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Abstract

A scheme for multi-level (embedded) Hartree-Fock theory is developed. The goal is

to reduce computational costs by treating different parts of an electronic system with

different degrees of accuracy. In this thesis, a two-level scheme is considered, where

one part is optimized through SCF iterations, and the other kept constant throughout

optimization. Cholesky decomposition is used to partition the start guess density matrix.

Test runs on some simple systems are presented, and show reasonably good agreement

with otherwise equivalent non-embedded calculations, although we cannot at the present

make any conclusions as to whether the method does in fact lower computational costs.
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Sammendrag

Denne oppgaven er startfasen i utviklingen av multi-level Hartree-Fock(MLHF) teori, en

modifikasjon av standard Hartree-Fock teori (HF) gjort for å redusere kostnadene ved

beregninger p̊a store elektroniske system. Tanken er å kunne dele opp et system i flere

subsystem som s̊a behandles med ulik grad av nøyaktighet. I denne oppgaven har vi

holdt oss til to niv̊a, der ett optimeres via self consistent field (SCF) iterasjoner, mens

den andre behandles som en konstant etter et initielt startgjett.

Vi forholder oss her til tetthetsbasert HF, og deler dermed den totale tetthetsmatrisen

i to, en aktiv og en rest-del. Kun den aktive tettheten blir parametrisert og dermed

oppdatert i løpet av iterasjonsmetoden, men man må ikke glemme at den totale energien

(som er den vi er interessert i å studere), den totale gradienten og den totale Hessianen

alle er avhengige av begge subsystemene. Dette gjør det nødvendig å utlede nye ligninger

og å tilpasse implementeringen i LSDalton1 til å passe v̊art system.

Oppdelingen av startgjettet for den totale tetthetsmatrisen utføres ved Cholesky

dekomponering, en metode som er vel egnet siden den konstruerer idempotente sub-

matriser samtidig som den ogs̊a bevarer denne egenskapen for den totale tetthetsmatrisa.

Energien optimseres ved bruk av andre-ordens Newton metode, som løses i et redusert

rom.

Test-beregninger er blitt utført med ulike enkle systemer. Som ventet ligger ener-

giverdiene for MLHF høyere enn dem utført med fullt system, noe som følger direkte av

variasjonsprinsippet, da v̊art system er noe mer unøyaktig enn det totale. Samtidig er

ikke avviket stort, og for tilstrekkelig store system kan man se for seg at denne feilen vil

virke liten i forhold til hva man kan tjene p̊a redusert data-kraft n̊ar metoden er ferdig

utviklet.

Det er fremdeles en del problem som bør løses før denne metoden blir nyttig i praksis.

I konstruksjonen av en idempotent matrise fra Superposition of atomic densities (SAD)

startgjettet kreves diagonalisering av den totale Fock-matrisa, noe som er kostbart, spe-

sielt for store system. Det bør her vurderes å innføres purifikasjon av tetthetsmatrisa

istedet. Det bør ogs̊a vurderes å benytte seg av approksimative metoder for Hessian in-

formasjonen i Newton-likningene, som for eksempel Augmented Roothan-Hall (ARH) som

unng̊ar full konstruksjon av de lineære transformasjonene. Tilslutt må metoder for å kon-

struere et fornuftig level-shift implementeres, og prekondisjonering av Newton-likningene
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må implementers.
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Chapter 1

Introduction

A recurring issue within quantum chemistry is the question of accuracy versus computa-

tional cost. A variety of different methods have been developed, but the fact still remains:

The more accurate our results, the more expensive our calculations. One of the earlier

methods available is the Hartree-Fock (HF) method. For qualitative energy-calculation

purposes, this is a good method, typically producing errors of around 1%11. Although

many more sophisticated methods have been developed, such as configuration interaction

(CI) or coupled cluster (CC)5, wave functions generated through HF calculations are of-

ten used as initial start-points for these. HF is therefore still highly relevant, both in its

own right, and as a preliminary step for more advanced calculations.

For large systems, calculations quickly get costly, and numerous attempts have been

made to alleviate this. This thesis concerns one such attempt, the development of a new

scheme to reduce the cost of Hartree-Fock calculations by treating different parts of a

system with different degrees of accuracy, namely multi-level, or embedded, Hartree-Fock

(MLHF). This is not a new idea, a variety of applications of multi-level schemes on dif-

ferent methods have been developed. Among them are procedures for multi-level coupled

cluster (MLCC) calculations developed by Myhre et al.23;24, embedding for density func-

tional theory (DFT)13, and the IMOMO method for embedded calculations of molecular

orbitals by Humbel et al.17. Countless other examples can also be found. One of the

main advantages of these sorts of schemes are that we can choose how we want to look

at the respective parts of our total system. In certain situations, good empirical data

might be available13, and it might therefore be deemed unnecessary to recalculate these.

In other instances, consider parts of the system might be considered best calculated with

one method, while other methods better suit other parts.

Within Hartree-Fock there has not previously been conducted any significant work to

develop a multi-level scheme, although a method called Hartree-Fock embedded cluster

has been used by among others Miguel et al.26 on inorganic calculations. The object

of this thesis is to develop a density-based multi-level scheme for Hartree-Fock energy

calculations. The idea is to first make a crude guess of the initial density matrix, and
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then carry out optimization exclusively on the interesting part of the system.

Although it was stated in the previous paragraph that we start with a crude start

guess, it is still of great importance that this initial density is not too inaccurate. It is

true for any type of calculation that a bad start guess can ruin the whole calculation

and impede convergence29. In MLHF, where optimization is only carried out on a small

part of the system, we get the additional aspect that this bad start guess will be retained

throughout calculations for the parts that are not optimized. The quality of the start

guess is therefore of even greater importance in MLHF than in other schemes. There are

many different ways to compute a start guess from a molecular geometry, among them

the Super-position of atomic densities (SAD)29 and the extended Hückel method 14;25.

We have used the former, and applied Cholesky decomposition 24;23 in order to correctly

partition the system. In this way work can exclusively be done in the atomic orbital (AO)

basis without having to actually compute the orbitals, only the density matrices.

When performing calculations in quantum chemistry there are a number of things

we should be aware of in order to make our calculations as efficient as possible. Earlier,

evaluation of Coulomb and exchange integrals were most time consuming12, but ways to

get around this have been found. Now, diagonalization of the Fock matrix has become on

of the big obstacles. Helgaker et. al.12 proposed exponential parametrization as a means

to completely avoid diagonalization. However Newton equations in a reduces space still

have to be solved, where the construction of the linear transformations of the Hessian

on a trial vector (HX) is a big obstacle. Roothan-Hall and Augmented Roothan-Hall

methods15 construct only an approximate version, but especially the latter still achieves

good results.

Outline of thesis

In Chapter 2 elementary theory of quantum chemistry in general and Hartree-Fock theory

in particular is reviewed. After looking at some founding principles, how the wave func-

tion is constructed and a quick introduction into Hartree-Fock theory, the density-based

approach is introduced. Chapter 3 covers the development of the multi-level approach

and how this affects the general equations from Chapter 2. In addition to this, certain

things should be kept in mind when implementing these developments into LSDalton1,

and these aspects are discussed in Chapter 4. Results from test runs are presented in

Chapter 5 and are discussed along with some other points in Chapter 6.
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Chapter 2

Theory

Although it may appear, in many elementary textbooks on physical chemistry, as though

quantum mechanical systems can be calculated exactly, this is not generally the case.

