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Abstract

In this Master’s thesis a seismic modelling study has been performed on a

geological outcrop at Kvalvågen on Spitsbergen. Geological and petrophysical

models were made in order to simulate a seismic survey over the outcrop using

forward seismic modelling. The synthetic data is then processed to seismic

images aiming to study thin layers and the complex geological structures

found in the outcrop.

The Petrel software was used to make the geological models and the Mada-

gascar software package is used to acquire and process the synthetic seismic

data. The geological and petrophysical models are based on an image of the

outcrop and measurements from rock samples taken at the outcrop.

The final images display the improvements of reverse time migration com-

pared to the Kirchhoff Pre-stack time migration especially in the more com-

plex geological settings of the model. It is found that the vertical resolution

is at least 5 meters in the depth migrated section and it is shown how the

vertical resolution decreases with decreasing frequency content. The effects

of frequency filtering on a seismic image is presented and it is shown how

this might be helpful with regards to seismic interpretation.

Acquisition related dispersion effects cause some odd vertical lines in the final

sections but is attributed to high frequency content and/or grid size. The

final images of this thesis are of high seismic quality and this is attributed

to the high frequencies in the source signal, absence of multiples, the use

of perfect velocities in the processing and the homogeneous geological and
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petrophysical models.
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Samandrag

I denne hovudoppgåva er ei seismisk modellering utført på geologisk blot-

tning ved Kvalvågen på Spitsbergen. Geologiske og petropfysiske modeller

av blotninga vart laga og deretter nytta i ein simulert seismisk innsamling

ved hjelp seimisk framover modellering. Den syntetiske dataen vart deretter

prosessert til seimiske bilete med mål om å studera tynne lag og dei komplekse

geologiske strukturene i blottninga.

Programvaren Petrel er nytta til å laga den geologiske og dei petropysiske

modellane og Madagascar programvarepakken er nytta til å samla inn og

prosessere den syntetiske seismisk dataen. Modellane i denne hovudoppgåva

er laga på grunnlag av eit bilete av blottninga og målingar tatt på bergart-

sprøvar.

Dei endelege seismiske bileta synar fordelane med å nytta revers tid migrasjon

framfor Kirchhoffs Pre-stack tidsmigrasjon særleg i dei meir komplekse delane

av modellen. Den vertikale oppløysinga er funnen til å vera minimum 5

meter i den dybde migrerte seksjonen and det synast korleis den vertikale

oppløysinga synk med synkande frekvens innhald. Effekten av å filtere ut

visse frekvensar i eit seismisk bilete er vist og fordelane som detta kan føra

til i seismisk tolkning er og vist.

Dispersjonseffektar i høve med innsamling gjev nokre merkelege vertikale lin-

jer i dei seismiske bileta. Årsaka vert funnen til å vera ein blanding av høgt

frekvens innhald og får liten gitterstorleik. Dei endelege bileta i denne hov-

udoppgåva er av høg seimisk kvalitet og dette vert forklart som å vera eit
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resultat av høge frekvensar i kjeldesignalet, fråvær av multiplar, bruk av per-

fekte snøggleikar i migrasjonane og dei homogene geologiske og petrofysiske

modellane.
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Chapter 1

Introduction

Forward seismic modelling is a technique used in the geosciences to generate

synthetic seismograms by numerically computing the displacement measured

by a set of seismic receivers caused by seismic waves propagating through

a geological model (Carcione, 2002; Ikelle and Amundsen, 2005; Krebes,

2004). Generating synthetic seismic sections is a tool that geoscientists can

use to better interpret seismic data especially in geologically complex areas,

better understand seismic wave propagation and test seismic processing and

inversion algorithms (Johansen, Kibsgaard, et al., 1994; Tøndel, 1997).

The goal of this thesis is to make a geological and petrophysical models

based on a image of a geological outcrop at Kvalvågen on Spitsbergen, Nor-

way. From here seismic data will be generated by simulating seismic wave

propagation and seismic images produced by processing the seismic data.

The outcrop is small and on the scale of a oil and gas reservoir so this thesis

aims to investigate how well thin layers can be resolved in the final image

and if the all of the faults in the section will be imaged.
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chapter 2 aims to give the reader a better understanding of theory behind

the methods used in this thesis with an emphasis on seismic modelling. The

numerical theory, emphasizing on finite difference modelling, the use forward

seismic modelling in geoscience and short introduction to seismic imaging is

presented.

chapter 3 will present the geological setting of the outcrop at Kvalvågen and

discuss the stratigraphy and structural setting of the area.

chapter 4 should get the reader acquainted with the available data which is

used in this thesis.

chapter 6 is where the results from the geological interpretation, model build-

ing, seismic modelling and seismic processing will be presented.

chapter 7 will contain the discussions on the results from chapter 6 and also

include some thoughts on sources of error and potential further work.

chapter 8 is where the main findings of the thesis are summed up and con-

clusions are drawn.
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Chapter 2

Theory

This chapter will give an introduction to the theory behind the work done in

the later chapters of the thesis. A throughout introduction to Forward seismic

modelling is given together with a description of the theoretical framework

that the seismic modelling software used in this thesis is based on. The use

of seismic modelling in geoscience is discussed and a work flow for perform-

ing seismic modelling is presented. Several of the sections presented in this

chapters are modified from Steinsbø (2012).
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2.1 Forward Seismic Modelling

The goal of a geophysical forward problem is to do some kind of physical

experiment on a model of the earth which will produce a set of data values

that corresponds to the measurements one would get from performing the

same experiment in nature. An inverse problem involves recreating an earth

model from measurements taken in nature, Figure 2.1 shows a simple sketch

illustrating the forward and inverse problem. Forward seismic modelling

uses numerical solutions of the wave equations and is used in geoscience to

produce synthetic seismograms of the subsurface (Krebes, 2004). Geological

models and models of physical properties of the earth, such as velocity and

density of the subsurface are used to the predict travel times and amplitude

data measured at a set of seismic receivers.

Figure 2.1: Sketch showing the inverese and forward problems

Understanding how seismic waves propagate through the earth is essential

to generate good numerical solutions of wave propagation in the subsurface.

Seismic wave propagation in the subsurface can be viewed as material par-

ticles in earth set in motion due to pressure waves. Newtons second law of
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motion is sufficient to describe material particles of a solid body set in motion

by elastic waves. The equation of motion is a second order differential equa-

tion and can also be seen as the mathematical expression of the displacement

a point or particle undergoes when a seismic waves passes by (Krebes, 2004).

In a continuous and isotropic medium the balance of forces and mass for a

very small elemental volume can be expressed as:

ρüi = σij,j + fi (2.1)

where üi is the the second partial derivative with respects to time of the

displacement per unit volume of mass or density (ρ), σij,j is the the stress

tensor and fi corresponds to any additional body forces. Body forces such

as gravity can usually be discarded and expression can be written as:

üi = ρ−1σij,j (2.2)

σij,j = Cijkl∂luk (2.3)

where

∂luk is the strain tensor and Cijkl is the fouth order tensor containing 34 = 81

elastic constants. σij and ∂iuj are symmetric as seen by Cijkl = Cijlk and

Cijlk = Cijkl, the number of constants can be reduced to 36 and in an isotropic

and continuous medium the number can be reduced to two independent elas-

tic constants:
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Cijkl = λδijδkl + µ(δijδkl + δilδjk) (2.4)

Where µ and λ represents Lame parameters.

At strong reflectors, the boundary conditions of the full wavefield are given.

Acoustic waves state continuity at the boundary and the weighted derivatives

at the boundary is expressed as,

p(1) = p(2)

1
ρ(1)

∂p(1)

∂n
= 1
ρ(2)

∂p(2)

∂n

(2.5)

where n is the normal to the reflector into the upper medium and (1) and

(2) refers to the layer above and under the reflector. The elastic wave state

the continuity of the displacement and corresponding traction vectors at the

reflectors:

p(1) = p(2)

n · T (1) = n · T (2)
(2.6)

These equations form the basics of seismic modelling and the goal of for-

ward seismic modelling is to compute the displacement measured by a set

geophones and then to produce a synthetic seismogram. Several different

methods or approaches to compute synthetic seismograms exists, common for

them all are that they use geological and petrophysical models of the subsur-
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face to compute or estimate the wave propagation and resulting seismograms.

Each method has it’s own advantages and disadvantages and Carcione (2002)

categorized them into three main groups,

• Ray-tracing Methods

• Integral-equation Methods

• Direct Methods

Ray-tracing methods are high frequency approximations where the travel

times and amplitudes of seismic waves can be calculated using ray paths,

these methods are relatively cheap and provide a good results in homoge-

neous areas (ibid.). Integral-equation methods can be a good approxima-

tions in certain specific geometries. Direct methods include finite difference,

pseudospectral and finite element approaches which utilizes mesh grids to dis-

cretize the time and space variables of the geological model. These methods

are sometimes called full-wave equation methods because the full wavefield

with all waveforms are calculated and included in the resulting seismogram.

The finite difference method using the staggered grid approach is the method

used by the seismic modelling software in this study and will be explained

more comprehensive in the next section.

2.1.1 Finite Difference Method

Finite difference methods are numerical methods for approximating differ-

ential equations by approximating derivatives and they are used to solve a

variety of mathematical problems in science and engineering. In this thesis

the finite difference approach is used in the seismic modelling of the Madagas-
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car software package. The forward difference approximation of the derivative

is expressed as:

D+f = f(x+ ∆x)− f(x)
∆x (2.7)

here δx represent a finite sized or grid sized step in the x-direction (Krebes,

2004) and the backward and central difference approximations are given by:

D+f = f(x)− f(x+ ∆x)
∆x (2.8)

D+f = f(x+ ∆x)− f(x−∆x)
2∆x (2.9)

the error by using Equation 2.7 and Equation 2.8 are found to be of order ∆x

whereas the error by using the central difference in Equation 2.9 is found to

be of order ∆x2 which shows that as long as ∆x is < 1 the central difference

will give better results and it is the one used for finite difference modelling

in geoscience.

