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Executive summary

In this master thesis an optical tracking system used to evaluate the 3D motion of an object in

space has been studied. The aim of the study was to reconstruct the path of a rotating plank, and

evaluate the accuracy of the reconstruction. The tracking system involved the use of cameras

making prospective modelling and camera calibration necessary. Accuracy of reconstructing

world positions from 2D image coordinates has been established through both numerical and

experimental investigation. A simple tracking experiment was performed on a rotating plank,

to determine deviations from its proscribed trajectory. The tracking method was to be applied

in an experimental facility in the Aerodynamic laboratory at NTNU, but was omitted due to

construction delay during the period of this thesis work.

Cameras were calibrated using functions in MATLAB Computer Vision Toolbox. Reconstruc-

tion errors were determined through back projection of calibration points. The calibration pa-

rameters were thereafter used in a numerical analysis to estimate optimal camera positions

about the frame object. Monte Carlo simulations were performed with varying angles between

setups with two, three and four cameras, respectively. Last, a point tracking experiment was

conducted by rotating a plank marked with a traceable point. Two cameras on a linear traverse

were used, varying the angle between them and the angle of the object position.

Mean reconstruction errors from the calibration experiment resulted in 0.05 mm in x-direction,

0.04 mm in y-direction, and 0.1 mm in z-direction. From the numerical analysis, the angle of

45◦ in vertical direction between each camera and the horizontal plane resulted to be the op-

timal positioning for all combinations. This implies a total angle of 90◦ between two cameras.

Furthermore, the setup with four cameras resulted in most accurate reconstruction with a max-

imum error of only 0.13 mm. In the point tracking experiments, the radii of the rotating paths

were estimated within 99.4% of actual radius for non angled plank; 99.1% for 20◦ and 35◦ an-

gled plank; and 98.4% for 45◦ angled plank. Fluctuations of depth was registered in all tracking

sequences. Vibration of plank was visually registered, but the magnitude of the vibration was

difficult to estimate.
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Sammendrag

I denne masteroppgaven har et optisk sporingssystem for å kartlegge det tredimensjonale beveg-

elsesmønsteret til et roterende objekt blitt studert. Sporingssystemet innebærer bruken av kam-

eraer som viktiggjør både modellering, samt kalibrering av kameraer. Nøyaktighet av å rekon-

struere posisjoner i rommet fra todimensjonale bildekoordinater har derfor blitt gjennomført

både ved numeriske analyser og ved eksperimentelle forsøk. Et enkelt sporingseksperiment

er utført ved å rotere en planke markert med et punkt, for å bestemme avvik fra dens opprin-

nelige plane bane. Sporingsmetoden skulle opprinnelig bli anvendt i en eksperimentell rigg

ved Institutt for Energi og Prosessteknikk, men måtte utelates i denne masteroppgaven grunnet

forsinkelser ved oppbygging av riggen.

Kalibrering av kameraer ble gjennomført av funksjoner i MATLAB Computer Vision Tool-

box. Rekonstrueringsfeil ble bestemt via tilbakeprojisering av kalibreringspunkter. Kamerapa-

rameterene ble deretter brukt i numerisk analyse for å estimere optimale kameraposisjoner om

objektet. Monte Carlo simuleringer ble gjennomført med variende vinkler mellom oppsettene

av henholdsvis to, tre og fire kameraer. Til slutt ble et sporingseksperiment gjennomført ved å

rotere en planke markert med et sporbart punkt. To kameraer plassert på en horisonal travers

ble brukt. Både vinkelen mellom kameraene og vinkelen på planken varierte.

Gjennomsnittlige rekonstrueringsfeil fra kalibreringseksperimentet resulterte i henholdsvis

0.05 mm i x-retning, 0.04 mm i y-retning, og 0.1 mm i z-retning. Fra den numeriske analysen

resulterte optimal vinkel mellom kamera og horisontalt plan 45◦ for alle testede kombinasjoner.

