACMODEL_PLANE);

seg.setMethodType (pcl::SAC_RANSAC);

seg.setMaxIterations (100) ;

seg.setDistanceThreshold (radius);

seg.setInputCloud (inCloud);

seg.segment (xinliers, *coefficients);

pcl::ExtractIndices<pcl::PointXYZRGB> extract;
extract.setInputCloud (inCloud);
extract.setIndices (inliers);
extract.setNegative (false);

extract.filter (*cloud_plane);

return (cloud_plane);
PointCloudManipulator::PointCloudFeatures PointCloudManipulator::

computeFeatures (pcl::PointCloud<pcl::PointXYZRGB>::Ptr inCloud, QString
keyPoints, QString descriptors)

{
PointCloudFeatures features;
features.points = inCloud;
features.normals = computeSurfaceNormals(features.points, 0.005) ;

std::cout << "Found normals: " ;
std::cout << features.normals->size() << std::endl;

if (QString::compare (keyPoints, "SIFT", Qt::Caselnsensitive) == 0){
// CONTRAST IS THE LAST PART (0.01, 3, 3, 0.2)
features.keyPoints = detectSIFTKeyPoints(features.points, 0.01, 15, 15,
0.0);
std::cout << "Found SIFT keypoints: " ;
std::cout << features.keyPoints->size() << std::endl;
}
else if (QString::compare(keyPoints, "VOXEL", Qt::CaseInsensitive) == 0){
features.keyPoints = filterVoxel(features.points, 0.001);
std::cout << "Found VOXEL keypoints: " ;
std::cout << features.keyPoints->size() << std::endl;

112



543
544
545
546

547
548
549
550

551

552
553
554
555
556
557
558

559
560
561
562
563
564
565
566
567
568

569
570
571
572
573
574

575
576

577
578
579
580
581

582
583

APPENDIX C. MAIN PROGRAM

}
if (QString::compare(descriptors, "FPFH", Qt::Caselnsensitive) == 0){
features.localDescriptorsFPFH = computelLocalDescriptorsFPFH(features.
points, features.normals, features.keyPoints, 0.55); //0.15
std::cout << "Found FPFH descriptors: " ;
std::cout << features.localDescriptorsFPFH->size() << std::endl;
}
else if (QString::compare(descriptors, "SHOTCOLOR", Qt::Caselnsensitive) ==
01
features.localDescriptorsSHOTColor = computelLocalDescriptorsSHOTColor (
features.points, features.normals, features.keyPoints ,0.55);
std::cout << "Found SHOTColor descriptors: " ;
std::cout << features.localDescriptorsSHOTColor->size () << std::endl;
}

return features;

}

void PointCloudManipulator::findFeatureCorrespondences (pcl::PointCloud<pcl::
FPFHSignature33>::Ptr sourceDescriptors, pcl::PointCloud<pcl::
FPFHSignature33>::Ptr targetDescriptors,std::vector<int> &
correspondencesOut, std::vector<float> &correspondenceScoresQOut)

{
correspondencesOut.resize(sourceDescriptors->size());
correspondenceScoresQOut.resize(sourceDescriptors->size());
pcl::KdTreeFLANN<pcl::FPFHSignature33> descriptorKDTree;
descriptorKDTree.setInputCloud(targetDescriptors);
const int k = 1;
std::vector<int> k_indices (k);
std::vector<float> k_squared_distances (k);
for (size_t i = 0; i < sourceDescriptors->size(); i++){
descriptorKDTree.nearestKSearch (*sourceDescriptors, i, k , k_indices,
k_squared_distances);
correspondencesOut [i] = k_indices [0];
correspondenceScoresOut [i] = k_squared_distances [0];
}
}

void PointCloudManipulator::visualizeCorrespondences (pcl::PointCloud<pcl::
PointXYZRGB>::Ptr pointsl, pcl::PointCloud<pcl::PointXYZRGB>::Ptr
keyPointsl ,pcl::PointCloud<pcl::PointXYZRGB>::Ptr points2, pcl::PointCloud<
pcl::PointXYZRGB>::Ptr keyPoints2,std::vector<int> &correspondences, std::
vector<float> &correspondenceScores, int maxToDisplay)

pcl::PointCloud<pcl::PointXYZRGB>::Ptr points_left (new pcl::PointCloud<pcl
::PointXYZRGB>) ;

pcl::PointCloud<pcl::PointXYZRGB>::Ptr keypoints_left (new pcl::PointCloud<
pcl::PointXYZRGB>);

pcl::PointCloud<pcl::PointXYZRGB>::Ptr points_right (new pcl::PointCloud<
pcl::PointXYZRGB>);

pcl::PointCloud<pcl::PointXYZRGB>::Ptr keypoints_right (new pcl::PointCloud
<pcl::PointXYZRGB>);

const Eigen::Vector3f translate (0.4, 0.0, 0.0);

const Eigen::Quaternionf no_rotation (0, 0, 0, 0);

pcl::transformPointCloud (*pointsl, *points_left, -translate, no_rotation);

pcl::transformPointCloud (*keyPointsl, *keypoints_left, -translate,
no_rotation) ;
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}

pcl::transformPointCloud (*points2, *points_right, translate, no_rotation);
pcl::transformPointCloud (*keyPoints2, *keypoints_right, translate,
no_rotation) ;

pcl::visualization::PCLVisualizer vis;
vis.addPointCloud (points_left, "points_left");
vis.addPointCloud (points_right, "points_right");

std::vector<float> temp (correspondenceScores);
std::sort (temp.begin (), temp.end ());
if (maxToDisplay >= temp.size ())

maxToDisplay = temp.size () - 1;
float threshold = temp[maxToDisplayl;
for (size_t i = 0; i < keypoints_left->size (); ++i)
{
if (correspondenceScores[i] > threshold)
{
continue;
}
const pcl::PointXYZRGB & p_left = keypoints_left->points[i];
const pcl::PointXYZRGB & p_right = keypoints_right->points/|[
correspondences [i]];
double r = (rand() % 100);
double g = (rand() % 100);
double b = (rand() % 100);
double max_channel = std::max (r, std::max (g, b));
r /= max_channel;
g /= max_channel;
b /= max_channel;
std::stringstream ss ("line");
ss << i
vis.addLine (p_left, p_right, r, g, b, ss.str ());
}

vis.resetCamera ();
vis.spin Q);

pcl::CorrespondencesPtr PointCloudManipulator::findCorrespondences (pcl::

