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Preface

The master’s thesis accounts for 30 credits and is a mandatory part of the master of science

(MSc) degree within marine technology at NTNU. It takes place in the 10th and final semester

and is what completes the study program. The students are free to choose a topic as long as it

is anchored in the education plan and is relevant to the maritime industry. Within these restric-

tions, the topic is selected based on qualification and interest. Having specialized within marine

systems design constitutes no direct link to wind turbines - nor to the condition monitoring of

their components, which is the topic for this thesis. Nevertheless, the platform of natural sci-

ences which is integral to the MSc for technological disciplines at NTNU serves as a door opener

also for undertakings that is not strictly correlated to the chosen specialization.

More specifically, the thesis analyses accelerometric datasets with the intention of monitor-

ing component condition. The vibration data is collected from a land-based windfarm operated

by Statkraft - a leading company in renewable energy being headquartered in Oslo, Norway. The

analysis has called for deployment of sophisticated statistical methods and their implementa-

tion in MATLAB®.

The idea was brought up by Maintech AS - a company whose core competencies are centered

around operation and maintenance. The fact that the project has support in serious industry

players makes it exciting and yet very useful in terms of incorporating industry know-how into

the thesis.

The report is intended for personnel having similar background as the author. A line of

communication emphasizing clear and explanatory argumentation is sought at best ability.

Trondheim, 2016-10-06

Jon Rolfseng
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Summary

Compared to hydrocarbon alternatives, wind powered electricity comes at nearly twice the cost.

With operation & maintenance accounting for 20-30% of the wind farm life cycle cost, the en-

abling of smarter maintenance is found paramount - particularly for offshore wind. With the

intention of exploiting component life, modern turbines are extensively equipped with sensor

and control systems, allowing for condition based maintenance. However, due to conflicting

interests among stakeholders, the industry is characterized by lack of data sharing, preventing

the field of intelligent fault diagnosis and prognosis from offering its full range of benefits.

This project has gained access to vibration data from a land-based Norwegian wind farm. As

there is no information regarding system/component status (fault log information), the follow-

ing research questions becomes relevant: To what extent is it possible to monitor the condition

of the wind turbine gearbox using unlabeled vibration data? Partial objective (PO) 1 and 2 un-

derpin the main objective of the thesis, namely to develop and apply an approach for condition

monitoring for the wind turbine gearbox.

PO 1 Segregate vibrations caused by load from those being attributed to degradation.

PO 2 Relate the vibration-induced response to time.

The work is initially carried out based on the below hypotheses. The issue of missing infor-

mation is largely dealt with by assumption I.

Hypothesis I Most of the data correspond to normal turbine behavior.

Hypothesis II All turbines can be considered equal, i.e., they give rise to the same vibration

response under equivalent conditions.

Hypothesis III The vibration response can be modeled as a function of operational load and

degradation level in an additive manner.

Hypothesis III is effectuated by assuming that the vibration amplitude, y f , is composed of

operating conditions oc (rated power, wind speed etc.) and degradation d (degradation):

y f ∼ f (oc,d) (1)
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where oc and d are assumed to be additive contributions to the vibration amplitude:

y f ∼ f1(oc)+ g (d) (2)

By deploying a model estimating the part of y f being a result from oc, the presumed fraction

being attributed to d is approximated through the residual, ∆ f :

g (d) ∼∆ f = f̂1(op)− f (oc,d) (3)

The process of obtaining g (d) is expressed through the following steps:

� Filtering/pre-processing → Input for model training

� Model training and evaluation → Generalization with 1st - 3r d order polynomials and

through artificial neural networks (ANN). Best option is selected.

� Residual analysis → Monitoring trends for vibrations being caused by degradation

Visualization through principal component analysis (fig 1) reveals that each turbine give rise

to their own region of normal behavior, thus compromising assumption II. To enable multiple-

turbine consideration, the offsets are corrected for by median-centering. Although turbine-

specific behavior still can be recognized, the discrepancy is not considered sufficient to fully

discard hypothesis II.
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Figure 1: Left plot shows clusters before the data set is adjusted for turbine-specific behavior. Right plot
depicts the resulting responses after the correction is made.
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Among the model candidates the 20-neuron ANN makes the fest fit and is hence chosen.

Based on their correlation with vibration amplitude, rated power and wind speed are chosen as

model input, thus representing the operating conditions.

Table 1: Model performance - mean squared error.

2nd degree 3r d degree Neural Net Neural Net
Error Linear polynomial Polynomial (10 neuron) (20 neuron)

MSE learning 0.00855 0.00713 0.00617 0.00562 0.00567
MSE testing 0.00856 0.00714 0.00618 0.00564 0.00558

The effect caused by the operating conditions is successfully removed by the ANN model.

The below clusters (fig. 2, left) are thus not related to rated power or wind speed. Turbine 39,

which is representative for the remaining turbines, form four distinct clusters representing the

vibration response. To monitor the gearbox condition, the distance from the assumed normal

behavior cluster (white background) is related to time (fig. 2, right). The rapid transitions be-

tween states do not show consistency with degradation. Whether this is the correct assessment,

i.e., that no degradation has been present in the gearboxes, or whether the approach fails to de-

tect it can not be given a definite answer. In case of the latter, inadequacy of assumption II is

found a plausible explanation. Furthermore, the model may suffer from an inadequate set of

input-parameters that do not fully cover all impacting variables. In that case, the residuals will

represent also other phenomena than degradation.

Principal comp. 1
-20 -10 0 10 20 30 40 50

P
ri
n

c
ip

a
l 
c
o

m
p

. 
2

-25

-20

-15

-10

-5

0

5

10

15

20
Turbine nr. 39

All turbines
Turbine nr. 39

(a) Three unlabeled zones outside "normal"

Time

01/01/15 01/04/15 01/07/15 01/10/15 01/01/16 01/04/16

D
is

ta
n

c
e

 f
ro

m
 c

e
n

te
r

0

500

1000

1500

2000

2500

3000

Turbine nr. 39

(b) Relating presence in each state to time

Figure 2: The rapid transitions between different clusters is not consistent with the degradation process.
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Sammendrag

Sammenliknet med hydrokarboner er vind-drevet elkraftproduksjon cirka dobbelt så dyrt i gjen-

nomsnitt. Utgifter til drift og vedlikehold utgjør 20-30 % av livssykluskostnaden for en vindpark

og er derfor utpekt som fokusområde for økt lønnsomhet. For å muliggjøre tilstandsbasert ved-

likehold er moderne vindturbiner utstyrt med et mangfold av måleutstyr. Imidlertid er vindin-

dustrien kjennetegnet av tilbakeholdenhet når det gjelder deling av tilstandsdata. Dette er med

å bremse forskning og utvikling som søker bedre utnyttelse av måledata.

I dette prosjektet brukes det vibrasjonsdata fra en norsk landbasert vindpark. At det ikke har

vært mulig å fremskaffe feillogger som kan bekrefte tilstand for komponentene gjør følgende

spørsmål relevant: I hvilken grad er det mulig å foreta tilstandsovervåking for girkassen i en

vindturbin uten informasjon om komponentstatus? Delmål 1 og 2 understøtter hovedmålset-

tingen til oppgaven, nemlig utvikling og anvendelse av en tilnærming for tilstandsovervåking av

girkassen i en vindturbin.

Delmål 1 Isolere bidrag til vibrasjonsrespons som skyldes degradering.

Delmål 2 Overvåke vibrasjon skapt av slitasje som funksjon av tid.

Arbeidet tar utgangspunkt i hypotesene nedenfor. Hypotese I er essensiell i håndtering av

manglende informasjon.

Hypotese I Stordelen av dataen svarer til normal turbinoppførsel.

Hypotese II Turbinene kan betraktes like, altså vil turbiner som er utsatt for likt slitasjenivå,

og som opererer under samme operasjonsforhold, gi opphav til tilsvarende vibrasjonsre-

spons.

Hypotese III Vibrasjonsresponsen kan modelleres som et additivt bidrag utgjort av operasjon-

slast og degraderingsnivå.

Vibrasjonsamplituden, y f , antas å være en funksjon av operasjonsforhold, o f , (effekt, vind-

hastighet, orientering etc.) og degradering, d :

y f ∼ f (o f ,d) (4)
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hvor o f og d er antatt å gi additive bidrag til vibrasjonsresponsen:

y f ∼ f1(o f )+ g (d) (5)

Gjennom en modell som estimerer det bidrag til y f som er et resultat av o f , vil bidraget som

skyldes degradering, d , kunne estimeres fra forskjellen mellom modell-output og faktisk måling:

g (d) ≈∆ f = f̂1(o f )− f (o f ,d) (6)

Metode/tilnærming for estimering av g (d) er gitt av punktene under:

� Filtrering/før-prosessering → Input til modellering.

� Modellering og vurdering av ytelse → Generalisering med polynomer av 1., 2. og 3. grad og

med kunstige nervenettverk. Velger modell som yter best.

� Analyse av g (d) → Overvåke trend/utvikling av vibrasjoner som er en følge av degradering.

I før-prosesseringen avdekkes det at hver turbin gir opphav til spesifikke klynger som repre-

senterer vibrasjonsrespons - altså svekkes holdbarheten i hypotese II. For å muliggjøre samtidig

analyse av flere turbiner, korrigeres dette for gjennom median-sentrering. Figur 3 viser spesifikk

respons fra turbin 22 og 24 før/etter bias-korrigering. Selv om turbinresponsen ikke er sam-

menfallende etter korrigering (høyre) antas de å være tilstrekkelige like - altså bevares hypotese

II.
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Figure 3: Venstre plott viser klynger før data-settet justeres for turbinspesifikk oppførsel. Høyre plott viser
resulterende vibrasjonsrespons etter median-korrigering.
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Blant modellene som vurderes, kommer det kunstige nervenettverket med 20 nevroner best

ut og blir derfor valgt. Ut fra påvist korrelasjon mellom vibrasjonsamplitude og operasjons-

forholdende effekt og vindhastighet velges disse som input for modelltrening.

Table 2: Ytelse av modeller målt med middelkvadratfeil.

2. ordens 3. ordens nervenettverk nervenettverk
Feil Lineær polynom polynom (10 nevroner) (20 nevroner)

Feil, læring 0.00855 0.00713 0.00617 0.00562 0.00567
Feil, testing 0.00856 0.00714 0.00618 0.00564 0.00558

Nervenettverkmodellen er i stand til å fjerne vibrasjonsbidrag som skyldes effekt og vind-

hastighet. Klyngene nedenfor (fig. 4, venstre) er dermed ikke relatert til disse forhold. Turbin

39, som er representativ for resterende turbiner, former fire distinktive klynger for vibrasjon-

srespons. For å indikere girkassens tilstand, overvåkes distansen fra klyngen som er antatt å

representere normal oppførsel (hvit bakgrunn) som funksjon av tiden (fig. 4, høyre). Med hyp-

pige og uregelmessige overganger mellom klynger kan det ikke påvises degradering. Hvorvidt

dette er en riktig vurdering, altså at ingen slitasje har funnet sted, kan ikke sies med sikkerhet.

Hvis girkassen på den annen side har opplevd slitasje, har metoden feilet i å oppdage det. Hvis

så er tilfelle nevnes uriktigheten av hypotese II som mulig forklaring. Videre kan det være at ef-

fekt og vindhastighet ikke tilstrekkelig beskriver settet av input som styrer vibrasjon. I så fall vil

responsen i figur 4 (venstre) representere utslag fra også andre forhold enn degradering.
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Figure 4: Uregelmessige og hyppige overganger mellom klynger gjør at degradering ikke kan påvises.
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Chapter 1

Introduction

This chapter describes background and current challenges within the wind industry to form a ra-

tionale for the research objectives and delimitations considered in the thesis. These are presented

at the end of this chapter along with the structure of the thesis. Although being modified and up-

dated according to recent information, parts of the chapter overlap with Rolfseng (2015) (ch 1&2)

where similar background information was required.

1.1 General Background

Both land-based and offshore wind has experienced dramatic growth during the recent years.

In terms of global annual installed capacity, the 50 GW mark was exceeded for the first time in

2014 (GWEC, 2014) - a figure which according to the same report is predicted to continue with

a 3 % - 6 % growth rate in the coming five years. Cumulative installed wind capacity within the

last two decades is shown in figure 1.1.

When asking why this is happening, several answers arise. Wind energy emerge as one out

of several possible instruments intending to mitigate greenhouse gas (GHG) emissions. The

distribution of different energy sources as in the year of 2012 is depicted in figure 1.2. By early

2015, as many as 164 countries had defined renewable energy targets, showing that indeed the

commitment to renewable energy has a global scope (Kieffer and Couture, 2015). Further, and

even more fundamentally, the world is facing a rapid growth in energy demand. This go hand

in hand with the world’s growth in population, which according to DESA (2015) is expected to

1
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Figure 1.1: Global cumulative installed wind capacity during 2000-2015. Figure adapted from GWEC
(2015).
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Figure 1.2: Shares of different energy sources in the total energy consumption in the year 2012. Other
sources include: solar, geothermal and tidal energy sources. Figure adapted from Kumar et al. (2015).

exceed 9,7 billion by 2050. Considering the fact that fossil energy resources are finite resources,

the shift towards renewable alternatives will at some point be inevitable. To date, the literature

(e.g, see Kumar et al., 2015; GWEC, 2014; IEA, 2013) suggests that wind energy is one of the most

promising renewable energy sources as it is stable and come at a relatively low operating cost.

The stable energy supply is essentially made up by i) the availability of the wind resource, and

ii) the availability of the technical system.

Z Availability for a wind turbine: The ratio of the total number of hours during a certain

period, excluding the number of hours that the wind turbine could not be operated due to

maintenance or breakdown, to the total number of hours in the period (IEC, 1999).

Statements regarding reliable energy supply corresponds well for mature markets on land,

which occasionally is very competitive already (Irena, 2012). Although relying on regular service



CHAPTER 1. INTRODUCTION 3

and fast response to fault situations (Dai, 2014), modern turbines on land generally can reach

availability of 97-99% or more (IWES, 2014). This level of availability is not necessarily the case

for the offshore wind farm (OWF). Older OFWs, typically deployed with relatively low capacity

turbines close to shore, can sometimes exhibit availability in the range of the average onshore

availability. However, as depicted in figure 1.3, the availability of more recently commissioned

OWFs farms is less promising. This challenge is believed to grow even larger as the prevailing

trend today is situating wind farms even farther ashore where weather is more hostile (e.g, see

Ho et al., 2016; GWEC, 2014). With respect to maintenance, harsher weathering can be consid-

ered a two-dimensional issue, as i) the increased load will accelerate the degradation-processes

and ii) because accessibility gets more susceptible.

Z Accessibility: The percentage of time that the maintenance fleet can provide service to the

offshore wind farm (Dai, 2014).

Z Maintenance: The combination of all technical, administrative and managerial actions

during the life cycle of an item intended to retain it in, or store it to, a state in which it can

perform the required function (Marquez, 2007).
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Figure 1.3: Average availability per year for a selection of European offshore wind farms. Figure adapted
from IWES (2014).

Through their availability breakdown, van Bussel and Bierbooms (2003) provide a distinc-
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tion between theoretical availability and actual wind farm availability. As seen in figure 1.4, the

theoretical availability is largely composed design-related elements.

Reliability
(failures/year)

Maintainability
(ease of repair)

Serviceability
(ease of service)

Theoretical
availability

Accessibility 
of the site

Actual
availability

Maintenance 
strategy

Figure 1.4: Theoretical and actual availability as a function of site accessibility, design properties and
maintenance strategy. Figure adapted from van Bussel and Bierbooms (2003).

For the offshore segment where accessibility might be restricted several months out of a year

(Dai, 2014), accessibility poses a major challenge in terms of aligning the maintenance strategy

towards effective resource utilization. However, to make availability a productive metric in de-

scribing the effective operation of a wind farm, one must of course consider at which cost op-

erational availability is achieved. When comparing wind-driven electricity with commonplace

hydrocarbon energy sources, it still has a way to go in terms of being competitive.

As of 2013, the levelized cost of electricity (LCOE)1 for offshore wind farms was roughly 200

USD/MWh on average, whereas the onshore farms was in the area of 130 USD/MWh. These

quantities are found by Salvatore (2013), who compares the cost of electricity by source. For

commonplace hydrocarbon energy sources, the LCOE tend to lie stably in the range from 50-100

USD/MWh. This makes an incentive for pursuing ways of reducing costs in the wind industry

altogether, although particularly required for the offshore segment. With operation and main-

tenance (O&M) currently constituting 20 % - 35 % of the LCOE, it is highlighted a key issue for

improving the viability of the offshore wind segment (Shafiee et al., 2015; Kumar et al., 2015; IEA,

2013).

The topic of reducing the operational expenditure for wind farms are not only a concern rele-

1The LCOE of a given technology is the ratio of lifetime costs to lifetime electricity generation, both of which
are discounted back to a common year using a discount rate that reflects the average cost of capital (IRENA, 2015).
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vant for owners and operators, but is anchored in a broader context intending to realize political

renewable energy targets. Aligned with such visions is the NOWITECH project - an international

research cooperation on offshore wind technology financed by the Research Council of Norway

as well as their industry partners. 2 Among the areas of focus is the assessment and development

of novel designs, but also a dedicated branch of research is directed towards O&M technologies

and strategies.

The project has given rise to a plethora of spin-off projects, such as the LEANWIND project

working more uniformly with O&M. To identify favorable utilization of maintenance resources,

the project is supported by a wind farm lifecycle simulation model (Valland et al., 2014). A reoc-

curring topic has been whether a detailed degradation model is needed or not (Sperstad, 2015).

As the simulation model intend to provide strategic rather than tactical and operational deci-

sion support it is believed that a high-level maintenance model will be satisfactory due to the

long time horizons being considered (Sperstad, 2015).

With reference to figure 1.5 showing the hierarchical levels of the maintenance concept, the

focus of this thesis will lie within the tactical level. Within this level, Pintelon and Parodi-Herz

(2007) puts the maintenance policy. Their definition follows below:

Z Maintenance policy: Rule of set of rules describing the triggering mechanism for the

different maintenance actions.

OPERATIONAL 
LEVEL

TACTICAL 
LEVEL

STRATEGIC 
LEVEL

 
- Business objectives
- Resources requirements
- Outsourcing/leasing
- Design questions
- Procurements

- Maintenance concepts
- Maintenance policies

- Maintenance actions
- Efficient procedures

Figure 1.5: Maintenance levels.

The most common maintenance policies are run to failure (RTF), clock-based maintenance,

2https://www.sintef.no/projectweb/nowitech/
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age-based maintenance, opportunity-based maintenance (OBM) and condition-based mainte-

nance (CBM) - of which the latter is designated as most relevant for cost efficiency in the wind

industry. Although condition monitoring already plays an important role in defining the trigger-

ing rule or criteria for when to initiate maintenance, the literature (e.g, see Tchakoua et al., 2014;

Ata, 2015) agree that there is a large potential yet not exploited within the domain of CBM for the

wind industry. This involves intelligent algorithms which by providing system health estimates

and prognosis for remaining useful life enable for cost efficient utilization of maintenance re-

sources and component life. These algorithms relies heavily upon access to data, a topic which

currently poses a major challenge in terms of realizing smarter maintenance in wind farm op-

eration.

