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Abstract 

 

We develop two methods to determine; (1) net to gross and hydrocarbon saturation in a 

mixture of sand and shale. (2) effective properties versus tilt in sand. Backus (1962) and 

Schoenberg and Muir (1989) averaging are used for the horizontally layered 

transversely isotropic medium with vertical symmetry axis (VTI), horizontal symmetry 

axis (HTI) and tilted symmetry axis (TTI) test respectively. A mixture of two points 

representing sand and shale are picked from Intrabasalt 2 formation (North Sea data) 

and the effective properties and anisotropic parameters (epsilon, delta and gamma) are 

computed using matlab algorithm. The modeling results for the VTI, HTI and TTI show 

that P- wave velocity ( pv ) increases with increasing net to gross and S- wave velocity    

( sv ) decreases with increasing net to gross. The anisotropic parameters decrease with 

increasing net to gross. In the second part, the whole Intrabasalt 2 formation is 

considered as sand in a tilt form. The modeling results show that P- wave velocity and 

S- wave velocity increase with increasing tilt angle in sand and the anisotropic 

parameters of the tilt sand decrease with increasing tilt angle with the exception of 

anisotropic parameter delta which increases with tilt angle up to 30   and then 

decreases with increasing tilt angle up to 90   
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CHAPTER ONE 

 

 

1.0 Introduction 

1.1 Motivation and Objective 

Transverse isotropy (TI) results in more accurate models of wave propagation than the 

ones based on isotropy assumption for characterizing seismic data. Seismic analysis 

requires calibration of seismic data with well logs. Well log data need to be upscaled to 

seismic frequency, and the upscaling is normally done with the Backus averaging 

(Backus 1962). Backus averaging is a harmonic mean of combination of elastic moduli 

computed from well log data for a desired depth thickness. Anisotropy caused by fine 

layering is often considered responsible for the differences between velocities achieved 

in sonic log and seismic experiments. To understand the link between velocities 

obtained in upscaling is crucial, especially, in the current era of most wells being highly 

deviated. The goal of the upscaling of heterogeneous media is to simplify the earth 

model without changing the overall seismic wavefield during wave propagation (Gold et 

al., 2000). 

Vertical sonic velocities can be upscaled according to Backus (1962) to deduce interval 

velocities for seismic frequencies. For a medium with two constituents, such as shale 

and sand, the anisotropic parameters of both layers should be known to predict the 

properties of the effective compound (Backus, 1962). Complete specification of a 

transverse isotropy medium requires defining seven parameters at every subsurface 

location, namely five stiffnesses and two angles specifying the symmetry axis 

orientation. Modeling the subsurface by transverse isotropy with a vertical axis of 

symmetry is normally adequate for inverting or imaging surface seismic data. There is a 

growing interest in exploration of shale reservoir, and many of the shale reservoirs are 

fractured (Younes et al 2010, Gaiser et al 2011). Fractures and faults are common in 

the subsurface of the Earth’s crust and they control much of the mechanical strength 

and transport properties of the solid structure. Fractures and fracture systems are also 

crucial for hydrocarbon exploration. In particular, shales overlay over 70% of 
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hydrocarbon exploration targets and are known to have transversely isotropic properties 

due to microstructure associated with the layering of fine clay platelets (Sayers, 1994). 

Several theories of modeling wave propagation in cracked rocks have been developed. 

However, a few of them can model large fractures and fluid flow in fractured rock. In this 

write up, I used the Backus (1962) averaging and Schoenberg and Muir (1989) method 

for the upscaling. I considered transverse isotropy with vertical symmetry axis (VTI), 

horizontal symmetry axis (HTI) and tilted symmetry axis (TTI).  

The main objectives of the thesis are; 

1. To discriminate between sand and shale using secondary properties such as acoustic 

impedance and 
s

p

v

v
 ratio. 

2. To determine the effect on effective properties versus net to gross (N/G). 

3. To determine the effect on effective properties versus tilt angle in sand layers. 

 

1.2 Background for well log Data 

The aim of the Geophysicists is to produce the reliable seismic data from experiments 

such as well logging. Generally, boreholes are drilled to the depth to be examined, and 

logging instruments measure properties of the subsurface inside boreholes with 

increasing depth. We use the well log data to analyze physical properties of the rocks 

and to obtain corresponding petrophysical properties such as porosity, permeability, 

water saturation etc. For the purpose of this research, one well log data from the North 

Sea is used. The data contains pv , sv , density, and anisotropic parameters epsilon, delta 

and gamma. Vp-Vs ratio and acoustic impedance are computed from the data and 

subsequently used for lithology discrimination. 
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1.3 Upscaling Problem of Well log Data 

“Upscaling” in this context implies the theoretical prediction of the effective elastic 

properties at seismic frequency using well log data. Heterogeneities in the earth’s 

subsurface result in variations in the elastic constants in rocks. The inhomogeneous 

properties cause problems in seismic interpretation because of the complex link 

between heterogeneity and wave amplitudes. Moreover, randomly varying rock 

component such as cracks, micro-cracks and saturation make it impossible to solve the 

inverse problem from the measured data. To get reliable results from data processing, 

the upscaling method relating the small scale to the large scale has been paramount for 

the Geophysicists over the years. Also, recent advances of precise and fast computing 

technology have increased the demand for quantitative predictions and higher 

resolutions in the earth model from effective upscaling methods such as Backus (1962). 

 

1.4 Fundamentals 

With respect to wave propagation, Stovas and Arntsen (2006) mentioned that the wave 

propagation velocity strongly depends on the ratio (λ/d) of the dominant wavelength to 

the typical layer thickness. When the wavelength is large comparing with the layer 

thickness, the wave velocity can be given by an average of the properties in individual 

layers (Backus, 1962), and waves behave as if propagating in an effective isotropic 

homogeneous medium even if the medium is anisotropic. On the other hand, when the 

wavelength is small comparing with the layer thickness, the waves behave in line with 

the ray theory because of high frequency approximation. 

Experimental research depicts that sonic log data include a large fluctuation in P-wave 

and S-wave velocities, and this fluctuation decreases at the lower frequencies of the 

seismic data. 

Therefore, in a logical sense, Backus averaging means the replacement of 

heterogeneous volume with a homogeneous volume containing effectively equivalent 

elastic constants. It is also a process, whereby a stack of thin layers is averaged until it 
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is approximated by the properties of a single thick layer. From this analogy, it is 

reasonable to replace many thin layers with one thick layer. With a lack of more easily 

detected reservoirs, recently found reservoirs have geologically more heterogeneous 

structures. To identify these, we need to consider all heterogeneous effects on the small 

scale data, but it is very inefficient to resolve the heterogeneity from numerous 

numerical simulations because of the excessive computing time. Therefore the goal of 

the Geophysicists is to make precise, cost saving and timely decisions in all kinds of 

data analysis. 

 

1.5 Previous works 

In finely layered media, the way and manner in which the wave propagates has been 

the main interest of Geophysicists. Anderson (1961), Thomson (1950) and Helbig 

(1958) examined homogeneous anisotropic multilayered cases. Thomson (1950) gave a 

formal solution for waves of arbitrary wavelength in a medium with homogeneous 

isotropic layers, and found the displacement and vertical stresses at any interface. 

Helbig (1958) represented formulae for five elastic coefficients as averages and 

generalized them to a multilayered case, yet he did not consider anisotropic layers. 

Afterwards, Anderson (1961) applied the formulae to anisotropic layered media. 

In spite of the efforts made by these people, I can confirm that upscaling process such 

as transverse isotropy using well log examples have been developed by many other 

people. 

 

A practical basis of the averaging method was made by Backus (1962). He showed that 

waves behave as if going through a homogeneous and transversely isotropic medium in 

case that the waves have a large enough wavelength comparing with a layer thickness 

(Backus, 1962). The Backus approach is advantageous for two main reasons. First, it 

gives simple expressions for elastic constants as averages of elastic moduli. Secondly, 

it can be applied to non-periodic layered media with more than two constituents, which 

may be transversely isotropic themselves. It has also been extended to the case where 
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the constituents themselves are anisotropic (Schoenberg and Muir, 1989). It is also well 

understood that layered media are both dispersive and anisotropic to elastic waves. 

These characteristics depend on the dimensions relative to the wavelengths, the 

proportions, and the intrinsic physical properties of the constitutive materials. 

 

At ‘long’ wavelengths a layered structure will behave as one ‘effective’ medium. In 

contrast, at sufficiently ‘short’ wavelengths each of the individual components of the 

structure will influence the transmitted waves according to optical ray theory. The elastic 

wave velocity of such a medium can be highly dispersive. In spite of these, nearly all of 

seismology assumes the elastic energy is transmitted according to ray theory. This 

could lead to some inconsistencies, the perennial time mismatch between synthetic 

seismograms, calculated on the basis of ray theory through thin layers defined by the 

sonic log spatial sampling, and events within reflection profiles being one such example 

of this phenomena (e.g., Rio et al ., 1997; IMHOF, 2004). However, such effects need to 

be considered when core based studies (     MHz) are integrated with log (   20 kHz) and 

seismic (       Hz) data. Further, it is cumbersome for us to know what the true 

structural scaling is within the Earth. This may add additional uncertainty to our 

interpretations of an observed seismic velocity. Having a better understanding of how 

such dispersion influences seismic velocity and anisotropy is important to the 

understanding of observations at many scales.  