The Madagascar software package includes seismic modelling software based

on an explicit approach to solving the differential equations that describe

wave propagation in the earth, under a set of initial, final, and boundary con-

ditions similar to the approaches described by Ikelle and Amundsen (2005),

Levander (1988) and Graves (1996). It uses numerical approximations of the

derivatives of Equation 2.1 in order to simulate elastic wave propagation in

the earth and together with complex geological models, produce accurate

synthetic seismograms. The explicit approach to finite difference modelling
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used in this software is the staggered grid approach where the first-order

elastodynamic equations of motion are expressed in terms of velocity and

stress (Graves, 1996).

Assuming a three-dimensional, linear and isotropic elastic media Equation 2.2

can be expressed by velocity instead of displacement as:

∂tvi = ρ−1∂tσij,j

σij,j = [λδijδkl + µ(δilδjk)]∂luk

(2.10)

The equations of momentum conservation can now be expressed as:

ρ∂tvx = ∂xσxx + ∂yσxy + ∂zσxz

ρ∂tvy = ∂xσxy + ∂yσyy + ∂zσyz

ρ∂tvz = ∂xσxz + ∂yσyz + ∂zσzz

(2.11)

The stress and strain relations is expressed as:

σxx = (λ+ 2µ)∂xvz + λ(∂yvy + ∂zvz)

σyy = (λ+ 2µ)∂yvy + λ(∂xvx + ∂zvz)

σzz = (λ+ 2µ)∂zvz + λ(∂xvx + ∂yvy)

σxy = µ(∂yvx + ∂xvy)

σxz = µ(∂zvx + ∂xvz)

σyz = µ(∂zvy + ∂yvz)

(2.12)

Here (vx, vy, vy) are the components of the velocity vector; (σxx, σyy, σzz, σxy, σxz, σyz)
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are the stress components; ρ is the density; λ and µ are Lame coefficients;

and the symbols ∂x, ∂y, ∂z and ∂tt are shorthand representations of the dif-

ferential operators ∂
∂x
, ∂

∂y
and ∂

∂z
. It can also be noted that for µ = 0 these

equations would represent the acoustic case.

These equations can now be solved recursively with the finite difference

method on a staggered time and space grid as seen in Figure 2.2. In Ikelle

and Amundsen, 2005 the staggered grid is explained as follows "the shear

stresses are defined at the points on the reference grid, whereas the normal

stresses, the three components of the particle velocity, the mass density, and

the Lamé parameters, are defined as the points half a grid off the reference

grid".
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Figure 2.2: The staggered grid for a 3D finite difference model (Graves, 1996)

The discrete form of the first-order differential equations is given by:

v
n+ 1

2
xi+ 1

2 ,j,k
= v

n− 1
2

xi+ 1
2 ,j,k

+
[
∆tb̄x(Dxτxx +Dyτxy +Dzτxz + fx)

]
|ni+ 1

2 ,j,k

v
n+ 1

2
yi,j+ 1

2 ,k
= v

n− 1
2

yi,j+ 1
2 ,k

+
[
∆tb̄y(Dxτxy +Dyτyy +Dzτyz + fy)

]
|ni,j+ 1

2 ,k

v
n+ 1

2
yi,j,k+ 1

2
= v

n− 1
2

yi,j,k+ 1
2

+
[
∆tb̄z(Dxτxz +Dyτyz +Dzτzz + fz)

]
|ni,j,k+ 1

2

(2.13)
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for the velocities, and

τn+1
xxi,j,k = τn

xxi,j,k + ∆t[(λ+ 2µ)Dxvx + λ(Dyvy +Dzvz)]|n+ 1
2

i,j,k

τn+1
yyi,j,k = τn

yyi,j,k + ∆t[(λ+ 2µ)Dyvy + λ(Dxvx +Dzvz)]|n+ 1
2

i,j,k

τn+1
zzi,j,k = τn

zzi,j,k + ∆t[(λ+ 2µ)Dzvz + λ(Dxvx +Dyvy)]|n+ 1
2

i,j,k

τn+1
xyi+ 1

2 ,j+ 1
2 ,k

= τn
xyi+ 1

2 ,j+ 1
2 ,k + ∆t[µ−H

xy (Dyyz +Dxvy)]|n+ 1
2

i+ 1
2 ,j+ 1

2 ,k

τn+1
xzi+ 1

2 ,j,k+ 1
2

= τn
xzi+ 1

2 ,j,k+ 1
2

+ ∆t[µ−H
xz (Dzyx +Dxvx)]|n+ 1

2
i+ 1

2 ,j,k+ 1
2

τn+1
yzi,j+ 1

2 ,k+ 1
2

= τn
yzi,j+ 1

2 ,k+ 1
2

+ ∆t[µ−H
yz (Dxyy +Dyvz)]|n+ 1

2
i,j+ 1

2 ,k+ 1
2

(2.14)

for the stresses.

Here the discrete form of the differential operators ∂x, ∂y, ∂z and ∂tt are

represented by the equations Dx, Dy, andDz. These operators are evaluated

by a second- or fourth-order difference which is chosen based on the minimum

wavelength in modelling study, where the second-order difference requires a

10 grid points per wavelength and the fourth-order difference requires 5 (Ikelle

and Amundsen, 2005; Levander, 1988). The time index is governed by the

superscripts and subscripts relate to spatial indices. Therefore using a time

step of ∆t and grid spacing of h,

v
n+ 1

2
xi+ 1

2 ,j,k
(2.15)

is the x-component of the velocity at x = [i+ (1/2)]h, y = jh, z = kh at time

t = [n+ (1/2)]∆t as seen in Figure 2.2 (Graves, 1996).
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Absorbing boundaries conditions are met by implementing a perfectly matched

layer (PML). The idea being that the grid is extended at the edges by placing

a viscoelastic medium outside of the original grid. Viscoelastic materials ab-

sorb much more energy than the elastic one in the "inner grid" and thereby all

waves that travel into the viscoelastic medium is absorbed and not reflected

back into the model. In this thesis no free surface is used in order to simplify

processing and the top surface is also an absorbing one.

From discussion with Espen B. Raknes it was found that in order to avoid

numerical instabilities such aliasing the following conditions had to be ful-

filled:

Cmax∆t
δx

≤
√

2
π

(2D)

Cmax∆t
δx

≤ 2√
3π

(3D)
(2.16)

in addition the Nyquist criteria has to be considered as well:

fmax ≤
Cmin

2∆x (2.17)
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2.2 Forward Seismic Modelling in Geoscience

The following section is taken from previous work by the author in (Steinsbø,

2012). Forward seismic modelling is used widely in geoscience to solve a wide

range of problems and in this section some of these problems are presented

and discussed. A forward seismic modelling work flow is presented and some

case studies from literature is studied.

2.2.1 Motivation

There are several motivations for doing forward seismic modelling and some

of the most prominent are:

• To test data processing algorithms

• To compare modeled data with measured data

• To better understand seismic wave propagation

• To design acquisition parameters in survey planning

Forward seismic modelling can often be a good tool for testing processing

or migration algorithms. It can be thought of as an extrapolation of the

wavefield through a geological model from the source to receiver in order to

generate a synthetic seismic section. Migration on the other hand can be

seen a process where the signal at the receivers are extrapolated backwards

towards the source in order to generate a seismic image of the subsurface.

Forward seismic modelling can therefore be viewed as the opposite of a migra-

tion and it therefore be a good method for testing how accurate a migration
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or processing algorithm is (Yilmaz, 2001).

Comparing modelled data with acquired data from the field is a common

motivation for doing forward seismic modelling. An example is that forward

seismic modelling can be a tool for verifying seismic interpretations. A geo-

logical model based on the interpretation can be produced and the resulting

synthetic seismic can be matched with the real seismic. Changes can be

made to the model if significant differences are found. Models can also be

produced to test different geological interpretations with variations in lithol-

ogy and fluid content. Geological and geophysical phenomena such as thin

layers, tuning effects, complex structures and direct hydrocarbon indicators

can be also modeled. Updating the geological model based on results from

seismic modelling is an important step of this method.

Full-wave form modelling approaches can be used to better understand seis-

mic wave propagation especially concerning complex geological structures,

salts etc (Tøndel, 1997). Forward seismic modelling is also used to design

the acquisition parameters, simulated surveys using seismic modelling are

used to test different acquisition parameters and geometries to find the op-

timal data collection strategy.

2.2.2 Geological model

There are several methods or approaches that can be taken when doing for-

ward seismic modelling, aside from various numercial algorithms for mod-

elling wave propagation discussed in the previous section, and they differ in

what kind of input is used in the geological model and how the model is
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made. Different types of input can be:

• Seismic section(s)

• Well data and core samples

• Geological outcrops

• Synthetic model

• Combination of these

Interpreted seismic sections either from a 2D or a 3D survey can be used as

inputs for geological models used in forward seismic modelling. Velocities

and densities can be acquired from well logs and/or core samples and an

acoustic impedance model can be produced. Stratigraphic models can be

made based on well data and for inversion and processing purposes a simple

synthetic model can be used to test algorithms. During fieldwork, outcrops

can be interpreted, and geological models can be made based on these in-

terpretations, Johansen, Kibsgaard, et al. (1994) show an excellent example

of this method from Svalbard. The best method is perhaps to combine two

or more of these methods, as more data will result in a better and more

comprehensive geological model. One example is that interpreted seismic

sections can represent the structural part of a model whereas well data and

core samples can be used to determine the rock properties in the model.