1.2 Wind Turbine Data Generation

Modern wind turbines are equipped with extensive sensor-configurations and sophisticated

controller systems - both capable of recording data which can be used for health monitor-

ing purposes. Among the large variety of sensing and measuring techniques that are available

for wind turbines, vibration analysis is the most predominant (Nie and Wang, 2013; Cornelius,

2004).

It is distinguished between i) dedicated condition monitoring (CM) equipment and ii) Su-

pervisory control and data acquisition (SCADA) systems - both capable of recording vibrations.

As opposed to standalone CM-systems, SCADA-data extracts data already being allocated at

the wind turbine controller. Recordings are typically made every 10 second and averaged over

10 minutes (Verma, 2012). Due to the long sample intervals and the 10 minute averaging, the

characteristic vibration signature gets corrupted and can not be used to detect concrete faults

accurately. The successful utilization of SCADA-data has rather been recognized by its use in

data-mining applications for fault diagnosis and prognosis (e.g, see Kusiak and Verma, 2012;

Verma, 2012; Yang et al., 2013).

The dedicated equipment is characterized by high sampling frequencies. Thus vibration

analyses using CM-data tend to be concentrated around detection of characteristic vibration

signatures associated to the faults (Nie and Wang, 2013).
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Another important piece of information is the fault logs. These allow for matching the signal

characteristics or data-patterns, either it is from SCADA or dedicated CM-sensors, to the system

status.

1.3 Turbine Data Not Easily Accessible

In his article on lack of data sharing in the renewable-energy industry, Kusiak (2016) describes

long lasting back-and-forth communication across different energy companies including the

signing of several non-disclosure documents to obtain the required data for analyzing wind tur-

bine sensor data within his Iowa University community. Getting higher frequency data is even

harder as it might require the permission from the sensor manufacturers. Also the turbine man-

ufacturers plays an important role. As part of the warranty, the manufacturer typically provide

maintenance and all related condition monitoring during the first five years (Salomonsen, 2015;

Togstad, 2016). For competitive reasons, typically only aggregated values are made available for

the operator during this period (Lund, 2016).

From the operator’s point of view, where large parts of the wind farm project is relying on

regulations and banking, the cost-efficient operation makes a crucial arena for obtaining their

competitive edge (Togstad, 2016). In the bigger picture, the lack of data-sharing disables re-

searchers and other knowledge-communities from enabling the full potential associated with

better data-utilization.
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1.4 Objectives

Statkraft, being the operator of several wind farms both onshore and offshore, has granted this

project with access to vibration data from the CM-system of a land-based wind-farm. As nei-

ther SCADA-data or fault logs have been obtained, the following research-question becomes

relevant:

RQ1: To what extent is it possible to monitor the condition of wind turbine components with-

out the support from fault logs?

The main objective of the thesis is to develop develop and apply an approach for condition

monitoring for the wind turbine gearbox. The main objective are underpinned by the following

partial objectives:

PO1: Segregate the part of the vibration caused by load from those being attributed to degra-

dation.

PO2: Relate the vibration-induced response to time.

To deal with the missing information the following key hypothesis is stated:

Hypothesis I Most of the data correspond to normal turbine behavior.

Other assumption dictating the approach are:

Hypothesis II All turbines can be considered equal, i.e., they give rise to the same vibration

response under equivalent conditions.

Hypothesis III The vibration response can be modeled as a function of operational load and

degradation level in an additive manner.

The true nature of these assumption are highly relevant for being able to choose an appro-

priate approach for meeting the main objective. Efforts to evaluate their validity are therefore

continuously sought during the vibration analysis part of the thesis.
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1.5 Limitations

Without fault logs there is no way to relate the observed vibrations to the system state experi-

enced by the wind turbine. This unsupervised characteristic makes the answers to the research

questions become reasoned arguments rather than definite answers.

1.6 Structure of the Thesis

The remaining report is organized as follows:

Chapter 2 - Theoretical Background

Fundamental maintenance concepts are explained along with an introduction to wind

turbine functioning and vibration analysis.

Chapter 3 - Description of Acquired Vibration Data And Case-Study Outline

The vibration data that was available through the wind farm site server is described before

parts of the data is selected to be the basis for the vibration analysis. Lastly, a component

is selected and an outline for the analysis is given.

Chapter 4 - Methodology and Model Construction

The methodology is first explained through a simplified use-case. Next, the choice of en-

abling tools/techniques are justified before being formally presented. Ultimately, they are

applied to the real turbine data.

Chapter 5 - Results and Discussion

Key findings from the degradation analysis are presented and discussed along with sug-

gested further work.

Chapter 6 - Conclusions

The final accomplishments are summarized.



Chapter 2

Theoretical Background

This chapter introduce essential maintenance concepts. Most emphasis is put on condition based

maintenance (CBM) due to its relevance and potential for cost-cuttings in the wind industry. The

enabling building blocks for carrying out CBM is described through the prognostics and health

management (PHM) cycle.

2.1 Maintenance Concepts and Vocabulary

The actions referred to in the definition on maintenance “ ... the combination of all techni-

cal, administrative and managerial actions during the life cycle of an item intended to retain it

in, or restore it to, a state in which it can perform the required function (Marquez, 2007)” are

commonly described on three distinct but interacting levels (e.g, see Marquez, 2007; Ramírez,

2013).

• Strategic level (long-term): These are long time horizon decisions reflecting the busi-

ness strategy and corporate visions by means of maintenance priorities. Such decisions

typically result from commercial and economic considerations and may involve design,

choice of enabling technologies, acquisition of requisite skills, etc.

• Tactical level (medium-term): Actions at the tactical level would determine the correct

assignment of maintenance resources (skills, materials, equipment etc.) that enables ful-

fillment of the strategic maintenance priorities. Outputs from the tactical level is typically

10
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detailed maintenance scheduling linking the type of maintenance resource to time and

place.

• Operational level (short-term): While the two previous levels are more concerned with de-

signing the maintenance framework, the operational decision-making would ensure an

efficient implementation of the maintenance program. This involves e.g. on-time execu-

tion of work carried out by skilled technicians following the correct procedure. Moreover,

an important function taking place at the operational level is the collection of relevant

failure and maintenance data going into the maintenance information systems.

The interaction between decision levels is furthermore emphasized in figure in 2.1 showing

the maintenance management loop. Its purpose is the enabling of continuous improvement

that exploits accumulated knowledge and experience.

Objectives and
requirements

Maintenance
programme

Strategic level

Resource
requirement Verification

Planning

ReportingAnalysis

Technical
 condition

Improvements

Execution

Tactical level Operational level

Risk level

Availability

Organisation

Materials

Supporting 
documentation

Figure 2.1: Maintenance management loop. Adapted from Oljedirektoratet (1998)

The definition on maintenance furthermore speaks about ’restoration’ and ’retention’ which

leads to the discrimination of corrective and preventive maintenance policies respectively.

Commonplace maintenance strategies under corrective and and preventive maintenance are

shown in figure 2.2. The subsequent branching shows associated criteria for when to initiate

maintenance followed by possible types of maintenance interactions. Although not listed in

the figure, is should be noted that together with CBM, opportunity maintenance is particularly

relevant to the offshore wind farm. Opportunity maintenance is characterized by seizing the

opportunity of effective resource deployment - for example during periods where accessibility

is beneficial, or by grouping maintenance actions while already on site.
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Maintenance

Corrective PreventiveMaintenance

concept

Maintenance

strategy

When?

Type of 

interaction

Instant repair Deferred repair Compensating Clock-based Age-based Condition-based

Detected failure Calendar time State of health

Repair or
replacement

Swhich in
standby unit

Periodic repair
or replacement

Periodic failure
finding task

Repair or 
replacement

Operating time

Figure 2.2: Classification of maintenance types. Adapted from Rausand and Høyland (2004)

A fundamental starting point for a discussion on maintenance policies would be the fact that

we do not know when a component or subsystem will break down. In other words, the time to

failure, T , must be considered a random variable.

Z A failure is the permanent inability of a component or a system to perform its functions

(Isermann, 2011).

The maintenance policy should then be selected based on how well T can be approximated

and from what consequences that can be associated with a possible failure. Letting C represent

the average cost of maintenance, and assuming that the component life-time distributions, fT

are available, the economic viability of the different strategies can be evaluated using system

reliability theory. Under the regime of corrective maintenance - commonly referred to as run

to failure (RTF) - repair and corrective maintenance are used interchangeably. Repair might be

instant or deferred. As wind turbines are designed without redundancy, switching to standby is

not an option.

Using system reliability theory (further elaborated in Rausand and Høyland, 2004, Chapter

9), the average cost of corrective maintenance with immediate repair, C , is shown in figure 2.3.

Note that for the average cost C to be validly expressed, the repair make must be perfect, i.e., the

component is restored to a state where it is considered as good as new.
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Figure 2.3: Operational timeline when running to failure with average associated cost per unit of time:
C . Figure from Lefebvre (2015).

A clock-based maintenance strategy maintains the items at regular time intervals (tc ,2tc ...) re-

gardless of operational age, which is the dictating parameter in scheduling age-based mainte-

nance. As indicated in figure 2.4, both policies execute corrective maintenance (repair) also

upon failure, meaning that the intervals should be carefully estimated.

(a) Clock-based maintenance and average associated cost per unit of
time: C .

(b) Age-based maintenance and average associated cost per unit of
time: C

Figure 2.4: Preventive maintenance policies with predetermined parameters for a) calendar time, tc and
b) operational age, ta . Figure from Lefebvre (2015).

As phrased in Rausand and Høyland (2004), “... condition-based maintenance is a maintenance

policy where the maintenance action is decided based on measurement of one, or more, vari-

ables that are correlated to a degradation, or loss of performance, of the system”. If a CM system

were to provide perfect prognosis, it would enable for ideal maintenance as demonstrated in

figure 2.5. Maintenance is then carried out just before the component fails, meaning that its

useful life is fully exploited. The need for corrective interventions is thus eliminated. However,

in practice, ideal maintenance should be left a theoretical curiosity.



CHAPTER 2. THEORETICAL BACKGROUND 14

Figure 2.5: Operational timeline with ideal maintenance and the average associated cost per unit of time:
C . Figure from Lefebvre (2015).

In reality uncertainty gets introduced at several stages. For one, the prognostic analysis in

it self is inherently uncertain; for two, the resource availability might not always be in the full

control of the maintenance organization. In addition there might be wild-cards such as weather

dictating the feasibility for timely maintenance. To illustrate how uncertainty influence the av-

erage cost, a small numerical application was simulated in MATLAB. Letting c = 50 and k = 50

represent the cost of corrective and preventive maintenance respectively and letting the com-

ponent lifetime be normally distributed according to T ∼ N (375,50), the average resulting costs

are shown in figure 2.6.

The horizontal axis is relevant only for the condition-based maintenance policy. ∆T repre-

sent when, relative to the prognostic output, the maintenance action is carried out. For good

prediction accuracy, i.e., for smaller standard deviations in the prognostic output, it is desir-

able to make the maintenance action shortly before the predicted failure date. For the same

reason, the penalty cost increase rapidly as soon as ∆T = 0 is exceeded. When the prognostic

uncertainty increase, i.e., for larger standard deviations, more margin needs to be taken into ac-

count. The plots furthermore highlight that fixed-interval strategies might very well outperform

CBM when based upon unreliable predictive information. Associated MATLAB code is given by

PredAccuracy.m in appendix B.1.1.
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Figure 2.6: Relations between maintenance strategy and cost. For condition-based maintenance, the
figure shows the average cost per time unit for different prognostic performance levels as a function of
when the interaction happens relative to the predicted failure date. It is shown that a certain level of
predictive accuracy is required to outperform a time-based policy with reasonable intervals.

It is stressed that CBM need not to rely on early warning prognostic information, but might

be based on deviating observations obtained from real-time monitoring calling for more or less

immediate actions. This could for instance involve characteristic vibration signatures that trig-

gers immediate actions such as shutdown or inspection. This might however in many cases be

too late, which calls for prognostic information supporting the CBM-regime with early notice

of the incipient faults. How such information is obtained can best be explained through the

prognostic and health management cycle.
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2.2 The Prognostics and Health Management Cycle

Vachtsevanos et al. (2006) expresses the purpose of prognostics and health management (PHM)

as “... to, from sensor data, detect and isolate incipient faults and as quickly and accurately as

possible envisage a fault to failure progression timeline anticipating when a failure will occur.”

The PHM-cycle can be described using the building blocks in figure 2.7.

Sensor

signals

Pre-

processing/

filtering

Feature 

extraction

Fault 

classification

Prediction of 

fault evolution

Decision 

support

Figure 2.7: Required building blocks for PHM. Adapted from (Vachtsevanos et al., 2006).

2.2.1 Sensor technology

Sensors constitute the very basis for fault diagnosis and prognosis. The sensor in it self serves

only as a device capable of sensing change in some physical quantity (Collacott, 1977, chapter

3). Next, the energy in the measured signal is received by a transducer whose task is to transmit

the data, often as a digitized electrical signal to some data-base for processing (Vachtsevanos

et al., 2006, Section 3.2.1).

2.2.2 Data processing

The data processing can be considered a two-step process, where the pre-processing intends to

enhance the signal characteristics to facilitate for efficient extraction of information, that is, the

indicators of the condition of a failing component. This involves filtering, amplification, data

compression, data validation and denoising - all techniques intended remove noise and/or sig-

nal characteristics that are otherwise misleading (Vachtsevanos et al., 2006, section 4.3.1). Fea-

ture extraction is the process of turning data into information, i.e., the mapping from raw signals

to meaningful signatures. The objective is to select appropriate features that are able to indicate

the state of health for the component or subsystem (Vachtsevanos et al., 2006, Section 4.4). For

rolling impacts, e.g., coming from a bearing, the energy present in the emitted frequency band

is a well-proven feature.
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2.2.3 Fault classification

To detect a fault, it is satisfactory to know the normal behavior of the monitored system. This

follows from the below definition of a fault:

Z A fault is an abnormal condition that may cause a reduction in, or loss of, the capability of a

functional unit to perform a required function (IEC61508).

If a point is registered outside the normal behavior area, there is a fault. Referring to figure

2.8, the gray point represents a fault detection as the system behavior is inconsistent with the

normal behavior: (U ,Y ) 6∈βn . The red point close to the center of β f 1 represents both a fault de-

tection and a fault isolation. The fault is said to be isolated because the point can be associated

with one specific faulty behavior: (U ,Y ) ∈ β f i ,∀i = 1, ...,n. For the red point contained in the

overlap between β f 1 and β f 2 there is no fault isolation, as the point represents more than one

faulty behavior. Because the green point is consistent with both the normal behavior and faulty

behavior 1, neither a fault detection or a fault isolation can take place (Blanke et al., 2006).

βn

β f 1

β2

U

Y

(U xY )-space of system inputs/outputs:
βn : Normal behavior
β f 1: Faulty behavior 1
β f 2: Faulty behavior 2

Figure 2.8: Data points representing system input/output associated with different types of known and
unknown system behavior.

The field of fault detection and isolation is now a mature science allowing for well-proven

techniques both from the domain of physical and data-driven models (Nie and Wang, 2013; Ata,

2015). Physical modeling rely on an accurate dynamic model constructed by physical model
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parameters representing the system in question. The data-driven approach does on the other

hand employ a model that is trained from data. By comparing the input/output from the actual

system with the model response, the resulting discrepancy or residual is used extract informa-

tion regarding current system health. The flow of this exercise is depicted in figure 2.9.

Figure 2.9: Process flow showing how deploying a model allows for calculating residuals for fault detec-
tion/isolation purposes. Figure from Lefebvre (2015)

Based upon several authors (eg, see Aldrich and Auret, 2013; Verma, 2012) these reoccurring

advantages can be linked to the data-driven approach.

• Cheap exploitation of the ever-growing volumes of process data accumulating from tech-

nical systems.

• Uses few or no assumptions - do not require accurate dynamic models of the physical

system under study.

• Unfortunately, complete knowledge of real processes is often not available or very expen-

sive to acquire, thus complicating the construction of an accurate physical model.

2.2.4 Prognostics

Prognosis is a composite word consiting of the Greek words pro and gnosis, which literally trans-

lates into the ability to acquire knowledge (gnosis) before (pro) a future event will occur. This

is not a new idea; two thousand years ago there were oracles scattered all over Greece and Italy

and some, such as Delphi and Trophonios, grew into large and wealthy organization (Stopford,

2009). In the PHM context, the prognosis is understood as the precise and accurate estimation

of the remaining useful life (RUL). Although large progress has been achieved in PHM com-

munity recent years, estimating the RUL still remains an the Achilles’ heel (Vachtsevanos et al.,
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2006, Section 6.1). This is true due to several reasons. Above all, providing reliable RUL es-

timates places great demands on the available data (on top of what is required for doing the

fault-detection/classification step). Firstly, you would need the duration between the point in

time where the incipient fault(s) occurs and the point in time when the failure occurs. Secondly,

you would need access a adequately detailed data telling what load the system has been exposed

to. This is particularly true for the wind turbine. A fault to failure progression time-line resulting

from harsh weathering and excessive loads to the system might not be relevant for situations

where the load is moderate. Therefore, weather forecasting models should be employed to sub-

stantiate for an appropriately chosen RUL-estimate for wind turbines. Ultimately, you would

need statistically sufficient samples - often meaning very large data-sets due to the large-grain

uncertainty entailing the field of prognostic analysis.
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2.3 Wind Turbine Fundamentals

2.3.1 Functional breakdown

Put simply, a wind turbine works the opposite way of a fan. Instead of consuming electricity to

make wind, the wind is used to make electricity. The energy conversion process including the

voltage step-up transformation required for efficient transportation of electricity is covered by

the first four primary functions (from the left) in figure 2.10. Remaining primary functions can

be seen as facilitators: Cooling prevents the system from catching fire and the structural support

& housing provides i) a reasonable position for the blades; and ii) a closed environment shield-

ing the components from ambient impacts. The secondary functions show in further detail how

their parent functions are achieved together with associated components. For a complete intro-

duction to the wind turbine functioning, see e.g. Hau (2006, 2013).

Within the P6 auxiliary functions, the wind farm maintenance regime serves as a required

function allowing for an acceptable up-time. This is indicated with by the red dashed box and

would involve maintaining each branching going out from the system function. The complete

condition monitoring system for a modern turbine is composed of many sensors, each covering

particular sub-assemblies of the wind turbine. Among the variety of techniques for wind turbine

condition monitoring, the following will be restricted to encompass vibration analysis. Readers

are referred to Rolfseng (2015) for a more complete presentation capturing the variety of wind

turbine CM techniques.
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Figure 2.10: Functional breakdown structure for a wind turbine with componentes linked to final func-
tional indenture level and associated components. The breakdown structure is defined by the author, but
relies on wind turbine theory presented in Hau (2006, 2013).
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2.3.2 Vibration analysis

Vibration analysis (VA) is the most well-known CM techniques for rotating equipment (Cor-

nelius, 2004). For wind turbines VA is predominantly used for shafts, bearings, gearboxes, blades

and generators (Tchakoua et al., 2014). This set of components are commonly referred to as the

mechanical drive train (Hau, 2006).