Dette betyr en total vinkel på 90◦ mellom to kameraer. I tillegg viste oppsettet med fire kamer-

aer seg å resultere i best nøyaktighet med kun 0.13 mm som høyeste rekonstruksjonsfeil i dyb-

deretning. I punktsporingseksperimentet ble radiusene av de rekonstruerte banene estimert

innenfor 99.4% av faktisk baneradius der planken ikke var vinklet, mens estimert til 99.1% for

20◦ og 35◦ vinklet planke og 98.4% for 45◦ vinkling. Svingninger rundt dybdeestimering ble reg-

istrert i alle sporingssekvensene. Vibrasjon av planken i dybderetning ble registrert visuelt, men

størrelsen på vibrasjonen var vanskelig å klassifisere.
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Chapter 1

Introduction

1.1 Background and Motivation

Using the wind as an energy resource have been performed by humans for centuries. Exploit-

ing the wind energy in transportation of sailing boats, pumping water and grinding grain with

windmills, are all examples from before the electric power production became of interest.

The first windmills used for electricity production came in the late 19th century in Scotland,

Denmark and United States. However, the invention of technology to convert fossil fuels to

useful energy made the role of the wind as an energy resource insignificant until the mid 20th

century, when the knowledge of limited fossil fuel resources became apparent in the late 1960s.

The wind energy industry was then brought back on the table, and by the 1990s it saw a strong

resurgence as the total worldwide installed capacity increased significantly [14].

The increasing energy demand and focus on energy production by renewable energy sources,

have caused the interest in wind energy to grow rapidly during the past decades. The global sta-

tus of 2014 resulted in a total capacity of approximately 369.6 GW. For comparison, the total

capacity in 2013 was 318.1 GW, making the year of 2014 a record year with over 51 GW total

installed capacity around the world [24]. Considering the cumulative installed capacity from

earlier years depicted in figure 1.1, the installation will continue to grow in the future and wind

turbine research will be necessary for improvements in the industry.

Development of the wind turbine technology requires more knowledge about the turbine

performance and the process of power extraction. Special interest has raised for the wind tur-
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1.1. BACKGROUND AND MOTIVATION CHAPTER 1. INTRODUCTION

Figure 1.1: Global cumulative installed wind capacity from 1997 to 2014 [24]

bine wake due to its complexity and connections to the turbine’s power production, and its

disturbance to downstream turbines in wind farms. The wind turbine wake is the phenomena

that occurs when wind exits the turbine blades. Counter rotating helical vortex pairs, consisting

of a tip and root vortex shed from each blade of the turbine [20]. These structures, seen from

figure 1.2, affects the wake directly downstream of the turbine blades, and are known as the near

wake.

Full scale wind turbines are located in the lower region of the atmospheric boundary layer

(ABL), where turbulence is present [23]. This makes the wind conditions unstable, and relying

on a constant velocity is therefore not an option. The turbulent conditions will influence the

wake evolution downstream, and are of special interest in wind farms. The wake can influence

the power production of the downstream turbines, and abbreviate their fatigue life.

The research on wind turbine aerodynamics has had strong influence on the success of the

modern wind energy. However, the engineering rules used might have limited applicability to

special conditions, and a more physical understanding is needed [27]. Furthermore, the exten-

sive use of the two-dimensional blade design methods (eg. XFOIL code) may omit important

three-dimensional effects that can have strong influence on the turbine performance. Due to

these issues, among other, a more fundamental approach based on experiments in controlled

conditions are governing more of the modern research programs [27].
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CHAPTER 1. INTRODUCTION 1.2. PROBLEM FORMULATION

(a) Visualization of downstream evolution of helical
wake [1]

(b) Visualization of turbine wing tip vortices [1]

Figure 1.2: Wake structures [1]

1.2 Problem formulation

Performing experiments requires knowledge about different experimental methods and their

corresponding accuracies. There may be several ways to perform tests, but being able to validate

how accurate the results will become, can be crucial in getting a trustworthy conclusion.

A wind turbine experiment in the Fluids laboratory at NTNU was to be performed in this

thesis. The construction of the experimental facility did not finish in time to be used in this

thesis, but experiments will be performed in the near future. The experimental facility involves

a simplified turbine wing being rotated and translated through a large tank of water. Water is

used in order to obtain equal Reynolds number1 as for full scale turbines, at lower velocities.

This can be obtained due to the density and viscosity difference of water and air. The goal of

the experiment is to visualize the complexity of the wing tip vortices and see how the wake is

affected and develops downstream. An objective to be investigated in the rig, is how potential

vibrations of the blades affects these vortices. To evaluate if vibrations occur, the trajectory of

the blades needs to be tracked and reconstructed. This leads to the work to be conducted in this

thesis, now being preparation work for the water tank experiment.