PointCloud<pcl::FPFHSignature33>::Ptr sourceDescriptors, pcl::PointCloud<
pcl::FPFHSignature33>::Ptr targetDescriptors)

pcl::CorrespondencesPtr correspondences (new pcl::Correspondences);

pcl::registration::CorrespondenceEstimation<pcl::FPFHSignature33, pcl::
FPFHSignature33> est;

est.setInputSource (sourceDescriptors) ;

est.setInputTarget (targetDescriptors) ;

est.determineCorrespondences (xcorrespondences) ;

return correspondences;

pcl::CorrespondencesPtr PointCloudManipulator::findCorrespondencesSHOT (pcl::

PointCloud<pcl::SHOT1344>::Ptr sourceDescriptors, pcl::PointCloud<pcl::

SHOT1344>::Ptr targetDescriptors){

pcl::CorrespondencesPtr correspondences (new pcl::Correspondences);

pcl::registration::CorrespondenceEstimation<pcl::SHO0T1344, pcl::SHOT1344>
est;

est.setInputSource (sourceDescriptors);
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est.setInputTarget (targetDescriptors);
est.determineCorrespondences (*¥correspondences) ;
return correspondences;

pcl::CorrespondencesPtr PointCloudManipulator::rejectCorrespondencesDistance (
pcl::CorrespondencesPtr correspondences, pcl::PointCloud<pcl::PointXYZRGB
>::Ptr sourceKeyPoints ,pcl::PointCloud<pcl::PointXYZRGB>::Ptr
targetKeyPoints, float maximumDistance)

{
pcl::CorrespondencesPtr goodCorrespondences (new pcl::Correspondences);
pcl::registration::CorrespondenceRejectorDistance rej;
rej.setInputSource<pcl::PointXYZRGB> (sourceKeyPoints);
rej.setInputTarget<pcl::PointXYZRGB> (targetKeyPoints) ;
rej.setMaximumDistance (maximumDistance); //meters
rej.setInputCorrespondences (correspondences) ;
rej.getCorrespondences (xgoodCorrespondences) ;
return goodCorrespondences;

}

pcl::CorrespondencesPtr PointCloudManipulator::
rejectCorrespondencesSampleConsensus (pcl::CorrespondencesPtr
correspondences ,pcl::PointCloud<pcl::PointXYZRGB>::Ptr sourceKeyPoints,hpcl
::PointCloud<pcl::PointXYZRGB>::Ptr targetKeyPoints ,float inlierTreshold,
int maxIterations)

{
pcl::CorrespondencesPtr goodCorrespondences (new pcl::Correspondences);
pcl::registration::CorrespondenceRejectorSampleConsensus<pcl::PointXYZRGB>
rej;
rej.setInputSource (sourceKeyPoints) ;
rej.setInputTarget (targetKeyPoints);
rej.setInlierThreshold(inlierTreshold) ;
rej.setMaximumIterations (maxIterations);
rej.setInputCorrespondences (correspondences) ;
rej.getCorrespondences (xgoodCorrespondences) ;
return goodCorrespondences;
}

pcl::CorrespondencesPtr PointCloudManipulator::rejectCorrespondencesOneToOne (
pcl::CorrespondencesPtr correspondences)

{
pcl::CorrespondencesPtr goodCorrespondences (new pcl::Correspondences);
pcl::registration::CorrespondenceRejectorOneToOne rej;
rej.setInputCorrespondences (correspondences) ;
rej.getCorrespondences (*goodCorrespondences) ;
return goodCorrespondences;

}

pcl::CorrespondencesPtr PointCloudManipulator::
rejectCorrespondencesMedianDistance (pcl::CorrespondencesPtr correspondences
, double meanDistance)

pcl::CorrespondencesPtr corrRejectMed (new pcl::Correspondences);
pcl::registration::CorrespondenceRejectorMedianDistance rejMed;
rejMed.setInputCorrespondences (correspondences) ;
rejMed.setMedianFactor (meanDistance) ;

115



679
680
681
682
683

684
685
686
687

688

689
690

691
692
693
694
695
696
697

698

699
700
701

702
703
704

705
706
707
708
709

710
711
712

713
714
715

716
717

718

APPENDIX C. MAIN PROGRAM

rejMed.getCorrespondences (xcorrRejectMed) ;
return corrRejectMed;

}

void PointCloudManipulator::visualizeCorrespondences (pcl::PointCloud<pcl::
PointXYZRGB>::Ptr sourcePoints, pcl::PointCloud<pcl::PointXYZRGB>::Ptr
targetPoints ,pcl::PointCloud<pcl::PointXYZRGB>::Ptr sourceKeyPoints, pcl::
PointCloud<pcl::PointXYZRGB>::Ptr targetKeyPoints, pcl::CorrespondencesPtr
correspondences, pcl::CorrespondencesPtr goodCorrespondences)

{

const Eigen::Vector3f translate (0.4, 0.0, 0.0);

const Eigen::Quaternionf no_rotation (0, 0, 0O, 0);

pcl::PointCloud<pcl::PointXYZRGB>::Ptr left (mew pcl::PointCloud<pcl::
PointXYZRGB>) ;

pcl::PointCloud<pcl::PointXYZRGB>::Ptr leftKey (new pcl::PointCloud<pcl::
PointXYZRGB>) ;

pcl::transformPointCloud (*sourcePoints, *left, -translate, no_rotation);

pcl::transformPointCloud (*sourceKeyPoints, *leftKey, -translate,
no_rotation);

pcl::visualization::PCLVisualizer vis;

int ¢ = 0;

int d = 1;

vis.createViewPort (0, 0, 0.5, 1, c);

vis.createViewPort (0.5, 0, 1, 1, d);

pcl::visualization::PointCloudColorHandlerCustom<pcl::PointXYZRGB> red (
left, 255, 0, 0);

pcl::visualization::PointCloudColorHandlerCustom<pcl::PointXYZRGB> blue (
targetPoints, 0, 0, 255);

vis.addPointCloud (left, red, "cloudil",c);

vis.addPointCloud (targetPoints, blue, "cloud2",c);

vis.addCorrespondences<pcl::PointXYZRGB>(leftKey,targetKeyPoints ,*
correspondences ,"Correspondences",c);

vis.addPointCloud (left, red, "cloudib",d);

vis.addPointCloud (targetPoints, blue, "cloud2b", d);

vis.addCorrespondences<pcl::PointXYZRGB>(leftKey,targetKeyPoints ,*
goodCorrespondences, "Good correspondences",d);

vis.spin();

}

Eigen::Matrix4f PointCloudManipulator::estimateTransformationSVD(pcl::
PointCloud<pcl::PointXYZRGB>::Ptr sourcePoints, pcl::PointCloud<pcl::
PointXYZRGB>::Ptr targetPoints, pcl::CorrespondencesPtr correspondences)

{
Eigen::Matrix4f transResult = Eigen::Matrix4f::Identity ();
pcl::registration::TransformationEstimationSVD<pcl::PointXYZRGB, pcl::
PointXYZRGB> estTransSVD;
estTransSVD.estimateRigidTransformation (*¥sourcePoints, *targetPoints, =*
correspondences, transResult);
return transResult;
}