The standard VA sensor configuration for the Vestas V117 has 13 sensors as shown in figure

2.11. Figure 2.13 shows that among different ways of detecting faults in rotating equipment,

VA typically provides the earliest fault detection. How early, and at which accuracy is largely

dependent on the rotational speed of the equipment (Salomonsen, 2016). For faster rotating

parts, the energy given from the rolling impact of a small damage is much larger and therefore

more clearly visible from the vibration readings. Slowly rotating parts include the main shaft

and bearing, the blade bearing as well as the the first stages of the gearbox. Remaining gears,

bearings and shafts are then fast rotating. For this reason one can expect a better hit rate and

prediction time for damages in the fast rotating bearings and gear components. It is also a fact

that the high speed rotating components have a higher wear rate and thus results in a generally

higher failure rate than the slowly rotating parts of the drivetrain (Salomonsen, 2016).

Accelerometer
main bearing

Low speed sensor
6 accelerometers

on gearbox
High speed

sensors

2 accelerometers
nacelle vibrations

Accelerometer
gearbox front

Accelerometers
generator rear

Figure 2.11: Main components shown together with standard sensor configurations in a Vestas V117 3,45
MW wind turbine. Figure from Salomonsen (2016).
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The vibration measurements are collected through accelerometers. When the base on which

the accelerometer is fitted start to vibrate, it exerts a force onto the accelerometer. This force

is captured by piezoelectric discs inside the sensor which generate an electrical signal that is

directly proportional to the accelerations (Vachtsevanos et al., 2006). The process of obtaining

accelerometric data as digital read-outs is shown in figure 2.12.
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Generation

Charge (voltage)

generation

Signal 

conditioning

Digital read-out
 

Electrical signal

Acceleration

Figure 2.12: Operation of a piezoelectric accelerometer. Based upon Vachtsevanos et al. (2006) and Col-
lacott (1977).
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Figure 2.13: Vibration analysis can provide relatively early warning when compared to alternative tech-
niques for anomaly detection. Adapted from Madsen (2011).

A well-proven technique for vibration analysis is the Fast Fourier Transform that enables

for frequency domain representation of the vibration (Cornelius, 2004). The interest of the

frequency-domain representation becomes clear when considering the complex wave com-

posed of multiple sinusoidals. The fourth row of figure 2.14 shows the sum of the three above
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time-series, each of which when considered alone can be fairly easily interpreted. The problem

arise when they are added together, such as would be the case for most rotating machines.
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Figure 2.14: Figure shows three distinct sinusoidals separately before being added into a complex com-
posite waveform. Lower plot shows the resulting frequency domain representation. Associated MATLAB-
code found in appendix B.1.2.

To decompose such complex wave-forms, the FFT-algorithm has proven superior in obtain-

ing a computational efficient approach for mapping the time-series into the frequency-space

(Redmon, 2002). When applied to the complex wave form, the frequency domain represen-

tation in the bottom plot shows clearly what contributions that together formed the complex

wave.

What makes the FFT so useful is the fact that many faults can be recognized from their char-

acteristic frequency signature (Jardine et al., 2006). However, for variable load systems, such as

the wind turbine, particular attention must be given. As wind in nature is irregular and drives the
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wind turbine unsteadily, there is a need for separating the part of the vibration signal that is at-

tributed to degradation from the part simply being a result form operational load. To still be able

to obtain frequency-domain vibration signatures that are characteristic of faulted states, a vari-

ety of techniques are suggested (e.g., see Chaari et al., 2012; Antoniadou et al., 2015). Whereas

these are techniques intended for real-time visual inspection of the frequency characteristic,

they might not be efficient in terms of monitoring the evolving fault (Samanta, 2004). Monitor-

ing of the evolving fault would typically entail large amounts of historical data that covers the

entire range - from the incipient fault until the event of failure.



Chapter 3

Description of Acquired Vibration Data And

Case-Study Outline

The vibration data was obtained March 17th during a visit at Statkraft’s headquarters at Lysaker,

Oslo. Statkraft is a leading company in hydropower on an international scale and Europe’s

largest generator of renewable energy. Their significant commitment to wind energy is mani-

fested through ownership and operation of land-based wind farms in Norway, Sweden and the

UK as well co-ownership to the Sheringham Shoal wind farm off the coast of North Norfolk1.

The data for this project is accelerometric data acquired from a land-based wind farm.

3.1 Wind Turbine Data Management And Structure

Per date the monitoring of the wind farm is carried out by the vendor. Statkraft themselves

have a passive connection to the monitoring data, essentially meaning that parts of the data

is made available for them. To manage what data to be pulled from the turbines, an active

connection is required, that is, the type of connection possessed by the vendor. Parts of the

condition monitoring services, such as the hardware and server-setup, are externally provided

by a company having materialized their expertise through condition monitoring services.

The backbone of the CM-system is the data acquisition and analyzing unit. Being placed

inside the nacelle, the unit synchronously collects and analyze data from a number of connected

1http://www.statkraft.no/Energikilder/Vindkraft/

26
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accelerometers before the information is sent to the wind farm site-server and/or controller.

Furthermore, a number of counters (e.g. RPM, oil, anemometers) can be coupled to the unit,

allowing for more meaningful information depending on what type of analysis is carried out.

Through an internet-based user-interface users can request data for data mining and analysis

purposes.

With regards to data-extraction, the available options are shown in table 3.1. As will become

apparent, the data acquisition and analyzing unit has the computational capacity of readily pre-

senting a set of features for the end user to download - not only raw signals in time-series format.

Table 3.1: Site server user-interface options

Location(s) Which turbine(s) to consider.
Sensor What component to consider
Measurement What feature to consider
Condition Records associated to a given power-range
From / to (yyyy-mm-dd) Define time horizon
Number of records Define max. number of records to extract
Output type File format

Along with the actual feature measurements, each record are stored with the following aux-

iliary information:

Table 3.2: Table showing what information is stored in a record and how it is structured.

Turbine Rec. Power-bin Power-bin Power Yaw- Rotor Wind Generator Date/
number number (lower) (upper) (avg.) angle RPM speed RPM time

The below lists shows the available sensors (components) and conditions (power bins).

Components

– Generator

– Generator (rear)

– Highspeed shaft

– Main bearing

– Intermediate shaft (IMS)

– Planetary stage of gearbox (Planet)

Power bins

– 0-920 kWh

– 921-1150 kWh

– 1151-1403 kWh

– 1404-1656 kWh

– 1657-1909 kWh

– 1910-2185 kWh

– 2186-2415 kWh
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As there is 6 component and 7 power bins, there exist 42 combinations for every feature. It

was a total of 40 available features, which makes the total number of combinations 1680 - all

potentially containing vast amounts of records. Due to the limited time during our visit, it was

not possible to obtain all combinations. Hence, some prioritizing was made.

3.2 The Collected Data

3.2.1 Feature "Time _8000"

Initially, selecting all turbines, we tried to collect the feature Time _8000 for all sensors and all

power bins (42 combinations). 8000 denotes the maximum value of the frequency spectrum

from 0 to 8.138 kHz. For every record there is 32000 samples collected over 1.5360 seconds,

yielding a sampling frequency, fs , of 20833 Hz.

Having the complete time series would be ideal because all other features can be derived

from it. However, it turned out that only the highest power-bin contained data. The Resulting

data gathered from the time series is displayed in table 3.3.

Table 3.3: Data capture for Time_8000 (time series with frequency spectrum ranging from 0 to 8 kHz).

Feature considered: Time_8000

No. of turbines No. of turbines
Component Power output bin screened for data that provided data

Generator 2186-2415 68 48
Generator (rear) 2186-2415 68 48
Highspeed 2186-2415 68 48
Intermediate shaft (IMS) 2186-2415 68 48
Planetary stage of gear (planet) 2186-2415 68 48

The 48 turbines that contained data were all commissioned in a second phase of the wind

farm project, i.e., they were all put to operation at the same time. The fact that the other turbines

did not contain data could be due to a different type of monitoring regime shared among these

turbines. Figure 3.1 two shows the distribution of records for each of the components per year.
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Figure 3.1: Annual number of records for each component.

3.2.2 Feature "FFT_0_8000"

The feature FFT_0_8000 was successfully acquired for all sensors and all bins. Again 8000 de-

notes the frequency spectrum ranging from 0 Hz to 8138 Hz. For every record, the number of

samples is 401. The associated resolution, ∆ f , is hence 20,34 Hz. The resulting data capture

from the feature FFT_0_8000 is shown in table 3.4. The number of turbines screened for data

was reduced from 68 to 20 after finishing the generator due to the limited time available. Con-

sidered turbines are T21-T40, all members of the second commissioning phase.
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Table 3.4: Data capture for FFT_0_8000 (frequency domain vibrations in the range from 0 Hz to 8.138
kHz.)

Feature considered: FFT_0_8000

No. of turbines No. of turbines
Component Power output (bin) screened for data that provided data

Generator 0-920 68 48
Generator 921-1150 68 48
Generator 1151-1403 68 48
Generator 1404-1656 68 48
Generator 1657-1909 68 48
Generator 1910-2185 68 48
Generator 2186-2415 68 48
Generator (rear) 0-920 20 20
Generator (rear) 921-1150 20 20
Generator (rear) 1151-1403 20 20
Generator (rear) 1404-1656 20 20
Generator (rear) 1657-1909 20 20
Generator (rear) 1910-2185 20 20
Generator (rear) 2186-2415 20 20
Highspeed shaft 0-920 20 20
Highspeed shaft 921-1150 20 20
Highspeed shaft 1151-1403 20 20
Highspeed shaft 1404-1656 20 20
Highspeed shaft 1657-1909 20 20
Highspeed shaft 1910-2185 20 20
Highspeed shaft 2186-2415 20 20
IMS 0-920 20 20
IMS 921-1150 20 20
IMS 1151-1403 20 20
IMS 1404-1656 20 20
IMS 1657-1909 20 20
IMS 1910-2185 20 20
IMS 2186-2415 20 20
Planet 0-920 20 20
Planet 921-1150 20 20
Planet 1151-1403 20 20
Planet 1404-1656 20 20
Planet 1657-1909 20 20
Planet 1910-2185 20 20
Planet 2186-2415 20 20
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Figure 3.2 two shows the annual distribution of records for each of the components. Com-

pared to Time_8000, the amount of data is substantially larger for this feature. Part of the expla-

nations is the fact that all power bins contained data.

Components

Planet
IMS

Gen. (rear)
HS

Gen.

Feature FFT_0_8000

2016
2015

2014
2013

Operational year

2012
2011

2010
2009

2008
2007

2006

×10
4

0

1

2

3

4

5

N
u
m

b
e
r 

o
f 
re

c
o
rd

s

Figure 3.2: Annual number of records for each sensor.

3.2.3 Less structured data capture - a mix of features and components

The last set of features collected was initiated based on suggestions from Statkraft staffing who

believed that these particular features had been subject to some previous analysis (without

knowing the specifics). This included Env_100, Env_300 and FFT_127p, all of which are de-

notations of envelopes with different frequency spectra. At this point, the time available for

extracting more data does not allow for being as systematic as previously. This becomes even

more clear when realizing the vast amount of records associated with these features. To remedy
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the substantial download-time, fewer turbines are selected for some of the features. Also, just

the lower and upper power bins were requested. Resulting data captures are summarized in

table 3.5.

Table 3.5: Features considered: Envelopes (frequency range 0-100 & 0-300) and FFT_127p .

Mix of features selected based on suggestions from Statkraft

No. of turbines No. of turbines
Component Feature Power output (bin) screened for data that provided data

Main bearing Env 100 0-920 20 20
Main bearing Env 100 2186-2415 5 5
Main bearing Env 300 0-920 1 1
Main bearing Env 300 2186-2415 20 20
Planet FFT 127p 0-920 3 3
Planet FFT 127p 2186-2415 20 20

Figure 3.3 shows the distribution of records for each of the components per year.
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3.3 Selecting Data and a Component for the Vibration Analysis

As mentioned, several combinations was empty. Why they were empty can only be revealed

when knowing the data-pull-setting as well as the criteria for data-storage. Among the collected

data, FFT_0_8000 yields the most complete dataset. For the operational years containing data,

data was found in all power bins as well as for all sensors. Furthermore, the data capture for

this feature is consistently based upon turbines commissioned at the same time. FFT_0_8000 is

hence chosen for the further analysis.

A component which has received much attention is the wind turbine gearbox. For one, it

is subject to varying load, calling for a way to segregate signals representing deterioration from

those just being an effect of load. It also is a large and heavy component requiring laborious

interventions to replace. Furthermore, by contributing with 13 % of the total sub-assembly cost

(Hau, 2013) it is also by far the most expensive component. Faulstich et al. (2011), who ex-

tract reliability statistics for onshore wind turbines based on a comprehensive database, finds

that the gearbox has the largest mean annual contribution to downtime and causes an average

downtime of 18 days when subject to a major failure.

More specifically, the data is covering the planetary stage of the gearbox. The turbines un-

der consideration, 2.3 MW machines, are equipped with a custom-built, three stage planetary-

helical design. The high-torque stage, i.e., the slowly rotating side, has a planetary-helical

design, whereas the intermediary and high-speed stages are normal helical stages (SIEMENS,

2009). In general, the fact that the records are made on the slowly rotating side makes the anal-

ysis more challenging, as the energy impacts are less than for the fast revolving case. Together,

the abovementioned aspects made the gearbox appear as an interesting component to analyze,

and is hence chosen for the further analysis.
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3.4 Fitting the Analysis into the Framework of Prognostics and

Health Management

Recalling from section 2.2 that the purpose of the prognostic and health management cycle is “...

to from sensor data, detect and isolate incipient faults and as quickly and accurately as possible

envisage an fault to failure progression timeline anticipating when a failure will occur.” Without

fault logs to confirm the system status, it is not possible to fully satisfy this objective. However, by

means of outlier-detection and cluster-analysis it may be fully possible to reveal patterns in the

data being representative of faulted states. Next, by monitoring the time-dependent presence in

the assumed faulted states, the evolving anomalous behavior can readily be monitored. Thus,

with some adaptations to the building blocks constituting the original PHM-loop, the PHM-

framework is still relevant for the current analysis. How the analysis carried out in this project

maps onto the original PHM-cycle is indicated in figure 3.4. ’Partial decision support’ in the

outputting end refers to the fact that when combining the findings with the missing information,

valuable decision support could result.
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(b) Modified version of PHM-cycle applicable to the vibration analysis

Figure 3.4: Figure shows how the current analysis fits into the PHM-framework.



Chapter 4

Methodology and Model Construction

For clarity reasons this chapter starts off by describing the methodology in an overall manner. Key

principles are communicated using a simplified and artificial use-case. This is followed by jus-

tifying the selections of tools/method enabling for the realization of the approach. After formally

explaining their theoretical foundation, tools and techniques are applied to the actual turbine

data.

4.1 Global Methodology Explained with Simplified Use-Case

The analysis seeks to enable condition monitoring for the planetary stage of the gearbox. To

approach this task, a model generating vibration that corresponds to a given set of operational

conditions will be developed. A key challenge in this respect will be to segregate vibration simply

arising from higher operational load from those being a consequence of degradation. A crucial

step in this respect is determining the set of co-variables that impacts the vibration response.

For the case where the model is provided with all impacting co-variables and is able to give an

accurate generalization, the residual will exclusively contain the contribution from degradation.

Figure 4.1 expresses the approach schematically.

35
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Figure 4.1: Condition monitoring approach.

Since there is 401 frequency increments in the spectra from 0 - 8138 Hz, the complete model

will be composed of 401 sub-models - one for each frequency increment. Together, they will

cover the complete frequency spectrum.

4.1.1 Key modeling assumptions and intended outcome

Due to lack of fault logs or other information that together with the FFT records could confirm

the equipment status, we do not know what records are corresponding to normal behavior and

not. To bypass this issue it is assumed that most of the records correspond to normal behavior,

allowing for outlier detection to be a viable approach for fault detection. A second paramount

assumption is that all turbines can be considered equivalent to each other and thus give rise

to the same frequency responses. Considering the fact that all turbines are the same make,

commissioned at the same time and share more or less the same coordinates speaks for this to

be true. The validity of this assumption has implications for whether the entire wind farm can

be considered at once or whether each turbine should be analyzed separately.

Hypothesis I : Most of the data correspond to normal behavior.

Hypothesis II : All turbines can be considered alike, i.e., they give rise to the same vibration

response under equivalent conditions.

Hypothesis III : The vibration response can be modeled as a function of operational load and

degradation level in an additive manner.
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A topic that has been addressed by several authors is the challenge of segregating vibrations

that simply results from load from those who are due to degraded items. By operating condi-

tions it is meant active power, wind speed and/or other properties that influence the emitted

frequency response. This can be expressed mathematically by letting vibration amplitude, op-

erating condition and degradation be denoted y f , op and d respectively:

y f ∼ f1(oc)+ g (d) (4.1)

where oc and d are assumed to be additive contributions to the vibration amplitude:

y f ∼ f1(oc)+ g (d) (4.2)

The decomposition in eq. 4.2 emphasize the fact that op and d are assumed to form the

resulting vibration in an additive manner. What ultimately is sought is the part of the vibration

responses that arise due to degradation, g (d). To achieve this quantity, a model approximating

f1(op) is developed

ŷ f ∼ f̂1(op) (4.3)

which in turn allows for g (d) to be approximated through the residual, ∆ f :

g (d) ∼∆ f = f̂1(op)− f (op,d) (4.4)

The model, being fed only with operating conditions, will not be able to reproduce the pre-

sumed additive contribution from degradation. Relying on the stated assumptions and the fact

that the model is sufficiently well performing, the resulting residuals will then represent the con-

tribution from degradation. Before being applied to the real turbine data, the approach is more

easily communicated using a simplified use-case. The use-case is artificial, but emphasize key

principles and how analyzing the residuals can provide valuable results.



CHAPTER 4. METHODOLOGY AND MODEL CONSTRUCTION 38

4.1.2 Simplified use-case

The use-case assumes a known simple linear relation between vibration output y( f ) and input

as shown in equation 4.5

y( f ) = k +CP ·P +CY ·C +CW S ·W S +CD ·D +ε (4.5)

where CP , CY and CW S are coefficients for the rated power, yaw angle and wind speed respec-

tively. k denotes a constant term whereas degradation and noise is represented by CD and ε

respectively. In other words, the complete set of co-variables for this demonstration comprise

rated power, yaw angle, wind speed and degradation. For this simple demonstration, vibration

amplitudes are generated only for two frequency increments. Since the vibration response is

given through a linear relation, a simple linear regression model is used to estimate the vibra-

tion output. For the case where no degradation is present, the below plot shows the residual

(left) and the distribution of model error (right).
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Figure 4.2: Left plot shows a homogeneous residual with normally distributed errors (right).