When we look at even quite simple systems, we are forced to use approximative methods

in order to obtain results. One of these methods is the Hartree-Fock method (HF),

which is an improvement on the earlier Self-Consistent Field (SCF) method5. As all

such methods it has advantages but also its drawbacks, and although it may no longer be

counted among the main methods in quantum chemistry, its is still in use and is interesting

in the sense that it is the foundation for many other more accurate methods28. In this

chapter HF will be described in detail, but first certain foundations on which it is based

will be introduced.

2.1 The Schrödinger equation

Perhaps the most important equation in quantum chemistry is the eigenvalue-equation

used to calculate the energy E of electronic systems, the Schrödinger equation 4

Ĥψ = Eψ (2.1.1)

where the Hamiltonian operator Ĥ contains the necessary terms for calculating the energy,

such as the kinetic and potential contributions, and the wave function ψ is an electronic

function of position and spin (see Section 2.2), and in certain situations, also time. The

form of the Hamiltonian and the wave function are dependent on the specific system in

question. The work of this thesis will be within the limits of the Born Oppenheimer

approximation (BO)4 where the nuclei are regarded as stationary in comparison with

the electrons, as the former are so much heavier than the latter. Also this work only

concerns itself with stationary systems, and therefore the wave function and Hamiltonian

are only required to be dependent on position and spin. This enables us to write the

time-independent electronic Hamiltonian (in atomic units)
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Ĥ =
∑
i

ĥ(i) +
∑
i>j

ĝ(i, j) + hnuc (2.1.2)

where ĥ(i) and ĝ(i, j) are defined as

ĥ(i) = −1

2
∇2
i −

∑
A

ZA
riA

(2.1.3)

ĝ(i, j) =
1

rij
(2.1.4)

Small indices sum over electrons, and capital indices sum over nuclei. ZA is the charge

of nucleus A, riA is the separation between electron i and nucleus A. rij is similarly the

separation between electrons i and j.

Looking closer at ĥ(i), we see that the first term is the electronic kinetic energy, while

the second is the potential energy as a result of attractive forces between electrons and

the nuclei. ĝ(i, j) is the repulsive potential energy between the electrons. The last term,

hnuc is the potential energy caused by interactions between the nuclei, and it follows from

BO that it can be treated as a constant in the system considered in this thesis.

Before proceeding, it should be noted that there are two rivalling notations used in

quantum chemistry, first- and second quantization. First-quantization is the intuitive

notation where we deal with standard eigenvalue problems, with operators working on

functions. In second quantization, on the other hand, the eigenfunctions themselves

are made up of operators, which will in turn alter the way the original operators are

defined. They both have their advantages, but in this thesis it is sufficient to work in

first-quantization only.

2.2 The electronic wave function

As mentioned in Section 2.1, to correctly describe a system, the wave function should be

chosen to depend on both spatial and spin-coordinates (r and ms respectively). This is

the case for spin-orbitals φi, but not for spatial ψi, which are only dependent on position.

When constructing spin-orbitals, it is convenient to make them products of a spatial

orbital and a spin-function σi

φi(x) = ψi(r)σi(ms) (2.2.1)

For electrons, the only allowed value of the spin quantum number s is 1
2
, but depending

on the orientation of this spin, it can have spin magnetic quantum numbers ms of either
1
2

or −1
2
4. These two states are often referred to as α- and β-spin.

There are two principal ways to combine spatial orbitals and spin-functions, either
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restricted or unrestricted. One commonly used method is to require that pairs of electrons

have the same spatial orbital, but opposite spin. This is called restricted HF (RHF), and

is convenient for closed-shell systems. In a system containing Ne electrons, there will

therefore be Ne

2
spatial orbitals, two spin-functions and Ne spin orbitals. The question

now arises as to what we should do with open-shell systems. We can either keep the

restricted approach to all the closed inner shells (Restricted open-shell), or allow all

spinorbitals to have different spatial components (Unrestricted open-shell Hartree-Fock,

UHF). The first approach is convenient, but has the disadvantage that we might miss out

on certain exchange interactions caused by spin, which will give us a too high ground state

energy. The second approach, UHF, gives better results for the energy through variation,

but does not produce a total ground state wave function that is an eigenfunction of the

total spin angular momentum5;11. This is, however, normally not a large problem5.

The Pauli principle 4 states that the wave function must be antisymmetric in the sense

that when we exchange two labels, the wave function must change sign. An example of

this would be if the electrons of two orbitals are exchanged. To ensure that this is the case,

spin-orbitals are combined in an antisymmetric way21, typically as Slater determinants

Φ5. These are normalized, antisymmetrized combinations of restricted spinorbitals and

have the following form

Φ(1, 2, . . . , N) =

(
1

N !

) 1
2

∥∥∥∥∥∥∥∥∥∥
φa(1) φb(1) . . . φz(1)

φa(2) φb(2) . . . φz(2)
...

... . . .
...

φa(N) φb(N) . . . φz(N)

∥∥∥∥∥∥∥∥∥∥
(2.2.2)

2.3 The variational theorem

Another central theorem in quantum chemistry is the variational theorem 2 which states

that for any guess made of a normalized wave function ψtrial, the computed energy

E[ψtrial] of the system will always be higher than the true ground state energy E0 of

the system5;27. This is given by the Rayleigh ratio

E[ψtrial] ≡ 〈ψ
trial|Ĥ|ψtrial〉
〈ψtrial|ψtrial〉

≥ E0 (2.3.1)

The significance of (2.3.1) is that the lower (normally the more negative) we manage to

make E[ψtrial], the nearer it is to E0. Equality occurs only when ψtrial is the true ground

state wave function. Therefore, in order to make E[ψtrial] a better approximation of the

ground state energy, we look at what parameters it contains and vary these in order to

minimize it. This is done until we are satisfied with our result, and we have now found

an upper bound to E0.
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As seen in the Section 2.2, a typical way to represent the wave function is with a

Slater Determinant, which is an anitsymmetric combination of molecular spinorbitals φi.

In this thesis, we will work only in the framework of RHF, which means that we only

need to work with doubly occupied spatial orbitals ψi. These spatial MOs are typically

constructed by linear combination of spatial atomic orbitals (AOs) χµ

ψi =
∑
µ

Cµiχµ (2.3.2)

When 〈Φ|Ĥ|Φ〉 is now minimized, it is with the object to find the set of coefficients Cµi

that minimize the energy.

It should be noted that a small error in the eigenvalues does not automatically imply

a correspondingly small error in the eigenvectors6. This has to do with the shape of the

function, and that it for the most part is important that approximations are good close to

the nucleus. In other words, an eigenfunction that is good only at short distances might

be preferable to one that is overall better, but is not as good at short range. At the same

time, it is generally true that approximation for the ground state energy approaches the

true value of E0 much faster than ψ approaches the true ground state wave function21.

So as long as we have half-good approximations to our eigenfunctions, we can still get

good results for the energy-eigenvalues. Another point is that although a wave functions

works well to calculate the energy, it might not produce a good result for other molecular

properties5.