Eigen::Matrix4f PointCloudManipulator::estimateTransformationLM(pcl::PointCloud
<pcl::PointXYZRGB>::Ptr sourcePoints, pcl::PointCloud<pcl::PointXYZRGB>::
Ptr targetPoints, pcl::CorrespondencesPtr correspondences)
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719 Eigen::Matrix4f transResult = Eigen::Matrix4f::Identity Q);

720 pcl::registration::TransformationEstimationLM<pcl::PointXYZRGB, pcl::
PointXYZRGB> estTransLM;

721 estTransLM.estimateRigidTransformation (*sourcePoints, *targetPoints, *
correspondences, transResult);

722 return transResult;

723 || ¥

724

725 || void PointCloudManipulator::visualizeTransformation(pcl::PointCloud<pcl::
PointXYZRGB>::Ptr sourcePoints, pcl::PointCloud<pcl::PointXYZRGB>::Ptr
targetPoints ,Eigen::Matrix4f transform)

726 || {

727 pcl::visualization::PCLVisualizer vis;

728 int a = 0;

729 int b = 1;

730 vis.createViewPort (0, 0, 0.5, 1, a);

731 vis.createViewPort (0.5, 0, 1, 1, b);

732

733 pcl::visualization::PointCloudColorHandlerCustom<pcl::PointXYZRGB> red (
sourcePoints, 255, 0, 0);

734 pcl::visualization::PointCloudColorHandlerCustom<pcl::PointXYZRGB> blue (
targetPoints, 0, 0, 255);

735 vis.addPointCloud (sourcePoints, red, "source",a);

736 vis.addPointCloud (targetPoints, blue, "target",a);

737

738 vis.addPointCloud (sourcePoints, red, "source2",b);

739 pcl::PointCloud<pcl::PointXYZRGB>::Ptr tmp2 (new pcl::PointCloud<pcl::
PointXYZRGB>);

740 pcl::transformPointCloud (*targetPoints, *tmp2, transform);

741 vis.addPointCloud (tmp2, blue, "target2", Db);

742 vis.spin();

743 || }

744

745 || pcl::PointCloud<pcl::PointXYZRGB>::Ptr PointCloudManipulator::sampleSTL(QString
path, int resolution, int tess_level)

746 || {

747 pcl::PointCloud<pcl::PointXYZRGB>::Ptr outCloud (new pcl::PointCloud<pcl::
PointXYZRGB>) ;

748 pcl::PolygonMesh mesh;

749 pcl::io::loadPolygonFileSTL (path.toStdString(), mesh);

750 pcl::PointCloud<pcl::PointXYZ> scaled_mesh;

751 Eigen::Matrix4f scaleMatrix = Eigen::Matrix4f::Identity();

752 scaleMatrix (0,0)=0.001f;

753 scaleMatrix(1,1)=0.001f;

754 scaleMatrix(2,2)=0.001f;

755 pcl::fromPCLPointCloud2(mesh.cloud, scaled_mesh);

756 pcl::transformPointCloud(scaled_mesh,scaled_mesh,scaleMatrix);

757 pcl::toPCLPointCloud2(scaled_mesh, mesh.cloud);

758 vtkSmartPointer <vtkPolyData> meshVTK;

759 pcl::VTKUtils::convertToVTK (mesh, meshVTK);

760

761 pcl::visualization::PCLVisualizer generator ("Generating traces...");

762 generator .addModelFromPolyData (meshVTK, "mesh", 0);

763 std::vector<pcl::PointCloud<pcl::PointXYZ>, Eigen::aligned_allocator<pcl::
PointCloud<pcl::PointXYZ> > > clouds;

764 std::vector<Eigen::Matrix4f, Eigen::aligned_allocator<Eigen::Matrix4f> >
poses;
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std::vector<float> enthropies;
generator.renderViewTesselatedSphere (resolution, resolution, clouds, poses,
enthropies, tess_level);
pcl::PointCloud<pcl::PointXYZ>::Ptr tmp(new pcl::PointCloud<pcl::PointXYZ>)
pcl::PointCloud<pcl::PointXYZRGB>::Ptr tmprgb(new pcl::PointCloud<pcl::
PointXYZRGB>) ;
for (int i=0; i<clouds.size(); i++){
Eigen::Matrix4f tmpPose;
tmpPose = poses.at(i).inverse();
pcl::transformPointCloud(clouds.at (i), *tmp, tmpPose);
pcl::copyPointCloud (*tmp, *tmprgb);
*outCloud += *tmprgb;

}

for (int i = 0; i< outCloud->points.size(); i++){
outCloud->points[i].r = 255;
outCloud->points[i].g = 255;
outCloud->points[i].b = 255;

}

return outCloud;

void PointCloudManipulator::matchModelCloud(pcl::PointCloud<pcl::PointXYZRGB>::
Ptr model, pcl::PointCloud<pcl::PointXYZRGB>::Ptr scene)
{
pcl::PointCloud<pcl::PointXYZRGB>::Ptr fullScene(new pcl::PointCloud<pcl::
PointXYZRGB>());
*fullScene = *scene;

Eigen::Matrix4f cameraToTag = Eigen::Matrix4f::Identity();

cameraToTag << -0.0324064, 0.999472, 0.00236665, -0.236723,
0.701194, 0.0244224, -0.712552, -0.589319,
-0.712233, -0.0214317, -0.701615, 1.82195,

o, o, 0, 1;

Eigen::Matrix4f worldToTag = Eigen::Matrix4f::Identity();

worldToTag << 1, 0o, 0, -0.084,

0, 1, 0, -0.292,

0, o, 1, 0.87,

0, 0, 0, 1;
scene = filterPassThrough(scene, -0.4, 0.4, "x");
scene = filterPassThrough(scene, -0.6, -0.04, "y");
scene = filterPassThrough(scene, 1.1, 1.8, "z"
model = filterVoxel (model, 0.005);
scene = filterVoxel (scene, 0.001) ;
scene = extractPlane(scene,0.02);

PointCloudFeatures modelFeature = computeFeatures(model, "SIFT", "SHOTCOLOR
")
PointCloudFeatures sceneFeature = computeFeatures(scene, "SIFT", "SHOTCOLOR

")

pcl::CorrespondencesPtr all_correspondences (new pcl::Correspondences);

all_correspondences = findCorrespondencesSHOT (modelFeature.
localDescriptorsSHOTColor, sceneFeature.localDescriptorsSHOTColor);

std::cout << "CorrespondenceEstimation correspondences ALL: ";
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814 std::cout << all_correspondences->size() << std::endl;

815

816 pcl::CorrespondencesPtr corrRejectSampleConsensus (new pcl::Correspondences
)5