 

1.6 Scope of the Thesis 

The major content of this thesis consists of five chapters characterized by upscaling 

technique. In chapter one, motivation and objectives are introduced briefly, and basic 

concepts of upscaling are highlighted. Chapter two explains the concept and theoretical 

background of seismic anisotropy, effective medium, Backus (1962) averaging, 

Schoenberg and Muir (1989) theory etc. 

Chapter three also explains the method employed for the thesis, thus Backus (1962) 

averaging method and Schoenberg and Muir (1989) method. Discrimination between 
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sand and shale, selection of sand and shale and their analysis using well log data 

containing effective properties pv , sv , density  and anisotropic parameters epsilon, delta 

and gamma are also discussed. Chapter four explains the meaning of the models 

obtained and chapter five finally, summarizes the whole write up.   
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CHAPTER TWO 

2.0 Theoretical Background 

2.1 Rock Physics and seismology 

There is a growing interest in exploration of shale reservoirs, and many of the shale 

reservoirs are fractured (Younes et al 2010, Gaiser et al 2011). Fracturing of rock can 

induce lower symmetry seismic anisotropy. Seismology is one of the most important 

geophysical fields to find and monitor petroleum reservoirs by seismically imaging the 

earth’s reflectivity distribution. The exploration Geophysicists perform seismic 

experiments similar to that shown in figure 1 and 2. To interprete these reflection data 

into knowledge of geological structures in which the waves have travelled, one needs a 

physical model that describes how waves act in different media. Deformations of rocks 

due to seismic waves are normally assumed to be linearly elastic. Because wave 

propagation depends upon the elastic properties of the rocks, the concept of elasticity is 

explained in this write up. A material is defined as continuous if it contains no empty 

spaces and its properties can be described by spatially continuous functions. The size 

and shape of a solid body can be changed by applying forces to the external surface of 

a body. These external forces are opposed by internal forces which resist changes in 

size and shape. A fluid resists changes in size (volume) but not changes in shape. The 

property of resisting changes in size or shape and returning to the undeformed condition 

when the external forces are removed is known as elasticity. Many substances including 

rocks can be considered perfectly elastic because most rocks recover completely after 

being deformed. Rock formations built up of different rock types are separated by 

interfaces where the physical properties are discontinuous. The theory of elasticity 

relates the forces that are applied to the external surface of a body to the resulting 

changes in size and shape. The relations between the applied forces and the 

deformations are most conveniently expressed in terms of the concepts of stress and 

strain. Strain is a change in shape and is proportional to the stress that produces it. The 

constant of proportionality is called elastic constant. Most seismic theory assumes that 

media are isotropic, that is their properties are the same irrespective of the direction of 
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measurement. Anisotropy of several types has been observed. The most important with 

regard to the thesis is transverse isotropy, simply because of layering and fracturing. 

The figures below show what happens to seismic body waves as they travel in the 

earth. 

 

Figure 1. Seismic waves travelling through the earth (onshore seismic survey). 

                  

 

Figure 2. Seismic waves travelling through the earth (offshore surveys).              
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2.2 Hooke’s law  

Knowing the relationship between stress and strain helps us to calculate the strains 

when the stresses are applied. When several stresses exist, each produces strains 

independently of the others; hence, the total strain is the sum of the strains produced by 

the individual stresses and vice versa. In general, Hooke’s law leads to complicated 

relation. Stress and strain can both be regarded as second-order (3x3) matrices so that 

the Hooke’s law proportionality relating them is a fourth-order tensor. Many of the 

physical quantities in this write up are described in terms of tensors. The Hooke’s law is 

a statement that the stress is proportional to the gradient of the deformation occurring in 

the material. We consider that the continuum material is a linear elastic material, so we 

introduce the generalized Hooke’s law in Cartesian coordinates 

klijklij εCσ  ,                                                                     (1) 

where  ijσ  is the stress component, ijklC  is the stiffness tensor and  klε   is the strain 

component.                                                                                                               

These equations assume that a linear relationship exists between the components of 

stress and strain tensor. They relate stress and strain, because they depend on the 

material behavior, whether it being an elastic or plastic solid or a viscous fluid. The 

equations are applicable for materials exhibiting small deformations subjected to 

external forces. The 81 constants ijklC  are called the elastic stiffness of the material and 

are the components of a Cartesian tensor of the fourth order. In terms of anisotropy, the 

material is represented by the fact that the components of ijklC  are in general different 

for different choices of coordinate axes. If the body is homogeneous, that is, the 

mechanical properties are the same for every particle of the body, and then ijklC  are 

constants. If a tensor has certain symmetry, the representation only needs as many 

components as the number of independent components in the tensor. Therefore we 

convert the 3333  tensor ijklC  to the 66 matrix C using the mapping: 
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 jiij 11  22  33  23  13  12 

                                                                                                            

         1    2    3    4     5    6 

 

2.3 Symmetries 

In the “worst case” the stiffness tensor has 2  independent elements giving us “triclinic “ 

symmetry. Equation (2) is an example of the “worst case”.   

  C  



























665646362616

565545352515

464544342414

363534332313

262524232212

161514131211

CCCCCC

CCCCCC

CCCCCC

CCCCCC

CCCCCC

CCCCCC

.                                                                        (2)                                                         

If the material has a particular symmetry, the number of independent components is 

reduced. 

                                   

2.4. Seismic Anisotropy 

In recent years, seismic anisotropy has become a challenging topic in the oil and gas 

industry. The anisotropic nature of sedimentary basins containing oil and gas reservoirs 

can lead to higher micro-seismic event location errors if the velocity models used for the 

reservoir do not accurately account for anisotropy. 

 

Seismic anisotropy is defined as ‘the dependence of seismic velocity upon angle’ 

(Thomsen, 2  2). It is also defined as ‘a variation of a physical property depending on 

the direction in which it is measured’ (Sherriff, 2002).  

 

Anisotropy is a very useful attribute for the detection and characterization of aligned 

fracture sets in reservoirs (Alan et al, 2012). There are several mechanics which may 
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contribute to the anisotropy of sedimentary rocks. We have fractures, microcracks, 

cracks etc. For example there could be anisotropy related to the rock fabric, such as the 

preferred alignment of intrinsically anisotropic minerals (eg. Vernik and Nur, 1992; 

Valcke et al., 2006; Kendall et al., 2007), or the periodic layering of contrasting 

lithologies (eg. Backus, 1962). The idea of distinguishing between the different sources 

of anisotropy can be of good help by making estimates about their respective symmetry 

and orientation. For example, the fabric of sedimentary rocks is typically aligned 

horizontally, which produces an anisotropy system with a vertical axis of symmetry 

(VTI). Fig 3 is a typical example. Fractures and cracks within a medium are normally 

vertical or dipping, producing horizontal transverse isotropy (HTI). The lack of 

axisymmetry in rock may be related to a lack of axisymmetry in the stress field. Crampin 

(1985) argued that stress anisotropy causes rock anisotropy by creating aligned 

microcracks. Whether this is so or not is very cumbersome to establish, because drilling 

and coring distort the stress field and close cracks that might have existed in situ. A set 

of parallel fractures orthogonal to bedding planes for example vertical fractures and 

horizontal bedding gives orthorhombic symmetry in the long wavelength limit 

(Shoenberg, 1986). When a single set of parallel fractures is neither perpendicular nor 

parallel to bedding, the equivalent medium is monoclinic (Shoenberg, 1985). These are 

encountered in the earth and can be manipulated using matrix methods. 

 

Backus (1962) also showed that a region composed of several layers is equivalent in 

the long wavelength limit to a homogeneous, transversely isotropic medium and that the 

properties of this equivalent medium can be derived using appropriate techniques. The 

figures below show how VTI anisotropy characterizes horizontal layering and HTI 

anisotropy characterizes vertical fracturing. 

 

 

 



12 
 

                                        

Figure 3. VTI anisotropy characterising horizontal layering. 

                      

 

 

            

                              

Figure 4. HTI anisotropy characterising vertical fracturing. 

The most popular anisotropic model is TI anisotropy. 

 

 



13 
 

2.4.1. Isotropy 

Isotropic symmetry is the simplest type of symmetry which helps us to understand wave 

propagation in the earth. In a homogeneous region, where the seismic waves propagate 

equally fast in all directions, the stiffness is given as;  

 































66

44

44

331313

13116611

13661111

00000

00000

00000

000

0002

0002

C

C

C

CCC

CCCC

CCCC

.                                                             (3) 

 

This symmetry is called ‘polar’ symmetry, simply because it has a single pole of 

rotational symmetry. It is the symmetry of the horizontal thin-bed-sequence or of 

horizontal massive shale. 

 

The wave velocities in an isotropic medium are independent of propagation direction 

and they are given by  


33C

Vp    ,                                                                                                                   (4) 


44C

Vs   .                                                                                                                     (5) 

We normally use the isotropic properties for reservoir modeling and simulation. 

 

2.4.2 Transverse Isotropy 

Transverse isotropy is another anisotropic model of practical importance. They are 

materials where the physical parameters are isotropic along horizons. It has a unique 

symmetry axis around which rotations do not utter the physical properties. The figure 

below shows the plane of transverse isotropy. 
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Figure 5. Plane of transverse isotropy with dip direction and dip vector. 