2.4 Hartree-Fock theory

We are now ready to start discussing the main method of this thesis, namely the Hartree-

Fock method (HF), an ab initio method which is an improvement of the earlier self-

consistent field (SCF) method developed by Hartree21. Common to these methods is the

average treatment of the electronic potential5, but HF constructs it in a more accurate

manner. For each electron this potential is a spherically treated average stemming from

the n− 1 other electrons, which greatly simplifies calculations. As we shall see later, the

operators used in this method are dependent on its eigenfunctions, making HF iterative

by necessity. Calculations are run until self-consistency is reached.

As explained in Section 2.2, spatial orbitals and spin functions are combined in such

a way that all occupied spatial orbitals are doubly occupied, with electrons of opposite

spin. We will for the remainder of this thesis be working in this closed-shell molecular

orbital (MO) basis. From this point on, we will also restrict ourselves to only work with

real eigenfunctions, ψ∗ = ψ.

Looking back at (2.1.2), the Hamiltonian is made up of two operators, ĥ and ĝ. Often

however, it is more convenient to work with matrices, and we now define
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hpq =

∫
ψp(r1)ĥ(1)ψq(r1)dr1

=〈p|ĥ|q〉 (2.4.1)

gpqrs =

∫
φp(r1)φq(r1)ĝ(1, 2)φr(r2)φs(r2)dr1dr2 (2.4.2)

for electron 1 and 2. Up until now, electrons have been labeled with the indices i, j,

but from this point on, indices will only be needed for orbitals. The indices p, q, r, s, ...

are therefore defined to label MOs in general, i, j, k, l, ... to label occupied MOs and

a, b, c, d, ... to label virtual MOs. The Greek labels µ, ν, ρ, σ still label AOs. Applying this

new notation, the definitions (2.4.1) and (2.4.2) and the fact that all occupied orbitals

are doubly occupied spatial orbitals, the Hartree-Fock energy can be written as

EHF = 2

Ne/2∑
i

hii +

Ne/2∑
ij

(2giijj − gijji) + hnuc (2.4.3)

In (2.4.3), the potential is made up of to parts, giijj and gijji. These are called, respec-

tively, the Coulomb integral and the Exchange integral.

As presented in Section 2.3, the MOs are constructed as a linear combination of AOs,

and the coefficients are optimized to find the minimum energy. To do this, a Lagrangian

with the restriction that spatial MOs are orthonormal are introduced(Helgaker et al.11)

L(C) =E(C)− 2
∑
ij

εij (〈ψi|ψj〉 − δij)

=E(C)− 2
∑
ij

εij

(∑
µν

CµiSµνCνj − δij

)
(2.4.4)

εij is a Lagrangian multiplier, but we shall later see that it is also the orbital energies.

Sµν are the matrix elements of the overlap matrix, a measure of the overlap between the

AOs

Sµν = 〈χµ|χν〉 (2.4.5)

The next step is to differentiate (2.4.4) with respect to the coefficients and setting the

resulting equation equal to zero. This leads us to the Hartree-Fock equations

fC = SCε (2.4.6)

ε is a diagonal matrix with orbital energies on the diagonal. The Fock matrix f is the
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mean-field Hamiltonian containing 1-electron interactions and the averagely treated 2-

electron interactions with elements

fµν = hµν +
∑
i

(2gµνii − gµiiν) (2.4.7)

From (2.4.7) we see that the Fock matrix is dependent on the exact same coefficients that

are solved for in (2.4.6). SCF is therefore required. Solving the Hartree-Fock equations

(2.4.6) yields a diagonalization of the Fock matrix, we however do not need to restrict

ourselves to a diagonalized Fock matrix. A block diagonal one is sufficient since the

optimization condition only requires the occupied-virtual Fock matrix blocks to be zero.

As we shall see in Section 2.5, we can from now on work entirely in the AO basis.

2.5 Density-based Hartree-Fock theory

In the previous section we looked at the Hartree-Fock equations as functions of the MO

coefficients used to combine atomic spatial orbitals into molecular spatial orbitals

ψi =
∑
µ

χµCµi (2.5.1)

or equivalently

|i〉 =
∑
µ

|µ〉Cµi (2.5.2)

From here on we will only be working with density matrices, that describe the electronic

occupation of atomic orbitals. The elements of the atomic density matrix can be written

as

Dµν =2
∑
i

CµiCνi

=(CDMOCT )µν (2.5.3)

where the molecular density matrix DMO is diagonal with diagonal values of 2 for the

Ne/2 occupied spatial molecular orbitals, and zero for all other elements

DMO = 2

[
1Ne/2 0

0 0

]
(2.5.4)
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The next goal is to write the energy in terms of D. Using the bracket notation introduced

in (2.4.1) we can now write (h is symmetric)

∑
i

hii =〈i|ĥ|i〉 =
∑
i

∑
µν

〈µ|ĥ|ν〉CµiCνi =
1

2

∑
µν

hµνDµν

=
1

2

∑
ν

(hD)νν =
1

2
Tr(hD) (2.5.5)

and

∑
ij

(2giijj − gijji)

=
∑
ij

[
2
∑
µνρσ

CµiCνiCρjCσjgµνρσ −
∑
µνρσ

CµiCνjCρjCσigµνρσ

]

=
1

2

∑
µνρσ

DµνDρσgµνρσ −
1

4

∑
µνρσ

DµσDνρgµνρσ

=
1

4

∑
µνρσ

(2gµνρσ − gµσρν)DµνDρσ (2.5.6)

From now on, all quantities where the basis is not otherwise specified should be assumed

to be in the AO basis. To simplify notation, the matrix G for the two-electron interactions

is introduced

Gµν(A) =
∑
ρσ

(2gµνρσ − gµσρν)Aρσ (2.5.7)

which gives the total equation

E =2
∑
i

hii +
∑
ij

(2giijj − gijji) + hnuc

=Tr(hD) +
1

4
Tr(DG(D)) + hnuc (2.5.8)

In Sections 2.4 we talked about the Fock operator which is the (one-electron) operator in

Hartree-Fock equations. In the density-based formulation, the Fock matrix is defined as

fµν = hµν +
1

2

∑
ρσ

Dρσ (2gµνρσ − gµσρν) (2.5.9)

which gives us
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2 (fµν − hµν) =
∑
ρσ

Dρσ (2gµνρσ − gµσρν) (2.5.10)

Inserting this into (2.5.8) the energy becomes

E =
∑
µν

hµνDµν +
1

2

∑
µν

Dµν (fµν − hµν) + hnuc

=
1

2
Tr(Dh) +

1

2
Tr(Df) + hnuc (2.5.11)

2.6 Parametrization of transformations on the AO

density

For a given electronic state there are many possible determinants and therefore also many

possible density matrices(Helgaker et al.11) and MO coefficients.

In order to find these other possible coefficients and density matrices, unitary trans-

formations are performed on the coefficients through the parametrization C̃ = C exp(κ),

where κ is an antisymmetric matrix that varies our system, in the MO basis. As pre-

viously stated, this thesis concerns work done in the AO basis, we therefore define a

corresponding antisymmetric matrix in the AO basis, X, related to κ as X = CκCT .