The homogeneous cluster depicted above is as expected because the model have all required

input to properly model the the vibration as there is no degradation. Due to the same reason,

the model error is normally distributed. For the next experiment, some degradation is added

by letting D assume non-zero values. As this parameter is not provided as model input, the

model suffers from lack of information and will not be able to reproduce the part of the vibra-
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tion response being caused from degradation. This piece of lacking information manifests itself

through the smaller cluster in figure 4.3, representing the vibration responses being attributed

to degradation. Whereas this figure shows a sudden transition between normal and faulted be-

havior, figure 4.4 shows the result of gradually increasing D , similar to what would be the case

for an actual degradation process.
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Figure 4.3: Left plot shows two distinct clusters: The major cluster represents errors associated to the
estimation of the part of the vibration response which are caused by operating conditions. The smaller
cluster to the right represent the vibration response being caused by degradation, which the model do not
success to reproduce. This is confirmed by the rightmost part of the bimodal normal error distribution.
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Figure 4.4: The figure shows two distinct clusters with intermediary points indicating a gradual transition
between clusters.
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To determine whether the clusters really represent degradation, i.e., that the minor cluster

indeed represent a fault, a strong indicator would be how the transitions between clusters relates

to time. In the case of rapid transitions where presence in the different clusters change during

small time increments (days), degradation is not likely. To obtain this information, the distance

from the major cluster representing normal behavior is monitored as a function of time. This

is equivalent to monitoring the development of vibration amplitude as a function of time and

serves therefor as a degradation monitoring technique. Figure 4.5 exemplifies the case of rapid

transition between states. These types of time-invariant and rapid transitions between clusters

would typically be a result of measurement noise or otherwise inconclusive phenomena. The

plot in figure 4.5 was produced by assigning contribution from degradation to half of the obser-

vations in a randomized manner.
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Figure 4.5: Figure illustrates the case where two distinct clusters (states) are present, but without an
associated meaningful interpretation. The red and green markers are assigned to observations that are
members of the left and right cluster respectively. The right plot shows rapid transitions between states.

The next scenario shows what happens when gradually increasing D as a function of time.

The time-dependent increase in distance from the center of the major cluster representing nor-

mal behavior is now evident. A plausible interpretation from figure 4.6 would be an incipient

fault originating in June 2015, before ultimately ending with a failure in October the same year.

After two months downtime, the turbine is put back to normal operation. This if furthermore

emphasized in figure 4.7 which relates the distance characteristic to possible equipment states.
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Figure 4.7: a) shows a time-variant development of vibration amplitude which would be indicative of
degradation. b) shows possible system states corresponding to a).

Finding patterns similar to what is shown in figure 4.7 can be valuable on several levels if

auxiliary data such as fault logs were available to confirm the system states. Firstly one can

support the rule or criteria for when to intervene with maintenance actions. For this to be effi-

cient, information that relates which faults are associated with the observed clusters would be

crucial. That way specific maintenance tasks could be scheduled. If furthermore a statistically

sufficient number fault to failure progression timelines, i.e., the time period between "normal"
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to "failure", were available, estimates of the remaining useful life could be provided.

The steps showed in the above use-case employs the very same principles as will be used to

the real vibration data. Before we get there it is provided a formal introduction to the enabling

techniques/tools enabling the approach. Associated MATLAB code for the use-case is found

under UseCase.m in appendix B.2.1.

4.2 Selecting Techniques/Tools

The process of selecting tools can be described as 1) identifying what properties needs to be

realized, and 2) to identify appropriate tools for their realization. Firstly, some way of validating

the methodology assumptions needs to be in place. To do this, identifying patterns in the data

could provide useful interpretations, making the need for visualization apparent. Secondly an

appropriate model for vibration modeling needs to be chosen. To determine what model is

appropriate, some way of measuring the model performances will be required. Ultimately this

boils down selecting means to enable visualization, vibration modeling and a technique for

performance evaluation.

4.2.1 Visualization

The frequency spectrum of the vibration data range from 0 to 8138 Hz and the resolution is

20,34. This makes a total of 401 frequency increment, or a dimensionality of 401 since each

frequency increment is treated a random variable. To visualize this information, the need for

dimensionality reduction becomes apparent. In the era of big data there exists a large multi-

tude of techniques for reducing dimensionality, each with their strengths and weaknesses. As

dimensionality reduction in many cases are used to reduce the computational burden by run-

ning algorithms with reduced data-sets, aspects concerning algorithm efficiency and accuracy

are largely taken into account when evaluating the performance of the technique (Silipo, 2015).

For this undertaking, the purpose is merely to visualize, hence making the choice more straight

forward.

As such, the principal component analysis (PCA) is a well proven technique for dimension-

ality reduction. By choosing the number of principal components (dimensions) to include, the



CHAPTER 4. METHODOLOGY AND MODEL CONSTRUCTION 43

user is able to manage how much of the data-set variance to include. PCA is furthermore used by

Pozo and Vidal (2016) who successfully execute fault detection for wind turbines by comparing

baseline PCA patterns representing healthy behavior to an inflow of current wind turbines with

unknown status. This suggests that PCA indeed could be a viable way to visualize and explore

the data and is hence chosen.

4.2.2 Generalization

Since the trustworthiness of the analysis relies heavily on choosing a model that makes a fairly

correct mapping from input to output, a set of models rather than a single model is chosen.

This is considered wise particularly due to the fact that the relationship between input (operat-

ing conditions) and output (vibration amplitude) in terms of linearity is yet unknown. Following

this reasoning, three simple polynomial models of 1st , 2nd and 3r d will be developed to check

whether the performance is enhanced when the linearity increase. If so is the case, an appro-

priate model for mapping non-linear relations must be chosen.

When browsing the literature on PHM for wind turbines and in general, two methods are fre-

quently reoccurring for mapping non-linear relations. That is, artificial neural networks (ANN)

and support vector machine (SVM). ANNs has been extensively employed in numerous fields

of science and technology, including prognostics and health management during the three last

decades (Ata, 2015). SVMs, with a somewhat later entry into the PHM community, started to

gain popularity in 1999 (Laouti et al., 2011). Both methods are used to understand complex

non-linear relations based upon training with large amounts of data.

Ata (2015), who do a review on the use of artificial neural networks application for wind

energy systems, groups the application of ANNs in three major categories: forecasting and pre-

diction, prediction and control, identification and evaluation. Hush et al. (1997) who study the

application of neural nets with special emphasis on vibration data for fault detection of faulty

bearings conclude that the approach which presents the best probability of success is trending.

Trending involves training the neural net on a well-behaving system. Faults are next detected by

identifying deviations from the normal behavior benchmark.

Trending is furthermore used by Kusiak and Verma (2012) who analyze bearing faults in wind

turbines from SCADA-data from 24 1.5 MW turbines collected over a period of four months by
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deploying neural network algorithms to predict the normal behavior.

Yang et al. (2008) who presents a three layer neural network approach to diagnose the actual

fault status of the gearbox, indicate in the their results that due to “ excellent abilities of parallel

distributed processing, self-study, self-adaptation, selforganization, associative memory and its

highly non-linear pattern recognition it is an efficient and feasible tool to solve complicated

state identification problems in the gearbox fault diagnosis”.

In his doctoral thesis, Verma (2012) undertakes a data-mining approach utilizing SCADA-

data and fault logs to identify critical turbine faults as well as predicting their occurrence. The

work done is extensive and encompass identification of critical status pattern of wind turbines;

prediction models for particularly fault prone components; anomaly detection based approach

to analyze bearing overtemperature events; vibration analysis of the wind turbine gearbox as

well as overall wind farm monitoring. For the segment concerning vibration analysis of the

gearbox, ANN is chosen due to its well-known ability to approximate the non-linear relationship

between input and output.

Laouti et al. (2011) are able to successfully detect and isolate faults within sensors and the

generator by employing a SVM model for pattern recognition. Again, the underlying approach

relies on a normal behavior benchmark which is compared to "real measurements" provided

by a model created by Odgaard et al. (2013) that represents a three-bladed pitch-controlled

variable-speed wind turbine with a nominal power of 4.8 MW.

Samanta (2004) who use vibration data from an experimental setup with normal and defec-

tive gears do fault detection by using both ANNS and SVMs. Both of the classifiers, which had

their feature selected aided by genetic algorithms (GA), yielded comparable performance nearly

100 % even with different load conditions and sampling rates.

Widodo and Yang (2007) who presents a review about the use of SVM for fault detection

claims that SVMs gives better generalization abilities than for instance ANNs for situations

where the number of samples is scarce. Furthermore, they argue that through minimizing the

upper bound generalization error (structural risk minimization) rather than minimizing the er-

ror on the training data set (empirical risk minimization), SVMs stand above its competitors.

This aspects is mainly what differentiates ANNs and SVMs from each other. While the ANN is

susceptible to identify a local optimum, the SVM guarantee the local and global optimal solution
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are exactly the same (Vapnik, 1999)

As far as the literature discusses what is the better choice among ANN and SVM, the debate

is related to the specific analysis at hand. This make sense because each of them can be trained

and configured with a large variety of algorithms and architectures which makes them hard to

compare in the general case. To really identify which method is the better choice, a basis for

comparison should be formed by employing each of the methods to solve the same specific

problem. For this project it has not been prioritized to employ both techniques. But since there

is no definite rationale to choose the one over the other, the ANN is chosen due to being a well-

proven technique for mapping non-linear behavior. Moreover, as NTNU students have access

to MATLAB, is it convenient that ANNs are supported by the Netural Network Toolbox ™ which

is part of the MATLAB functionality.

4.2.3 Performance evaluation

To select the best candidate from the set of models, we need some way to evaluate the mutual

model performances. A well-proven technique as such is k-fold cross-validation Walpole (2012).

Typical applications are Leek (2013): i) picking which variables to include in an analysis; ii) pick-

ing the type of predictive function or iii) picking parameters for the predictive function. In this

case there is a match with ii) as the objective is to choose the better performing model. For a re-

gression problem like this, it is agreed upon by multiple sources (e.g, see Arlot and Celisse, 2010;

MATLAB, 2015) that a standard cross-validation technique like k-fold cross validation would

provide a robust estimate for the model performance. k-fold cross validation is hence chosen.

4.3 Formal Description of Techniques/Tools

4.3.1 Principal component analysis

Aldrich and Auret (2013) express the aim of the principal component analysis (PCA) as “...to

define a set of principle components consisting of linear combinations of the original mea-

surement variables such that the first principal component accounts for the most variance in

the data set, the second principal component for most of the remaining variance, etc.” More
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formally, when k < n, the PCA algorithm conducts a mapping from an n-dimensional feature

space to a k-dimensional feature space (x ∈ℜn → z ∈ℜk ). Ng (2016) explains the involved steps

as follows:

1. Normalize the data: For the data set X = {x1, x2, ..., xm} of m columns-wise variables, cal-

culate the population mean (µ) and standard deviation (σ) and replace xi
j with

xi
j −µ
σ

.

2. Compute the co-variance matrix, Σ

Σ=
n∑

i=1
(x(i ))(x(i ))T , (4.6)

3. Compute the eigenvectors matrix of Σ.

4. The matrix made up by the k first eigenvectors of Σ, denoted Ureduced, is next used to

obtain the k-dimensional feature space z by the following operation: z =Creduced
T ·X .

The result from the transformation is shown in figure 4.8. The first principal component has

the largest possible variance (middle) whereas the succeeding component (left) has the highest

possible variance under the constraint that it is orthogonal to the preceding component.

Figure 4.8: Left: scatterplot; middle: first principle component (t1); right: first and second principle
components (t1 and t2). Figure from Aldrich and Auret (2013).
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4.3.2 Polynomial models

Equation 4.7-4.9 represents the single variable-case for the 1st , 2nd and 3r d degree polynomials

respectively

ŷ = a1 · x1 +a0 (4.7)

ŷ = a2 ·x2
2 +a1 · x1 +a0 (4.8)

ŷ = a3 ·x3
3 +a2 · x2

2 +a1 · x1 +a0 (4.9)

where ŷ is the estimate of y . The model error is represented by ε making y = ŷ + ε. Fur-

thermore, a0 is a constant and a1, .. , a3 are coefficients determined by ordinary least square

criterion whose optimum is achieved when the sum, S, of the squared residuals, εi = (ŷ − y)2 is

a minimum:

minS =
n∑

i=1
εi

As for the current analysis there is 401 frequency increments, each of which are having their

associated vibration amplitude estimated. This is taken into account by the generalized formu-

lation in equation 4.10 allowing for m values for each of the n variables.
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4.3.3 Artificial neural networks

The inventor of one of the first neurocomputers, Dr. Robert Hecht-Nielsen defines an artifi-

cial neural network as “ ... a computing system made up of a number of simple, highly inter-

connected processing elements, which process information by their dynamic state response

to external inputs.” This computing system is inspired by studies of the human’s central ner-
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vous system, where the interaction between nodes are to mimic the brains neurons and their

synaptic connections. As opposed to the polynomial fitting, the mathematics involved with an

artificial neural network is less trivial. The underlying principle are however the exact same as

for prediction problem, namely to substantiate for the best generalization by minimizing the

generalization error, ε.

Among the many types of ANNs, the multilayer perceptron (MLP) neural networks has

gained the most popularity in engineering applications (Yang et al., 2008; Ata, 2015). This net-

work type is also used in this work. MLPs belongs to the class of feed forward neural networks,

meaning that multiple layers of nodes are configured in a directed graph. A typical neural net-

work architecture for such a network is shown below. n, q and m denote the number of neurons

in the input, - hidden - and output-layer respectively.

...

...
...

x1

x2

x3

xn

u1

uq

y1

ym

Input
layer

Hidden
layer

Ouput
layer

Figure 4.9: Artificial neural network structure.

The input layer is where the input goes, and is hence uniquely defined once the shape of the

data-set is known. This is also the case for the output layer, which for the current analysis is one.

This is because 401 networks will be created - one for each frequency increment.

What determines the estimated output is the weights attributed from each of the inputs.

These are calculated within the hidden layer, where the actual processing take place. Hence,
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the key idea in training a neural network is to determine the connections weights that minimize

the error function between the network output and the corresponding target values from the

training set. This is most commonly done through back-propagation, which is further described

in the below work-flow:

Step 1: Each input node sends out their values towards the first echelon of neurons in the hid-

den layer. For the first iteration the connection weights are random, as learning has not

yet occurred (Suarez, 2009).

Step 2: To determine the connection weights to be carried over from each of the input nodes,

each hidden layer neuron is equipped with a transfer function - often the Sigmoid func-

tion: φ(ν) = 1
(1+e−ν) (Hastie et al., 2009). As a consequence, the input stimuli might not be

accepted at all. Usually though, the transfer function will return a value that is a combi-

nation of the current node’s value and the trigger value(s) (Suarez, 2009).

Re-entering the loop/Validation stop: From the get-go, connection weights are random. For

each time output that is calculated, the weights are re-calibrated by evaluating the model

error. This process is known as back-propagation. How the back-propagation specifically

is carried out would depend on which training algorithm is used but would in any case

intend to minimize the network error, ε. Depending on the stop criteria, the process is

either repeated or stopped. Typically training continues until validation error fails to de-

crease for a number of iterations (MathWorks, 2016).

More formally, and based upon Samanta (2004), the neural network operating principle can

be formalized in mathematical terms. The input vector, x = (x1 x2, ..., xn)T is transformed to an

intermediate vector of hidden variables u through the activation function φ1. The output from

the j th node in the hidden layer, u j , is calculated according to:

u j =φ1

(
n∑

i=1
w 1

i , j +b1
j

)
(4.11)

where w 1
i , j and b1

j denote the weight of the connection weights between the j th node in

the hidden layer and the i th input node. A superscript of 1 represent the first connection (be-

tween the input and the hidden layer, 2 would represent the next connection etc. The output
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vector y = (y1, y2, ..., ym)T is obtained from the vector of intermediate variables u in an analo-

gous manner using the activation function φ2. The output of the kth neuron is then expressed

as:

yk =φ2

(
q∑

i=1
w 2

l ,k +b2
k

)
(4.12)

The superscript of 2 is now representing the second connection between neurons in the

hidden - and output-layer. Together with the Sigmoid function, the hyperbolic tangent and the

peace-wise linear functions given by equation 4.13-4.14 are well-proven candidates for calcu-

lating the connections weights. Interested readers are referred to e.g. Kriesel (2005); Du and

Swamy (2014) for more on the topic.

φ(ν) = 1−e−2ν

1+e−2ν
= 2

1+e−2ν
−1 (4.13)

φ(ν) = ν (4.14)

To optimize the network topology, i.e., the number of neurons in the hidden layer, the arising

trade-off between training - and validation error must be considered. As indicated in figure 4.10,

the training error becomes smaller and smaller as more neurons are added. The validation error

does on the other hand experience a turning point - from which increasing validation errors

results. This is a consequence of the potential over fitting which has occurred. Thus, ensuring

an optimized network topology typically relies on iterations revealing the point corresponding

to optimal performance Lefebvre (2016). This is indicated with a cross in figure 4.10.
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Figure 4.10: Tradeoff between training error and validation error. Optimum indicated by cross.

There are made efforts to overcome the tedious task of optimizing through trial and error.

Liu et al. (2013) is able to quickly identify the optimum network parameters by using genetic

algorithms (GA) and particle swarm optimization (PSO). The same source also finds that the

following equation tend to define the range within which the optimum number of neurons in

the hidden layer is present:

No. of hidden neurons =p
m +n +a a ∈ [1,10] (4.15)

where m and n is the number of input and output neurons respectively a is an adapting

variable.

The feed-forward MLP network used in this work have a three-layer architecture similar to

the one shown in figure 4.9. It was created, trained and implemented using the Neural Network

Toolbox™ which is a Matlab application. Training was enabled with the Lavenberg-Marquardt

algorithm which iteratively performs back-propagation to minimize the mean squared error of

the discrepancy between network output and target values (MathWorks, 2016).

4.3.4 k-fold cross-validation

k-fold cross-validation partitions the training data into k equally sized subsets where a single

subset is retained as the test set and the remaining nine subsets are used as training data. Figure

4.11 illustrates the partitioning for the case where k is 10.
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Figure 4.11: Training data partitioned into 10 equally sized subsets, allowing for 10 different cross-
validations (folds) so that each of ten subsamples are used once as validation data. Figure inspired by
Pereira et al. (2009).

For a k of 10 the cross-validation process is repeated 10 times so that each of the ten sub-

samples are used exactly once as validation data. These repetitions are known as folds. For

each fold the following steps take place Leek (2013): 1) build a estimating function based on the

training-data; 2) evaluate on the test set; and 3) repeat, or if at last fold: average the estimated

errors. Among several options for calculating the error, mean squared error (MSE) is chosen as

it incorporates both bias and variance. MSE is calculated according to equation 4.16.

MSE = 1

n

n∑
i=1

(Ŷi −Yi )2 (4.16)

where n denotes the number of predictions .Ŷ and Y is the predicted and true values respec-

tively.

4.4 Constructing a Condition Monitor

The methodology can be divided into the following steps: 1) Filtering and pre-processing; 2)

generalization and model evaluation development of model(s) and 3) residual analysis. The

contents and associated output from each of the step is shown in figure 4.12. Relevant MATLAB-

code from this chapter are given by Filtering.m and MainAnalysis.m found in appendix B.2.2

and B.2.3 respectively.
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Figure 4.12: The three steps of the analysis associated with tasks and output.

4.4.1 Filtering and pre-processing of data

This phase involves three work packages: The delimitation of an appropriate time-horizon, as-

sumption validation and lastly the identification of appropriate model-input.

Defining a time-horizon

Recalling from section 3.2, most records are made in recent years. The annual number of records

for the planetary stage of the gearbox is shown in the left plot in figure 4.13. As of 2016, the most

recent record is from 16th of March, meaning that almost the first quarter of 2016 is covered.