2.2.3 Forward Seismic Modelling Work flow

A work flow for performing forward seismic modelling can be divided into

several steps:
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1. Interpreting Input Data

2. Build a Geological/Structural Model

3. Set Geometry and Grid Size

4. Assign Rock Properties

5. Export and Import Model/Grid

6. Model Synthetic Seismic

7. Process Synthetic Seismic

8. Correlate Synthetic Data with Real Data

9. Update Geological Model According to Correlation

The first step is to interpret the input data and produce a geological inter-

pretation which will serve as a basis for a geological model. Building the

geological or structural model based on the geological interpretation is the

next step in the work flow. Setting a geometry and grid size are the following

steps and one should take care to set an appropriate geometry. It should be

large enough to include all desired events but it is important to note that

a larger model will result in longer computation time. The grid size is set

on basis of the geometry, the modelling approach used, desired quality of

the resulting seismograms and computation power available. Usually the in-

terpretation has to be modified to fit into the chosen grid and some of the

detail is lost in the translation from interpretation to geological model. Once

a satisfactory geological model has been made rock properties are added to

the model depending on lithology and fluid content in porous rocks. This
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data can be gathered from well logs, core samples, cuttings or rock samples

and from estimations using rock physics models. The next step now is to per-

form the seismic modelling and then, depending on the output seismic data

processing may be appropriate. For asymptotic methods which produce a

perfectly migrated image this is unnecessary but for full-wave form methods

noise and multiples has to be removed and the sections have to be migrated.

Once a satisfactory image has been produced it can be compared with the

real data and the differences between the two can be evaluated. If significant

discrepancies are found the geological model has to be altered and than the

process repeated iteratively until a satisfactory results is found.

2.3 Seismic Imaging

This sections aims to give a short presentation of the seismic imaging prin-

ciple and give a short introduction to the two migrations which will be used

in this thesis, Kirchoff Pre-stack time migration and reverse time migration.

The idea behind seismic imaging or migration is to make an image of sub-

surface from seismic data. This is can be achieved by simply preforming a

cross correlation between the downwards (D) and upwards (U) propagating

wavefront seen in Figure 2.3. At the time of the reflection they will coincide

at R (Arntsen, 2013). The reflectivity R(x) is then given as:

R(x) =
∫
dtU(x, t)D(x, t) (2.18)
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Figure 2.3: Sketch of the imaging principle with a downwards propagating and
upwards propagating wavefront coinciding at the reflection point R taken from
lecture material by Børge Arntsen (2013)

2.3.1 Kirchoff Time Migration

The up- and downgoing wavefields have to known in order to compute the

reflectivity and ray approximations are one way to compute them

D(x, t) = Aδ(t− τs)

U(x, t) = BP (t− τr)
(2.19)
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where A and B are amplitude factors, P is the recorded data, τs is the travel-

time from source to reflection point and τr is the travel-time from reflection

point to receiver (Arntsen, 2013). Equation 2.19 and Equation 2.18 can then

be put together and integrated and by disregarding the amplitude factors AB

one is left with R(x) = P (τs + τr) = Pτ representing the imaging of point x.

It is importnat that many source -receiver pairs will contribute to imaging

the same point in the subsurface.

By assuming that the velocity only changes with depth one can approximate

the travel times as follows,

τs =
√

(x− xs)2 + (y − ys)2

c2 + τ 2
0

τr =
√

(x− xr)2 + (y − yr)2

c2 + τ 2
0

(2.20)

where c is the velocity, (xs, ys) is the source location, (xr, yr) is the receiver

location and τ 2
0 is the vertical travel time (ibid.). The velocity model used

for Kirchoff time migration has to be very smooth and therefore not image

lateral changes in velocity as well.
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Figure 2.4: Sketch of the principle behind Kirchoff time migration where a only
depth dependent velocity model is used to image the reflection point from a source-
receiver pair taken from lecture material by Børge Arntsen (2013)

2.3.2 Reverse Time Migration

Reverse time migration is alternative way to compute the up- and downgo-

ing wavefields by solving the elastic wave equation through finite difference
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methods as discussed earlier in this chapter. This is done by solving the wave

equation with the time reversed and basically going backwards in time from

the receivers. This wavefield can then be cross correlated with a forward

propagating wavefield from the source. This method is a depth migration

and requires more a detailed velocity model but will give better images in

areas with significant changes in lateral velocity.
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Chapter 3

Geological Setting

Exposed outcrops of collapsed Mesozoic strata and associated infill deposits

found at Kvalvågen on the east coast of Spitsbergen as seen in Figure 3.1.

The collapse and infill structures are buried by layers of alternating sand

and shale. This outcrop is well studied and publications by Nemec et al.

(1988b), Nemec et al. (1988a) and Onderdonk and Midtkandal (2010) have

studied the area closely with regards to the depositional envirnoment and the

mechanisms behind the collapse event. This section will summarize some of

the information found in literature regarding the geological setting of both

South East Svalbard in general and the study site especially.
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Figure 3.1: This Map modified from Onderdonk and Midtkandal (2010) of the
study site at Kvalvågen with the red line representing the outcrop. The smaller
map in the upper left corner illustrates Kvalvågens location on Svalbard as well as
the inferred coastline during the Early Cretaceous and transport direction of the
Helvetiafjellet Formation (Worsley and Aga, 1986)

3.1 Stratigraphic Setting

The stratigraphy at Kvalvågen consists of clastic sediments deposited on a

low-gradient shelf in the shallow epicontinental Boreal basin during the Early

Cretaceous, and occurrences decreasing sea level has resulted in deposition

of sand in an otherwise mud dominated basin. Figure 3.2 shows the strati-

graphic column found at the outcrop and it consists of the upper Rurikfjellet

Formation, the Helvetiafjellet Formation and the lower Carolinefjellet For-

mation.
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3.1.1 Rurikfjellet Formation

The Rurikfjellet Formation is the oldest formation recognized in the outcrop

at Kvalvågen, with only the upper part of the formation exposed in the

present day outcrop. Generally the Rurikfjellet formation on Spitsbergen is

interpreted to be deposited on a regressive open marine shelf and Onderdonk

and Midtkandal (2010) found the exposed strata at Kvalvågen to contain

five upward coarsening parasequences dominated by clay-rich mudstone but

sandstone is also recognized in the section.

The contact with overlying Helvetiafjellet Formation is an erosive one and is

attributed to a regional subaerial unconformity formed by a relative fall in

sea level in the epicontinental sea (Midtkandal and Nystuen, 2009)
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Figure 3.2: The Late Jurassic to Early Cretaceous stratigraphy of Svalbard
expropriated from Onderdonk and Midtkandal (2010) in Mørk et al. (1999)
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3.1.2 Helvetiafjellet Formation

The lower Cretaceous Helvetiafjellet Formation in Eastern Spitsbergen is a

predominantly sandstone succession deposited as a fluvial to coastal plain

and paralic unit (Midtkandal and Nystuen, 2009). In Kvalvågen the lowest

part part of the Helvetiafjellet Formation are the rotated fault blocks of the

Festningen sandstone member, a 20 m thick sandstone unit resting on top of

the Rurikfjellet Formation where most of the unit has slid sown and roatated

during the collapse. There is some debate in the literature regarding the

Festsningen member, whether it represents braided fluvial channel deposits

(Onderdonk and Midtkandal, 2010) or it is the distributary channel of a

prograding delta (Nemec et al., 1988a,b), and in this study the braided fluvial

channel deposits is the favoured interpretation. A 2-4 m thick unit of inter

bedded sand and siltstones are recognized both on the faulted blocks and the

undisturbed section which (Onderdonk and Midtkandal, 2010) interpreted as

coastal floodplain deposits.

Slumps and mass flows of sediments from the Rurikfjellet Formation is thought

to represent the initial infill of the collapsed area and is overlain by the main

infill made up of turbidites and sandier debris flows (Nemec et al., 1988a).

Following the collapse event in Kvalvågen and subsequent infill deposition a

marine transgression occurred and led to an aggradational development of

coastal plain and paralic depositional environments (Midtkandal and Nystuen,

2009). Delta mouth bars are recognized at Kvalvågen and thought to repre-

sent either a prograding delta front or delta lobe and delta plain and Coastal

plain deposits are interpreted on top of the delta mouth bars (Onderdonk



CHAPTER 3. GEOLOGICAL SETTING 28 of 123

and Midtkandal, 2010). A marine flooding is recognized in the area at the

onset of the shale dominated Carolinefjellet Formation.
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3.2 Structural Setting

The main structural features recognized at the Kvalvågen outcrop are all a

result of the collapse event which occurred as the Helvetiafjellet formation

was being deposited. Large blocks slid down and rotated into their present

day positions in underlying strata and was followed by infill of smaller blocks,

slumps and turbidites. Minor faults and lithological discontinuities are also

identified in the outcrop (Onderdonk and Midtkandal, 2010). There was most

likely been a fair amount of erosion after the collapse and in the present day

the largest slide blocks are roughly 10-20 meters high. Several theories about

the collapse is postulated in the literature but this is not the topic of this

thesis.
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Chapter 4

Dataset

The data used in this thesis are based on unplublished work by S. E. Johansen

and R. Mittet and O. Fjeld and R. Tøndel from 1999 and contains an image

of the Kvalvågen outcrop and measurments of rock samples taken at the

outcrop. The picture of the outcrop is taken from the front and some of the

curvature of the outcrop is not as prominent and it is treated as 2D image in

this thesis and the curvature is not taken into account. The image is found

in Figure 4.1.
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Chapter 5

Methods

This chapter aims to discuss the methods and software used in this thesis

and how they are used to produce the results of the thesis. The Petrel

software was used to build the geological and petrophysical models of this

thesis while the Madagascar software package was used to in the forward

seismic modelling and seismic processing part of the study.
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5.1 Petrel

This section will cover how the Petrel software has been utilized to build

geological and petrophysical models based on the interpretations of the field

data. Petrel is a versatile software developed by Sclumberger and is used in

all aspects of the life of an oil field from exploration to reservoir modelling and

simulation. Building a geological model is a crucial step in seismic modelling

as several important decisions taken during this process will greatly influence

the computation time of the seismic modelling and processing and they will

factor heavily in the quality of the end product. In this study care has been

taken to build a model with a small grid as the goal is to investigate reflection

from thin layers.