817 corrRejectSampleConsensus = rejectCorrespondencesSampleConsensus (
all_correspondences ,modelFeature.keyPoints,sceneFeature.keyPoints
,0.03,1000); //Was 0.10, 0.07, 0.05

818 std::cout << "Rejected using sample consensus, new amount is : ";

819 std::cout << corrRejectSampleConsensus->size() << std::endl;

820

821 visualizeCorrespondences (modelFeature.points, fullScene, modelFeature.
keyPoints, sceneFeature.keyPoints, all_correspondences,
corrRejectSampleConsensus) ;

822

823 Eigen::Matrix4f transSVD = Eigen::Matrix4f::Identity ();

824 transSVD = estimateTransformationSVD(modelFeature.keyPoints, sceneFeature.
keyPoints, corrRejectSampleConsensus);

825 std::cout << "Initial transformation CAMERA to OBJECT: " << std::endl;

826 std::cout << transSVD << std::endl;

827 visualizeTransformation(sceneFeature.points, modelFeature.points, transSVD)

828 visualizeTransformation(fullScene, modelFeature.points, transSVD);

829

830 Eigen::Affine3f A;

831 A = transSVD;

832 Eigen::Affine3f B2;

833 B2 = cameraToTag;

834 pcl::visualization::PCLVisualizer vis;

835 pcl::visualization::PointCloudColorHandlerCustom<pcl::PointXYZRGB> red (
modelFeature.points, 255, 0, 0);

836 pcl::visualization::PointCloudColorHandlerCustom<pcl::PointXYZRGB> blue (
fullScene, 0, 0, 255);

837 vis.addPointCloud (fullScene, "fullScene");

838 pcl::PointCloud<pcl::PointXYZRGB>::Ptr model2 (new pcl::PointCloud<pcl::
PointXYZRGB>());

839 pcl::transformPointCloud (*modelFeature.points ,*model2,transSVD) ;

840 vis.addPointCloud (modelFeature.points,red, "model");

841 vis.addPointCloud (model2 ,red, "model2");

842 vis.spin();

843

844 pcl::IterativeClosestPoint<pcl::PointXYZRGB, pcl::PointXYZRGB> icp;

845 icp.setMaxCorrespondenceDistance (0.01);

846 icp.setMaximumIterations (1000) ;

847 icp.setTransformationEpsilon(le-8 );

848 icp.setEuclideanFitnessEpsilon (0.00001) ;

849 pcl::PointCloud<pcl::PointXYZRGB>::Ptr tmp (new pcl::PointCloud<pcl::
PointXYZRGB>());

850 Eigen::Matrix4f aids = transSVD;

851 pcl::transformPointCloud (*modelFeature.points ,*tmp,aids) ;

852 icp.setInputSource (tmp) ;

853 icp.setInputTarget (sceneFeature.points);

854 pcl::PointCloud<pcl::PointXYZRGB>::Ptr outCloud (new pcl::PointCloud<pcl::
PointXYZRGB>());

855 icp.align(*outCloud) ;

856

857 Eigen::Matrix4f final;

858 if (icp.hasConverged ()){
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std::cout << "Converged! \n";
final = icp.getFinalTransformation();
}

final = final*xtransSVD;

std::cout << "FINAL transformation CAMERA to OBJECT: " << std::endl;
std::cout << final << std::endl;

std::cout << "CAMERA TO TAG MATRIX: " << std::endl;
std::cout << cameraToTag << std::endl;

Eigen::Matrix4f initialTable = cameraToTag.inverse()*transSVD;
std::cout << "Initial table transform: " << std::endl;
std::cout << initialTable << std::endl;

Eigen::Matrix4f finalTable = cameraToTag.inverse()*final;
std::cout << "Final table transform: " << std::endl;

std::cout << finalTable << std::endl;

vis.addPointCloud (tmp, "modelMoved");
vis.addPointCloud (outCloud, "modelRefined");

pcl::PointCloud<pcl::PointXYZRGB>::Ptr finalPointCloud (new pcl::PointCloud
<pcl::PointXYZRGB>());

pcl::transformPointCloud (¥modelFeature.points ,*finalPointCloud,final);

vis.addPointCloud (finalPointCloud, "WHAT");

Eigen::Matrix4f test = cameraToTag*worldToTag.inverse();
Eigen::Affine3f C;
C = test;

vis.addCoordinateSystem (0.5, C);
vis.spin();

std::cout << "World coordinates" << std::endl;
Eigen::Matrix4f posInWorld = worldToTag*finalTable;
std::cout << posInWorld << std::endl;

Eigen::Affine3f A2;

float x, y, z, roll, pitch, yaw;

A2 = posInWorld;

pcl::getTranslationAndEulerAngles (A2, x, y, z, roll, pitch, yaw);

std::cout << "X: " <K<K x << ", ¥Y: " KKy <K< ", Z: " <K< z << std::endl;
std::cout << "Roll: " << rollx*(180.0/3.14) << ", Pitch: " << pitch
*(180.0/3.14) << ", yaw: " << yaw#*(180.0/3.14) << std::endl;

Eigen::Affine3f finalCoordinates;

finalCoordinates = final;

visualizer.reset(new pcl::visualization::PCLVisualizer ("viewer2", false));
visualizer ->addCoordinateSystem (0.2, B2);

visualizer ->addCoordinateSystem (0.2, finalCoordinates) ;

visualizer ->addCoordinateSystem (0.2, C);

visualizer ->addPointCloud (fullScene, "fullScene");
visualizer->addPointCloud (heihoo, "model");

Q_EMIT sendNewVisualizer (visualizer);

pcl::visualization::PCLVisualizer tmpVis;
pcl::visualization::PointCloudColorHandlerCustom<pcl::PointXYZRGB> red2 (
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heihoo, 255, 0, 0);

914 tmpVis.addPointCloud (heihoo ,red2, "model");
915 tmpVis.addPointCloud (fullScene, "fullScene");
916 tmpVis.spin();

917 || ¥

918

919 || void PointCloudManipulator::alignAndMatch(std::vector<pcl::PointCloud<pcl::
PointXYZRGB>::Ptr> clouds)

920 || {

921 pcl::PointCloud<pcl::PointXYZRGB>::Ptr scene(new pcl::PointCloud<pcl::
PointXYZRGB>());

922 pcl::PointCloud<pcl::PointXYZRGB>::Ptr model (new pcl::PointCloud<pcl::
PointXYZRGB>());

923 scene = alignCloudsRefined(clouds) ;

924 std::cout << clouds.size() << std::endl;

925 *model = *clouds.at(clouds.size()-1);

926 pcl::visualization::PCLVisualizer vis;

927 vis.addPointCloud (scene, "scene");

928 vis.addPointCloud (model, "model");