Maintaining this amount of data-capture throughout the entire year of 2016 would make the

frequency of data-capture approximately four times as extensive as in the year of 2014. However,

when comparing 2016 to the year of 2015, the capture-rate seem to be somewhat in the same

range. Although no guarantee is granted, similar capture-rates could be indicative on similar

data-capture criteria, which would be a prerequisite for obtaining a consistent data-base.
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Figure 4.13: Left plot shows that more records stems from recent years. Right plot shows that records are
quite evenly distributed among the turbines. Exceptions from this is observed for turbine 21, 28 and 37.

Figure 4.13 b) is made to reveal whether records are distributed evenly among the different

turbines. Although turbine 21, 28 and 37 are slightly underrepresented, an even distribution

seem to be the case otherwise. This is convenient, as large variations could be indicative of dif-

ferent data-pull settings across the turbines, making it problematic to evaluate the entire wind

farm at once.

To challenge the assumption on similar data-capture regimes further, the monthly distribu-

tion of records for the year of 2015 and 2016 are shown in figure 4.14. The figure shows a signifi-

cant increase in data-capture in the late part of the year as compared to the preceding months.

This might be due to the fact that weather is harsher during the winter, which in turn would call

for a more rapid data-capture as the load makes the turbines more susceptible to degradation.

The same relative pattern is found for the year of 2014, although the absolute number of records

is lesser.

When following the rationale outlined above, namely that similar data-pull rates could in-

dicate similar data-pull criteria, the year of 2014 is excluded from the further analysis. Thus,

records stemming from the time period January 2015 - 16th of March 2016 will be considered for

the further analysis.
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(b) Records per month during Jan-March 21th of 2016

Figure 4.14: The figure shows that more records are made during the winter as opposed to the remaining
part of the year.

Validating assumptions through visualization

An initial overview of the vibration-data is sought trough visualization. If for instance the data-

points within the same power bin fall close together, it would be consistent with assumption I

stating that most of the data is normal. Furthermore, distinct clusters being formed as a function

of rated power would suggest that the operating conditions indeed plays a role in determining

the vibration response.

First off, the vibration response yielded from all turbines are plotted together for each of the

power bins. Using two principal components, figure 4.15 reveals that similar patterns can be

observed for all bins except the lowest power-bin ranging from 0 - 920 kW. The deviating pattern

observed in this bin may be explained party from the wide range of power output contained

in it. But perhaps most importantly the fact that this bin contains zero output turbines makes

it susceptible to showing different behavior. To avoid having the data-base polluted from the

diversity from the lowest bin it is discarded from the data-set.
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Figure 4.15: Vibration response per power bin when all turbines are considered together. Arguably due
to step-effect from wide range of power outputs including the zero-output case, the 0-920kW bin shows
a deviating pattern.

At first glimpse, the clusters were believed to correspond to different equipment status, but

as shown in figure 4.16, each turbine give rise to their specific cluster. Only the vibration re-

sponse from turbine 21-24 is plotted in the figure, but a confirmation of the finding was made

by doing similar plots for the entire set of turbines. Thus the second hypothesis assuming that all

turbines can be considered alike is compromised. To handle this rather unexpected finding, two

possible ways to continue the analysis has been identified. Either the turbines are considered

separately, each with a dedicated condition monitor; alternatively all turbines are considered

together, but after some normalization procedure correcting for their relative offsets. The lat-

ter option is chosen as it simply would be more convenient to have one condition monitoring

regime applicable to all turbines.
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Figure 4.16: Response for selected turbine show turbine-specific behavior.

The data-set contains records for turbine 21- turbine 40, i.e. 20 turbines. For the continued

analysis, turbine 21 and 37 are discarded from the data-base due to deviating behavior - again,

to avoid pollution from deviating behavior. Their response is shown in figure 4.17 together with

turbine 39 and 40 who represent the response characteristic formed by the remaining turbines.
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(a) Homogeneous cluster
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(b) Homogeneous cluster
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(c) Multiple clusters
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(d) Strange behavior

Figure 4.17: Most turbines form response-clusters that are relatively homogeneous, such as a) and b). c)
and d) deviates considerably and is therefore discarded from data-set.

Correcting for offset between the different turbines

The offsets are corrected for using a simple bias correction technique where each turbine re-

sponse are centered according to their median value. Being less sensitive to outliers, the median

is chosen over the mean which could be an alternative solution. After removing turbine 21 and

37, both polluting the data-set with uncharacteristic behavior, figure 4.18 shows the remaining

data-set in a pre/post correction manner.
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Figure 4.18: Left plot shows clusters before the data set is adjusted for turbine-specific behavior forming
clusters. Right plot depicts the resulting responses after median-centering the turbine responses.

After making all the turbines have the same median value, the turbine specific behavior is

significantly less distinguishable, although still possible to recognize. Figure 4.18 shows turbines

22 and 24 which is fairly representative for the offsets that still is present between the turbines.

The degree of distinctness between each turbine is however considered small enough to proceed

the analysis assuming hypothesis II is still valid: All turbines can be considered equal. What

remains to be investigated is how the operating conditions impact the vibration response. To

do this, the vibration response as function of the power bin is plotted. The resulting plots in

figure 4.19 shows that distinct clusters arise for each power-bin. Although this was expected, it

nevertheless is an important finding because the modeling taking place later on relies heavily

on the fact that rated power is impacting the vibration response.
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Figure 4.19: Turbine responses per power-bin forms distinct clusters for different rated power confirming
the correlation between power and vibration response.

Identifying appropriate co-variables for model training

The last step of the pre-processing phase involves identifying which operating conditions the

models shall be trained with. Intuitively, and because the literature agree on it (e.g., see He et al.,

2016; Antoniadou et al., 2015), the vibration response is partly driven by the load experienced

by the turbine. This was furthermore confirmed in figure 4.19. Among the operating data being

available in the data-set which is reintroduced in table 4.1, active power, wind speed and yaw

angle are the ones found reasonable to impact the vibration response. Since it is shown that

the rated power has a clear impact on the vibration response (see figure 4.19), the associated

impacts from wind speed and yaw angle can easily be indicated by plotting their correlation to

the average active power. The resulting plots are shown in figure 4.20.
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Table 4.1: Reintroduced: Table showing what information is stored in a record and how it is structured.

Col. 1 Col. 2 Col. 3 Col. 4 Col. 5 Col. 6 Col. 7 Col. 8 Col. 9 Col. 10 Col. 11 Col. 12-412.

Turbine Rec. Power-bin Power-bin Power Yaw- Rotor Wind Gen. Date/ Feature
number number (lower) (upper) (avg.) angle RPM speed RPM RPM time measurements

Active Power Average ×106
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Figure 4.20: Correlation can be seen between wind speed and active power. This is not the case for the
yaw angle.

When considering the relationship between wind speed and active power a quite conclusive

correlation is observed. From a common sense point of view this could be expected. The yaw

angle seems however not to be correlated to the wind speed, and consequently nor to the active

power. Hence the co-variables rated power and wind speed will be used for model-training.

Summarizing the filtering and pre-processing phase

The intention of this phase was to pre-process and filter the data to obtain an appropriate data-

set for model-training. In brief, the following important actions has been taken:

• Due to similar capture-rates, only records collected during January 2015 - 16th March is

considered.
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• As the lowest power-bin showed strange behavior it was discarded from the data-set. Tur-

bine 21 and 37 was discarded for deviating significant from the other turbine responses.

• Since each of the turbines are forming distinct clusters, the vibration response was

median-centered to allow for one condition monitoring model applicable to all turbines.

• Appropriated input-variables for model training are identified to be active power and

wind speed.

With respect to assumption I, most of the data seem to fall according to one distinct cluster

which is consistent with most of the data being normal. Assumption II stating that all turbines

can be considered alike is wrong. However, after the correction, the offsets are considered so

small that this effect can be neglected. Regarding assumption III, a clear correlation is found

between rated power and vibration response.

4.4.2 Model development and evaluation

Four models are developed, each with a given level of linearity:

i. A linear regression model, i.e., a polynomial of 1st degree

ii. 2nd and 3r d degree polynomial models

iii. Artificial Neural Networks

The input/output - configuration is the same for all models and will hence be described

right away to cover the forthcoming model developments. After pre-processing a total of 16818

records form the basis for model training. With reference to the below matrices, Xi , j represent

the input data and Yi , j represent the targets. Within Xi , j , the j columns represents rated power

and yaw angle, thus making n equal to 2. Each of the i rows represent records, making i go

through 1,2, ...,16818. With a frequency spectrum ranging from 0-8.138 kHz and a resolution,

∆ f , of 20,34 Hz, 401 variable results. Thus, the number of columns in the target matrix, k is equal

to 401. All 401 variables are not estimated simultaneously, but one at a time using dedicated sub-

models. This yields 401 sub-models, that together form the complete model covering the entire

frequency spectrum.
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Xi , j =



x1,1 x1,2 · · · x1,n

x2,1 x2,2 · · · x2,n

...
...

. . .
...

xm,1 xm,2 · · · xm,n

 ,Yi , j =



y1,1 y1,2 · · · y1,k

y2,1 y2,2 · · · y2,k

...
...

. . .
...

ym,1 ym,2 · · · ym,k


Furthermore, to evaluate model performances, all models are subjected to k-fold cross val-

idation with k=10 and mean squared error (MSE) as the performance metric. When the goal is

model selection it is often reported that the optimal k is between 5 and 10, because the statistical

performance does not increase a lot for lager values of k, and averaging over less than 10 splits

remains computationally feasible (Hastie et al., 2009, Section 7.10). The training/testing-ratio is

set to 70 % / 30 % for all models.

Linear model performance

The overall MSE, that is, the average squared error across all frequencies for the linear model

is 0.00855 for training and 0.00856 for testing. The closeness in values between training and

testing becomes apparent in figure 4.21 a) showing the MSE for each of the 401 variables. The

sudden jumps along the y-aksis are manifests of the fact that the vibrations tend to have a vibra-

tion peaks around this region. This is illustrated in 4.21 b). Missing the peak values then gives

relatively large contribution to the overall model error.
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(a) MSE from linear model (b) Frequency domain vibration response

Figure 4.21: Average MSE for training and testing for each frequency increment.
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2nd and 3r d order polynomial model performances

The overall MSE for the 2nd order polynomial was 0.00713 and 0.00714 for training and testing

respectively. Associated average MSEs for the 3r d polynomial, was 0.00617 and 0.00618. Again it

can be observed clear jumps at the frequency around the peaks.
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Figure 4.22: Average MSE for training and testing for each frequency increment.

As a curiosity, and to furthermore validate the correlation between input and targets, the

3r d order polynomial model is run with each of the input variables separately. This was also

done for the yaw angle and ultimately for a "random variable". For the random variable run, the

input are randomized so they no longer match the targets. The two latter runs show that indeed

the yaw angle is poorly correlated to the vibration response, as the resulting performance is no

better than for the random variable.

Table 4.2: Considering each input individually to indicate degree of correlation.

Model input

.
MSE for training/testing: Rated power Wind speed Yaw angle Random Variable

Average MSE learning 0.00618 0.0102 0.0134 0.0135
Average MSE testing 0.00619 0.0103 0.0135 0.0135
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Neural network performance

Recalling (section 4.3.3) that the network topology encompass the determination of number

of neurons in the different layers. The input and output layer have their number of neu-

rons uniquely defined by the data-set. That is, two neurons in the input-layer correspond-

ing to the rated power and the yaw angle, and one neuron in the output layer correspond-

ing to the variable being estimated. Analogously as for the previous models, the complete

neural net model consists of 401 nets - one net per variable. Ideally, the number of neurons

should be optimized for each of the submodels. Due to the considerable computational time

required to train the nets, optimizing 401 networks has not been prioritized in this project.

A compromise was however made by training all of the networks, i.e., the global model with

two different hidden layer configurations. As a starting point, the relation of Liu et al. (2013)

(No. of hidden neurons =p
m +n + a a ∈ [1,10]) was used to identify 10 hidden neurons as a

reasonable starting point. The model was in turn trained with 20 hidden layer neurons. As the

latter provided a slightly better fit, the 20 neuron network was chosen. The resulting network

topology is shown below.

Figure 4.23: Overall architecture of the neural networks.

For the 10 neuron case, the overall MSE was 0.00562 for training and 0.00564 for testing.

The 20 neuron case performed slightly better at generalization with a test-set error of 0.00557.

The distribution of error across the frequency increments follows the same pattern as for the

other models, but is less severe. Therefore the 20 neuron neural networks are chosen as the

final model. Figure 4.25 shows the learning curve from one of the networks. For every iteration,

the model error gets lower. Training stops when 6 subsequent iterations has failed to further

decrease the validation error.
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Figure 4.24: MSE for each frequency increment for 20 neuron hidden layer case.
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Figure 4.25: Learning curve for the neural network estimating the vibration amplitude at 20,138 Hz.
Training stops when 6 subsequent iterations fail to lower the validation error.
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Summarizing the model development and evaluation phase

Four models has been developed showing that the more non-linearity is taken into account,

the better the model performs. Resulting performances for each model and configuration is

summarized in table 4.3. Among the candidates, the neural nets provides the better fit. Both

hidden layer configurations showed nearly equal performance, but the 20 neuron hidden layer

performed slightly better at generalization and is therefore chosen as the final model.

Table 4.3: Considering each input individually to indicate degree of correlation.

Model type

2nd degree 3r d degree Neural Net Neural Net
MSE for training/testing: Linear polynomial Polynomial (10 neuron) (20 neuron)

Average MSE learning 0.00855 0.00713 0.00617 0.00562 0.00554
Average MSE testing 0.00856 0.00714 0.00618 0.00564 0.00557

4.4.3 Residual analysis

Now, having established the final model, the residuals can readily be calculated. Figure 4.26

shows an arbitrarily chosen record with its true response plotted together with the estimated

output from the neural network model. The difference between the two are calculated for all

records, resulting in the residual matrix.
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Figure 4.26: True amplitudes (above) and the amplitudes estimated by the neural net model (below).
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Hopefully, the residual matrix allows for finding answers to the questions below, all of which

are being presented and discussed next.

• Has the effect from power been successfully removed?

• Can anomalous behavior be identified?

• If yes, are the development consistent with a given cluster potentially representing a spe-

cific fault?

• If the answer to one or several of the above question is no: What can be plausible expla-

nations?



Chapter 5

Results and Discussion

Followed by presenting key findings from the residual analysis, the chapter has a dedicated section

discussing the goodness of the approach.

5.1 Presenting Findings from the Residual Analysis

The first objective was to separate vibrations caused by rated power and wind speed from those

being a result of wear and tear. As rated power and wind speed are correlated, they will simply

be referred to as power in the following. Figure 5.1 shows that indeed the effect from power has

been successfully removed. The reoccurring pattern formed in each of the power-bins shows

that it is no longer possible to discriminate vibration response according to power. The next

step is then to investigate whether the residuals are strictly representing degradation or if other

phenomena may have an impact.

69
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Figure 5.1: Turbine responses per bin when considering the residual. Dependence between power and
vibration response can no longer be observed.

When evaluating the residuals according to turbines, at least four distinct clusters arise.

Among the 20 turbines under consideration, all turbines are sporadically present in each of

these clusters. Turbine 39 and 40 have been selected for illustration and are shown in figure

5.2. They are arbitrarily selected since any choice would be representative for the complete set

of turbines. Recalling the simplified use-case (section 4.1.2), it was precisely the type of pat-

terns shown in figure 5.2 we could hope for, as they potentially are representing faulted states.

To evaluate whether the clusters indeed are manifests of faulted states, the transitions between

them is plotted as a function of time.
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(b) Analogously for Turbine 40

Figure 5.2: Figure show 4-5 distinct clusters and indicates the fraction of time two representative turbines
are present in them.

The above clusters can in other words be considered necessary but insufficient prerequisites

for degradation tendencies to be observed. Thus, in the same manner as outlined in 4.1.2, figure

5.3 shows how presence in the various states varies according to time.
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(b) Relating presence in each state to time

Figure 5.3: The rapid transitions between different clusters is not consistent with the degradation pro-
cess.

’Distance from center’ in the above figure refers to the distance from the center of the major

cluster that is assumed to represent normal behavior (white background). Furthermore a coarse

division is made by assigning each of the minor clusters with a color. The color-wise convention
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is translated to the time-relating plot to allow for identifying characteristic behavior associated

with a particular cluster. If the clusters where representing faults, sustained presence in one of

the fields would be expected. This turn out not to be the case. As shown for turbine 39, rapid

transitions between states occur in an seemingly arbitrary manner. Nor is the overall distance

from the center demonstrating increasing behavior. Similar plots were made also for the other

turbines. None of them where showing behavior that is consistent with evolving faults.

Although turbine 39 is representative for the other turbines, this do not encompass turbine

37 which was discarded in the filtering-stage for showing deviating behavior.

What happened to turbine 37?

While the average number of records for the other turbines is between 1600 and 1700, T37 had

only 815 records. As shown in figure 5.4 there are several periods where no records are collected.

As from July 2015 records are stored merely sporadically. Plausible interpretations are take-outs,

repairs, or other incidents disrupting the production regularity. Moreover, corrupted sensors

could be an explanation.
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(a) Turbine 37 response cluster
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Figure 5.4: The rapid transitions between different clusters is not consistent with the degradation pro-
cess.

However, the fact that periods with missing records repeatedly are occurring after peaks in

distance can suggest that the turbine experienced some fault, or even failure. The definite an-

swer to what happened to turbine 37 can not be given without consulting the fault log.
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5.2 Discussion

One explanation to why the results are not showing behavior that is consistent with degradation

could simply be that none of the gearboxes did suffer from degradation. Statistics from GCube

(2016) shows that each year, one out of 145 wind gearboxes experience a failure. Based on the

experience of Salomonsen (2016), the gearbox typically is changed approximately once during

its lifetime of 20 years. Furthermore, it is typically a matter of years before noticeable wear

manifests (Salomonsen, 2016). Consequently, it is a fully viable option that evolving faults in

fact has not been present. This is particularly true as the 14,5 month time horizon (01.01.2015-

16.03.2016) might have been too small for degradation to manifest, especially if maintenance or

replacements had been made shortly prior to the start of the considered time period. However,

if degradation/evolving faults indeed has been present in one or several of the gearboxes, the

approach used in this thesis has not been able to detect it.

Continuing the discussion assuming that the planetary stage of the gearbox indeed did expe-

rience evolving faults during the considered time period, the task becomes to identify possible

reasons why the approach failed to identify it. This task can be approached systematically by

considering each of the steps having been made: 1) Pre-processing/filtering; 2) model develop-

ment and 3) residual analysis.

During the pre-processing/filtering phase, turbine offsets was corrected for by means of me-

dian centering. This relies on the assumption that the turbines are comparable. Intuitively this

makes sense, because the turbines are all the same make, located at more or less the same

coordinate, and are commissioned at the same time. Anyhow, there will always be sources

to variability. Salomonsen (2016) points to differences within the production stage, as well as

during operation and maintenance. Isolated, these might be just tiny contributions. However,

when added together, they could make an actual difference. Consequently, the question is not

whether the assumption is wrong, but rather how wrong it is.