Petrel is used to build geological and petrophysical models of a field outcrop

using a picture of the outcrop and petrophyscial measurements from field

samples. Petrel is used in the oil and gas industry to build geological models

which are most often used in reservoir simulation and no examples of using

Petrel models in seismic modelling was found in literature. Three separate

methods for building 3D models exists in Petrel, Make simple grid ,Corner

point gridding and Structural framework where the two latter ones use faults

that run through the entire model as pillars in the grid framework. This

automatically excludes them for use in this study as the seismic modelling

software has to have a regular grid as input. The Make simple grid process

which uses surfaces as input is left as the preferred method for building

models in this study.

The model was created from a model sketch which is imported into the soft-
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ware and assigned an appropriate geometry after which surfaces are created

based on the model sketch. After all the horizons or surfaces are made a reg-

ular grid is made from two flat surfaces and the geological and petrophysical

models are produced by assigning properties between the surfaces. The last

step was to export the models in an Eclipse format so that they could be

imported in the seismic modelling software.

A more step by step explanation of how the models were made is found in

Appendix B.
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5.2 Madagascar

This section will cover how synthetic seismic data was acquired and processed

using the Madgascar sotware package in this thesis.

Madagascar is an open-source software package for multidimensional data

analysis and reproducible computational experiments and it is used in this

study to perform seismic modelling and seismic processing. The package

is made up of several software packages designed to perform specific tasks

which all work with a common file format called the Regularly Sampled

Format (RSF). This format is simpler and easier to manage then the SEG-Y

format used in conventional seismics. The software construction tool Scons

is used in Madagascar to manage and reproduce computional experiments

and processing flows through python based scripts.

Most of the programs used to do seismic modelling and processing in this

thesis are written by Espen B. Raknes and Børge Arntsen of NTNU and can

be found for free on Madagascar’s homepage www.reproducibility.org.

Madagascar operates on UNIX commands and is a fairly simple environment

to handle after some practice. Executing a command is done by calling a

program and choosing which files to read to and from as such:

program < file1.rsf key=value > file2.rsf

Several progrmas can be linked together through piping in Madagascar as

such:

program1 < file1.rsf | program2 key=value1 | program3 key=value2 > file2.rsf
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A more in depth explanation of some of the most used programs and walk

though of how to do simple seismic modelling is given in C.

Scons scripts makes Madagascar much more flexible and fast to work with as

several programs can be run together in order to increase productivity and

make jobs easily reproducible. The scripting command used in this thesis

were Flow and Result which have the following syntax:

Flow(file2, file2, program)

Result(file2, plotting program)

All of the SCons scripts used in this thesis can be found in Appendix A.

5.2.1 Modelling on cluster nodes

The Kongull cluster is used in the seismic acquisition part of this thesis

because seismic modeling is a computationally expensive method and the use

of cluster nodes significantly speeds up the process. The seismic acqusition

is run in parallell so that every shot can be simulated at the same time on

different processors on the cluster.



CHAPTER 5. METHODS 38 of 123



39 of 123

Chapter 6

Results

6.1 Geological Interpretation

The geological interpretation of the outcrop at Kvalvågen as seen in Fig-

ure 4.1, is based on the aforementioned picture, the field samples collected

by Ståle Johansen et. al in 1999 and previous studies of the area as discussed

in chapter 3. The geological interpretation will be used to make a geological

and petrophysical models for forward seismic modelling

Faulted structures in the lower part of the section are the most prominent

features of the section and faulted strata is interpreted to be the mud domi-

nated Rurikfjellet Formation with the fluvial Festningen member sandstone

deposited on top. Half grabens and topographic depressions were formed as

a result of the collapse and was filled initially with slumps and debris flows

followed by turbidites and sand flows deposits (Nemec et al., 1988a). Sev-

eral large blocks from the Festningen member sandstone member, some of

which are heavily rotated, have slid down as a result of the collapse and are
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recognized as parts of the infill strata. After a period of of sea level rise and

erosion following the collapse event a delta started to prograde across the

south eastern part of Spitsbergen and delta mouth bars are interpreted on

top of the infill sediments. Depressions both on the south and north side of

the outcrop are filled to a greater extent by the mouth bar sediments then the

horst structures at the center of the outcrop. Thicker packages of alternating

sand and shale is interpreted as delta top sediments and the Carolinefjellet

Formation is interpreted a the top of the section more dominated by silt-

and mudstones. Figure 6.1 (a) presents the interpretation of the outcrop at

Kvalvågen and show the various formations or depositional environment.

Based on the interpretation shown in Figure 6.1 (a), a detailed geological

model of the outcrop is made by placing a sheet of natural tracing paper on

top of the picture in Figure 4.1 and making a detailed lithological interpre-

tation as seen in Figure 6.1 (b).
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Figure 6.1: Interpretation of the outcrop at Kvalvågen where figure (a) is an in-
terpretation of the various formations and sedimentary depositional environments
found at Kvalvågen and (b) is a more in depth lithological interpretation made
with natural tracing paper.
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6.1.1 Model Building

Following the workflow presented in section 2.2 for creating geological models

in Petrel, the tracing paper lithological model in Figure 6.1 (b) was imported

and the resulting lithological model made in Petrel can be seen in Figure 6.2.

The outcrop at Kvalvågen is a three dimensional object. However the picture

of the outcrop used in this study is two dimensional, and therefore the model

is not a true representation of the outcrop as some of the depth and curvature

of the outcrop is lost in the process. In order to acquire a complex and

realistic seismic section a detailed lithological model is required, and this is

why the model seen in Figure 6.2 contains a lot of layers, some of which are

only a couple of meters thick, to produce a result that is as realistic and of

the highest quality possible.

After the geological model is built the next step of the workflow found in

section 2.2 is to determine the grid size and geometry. As discussed in sec-

tion 2.2 the grid size has a big effect on computational time and quality

of the final image. The outcrop at Kvalvågen is of a reservoir scale with a

length of 1500 meters and hight of approximately 250 meters and therefore

it is possible to make a fine and detailed model of the outcrop. A grid size

of 1m x 1m x 1m was chose for this study so that the model would be as

accurate as possible. The model is made as a three dimensional model in

Petrel, however the third dimension (depth) is non changing due to lack of

data, and the model can be referred to as a 2.5D model.
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6.1.2 Petrophysical Properties

Once the structural model of the outcrop was completed, the next goal was

to populate the model with the velocity and density data that is needed to

simulate wave propagation thorough the model. Laboratory measurements

on rock samples found in Table 6.1 are taken at the outcrop and form the basis

for the rock properties used in this study. These measurements have been

correlated with data from a nearby well log and compared with numerical

relationships between rock properties. The rocks at Kvalvågen have been

buried to great depths and have after erosion been exposed to wind and

weather which will lead to rock cementation and subsequently result in higher

measured velocities. Some of the values in Table 6.1

Sample Number Vp Vs ρ

1 2.46 1.58 2.41
2 3.3 2.22 2.57
3 2.95 1.92 2.55
4 2.58 1.96 2.51
5 2.77 1.87 2.51
6 3.29 2.16 2.56
7 4.4 2.86 3.1
8 2.65 1.86 2.52
9 5.0 3.19
10 2.33 1.77 2.63
11 3.23 2.24 2.55
12 2.6 1.79 2.44
13 2.39 1.72 2.45

Table 6.1: Velocity and density data from rock samples collected in the Field by
Ståle Johansen et. al in 1999 where Figure 6.3 indicate where the rock samples
are taken on the outcrop.
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The method used in this thesis to build the property models was to first define

a empty grid with the desired geometry and grid size and then afterwards

use surfaces to populate the model by assigning property values between two

surfaces. The property models as seen in the Petrel software can be found in

Appendix B.

Figure 6.4: P-wave velocity model
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Figure 6.5: S-wave velocity model
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Figure 6.6: Density model
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Figure 6.7: P-wave velocity model spanned for acquisition

6.2 Seismic modeling

Seismic modelling experiments performed in this thesis is presented in this

section.

6.2.1 Acquisition parameters

The acquisition set up and geometry was used for most experiments in this

thesis can be found in Table 6.2 and Figure 6.8. Local models were used in

the parallel modelling to decrease the computation time by modelling over

smaller models and all models were spanned out 1100 meters on both ends
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to acquire a high fold. Considering the shallow geological model a relative

short cable of 1000 m was assumed sufficient to acquire enough data to image

the section. The local models were set to be 1100 m long, the shot spacing

10 m and receiver spacing 4 m which resulted in a maximum fold of 200.

The shot was placed 100 m inside the local models to minimize numerical

noise from the model boundary. The start of first local model is located

1100 meters from the actual geological model and the first shot is placed 1

km from the geological model while the last shot is placed at the end of the

geological model. The distance between the first and last shot is 2600 m and

consequently 260 shots were shot in the acquisition. A ricker wavelet with

a center frequency of 100 Hz was used as source in the modelling. The free

surface was not used in any of the experiments in order to avoid multiples in

the processing.

Figure 6.8: Illustration of acquisition geometry and acquisition method used in
the experiments in this thesis. The green boxes at the sides represent padding of
1100 m added to the models in order to acquire data with high fold over the entire
model. The dark yellow box demonstrate a 1100 m long local model, local models
are used in the acquisition process to minimize computation time. Each shot is
located 100 m inside the local model to avoid to much numerical noise from the
model boundary.
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Parameters
Number of shots 260 m
Number of receivers 250
Shot spacing 10 m
Receiver spacing 4 m
Source depth 3 m
Receiver depth 6 m
Cable length 1000 m
Max fold 200
Peak frequency of Ricker wavelet 100 Hz
Recording time 1 s

Table 6.2: Table of the various parameters used in acqusition of synthetic seismic
data.

6.2.2 Seismic modelling of a single shot

A seismic modelling experiment with a single source was tested so that in-

depth examinations of the wavefield and wave propagation could be per-

formed. The shot #130 was chosen and it covers some of the of the interest-

ing features in the model. The local model for shot #130 is located 1300 m

inside the spanned model found in Figure 6.7 and the acquisition parameters

used in this experiment was identical to the ones listed in Table 6.2.