Before proceeding, it should be noted that the density matrix considered until now

requires diagonalization. If possible, this should be avoided, and a new density matrix

in the AO basis, R, is therefore introduced. It is a scaled version og the normal density

matrix D, so that R = 1
2
D. R does not require diagonalization, and it fullfills the

conditions

RT = R (2.6.1)

TrRS =
1

2
N (2.6.2)

RSR = R (2.6.3)

In particular the last equation, (2.6.3), the Idempotency condition is of great importance

in this work. All of the equations (2.6.1), (2.6.2) and (2.6.3) are general properties for

scaled density matrices for closed-shell systems with doubly occupied orbitals. In order

to vary R we parametrize it with X

R(X) = exp(−XS)R exp(SX) (2.6.4)

which can be expanded as
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R(X) = R + [R,X]S +
1

2
[[R,X]S ,X]S + . . . (2.6.5)

When using this in further equations, we will truncate after second order in X.

2.7 Electron correlation

In Section 2.4 it was seen that one of the main advantages with HF is the average way

it treats the electronic potential. This, however, is also the method’s biggest problem. It

disregards instantaneous electronic interactions and the ”quantum mechanical effects of

the electron distribution”5, in other words it ignores electron correlation.

This stems from the fact that the potential is treated in an average way, as a spherical

potential surrounding the electron in question5. Instantaneous interactions between the

n− 1 other electrons are completely disregarded. This is a problem as the electrons tend

to stay away from each other because of the repulsive forces between them. In a true

system, the probability of finding two electrons, and especially two with the same spin,

close by each other is very low. The HF method avoids electrons with the same spin

being close to each other, but doesn’t set restrictions for those of opposite spin. The

difference between the Hartree-Fock energy and the true nonrelativistic energy is called

the correlation energy.

Ecorr = Eexact − EHF (2.7.1)

The most obvious way to solve this is by including terms of inter-electronic distances,

but this becomes complicated for atoms with more than a few electrons. As a result, a

multitude of post-HF methods have been developed.

In the HF method described above, our wave function only includes the ground state.

However, in configuration state functions (CSFs), a combination of excited states are

included as well5. The configuration interaction (CI) method constructs its wave function

as a linear combination of CSFs. In HF calculations, our accuracy is always dependent

on the number of basis functions we include. This is true also for CI, but in addition

we are limited by the number of CSFs we construct from this given basis set. The case

where all ”CSFs of appropriate symmetry are included for a given finite basis set”5 is

called full CI. This obviously becomes costly quite quickly, but results from full CI are

often used as a reference point in comparison with other methods11.

In CI calculations the coefficients cµi determining the combination of basis function in

each spatial orbital are predetermined with HF and kept fixed, it is only the coefficients

of the excited determinants that are optimized. An extended method where also cµi are

varied is the multiconfiguration self-consistent field method (MCSCF)5. By definition this

method will be quite expensive, but it allows us to use a smaller number of CSFs than
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in CI5.

The two previous methods are both variational, but not size extensive. Common

size-extensive methods are perturbation theory and coupled cluster theory (CC).

Before concluding this discussion about alternative methods, density functional theory

(DFT) ought to be mentioned. This, unlike the ones discussed above, can not be called

a post HF method, as it builds on a completely different concept than the ab inito

approaches. The idea is that all properties of the electronic system can be described by

the position-dependent electronic distribution5. A variety of semi-empirical methods are

also available.
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Chapter 3

Multi-level Hartree-Fock theory

As mentioned in the Introduction, this thesis is a study of a system that is such that

not all its parts have to be calculated to the same degree of accuracy. This is called

multilevel, or embedded, Hartree-Fock, where the word multilevel comes from the fact

that we will be looking at different parts of the system with different levels of accuracy.

In this thesis, only two levels will be considered. The total system is therefore divided

into two parts, one that is to be calculated accurately (the active part, Da), and one that

can be viewed in a more crude manner (the rest-part or inactive part, Dr). Each of these

will have its own density matrix, and the sum of these two is the density matrix for the

whole system

D = Da + Dr (3.0.1)

The following equations are all based on the ones presented in Chapter 2, which are

all from Helgaker et al.12;11. The first sections of this chapter covers the fitting of the

equations to our multilevel system. We will also derive how the equations for the lin-

ear transformations will look in our new scheme and conclude with a quick note about

preservation of idempotency.

3.1 Ground state energy for the multi-level scheme

Starting off with (2.5.8), we fit it to the multi-level scheme by inserting (3.0.1). Using

that Tr(DrG(Da)) = Tr(DaG(Dr)) this gives

E =Tr((Da + Dr)h) +
1

4
Tr((Da + Dr)G(D)) + hnuc

=Tr(Dah) + Tr(Drh) +
1

4
Tr(DaG(Da))

+
1

4
Tr(DrG(Dr)) +

1

2
Tr(DrG(Da)) + hnuc (3.1.1)
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As repeatedly stated throughout this thesis, the Fock matrix plays an important role in

quantum chemistry. We now want to write an equivalent of (2.5.11) with the split-density

notation. Since the Fock matrix is dependent upon D, it is necessary to define one Fock

matrix for the active part and one for the rest-part. For the active part, define

fa,µν = hµν +
1

2

∑
ρσ

DAO
a,ρσ (2gµνρσ − gµσρν) (3.1.2)

and equivalently for the rest-part. The Fock matrix of the total system is then

fµν = fa,µν + fr,µν − hµν (3.1.3)

Inserting this into (2.5.11), we get

E =
1

2

∑
µν

Dµνhµν −
1

2

∑
µν

Dµνhµν +
1

2

∑
µν

fa,µνDµν +
1

2

∑
µν

fr,µνDµν + hnuc

=
1

2

∑
µν

fa,µνDµν +
1

2

∑
µν

fr,µνDµν + hnuc

=
1

2
Tr(Dafa) +

1

2
Tr(Dafr) +

1

2
Tr(Drfa) +

1

2
Tr(Drfr) + hnuc (3.1.4)

3.2 Parametrization of the ground state energy

As mentioned in Section 2.6, the density matrix D is inconvenient to use in calculations.

It is therefore more common to use its scaled version, R = 1
2
D, which is split into an

active part and a rest-part just as for the original unscaled system, see (3.0.1). If we now

define

Ra =
1

2
Da (3.2.1)

Rr =
1

2
Dr (3.2.2)

we have that R = Ra + Rr which is analogous to (3.0.1).

The main objective of this thesis is the energy-optimization of the active part of our

system. In order to do this we need to find the first- and second-order derivatives of this

energy. To be able to vary the system, the active scaled density matrix Ra is parametrized

as in Section 2.6, and the energy expression is differentiated with respect to X. Since

Rr does not depend on X, all the the energy-terms dependent only on Rr will disappear

upon differentiation, and can therefore be eliminated from our energy-equation in the

situations where we are only interested in finding its derivatives. We write (E − Er) as

(3.1.1), minus the pure rest terms and insert (3.2.2) and the expanded version of (3.2.1)
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(as in (2.6.5)) to get

(E − Er)(X) =E(0) + 2
∑
µν

([Ra,X]S)µνhµν +
∑
µν

([[Ra,X]S ,X]S)µνhµν

+
∑
µν

(Ra)µν(G([Ra,X]S))µν +
1

2

∑
µν

(Ra)µν(G([[Ra,X]S ,X]S))µν

+
∑
µν

([Ra,X]S)µν(G(Ra))µν +
∑
µν

([Ra,X]S)µν(G([Ra,X]S))µν

+
1

2

∑
µν

([[Ra,X]S ,X]S)µν(G(Ra))µν

+2
∑
µν

([Ra,X]S)µν(G(Rr))µν +
∑
µν

([[Ra,X]S ,X]S)µν(G(Rr))µν

+O(X3) (3.2.3)

E(0) contains all terms that are zero-order in X and O(X3) contains all the higher-order

terms. The reason that for not expanding Rr is that we view this as a constant matrix,

and therefore do not want to optimize it by varying X.