 

There are several types of transverse isotropy. We have transverse isotropy with 

vertical symmetry axis (VTI), transverse isotropy with a horizontal symmetry axis (HTI) 

and transverse isotropy with tilted symmetry axis (TTI). The symmetry direction is 

usually associated with gravity or regional stress. If gravity is the dominant factor, the 

symmetry direction will be vertical and we get vertical transverse isotropy (VTI). If 

regional stress is the dominant factor, the symmetry axis can be horizontal, in which we 

get transverse isotropy with a horizontal symmetry axis (HTI), or the symmetry axis can 

be tilted with respect to the vertical and horizontal axes, in which case we get tilted 

transverse isotropy (TTI). The most common physical reason for the HTI symmetry is a 

system of parallel vertical cracks (fractures), with quasi circular shapes like pennies, 

embedded in an isotropic matrix (Hudson, 1981; Crampin, 1985; Thomsen, 1988). 

Basically, modeling and processing of reflection seismic data are more complicated for 

horizontal transverse isotropy than for vertical transverse isotropy (VTI) media, simply 

because the azimuthal dependence of moveout velocities and amplitudes in HTI models 

provides additional information for seismic inversion. 

 

 

 

http://www.google.no/url?sa=i&rct=j&q=photographs+of+transverse+isotropy+and+horizontal+transverse+isotropy&source=images&cd=&docid=JTu0fpA-fpZ-7M&tbnid=p_ZeA0ZVOhGEsM:&ved=0CAUQjRw&url=http://www.sciencedirect.com/science/article/pii/S0045794900001632&ei=Cq00UeCqMYbtygGA04HAAQ&psig=AFQjCNHUwb6APIjLWxzR7S1EDt2Olb0qNA&ust=1362492754298796
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2.4.3. Transverse Isotropy with vertical symmetry axis (VTI) 

 

Most sedimentary rocks can be described by vertical transverse isotropy (VTI) 

(Thomsen 1986). The simplest physically achievable anisotropic symmetry system is 

axisymmetric anisotropy, which is generally called Transverse isotropy. Axisymmetry 

implies that in a given direction, the properties of the medium depend only on the angle 

between that direction and the symmetry axis. The axis of symmetry is an axis of 

rotational invariance, about which the formation may be rotated by any angle and still 

leave the material property the same from what it was before. Figure 6, shows an 

example of a material with vertical axis of symmetry. 

 

 

 

                                                                                                         symmetry axis 

 

 

 

Figure 6. The VTI model has a vertical axis of rotational symmetry and can be caused by small-scale 

horizontal heterogeneities. 

 

                                                                                                

Rock formations with vertical transverse isotropy (VTI) constituent are defined by a 

stiffness matrix with five independent elements given as; 
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CVTI    ,                                                              (6)          

where 1211662 ccc  . 

 

 The obtained stiffnesses can be used to re-parameterize into Thomsen notation 

commonly used in reflection seismology: 

                                                                                          

33

3311

2c

cc 
 ,                                                                                                                  (7) 

   
 443333

2

4433

2

4413
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cccc




 ,                                                                                          (8) 

44

4466

2c

cc 
 ,                                                                                                                 (9) 

where Thomsen parameters ( ,, and ) are the dimensionless combinations of elastic 

moduli which characterizes transversely isotropic materials that are encountered in 

geophysics. 

  is a measure of P- wave anisotropy and the quasi - SV. 

  is responsible for all near vertical P- wave signatures. 

  is required for horizontal shear SH propagation, but has no influence on P- wave 

propagation.  

Also,  
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 1

2

1
2

2

sz

sx

v

v
 ,                                                                                                              (12) 

where pzv , pxv  and pnv  are vertical, horizontal and normal moveout velocities computed 

for P – wave, szv  and sxv  are vertical and horizontal velocities computed for SH – wave. 

 

2.4.4. Transverse Isotropy with horizontal symmetry axis (HTI)  

From Tsvankin (1997), the transversely isotropic model with a horizontal symmetry axis 

has two mutually orthogonal vertical planes of symmetry. Thus the ’’isotropy plane’’ (the 

one normal to the symmetry axis) and the ‘’symmetry-axis plane’’ (the one that contains 

the symmetry axis).The polarizations of all the three waves in isotropy plane are 

described by the isotropic equations. Figure 7 shows the horizontal transverse isotropic 

model with two mutually orthogonal vertical planes of symmetry. The velocities and 

polarizations in the symmetry-axis plane can be described by analogy with VTI media. 

The split shear waves in HTI media is denoted as “ 11S ,” and “ S ,” with the 11S -wave 

polarized in the isotropy plane and the S -wave polarization vector being in the plane 

formed by the symmetry axis and the slowness vector. The superscripts is explained by 

the fact that in HTI media caused by the parallel vertical cracks, the polarization vector 

of 11S  is parallel to the crack planes, while the wave S  at vertical incidence is 

polarized normal to the cracks. In the symmetry axis plane, the 11S -wave is polarized in 

the direction orthogonal to the plane and is called the SH-wave, while S  -wave is in- 

plane motion and is called SV-wave. The mode 11S  is normally called the “fast” shear 

wave since at vertical incidence it propagates faster than S  (eg., Crampin, 1985). 
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Figure 7, shows the symmetry plane in HTI media. 

 

Figure 7. Two vertical symmetry planes in HTI media. In the plane normal to the symmetry axis, velocity is 

independent of propagation angle. (Tsvankin, 1997) 

 

 

 

Figure 8. Photograph of shale showing vertical cracks with horizontal transverse isotropy medium. 

 

 

Generally, the HTI model is characterized by the stiffness tensor ijklC  that corresponds 

to the coordinate frame in which 1x  denotes the symmetry axis as shown in fig 7. 
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Using the Voigt recipe 
ijklC  can be written as a symmetric 66 matrix of the following 

form: 
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CHTI .                                                   (13) 

 

Alternatively, it is possible to use Thomsen’s ( 986) parameters defined in a rotated 

coordinate system with the 3x - axis pointing in the symmetry direction.  

2.4.5.  Transverse Isotropy with tilted symmetry axis (TTI) 

Tilted transverse isotropy is a versatile model of anisotropy, which can be used to obtain 

formulae describing models with horizontal axes of symmetry. Transverse isotropy with 

a tilted symmetry axis (TTI media) has been recognized as a common feature of shale 

formations in overthrust areas. In tilted transverse isotropy media, angles of incidence 

and reflection are different. When the axis of symmetry and the vertical axis form an 

angle , it is described by the tilted transverse isotropy (TTI) model (Andy Nowacki et 

al). 

A clockwise rotation of the vertical symmetry axis through an angle   about the y-axis 

has the orthogonal transformation matrix 
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 .                                                                                                     (14) 

 

The corresponding Bond transformation matrix is given by (Auld, 1990; Carcione, 2007), 
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where ),cos( jiij xxr  , ji, 1, 2, 3, with ix  and jx  being the coordinate system before 

and after rotation, respectively. 

Taking into account that  

cos3311  rr  

sin3113  rr  

122 r                           ,                                                                                                 (16) 

032232112  rrrr  

I obtain the Bond matrix that corresponds to the transformation matrix (14), 
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Therefore, the stiffness matrix with the rotated symmetry axis is given by  

T

VTITTI MMCC   .                                                                                                         (18) 

Substituting matrices (6) and (17) into equation (18) results in the TTI stiffness matrix 
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.                                                                        (19)                                                         

 

The elements of matrix (19) are  
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If 2/  , the Bond matrix (17) is reduced to  
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and the TTI stiffness matrix is transformed into HTI matrix.  

For the purpose of the thesis, I considered a TTI medium with tilt in one plane only. 

The figure below indicates a TTI model with dip   and azimuth a. 

 

 

 

 

 

Figure 9. Transverse Isotropy and wave propagation in a medium. The axis is tilted away from the 

vertical, leading to TTI. The dip   and azimuth a (the dip direction) of the plane of isotropy define the TTI 

orientation. (Nowacki et al, 2011) 
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Figure 10. Photograph of shale outcrop showing a tilted transverse isotropy medium. 

   

2.5.  Effective medium 

The subject of effective media theories for fractured reservoirs is important in 

exploration seismology, since it may reveal information about permeability anisotropy 

and therefore about the preferred direction of the fluid flow (Grechka and Kachanov, 

2006a, b). The complexity of the reservoir structure (layering and fracture orientations) 

requires the use of tangible rheologies, so the fracture trend is to pass from simple 

symmetries, such as transverse isotropy, to lower anisotropic symmetries (eg., 

orthorhombic and monoclinic) (Tsvankin et al., 2010). If we consider a layered medium 

composed of layers of arbitrary anisotropy in welded contact (Figure 11), here we 

assume thin layers and stationarity. The axisx 3  is perpendicular to the layering. Each 

constituent has, relative to the total thickness of all the constituents, a cumulative 

thickness  niti ,...,1,  (with 1...1  ntt ), a density i , and an elastic modulus tensor 

whose elements  pqrsiC  relative to stress pqi  to strain rsi  according to the generalized 

Hooke’s law, rsipqrsipqi C   . In a notation form where jkipqrsi CC   according to the 
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convention 11 ,1 ,222   ,333  ,423  531  and  612  the convention on 

strains that [ 6,5,43,2,1 ,  ] [ 12,31,23,33,22,11  ], the stress – strain relation in a layer of 

the thi  constituent can be written  





6

1

,

k

kijkiji C  , .6,,1j                                                                                             (22) 

The elastic moduli for the long-wavelength equivalent anisotropic medium can be 

expressed in terms of thickness weighted averages of functions of the moduli of the 

constituents. 

 

Figure 11.  A stack of layers consisting of three constituents. Each constituent may be anisotropic. In any 

interval of thickness l or larger, where l is much smaller than a wavelength, the percentage of each 

constituent is assumed to be stationary with respect to the vertical coordinate 3x . 