As discussed in chapter 2 the seismic modelling computes the normal stress,

shear stress and particle velocity of the entire model for each time step and

the wave propagation can be studied by extracting the vertical component

of the normal stress for certain time steps. In this thesis the P-wave velocity

model for shot #130 (Figure 6.9) was put on top of top of the wave field to

better understand the various wave phenomena observed.

Figure 6.10 exhibits the wavefield at 0.21 seconds and a couple of interesting

observations are made. As the free surface set to give no reflection the ghost



CHAPTER 6. RESULTS 52 of 123

reflection usually found in seismic data is not present here. The ’A’ is placed

next to the ocean bottom reflection headed back up towards free surface.

Less than marginal numerical noise was observed near the model boundaries

at this time step. ’B’ is placed where the first reflection below the sea bottom

occurs. In Figure 6.11 the wavefield is moved forwards to 0.23 seconds and the

’A’ still indicates the seabottom reflection. ’B’ indicates the first reflections

travelling up and into the water layer with one event reflected back down

from the seabottom as an inner bed multiple. ’C’ is placed between the

pressure wave and the converted S-wave which has a lower velocity.

Figure 6.12 display the wavefield at 0.28 seconds with ’A’ indicating reflec-

tions traveling back up towards the receivers below the ocean surface. Several

wavefronts of converted S-waves can be identified in this image near ’B’. At

’C’ several diffractions are identified after the wavefront has passed through

the smaller fault blocks in the model. It is also noted how the wavefront thick-

ens in deeper parts of the model containing higher velocities. This thickening

gives a lower seismic resolution. At 0.36 seconds the wave has passed through

the entire model at offsets up to around 300 meters as seen in Figure 6.13.

’A’ indicates the reflection from the sea bottom which is almost at the re-

ceivers. A weak reflections from the model boundary is observed just left of

the ’A’. The wavefront is observed just in front of ’B’ and the two converted

S-waves is identified just behind it.
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Figure 6.9: The P-wave velocity model for local model #130 which show the
extent of local model #130. The velocity model is also used in subsusequent
figures with the wavefield in this section.
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Figure 6.10: Time snap of the wavefield for shot #130 at time 0.21 seconds
overlain by the P-wave velocity model for local model #130.
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Figure 6.11: Time snap of the wavefield for shot #130 at time 0.23 seconds
overlain by the P-wave velocity model for local model #130.
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Figure 6.12: Time snap of the wavefield for shot #130 at time 0.28 seconds
overlain by the P-wave velocity model for local model #130.
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Figure 6.13: Time snap of the wavefield for shot #130 at time 0.36 seconds
overlain by the P-wave velocity model for local model #130.
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Figure 6.14: Data recorded at the receivers for shot #130. Notice the time delay
of the source signal by the arrival of the head wave slightly below zero time.

6.3 Seismic data processing and imaging

The goal of this section is to present the processing flow and imaging tech-

niques used to create the final results and images in this thesis. Numerous

test with differing processing parameters and sequences were run and in the

end the processing flow introduced in Table 6.3 was found to give the best
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Processing Flow
Read data
Resample data
Source correction
Set geomtery
Mute direct wave
Bandpass frequency filtering with 20-250 Hz
Sort data to common midpoint
Import real velocity model and convert from depth to time
Convert interval velocities to rms velocities
Correct normal moveout
Stack NMO data
Pre-stack Kirchhoff time migration

Table 6.3: The processing flow used in thesis.

results. Detailed parameters for each processing sequence will not be pre-

sented in this thesis but a short description of and motivation for is given.

Seismic processing is often a time consuming process and due to the time

constraint of this thesis a limited number of processing flows and algorithms

were tested.

The first processing steps were to edit the data and ready it for further

processing. Correction of the time delay in the source signal to put the

wavelet at zero phase was the first step and it is observed by comparing

Figure 6.14 with Figure 6.15. Figure 6.16 display the shot gather for shot

#130 after the direct wave was removed. All geometry settings were reset

after the acquisition so that the data origin was put at shot #1 and the time

axis was resampled to 0.01 seconds to minimize the computation time. A

bandpass filter between 20Hz and 250Hz was applied to the data to remove

low and high frequency noise from the data.
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Figure 6.15: Shot #130 with the time delay in the source signal corrected.
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Figure 6.16: Shot #130 with the source signal corrected and the head wave
muted. Notice how the reflectors in the lower part of the data are stonger.
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Figure 6.17: Frequency spectrum of shot #130 with band pass filter applied.

Real velocities were imported in the processing to obtain the best possible

result and the velocity model in Figure 6.4 was used in this thesis. The

interval velocity model was first expanded along the time axis by attaching a

copy of the model where all velocities are doubled at the bottom the model

as seen in Figure 6.18. This was done to deal with some software issues that

arose when the model was strechted from time to depth which is observed at

the bottom of Figure 6.19 where Figure 6.18 is stretched to time. Figure 6.20

shows the velocity model used this thesis; it was obtained by transforming

the interval velocities in Figure 6.19 into RMS velocities using Dix equation.

The depth of the model is 500 m and if one assumes an average velocity of

2000m
s
the reflections from the lowest part of the model should arrive at 0.5
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seconds. The RMS velocity model in Figure 6.20 is cut at 0.6 seconds in this

figure as all data below is assumed to be numerical noise.

Figure 6.18: Interval velocity model in depth where a copy of the model where
all velocities are multiplied with 2 is placed at the bottom of the velocity model
seen in Figure 6.7. The values range from 1500 to over 6000 m/s



CHAPTER 6. RESULTS 64 of 123

Figure 6.19: Interval velocity model in time. Note the vertical lines at the bottom
of the model which caused problems in the processing flow before the extra model
was attached on the time axis.
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Figure 6.20: RMS velocity model constructed from Figure 6.19. In this figure
the model is cut 0.6 seconds as all data below are assumed to be numerical noise.

The data was sorted to common midpoint data as seen in Figure 6.21 and a

NMO correction was carried out and the result can be seen in Figure 6.22.

The correction seems to have flattened the data well although at large offsets

and signals arriving after 0.5 seconds the nmo correction appears to be less

effective. For data below 0.5 seconds the poor result was attributed to the

fact that most of this data was assumed to be noise. The NMO corrected

data was stacked and Figure 6.23 display the stack from the midpoint at 1000

m to 2500 m with the time axis cut at 0.6 seconds. The stacked section can

be divided into two different parts with an upper clean section containing
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several relatively flat reflectors and a lower chaotic section. No gain was

applied to this data would account for some of the more dimmed reflectors

in the lower section. Several diffractions was identified in both in the upper

and lower part but the majority is found in the lower section.

Figure 6.21: Common midpoint gather for midpoint #750 near the the center
of the model
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Figure 6.22: NMO corrected cmp #750 near the the center of the model. For
large offsets



CHAPTER 6. RESULTS 68 of 123

Figure 6.23: Stacked data of the modeled area between midpoint #1000 and
#2500 where the time axis is cut at 0.6 seconds.

The final processing step was to migrate the data so that energy is moved to

the correct reflection point. Pre-stack time migration was used to migrate

the data in this thesis and the resulting image is seen in Figure 6.24 and Fig-

ure 6.25 where the window has been cut to the area covered by the Kvalvågen

model. A power gain with t3 was used in both images.

A comparison between migrated data in Figure 6.25 with the unmigrated

stacked data in Figure 6.23 display a marked improvement in data quality.

The gained migrated data contain stronger amplitudes especially in the lower

part of the section when compared to the stacked section. The diffractions

observed in the stacked section have disappeared in the migrated image and
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the lower chaotic section is much more coherent in the migrated section.

Several reflectors are observed in the lower part of the section and also the

faults in the central and right hand side of the model are identified in the

lower part of the migrated image. Reflections from all the small fault related

slide blocks are observed on the left hand side of the section.

Figure 6.24: Final image processed with a 2-D Prestack Kirchhoff time migration.
A power gain with 3 to the power of time (t) was applied after migration.



CHAPTER 6. RESULTS 70 of 123

Figure 6.25: Seismic image of the section converted by the Kvalvågen
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6.4 Altering the acquisition parameters

Acquisition set up and parameters used to produce the results in the section

above are pretty ideal when compared to the parameters used in conventional

seismic acquisitions. Shot and receiver spacing are typical around 25 m

and 12.5 m respectively in a conventional survey and the frequencies are

usually in a range of 5-100 Hz although shallower sections as the one studied

here contains more high frequency content. In an attempt to simulate more

realistic acquisitions two new datasets were acquired, one with the ricker

wavelet centered at 50Hz instead of 100Hz and one with a shot spacing of 20

m and receiver spacing of 10 m.

Figure 6.27 contains the section shot with a 50Hz source signal and the

frequency spectrum of shot #130 in the data is seen in Figure 6.26. The

section was found to contain the same noise in the upper part as found in

Figure 6.25. The lower part of the section is more distorted and it is harder to

recognize the reflectors. The complex fault blocks are not as easy to identify

as in the section with 100Hz source, smaller faults especially. One of the

small slide blocks on the left hand side of the section is not recognized The

reflectors are thicker which is to be expected from lower frequencies.