For two symmetrical matrices A and B we have the relation11

Tr(AG(B)) = Tr(BG(A)) (3.2.4)

which for us has the nice consequence that

Tr(RaG([Ra,X]S)) = Tr([Ra,X]S G(Ra)) (3.2.5)

Tr(RaG([[Ra,X]S ,X]S) = Tr([[Ra,X]S ,X]S G(Ra)) (3.2.6)

It is desirable to exchange the terms with G(Ra) with terms containing the Fock matrix.

The active Fock matrix is

fa = h + G(Ra) (3.2.7)

Inserting this into (3.2.3) gives

(E − ER)(X) =E(0) + 2Tr(fa [Ra,X]S) + Tr(fa [[Ra,X]S ,X]S)

+Tr([Ra,X]S G([Ra,X]S)) + 2Tr([Ra,X]S G(Rr))

+Tr([[Ra,X]S ,X]S G(Rr)) +O(X3) (3.2.8)

A useful trait of the matrix X is that it can be written in terms of E−µν
11, the anit-
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symmetric combination of the elementary matrices Eµν (refer to Helgaker et al.11 for

definition)

E−µν = Eµν − Eνµ (3.2.9)

in the following manner

X =
∑
µ>ν

XµνE
−
µν (3.2.10)

This enables us to write (3.2.8) as

(E − ER)(X) =E(0) + 2Tr

fa

[
Ra,

∑
µ>ν

XµνE
−
µν

]
S


+Tr

fa

[Ra,
∑
µ>ν

XµνE
−
µν

]
S

,
∑
ρ>σ

XρσE
−
ρσ


S


+Tr

[Ra,
∑
µ>ν

XµνE
−
µν

]
S

G

[Ra,
∑
µ>ν

XµνE
−
µν

]
S


+2Tr

[Ra,
∑
µ>ν

XµνE
−
µν

]
S

G(Rr)


+Tr

[Ra,
∑
µ>ν

XµνE
−
µν

]
S

,
∑
ρ>σ

XρσE
−
ρσ


S

G(Rr)

+O(X3) (3.2.11)

This will now be used to find the electronic gradient and Hessian.

3.3 Hartree-Fock electronic gradient and Hessian

Both the electronic gradient and Hessian are evaluated at X = 0, which means that to

find the gradient, only the terms that are first order in X are needed, and for the Hessian

only those that are second order in X needed. Also, since only the (scaled) density

matrix for the active part is a function of X, it is unproblematic to leave the terms only

dependent on the rest-part (Er) out of the calculations. The terms from (3.2.11) needed

to find the HF gradient are therefore
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E1,µν(X) =2Tr
(
fa
[
Ra, XµνE

−
µν

]
S

)
+2Tr

([
Ra, XµνE

−
µν

]
S
G(Rr)

)
(3.3.1)

(3.3.1) is now differentiated with respect to X and the cyclic trace rule is used in order

to apply certain features of E−µν and Eµν
11. First, for all antisymmetric A

Tr(E−µνA) = 2Tr(EµνA) (3.3.2)

and secondly, for all M

Tr(EµνM) = Mνµ (3.3.3)

Using all this, the electronic gradient becomes

E(1)
µν (X) =4 (faRaS− SRafa)νµ

+4 (G(Rr)RaS− SRaG(Rr))νµ

=4 (SRafa − faRaS)µν

+4 (SRaG(Rr)−G(Rr)RaS)µν (3.3.4)

Similarly we will now find the electronic Hessian. The terms from (3.2.11) needed for

this are

E2(X) =Tr

fa

[Ra,
∑
µ>ν

XµνE
−
µν

]
S

,
∑
ρ>σ

XρσE
−
ρσ


S


+Tr

[Ra,
∑
µ>ν

XµνE
−
µν

]
S

G

[Ra,
∑
µ>ν

XµνE
−
µν

]
S


+Tr

[Ra,
∑
µ>ν

XµνE
−
µν

]
S

,
∑
ρ>σ

XρσE
−
ρσ


S

G(Rr)

 (3.3.5)

Differentiating twice with respect to X and defining a permutation operator Pτυ,αβ that

permutes the index-pairs τυ and αβ, gives
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E
(2)
τυαβ(X) = (1 + Pτυ,αβ)Tr

(
fa
[[
Ra,E

−
τυ

]
S
,E−αβ

]
S

)
+ (1 + Pτυ,αβ)Tr

([
Ra,E

−
τυ

]
S
G
([

Ra,E
−
αβ

]
S

))
+ (1 + Pτυ,αβ)Tr

([[
Ra,E

−
τυ

]
S
,E−αβ

]
S
G(Rr)

)
(3.3.6)

3.4 Second-order optimization with Newton’s Method

The gradient and Hessian presented in Section 3.3 are explicitly constructed, which is

highly expensive step in calculations when attempting to optimize the energy. We there-

fore need to resort to approximative solutions, here specifically Newton’s method, as used

by Høst et al.15 and more closely explained in Helgaker et al.11. In this method the en-

ergy Q(X) is a Taylor expansion of the energy truncated after second order. X is, as

explained in previous sections, the parameter to be varied in optimization

Qn(X) = E(0)
n + XTE(1)

n +
1

2
XTE(2)

n X (3.4.1)

The equations to be solved in Newton’s method are the linear equations

E(2)
n Xn = −E(1)

n (3.4.2)

where E
(2)
n is the n’th iteration of the electronic Hessian around the expansion point

X = 0, E
(1)
n is the corresponding electronic gradient. (3.4.1) is best solved iteratively

in a reduced space algorithm, such as the Davidson algorithm 9. We will derive how the

Newton equation will look for the embedded system, and start by truncating (3.2.8) to

second-order

Q(X) =E(0) + 2Tr(fa [Ra,X]S) + Tr(fa [[Ra,X]S ,X]S)

+Tr([Ra,X]S G([Ra,X]S)) + 2Tr([Ra,X]S G(Rr))

+Tr([[Ra,X]S ,X]S G(Rr)) (3.4.3)

We then differentiate each term with respect to Xµν as in the previous section and set

Q′(X) = 0. Using that

Tr
(
[A, [B,C]S]S

)
= Tr

(
[[A,B]S ,C]S

)
(3.4.4)

[A, [B,C]S]S + [B, [C,A]S]S + [C, [A,B]S]S = 0 (3.4.5)

20



[[
Ra,E

−
µν

]
S
,X
]
S

= −
[[
E−µν ,Ra

]
S
,X
]
S

(3.4.6)

and (3.3.2), we get

4Tr
(
fa [Ra,Eµν ]S

)
+4Tr

(
[Ra,Eµν ]S G (Rr)

)
=− 4Tr

(
fa [[Ra,X]S ,Eµν ]S

)
−2Tr

(
fa
[
[X,Eµν ]S ,Ra

]
S

)
−4Tr

(
[Ra,Eµν ]S G ([Ra,X]S)

)
−4Tr

(
[[Ra,X]S ,Eµν ]S G (Rr)

)
−2Tr

([
[X,Eµν ]S ,Ra

]
S
G (Rr)

)
(3.4.7)