 

 On the other hand, Backus (1962) averaging is also based on the effective medium 

theory, i.e. the effective elastic modulus represents an equivalent homogeneous 

medium which have the same elastic properties. The elastic properties of the effective 

medium depend on the degree of the vertical heterogeneity (Berryman et al 1999) and 
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the length of averaging (Sams and Williamson 1994, Liner and Fei 2006). The length of 

the averaging should be long enough so that properties of the medium are nearly 

independent for the vertical direction after smoothing. 

  

 

 

2.6. Backus Averaging 

 

 

 

 

Z              Z         

  

 

                                 

 

 Figure.12(a). A horizontally layered                                   12 (b). A homogeneous medium. 

       inhomogeneous medium.                                                                          

 

Backus averaging implies a harmonic mean of elastic moduli of well logs in a desired 

depth thickness. 

 

Backus (1962) presented an equivalent medium theory, thus a heterogeneous medium 

can be replaced by a homogeneous one which will predict the wave propagation in the 

actual medium. From figure 12(a), the horizontally layered medium is upscaled from 

inhomogeneous to a homogeneous one, figure 12 (b). That is when  >> Z . Where 

is the wavelength and Z is the layer thickness. 

 

The geological model above consists of a layered equally spaced vertical transverse 

isotropy medium with N layers. The Backus (1962) averaging gives the effective system 

matrix M
~

 given by a simple arithmetric averaging of all system matrices jM from the 
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stack of N layers. The Backus averaging method (Backus 1962) considers the thickness 

( Z ) of the stack of layers to be smaller than the source wavelength.  

Backus, used a simple arithmetic averaging 

  



N

j

j
N 1

1~
MMM ,                                                                                                   (23) 

to compute the effective medium. The standard Thomsen (1986) notations are used to 

compute the elements of matrices jM . The notations are; 

2
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2
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)21(3311 jjj cc  ,                                                                                                       (24) 

    
jjjjjjj cccccc 444433443313 21    , 

 
jjj cc 214466  . 

where jc11 , jc13 , jc33 , jc44 and jc66  are the elements of the stiffness matrix. The effective 

VTI medium properties are computed from the elements of matrix, M
~

. For a given 

formation, the arithmetric averaging operators are; 

1
1

33

2

33

13

33

2

13

1111
~ 


 c

c

c

c

c
cc , 

1
1

33

33

13

13
~ 


 c

c

c
c , 

1
1

3333
~ 


 cc ,                                                                                                                (25) 

1
1

4444
~ 


 cc , 

6666
~ cc  , 

 ~  

 

For practical purposes, Liner and Fei (2006) recommend the length of averaging to be 

less than or equal to one-third of the minimum dominant wavelength. 
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Moreover, according to Mavko et al (1998) individual layer thickness must be at least 

ten times smaller than the source wavelength. Periodicity of layers is not required and 

individual layers can be either isotropic or anisotropic. The Backus averaging equations 

were developed for layered models with isotropic and VTI layer constituents only. 

Backus (1962) developed relatively straightforward expressions for the five elastic 

constants ( 6644331311 ,,,, ccccc ) of the effective TI medium from volume averages of the 

elastic properties of the individual layers. 

 

2.7. Shoenberg – Muir Theory 

 

(a) 

 

 

 

 

 

 (b)          

 

     z  

 

                           x  

Figure 13. Stack of thin (compared to the wavelength) strata composed of HTI and VTI layers (a) and 

45TI and VTI layers (b). the percentage of each constituent is assumed to be stationary with respect to 

the vertical coordinate. 
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The Schoenberg – Muir (1989) theory states that an equivalent, homogeneous and 

anisotropic medium can be constructed from a layered medium composed of several 

thin layers, each anisotropic under the assumption of stationarity. To test the theory, we 

consider single transversely isotropic layers with different orientations of the symmetry 

axis and perform numerical simulations. Let us consider a finely layered medium 

composed of N arbitrarily anisotropic layers (Figure 13), with the z -axis perpendicular 

to the layering plane. Each layer is defined by density  , volume fraction  and elastic 

constants, ijc . The stiffness matrix for arbitrary anisotropy is written as; 
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with only 21 independent elements. The stiffness matrix (26) can be written in terms of 

four submatrices as  
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and T

TNC  is transpose of matrix TNC .   

According to Schoenberg and Muir (1989), the equivalent homogeneous medium is 

defined by the following matrix 
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and the thickness (volume fraction) weighted matrix average is defined as 





N

j

jj

1

CC                                                                                                                 (35) 

with 1
1




N

j

j  . 

 

 

 

 

                                                             



30 
 

CHAPTER THREE 
 

3.0 Upscaling in seismics 

Well- log data need upscaling to seismic frequency and the upscaling is normally than 

with Backus averaging (Backus 1962). Shale plays an important role in fluid flow and 

seismic wave propagation because of its low permeability and anisotropic 

microstructure (Sayers 2005). Shale is composed of clay minerals and these are 

intrinsically vertical transverse isotropy (VTI) anisotropic (Banik 1984). For the purpose 

of the thesis, I used a generalized analytical expression of Backus (1962) averaging for 

a stack of anisotropic thin layers by Schoenberg and Muir (1989), to derive explicit 

analytical formulae for common layer models with layer constituents that are; vertical 

transverse isotropy (VTI), horizontal transverse isotropy (HTI) and tilted transverse 

isotropy (TTI). The Intrabasalt 2 formation selected for the upscaling were modeled into 

different forms and analyzed subsequently. 

 

3.1 Methodology 

Basically, two methods were used for the upscaling. I used Backus averaging method 

(Backus 1962) and Schoenberg-Muir (1989) method. Backus averaging method 

(Backus 1962) considers the thickness (N) of stack of layers to be smaller than the 

source wavelength. The formation selected for the upscaling is Intrabasalt 2 formation 

and contains parameters such as pov , sov  , density, and anisotropy parameters epsilon   

( ), delta ( ) and gamma ( ). The Backus averaging was used to; 

(1)  Calculate the stiffnesses 11c , 12c  , 13c  , 33c  , 44c  and 66c . 

(2)  Analyse the VTI-VTI test. 

(3) Determine the effective properties versus net to gross. 

On the other hand, the Schoenberg –Muir (1989) method also considers periodic 

systems of equal composition whose single layers have transversely isotropic symmetry 

(VTI) with different orientations of the symmetry axis. The parameters used for the 
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Schoenberg-Muir theory were pov , sov , density, and anisotropy parameters epsilon ( ), 

delta ( ),   gamma ( ) and tilt. 

The Schoenberg –Muir (1989) theory was used to; 

(1) Determine the effective properties versus tilt in sand using the whole Intrabasalt 2 

formation. 

 (2) Analyse the VTI-HTI test. 

 (3) Analyse the VTI-TTI 45  test.  

  

3.1.1. Backus averaging method 

 I used well log data from the North Sea for the write up. The data contains eight 

feasible formations, thus Flett, Basalt 1, Intrabasalt 1, Intrabasalt 2, Intrabasalt, 

Hyaloclastic, Basalt and Lamba. The formations can be seen in figure 14. The formation 

selected for the Backus averaging and upscaling is intrabasalt 2 formation. It consists of 

1063 layers and the total depth of the formation is 161.849 m. 

The formation starts at the depth of 1760.481 m and ends at 1922.33 m. The medium 

consists of thin isotropic layers with P- and S- wave velocity, density and the anisotropy 

parameters epsilon ( ), delta ( ) and gamma ( ). The stiffnesses, 11c , 12c , 13c , 33c , 44c

and 66c  were computed for the individual layers using  equations (20) and (21). 

The stiffnesses were cross plotted against the depth and the models obtained were 

analyzed to find places of high stiffnesses and low stiffnesses. Figure 18 depicts the 

models obtained. The figures and their interpretation can be seen in chapter four. 
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Figure 14. Sonic pv , sv  and density logs of the eight formations. 

 

 

3.1.2 Shoenberg-Muir method 

For the purpose of the thesis, I assume the Intrabasalt 2 formation is a stack of N thin 

arbitrarily anisotropic layers with z-axis perpendicular to the layering plane. The 

Intrabasalt 2 data was modeled using matlab algorithm. The effective properties versus 

tilt in sand were determined. In addition, the VTI - HTI and VTI – TTI 45  against net to 

gross were also determined using values from table 1. 
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3.2 Discrimination between sand and shale 

15)  

                 16)       

 Figures 15 and 16. Cross plot of sp VV / -ratio and acoustic impedance. (15) Cross plot of sp VV /  against acoustic 

impedance of Intrabasalt 2 formation. (16) Cross plot of sp VV /  against acoustic impedance showing that different 

lithologies have different sp VV /  ratios.                      
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The most paramount difficulty in geological modeling is to take proper account of the 

various large to small-scale heterogeneities. We have large scale faults, micro cracks, 

cracks, fractures etc. Each type of heterogeneity influences fluid flow and for that matter 

there is the need for upscaling (Webber et al., 1990). The major tasks in seismic 

exploration are to obtain high quality images of the subsurface structures and to 

discriminate between different lithologies (Landrø, 2012). Our main target is to 

discriminate between sand and shale, simply because sand and shale might have the 

same acoustic impedance, therefore if we are not able to discriminate between the two 

lithologies, there is the probability of missing our target zone. Practical investigations 

show that shale has higher sp VV /  ratios than sands. In order to discriminate between 

sand and shale, acoustic impedance and the ratio of sp VV /  should be known. The 

product of seismic velocities and the mass density is called impedances. The P-wave 

acoustic impedance is the product of P-wave velocity and density and the S-wave 

acoustic impedance is the product of S-wave velocity and density. Fig 15 shows a 

crossplot of sp VV /  ratio against acoustic impedance. The Intrabasalt 2 data was used 

for the modeling. The data was loaded into matlab and computations were carried out. 