The seismic image in Figure 6.28 was produced was acquired with a wider

shot and receiver spacing and the image contains noticeably more noise and

poorer data quality than the seismic section in Figure 6.25. The data looks

less continuous and broken up in the direction of the offset axis. The layers

and faults in the lower part of the section are still visible and the thickness

of the reflectors is equal to that of the seismic in Figure 6.25.
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Figure 6.26: Frequency spectrum from shot #130 of the collected with a 50Hz
ricker wavelet seen in Figure 6.27
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Figure 6.27: Migrated image of data acquired with a 50Hz impulse where all
other acquisition parameters are the same as in Figure 6.25
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Figure 6.28: Migrated image of data acquired with 10 m receiver spacing and 20
m shot spacing to simulate a more realistic acquisition scenario.
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6.5 Reverse time migration

Depth migration was tested to find the best possible result from the mod-

elling. A reverse time migration was tested using the correct velocity models

was run to produce a the best possible final result. Figure 6.29 show the

final migrated image in depth, several marked improvements over the pre-

vious Kirchhoff migrated time sections are found. The fault blocks in the

lower part of the section are imaged better as is the reflectors below the fault

blocks.
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Figure 6.29: The imaged section produced with a reverse time migration. Note
that the image is in depth and not time.
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Chapter 7

Discussion

The goal of this chapter is to discuss the results of the geological and seismic

modelling in the thesis. Explanations of some of the observed effects and

seismic features in the final seismic images are given. Issues and sources of

error in the experiments are discussed and examples of how the errors affects

the final results are given.

Building a geological and petrophysical model of the Kvalvågen outcrop in

Petrel designed for forward seismic modeling in Madagascar was one of the

primary results of this thesis. The model is detailed and made of 1x1x1

meter grid cells which is sufficient to model small scale geological variations.

However inner bed variations and small scale facies changes are not included

in the model and the earth model is still not as complex or varied as the actual

earth. Nor does the homogeneous nature of the model take anisotropy, cracks

or fractures into account. Constant values are used for velocities and density

within each layer and accounts for another simplification when comparing

with how the earth actually is. These simplifications in the earth model give
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a less continuous model and the results is that layer transitions are more

marked in the model and thereby easier to image.

The purpose of this study was to examine how detailed seismic sections

actually are and what sort of geological details are lost due to limited seismic

resolution. Figure 6.29 show the best results in this thesis and most of the

layers in the geological model are found in the section. The faults in the

section are also imaged really well and it is observed that they are present

throughout the section. The slide blocks in the section are also identified

on the final section and both a top and bottom reflector is identified for

the two biggest ones whereas only single reflections are identified for the

three smaller blocks. They are detectable but not resolvable on the seismic

section. These results were produced in an experiment where the velocities

and densities used in the migration were the correct ones taken from the

petrophsical models, the source signal contains a lot of high frequencies, the

shot and receiver spacing in the acquisition where much closer than in a real

survey and there was no acquisition noise although some numerical noise was

present. Considering this it is still an impressive results as is shows how much

information is contained in the seismic signal if it is extracted perfectly and

demonstrates how well an geological section can be imaged by seismic.

Figure 6.25 gives one a better idea of how a real seismic section shot over

a geological section like the one found at Kvalvågen would look like. Pre-

stack time migration is still the most widely used migration technique in

the oil and gas industry and although the RMS velocities are taken from

the input model, the results still reflects an actual seismic section better

than Figure 6.29. The discrepancies between the time and depth migrated
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sections are especially seen around the faults where the time migrated section

has problems imaging the deeper parts of the faults and the layers beneath

them. Figure 7.1 show time migrated section with a the P-wave velocity

model stretched from depth to time on top to demonstrate which layers in

the model are imaged. As expected are the strongest reflectors located where

there are marked changes in velocity are found.
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Figure 7.1: Image of the Pre-stack time migrated section with the P-wave velocity
model put on top to illustrate which layers are imaged and the correlation between
model and migrated image. The velocity model was here stretched from depth to
time.

Comparisons of the results from the 100 Hz ricker wavelet source in Fig-

ure 6.25 and the 50 Hz ricker wavelet in Figure 6.27 illustrate how much

information is lost by excluding the frequencies from 150-250 Hz from the

frequency spectra. The upper part of the section with the more horizontal

layers appear relatively similar but discrepancies are found in the lower parts
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and especially are the faults imaged better with higher resolution. Reflectors

appear less sharp in the 50 Hz section and somewhat smeared together. Two

strong reflectors in the lower part of the faulted section in Figure 6.25 are are

not resolved as two separate reflectors in the 50 Hz section illustrate the dif-

ference in vertical resolution between the two sections. Using an acquisition

geometry more similar to those used in the oil and gas (Figure 6.28) industry

had no effect on the vertical resolution of the image but the spatial resolution

was effected. Especially dispersion phenomena in the horizontal layers of the

upper section increase when shot and receiver spacing are increased.

Figure 7.2 illustrate the effect frequency content has on seismic resolution.

Filtering out the high frequencies (Figure 7.2 (a)) give a more blurred image

with thicker reflectors while retaining only the high frequencies as seen in

Figure 7.2 (c) gives a much clearer image resembling the depth migrated

section. Filtering out frequencies will also remove important information

from the seismic signal but in a structural complex cases as the one studied

here it can improve fault interpretation.
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Figure 7.2: Pre-stack time migrated section (Figure 6.25) with various frequency
filters applied. (a) Frequnecies between 20-100 Hz filtered, (b) frequencies between
50-250 Hz filtered, (c) frequencies between 100-250 Hz filtered.

Vertical seismic resolution is defined in Chapter 11 of Yilmaz (2001) as a

quarter of the dominant wavelength λ = v
f
where v is the velocity and f is

the dominant frequency. For the low velocity layers near the seabottom the

resolution should be
1

100Hz
∗ 2000m

s

4 = 5meters
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and for the highest velocity layers in the model should be

1
100Hz

∗ 3000m
s

4 = 7.5meters

The smallest of the slide blocks in the geological model is 5 meters in depth

but it is still resolved with a top and bottom in the Figure 6.29 which indicates

that the vertical resolution is even better than the theoretical one in this

ideally migrated dataset.

One of the observed errors in the experiments were the noisy patterns of

almost vertical lines that appeared especially in the upper parts of the time

migrated section. It is also found to a lesser degree in the depth migrated

section where it also distorts the upper part of the section and makes the

reflectors there less continuous than the ones further down in the section. The

phenomena appear more marked in the Pre-stack time migrated sections and

this is thought to be a result of the migration process. These phenomena

were attributed to dispersion in the upper layers. Holberg (1987) defined that

"For FD modelling of realistic seismic phenomena, a spatial sampling rate of

more than 20 points per shortest wavelength is needed". For the upper parts

of the model the frequencies are up to 250 Hz and the shortest wavelength

8 m which results in dispersion as the grid points are located with a meters

spacing and the grid is to large to avoid dispersion effects. In order to avoid

dispersion the shortest wavelength should atleast be 20 meters.

The Ricker wavelet used in the modelling are also a source of error as it

relatively homogeneous compared to a real seismic pulse and the frequency

spectra is narrower and more focused around the peak frequency than what

one would expect a real seismic pulse to be. The ricker wavelet also produce
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two fairly prominent side lobes that influence the final image and makes it

harder to interpret and separate thin layers.

Originally this thesis was meant to be done in 3D and the geological model

was made in 3D, but time constraints lead to the decision of doing the seismic

modelling part in 2D. The modelling algorithm is such that adding n layer

of cells in the third dimension will increase the computation time with n2,

which means that expanding the grid one meter in the third dimension will

increase the computation time with a factor of four. With a 2D setup and

120 processors running the computation time of the seismic modelling were

around 1.5 hours in this thesis and in order to simulate the effect of 3D wave

propagation an extra 10-20 cells had to be included in the model which would

increase the computation time of the seismic modelling to 150-600 hours.

The Kvalvågen model can be used in several ways for further research projects.

3D seismic modelling can be acquired with the proper time and by decreas-

ing the sampling intervals of both space and time. Full waveform inversion

can be tested on this model by creating initial models for velocities and den-

sity and the results from reverse time migration indicate that the model is

well suited for such experiments. Simulating time-lapse seismic can be per-

formed by simply changing some of the parameters in the model to simulate

a change fluid content or pressure. Modelling of CSEM data is also possible

if a new resistivity property model can be produced and the results could be

compared with the results from the seismic modelling to study how CSEM

and seismic data correlate. The acquisition geometry could be altered and

one could study how the faults are imaged from the different azimuths than

parallel to fault strike direction.
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Chapter 8

Conclusion

A method for creating geological and petrophysical models in the Petrel

software based on a image of a geological outcop was found. The models

were then converted to the RSF format used by the Madagascar software

package in order to simulate a seismic acquisition and the resulting data

were processed to create images of the section.

Investigating a single shot and comparing the wave field with actual model

gave insights as to how which layers in the subsurface where imaged and it

was found that the thin layers gave reflections in this thesis. This method

also proved useful to identify wave phenomena and illustrate the effects of

varying rock parameters have on wave propagation.

Reverse time migration as expected proved superior to the pre-stack time

migration in imaging the section and this is attributed to the fact that interval

velocities are used in the reverse time migration and RMS veloctites are used

in the Kirchhoff pre-stack time migration. A geological anomaly of only

5 meters is resolved on the final section and all faults in the model are
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imaged. The depth migrated section manages to image the entire faults and

the reflectors beneath the faults which the time migrated sections fail to

image completely.

High frequency content in the ricker wavelet used as a source explain the

high resolution images created and shortening the frequency spectra of the

source result in a final image that is more blurred and distorted with thicker

reflectors and the faults are also imaged poorly. However all of the slide

blocks are observed on the lower frequency section even though they are not

resolved with both a top and bottom reflector. Using an acquisition set-up

with larger spacing between shots and receiver has a small to no impact on

vertical resolution but enhances the dispersion effects of the image. Filtering

out frequencies from the final image was found to be helpful tool in resolving

and interpreting faults and complex structures.

The final images in this thesis are excellent seismic sections especially when

one considers that the section is only 250 meters deep below the sea bottom.

Explanations for the high quality of the final images include perfect migration

velocities, absence of multiples, high frequency content in the source signal,

homogeneous layers in the earth model and constant value parameters in the

geological layers which results in a less smooth geological model.
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Appendix A

SConstruct scripts

This appendix contains the SConstruct scripts used in thesis study for both

forward seismic modeling and seismic processing.