The next step is to expand the commutators containing Eµν . We also need to apply the

cyclic trace-rule, (3.3.3) and set the equation for all µ, ν. We then introduce the following

notation (symmetric and antisymmetric, respectively)

[M]S =
1

2

(
M + MT

)
(3.4.8)

[M]A =
1

2

(
M−MT

)
(3.4.9)

We are now left with

8 [faRaS]A8 [G (Rr)RaS]A

=−
[
16fa [RaSX]S S− 8 [faRaS]AXS + 16G

(
[RaSX]S

)
RaS

+ 16G (Rr) [RaSX]S S− 8 [G (Rr)RaS]AXS
]A

(3.4.10)

or its scaled version

− [faRaS]A− [G (Rr)RaS]A

=
[
2fa [RaSX]S S− [faRaS]AXS + 2G

(
[RaSX]S

)
RaS

+ 2G (Rr) [RaSX]S S− [G (Rr)RaS]AXS
]A

(3.4.11)

We now have the negative electronic gradient on the left side, and the linear transfor-

mation of the Hessian on the trial vector X on the right, as −G = HX. As mentioned,

this will be solved in a reduced room algorithm, meaning that the Hessian is never ex-

21



plicitly constructed. The Hessian is replaced by an approximate version, and we get

quasi-Newton equations that we solve instead. Among such approximative algorithms

are the already mentioned davidson algorithm9 or augmented Roothan Hall method15.

3.5 Projection of the orbital rotation operator

The object of the transformation introduced in Section 2.6 is to make it possible, through

orbital rotations, to reach all other possible determinants, and thereby find the optimized

density matrix and molecular energy. The orbital rotation parameters in κ mix between

all MOs12, but not all these parameters affect the wave function, or density matrix. These

redundant parameters can be excluded without doing harm to our parametrization. It

should also be noted that including redundant parameters can result in a considerable

problems during optimization, such as singularities in the Hessian11, which should be

avoided.

In RHF, rotations among occupied-occupied orbitals and virtual-virtual orbitals are

redundant. The only nonredundant rotations are those between occupied and virtual

orbitals. In our scaled density matrix approach, these redundancies are removed by

projecting our orbital rotation operator X so that its only non-zero elements are in the

occupied-virtual and virtual-occupied blocks. This projection is done by defining the

projectors

P = RS (3.5.1)

Q = 1−RS (3.5.2)

P and Q project onto the occupied and virtual MO space, respectively(Helgaker et al.11),

and we can now use them to properly project X

Xov =PXQT + QXPT

=PXQ + QXP (3.5.3)

Our new projected R is then

R(X) = exp(−XovS)R exp(SXov) (3.5.4)

An additional projection is also necessary, but for a different reason. The initial scaled

density matrices are all idempotent, but as Ra is updated, it must be ensured that the

complete scaled density matrix R stays idempotent as well. This is ensured by adding
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the projection

Xp =(1−RrS)X(1−RrS)T

=(1−RrS)X(1− SRr) (3.5.5)

to our linear transformation. We call this last projection Qr-projection. It ensures idem-

potency by removing terms containing cross-mixing between the active an inactive part

in the total density matrix, and a proof of how the idempotency of the total density

matrix is preserved is given in Section 3.7.

3.6 Projected Newton equations

Until now, we have been looking at a version of the AO basis that is not necessarily or-

thonormal. One of the consequences of this, is that the overlap matrix S is not restricted

to the identity matrix. However, there are great advantages to work in an orthonormal

basis15, and for the rest of this section we will be looking at orthonormalized systems,

henceforth called the OAO basis. There are several methods for orthonormalizing our

initial atomic functions fi
7, but maybe the most convenient is the symmetric orthogonal-

ization or the Löwdin decomposition which has the advantage that the orthonormal set of

functions ψi closely resembles the initial atomic functions. This is ensured by minimizing

the square difference between fi and ψi

∑
i

∫
|ψi − fi|2dτ (3.6.1)

The generation of ψi is performed through a unitary transformation with the unitary

matrix U

ψi =
∑
j

fj(UΛ−
1
2U−1)ji (3.6.2)

where Λ−
1
2 is a positive diagonal matrix. An obvious advantage of working in an or-

thonormalized basis is the fact that since S = 1, matrix-multiplications are simplified.

Furthermore, the condition number (a measure of how sensitive the system is to small

deviations19) is greatly reduced15. In 2.6, we introduced a number of conditions, the

symmetry condition (2.6.1), the trace condition (2.6.2) and the idempotency condition

(2.6.3) for the scaled density matrix. In the new basis, the symmetry condition stays the

same, and the equivalents of the trace and idempotency conditions are

Tr(Ru) =
1

2
N (3.6.3)
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(Ru)2 = Ru (3.6.4)

where Ru is a scaled density matrix in the OAO basis. P and Q are also equivalently

written as

P = Ru (3.6.5)

Q = 1−Ru (3.6.6)

We are now ready to look at the main object of this section, namely to find the projected

Newton equations. In Section 3.5, we saw that the orbital rotation operator X has to

projected in order to avoid redundancies. It is however also necessary to project the

equations as a whole in order to obtain the right unitary transformations. Høst et al.15

found that the PQ-projected Newton equation −G = HX for the regular non-embedded

system can be written as

− (Fov − Fvo) = (Fvv − Foo)Xov + Xov (Fvv − Foo)

+Gov ([R,Xov])−Gvo ([R,Xov]) (3.6.7)

where Fov = PFQ and so on. So how does this translate for the embedded scheme? The

equivalent Newton equation is (3.4.11), in the AO basis. We now need to convert this

into the OAO basis, substitute for the projected orbital rotation operator Xov and then

PQ-project the complete result. This gives

−1

2
[−Fov + Fvo + Gvo(Ru

r )−Gov(Ru
r )]

=− 1

2
[(Fvv − Foo)Xov + Xov (Fvv − Foo)

− Gvo ([Ru
a,Xov]) + Gov ([Ru

a,Xov])

− (Gvv(Ru
r )−Goo(Ru

r ))Xov + Xov (Gvv(Ru
r )−Goo(Ru

r ))] (3.6.8)

where Ru
a and Ru

r are the equivalents of Ra and Rr in the OAO basis. This is scaled by a

factor −1
2

in comparison to the original equation(this stems from how (3.4.8) and (3.4.9)

are defined). This is not a problem, it should just be remembered during implementation.

As stated i Section 3.5, for our scheme, it is not sufficient to remove the occupied-

occupied and virtual-virtual redundancies. In order to preserve idempotency for the

complete system, we also need to implement Qr-projection. Unlike the PQ-projection

shown above, this does not produce simplified equations, so the projections will not be
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attempted to be written out here. It should just be remembered during implementation

that both X and the complete equations should be projected with Qru = 1−Ru
r .