In order to discriminate between the two lithologies, an optimum constant of 7103.2 

was selected and the acoustic impedances of the individual layers were plotted against 

the optimum constant divided by the individual impedances. The pink line above was 

obtained as a result of the computation (fig. 16). Also, every point above the pink line 

was assigned flag one, which represents sand and every point below the pink line was 

assigned flag zero which represents shale.  The source code can be found in appendix. 

As can be seen from Fig 16, the red part represent sand and the blue part represent 

shale. I am using sand and shale, simply because research has shown that shale is 

intrinsically isotropic (VTI) while sandstone is intrinsically anisotropic (HTI). Also porosity 

and permeability are petrophysical parameters needed to quantify the mass and 

recoverability of oil and gas in reservoirs. Therefore there is the need for us to estimate 

the voids, cracks, fractures etc in the reservoirs. For instance, the size of voids in shale 

rock can vary by a few orders of magnitude from a few millimeters to a few nanometers. 

In the same way, the heterogeneity of gas shale comes not only from large scale 
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variation of pores and cracks during rock formation or compaction, but also from porous 

kerogen material in various stages of maturity. These heterogeneities cause 

nonuniformity and anisotropy of transport and mechanical properties such as porosity, 

permeability, wettability and absorption (Zhang et al, 2012). Due to that we have to 

integrate the information such as porosity and permeability extracted from the data at 

very small scale with the larger scale, ie, upscaling. 

 

3.3 Sand –Shale Intercalation 

Every flag has its depth, pv , sv , density, anisotropic parameters , ,, and  , 

stiffnesses 4433131211 ,,,, ccccc and 66c . The data was modeled again into sand–shale 

intercalation using matlab algorithm. The density and the stifffnesses were plotted 

against the depth. Figure 19, represents the models. Each model was analyzed and 

upscaled to find places of larger sands, high stiffnesses, low shale and vice versa. 
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3.4. Selection of sand –shale representatives and their analysis 

 

Figure 17. Model showing selection of sand-shale representation. 

Two points were selected from the model. One from each lithology. The points selected 

are indicated by the black arrows. Their stiffnesses and density were located from the 

model parameters and tabulated. The table below shows the lithology, stiffnesses and 

density of the selected points. 

 

Lithology 
11c (GPa) 12c (GPa) 13c (GPa) 33c (GPa) 44c (GPa) 66c (GPa) Density 

(g/cc) 

Sand 62.10 45.20 44.70 60.80 8.19 8.44 2.62 

Shale 24.50 2.14 3.45 20.90 9.11 11.10 2.47 

  

Table 1. Rock properties of lithology used to compute Backus averaging and Schoenberg –Muir 

averaging. 
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3.4.1 VTI – VTI and Net to Gross (N/G) test 

Table 1 was used to perform the VTI –VTI test. Net to gross (N/G) is the ratio of porous 

and permeable rocks to non-porous and non-permeable rocks in the reservoir. Thus the 

(N/G) indicates the amount of sand that can pay or the amount of sand that is sensitive 

to fluids. I used the Backus (1962) average effective medium theory to estimate the 

effective, upscaled anisotropic properties of the interbedded sand-shale sequences. I 

did it for different net to gross (N/G) values, ranging from 0 to 1. The first part of the 

averaging formulae represents sand while the second part represents shale. The first 

part of the averaging is a product of (N/G) and the averaging formulae while the second 

part is a product of (1- N/G) and the averaging formulae. Finally, the effective properties 

were computed and cross-plotted against net to gross (N/G). Matlab algorithm was used 

to compute the data numerically. The source code can be found in appendix. Figure 20, 

shows the models obtained. 

  

3.4.2. VTI - HTI and Net to Gross (N/G) test 

The Shoenberg - Muir formulae was used for the VTI - HTI test to estimate the effective, 

upscaled anisotropic properties of the interbedded sand-shale sequence. The effective 

properties were computed and cross-plotted against net to gross (N/G). Figure 21, 

depicts the models. The source code can be found in appendix.  

 

3.4.3. VTI - TTI 45  and Net to Gross (N/G) test 

The Schoenberg – Muir formulae was used for the VTI - TTI 45  test. This is a special 

case when we considered the tilt angle of the symmetry axis,  

 
4


   .                                                                                                                         (36)                                                                                                                      

After the computation, the effective properties were cross-plotted against net to gross 

(N/G). Figure 22, demonstrates the models.  
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3.4.4. Effective properties versus tilt in sand 

This is a special case when the whole intrabasalt 2 formation was considered as sand, 

which is a bit different from the previous ones. After the computation, the effective 

properties were cross-plotted against the tilt angles. Figure 23 shows the models.                                                                                     
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CHAPTER FOUR 

4.0 Results and Discussion 

 

Effective properties and stiffnesses with depth 
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Figure 18. Models of effective properties and stiffnesses with depth of formation. (a) stiffness 11c  versus 

depth of formation. (b) stiffness, 33c  versus depth of formation. (c) stiffness, 12c  versus depth of 

formation. (d) stiffness, 13c  versus depth of formation. (e) stiffness, 44c  versus depth of formation.         

(f) stiffness, 66c  versus depth of formation. (g) effective property, density versus depth of formation.       

(h) effective property, pv  versus depth of formation. (i) effective property, sv  versus depth of formation. 

(j) anisotropic parameter, epsilon versus depth of formation. (k) anisotropic parameter, delta versus depth 

of formation. (l) anisotropic parameter, gamma versus depth of formation. 
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From fig. 18 a, the stiffness tensor 11c  is very high at a depth range of 1765 m –1770 m, 

1780 m – 1790 m and most pronounced at 1880 m – 1990 m. The highest stiffness 

range between [80 – 90] GPa. The stiffness tensor 33c  is also very high at depth range 

of 1765 m – 1770 m, 1780 m – 1790 m and pronounced at 1880 m – 1990 m. 

Comparing the two figures, thus fig. 18 a and 18 b, I can infer that they have the same 

behavior and the same properties with depth of formation.  Looking at fig. 18 c, the 

stiffness tensor 12c started increasing with depth up to 1770 m and decreases gradually 

to 1780 m. It continues increasing and decreasing throughout the formation. The 

highest stiffness occurs at the depth 1880 m – 1882 m, with stiffness of [15 – 58] GPa. 

The behavior of 12c  is virtually the same as 13c . On the other hand, 44c and 66c  show 

almost the same behavior with the highest stiffness ranging between [40-44] GPa. The 

stiffness started increasing and decreasing up to a depth of 1868 m. It then remained 

constant at the depth 1870 m – 1876 m. This can be as a result of the sediments being 

homogeneous within the depth.  Fig. 18 g, also indicates the density profile, with the 

highest density falling within the depth range of 1880 m – 1900 m. The density profile 

started increasing from the surface of the formation up to 1770 m and decreases 

gradually to 1775 m. It continued increasing and decreasing with depth , with the 

highest density occurring at the depth of 1880 m – 1900 m and the lowest at the depth 

of 1795 m – 1800 m. The density might be higher as a result of the formation being 

more compact, less porous, and without voids and cracks etc. The effective property pv  

also exhibited the same behavior. From the model, pv is highest at the depth of 1880 m 

– 1900 m which might be due to the increase in fluid saturation. Therefore, I can 

conclude that the higher the density, the higher the pv . Comparing the stiffnesses with 

the density, I can infer that the higher the density, the higher the stiffness within the 

formation. Area of high pv  is also an indication of low stiffness. From (i), I could see that 

the sv  is very low at a depth of 1788 m – 1800 m, which might be decreasing fluid 

saturation. 

The anisotropic parameters also give an indication of high and low stiffnesses. The 

values of the parameter delta ( ) estimated from the well lies within the range
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09.00   . The values of the parameter epsilon ( ) and gamma ( ) also lie within the 

ranges of 2.00   , 25.00    respectively. At a depth of 1895 m - 1905 m, all the 

anisotropic parameters were very high, and then decreases abruptly within a depth 

range of 1815 m - 1890 m. Comparing with the stiffnesses, I could see a pattern which 

they all follow. Thus, when the anisotropic value is very high, there is the likelihood of 

the stiffness also being very high within the medium. 

Intercalation of Sand-Shale with Depth 
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Figure 19. Intercalation of sand-shale with depth. (a) Model of the stiffness 11c with depth.  (b) Model of 

the stiffness 12c with depth. (c) Model of the stiffness 13c with depth. (d) Model of the stiffness 33c with 

depth. (e) Model of stiffness 66c  with depth. (f) model of stiffness 44c with depth. (g) Model of density with 

depth.                                                                                                                                                                        
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From fig. 19 a, there is a huge shale deposit at the depth of 1760 m – 1785 m with few 

sand sandwiched between the shale deposit. The shale has low stiffness which can be 

attributed to the fact that during deposition, shale has a high porosity of 80% - 90%. 

Also the stiffness of shale is a bit high at a depth of 1875 m – 1880 m. This may be due 

to onset of cementation. At the depth 1880 m – 1900 m, there is also a huge deposit of 

sand with high stiffness, more compacted, and less porous etc. This might be clean 

sand and can be a reservoir rock. On the other hand, the stiffness 33c  also exhibits the 

same behavior. Both  11c  and 33c  are very high at a depth range of 1880 m – 1900 m. 