A.1 Single Shot

Shot number 130

### Python command

from rsf.proj import *

#==================================================

# SConstruct for single shot seismic modeling

#==================================================

### Resampling

Flow(’rho’,’Rho’,’window d3=60’)
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Flow(’vp’,’Vp’,’window d3=60’)

Flow(’vs’,’Vs’,’window d3=60’)

### Plotting input models

Result(’rho’,’window min1=150 | grey color=j title="Density model of shot

#130" scalebar=y bias=1750’)

Result(’vp’,’window min1=150 | grey color=j title="Vp model of shot #130"

scalebar=y bias=2250’)

Result(’vs’,’window min1=150 | grey color=j title="Vs model of shot #130"

scalebar=y bias=750’)

### Cutting model to fit shot #130

Flow(’rho-shot130’,’rho’,’window min2=200 max2=1300 | put o2=0’)

Flow(’vp-shot130’,’vp’,’window min2=200 max2=1300 | put o2=0’)

Flow(’vs-shot130’,’vs’,’window min2=200 max2=1300 | put o2=0’)

### Plotting shot model models

Result(’rho-shot130’,’window min1=150 | grey color=j title="Density model

of shot #130" scalebar=y bias=1750’)

Result(’vp-shot130’,’window min1=150 | grey color=j title="Vp model of

shot #130" scalebar=y bias=2250’)

Result(’vs-shot130’,’window min1=150 | grey color=j title="Vs model of shot

#130" scalebar=y bias=750’)

###Modeling

Flow(’spike’,None,’spike n1=10000 d1=0.0001 k1=200 mag=1000’)
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Flow(’ricker’,’spike’,’ricker1 frequency=100’)

Flow([’rec’,’szz’,’sxx’,’sxz’,’vz’,’vx’],[’rho-shot130’,’vp-shot130’,’vs-shot130’,’ricker’],”’

fd2dewe

verb=1

free_surface=0

rho=$SOURCES[0]

vp=$SOURCES[1]

vs=$SOURCES[2]

source=$SOURCES[3]

rec=$TARGETS[0]

szz=$TARGETS[1]

sxz=$TARGETS[3]

sxx=$TARGETS[2]

vz=$TARGETS[4]

xx=$TARGETS[5]

xsource=100

zsource=3

sampsnaps=5

zrec=6

xstart=100

xend=1100

xinc=4

”’)

End()
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Result(’ricker’,’window n1=500 | graph title="Ricker"’)

Result(’rec’,’grey color=g title="Receivers"’)

Result(’szz’,’grey transp=y poly=y yreverse=y title="Wavefield"’)

Result(’sxz’,’grey color=j title="Wavefield"’)

A.2 Acquisition

Acquisition of 100Hz data. Gathered with parallell modeling

#### Importing libraries

from rsf.proj import *

from rsf.recipes import msimmod

#==================================================

# SConstruct for seismic acquisition

#==================================================

### Setup model

Flow(’rho1’,’Rho’,’window d3=60’)

Flow(’vp1’,’Vp’,’window d3=60’)

Flow(’vs1’,’Vs’,’window d3=60’)

Flow(’rho2’,’rho1’,’span axis=2 n=1100 place=1’)
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Flow(’vp2’,’vp1’,’span axis=2 n=1100 place=1’)

Flow(’vs2’,’vs1’,’span axis=2 n=1100 place=1’)

Flow(’rho’,’rho2’,’span axis=2 n=1100 place=2’)

Flow(’vp’,’vp2’,’span axis=2 n=1100 place=2’)

Flow(’vs’,’vs2’,’span axis=2 n=1100 place=2’)

Result(’Rho’,’grey bias=2300 scalebar=y title="Density Model"’)

Result(’Vp’,’grey bias=2000 scalebar=y color=j title="P-wave Velocity Model"’)

Result(’Vs’,’grey bias=1000 scalebar=y color=j title="S-wave Velocity Model"’)

#### Modeling

# Parameter setup

par = {

’dim’:2,

’nshots’:260,

’dt’:0.0001,

’nt’:10000,

’surface’:0,

’local_models’:1,

’ghost_border’:20,

’shotgeometry’:’shots.rsf’,

’workingpath’:’/work/knutgus/6mrec/kval3’

}

par[’receiver’] = {’xstart’:100,’xinc’:4,’xend’:1100,’z’:6}
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par[’size’]={’nx’:1100}

par[’inc’]={’x’:10}

par[’start’]={’x’:0}

par[’end’]={’x’:2600}

par[’source’]={’x’:100,’z’:3}

msimmod.param(par)

# Wavelet

msimmod.wavelet(’source’,100,1000,200,par)

Result(’source’,’graph title="Source wavelet"’)

# Modeling

msimmod.split(’rho’,’vp’,’vs’,par)

msimmod.mod(’source’,’rho’,’vp’,’vs’,par)

msimmod.cat(’data’,par)

End ()

A.3 Processing

Processing of 100Hz data

from rsf.proj import *
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#==================================================

# SConstruct for processing flow

#==================================================

#— Resampling

Flow("shots1","data","window j1=10 f1=200")

Flow("shots3","shots1"," put o1=0 o2=0 o3=0")

#— QC plot of shot

Flow("shot2","shots3","sfwindow min3=1500 max3=1500")

Result("shot2", "sfgrey")

#— Mute

Flow("shots2-mute", "shots2", "sfmutter half=n v0=1450 t0=0.1 tp=0.4")

#— Spectrum of shot

Flow("shot2-spectrum","shots3","sfwindow min3=1500 max3=1500 | sfspec-

tra all=y")

Result("shot2-spectrum", "sfgraph")

#— Bandpass Filter

Flow("shots2","shots3","sfbandpass flo=20 fhi=250")

#— QC plot of muted shot

Flow("shot2-mute","shots2-mute","sfwindow min3=1500 max3=1500")
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Result("shot2-mute", "sfgrey")

#— Sort to cdp

Flow("cmps2", "shots2-mute", "shot2cmp mask=msk.rsf half=n")

#— QC of CMP’s

Flow("cmp2","cmps2","window min3=1500 max3=2000")

Result("cmp2", "sfgrey")

Flow("vint2", "vint", "window f2=201 n2=3098")

Flow("vint1", "vint2", "window j2=2")

Result("vint1","grey color=j scalebar=y min=1400 bias=2200")

#— Convert depth velocity model to time

Flow("vins", "vint1","depth2time dt=0.001 nt=980 velocity=vint1.rsf")

#— Convert stacking velocities

Flow("vels1", "vins", "vint2vrms")

Flow("vels", "vels1", "put o2=0")

Result("vels","grey min=14000 bias=1500 scalebar=y color=j")

#— Nmo

Flow("nmos2", "cmps2", "sfnmo half=n velocity=vels.rsf str=0.15")

#— QC plot of nmo corrected cmp

Flow("nmo2","nmos2","window min3=1200 max3=1800")

Result("nmo2", "sfgrey")
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#— Stack

Flow("stack2", "nmos2", "sfstack | sfwindow max1=0.6 min2=1000 max2=2500")

Result("stack2", "sfgrey")

#— Migration

Flow("tcmp","cmps2","transp plane=23 memsize=1")

Flow("migstack", "tcmp", "sfmig2 vel=vels.rsf half=n")

Flow("migstack-final","migstack","window min1=0.3 max1=0.6 min2=1000

max2=2500")

Result("migstack", "sfgrey")

Result("migstack-final", "sfgrey")

#— Post processing

Flow("mig","migstack-final","sftpow tpow=3")

End()

A.4 RTM

##### Importing libraries

from rsf.proj import *

from rsf.recipes import msimmod

#To get localpath correct
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import os

env = Environment (ENV = {’PBS_JOBID’: os.environ[’PBS_JOBID’]})

##### Creating models

Flow(’rho’,’Rho’,’window d3=60 | span axis=2 n=1100 place=1 | span axis=2

n=1100 place=2’)

Flow(’vp’,’Vp’,’window d3=60 | span axis=2 n=1100 place=1 | span axis=2

n=1100 place=2’)

Flow(’vs’,’Vs’,’window d3=60 | span axis=2 n=1100 place=1 | span axis=2

n=1100 place=2’)

#### Muting direct wave

Flow(’mute’,’data’,’sfmutter half=n v0=1450 t0=0.1 tp=0.4’)

##### Splitting into single files

for i in range(260):

count=100+(10*i)

Flow(’Flow(’

##### Modeling

# Parameters

par = { ’dim’:2,

’nshots’:260,

’dt’:0.0001,
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’nt’:10000,

’surface’:0,

’ghost_border’:20,

’local_models’:1,

’workingpath’:’/work/knutgus/6mrec/kval3/RTM’,

’localpath’:’/scratch/pbstmp.’ + env[’ENV’][’PBS_JOBID’] +’/’,

’modbuffer’:500

}

# Setup local models

# Source and receivers

par[’source’] = ’z’:3,’x’:100

par[’receiver’] = ’z’:3,’xstart’:100,’xinc’:4,’xend’:1100

par[’size’] = ’nx’:1100

par[’inc’] = ’x’:10

par[’start’] = ’x’:0

par[’end’] = ’x’:2600

msimmod.param(par)

# Splitting models

msimmod.split(’rho’,’vp’,’vs’,par)

# Migration

msimmod.mig(’source’,’rho’,’vp’,’vs’,par)

# Stacking image
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targets = [’Flow(’image’,targets,’stackoffset’)

End()



Appendix B

Petrel Appendix

This appendix contains data from Petrel and work flows from Petrel which

was cut from the final draft of the thesis.

B.1 Model builing in Petrel

This sections contains a more in depth guide as to how the geological and

petrophysical models were made in Petrel.

B.1.1 Importing and localizing outcrop

The method for building models in this study was to import an image of the

model into Petrel and interpret horizons and surfaces from this picture which

will serve as the basis for the model. In this study natural tracing paper was

used to create the preliminary model by placing it on top of a picture of the

outcrop and sketching a lithological model.
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The first step step in this process was to import the picture of the preliminary

model into Petrel and locate it in the world in order to be able to track

the horizons. This done by using the locate in world function under the

settings tab of the picture in Petrel as seen in Figure B.1. By checking

the independent edges button it is possible to determine the spatial position

of the pictures edges and thereby determine the geometry required for the

model.