Moving to the modeling phase, the generalization error is clearly decreasing as the more

non-linearity is taken into account. This shows that the relation between operating conditions

and vibration response indeed has a non-linear nature, therefor choosing the 20 neuron ANN

as the final model. However, the model still suffer from noticeable error, especially around the
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peak values. A possible way to remedy this problem is demonstrated by Porotsky and Bluvband

(2012) who describe accumulated degradation of bearings in terms of accumulated accelera-

tion. This would make the model less susceptible to "miss" on the peak values, and could po-

tentially reduce the overall error significantly.

Another plausible explanation is that other co-variables than rated power and wind speed

yields a noticeable contribution to the vibration response. In this case, the residual will not rep-

resent only the contribution from degradation, but will be influenced by phenomena that is not

taken into account during the generalization phase. The relevance of this aspect was demon-

strated in the use-case showing that when an appropriate generalization model is trained with

all the impacting operating conditions, the approach is fully functional. It is difficult to say to

what extent rated power and wind speed is not representing the entire set of operating condi-

tions that is influencing the vibration response. What on the other hand is safe to say, is that

rater power has an impact on the resulting vibration response (ref. fig. 4.19) and that the arti-

ficial neural networks are able to remove this effect (ref. fig. 5.1). Access to further operational

parameters (pressure, temperature etc.) from the SCADA-system could reveal a potential corre-

lation with other co-variables.

Another weakness is identified during the residual analysis phase. The explained variance

using two principle components is merely 11 %. Figure 5.5 seeks to demonstrate this issue by

showing the response-plot for turbine 39 using both two and three principal components.



CHAPTER 5. RESULTS AND DISCUSSION 75

Principal comp. 1
-20 0 20 40 60

P
ri
n

c
ip

a
l 
c
o

m
p

. 
2

-30

-20

-10

0

10

20
Turbine nr. 39

All turbines
Turbine nr. 39

(a) Two principal comp. re-
sponse plot

60

Principal comp. 1

40

20

Turbine nr. 39

0

-20-30

-20

-10

Principal comp. 2

0

10

-10

30

-20

50

40

0

20

10

20

P
ri
n
c
ip

a
l 
c
o
m

p
. 
3

All turbines
Turbine nr. 39

(b) Three principal comp. response plot.

Figure 5.5: Vibration response visualized in three dimensions (right) shows that information regarding
the actual location of the responses get lost when reduced to two principal components (left).

The figure shows that potentially valuable information get lost when dimensionality is re-

duced. In effect, this means that the clusters shown in two dimensions (left) represents signifi-

cant uncertainty and are thus unfit in terms of representing system states.

This issue is not primarily a problem for the condition monitoring part, which is based on

the distance from the center of the major cluster. When calculating the distance from the cluster

center, 20 principal components has been used, yielding an explained variance of 52 % which

is fairly adequate for this purpose. It is rather a problem in terms of usability that the lacking

variance capture poses a problem. As significant amount of the data variability fails to be de-

scribed in two and three dimensions, it might be misleading to classify the system equipment

according to the observed clusters, as they might represent such a large variety of phenomena.

Thus the colored labels used in figure 5.3 in the results section might have been a counterpro-

ductive representation. This is due to the fact that being member of a given color field still leaves

large-grain uncertainty as the remaining expansion in the high-dimensional room is poorly ex-

plained. For the continued work it is thus recommended to consider alternative visualization

techniques that are better able to capture the variance in the dataset.
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5.2.1 Contextualizing the results

Although there has been identified weaknesses, they do not indicate that the approach per se

has failed. The simplified use-case shows on the other hand that the approach in it self is able

to reveal evolving faults efficiently. By correcting for the identified weaknesses, the proposed

approach is believed to enable extraction of valuable information.

This is shown by reintroducing the gradual degradation scenario from the simplified use-

case in section 4.1.2. With reference to figure 5.6 b), suppose that a visual inspections made in

the beginning of June 2015 could confirm incipient wear on the gear teeth for a given turbine.

This information would allow for labeling the clusters in a) as well as drawing the incipient-

fault-to-failure progression timeline in b).
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Figure 5.6: a) shows labeled clusters for vibration response b) shows that the residuals are representing
fault evolution by relating the transitions to time (modified version of figure from section 4.1.2.)

Moreover, having a statistically sufficient number of such timelines would allow for build-

ing probability distributions of the fault-to-failure periods. This would naturally be done for as

many failure mechanisms as there is information to describe.



CHAPTER 5. RESULTS AND DISCUSSION 77

RUL [Months]
0 5 10

0

20

40

60

80

100

120

140
"Worn gear teeth"

Summer
Winter

RUL [Months]
0 5 10

0

50

100

150
"Pitting"

Summer
Winter

RUL [Months]
0 5 10

0

20

40

60

80

100

120

140
"Spalling"

Summer
Winter

Figure 5.7: Demonstration plot showing aggregated RUL estimates for common failure mechanisms. Fil-
tering according to season indicate the importance of considering historical load and expected future
load when managing fault-failure periods for variable load machines.

The probability distributions showed above would in many cases be the enabling element of

the prognostic block in the PHM-cycle - at least for "steady-state" systems. If the incipient fault

is successfully detected and isolated, they would provide an estimate of the remaining useful

life of the component under consideration. For wind turbines on the other hand, the irregular

load give rise to additional considerations. First, the fault-to-failure periods should be filtered

according to what load the machine has been experiencing, and secondly, a sufficiently accurate

weather forecasting model should be in place to select the appropriate RUL-estimation. A very

simple refinement is illustrated above where it is distinguished between summer and winter, as

the latter tend to come with harsher weathering.

To carry out this estimation, large amounts of data will be required. Large amount of the cor-

rect data. Although this has been a lacking ingredient for this project, it has been proposed an

approach to condition monitoring which could be fully functional when corrected for present

flaws. When corrected for current flaws, the suggested approach serves as a "first step" on which

access to data would determine whether or not the prognostic part of the PHM-cycle could suc-

cessfully be carried out.
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5.3 Summarizing the Discussion

The fact that no degradation pattern is identified can either be related to the fact that no degra-

dation has been present during the considered time period. If assuming that the planetary stage

of the gearbox indeed has been subjected to degradation, the proposed approach has arguably

failed due to the following:

Median centering: Median-centering relies on assumption that the turbines are comparable

units - which might be wrong.

Input-variables: Rated power and wind speed might not be sufficient co-variables for explain-

ing the vibration.

Generalization error: The effect from missing the peak vibration amplitudes is considerable.

Dimensionality reduction: Potentially valuable information is lost when reducing the dimen-

sionality. Employing techniques maintaining more data-variability is suggested.

Relying on access to the appropriate data it is shown that the approach can serve as a first

stage in the prognostic and health management cycle by allowing for aggregating incipient fault

to failure progression timelines.

5.4 Further Work

The first priority should be to get a hold of fault logs. By allowing for verification of the work

already done, fault logs would guide where to put the focus when adjusting for the identified

weaknesses. Access to SCADA-data should also be pursued as it could reveal potentially impor-

tant co-variables impacting the vibration response.

To handle the turbine offset, multi-task learning is suggested. This learning regime does not

require for an a priori determined procedure that handles the turbine-specific behavior - it is

learned from the data. Consequently, it would handle the potentially wrong assumption made

by doing the median-centering, namely that the turbines can be considered equivalent after all.

By learning from the commonality among the multiple tasks, multitask learning often makes a
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better model for its main task (Baxter, 2000). As the wind turbines indeed are representing a

lot of commonality, this learning regime is believed to be well-suited for this type of analysis.

The main drawback is that the most multitask learning techniques requires a lot of data to work

properly (Lefebvre, 2016).

To deal with the considerable errors which is identified close to the peaks, it is suggested to

consider accumulated acceleration rather than incremental values. By aggregating acceleration

in intervals (bins), and making sure that they are spanning over the peak area, the model gets

less susceptible to leave out considerable contributions to the actual accelerations.

It is also advised it to consider alternative techniques for visualization that enables better

capture of the data variability. This would provide better usability in terms of being able to more

correctly label the observed clusters.

The proposed list measures is not intended to be followed slavishly. For example, by aggre-

gating the acceleration, the number of dimensions get reduced at the same time. Certainly this

will make the PCA better able to describe the variability in the data. Perhaps to the extent where

there no longer is a need to explore alternative visualization techniques. Likewise, the iden-

tification of other important co-variables impacting the vibration response might alone make

for a sufficiently accurate generalization performance which in turn can rule out the need for

one or several of the other suggested measures. Therefore, rather than as isolated measures for

improvement, they should be considered in an intertwined manner.



Chapter 6

Conclusions

Relying on accelerometric datasets, an approach for condition monitoring of components in

wind turbines has been developed and applied specifically to the planetary stage of the gearbox.

Intending to be left only with the vibration response that is caused by degradation, an artificial

neural network model was employed to estimate the part of the vibration that is caused by rated

power and wind speed. The residuals are not influenced by rated power. This means that the

model succeeded in reproducing the vibration response induced by power.

However, rated power and wind speed are possibly not covering the full range of co-variables

that influences the vibration response. This can be argued because no consistency with degra-

dation was identified during the residual analysis. Another explanation would simply be the fact

that none of the gearboxes did experience evolving faults during the considered time-period.

Assuming that one or several of the gearboxes did suffer from degradation, the following

identified weaknesses summarize possible explanations for why degradation was not detected:

1) The model is trained with an inadequate set of co-variables impacting the vibration response;

2) correcting the turbine offsets by median centering assumes that the turbines can be treated as

comparable units - an assumption that evidently is not fully true; 3) insufficient generalization

performance - especially with respect to being vulnerable of missing the peak values.

Notwithstanding the aforesaid, the simplified use-case shows that the approach in it self

effectively detects and monitors anomalous behavior. When successfully adjusted for the afore-

mentioned aspects, the proposed approach is believed to provide effective condition monitor-

ing for components in a wind turbine.
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Appendix A

Acronyms

ANN Artificial Neural Network

CBM Condition based maintenance

CM Condition monitoring

FFT Fast fourier transform

GA Genetic algorithm

GHG Greenhouse gas

HS Highspeed shaft

IMS Intermediate shaft

LCOE Levelized cost of electricity

MSE Mean squared error

O&M Operation and maintenance

OBM Opportunity based maintenance

OWF Offshore wind farm

PCA Principal component analysis

82
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PHM Prognostics and health management

Planet Planetary stage of the gearbox

PO Partial Objective

RPM Revolutions per minute

RTF Run to failure

RUL Remaining useful life

SCADA Supervisory control and data aqcuisition

SVM Support vector machine

VA Vibration analysis



Appendix B

Matlab code

The appended MATLAB code are organized according to chapter.

B.1 MATLAB-code from Chapter 2 - Theoretical Framework

B.1.1 PredAccuracy.m

The value of accurate predictive information

1

2 clear all

3 clc

4 %% PARAMETER SETUP:

5 % cost of maintenance

6 k = 50;

7 % extra cost for preventive maintenance

8 c = 50;

9 % lifetime mean

10 m = 375;

11 % true life dist. SD

12 vdist = 50;

13 vdist2 = [2,5,10,20,50];

14 % SD in CMS (predictive output)

84
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15 v = [2,5,10,20,50];

16 % Maintenance interaction +/−
17 T = [−50:0.1:50];
18 % Corrective

19 c_c = (k+c);

20 % Ideal

21 c_i = k;

22

23 %% Lifetime simulations

24

25 c_cm =[];

26 outputMat=[];

27 for x=1:length(vdist2)

28 for j = 1:40000

29 t_hat = normrnd(m,vdist2(x),1,length(T)); % Estimated life times

30

31 for i = 1:length(t_hat)

32 if t_hat(i)+T(i) > m

33 c_cm(j,i) = c_c/m;

34 elseif t_hat(i)+T(i) == m

35 c_cm(j,i) = c_i;

36 else

37 c_cm(j,i) = c_i/(t_hat(i)+T(i));

38 end

39 end

40

41 end

42 outputVec = mean(c_cm(:,1:length(t_hat)));

43

44 outputMat(x,:) = outputVec;

45 end

46

47

48 %% Plotting results:

49

50 figure
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51

52 line([−50 50],[c_c/m c_c/m],'Color','[1 0 0]'); % Corrective

53 hold on

54 line([−50 50],[c_i/m c_i/m],'Color','[0 1 0]'); % Ideal

55 line([−50 50],[0.175 0.175],'Color','[0 0 0]','LineStyle','−−');% Age based

56

57

58 plot(T(1):1:T(end),outputMat(1,1:10:end),'Color','[0,0.313725,0.6196078431]')

59 plot(T(1):1:T(end),outputMat(2,1:10:end),'Color','[0,0.313725,0.6196078431]')

60 plot(T(1):1:T(end),outputMat(3,1:10:end),'Color','[0,0.313725,0.6196078431]')

61 plot(T(1):1:T(end),outputMat(4,1:10:end),'Color','[0,0.313725,0.6196078431]')

62 plot(T(1):1:T(end),outputMat(5,1:10:end),'Color','[0,0.313725,0.6196078431]')

63

64 ylim([0.12 0.3])

65 xlabel('\Delta T') % x−axis label

66 ylabel('Average cost per time unit') % y−axis label

67 legend('Corrective','Ideal','Age based','Condition−based (\sigma=2,5,10,20,50)',...

68 'Location','northeast')

69 set(gca, 'FontSize',12)

B.1.2 FFT_Demo.m

Demonstrating the interest of the fast Fourier transform

1 %% FFT demonstration plot

2

3 Fs=1000; % Sampling frequency

4 Ts=1/Fs; % Sampling period or time step

5 dt=0:Ts:1−Ts; % Signal duration

6

7 f1=5;

8 f2=10;

9 f3=25;

10

11 y1=10*sin(2*pi*f1*dt);
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12 y2=10*sin(2*pi*f2*dt);

13 y3=10*sin(2*pi*f3*dt);

14 yj=y1+y2+y3;

15 ym=y1.*y2;

16

17 nfft=length(yj); % length of time domain signal

18 nfft2 = 2^nextpow2(nfft); %length of signal in power of 2

19

20 ff=fft(yj,nfft2);

21 fff=ff(1:nfft2/2);

22 fff=fff/max(fff); % (Normalize)

23 xfft=Fs*(0:nfft2/2−1)/nfft2;
24

25

26 figure(1);

27 subplot(5,1,1)

28 plot(dt,y1,'r')

29 title('Sinusoid 1: 5 Hz')

30 xlabel('Time [s]')

31 ylabel('Ampl.')

32

33 subplot(5,1,2)

34 plot(dt,y2,'r')

35 title('Sinusoid 2: 10 Hz')

36 xlabel('Time [s]')

37 ylabel('Ampl.')

38

39 subplot(5,1,3)

40 plot(dt,y3,'r')

41 title('Sinusoid 3: 25 Hz')

42 xlabel('Time [s]')

43 ylabel('Ampl.')

44

45 subplot(5,1,4)

46 plot(dt,yj,'r')

47 title('Sinusoid 1 + Sinusoid 2 + Sinusoid 3 ')
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48 xlabel('Time [s]')

49 ylabel('Ampl.')

50

51 subplot(5,1,5)

52 plot(xfft,abs(fff),'r');hold on

53 xlabel('Frequency[Hz]')

54 ylabel('(normalized)')

55 title('Frequency domain')

B.2 MATLAB-code from Chapter 4 - Methodology and Model

Construction

B.2.1 UseCase.m

Simplified use-case where relation between input and output is linear

1 %% LOAD DATA

2 clear;

3 clc;

4 close all;

5 fprintf('LOAD DATA\n');

6 sTmp = load('./DataMat/Planet_FFT_0_8000');

7 sData = sTmp.sData;

8 sDataDescription = sTmp.sDataDescription;

9 clear sTmp;

10

11 % Obtain input−data
12 sDataFilt = Filtering(sData);

13 nbObs = size(sDataFilt.mX,1);

14 vPerm = randperm(nbObs);

15 sDataTmp = sDataFilt.mX(vPerm,:);

16 sDataFilt.mX = sDataTmp(1:16000,:);

17

18 % Extract Power (P), Yaw angle (Y) and wind (W)
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19 P = sDataFilt.mX(:,5);

20 Y = sDataFilt.mX(:,6);

21 W = sDataFilt.mX(:,8);

22

23 %No. of frequencies to model

24 NumFreq = 2;

25

26 %% CONFIGURATION AND SETUP

27

28 % No degradation

29 if 0;

30 D = zeros(16000,1);

31 ActKey = false;

32 Failure = false;

33 end

34 % Sudden degradation

35 if 0;

36 D = [zeros(13000,1) ; ones(3000,1)];

37 ActKey = false;

38 Failure = false;

39 end

40 % Gradual degradation

41 if 1;

42 D = [zeros(2500,1); 0.2*ones(1500,1); 0.5*ones(1500,1); ...

43 0.8*ones(500,1); 1*ones(2000,1); zeros(8000,1);];

44 ActKey = true;

45 Failure = true;

46 end

47 % Inconclusive scenario (noise)

48 if 0;

49 D=[zeros(8000,1);ones(8000,1)]; % Inconclusive response

50 nbObs = length(D);

51 vPerm = randperm(nbObs);

52 D = D(vPerm);

53 ActKey = 2;

54 Failure = false;
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55 end

56

57

58 % calculate vibr. from linear relation

59 e = zeros(size(sDataFilt.mX,1),NumFreq);

60

61 for i = 1:NumFreq

62 coef0 = [0 2];

63 coefP = [0.0005 0.07];

64 coefY = [5 3];

65 coefW = [5 3];

66 coefD = [3 3];

67 e(:,i) = coef0(i)+coefP(i)*P+coefY(i)*Y+coefW(i)*W+coefD(i)*D+0.5 ...

68 *randn(size(P));

69 end

70

71 %% LINEAR REGRESSION MODEL

72

73 nbObs = size(sDataFilt.mX,1);

74 ratioLearning = 0.7;

75 nLear = floor(ratioLearning*nbObs);

76 vVarMdl = [5 6 8]

77 vVarOut = [1 2]

78

79 fprintf('LINEAR MODEL\n');

80 mXLearnLin = sDataFilt.mX(1:nLear,vVarMdl);

81 mYLearnLin = e(1:nLear,vVarOut);

82 mXTestLin = sDataFilt.mX(nLear+1:end,vVarMdl);

83 mYTestLin = e(nLear+1:end,vVarOut);

84 [mXLearnLin,muLearnLin,sigmaLearnLin] = zscore(mXLearnLin);

85 mXTestLin = (mXTestLin−ones(size(mXTestLin,1),1)*muLearnLin) ...

86 ./(ones(size(mXTestLin,1),1)*sigmaLearnLin);

87 mALin = nan(size(mXLearnLin,2)+1,size(mYLearnLin,2));

88 mYLearnEstLin = nan(size(mYLearnLin));

89 mYTestEstLin = nan(size(mYTestLin));

90 for idy=1:size(mYLearnLin,2)
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91 X = [mXLearnLin ones(nLear,1)];

92 y = mYLearnLin(:,idy);

93 mALin(:,idy) = inv(X'*X+eye(size(X,2))*1e−6)*X'*y;
94 mYLearnEstLin(:,idy) = [mXLearnLin ones(size(mXLearnLin,1),1)]...

95 *mALin(:,idy);

96 mYTestEstLin(:,idy) = [mXTestLin ones(size(mXTestLin,1),1)]...