Their stiffness range between [80 – 88] GPa. Shale is also well pronounced at a depth 

of 1825 m -1860 m and 1760 m -1780 m with thin sand of few meters sandwiched 

between them. From fig. 19 c, there is a thick shale deposit at a depth 1760 m – 1860 m 

with thin sand sandwiched between the shale at the following depth; 1765 m – 1770 m, 

1782 m – 1788 m, 1790 m – 1795 m, 1810 m – 1820 m and 1848 m – 1852 m. The 

shale has low stiffness, high porosity, loose sediments etc. In addition, the shale is more 

compact at the depth 1830 m – 1840 m. This is because, as we move deeper into the 

subsurface, sediments begin to accumulate and overburden increases, resulting in high 

compaction. Also at the depth 1865 m – 1920 m, there is a huge deposit of sand with 

thin shale sandwiched between them. The sand stiffness is high, thus it falls within [20 – 

60] GPa. It is also more compact within the depth 1880 m – 1900 m and less compact 

at 1900 m – 1920 m. 13c  also demonstrated the same behavior with depth. At a depth 

range of 1860 m – 1920 m, there is very thick sand with few shale sandwiched between 

the sand. The stiffnesses vary from [10 – 58] GPa. On the other hand, at a depth range 

of 1760 m – 1860 m there is a high concentration of shale with minute sand sandwiched 

between them. 66c  and 44c  also have the same pattern. Shale is most pronounced at 

the depth of 1760 m – 1780 m and 1825 m – 1845 m, while sand is most pronounced at 

a depth range of 1860 m -1900m. On the average, the shale has low stiffness as 

compared to the sand. From fig. 19 g, the sand is denser at a depth range 1875 m – 

1900 m, while shale is less dense at a depth range of 1760 m – 1800 m, even though 

there are thin sand sandwiched between the shale, but the most predominant within the 
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depth 1760 m – 1880 m is the shale. The sand is also more pronounced within 1880 m 

– 1900 m. Its density is also very high. It falls within 2.9 g/cc – 3.0 g/cc.    

VTI-VTI and Net to Gross Analysis 

Figure 20. Models of effective properties versus net to gross.   
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From fig. 20 a, there is an exponential increase in pv  as net to gross (N/G) increases. 

When net to gross is 0, pv  is 2.9 km/s and when net to gross is 1, pv  is 4.8 km/s. It 

indicates that pv  is high in pure sand and low in pure shale in this model. It also shows 

that giving equal volume of sand-shale intercalation and shale, the pv  in the sand-shale 

intercalation will be higher than that of the shale. This is because the sand – shale 

intercalation might have more porosity than the pure shale, and as a result fluid 

saturation in the sand – shale intercalation will be high which gives high pv . When net to 

gross is 0, the shale has a pv of 2.9 km/s which is far less than that of the sand with net 

to gross of 1. This shows that the shale is more compact, have high rock stiffness and 

low porosity. When net to gross started increasing from 0 to 0.1, pv  also increases, 

which indicates that the shale is becoming porous, less compacted and there is an 

onset of fluid.    

From fig. 20 b, there is a gradual decrease in sv  as net to gross increases. This shows 

that sv  decreases with fluid saturation. When net to gross begins to increase, more 
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sand enters the formation and since sand is permeable, more fluid enters the formation 

and there is reduction in sv . When net to gross is 0, sv  is 1.92 km/s which gives an 

indication of shale, while net to gross of 1 gives sv  of 1.795 km/s which indicates sand.  

In model (c), the density increases with net to gross. This is because as net to gross 

increases more sand enters the formation. Therefore the stiffness becomes high and for 

that matter the density increases. Thus higher net to gross gives higher density and vice 

versa. When the net to gross is 0, the shale density is 2.47 g/cc and when net to gross 

is 1 the sand density is 2.62 g/cc. 

From (d), there is an exponential decrease in anisotropic parameter epsilon as net to 

gross increases. When net to gross is 0, anisotropic parameter epsilon is 0.084, while 

net to gross of 1 gives epsilon -0.01. This shows that when we have more sand than 

shale in a formation, it affects the anisotropic value. When epsilon is 0.06, net to gross 

is 0.2 and when epsilon is 0.02, net to gross is 0.45. This gives a clear indication that 

the anisotropic parameter epsilon is high in shale than in sand. 

Looking at model (e), there is a gentle decrease in anisotropic parameter gamma as net 

to gross increases. Net to gross of 0 corresponds to 0.11 anisotropic parameter gamma. 

On the other hand, net to gross of 1 corresponds to -0.015 anisotropic parameter 

gamma. From the model, it shows that shale is highly anisotropic, simply because it is 

fissile and laminated. Thus the rock readily splits into thin pieces along the lamination. 

From (f), the anisotropic parameter delta decreases exponentially with increasing net to 

gross. Net to gross of 1 corresponds to -0017 delta, while net to gross of 0 corresponds 

to 0.038 delta. It also emphasize that shale is highly anisotropic than sand. Among the 

three anisotropic parameters, it follows that delta >gamma>epsilon.                                                                                         
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VTI-HTI and Net to Gross Analysis 

Fig 21. Models of effective properties versus net to gross. 
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From fig. 21 a, there is an exponential increase in pv  as net to gross (N/G) increases. 

When pv  is 2.9 km/s, net to gross is 0, and when pv  is 4.8 km/s, net to gross is 1. It 

indicates that pv  is high in pure sand and low in pure shale in this case. It also shows 

that giving equal volume of shale and sand-shale intercalation, the pv  in the sand-shale 

intercalation will be higher than that of the shale. This is because the sand – shale 

intercalation might have more porosity than the pure shale, and as a result fluid 

saturation in the sand – shale intercalation will be high which gives high pv . When net to 

gross is 0, the shale has a pv of 2.9 km/s which is far less than that of the sand with net 

to gross of 1. This shows that the shale has high rock stiffness, more compact and low 

porosity. When net to gross started increasing from 0 to 0.1, pv  also increases, which 

indicates that the shale is becoming less compacted, porous and there is an influx of 

fluid.    

From fig. 21 b, there is a gradual decrease in sv  as net to gross increases. This 

indicates that sv  decreases with fluid saturation. When net to gross begins to increase, 
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more sand enters the formation and since sand is permeable, more fluids enter the 

formation and there is reduction in sv . When net to gross is 0, sv  is 1.92 km/s which 

gives an indication of shale, while net to gross of 1 gives sv  of 1.795 km/s which 

indicates sand.  

In fig. 21 c, the density increases with net to gross. This is because as net to gross 

increases more sand enters the formation. Therefore the stiffness becomes high and for 

that matter the density increases. Thus higher net to gross gives higher density and vice 

versa. The shale density is 2.47 g/cc when net to gross is 0, and the sand density is 

2.62 g/cc when net to gross is one. 

From fig. 21 d, there is an exponential decrease in anisotropic parameter epsilon as net 

to gross increases. When net to gross is 0, anisotropic parameter epsilon is 0.084, while 

net to gross of 1 gives epsilon -0.01. This shows that when we have more sand than 

shale in a formation, it affects the anisotropic value. Several anisotropic values attest to 

the fact. When epsilon is 0.06, net to gross is 0.2, when epsilon is 0.04, net to gross is 

0.35 and when epsilon is 0.02, net to gross is 0.45. This gives a clear indication that 

anisotropic parameter epsilon is high in the shale than in the sand model. 

From (e), the anisotropic parameter delta decreases exponentially with increasing net to 

gross. Net to gross of 1 corresponds to -0017 delta, while net to gross of 0 corresponds 

to 0.038 delta. It also emphasize that shale is highly anisotropic than sand.  

Looking at model (f), there is a gentle decrease in anisotropic parameter gamma as net 

to gross increases. Net to gross of 0 corresponds to 0.11 anisotropic parameter gamma. 

In addition, net to gross of 1 corresponds to -0.015 anisotropic parameter gamma. From 

the model, it shows that shale is highly anisotropic, simply because it is fissile and 

laminated. Thus the rock readily splits into thin pieces along the lamination.                                                                                                                 

Among the three anisotropic parameters it follows that delta>gamma>epsilon. 

Comparison between VTI – VTI and VTI – HTI  

From fig. 21, I could see that the pattern of the models is similar to that of the VTI – VTI 

models (fig 20). The effective properties versus net to gross in both cases gave the 
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same results. Therefore, I can conclude that, there is no difference between the VTI – 

VTI test and the VTI – HTI test. 

VTI-TTI 45 and Net to Gross Analysis 

Fig. 22 Models of effective properties versus net to gross. 
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From fig. 22 a, there is an exponential increase in pv  as net to gross (N/G) increases. 

When pv  is 4.8 km/s, net to gross is 1, and when pv  is 2.9 km/s, net to gross is 0. It 

indicates that pv  is high in sand and low in shale in this case. It also shows that we 

might have high pv  in heterogeneous formation and low pv  in homogeneous formation 

and vice versa. Therefore giving equal volume of shale and sand-shale intercalation, the 

pv  in the sand-shale intercalation will be higher than that of the shale according to the 

model. This is because the sand – shale intercalation might have more porosity, high 

stiffness etc than the pure shale, and as a result fluid saturation in the sand – shale 

intercalation will be high which gives high pv . When net to gross is 0, the shale has a pv
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of 2.9 km/s which is far less than that of the sand with net to gross of 1. This shows that 

the shale has low rock stiffness, less compacted and low porosity. 

