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Background &

Compared to hydrocarbon alternatives, wind
powered electricity comes at nearly twice the cost
[1]. With operation & maintenance (O&M) ac-
counting for 20-30% of the wind farm life cycle
cost, the enabling of smart maintenance is found
paramount - particularly for offshore wind. With
the intention of exploiting component life, mod-
ern turbines are extensively equipped with sensor
and control systems, allowing for condition based
maintenance (CBM). However, due to conflicting
interests among stakeholders, the industry is char-
acterized by lack of data sharing, preventing the
field of intelligent fault diagnosis and prognosis
from offering its full range of benefits [2]. Using
vibration data, another challenge is to separate
the vibrations that are manifests of operational
load from those being a result of degradation.

Objective 1 Segregate vibrations caused by load
from those being attributed to degradation

Objective 2 Enable for degradation monitoring
for the planetary stage of the gearbox

Materials and
Data description

The data-set consists of 16000 records containing
frequency domain (0-8.138 kHz) vibration ampli-
tudes from the period 2015 - 16" March 2016.
With Af ~ 20,34 and each frequency increment
treated a variable, 401 dimensions results. Col-
umn 1-11 contain condition data (rated power,
wind speed, yaw angle etc.) and column 12-412
contain amplitudes.
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Modeling principle and hypotheses

Vibration amplitude, y; is assumed to be a re-
sult of operating conditions, oc (rated power, wind
speed etc.) and degradation d (degradation) in an
additive manner, yielding

Yr = f(OC, d)
= f1(oc) + g(d)

By deploying a model estimating the part of y¢
being a result from oc, the presumed fraction be-
ing attributed to d is approximated through the
residual, A f:

(1)

g9(d) ~ Af = fi(op) - f(op,d) (2)
The approach rests on following hypotheses

I Most of the data correspond to normal behavior

IT For the same operating conditions and degra-
dation level, all turbines give rise to more
or less the same vibration response

Approach

m Filtering/pre-processing — Input for model
training

m Model training and evaluation — Generaliza-
tion with 1°% - 3"% order polynomials and
through artificial neural networks. Best op-
tion is selected.

B Residual analysis — Monitoring trends for vi-
brations being caused by degradation

Pre-processing and Model Se

Visualization through principal component analysis (PCA) reveals that each turbine give rise to their
own region of normal behavior. To enable multiple-turbine consideration, the offsets are corrected by
median-centering.
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Figure 1: Turbine responses per bin (left); After median centering (right)

Sources to inconsistency: The lowest power bin (0-920 kW) is characterized by inconsistent re-
sponses, party a consequence of possibility for zero-power-states. Among turbine 21-40, T21&
T37 demonstrate uncharacteristic behavior. Associated data is therefore discarded.

Time horizon: Arguably the same criteria for storing records has been used during 2015 and 2016,
thus defining the time horizon.

Co-variables: Based on their correlation with vibration response, rated power and wind speed is used
as model input.

Among the model candidates the 20-neuron ANN makes the fest fit and is hence chosen.

Table 1: Model performance.

274 degree 374 degree Neural Net Neural Net
Error Linear polynomial Polynomial (10 neuron) (20 neuron)

MSE learning 0.00855 0.00713 0.00617 0.00562 0.00567
MSE testing 0.00856  0.00714 0.00618 0.00564 0.00558

Results from Residual Analys

The effect of load (rated power and wind speed) on the vibration is successfully removed by the ANN
model. The below clusters (left) are thus not related to load. Transitions between zones are next related
to time (right), which during the considered period is not showing consistency with degradation. The
monitoring regime is nevertheless functional, and could provide valuable decision support if combined
with fault logs confirming equipment status.
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Figure 2: Representative results using turbine 39. Left: Residual T39; right: Transitions related to
time.

Conclusion

Vibration response resulting from rated power is segregated from the response that is attributed to
degradation by means of an ANN model. Analyzing the residuals show no indication of degradation, but
demonstrates rapid transitions in-and-out from the normal behavior region.
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