929 vis.spin();

930 matchModelCloud (model, scene);

931 || }

932

933 || pcl::PointCloud<pcl::PointXYZRGB>::Ptr PointCloudManipulator::
alignCloudsRefined (std::vector<pcl::PointCloud<pcl::PointXYZRGB>::Ptr>

cloudsIn)
934 || {
935 std::vector<pcl::PointCloud<pcl::PointXYZRGB>::Ptr> clouds;
936 std::vector<pcl::PointCloud<pcl::PointXYZRGB>::Ptr> cloudsOriginal;
937 std::vector<Eigen::Matrix4f> cameraPositions;
938 Eigen::Matrix4f camO = Eigen::Matrix4f::Identity();
939 cameraPositions.push_back (cam0);
940 Eigen::Matrix4f caml = Eigen::Matrix4f::Identity();
941 // This is the matrixz from NUC2 (cameral2) to table
942 caml << -0.0369295, -0.99916 , 0.0177825, 0.174928,
943 -0.592998, 0.00758757 , -0.805168 , 0.016518,
944 0.804357, -0.0402794 , -0.59278 , 0.945164,
945 o, o , 0 s 1;
946 cameraPositions.push_back(caml);
947 Eigen::Matrix4f cam2 = Eigen::Matrix4f::Identity();
948 // This ts the matriz from PC (camera3) to table
949 cam2 << -0.999718 , -0.0224201 ,-0.00776418 , 0.604796,
950 -0.00404688 , 0.483571 , -0.875296 , -0.256756,
951 0.0233787 , -0.875018 , —0.483525 s 2.14104,
952 o, 0 , 0 , 1;
953 cameraPositions.push_back(cam2);
954 // This ts the matriz from NUC1 (cameral) to table
955 Eigen::Matrix4f cam3 = Eigen::Matrix4f::Identity();
956 cam3 << -0.0324064, 0.999472, 0.00236665, -0.236723,
957 0.701194, 0.0244224, -0.712552, -0.589319,
958 -0.712233, -0.0214317, -0.701615, 1.82195,
959 0, 0, 0, 1;
960
961 cameraPositions.push_back(cam3) ;
962
963
964 for(int i = 0; i<cloudsIn.size()-1; i++){
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pcl::PointCloud<pcl::PointXYZRGB>::Ptr tmpCloud (new pcl::PointCloud<

pcl::PointXYZRGB>());

std::cout << "Loop nr: " << i << std::endl;

*tmpCloud = *cloudsIn.at(i);

cloudsOriginal.push_back(tmpCloud) ;
tmpCloud = filterVoxel (tmpCloud, 0.01);

switch(i){
case O:

tmpCloud = filterPassThrough(tmpCloud, -0.4, 0.39, "
tmpCloud = filterPassThrough(tmpCloud, -1.1,

break;
case 1:

tmpCloud = filterPassThrough(tmpCloud, -0.5, 0.3, "x");
tmpCloud = filterPassThrough(tmpCloud, -0.7, 0.3 )

break;
case 2:

tmpCloud = filterPassThrough(tmpCloud, -0.5, 0.39, "x"

tmpCloud = filterPassThrough(tmpCloud, -0.4, 0.1,

||yu);

tmpCloud = filterPassThrough(tmpCloud, 0.8, 3.1, "z");

break;

tmpCloud filterVoxel (tmpCloud, 0.001);
tmpCloud = extractPlane (tmpCloud,0.02);

clouds.push_back (tmpCloud);

std::vector<pcl::PointCloud<pcl::PointXYZRGB>::Ptr> roughClouds;

roughClouds.push_back(clouds.at (0));

std::vector<Eigen::Matrix4f> cameraPositions2;
Eigen::Matrix4f tmp = Eigen::Matrix4f::Identity();

cameraPositions2.push_back (tmp) ;
for (int i=1; i<clouds.size(); i++){

pcl::PointCloud<pcl::PointXYZRGB>::Ptr tmp (new pcl::PointCloud<pcl::

PointXYZRGB>());

Eigen::Matrix4f tmpMat2 = cameraPositions.at(i);
Eigen::Matrix4f tmpMat3 = cameraPositions.at(3);
Eigen::Matrix4f final = tmpMat3*tmpMat2.inverse();

cameraPositions2.push_back(final);

pcl::transformPointCloud (*clouds.at (i) ,*tmp,final);

roughClouds .push_back (tmp) ;

pcl::IterativeClosestPoint<pcl::PointXYZRGB,
icp.setMaxCorrespondenceDistance (0.03);
icp.setMaximumIterations (1000) ;
icp.setTransformationEpsilon(le-10);
icp.setEuclideanFitnessEpsilon (0.0000001) ;
icp.setInputTarget (roughClouds.at (0));

for(int i=1; i<roughClouds.size(); i++){
icp.setInputSource (roughClouds.at(i));

pcl::PointXYZRGB> icp;

pcl::PointCloud<pcl::PointXYZRGB>::Ptr outCloud (new pcl::PointCloud<

pcl::PointXYZRGB>());
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icp.align(*outCloud);
Eigen::Matrix4f transICP = Eigen::Matrix4f::Identity();
if (icp.hasConverged ()){
std::cout << "Converged! ";
std::cout << i << std::endl;
transICP = icp.getFinalTransformation();
cameraPositions2[i] = transICP*cameraPositions2[i];

}

pcl::PointCloud<pcl::PointXYZRGB>::Ptr writeToFileCloud (new pcl::
PointCloud<pcl::PointXYZRGB>());

for(int i=0; i<roughClouds.size(); i++){
pcl::PointCloud<pcl::PointXYZRGB>::Ptr tmp (new pcl::PointCloud<pcl::

PointXYZRGB>());

pcl::transformPointCloud (*cloudsOriginal [i], *tmp, cameraPositions2[i])
*writeToFileCloud += *tmp;

}

pcl::io::savePCDFileBinary("/home/minions/alignedWithObject.pcd", =*
writeToFileCloud) ;

return (writeToFileCloud);

void PointCloudManipulator::alignClouds (QStringList fileNames)
{

std::vector<PointCloudFeatures> pointClouds;

for(int i = 0; i<fileNames.size(); i++){
pcl::PointCloud<pcl::PointXYZRGB>::Ptr tmpCloud (new pcl::PointCloud<
pcl::PointXYZRGB>());

std::cout << fileNames.at(i).toStdString() << std::endl;
pcl::io::loadPCDFile(fileNames.at (i) .toUtf8().constData(), *tmpCloud);
tmpCloud = filterPassThrough(tmpCloud, 0.0, 2.3, "z");

tmpCloud = filterPassThrough(tmpCloud, -0.5, 1.0, "y");

1.0

tmpCloud = filterPassThrough(tmpCloud, -1.0, , "x"

tmpCloud = filterVoxel (tmpCloud, 0.01);