Figure B.1: The settings tab of imported picture in Petrel which shows how a
picture can be located in the world using the independent edges button. Each
corner of the image has an x,y and z coordinate which is set to fit the desired
geomtery.

Creating surfaces

Digitizing the interpreted geological layers in the imported image was done to

create surfaces in Petrel, surfaces that will be the framework of the geological

model. The process create/edit polygons was used in this study to track the

horizons on the imported image, in Figure B.2 it can be observed how points

are traced on top of the model in the imported image.
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Figure B.2: Image snipped from Petrel which shows how the create/edit points
process has been used to interpret/digitize horizons on the imported image. Note
that "younger" horizons cut older so as to stay on top.

Creating surfaces in Petrel is a fairly simple task acomplished thorugh the

Make/Edit surface process. This process takes some input data and interpo-

lates them to create a surface, surface size, grid size and interpolation method

are determined as part of the process. Figure B.3a displays the dialog box

for creating surfaces. Input data, grid size and geometry are set in this box.

Under the algorithm tab the interpolation algorithm is determined and in

this study the "closest" algorithm is used. It adheres to the data points in

the input only, and as a result, the surfaces it produces are just extended

along the axis perpendicular to the data points as seen in Figure B.3b.
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(a) Image of the Make/edit points pro-
cess from Petrel. The input data, which
in this study were points, is chosen here
as is the geometry of the surface

(b) Image of a surface taken in Pe-
trel, the surface is really only expanded
out perpendicular to the input points
according to the geometry set in the
Make/edit surface process

Figure B.3

B.1.2 Create grid

After a surface was created for all the horizons in the imported image creating

a model grid was the task at hand. Regular grids can be created quite easily

in Petrel using two flat surfaces, the Make simple grid process and layering

process. Two constant depth surfaces that will serve as the top and bottom

of the model has to be made first and this is quickly done in the Make/edit

surface process by choosing the Artificial algorithms and constant z value
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under the Algorithm tab. Now these two surfaces will serve as the input in the

Make simle grid process; it is also important to rember to use an approriate

grid size. Dividing the model into cells is done in the layering process by

setting the number of vertical cells in the model as seen in Figure B.4b.

(a) Picture showing the Make/edit
points process from Petrel with a top
and bottom surface imported as input
data. The input data, which in this
study were points, is chosen here as is
the geometry of the surface

(b) Image of the layering process in Pe-
trel used to make vertical cells in a Petrel
grid

Figure B.4

B.1.3 Petrophiscal models

Populating the grid with rock properties was done through the Geometrical

modeling process in Petrel and accomplished by using the Assigne between

surfaces and polygons method. Figure B.5a shows how the previously created
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surfaces was used as input and all cells inbetween them were given a constant

value. To speed up the process and make it easier to update the various

models, a facies model was created by giving a specific value to each layer

in the model. Then the built in calculator in Petrel was used to assign the

desired property value for each layer in the facies model as seen in Figure B.5b

(a) The Geometrical modeling process
in Petrel with the Assign between sur-
faces and polygons method chosen

(b) The calculator with an example of
how the

Figure B.5

One problem that arose in this study was that in some places two or more sur-

faces was supposed to be lying on top of each other but small spaces existed

between them. This was due to some difficulties in placing the individual
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points on top of each other when digitizing the horizons on the imported

picture and proved a problem as in some places a couple of cells of a un-

derlying layer would pop up in the "younger" layer above. This was solved

by tracking the underlying horizon above the top one. Then after having

converted them to surfaces go into the calculations tab in the settings of the

underlying surface and use the Z>=A button with the overlying surface as

the reference A and place the surface underlying surface at the exact same

place as the top one, this is demonstarted in Figure B.7.

Figure B.6: Picture taken from Petrel of the facies model demonstrating the
issue with cells from underlying layers appearing in overlying layers
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Figure B.7: The calculations tab in the settings of surfaces was used to force the
surface to never have a greater value than a reference surface A by choosing the
Z>=A option as circeled in red. This was done top put several surfaces directly
on top of each other in areas such as faults where several surfaces was overlapping.

After all kinks were worked out the end results looked a lot better as can be

seen by comparing Figure B.6 with Figure B.8 where the changes are applied.

Figure B.9 shows the finished facies model in a 3D window.

Figure B.8: Image from Petrel with same model as in Figure B.6 but after the fix
shown in Figure B.7 has been applied. All the overlapping cells are now gone. The
difference in colors between this figure and Figure B.6 come from slightly different
color scales and the fact that some minor changes have been done to model



Bibliography 112 of 123

Figure B.9: Picture taken from Petrel displayings parts a finished model in a 3D
window
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B.2 Tabel and Models

The tabel of all the velocities and densities used in this thesis is found in Ta-

ble B.1 while the property models as seen in petrel are found in Figure B.10,

Figure B.11 and Figure B.12.
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Table B.1: Velocities and densitites of the geological model. The layers are
stacked vertically with layer 1 being the water layer, layer 2 being the seabottom
and so forth.

Layer number Density [ kg
m3 ] Vp [m

s
] Vs [m

s
]

1 1.00 1500.00 1000.00
2 2.13 2000.00 1200.00
3 2.23 2340.00 1550.00
4 2.45 2150.00 1250.00
5 2.48 2200.00 1190.00
6 2.31 2350.00 1310.00
7 2.34 2400.00 1400.00
8 2.49 2300.00 1240.00
9 2.43 2180.00 1330.00
10 2.28 2480.00 1290.00
11 2.43 2280.00 1270.00
12 2.54 2650.00 1620.00
13 2.37 2460.00 1580.00
14 2.34 2580.00 1730.00
15 2.51 2350.00 1370.00
16 2.49 3020.00 1820.00
17 2.51 2770.00 1720.00
18 2.42 2920.00 1740.00
19 2.55 2420.00 1320.00
20 2.52 2260.00 1210.00
21 2.43 2320.00 1260.00
22 2.35 2550.00 1530.00
23 2.32 2750.00 1790.00
24 2.45 2390.00 1430.00
25 2.53 2230.00 1180.00
26 2.42 2410.00 1550.00
27 2.29 2520.00 1610.00
28 2.44 2290.00 1290.00
29 2.31 2430.00 1520.00
30 2.43 2370.00 1260.00
31 2.36 2380.00 1480.00
32 2.40 2510.00 1490.00
32 2.52 2330.00 1140.00
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Appendix C

Madagascar

This chapter will include data, examples and work flows from Madagascar

which were not included in the main body of the thesis. Data from both

modelling and processing will be presented here.
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C.1 Seismic Modelling

In this study forward seismic modeling is performed to acquire synthetic

seismic data and the Madagascar software package is used to present simulate

seismic surveys. This section presents the seismic modeling method and work

flow used in this study and demonstrate how Madagascar is used to produce

the results found in this thesis. A short presentation will be given about

each step of the process aswell as some of the more important Madagascar

programs that is used in the thesis.

C.1.1 Importing and editing Models

The first step in the process was to import the models from Petrel into

Madagascar which basically involves converting them from the Eclipse format

used in Petrel to the RSF format that is used in the Madagascar package.

The package sfpetread was written by Børge Arntzen for this purpose and all

it requires is the files resulting from the export Eclipse grid with properties

function in Petrel and that they be in the same folder on the system you are

working on, Figure C.1 shows the Vp model after it has been converted into

the RSF format.
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Figure C.1: The P velocity model after it has been converted to the RSF format
for use in the Madagascar package

An attractive feature with Madagascar is that it can be used to do some

simple editing on the models after they have been imported which are simple

processes in Madagascar but would be very time consuming to do in Petrel.

Perhaps the most important one in this study was the program sfspan that

was used to add padding at the ends of the model, a process which would

have been much more time consuming in Petrel and could also have caused

some performance issues in Petrel when working on a much larger model.

Figure C.2 shows the model from Figure C.1 after sfspan has been used to

add 6km of padding to the model. The program sfwindow can also be useful

if it’s necessary to resample the model to a coarser grid size so as to decrease
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computation time.

Figure C.2: The P velocity model after 6km of padding has been added at the
ends of the model

At it’s current version the program requires that the name of the property

to be imported is Facies and only one property can be imported at a time

however this is easily avoided by just renaming ones properties "Facies" after

exporting from Petrel as it is the values for the property one is interested in.

C.1.2 Source Generation

Generating a source is essential in seismic modelling and the method used in

this study is to convolve a spike with a ricker wavelet. Creating a spike in
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Madagascar is easily done with the program called sfspike and the program

sfricker1 preforms the convolution. Figure C.3 shows a spike convolved with

a ricker wavelet in Madagascar, in this example the sampling interval (∆ t)

was 0.001 seconds was used and a peak frequency 20 Hz was used in the

ricker wavelet.

Figure C.3: Spike convolved with ricker wavelet in Madagascar

C.1.3 Forward Seismic Modelling

Several progrmas in the Madgascar pacakge are capable of performing for-

ward seismic modelling and in this thesis the progrmas sffd2dewe and sf-

fwi2dewemodeling are used. The first program is used for single shot mod-

eling while the latter one is used for parallell modeling on cluster nodes and



Bibliography 123 of 123

both progrmas are authored by Espen Birger Raknes and Børge Arntzen

of NTNU. In Figure C.4a the program sffd2dewe has been used to perform

time-domain 2D finite difference modeling over the model in Figure C.1 and

two snaps of the wavefield propagating is shown.

(a) (b)

Figure C.4: Two snaps of the propagating wavefield from a shot over the model
in Figure C.1 and figure (a) shows a snap after 0.15 seconds and shows the di-
rect wave and the wave reflected from the free surface propagating in the water
layer. Figure (b) is taken after 0.26 seconds where the seabottom reflection can be
seen propagating upwards, several reflections deeper down in the section can be
identified aswell as the main impulse traveling towards the bottom of the section.
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