97 *mALin(:,idy);

98 end

99

100 % Testing and training error (MSE)

101 vLearnLinError = mean((mYLearnLin−mYLearnEstLin).^2);
102 vTestLinError = mean((mYTestLin−mYTestEstLin).^2);
103 fprintf('Linear mdl (Learning): %f\nLinear mdl (Test): %f\n', ...

104 mean(vLearnLinError),mean(vTestLinError));

105

106

107

108 %% RESPONSE CLUSTERS USING PCA

109 ResMat = [mYLearnLin−mYLearnEstLin; mYTestLin−mYTestEstLin ];

110

111 %Include failure and downtime

112 % if Failure == 1;

113 % ResMat(8000,:) = 4 ;

114 % ResMat(8001:10000,:) = zeros;

115 % end

116

117

118 [coeff,score,latent,tsquared,explained,mu]=pca(zscore(ResMat));

119 figure;

120 plot(score(:,1),score(:,2),'.k');

121 title('Residual visualized with two principal components');

122 xlabel('Principal comp. 1')

123 ylabel('Principal comp. 2')

124 set(gca,'FontSize', 14);

125

126 figure;
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127 %histogram(((ResMat(:,2)).^2)/size(ResMat,1));

128 histogram(ResMat(:,2));

129 title('Distribution of model error')

130 xlabel('Model error')

131 set(gca,'FontSize', 14);

132

133

134 %% DISTANCE FROM CENTER

135

136 mXTmpAll = [sDataFilt.mX(:,1:11) ResMat];

137 vUniTurb = unique(mXTmpAll(:,1));

138

139 for idt=10:14%numel(vUniTurb)

140 vInd = find(mXTmpAll(:,1)==vUniTurb(idt));

141 vDate = sort(mXTmpAll(vInd,11));

142 [~,vOrd] = sort(vDate);

143 vInd = vInd(vOrd);

144 figure;

145 hold on;

146

147 plot(score(:,1),score(:,2),'.k');

148 plot(score(vInd,1),score(vInd,2),'.r');

149

150 title('Response clusters')

151 xlabel('Principal comp. 1')

152 ylabel('Principal comp. 2')

153 legend('All turbines', 'A given turbine')

154 set(gca,'FontSize', 12);

155

156 % Distance more than three dimensions

157 if 0

158 vDistTmp = sum((score(vInd,1:2)−ones(numel(vInd),1)...
159 *mean(score(:,1:2))).^2,2);

160 end

161

162 % Distance uptil three dimensions
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163 if 1

164 vDistTmp = sqrt((score(vInd,1)−mean(score(:,1))).^2 ...

165 +(score(vInd,2)−mean(score(:,2))).^2);
166 end

167

168 vDateTmp = vDate(vOrd);

169 set(gca,'FontSize', 12)

170 figure;

171 plot(vDateTmp,vDistTmp,'.k−');
172

173 % If degradation, assign colors corresponding to clusters

174 if ActKey == 1

175 hold on;

176 plot(vDateTmp(score(vInd,1)>0.5),vDistTmp(score(vInd,1)>0.5),'or');

177 vDownTime = diff(score(:,1)) == 0;

178 score(vDownTime) = zeros;

179 valueTmp = score(vDownTime);

180 value = valueTmp(1);

181 vDistTmp(vDownTime) = zeros;

182 plot(vDateTmp(score(vInd,1)<0.5 & score(vInd,1)~=value), ...

183 vDistTmp(score(vInd,1)<0.5 & score(vInd,1)~=value),'og');

184 end

185 if ActKey == 2

186 hold on;

187 plot(vDateTmp(score(vInd,1)>0.5),vDistTmp(score(vInd,1)>0.5),'or');

188 plot(vDateTmp(score(vInd,1)<0.5),vDistTmp(score(vInd,1)<0.5),'og');

189 else

190 end

191

192 datetick('x','dd/mm/yy','keeplimits');

193 xlabel('Time');

194 ylabel('Distance from center [−]');
195 title('A given turbine')

196 set(gca,'FontSize', 14)

197 pause(0.05)

198 end
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199

200 %% IDEAL DEGRADATION DEMO

201

202 x1 = [1 73];

203 y1 = [1 2];

204 figure;

205 plot(x1,y1,'Color',[0 0.4470 0.7410])

206 hold on

207 x2 = [80 200];

208 y2 = [1 2];

209 plot(x2,y2,'Color',[0 0.4470 0.7410])

210 hold on;

211 x3 = [207 279];

212 y3 = [1 2];

213 plot(x3,y3,'Color',[0 0.4470 0.7410])

214 ylim([0 4])

215 set(gca, 'XTickLabelMode', 'manual', 'XTickLabel', ['"Repair"'],...

216 'xtick', [73 200], 'YTickLabelMode', 'manual', 'YTickLabel', [],...

217 'ytick', [1 2],'FontSize', 18);

218 xlabel('Time')

219 ylabel('Distance')

220 title('Distance from normal bevavior center')

221 grid on;

222

223 %% POSSIBLE STATE INTERPRETATION

224

225 x = [1 73 73 80 80 200 200 207 207 279 279];

226 y = [1 2 0.5 0.5 1 2 0.5 0.5 1 2 0.5 ];

227 figure;

228 plot(x,y,'Color',[0 0.4470 0.7410])

229 title('System states')

230 xlabel('Time')

231 ylim([0 4])

232 ax = gca;

233 ax.YTick = [0.5 1 2];

234 ax.YTickLabel = {'Repair', 'Normal', 'Abnormal'};
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235 set(gca, 'XTickLabelMode', 'manual', 'XTickLabel', [], 'xtick',...

236 [73 200],'FontSize', 18);

237 get(gca,'ColorOrder')

238 grid on;

B.2.2 Filtering.m

Data filtering

1 function sData = Filtering(sData)

2

3 %% Years

4 MyDates = datevec(sData.mX(:,11));

5 vYear = [2015,2016];

6 vFlag = ismember(MyDates(:,1),vYear);

7 sData.mX = sData.mX(vFlag,:);

8

9 %% Months

10 MyDates = datevec(sData.mX(:,11));

11 vMonth = [1:12];

12 vFlag = ismember(MyDates(:,2),vMonth);

13 sData.mX = sData.mX(vFlag,:);

14

15 %% Power bins

16 %vBin = [920 1150 1403 1656 1909 2185 2415];

17 vBin = [1150 1403 1656 1909 2185 2415];

18 vFlag = ismember(sData.mX(:,4),vBin);

19 sData.mX = sData.mX(vFlag,:);

20

21 %% Turbines

22 %vBin = [920 1150 1403 1656 1909 2185 2415];

23 vUniTurb = unique(sData.mX(:,1));

24 %remove T 37 and T 21

25 vUniTurb(17) = [];

26 vUniTurb(1) = [];
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27 vFlag = ismember(sData.mX(:,1),vUniTurb);

28 sData.mX = sData.mX(vFlag,:);

29 end

B.2.3 MainAnalysis.m

The main data-analysis

1 clear;

2 clc;

3 close all;

4

5 %% LOAD DATA

6 fprintf('LOAD DATA\n');

7 sTmp = load('./DataMat/Planet_FFT_0_8000');

8 % sTmp = load('./DataMat/Highspeed_FFT_0_8000')

9 % sTmp = load('./DataMat/Generator+bag_FFT_0_8000')

10 % sTmp = load('./DataMat/Generator_FFT_0_8000')

11 % sTmp=load('./DataMat/IMS_FFT_0_8000')

12 sData = sTmp.sData;

13 sDataDescription = sTmp.sDataDescription;

14 clear sTmp;

15

16 % Response entire dataset (PCA)

17 [coeff,score,latent,tsquared,explained,mu]=pca(zscore(sData.mX(:,12:end)));

18 figure;

19 plot(score(:,1),score(:,2),'.k');

20 title('Entire data set');

21

22

23 %% FILTER DATA

24 fprintf('FILTER DATA\n');

25 sDataFilt = Filtering(sData);

26 %sDataFilt = Filtering_modrun(sData); % include turbine 37

27 nbObs = size(sDataFilt.mX,1);
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28 vPerm = randperm(nbObs);

29 sDataFilt.mX = sDataFilt.mX(vPerm,:);

30

31 %% INITIAL PLOTS FOR HYPOTHESIS EVALUATION

32 %Response−plot all turbines power bin 2−7
33 [coeff,score,latent,tsquared,explained,mu] = ...

34 pca(zscore(sDataFilt.mX(:,12:end)));

35 figure;

36 plot(score(:,1),score(:,2),'.k');

37 %Add selected turbines

38 if 1

39 hold on;

40 for i = [1 3]

41 vTurb = unique(sDataFilt.mX(:,1));

42 C = {'.c','.m','.m','.g','.c','b','k',}; % Cell array of colros.

43 vFlag = sDataFilt.mX(:,1)==vTurb(i) ;

44 h(i)=plot(score(vFlag,1),score(vFlag,2),C{i});

45 end

46 legend([h(1), h(3)],{'T 22','T 24'},'Location','east');

47 end

48 title('921 − 2415 kW');

49 xlabel('Principal comp. 1')

50 ylabel('Principal comp. 2')

51 set(gca,'FontSize', 18);

52

53 %Response−plot each turbine separately

54 vTurb = unique(sDataFilt.mX(:,1));

55 for idTurb=1:numel(vTurb)

56 figure;

57 vFlag = sDataFilt.mX(:,1)==vTurb(idTurb);

58 plot(score(:,1),score(:,2),'.k');

59 hold on;

60 plot(score(vFlag,1),score(vFlag,2),'.r');

61 title(sprintf('Turbine nr. %d',vTurb(idTurb)));

62 set(gca,'FontSize', 18)

63 xlabel('Principal comp. 1')
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64 ylabel('Principal comp. 2')

65 pause(0.25);

66 end

67

68 %Response from all turbines for each power bin

69 sDataFiltTmp = Filtering_AllBin(sData);

70 [coeffTmp,scoreTmp] = pca(zscore(sDataFiltTmp.mX(:,12:end)));

71 vBinUp = [920 1150 1403 1656 1909 2185 2415];

72 vBinLow =[0 921 1151 1404 1657 1910 2186];

73 vBin = unique(sData.mX(:,3));

74 figure;

75 for idBin=1:numel(vBin);

76 vFlagBin = sDataFiltTmp.mX(:,3)==vBin(idBin);

77 subplot(2,4,idBin);

78 plot(scoreTmp(vFlagBin,1),scoreTmp(vFlagBin,2),'.k');

79 title(sprintf('%d − %d kW %',vBinLow(idBin),vBinUp(idBin)));

80 end

81

82 %Bin−wise response selected turbines

83 vBinUp = [1150 1403 1656 1909 2185 2415];

84 vBinLow =[921 1151 1404 1657 1910 2186];

85 vBin = unique(sDataFilt.mX(:,3));

86 vTurb = unique(sDataFilt.mX(:,1));

87 C = {'.r','.m','.b','.g','.c','b','k',};

88 figure;

89 for idBin=1:numel(vBin);

90 vFlagBin = sDataFilt.mX(:,3)==vBin(idBin);

91 subplot(2,3,idBin);

92 plot(score(vFlagBin,1),score(vFlagBin,2),'.k');

93 hold on;

94 for idTurb=1:4%Show turbine 22,23,24,25

95 vFlag = sDataFilt.mX(:,3)==vBin(idBin) & ...

96 sDataFilt.mX(:,1)==vTurb(idTurb) ;

97 h(idTurb)=plot(score(vFlag,1),score(vFlag,2),C{idTurb});

98 end

99 title(sprintf('%d − %d kW %',vBinLow(idBin),vBinUp(idBin)));
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100 legend([h(1), h(2),h(3),h(4)],{'T 22','T 23','T 24','T 25'},...

101 'Location','east');

102 end

103

104 %Response−plot per power−bin
105 vBin = unique(sDataFilt.mX(:,3));

106 for idBin=1:numel(vBin)

107 figure;

108 vFlag = sDataFilt.mX(:,3)==vBin(idBin);

109 plot(score(:,1),score(:,2),'.k');

110 hold on;

111 plot(score(vFlag,1),score(vFlag,2),'.g');

112 title(sprintf('Bin nr. %d',idBin));

113 pause(0.25);

114 end

115

116 %% MEDIAN CENTERING

117 sDataFiltCentre = sDataFilt;

118 vTurb = unique(sDataFilt.mX(:,1));

119 for idTurb=1:numel(vTurb)

120 vFlag = sDataFilt.mX(:,1)==vTurb(idTurb);

121 sDataFiltCentre.mX(vFlag,12:end) = sDataFilt.mX(vFlag,12:end) ...

122 −ones(sum(vFlag==1),1)*median(sDataFilt.mX(vFlag,12:end));
123 end

124

125 %% POST CENTERING PLOTS

126

127 %Bin 2−7 after after centering

128 [coeff,score,latent,tsquared,explained,mu] = ...

129 pca(zscore(sDataFiltCentre.mX(:,12:end)));

130 sum(explained(1:5));

131 figure;

132 plot(score(:,1),score(:,2),'.k');

133 %Show turbine 22 and 24

134 if 1

135 hold on;
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136 for i = [1 3]

137 vTurb = unique(sDataFilt.mX(:,1));

138 C = {'.c','.m','.m','.g','.c','b','k',};

139 vFlag = sDataFilt.mX(:,1)==vTurb(i) ;

140 h(i)=plot(score(vFlag,1),score(vFlag,2),C{i});

141 end

142 legend([h(1), h(3)],{'T 22','T 24'},'Location','east');

143 end

144 set(gca,'FontSize', 18);

145 xlabel('Principal comp. 1')

146 ylabel('Principal comp.2')

147 title(' 921 − 2415 kW − after centering');

148

149 %Turbine−wise response after centering

150 for idTurb=1:numel(vTurb)

151 figure;

152 vFlag = sDataFiltCentre.mX(:,1)==vTurb(idTurb);

153 plot(score(:,1),score(:,2),'.k');

154 hold on;

155 plot(score(vFlag,1),score(vFlag,2),'.r');

156 set(gca,'FontSize', 18);

157 xlabel('Principal comp. 1')

158 ylabel('Principal comp.2')

159 title(sprintf('Turbine nr. %d',vTurb(idTurb)));

160 end

161

162 %Bin−wise response after centering

163 vBin = [1150 1403 1656 1909 2185 2415];

164 vBinLow =[921 1151 1404 1657 1910 2186];

165 vBin = unique(sDataFiltCentre.mX(:,4));

166 for idBin=1:numel(vBin)

167 vFlag = sDataFiltCentre.mX(:,4)==vBin(idBin);

168 subplot(2,3,idBin)

169 plot(score(:,1),score(:,2),'.k');

170 hold on;

171 plot(score(vFlag,1),score(vFlag,2),'.g');
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172 title(sprintf('%d − %d kW %',vBinLow(idBin),vBin(idBin)));

173 end

174

175 %% CORRELATION BETWEEN RATED POWER, WIND SPEED AND YAW ANGLE

176 vVarMdl = [5 8 6];

177 figure;

178 subplot(2,2,1);

179 plot(sDataFiltCentre.mX(:,vVarMdl(1)), ...

180 sDataFiltCentre.mX(:,vVarMdl(2)),'.k');

181 set(gca,'FontSize', 11);

182 xlabel(sDataFiltCentre.cX{vVarMdl(1)});

183 ylabel(sDataFiltCentre.cX{vVarMdl(2)});

184 grid on;

185 subplot(2,2,2);

186 plot(sDataFiltCentre.mX(:,vVarMdl(3)), ...

187 sDataFiltCentre.mX(:,vVarMdl(2)),'.k');

188 set(gca,'FontSize', 11);

189 xlabel(sDataFiltCentre.cX{vVarMdl(3)});

190 ylabel(sDataFiltCentre.cX{vVarMdl(2)});

191 grid on;

192 subplot(2,2,3);

193 plot(sDataFiltCentre.mX(:,vVarMdl(1)), ...

194 sDataFiltCentre.mX(:,vVarMdl(3)),'.k');

195 set(gca,'FontSize', 11);

196 xlabel(sDataFiltCentre.cX{vVarMdl(1)});

197 ylabel(sDataFiltCentre.cX{vVarMdl(3)});

198 grid on;

199

200 %% MODEL INPUT AND LEARNING RATIO FOR CROSS−VALIDATION
201 ratioLearning = 0.7;

202 nLear = floor(ratioLearning*nbObs);

203 vVarMdl = [5 8];

204 vVarOut = floor(linspace(12,412,401));

205 sDataFilt = sDataFiltCentre;

206 %% LINEAR MODEL

207 fprintf('LINEAR MODEL\n');
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208

209 % Set−up for cross validation

210 k = 10;

211 vLearnLinError = zeros((k),401);

212 vTestLinError = zeros((k),401);

213 parts = floor(linspace(1,size(sDataFilt.mX,1),(k+1)));

214 parts(1)=0;

215 Rows = (1:size(sDataFilt.mX,1))';

216

217 % Train linear model with 10−fold cross validation

218 for CvL = 1:k

219 testFlag = ismember(Rows,Rows((parts(CvL)+1):parts(CvL+1)));

220 mXLearnLin = sDataFilt.mX(~testFlag,vVarMdl);

221 % randTmp = randperm(size(mXLearnLin,1)); % radom input

222 % mXLearnLin = mXLearnLin(randTmp,:); % random input

223 mYLearnLin = sDataFilt.mX(~testFlag,vVarOut);

224 mXTestLin = sDataFilt.mX(testFlag,vVarMdl);

225 mYTestLin = sDataFilt.mX(testFlag,vVarOut);

226 [mXLearnLin,muLearnLin,sigmaLearnLin] = zscore(mXLearnLin);

227 mXTestLin = (mXTestLin−ones(size(mXTestLin,1),1)*muLearnLin) ...

228 ./(ones(size(mXTestLin,1),1)*sigmaLearnLin);

229 mALin = nan(size(mXLearnLin,2)+1,size(mYLearnLin,2));

230 mYLearnEstLin = nan(size(mYLearnLin));

231 mYTestEstLin = nan(size(mYTestLin));

232 for idy=1:size(mYLearnLin,2)

233 X = [mXLearnLin ones(size(mXLearnLin,1),1)];

234 y = mYLearnLin(:,idy);

235 mALin(:,idy) = inv(X'*X+eye(size(X,2))*1e−6)*X'*y;
236 mYLearnEstLin(:,idy)=[mXLearnLin ones(size(mXLearnLin,1),1)]...

237 *mALin(:,idy);

238 mYTestEstLin(:,idy) = [mXTestLin ones(size(mXTestLin,1),1)]...

239 *mALin(:,idy);

240 end

241 % Store MSE for each fold

242 vLearnLinError(CvL,:) = mean((mYLearnLin−mYLearnEstLin).^2); %MSE training

243 vTestLinError(CvL,:) = mean((mYTestLin−mYTestEstLin).^2); % MSE testing
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244 end

245

246 %Average error within each fold

247 vLearnLinError = mean(vLearnLinError);

248 vTestLinError = mean(vTestLinError);

249

250 %Print resulting error to screen

251 fprintf('Linear mdl (Learning): %f\nLinear mdl (Test): %f\n', ...

252 mean(vLearnLinError'),mean(vTestLinError'));

253

254 %Plot error per freq (MSE).