3.7 Idempotency

As mentioned in Section 2.6 an important trait of the scaled density matrices is that they

are idempotent

RSR = R (3.7.1)

We construct the initial density matrices R, Ra and Rr to be idempotent, but we need

to be sure that this is not only true initially, but also after each optimization iteration

done on Ra

Rn+1SRn+1 = Rn+1 (3.7.2)

where

Rn+1 = Rn+1
a + Rr (3.7.3)

From the structure of Ra and Rr we know that initially,

RaSRr = 0 (3.7.4)

The unitary transformations used to update Ra are

Rn+1
a = exp(−XpS)Rn

a exp(SXp) (3.7.5)

where Xp here is the Qr-projected version of the antisymmetric matrix X for parametriza-

tion

Xp =(1−RrS)X(1−RrS)T

=(1−RrS)X(1− SRr) (3.7.6)

with the following expansion

exp(SXp) = 1 + SXp +
1

2
(SXp)

2 +O(X3
p) (3.7.7)

When we now want to prove (3.7.2), this is equivalent to
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Rn+1SRn+1 =(Rn+1
a + Rr)S(Rn+1

a + Rr)

=Rn+1
a SRn+1

a + RrSR
n+1
a + Rn+1

a SRr + RrSRr

=Rn+1
a + Rr = Rn+1 (3.7.8)

From this, we see that proving (3.7.2) is equivalent to proving that

Rn+1
a SRr = RrSR

n+1
a = 0 (3.7.9)

Since Rn+1
a SRr and RrSR

n+1
a are the transpose of each other, proving that one of them

is equal to zero is sufficient. Insert (3.7.5) into (3.7.9), and using the expansion (3.7.7),

gives

Rn+1
a SRr = exp(−XpS)Rn

a exp(SXp)SRr

= exp(−XpS)Rn
a

(
1 + SXp +

1

2
SXpSXp +O(X3

p)

)
SRr (3.7.10)

The first term, we already know from (3.7.4) is zero. The rest of the terms all end with

XpSRr which can be proved to be zero as well

XpSRr = (1−RrS)X (1− SRr)SRr

= (1−RrS)X(SRr − SRrSRr) (3.7.11)

since Rr is idempotent (SRr = SRrSRr). We have now proved that Rn+1
a SRr = 0 and

thereby (3.7.2). This means that if Rr and Rn+1
a are idempotent, so is Rn+1.

One might note that even though this is true theoretically, if one is not careful with

what numerical methods used to update Ra, idempotency might not be preserved. If this

is the case, the method should be changed so that idempotency is in fact preserved, or

purification should be implemented as a step in each iteration.
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Chapter 4

Practical considerations surrounding

the implementation

In the previous chapter theoretical consequences of partitioning of the density matrix

were discussed. However, since we are not only interested in the theory, but also in

being able to run calculations using our new method, we will here briefly introduce a few

practicalities concerning how to perform these calculations. All calculations have been

run in the density-based framework of the LSDalton1 package.

4.1 Start guess

As stated by Lenthe et al.29, the quality of the start guess for the orbital densities is

of high importance for any type of calculation. Starting with an inaccurate guess can

force the SCF calculation to run through so many iterations that the procedure ends

up being exceedingly slow. In some instances convergence might not be reached at all.

Especially for the embedded scheme a bad start guess can have damaging results as Rr

is not updated in the optimization and therefore will remain the same no matter how

many iterations are performed.

Density matrix from atomic input

Lenthe et al.29 proposed a procedure where the initial density is found from the atoms

and constructs a density matrix that is a superposition of the atomic densities (SAD).

These are block-diagonal, but nonidempotent. Several schemes exist to solve this problem,

maybe the most intuitively obvious one, and the one currently applied in our calculations,

is to from the initial density matrix create the Fock matrix which is then diagonalized.

From this diagonalized Fock matrix, we find our molecular coefficients, and thereby our

idempotent density matrix (in the AO basis). The problem with this method is that

it requires diagonalization of the complete Fock matrix, which is a costly affair. An

27



alternative that avoids this impracticality is to purify the density matrix11;22. This is an

iterative fixed-point procedure19 which has been shown to give fast convergence, and can

be applied to even the most nonidempotent density matrices.

An alternative to the SAD start guess is the extended Hückel method, where the

Hartree-Fock equations (2.4.6) are solved in an approximate manner to find the wave

function14. The diagonal elements on the Hamiltonian Hii are chosen from table values,

and the off-diagonal elements Hij are found as a scaled average of Hii and Hjj multiplied

with the non-zero overlap matrix. This method has been proven to give good geometry

optimization, but is not necessarily so good for other calculations. This can be somewhat

helped by making the Hamiltonian elements dependent on charges8, with the disadvan-

tage that the method now has to be iterative25. In our scheme however, this is not a

problem as we are already dealing with a self-consistent method, and the Hückel method

would only be used to make an initial guess of the density matrix.

Partitioning into active- and rest densities

In LSDalton1 there are already procedures in place for acquiring a good SAD start guess

from the input molecular geometry, but in the multi-level scheme, we have to make

sure that the density matrix is partitioned in such a way that we retain the necessary

properties in both the active and rest matrices, as well as in the total(see (2.6.1),(2.6.2)

and (2.6.3)).

We have implemented two schemes for this in LSDalton. The first is a procedure

where the molecular coefficients obtained through diagonalization are partitioned, and

the active- and rest densities are found from these. Both the total and the partitioned

densities produced are idempotent.

The disadvantage of the procedure described above is the fact that it requires the

coefficient matrices that can only be found through diagonalization of the Fock matrix,

which we have already discussed is costly. A commonly used procedure which instead al-

lows direct partition the total density matrix is Cholesky decomposition3;23. This method

is used in among others methods Multi level CC23, and the active and rest densities are

selected to be localized on the active and rest atoms, respectively. The method pro-

duces orthonormal, localized orbitals3. The diagonal elements over a specific threshold

(typically 0.223) on active atoms are selected and the corresponding column and row are

removed from the total density matrix. This procedure is repeated until all the active

elements have been removed, and we are then left with the rest density. This partitioning

makes sure the wave function is consistently defined throughout the entire system.
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4.2 Level-shift

As explained in Section 3.4, we solve our system by Taylor-expanding the energy as a

function of X around the expansion point X = 0 and truncating after second order as in

eq. (3.4.1). For convenience we repeat it here

Q(X) = E(0) + XTE(1) +
1

2
XTE(2)X (4.2.1)

This can also be described as a trust-region method, or a quadratic model18;16. When

used correctly, this method should produce quadratic convergence.

The trust-region is defined as the region where (4.2.1) is a good approximation to

the non-truncated expression. The second-order expression gives us a hyberbola with h

as the radius. We define X to be within the trust-region if ‖X‖ ≤ h where ‖X‖ is the

Frobenius norm18. If this is true and the Hessian is positive definite, we can iteratively

solve the simple equation

E(2)X = −E(1) (4.2.2)

However, if the conditions above are not upheld, X must be constrained in such a way

that we do not go beyond the trust-region. This we do by introducing a Lagrangian

L(X, µ) = E(0) + XTE(1) +
1

2
XTE(2)X− 1

2
µ(XTX− h2) (4.2.3)

with µ the Lagrangian multiplier to ensure that we stay inside the trust-region. We call

µ the level-shift. The equation now to be solved to obtain minimization is

(E(2) − µI)X = −E(1) (4.2.4)

The problem now is to determine µ so that the stationary point found is in fact a min-

imum, as there are many possible solutions to (4.2.4). In the conjugate residual with

optimal trial vectors (CROP) algoritm30 implemented in the LSDalton package1, the

level shift is determined from the HOMO-LUMO gap, which is problematic as this prop-

erty really does not make sense in our system and will cause extremely slow convergence.