From fig. 22 b, there is a gradual decrease in sv  as net to gross increases. It started 

decreasing from 1.92 km/s to 1.782 km/s and its counterpart, thus net to gross also 

started increasing from 0 to 1. Therefore when sand in a formation begins to 

accumulate, more fluids enter the formation and as a result sv  decreases with fluid 

saturation. This is so, because sv  is not sensitive to fluids.   

In fig. 22 c, the density increases with net to gross. The density of 2.47 g/cc has net to 

gross of 0. When the density started increasing net to gross also started rising. This is 

because as net to gross increases more sand enters the formation. Therefore the 

stiffness becomes high and for that matter the density increases. Thus higher net to 

gross gives higher density and vice versa. This can be seen in pure shale and pure 

sand. Empirically, the density of sand is higher than the density of shale.  

From model 22 d, the anisotropic parameter epsilon,   decreases exponentially with 

increasing net to gross. When net to gross is 0, epsilon,   is 0.086, while net to gross of 

1 gives 0 anisotropic parameter epsilon,  . This shows that when we have pure shale 

which is transverse isotropy with tilted symmetry axis, the anisotropy value epsilon,   

obtained in that formation is very high. In the same way when we have pure sand with 

tilted symmetry axis, the anisotropy value is very low. 

In fig 22 e, the anisotropic parameter delta,   started decreasing exponentially from 

0.038 to 0.005, while net to gross started increasing from 0 to 0.75. Anisotropic 

parameter delta,   started increasing again from 0.005 to 0.006 while net to gross 

continues to increase. Therefore anisotropic parameter delta,   varies in tilted 

transverse isotropy media. The variation mainly depends on the net to gross.  

 

Looking at fig. 22 f, anisotropic parameter gamma,   decreases with increasing net to 

gross. When net to gross is 1, the anisotropic parameter gamma,   is 0 and when net 

to gross is 0, the anisotropic parameter gamma,   is 0.11. This connotes that when we 
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have pure shale which is transverse isotropy with tilted symmetry axis, the anisotropy 

value gamma,   obtained in that formation is very high. In the same way when we have 

pure sand with tilted symmetry axis, the anisotropy value is very low.  

 

Comparison between VTI - TTI 45  and VTI – VTI / VTI – HTI  

From the models, I could see that the effective property pv versus net to gross is the 

same for all the three symmetries. On the other hand, the effective property sv of the VTI 

- TTI 45  model differs slightly from the VTI – VTI and VTI – HTI models. Even though , 

they all decrease with increasing net to gross, the sv  against net to gross in the VTI - 

TTI 45  model decreases faster than that of the VTI – VTI and VTI – HTI model. When 

net to gross is 1 in the VTI - TTI 45  model, its sv  is 1.78 km/s while net to gross of 1 in 

the other models gives 1.795 km/s. The density models are also the same irrespective 

of the angle. In addition, the anisotropic parameters in the VTI - TTI 45  model differs a 

bit from that of VTI – VTI and VTI – HTI. Anisotropic parameter epsilon,   decreases 

exponentially with increasing net to gross. Net to gross of 1 gives epsilon, 0 in the VTI - 

TTI 45  model, while net to gross of 1 gives epsilon, -0.01 in the case of the VTI – VTI 

and VTI – HTI. Therefore I can conclude that the anisotropic parameter,   decreases 

slowly in the VTI - TTI 45  model than in the VTI – VTI and VTI – HTI models. The 

situation looks different for delta,  in the VTI - TTI 45  model. The parameter decreases 

with increasing net to gross to some point and begin to increase with net to gross while 

that of the VTI – VTI and VTI – HTI models decrease with increasing net to gross. The 

behavior of gamma in the VTI - TTI 45  model and that of the VTI – VTI and VTI – HTI 

models are almost the same. The only difference is that the VTI - TTI 45  decreases 

slowly as compared with the VTI – VTI and VTI – HTI models. The anisotropic 

parameter gamma,  of 0 is equivalent to net to gross of 1in the VTI - TTI 45  model 

while gamma of 0 is equivalent to 0.9 net to gross in the other models. The values attest 

to the fact that gamma decreases slowly in the VTI - TTI 45  than the VTI – VTI and VTI 

– HTI models.    
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Effective properties versus tilt in sand 

Fig 23. Models of effective properties versus tilt in sand. 

 

 

 

 

 

. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0 10 20 30 40 50 60 70 80 90
4.35

4.352

4.354

4.356

4.358

4.36

4.362

4.364

4.366

4.368

Angle

V
p
 [

k
m

/s
]

0 10 20 30 40 50 60 70 80 90
2.458

2.46

2.462

2.464

2.466

2.468

2.47

2.472

Angle

V
s
 [

k
m

/s
]

0 10 20 30 40 50 60 70 80 90
1.5

2

2.5

3

3.5

4

Angle

R
h
o
 [

g
/c

c
]

0 10 20 30 40 50 60 70 80 90
0.05

0.052

0.054

0.056

0.058

0.06

0.062

Angle

E
p
s
il
o
n

a) b) 

c) d) 



57 
 

 

  

 

 

 

 

 

 

 

 

From fig. 23 a, effective property, pv  increases with angle. It started increasing steadily 

from 0   to 10  , then rose quickly from 10   to 80   and inclined in a gentle form from 80   

to 90  . In a nutshell, pv  increases with tilt in sand. The same behavior is observed in 

fig. 23 b, where sv  increases steadily from 0   to 10   and rises quickly from 10   to 80  . 

It further increases from 80   to 90  . So I can infer that effective properties  pv  and sv  

increase with tilt angle in a homogeneous formation. The density remains constant with 

angle throughout the formation since the whole formation is considered as sand.   

  

The patterns of the anisotropic parameters with tilt are different. From 23 d, anisotropic 

parameter epsilon,   decreases with increasing angle. It started decreasing gently from 

0.0607 to 0.0602 at an angle of 10  . It then reduces abruptly from 0.062 at 10   to 

0.0504 at 80  , until coming to rest at 90  . The anisotropic parameter gamma,   also 

exhibits the same behavior. It started decreasing from 0.1335 to 0.133 while tilt angle 

was increasing. It then declined quickly from 0.133 to 0.118 while tilt angle was 

increasing from 10   to 80  . It further declined from 0.118 to 0.1178 with the angle 
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increasing from 80   to 90  . But the situation looks different for anisotropic parameter 

delta,  . Delta,   started increasing with increasing angle up to 30  . It then began to 

decrease from 30   to 40   and declined further from 40   to 50  . It then declined 

abruptly from 40   to 80   and finally to 90  . 

 

Comparison between effective properties versus tilt in sand and VTI –VTI/ VTI - 

HTI 

Effective property, pv  increases with tilt in sand, and  also increases with net to gross. 

sv  also increases with tilt in sand while it decreases with net to gross. Anisotropic 

parameter epsilon,   decreases with tilt in sand and it also decreases with net to gross 

in the case of VTI – VTI and VTI – HTI. In addition, anisotropic parameter gamma,   

decreases with tilt in sand while it also decreases with net to gross. Delta,   increases 

with tilt in sand up to 30   and decreases gradually to 90   while it decreases with net to 

gross in the case of VTI – VTI and VTI – HTI models. 

 

Comparison between effective properties versus tilt in sand and VTI – TTI 45  

Effective property, pv  increases with tilt in sand, and increases with net to gross. 

Moreover, sv  increases with tilt in sand while it decreases linearly with net to gross. The 

anisotropic parameter,   decreases with tilt in sand while it decreases exponentially 

with net to gross. The anisotropic parameter   also decreases with increasing tilt in 

sand while it decreases exponentially with increasing net to gross. Finally, delta,   

increases from -0.0468 to -0.045 with tilt angle increasing from 0   to 30  . It then started 

decreasing with increasing tilt angle from 30   to 90  . On the other hand, delta 

decreases exponentially with increasing net to gross up to 0.75, and started increasing 

with net to gross up to 1.  
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CHAPTER FIVE 
 

5.0 Conclusions 

 

The main purpose of the thesis is to upscale real well log data using analytical 

equations presented by Backus (1962) and Schoenberg and Muir (1989). With regard to 

the upscaling, well log data from the North Sea is geologically analyzed with wave 

velocities ( pv , sv ), density and anisotropic parameters (epsilon, delta and gamma) in the 

form of transverse isotropy with vertical symmetry axis (VTI), horizontal symmetry axis 

(HTI) and tilted symmetry axis (TTI). Secondary properties such as 
s

p

v

v
 ratio and 

acoustic impedance are analyzed to discriminate between sand and shale.   

In the first experiment (VTI-VTI test), the effective properties and anisotropic parameters 

compose of a mixture of two selected points representing sand and shale is analyzed to 

find the effect on net to gross using Backus (1962) averaging. Increasing net to gross 

increases P- wave velocity ( pv ) and decreasing net to gross increases S- wave velocity 

( sv ). The decrease in net to gross can be misinterpreted as a change in fluid type or 

saturation. 

In the second experiment (VTI-HTI), the two points representing sand and shale are 

mixed and the net to gross is estimated. The P- wave velocity ( pv ) increases with 

increasing net to gross and the S- wave velocity ( sv ) decreases with increasing net to 

gross. The anisotropic parameters (epsilon, delta and gamma) compose of a mixture of 

sand and shale is decreasing with increasing net to gross. The increase in net to gross 

is as a result of increasing porosity and permeability.  