PointCloudFeatures tmpFeature = computeFeatures(tmpCloud, "SIFT", "FPFH
");

pointClouds.push_back (tmpFeature) ;
}

pcl::PointCloud<pcl::PointXYZRGB>::Ptr tmpAligned (new pcl::PointCloud<pcl
::PointXYZRGB>());

pcl::PointCloud<pcl::PointXYZRGB>::Ptr icpCloud (new pcl::PointCloud<pcl::
PointXYZRGB>());

xtmpAligned = *pointClouds.at (0).points;

x*icpCloud = *pointClouds.at (0).points;

pcl::IterativeClosestPoint<pcl::PointXYZRGB, pcl::PointXYZRGB> icp;
icp.setMaxCorrespondenceDistance (0.01) ;
icp.setMaximumIterations (10000) ;

icp.setRANSACIterations (0);

icp.setTransformationEpsilon(le-8 );
icp.setEuclideanFitnessEpsilon (0.00001) ;
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Eigen::Matrix4f prevTrans = Eigen::Matrix4f::Identity();

for(int k = 0; k<pointClouds.size()-1; k++){
pcl::CorrespondencesPtr all_correspondences (new pcl::Correspondences);
all_correspondences = findCorrespondences (pointClouds.at (k).
localDescriptorsFPFH, pointClouds.at(k+1).localDescriptorsFPFH);
std::cout << "CorrespondenceEstimation correspondences ALL: ";
std::cout << all_correspondences->size() << std::endl;

pcl::CorrespondencesPtr corrRejectSampleConsensus (new pcl::
Correspondences) ;

corrRejectSampleConsensus = rejectCorrespondencesSampleConsensus (
all_correspondences ,pointClouds.at (k) .keyPoints ,pointClouds.at (k+1)
.keyPoints ,0.25,1000) ;

std::cout << "Rejected using sample consensus, new amount is : ";

std::cout << corrRejectSampleConsensus->size() << std::endl;

visualizeCorrespondences (pointClouds.at (k) .points, pointClouds.at(k+1).
points, pointClouds.at(k).keyPoints, pointClouds.at(k+1).keyPoints,
all_correspondences, corrRejectSampleConsensus) ;

Eigen::Matrix4f transSVD = Eigen::Matrix4f::Identity QO);

transSVD = estimateTransformationSVD (pointClouds.at(k).keyPoints,
pointClouds.at (k+1) .keyPoints, corrRejectSampleConsensus) ;

std::cout << transSVD << std::endl;

visualizeTransformation(pointClouds.at (k+1) .points, pointClouds.at (k).
points, transSVD);

pcl::PointCloud<pcl::PointXYZRGB>::Ptr tmp (new pcl::PointCloud<pcl::
PointXYZRGB>());

Eigen::Matrix4f trans = prevIrans*transSVD.inverse();

pcl::transformPointCloud (*pointClouds.at(k+1) .points ,*tmp,trans);

icp.setInputSource (tmp);

icp.setInputTarget (pointClouds.at (k) .points);

pcl::PointCloud<pcl::PointXYZRGB>::Ptr outCloud (mnew pcl::PointCloud<
pcl::PointXYZRGB>());

icp.align(*outCloud) ;

if (icp.hasConverged ()){
*icpCloud = *icpCloud + *outCloud;
std::cout << "Converged! ";
std::cout << k << std::endl;
std::cout << icp.getFinalTransformation() << std::endl;

}
*tmpAligned = *tmpAligned + *tmp;
prevlrans = trans;

pcl::visualization::PCLVisualizer vis;
vis.addPointCloud (tmpAligned, "alignedcloud");
vis.spin();

pcl::visualization::PCLVisualizer vis2;
vis2.addPointCloud (icpCloud, "icpalignedcloud");
vis2.spin();

}

void PointCloudManipulator::alignRobotCell(QStringlList fileNames)
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1115 || {

1116 std::vector<PointCloudFeatures> pointClouds;

1117 std::vector<pcl::PointCloud<pcl::PointXYZRGB>::Ptr> originalClouds;

1118 std::vector<Eigen::Matrix4f> cameraPositions;

1119 cameraPositions.push_back(Eigen::Matrix4f::Identity());

1120

1121 for(int i = 0; i<fileNames.size(); i++){

1122 pcl::PointCloud<pcl::PointXYZRGB>::Ptr tmpCloud (new pcl::PointCloud<
pcl::PointXYZRGB>());

1123 std::cout << fileNames.at(i).toStdString() << std::endl;

1124 pcl::io::loadPCDFile(fileNames.at (i) .toUtf8().constData(), *tmpCloud);

1125 originalClouds.push_back (tmpCloud) ;

1126

1127 switch (i){

1128 case O:

1129 tmpCloud = filterPassThrough(tmpCloud, -0.8, 0.8, "x");

1130 tmpCloud = filterPassThrough(tmpCloud, -0.4, 0.3, "y");

1131 tmpCloud = filterPassThrough(tmpCloud, 1.0, 1.7, "z");

1132 break;

1133 case 1:

1134 tmpCloud = filterPassThrough(tmpCloud, -0.4, 0.5, "x");

1135 tmpCloud = filterPassThrough(tmpCloud, -1.0, 0.1, "y");

1136 tmpCloud = filterPassThrough(tmpCloud, 1.3, 2.6, "z");

1137 break;

1138 case 2:

1139 tmpCloud = filterPassThrough(tmpCloud, -0.6, 0.3, "x");

1140 tmpCloud = filterPassThrough(tmpCloud, -0.6, 0.4, "y");

1141 tmpCloud = filterPassThrough(tmpCloud, 1.2, 2.6, "z");

1142 break;

1143 }

1144 tmpCloud = filterVoxel (tmpCloud, 0.01);

1145 tmpCloud = extractPlaneReturnPlane (tmpCloud, 0.1);

1146

1147 PointCloudFeatures tmpFeature = computeFeatures(tmpCloud, "SIFT", "FPFH
")

1148 pointClouds.push_back (tmpFeature) ;

1149

1150

1151 Eigen::Matrix4f prevTrans = Eigen::Matrix4f::Identity();

1152 for(int k = 0; k<pointClouds.size () -1; k++){

1153 pcl::CorrespondencesPtr all_correspondences (new pcl::Correspondences);

1154 all_correspondences = findCorrespondences (pointClouds.at (k).
localDescriptorsFPFH, pointClouds.at(k+1).localDescriptorsFPFH);

1155 std::cout << "CorrespondenceEstimation correspondences ALL: ";

1156 std::cout << all_correspondences->size() << std::endl;

1157

1158 pcl::CorrespondencesPtr corrRejectSampleConsensus (new pcl::
Correspondences) ;