A better approach is to use the line-search procedure, which will not be further discussed

in this thesis, but refer to Høyvik et al.16 for a detailed description.
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Chapter 5

Results

In order to test the developed procedure, various test runs were performed. The calcula-

tions were performed using the LSDalton1 package. We have used Cholesky decomposi-

tion for partitioning.

Table 5.1 shows computed energy values at completed SCF for a system containing

two water molecules where one is active and the other inactive. Calculations have been

performed with four different basis sets.

Table 5.1: Energy of two water molecules [a.u.]

Basis set Standard HF Multi-level HF Difference

STO-3G -149.934809 -149.903011 -0.031798
6-31G -151.979938 -151.922755 -0.057183

cc-pVDZ -152.062705 -152.029779 -0.032926
cc-pVTZ -152.121240 -152.088265 -0.032975

Similarly, Table 5.1 shows computed energy values at completed SCF for a system

of four water molecules, where one water molecule is active and the remaining three are

inactive. Calculations have been performed for three different basis sets.

Table 5.2: Energy of four water molecules [a.u]

Basis set Standard HF Multi-level HF Difference

STO-3G -293.235140 -293.209950 -0.025190
6-31G -298.309056 -298.137738 -0.171318

cc-pVDZ -298.509631 -298.311472 -0.198159

The gradient norms of the two-water system in the STO-3G basis set and the four-

water system in the cc-pVDZ basis set have been plotted logarithmically against the of

iteration number in Figure 5.1. From the figure we see that the simple system indicates

quadratic convergence, while the more extensive system shows no such trend.
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(a) Two water molecules, STO-3G (b) Four water molecules, cc-pVDZ

Figure 5.1: Gradient norms for two different systems are plotted logarithmically against
iteration number. System 5.1a contains two water molecules where one is active, one
inactive, with basis set STO-3G. System 5.1b contains four water molecules where one is
active, three inactive, with basis set cc-pVDZ

A slightly more extensive system considered is that of a pyrimidine molecule sur-

rounded by nine water molecules, as shown in Figure 5.2. The geometry has been roughly

optimized in Avogadro10, and we choose the pyrimidine molecule to be active, and the

water molecules to be inactive.

Figure 5.2: Pyrimidine molecule surrounded by nine water molecules

Calculations were run on the pyrimidine system using the basis sets STO-3G and

6-31G. Table 5.3 shows the final results of the calculations at completed SCF for the two

different basis sets.
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Table 5.3: Energy of pyrimidine molecule surrounded by nine water molecules [a.u.]

Basis set Normal Multi-level Difference

STO-3G -899.517396 -899.460102 -0.057294
6-31G -916.498590 -915.654250 -0.844340
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Chapter 6

Discussion

This thesis involves the development and implementation of equations fit for the multi-

level system. This has been done for both the evaluation of the energy and for the solution

of the Newton equations. For the latter the equations have been proven correct through

numerical differentiation and the implementation is verified through the fact that we

get quadratic convergence close to the minimum for simple systems that do not require

level-shift. Cholesky decomposition has been implemented to ensure correct partitioning,

and additional projections have been added to maintain idempotency of the total system

throughout the optimization process.

In the previous chapter, we saw that all the MLHF energy values are comparable

to, but always higher than, those computed from the normal total-density scheme. This

follows directly from the variational theorem5. The objective of this thesis was to reduce

computational cost, but we do not as yet have any proof that this is in fact the case. This

is because, although up and running, our system is not yet satisfactorially implemented.

In order to verify (or not) that the MLHF method does in fact lower computation costs,

we need to solve this problem. The following discussion is about steps we might take in

order to make the scheme a real alternative to other procedures.

First of all, the start guess is crucial as we keep Rr constant. As mentioned in Chapter

4, we should consider other methods than SAD29, e.g the extended Hückel method14;25.

The next point is that construction of the HX linear transformations is a costly affair,

especially if we are dealing with large systems, as is the aim of this thesis. In our

calculations we have used an algorithm that requires this construction as in eq. (3.6.8).

This gives us accurate results, but is quite costly because we are forced to repeatedly

calculate two-electron integrals. For standard HF, methods have been developed to get

around this, among them the Roothan-Hall(RH) and augmented Roothan-Hall(ARH)

methods15. In the first method the two-electron contributions are completely ignored,

which will greatly compromise the accuracy of our results. In the second, however, quite

good results are obtained by constructing an approximative Hessian from approximative

two-electron integrals. In further work, it should be strongly considered whether to
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implement an analogous scheme fit to the the multi-level scheme in order to reduce

calculation costs.

When solving the linear transformations preconditioning is required. This means to

alter the linear transformations in such a way that we lower the condition number and

therefore simplify calculations. In LSDalton1 this method is already in place, but not in

a way fit for our scheme. This must be resolved before computations can be run using

MLHF on big systems.

Another issue concerning the solution of the linear transformations is the use of level-

shift18. As mentioned in Chapter 4, algorithms for choosing an appropriate level-shift

needs to be in place in order to obtain quadratic convergence. There are in LSDalton1

available routines for performing a line-search algorithm, a next step would be to properly

link these for application in our calculations. The default in the ARH scheme cannot be

used because of its dependence on the HOMO-LUMO gap.

Also note that in our implementation of Cholesky decomposition in LSDalton1, it is

a requirement that in the initial total density matrix, the elements of the active space

are the ones first on the diagonal. An improved version of this routine should be able to

partition the total density regardless of the arrangement of atoms in the input file.

Before we conclude this discussion it should be mentioned that in this thesis we have

only described a scheme where Rr is kept constant. It might be considered whether it

is desirable to instead optimize this part as well, but with a less accurate method than

for Ra, as in MLCC23. Another possibility is to combine MLHF and MLCC in such a

way that the total system is partitioned and treated as in MLHF, but the active part is

further partitioned and treated with MLCC. Other things to consider would be whether

to expand the scheme to contain more that two levels or if it would be convenient to work

in the MO basis as opposed to the AO basis.
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Chapter 7

Conclusion

The multi-level scheme presented in this thesis is shown to give comparable, but higher

results from energy calculations than the non-embedded scheme. This is as expected

as only parts of the density matrix is optimized, and we therefore are dealing with a

more crude system than in standard Hartree-Fock calculations. The work done in this

thesis involves the development and implementation of equations fit for the multi-level

scheme. This has been done for both the evaluation of the energy and the solution of

the Newton equations. For the latter the equations have been proven correct through

numerical differentiation and the implementation is verified through the fact that we

get quadratic convergence close to the minimum for simple systems that do not require

level-shift. Cholesky decomposition has been implemented to ensure correct partitioning,

and additional projections have been added to maintain idempotency of the total system

throughout the optimization process.

However, as the procedure is not yet completely developed, we cannot as yet make any

conclusions as to whether computation costs are remedied. A number of improvements

have been proposed and it is to be hoped that once these are implemented, the procedure

might become an advantageous one.
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Chapter 8

Future work

As repeatedly stated, a number of alterations are necessary to make the MLHF scheme

an advantageous method. Firstly, a preconditioning of the linear transformations suited

for our system is needed. Secondly, a method for creating a good level-shift must be

implemented, for instance the line-search procedure. Thirdly, the method should be

considered being made suitable for approximative solution of the Newton equations with

methods such as ARH. Lastly, we do not yet know the full effect the choice of start guess

has on our results. The Hückel method and other methods for obtaining initial density

matrices should therefore be implemented in order to compare run-times and so on with

the current SAD start guess.
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