In the third experiment (VTI-TTI 45  ), the models show that P- wave velocity ( pv ) 

increases with increasing net to gross and S- wave velocity ( sv ) decreases with 

increasing net to gross. The anisotropic parameters comprising sand and shale 

decrease with increasing net to gross due to saturation effects. 
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The final experiment uses the whole Intrabasalt 2 formation as tilt angle in sand. The P- 

wave velocity ( pv ) and the S- wave velocity ( sv ) increase with tilt angle in sand and the 

anisotropic parameters of the same formation decrease with tilt angle in sand with the 

exception of delta, which increases up to 30   and then decreases with tilt angle till it 

reaches 90  . The anisotropic parameter delta varies depending on the angle of 

propagation.           
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Appendix  

 

Matlab code 

A.1. The script imports data containing depth, pv , sv , density, epsilon, delta, gamma, etc 

from datafile. A matlab algorithm was designed to carry out the Backus averaging and 

Schoenberg-Muir averaging. 

load intrabasalt2.dat 
%size(intrabasalt2) 
N=1063 
constant=2.3e7; 
TVd=zeros(N,1); 
Vp=zeros(N,1); 
Vs=zeros(N,1); 
Rho=zeros(N,1); 
eps=zeros(N,1); 
delta=zeros(N,1); 
gamma=zeros(N,1); 
ratio=zeros(N,1); 
impedance=zeros(N,1); 
  
  
TVd=intrabasalt2(:,1); 
Vp=intrabasalt2(:,2); 
Vs=intrabasalt2(:,3); 
Rho=intrabasalt2(:,4); 
eps=intrabasalt2(:,5); 
delta=intrabasalt2(:,6); 
gamma=intrabasalt2(:,7); 
ratio=intrabasalt2(:,8); 
impedance=intrabasalt2(:,9); 
 for i=1:N 
 C33(i)=Rho(i)*Vp(i)^2; 
 C44(i)=Rho(i)*Vs(i)^2; 
 C11(i)=C33(i)*(1+(2*eps(i))); 
 C13(i)=sqrt((C33(i)-C44(i))*(C33(i)*(1+2*delta(i))-C44(i)))-C44(i); 
 C66(i)=C44(i)*(1+(2*gamma(i))) 
C12(i)=(C11(i)-(2*C66(i))) 
 End 
plot(impedance,ratio,'*') 
  
 rationew=(constant)./impedance; 
 hold on 
 plot(impedance,rationew,'r'); 
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  hold off 
   
 for i=[1:N] 
 if ratio(i)>rationew(i) 
     flag(i)=1; 
 else 
     flag(i)=0; 
 end 
 end 
  flagone=find(flag==1); 
  ratioup=ratio(flagone); 
  impedanceup=impedance(flagone); 
  flagzero=find(flag==0); 
  ratiodown=ratio(flagzero); 
  impedancedown=impedance(flagzero); 
  figure 
  plot(impedanceup,ratioup,'*r') 
  hold on 
  plot(impedancedown,ratiodown,'*') 
  plot(impedance,rationew,'-m') 
plot(Vp,TVd) 
 plot(Vs,TVd,'r') 
 plot(Rho,TVd,'m') 
 plot(eps,TVd,'r') 
 plot(delta,TVd,'c') 
 plot(gamma,TVd,'g') 
 plot(C11,TVd) 
 plot(C13,TVd,'r') 
 plot(C66,TVd,'m') 
 plot(C44,TVd,'k') 
 plot(C33,TVd,'g') 
 
 
A 2. 
 
clear all; 
close all; 
  
load intrabasalt3.dat 
%size(intrabasalt3) 
N=1063; 
constant=2.3e7; 
TVd=zeros(N,1); 
Vp=zeros(N,1); 
Vs=zeros(N,1); 
Rho=zeros(N,1); 
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eps=zeros(N,1); 
delta=zeros(N,1); 
gamma=zeros(N,1); 
ratio=zeros(N,1); 
impedance=zeros(N,1); 
  
  
TVd=intrabasalt3(:,1); 
Vp=intrabasalt3(:,2); 
Vs=intrabasalt3(:,3); 
Rho=intrabasalt3(:,4); 
eps=intrabasalt3(:,5); 
delta=intrabasalt3(:,6); 
gamma=intrabasalt3(:,7); 
ratio=intrabasalt3(:,8); 
impedance=intrabasalt3(:,9); 
 for i=1:N 
 C33(i)=Rho(i)*Vp(i)^2/1000000000; 
 C44(i)=Rho(i)*Vs(i)^2/1000000000; 
 C11(i)=C33(i)*(1+(2*eps(i))); 
 C13(i)=sqrt((C33(i)-C44(i))*(C33(i)*(1+2*delta(i))-C44(i)))-C44(i); 
 C66(i)=C44(i)*(1+(2*gamma(i))); 
C12(i)=(C11(i)-(2*C66(i))); 
 end 
  
  
  
 plot(impedance,ratio,'*') 
  
 rationew=(constant)./impedance; 
 hold on 
 plot(impedance,rationew,'r'); 
  hold off 
   
 for i=[1:N] 
 if ratio(i)>rationew(i) 
     flag(i)=1; 
 else 
     flag(i)=0; 
 end 
 end 
  
  
 flagone=find(flag==1); 
 TVd_sand=TVd(flagone); 
 C11_sand=C11(flagone); 
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 plot(C11_sand,TVd_sand,'r*'),hold on 
  
 flagzero=find(flag==0); 
 TVd_shale=TVd(flagzero); 
 C11_shale=C11(flagzero); 
 plot(C11_shale,TVd_shale,'b*'),hold off 
 Xlabel('C11') 
 Ylabel('Depth[m]') 
 legend('Sand','Shale') 
 
A 3. 
 
VTI – VTI test 
 
clear all; 

close all; 

load code2.dat 

size(code2); 

code2 

C11=zeros(N,1); 

C12=zeros(N,1); 

C13=zeros(N,1); 

C33=zeros(N,1); 

C44=zeros(N,1); 

C66=zeros(N,1); 

Rho=zeros(N,1); 

  

C11=code2(:,1); 

C12=code2(:,2); 

C13=code2(:,3); 

C33=code2(:,4); 

C44=code2(:,5); 

C66=code2(:,6); 

Rho=code2(:,7); 

for i=1:101; 

ng=(i-1)/100; 

A1(i)=(C11(1)-((C13(1)^2)/C33(1)))*(ng)+((1-ng)*(C11(2)-((C13(2)^2)/C33(2)))); 

A2(i)=((C13(1)/C33(1))*(ng))+((1-ng)*(C13(2)/C33(2))); 

A3(i)=((1/C33(1))*(ng))+((1/C33(2))*(1-ng)); 

A4(i)=((1/C44(1))*(ng))+((1/C44(2))*(1-ng)); 

A5(i)=((C66(1))*(ng))+((C66(2))*(1-ng)); 

Density(i)=(Rho(1)*(ng))+((Rho(2))*(1-ng)); 
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C11ef(i)=A1(i)+((A2(i)^2)/A3(i)); 

C13ef(i)=A2(i)/A3(i); 

C33ef(i)=1/A3(i); 

C44ef(i)=1/A4(i); 

C66ef(i)=A5(i); 

Vpef(i)=sqrt(C33ef(i)/Density(i)); 

Vsef(i)=sqrt(C44ef(i)/Density(i)); 

epsef(i)=(C11ef(i)-C33ef(i))/(2*C33ef(i)); 

deltaef(i)=((C13ef(i)+C44ef(i))^2-(C33ef(i)-C44ef(i))^2)/(2*C33ef(i)*(C33ef(i)-C44ef(i))); 

gammaef(i)=(C66ef(i)-C44ef(i))/(2*C44ef(i)); 

end 

 ng=[0:0.01:1]; 

 plot(ng,gammaef,'m') 

 ylabel('gamma') 

xlabel('Net to gross') 

figure 

 plot(ng,deltaef) 

title('Delta') 

figure 

 plot(ng,epsef) 

title('Gamma') 

plot(ng,C11ef) 

plot(ng,C13ef) 

plot(ng,C33ef) 

plot(ng,C44ef) 

plot(ng,Vsef) 

 

A 4. 

 

VTI – HTI test 

 

clear all; 

close all; 

load final2.dat 

size(final2); 

Net=final2(:,1); 

Vp=final2(:,2); 

Vs=final2(:,3); 

Rho=final2(:,4); 

eps=final2(:,5); 
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delta=final2(:,6); 

gamma=final2(:,7); 

plot(Net,Vp); 

plot(Net,Vs,'r'); 

 plot(Net,Rho,'m'); 

 plot(Net,eps); 

 plot(Net,delta,'k'); 

 plot(Net,gamma,'r'); 

 

A 5. 
 
VTI – TTI 45 degree test 

 

clear all; 

close all; 

load shoenberg45.dat 

size(shoenberg45); 

Net=shoenberg45(:,1); 

Vp=shoenberg45(:,2); 

Vs=shoenberg45(:,3); 

Rho=shoenberg45(:,4); 

eps=shoenberg45(:,5); 

delta=shoenberg45(:,6); 

gamma=shoenberg45(:,7); 

plot(Net,Vp); 

plot(Net,Vs,'r'); 

plot(Net,Rho,'m'); 

plot(Net,eps); 

plot(Net,delta,'k'); 

plot(Net,gamma,'r'); 

 

 
 

 

 

A 6. 

 

Effective properties versus tilt in sand 

load intra.dat 
size(intra); 
angle=intra(:,1); 
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zero1=intra(:,2); 
Vp=intra(:,3); 
Vs=intra(:,4); 
Rho=intra(:,5); 
eps=intra(:,6); 
del=intra(:,7); 
gamma=intra(:,8); 
zero2=intra(:,9); 
plot(angle,eps,'g'); 
 

 
 

 

 

 

 