1159 corrRejectSampleConsensus = rejectCorrespondencesSampleConsensus (
all_correspondences ,pointClouds.at (k) .keyPoints ,pointClouds.at (k+1)
.keyPoints ,0.25,1000) ;

1160 std::cout << "Rejected using sample consensus, new amount is : ";

1161 std::cout << corrRejectSampleConsensus->size() << std::endl;

1162 visualizeCorrespondences (pointClouds.at (k) .points, pointClouds.at(k+1).
points, pointClouds.at(k).keyPoints, pointClouds.at(k+1).keyPoints,
all_correspondences, corrRejectSampleConsensus);

1163
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Eigen::Matrix4f transSVD = Eigen::Matrix4f::Identity (O);

transSVD = estimateTransformationSVD (pointClouds.at(k).keyPoints,
pointClouds.at(k+1) .keyPoints, corrRejectSampleConsensus) ;

std::cout << transSVD << std::endl;

visualizeTransformation(pointClouds.at(k+1) .points, pointClouds.at(k).
points, transSVD);

pcl::PointCloud<pcl::PointXYZRGB>::Ptr tmp (new pcl::PointCloud<pcl::
PointXYZRGB>());

Eigen::Matrix4f trans = prevIrans*transSVD.inverse();

pcl::transformPointCloud (*pointClouds.at (k+1) .points ,*tmp, trans) ;

}

pcl::PointCloud<pcl::PointXYZRGB>::Ptr tmpAligned (mew pcl::PointCloud<pcl
::PointXYZRGB>());

pcl::PointCloud<pcl::PointXYZRGB>::Ptr icpCloud (new pcl::PointCloud<pcl::
PointXYZRGB>());

xtmpAligned = *pointClouds.at (0) .points;

x*icpCloud = *pointClouds.at(0).points;

pcl::IterativeClosestPoint<pcl::PointXYZRGB, pcl::PointXYZRGB> icp;

icp.setMaxCorrespondenceDistance (0.3);

icp.setMaximumIterations (10000) ;

icp.setTransformationEpsilon(1e-10);

icp.setEuclideanFitnessEpsilon (0.0000001) ;

for(int k = 0; k<pointClouds.size () -1; k++){

Eigen::Matrix4f initTrans = Eigen::Matrix4f::Identity ();

Eigen::Matrix4f cameraPos = Eigen::Matrix4f::Identity();

initTrans = computeInitialAlignmentFPFH(pointClouds.at (0).keyPoints,
pointClouds.at (0) .localDescriptorsFPFH ,pointClouds.at (k+1).
keyPoints, pointClouds.at(k+1).localDescriptorsFPFH ,0.08,1.0,1000);

std::cout << initTrans << std::endl;

visualizeTransformation(pointClouds.at(k+1) .points, pointClouds.at (0).
points, initTrans);

pcl::PointCloud<pcl::PointXYZRGB>::Ptr tmp (new pcl::PointCloud<pcl::
PointXYZRGB>());

Eigen::Matrix4f initTransInv = initTrans.inverse();

pcl::transformPointCloud (*pointClouds.at(k+1) .points ,*tmp,initTransInv)

>

*tmpAligned = *tmpAligned + *tmp;
cameraPos = initTrans.inverse();
icp.setInputSource (tmp);
icp.setInputTarget (pointClouds.at (0).points);
pcl::PointCloud<pcl::PointXYZRGB>::Ptr outCloud (new pcl::PointCloud<
pcl::PointXYZRGB>());
icp.align(*outCloud) ;
Eigen::Matrix4f transICP = Eigen::Matrix4f::Identity();
if (icp.hasConverged ()){
*icpCloud = *icpCloud + *outCloud;
std::cout << "Converged! ";
std::cout << k << std::endl;
transICP = icp.getFinalTransformation () ;
cameraPos = transICP*cameraPos;
cameraPositions.push_back(cameraPos) ;
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pcl::visualization::PCLVisualizer vis;
vis.addPointCloud (tmpAligned, "alignedcloud");
vis.spin();

pcl::visualization::PCLVisualizer vis2;
vis2.addPointCloud (icpCloud, "icpalignedcloud");
vis2.spin();

pcl::visualization::PCLVisualizer vis3;
pcl::PointCloud<pcl::PointXYZRGB>::Ptr originalAligned (new pcl::PointCloud
<pcl::PointXYZRGB>());
for(int i = 0; i<3; i++){
pcl::PointCloud<pcl::PointXYZRGB>::Ptr tmp (new pcl::PointCloud<pcl::
PointXYZRGB>());
QString s = "cloud";
s.append (QString: :number (i));
pcl::transformPointCloud (¥originalClouds.at(i) ,*tmp,cameraPositions.at(
i));
std::cout << cameraPositions.at(i) << std::endl;
vis3.addPointCloud (tmp,s.toStdString());
*originalAligned += *tmp;
}
vis3.addCoordinateSystem (0.5) ;
Eigen::Affine3f A;

A = cameraPositions.at(1);
vis3.addCoordinateSystem (0.5, A);

std::cout << "Caml: " << std::endl;

std::cout << <cameraPositions.at (1) << std::endl;
A = cameraPositions.at(2);

std::cout << "Cam2: " << std::endl;

std::cout << <cameraPositions.at(2) << std::endl;
vis3.addCoordinateSystem (0.5, A);

vis3.spin();

pcl::io::savePCDFileBinary ("/home/minions/aligned.pcd", *originalAligned);

void PointCloudManipulator::refineAlignment (QStringList fileNames)

{
std::vector<pcl::PointCloud<pcl::PointXYZRGB>::Ptr> clouds;
std::vector<pcl::PointCloud<pcl::PointXYZRGB>::Ptr> cloudsOriginal;
std::vector<Eigen::Matrix4f> cameraPositions;
Eigen::Matrix4f camO = Eigen::Matrix4f::Identity();
cameraPositions.push_back(cam0) ;
Eigen::Matrix4f caml = Eigen::Matrix4f::Identity();
// This is the matriz from NUC2 (cam2) to table

caml << -0.0369295, -0.99916 , 0.0177825, 0.174928,
-0.592998, 0.00758757 , -0.805168 , 0.016518,
0.804357, -0.0402794 , -0.59278 , 0.945164,
0, o, 0 ) 1;

cameraPositions.push_back(caml);
Eigen::Matrix4f cam2 = Eigen::Matrix4f::Identity();
// This 4s the matriz from PC (cam3) to table

cam2 << -0.999718 , -0.0224201 ,-0.00776418 , 0.604796,
-0.00404688 , 0.483571 , -0.875296 , -0.256756,
0.0233787 , -0.875018 , -0.483525 , 2.14104,
o, 0 s 0 s 1;
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1264 cameraPositions.push_back(cam2);