255 figure();

256 hold on;

257 plot(sDataDescription.vX,vLearnLinError,'r');

258 plot(sDataDescription.vX,vTestLinError,'g');

259 xlabel('Frequencies [Hz]');

260 ylabel('MSE');

261 title('Linear Model');

262 grid on;

263 legend('learning', 'testing')

264 set(gca,'FontSize', 14);

265

266 %% POLYNOMIAL MODEL SECOND ORDER

267 fprintf('POLY MODEL (2)\n');

268

269 % Set−up for cross validation

270 k = 10;

271 vLearnPolyError = zeros((k),401);

272 vTestPolyError = zeros((k),401);

273 parts = floor(linspace(1,size(sDataFilt.mX,1),(k+1)));

274 parts(1)=0;

275 Rows = (1:size(sDataFilt.mX,1))';

276

277 % Train 2nd order poly with 10−fold cross validation

278 for CvL = 1:k

279 testFlag = ismember(Rows,Rows((parts(CvL)+1):parts(CvL+1)));
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280 mXLearnPoly = sDataFilt.mX(~testFlag,vVarMdl);

281 mXLearnPoly = [mXLearnPoly.^2 mXLearnPoly];

282 %randTmp = randperm(size(mXLearnPoly,1)); % randomize order

283 %mXLearnPoly = mXLearnPoly(randTmp,:); % randomize order

284 mYLearnPoly = sDataFilt.mX(~testFlag,vVarOut);

285 mXTestPoly = sDataFilt.mX(testFlag,vVarMdl);

286 mXTestPoly = [mXTestPoly.^2 mXTestPoly];

287 mYTestPoly = sDataFilt.mX(testFlag,vVarOut);

288 [mXLearnPoly,muLearnPoly,sigmaLearnPoly] = zscore(mXLearnPoly);

289 mXTestPoly = (mXTestPoly−ones(size(mXTestPoly,1),1)*muLearnPoly) ...

290 ./(ones(size(mXTestPoly,1),1)*sigmaLearnPoly);

291 mAPoly = nan(size(mXLearnPoly,2)+1,size(mYLearnPoly,2));

292 mYLearnEstPoly = nan(size(mYLearnPoly));

293 mYTestEstPoly = nan(size(mYTestPoly));

294 for idy=1:size(mYLearnPoly,2)

295 X = [mXLearnPoly ones(size(mXLearnPoly,1),1)];

296 y = mYLearnPoly(:,idy);

297 mAPoly(:,idy) = inv(X'*X+eye(size(X,2))*1e−6)*X'*y;
298 mYLearnEstPoly(:,idy)=[mXLearnPoly ones(size(mXLearnPoly,1),1)]...

299 *mAPoly(:,idy);

300 mYTestEstPoly(:,idy) = [mXTestPoly ones(size(mXTestPoly,1),1)]...

301 *mAPoly(:,idy);

302 %keyboard;

303 end

304 %Store error of each fold

305 vLearnPolyError(CvL,:) = mean((mYLearnPoly−mYLearnEstPoly).^2); %MSE train

306 vTestPolyError(CvL,:) = mean((mYTestPoly−mYTestEstPoly).^2); %MSE test

307 end

308

309 %Average error over all folds

310 vLearnPolyError = mean(vLearnPolyError);

311 vTestPolyError = mean(vTestPolyError);

312

313 %Print error to screen

314 fprintf('Poly mdl (Learning): %f\nPoly mdl (Test): %f\n', ...

315 mean(vLearnPolyError'),mean(vTestPolyError'));
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316

317 %Plot error per frequency increment

318 figure();

319 hold on;

320 plot(sDataDescription.vX,vLearnPolyError,'r');

321 plot(sDataDescription.vX,vTestPolyError,'g');

322 xlabel('Frequencies [Hz]');

323 ylabel('MSE');

324 title('2^{nd} deg. Polynomial Model');

325 grid on;

326 legend('learning', 'testing')

327 set(gca,'FontSize', 18);

328

329 %% POLYNOMIAL MODEL THIRD ORDER

330 fprintf('POLY MODEL (3)\n');

331

332 % Set−up for cross validation

333 k = 10;

334 %vLearnPolyRMSEN = zeros((k),401);

335 %vTestPolyRMSEN = zeros((k),401);

336 vLearnPolyError = zeros((k),401);

337 vTestPolyError = zeros((k),401);

338 parts = floor(linspace(1,size(sDataFilt.mX,1),(k+1)));

339 parts(1)=0;

340 Rows = (1:size(sDataFilt.mX,1))';

341

342 % Train 3rd order. poly with 10−fold cross validation

343 for CvL = 1:k

344 testFlag = ismember(Rows,Rows((parts(CvL)+1):parts(CvL+1)));

345 mXLearnPoly = sDataFilt.mX(~testFlag,vVarMdl);

346 mXLearnPoly = [mXLearnPoly.^3 mXLearnPoly.^2 mXLearnPoly];

347 % randTmp = randperm(size(mXLearnPoly,1)); % randomize order

348 % mXLearnPoly = mXLearnPoly(randTmp,:); % randomize order

349 mYLearnPoly = sDataFilt.mX(~testFlag,vVarOut);

350 mXTestPoly = sDataFilt.mX(testFlag,vVarMdl);

351 mXTestPoly = [mXTestPoly.^3 mXTestPoly.^2 mXTestPoly];
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352 mYTestPoly = sDataFilt.mX(testFlag,vVarOut);

353 [mXLearnPoly,muLearnPoly,sigmaLearnPoly] = zscore(mXLearnPoly);

354 mXTestPoly = (mXTestPoly−ones(size(mXTestPoly,1),1)*muLearnPoly) ...

355 ./(ones(size(mXTestPoly,1),1)*sigmaLearnPoly);

356 mAPoly = nan(size(mXLearnPoly,2)+1,size(mYLearnPoly,2));

357 mYLearnEstPoly = nan(size(mYLearnPoly));

358 mYTestEstPoly = nan(size(mYTestPoly));

359 for idy=1:size(mYLearnPoly,2)

360 X = [mXLearnPoly ones(size(mXLearnPoly,1),1)];

361 y = mYLearnPoly(:,idy);

362 mAPoly(:,idy) = inv(X'*X+eye(size(X,2))*1e−6)*X'*y;
363 mYLearnEstPoly(:,idy)=[mXLearnPoly ones(size(mXLearnPoly,1),1)]...

364 *mAPoly(:,idy);

365 mYTestEstPoly(:,idy) = [mXTestPoly ones(size(mXTestPoly,1),1)]...

366 *mAPoly(:,idy);

367 end

368 % Store error of each fold

369 vLearnPolyError(CvL,:) = mean((mYLearnPoly−mYLearnEstPoly).^2);%MSE train

370 vTestPolyError(CvL,:) = mean((mYTestPoly−mYTestEstPoly).^2); %MSE test

371 end

372

373 %Average error over all folds

374 vLearnPolyError = mean(vLearnPolyError);

375 vTestPolyError = mean(vTestPolyError);

376

377 %Print error to screen

378 fprintf('Poly mdl (Learning): %f\nPoly mdl (Test): %f\n', ...

379 mean(vLearnPolyError'),mean(vTestPolyError'));

380

381 %Plot error per frequency increment

382 figure();

383 hold on;

384 plot(sDataDescription.vX,vLearnPolyError,'r');

385 plot(sDataDescription.vX,vTestPolyError,'g');

386 xlabel('Frequencies [Hz]');

387 ylabel('MSE');
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388 title('3^{rd} deg. Polynomial Model');

389 grid on;

390 legend('learning', 'testing')

391 set(gca,'FontSize', 14);

392

393 %Plot residual for third order polynomial

394 mXTmp = [mYTestPoly−mYTestEstPoly ; mYLearnPoly−mYLearnEstPoly];
395 [coeff,score,latent,tsquared,explained,mu]=pca(zscore(mXTmp));

396 figure;

397 plot(score(:,1),score(:,2),'.k');

398 title('All data set Residual Poly (2) Mdl');

399 xlabel('Principle comp. 1')

400 ylabel('Principle comp. 2')

401 set(gca,'FontSize', 18);

402

403 %% CREATE ARTIFICIAL NEURAL NETWORKS

404 %Train artificial neural networks

405 mXLearnNNet = sDataFilt.mX(1:nLear,vVarMdl);

406 mYLearnNNet = sDataFilt.mX(1:nLear,vVarOut);

407 mXTestNNet = sDataFilt.mX(nLear+1:end,vVarMdl);

408 mYTestNNet = sDataFilt.mX(nLear+1:end,vVarOut);

409 [mXLearnNNet,muLearnNNet,sigmaLearnNNet] = zscore(mXLearnNNet);

410 mXTestNNet = (mXTestNNet−ones(size(mXTestNNet,1),1)*muLearnNNet) ...

411 ./(ones(size(mXTestNNet,1),1)*sigmaLearnNNet);

412 mANNet = nan(size(mXLearnNNet,2)+1,size(mYLearnNNet,2));

413 mYLearnEstNNet = nan(size(mYLearnNNet));

414 mYTestEstNNet = nan(size(mYTestNNet));

415 t0 = tic;

416 for idy=1:1%size(mYLearnNNet,2)

417 t00 = tic;

418 net = fitnet(20,'trainlm');

419 [net,tr] = train(net,mXLearnNNet',mYLearnNNet(:,idy)');

420 cNet1{idy} = net;

421 cTr1{idy} = tr;

422 mYLearnEstNNet(:,idy) = net(mXLearnNNet')';

423 mYTestEstNNet(:,idy) = net(mXTestNNet')';
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424 fprintf('%d/%d (%f)\n',idy,size(mYLearnNNet,2),toc(t00));

425 %keyboard;

426 end

427 fprintf('TOTAL %f\n',toc(t0));

428

429 %Store mean squared error

430 vLearnNNetError = mean((mYLearnNNet−mYLearnEstNNet).^2);
431 vTestNNetError = mean((mYTestNNet−mYTestEstNNet).^2);
432 fprintf('NNet mdl (Learning): %f\nNNet mdl (Test): %f\n', ...

433 mean(vLearnNNetError),mean(vTestNNetError));

434

435 %Plot error per frequency increment

436 figure;

437 hold on;

438 plot(sDataDescription.vX,vLearnNNetError,'r');

439 plot(sDataDescription.vX,vTestNNetError,'g');

440 xlabel('Frequencies [Hz]');

441 ylabel('MSE');

442 title('NNet Model');

443 grid on;

444 legend('learning', 'test')

445 set(gca,'FontSize', 18);

446

447 %% RUN STORED ARTIFICIAL NEURAL NETWORKS

448 mXLearnNNet = sDataFilt.mX(1:nLear,vVarMdl);

449 mYLearnNNet = sDataFilt.mX(1:nLear,vVarOut);

450 mXTestNNet = sDataFilt.mX(nLear+1:end,vVarMdl);

451 mYTestNNet = sDataFilt.mX(nLear+1:end,vVarOut);

452 [mXLearnNNet,muLearnNNet,sigmaLearnNNet] = zscore(mXLearnNNet);

453 mXTestNNet = (mXTestNNet−ones(size(mXTestNNet,1),1)*muLearnNNet) ...

454 ./(ones(size(mXTestNNet,1),1)*sigmaLearnNNet);

455 mANNet = nan(size(mXLearnNNet,2)+1,size(mYLearnNNet,2));

456 mYLearnEstNNet = nan(size(mYLearnNNet));

457 mYTestEstNNet = nan(size(mYTestNNet));

458

459 %Load stored networks
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460 netTmp = load('./NNmodel/Hidden20/cNet1');

461 netTmp = netTmp.cNet1;

462 clear netTmp.cNet1

463

464 %Run model

465 for idy=1:size(mYLearnNNet,2)

466 net=netTmp{idy};

467 mYLearnEstNNet(:,idy) = net(mXLearnNNet')';

468 mYTestEstNNet(:,idy) = net(mXTestNNet')';

469 %fprintf('%d/%d (%f)\n',idy,size(mYLearnNNet,2),toc(t00));

470 %keyboard;

471 end

472

473 %Model error

474 vLearnNNetError = mean((mYLearnNNet−mYLearnEstNNet).^2);
475 vTestNNetError = mean((mYTestNNet−mYTestEstNNet).^2);
476 fprintf('NNet mdl (Learning): %f\nNNet mdl (Test): %f\n', ...

477 mean(vLearnNNetError),mean(vTestNNetError));

478

479 %Plot model error

480 figure;

481 hold on;

482 plot(sDataDescription.vX,vLearnNNetError,'r');

483 plot(sDataDescription.vX,vTestNNetError,'g');

484 xlabel('Frequencies [Hz]');

485 ylabel('MSE');

486 title('NNet Model');

487 grid on;

488 legend('learning', 'test')

489 set(gca,'FontSize', 18);

490

491 %% REINTRODUCE TURBINE 37

492 if 1

493 %Input data for turbine 37

494 sDataFiltTmp = Filtering_AllTurb(sData);

495 vFlag = sDataFiltTmp.mX(:,1)==37;
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496 mX37Tmp = sDataFiltTmp.mX(vFlag,:);

497 mX37 = zscore(mX37Tmp(:,vVarMdl));

498 mY37 = mX37Tmp(:,vVarOut);

499 mYLearnEstNNet37 = nan(size(mY37));

500

501 %Run Neural Network Model for turbine 37

502 for idy=1:size(mYLearnEstNNet37,2)

503 net=netTmp{idy};

504 mYLearnEstNNet37(:,idy) = net(mX37')';

505 end

506 %Calculate residuals

507 T37res = mYLearnEstNNet37 − mY37;

508 end

509

510 %% RESIDUAL MATRIX ANN MODEL

511 %Calculate residual matrix

512 mXTmp = [mYTestNNet−mYTestEstNNet ; mYLearnNNet−mYLearnEstNNet];
513 %Identify explained variance

514 expVar = sum(explained(1:2));

515 %Merge with auxiliary data

516 mXTmpAll = [sDataFilt.mX(:,1:11) mXTmp];

517 [~, mu, sigma] = zscore(mXTmp);

518 [coeff,score,latent,tsquared,explained,mu]=pca(zscore(mXTmp));

519

520 %% RESPONSE FROM EACH TURBINE ONTO RESIDUALS

521 for idTurb=1:numel(vTurb)

522 figure;

523 vFlag = sDataFiltCentre.mX(:,1)==vTurb(idTurb);

524 plot(score(:,1),score(:,2),'.k');

525 %plot(score(:,1),score(:,2),score(:,3),'.k');

526 hold on;

527 plot(score(vFlag,1),score(vFlag,2),'.r');

528 title(sprintf('Turbine nr. %d',vTurb(idTurb)));

529 xlabel('Principal comp. 1')

530 ylabel('Principal comp. 2')

531 set(gca,'FontSize', 18);
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532 end

533

534 %% RESPONS FOR EACH POWER BIN − ALL TURBINES

535 vBinUp = [1150 1403 1656 1909 2185 2415];

536 vBinLow =[921 1151 1404 1657 1910 2186];

537 vBin = unique(sDataFiltCentre.mX(:,3));

538 for idBin=1:numel(vBin)

539 vFlag = sDataFiltCentre.mX(:,3)==vBin(idBin);

540 subplot(2,3,idBin)

541 plot(score(:,1),score(:,2),'.k');

542 hold on;

543 plot(score(vFlag,1),score(vFlag,2),'.g');

544 title(sprintf('%d − %d kW %',vBinLow(idBin),vBinUp(idBin)));

545 end

546

547 %% WHAT HAPPENED TO TURBINE 37?

548 if 1

549 % Calculate PCA projection

550 mxTmp37norm = (T37res − ones(size(T37res,1),1)*mu)./ ...

551 (ones(size(T37res,1),1)*sigma);

552 mxTmp37norm = mxTmp37norm*coeff;

553 All = [mX37Tmp(:,1:11) mxTmp37norm];

554 [~,vSort]=sort(All(:,11));

555 All = All(vSort,:);

556

557 %Plot response cluster

558 figure;

559 hold on

560 plot(score(:,1),score(:,2),'.k'); % plotter bakgrunnsrespons

561 plot(mxTmp37norm(:,1),mxTmp37norm(:,2),'.r'); % Plotter turbin 37

562 xlabel('Principal comp. 1')

563 ylabel('Principal comp. 2')

564 title('Turbine nr. 37');

565 set(gca,'FontSize', 18)

566 %Plot distance from center

567 figure;
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568 vDateTmp = All(:,11);

569 vDistTmp = sum((mxTmp37norm(:,1:20)−ones(size(mxTmp37norm(:,1)))* ...

570 mean(mxTmp37norm(:,1:20))).^2,2);

571 plot(vDateTmp,vDistTmp,'.k−');
572 datetick('x','dd/mm/yy','keeplimits');

573 xlabel('Time');

574 ylabel('Distance from center');

575 title('Turbine nr. 37');

576 set(gca,'FontSize', 18)

577 end

578 %% CONDITION MONITOR

579 vUniTurb = unique(mXTmpAll(:,1));

580

581 for idt=1:numel(vUniTurb)

582 vInd = find(mXTmpAll(:,1)==vUniTurb(idt));

583 vDate = mXTmpAll(vInd,11);

584 [~,vOrd] = sort(vDate);

585 vInd = vInd(vOrd);

586 figure;

587 hold on

588

589 % %3 dimensions

590 % scatter3(score(:,1),score(:,2),score(:,3),'ko'); hold on;

591 % scatter3(score(vInd,1),score(vInd,2),score(vInd,3),'r','filled');

592

593 % Response per turbine onto residual

594 plot(score(:,1),score(:,2),'.k');

595 plot(score(vInd,1),score(vInd,2),'.r');

596 title(sprintf('Turbine nr. %d',vUniTurb(idt)));

597 xlabel('Principal comp. 1')

598 ylabel('Principal comp. 2')

599 zlabel('Principal comp. 3')

600 legend('All turbines', sprintf('Turbine nr. %d' ,vUniTurb(idt)))

601 set(gca,'FontSize', 22);

602

603 % %Calculate distance from center (> 2 dimensions)
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604 vDistTmp = sum((score(vInd,1:20)−ones(numel(vInd),1)*...
605 mean(score(:,1:20))).^2,2);

606 % %Calculate distance from center (< 2 dimensions)

607 % vDistTmp = sqrt((score(vInd,1)−mean(score(:,1))).^2 ...

608 % +(score(vInd,2)−mean(score(:,2))).^2);
609 vDateTmp = vDate(vOrd);

610 set(gca,'FontSize', 22)

611 %Plot distance from center

612 figure;

613 plot(vDateTmp,vDistTmp,'.k−');
614 hold on;

615 %Indicate cluster membership by color convention

616 plot(vDateTmp(score(vInd,1)>10),vDistTmp(score(vInd,1)>10),'or');

617 plot(vDateTmp(score(vInd,2)<−8),vDistTmp(score(vInd,2)<−8),'ob');
618 plot(vDateTmp(score(vInd,1)<0 & score(vInd,2)>8), ...

619 vDistTmp(score(vInd,1)<0 & score(vInd,2)>8),'og');

620 datetick('x','dd/mm/yy','keeplimits');

621 x=xlabel('Time');

622 y=ylabel('Distance from center');

623 t=title(sprintf('Turbine nr. %d',vUniTurb(idt)));

624 set(t,'FontSize', 20);

625 set(x,'FontSize', 20)

626 set(y,'FontSize', 20)

627 set(gca,'FontSize', 14)

628 pause(0.01)

629 end
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