1265 // This ts the matriz from NUC1 (caml) to table

1266 Eigen::Matrix4f cam3 = Eigen::Matrix4f::Identity();

1267 cam3 << -0.0324064, 0.999472, 0.00236665, -0.236723,

1268 0.701194, 0.0244224, -0.712552, -0.589319,

1269 -0.712233, -0.0214317, -0.701615, 1.82195,

1270 0, 0, 0, 1;

1271 cameraPositions.push_back(cam3);

1272

1273 for(int i = 0; i<fileNames.size(); i++){

1274 pcl::PointCloud<pcl::PointXYZRGB>::Ptr tmpCloud (new pcl::PointCloud<

pcl::PointXYZRGB>());

1275 std::cout << fileNames.at(i).toStdString() << std::endl;

1276 pcl::io::1loadPCDFile(fileNames.at (i) .toUtf8().constData(), *tmpCloud);

1277

1278 cloudsOriginal.push_back (tmpCloud) ;

1279 tmpCloud = filterVoxel (tmpCloud, 0.01);

1280

1281 switch(i){

1282 case O:

1283 tmpCloud = filterPassThrough(tmpCloud, -0.4, 0.39, "x");

1284 tmpCloud = filterPassThrough(tmpCloud, -1.1, -0.1, "y");

1285 break;

1286 case 1:

1287 tmpCloud = filterPassThrough(tmpCloud, -0.5, 0.3, "x");

1288 tmpCloud = filterPassThrough(tmpCloud, -0.7, 0.3, "y");

1289 break;

1290 case 2:

1291 tmpCloud = filterPassThrough(tmpCloud, -0.5, 0.39, "x"

1292 tmpCloud = filterPassThrough(tmpCloud, -0.4, 0.1, "y");

1293 tmpCloud = filterPassThrough(tmpCloud, 0.8, 3.1, "z");

1294 break;

1295 }

1296 tmpCloud = filterVoxel (tmpCloud, 0.001);

1297 tmpCloud = extractPlane (tmpCloud,0.02);

1298 clouds.push_back (tmpCloud) ;

1299 }

1300

1301 pcl::visualization::PCLVisualizer visl;

1302 for(int i=0; i<clouds.size(); i++){

1303 QString s = "cloud";

1304 s.append (QString: :number (i));

1305 visl.addPointCloud(clouds.at(i),s.toStdString());

1306 }

1307 visl.spin();

1308

1309 pcl::visualization::PCLVisualizer vis2;

1310 std::vector<pcl::PointCloud<pcl::PointXYZRGB>::Ptr> roughClouds;

1311 pcl::PointCloud<pcl::PointXYZRGB>::Ptr initAlignedSave (new pcl::PointCloud
<pcl::PointXYZRGB>());

1312 roughClouds.push_back(clouds.at (0));

1313 *initAlignedSave = *cloudsOriginal.at (0);

1314 std::vector<Eigen::Matrix4f> cameraPositions2;

1315 Eigen::Matrix4f tmp = Eigen::Matrix4f::Identity();

1316 cameraPositions2.push_back(tmp);

1317 vis2.addPointCloud (clouds.at (0), "cloudO0");

1318 for (int i=1; i<clouds.size(); i++){
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}
pcl

pcl::PointCloud<pcl::PointXYZRGB>::Ptr tmp (new pcl::PointCloud<pcl::
PointXYZRGB>());

QString s = "cloud";

s.append (QString: :number (i));

Eigen::Matrix4f tmpMat2 = cameraPositions.at(i);
Eigen::Matrix4f tmpMat3 = cameraPositions.at(3);

Eigen::Matrix4f final = tmpMat3*tmpMat2.inverse();
cameraPositions2.push_back(final);
pcl::transformPointCloud (*clouds.at (i) ,*tmp,final);
roughClouds .push_back (tmp) ;

vis2.addPointCloud (tmp,s.toStdString());

pcl::PointCloud<pcl::PointXYZRGB>::Ptr tmp2 (new pcl::PointCloud<pcl::
PointXYZRGB>());

pcl::transformPointCloud (*cloudsOriginal.at(i), *tmp2, final);

*initAlignedSave += *tmp2;

::io::savePCDFileBinary ("/home/minions/initialAlignedWithObject.pcd", *
initAlignedSave) ;

vis2.spin();

pcl

icp.
icp.
icp.
icp.
icp.

pcl

::IterativeClosestPoint<pcl::PointXYZRGB, pcl::PointXYZRGB> icp;
setMaxCorrespondenceDistance (0.03); // 0.05
setMaximumIterations (1000) ;

setTransformationEpsilon(1e-10) ;

setEuclideanFitnessEpsilon (0.0000001) ;

setInputTarget (roughClouds.at (0));

::PointCloud<pcl::PointXYZRGB>::Ptr icpCloud (new pcl::PointCloud<pcl::
PointXYZRGB>());

x*icpCloud += *roughClouds.at(0);

for(int i=1; i<roughClouds.size(); i++){

pcl:

icp.setInputSource (roughClouds.at(i));
pcl::PointCloud<pcl::PointXYZRGB>::Ptr outCloud (new pcl::PointCloud<
pcl::PointXYZRGB>() ) ;
icp.align(*outCloud) ;
Eigen::Matrix4f transICP = Eigen::Matrix4f::Identity();
if (icp.hasConverged ()){
*icpCloud = *icpCloud + *outCloud;
std::cout << "Converged! ";
std::cout << i << std::endl;
transICP = icp.getFinalTransformation();
cameraPositions2[i] = transICP*cameraPositions2[i];

:visualization: :PCLVisualizer vis3;

vis3.addPointCloud (icpCloud, "icp");
vis3.spin();

pcl
pcl

::visualization::PCLVisualizer vis4;
::PointCloud<pcl::PointXYZRGB>::Ptr writeToFileCloud (new pcl::
PointCloud<pcl::PointXYZRGB>());

for(int i=0; i<roughClouds.size(); i++){

Eigen::Affine3f A;
A = cameraPositions2[i];
vis4.addCoordinateSystem (0.5, A);
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1370 QString s = "cloud";

1371 s.append (QString: :number (i));

1372 pcl::PointCloud<pcl::PointXYZRGB>::Ptr tmp (new pcl::PointCloud<pcl::
PointXYZRGB>());

1373 pcl::transformPointCloud (*cloudsOriginal [i], *tmp, cameraPositions2[i])

1374 vis4.addPointCloud (tmp, s.toStdString());

1375 *writeToFileCloud += *tmp;

1376 }

1377 vis4.spin();

1378 || ¥

1379

1380 || ¥
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Appendix D: Digital Appendix

A .zip file is included as the digital appendix. The file contains:
e Source code for the calibration of extrinsic parameters program.

e Source code for the main program.
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