The aim of this thesis is to reconstruct trajectories of a rotating object by tracking the path

of a point on the object. Estimating the accuracy of the tracking is also necessary to determine

1The ratio of inertial forces to viscous forces

3



1.2. PROBLEM FORMULATION CHAPTER 1. INTRODUCTION

how well the potential blade vibrations can be determined. Cameras will be used as measuring

apparatus. This involves the cameras being modelled and calibrated in order to correlate 2D

image frames to the 3D world space. Camera modelling is a mathematical procedure, and will

be elaborated in chapter 2. Accuracy of camera calibration is an important factor of how pre-

cisely a point can be tracked. Experiments and numerical investigation is to be done to evaluate

the accuracy of the calibration and tracking. Additionally, it is also of special interest to study

positioning of the cameras, and how it is related to accuracy of tracking.

Objectives of this thesis is therefore

• Determine accuracy of experimental camera calibration. I.e. determine expected recon-

struction errors.

• Determine optimal camera position in space relative to the object to be tracked. This

involves finding optimal number of cameras and angle between them resulting in smallest

reconstruction error.

• Determine accuracy of experimental point tracking and reconstruction of object trajecto-

ries.

1.2.1 Previous work

Much of the theory behind previous work are complex and needs understanding before its cor-

relations to the thesis’ aim may be clear. The reader is therefore recommended to look into the

theory in chapter 2 for a better understanding of the previous work presented in the next para-

graphs.

The first objective is to determine the accuracy of the camera calibration. Different methods

for calibrating cameras have been established by Tsai [26], Zhang [30],[18] and Faugeras [3]. All

of the above suggests calibration with both 2D and 3D calibration objects, however, Zhang [18]

points at the highest accuracy being obtained using a 3D apparatus. Of the Tsai [26] calibration

method, accuracy study of using 2D object and 3D object has been performed by Samper et al.

[22]. They found it possible to reach results from a 2D calibration object close to those using 3D

objects as long as orientation, position and choice of correct system are maintained. Samper et
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al. also states that the parameters of depth are the most sensitive parameters, and must be paid

special attention to when calculated.

Continuing with the positioning of the cameras to optimize the tracking accuracy. Earlier

experimental and theoretical research on optimal angles between cameras for particle tracking

and particle recognition can be found for both particle image velocimetry (PIV) and particle

tracking velocimetry (PTV) analysis in Maas [12] and Lawson et al. [11], [10]. Both PIV and

PTV requires particle recognition by cameras, implying that analysis from both methods can

be used as validation data. Maas [12] does not provide an optimal angle between the cameras,

but states that at least three, optimal four, cameras should be used to decrease the number of

ambiguities related to detecting and tracking particles. Lawson et al. [10] performed an exper-

imental analysis of a stereoscopic2 camera setup with varying angles between the two cameras

in experimental PIV. Their results yield an optimal angle α between the cameras and z-axis of

20◦ < α < 30◦, which contradicts with the theoretical values presented in their first paper [11]

being 45◦. Guezennec et al. [5] uses an orthogonal setup of the cameras for PTV, implying a 45◦

between each camera and the z-axis being optimal. The latter however, used computer gener-

ated images which did not include the aberrations connected to camera geometry and imaging

in PIV test blocks [10].

1.3 Thesis outline

The paper is presented as a technical report. Primarily, the theory is presented, followed by the

methods used to perform the numerical and experimental analysis. The results are presented

both illustrative and tabulated together with corresponding discussions in chapter 4. Both chap-

ter 3 and 4 will have sections and subsections dividing the numerical studies from the experi-

mental studies. Finally, a conclusion of the whole project is given together with suggestions for

further work. The latter will include information about the water tank experiment introduced

in section 1.2.

2A setup with two cameras

5
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Chapter 2

Theory

The aim of this thesis is to be able to determine the path of a rotating object by using cameras

as measuring equipment. Performing this, cameras need to capture frames of the object during

a transient sequence. Two dimensional image coordinates can, through a process known as

triangulation, be back projected into three dimensional coordinates in space. By applying a

recognisable and circular point to the object, its accurate center point can be determined. If

the same point in two or more following frames are recognised, the path of the point can be

determined. This procedure is explained more thoroughly in section 2.3. Information about the

camera characteristics is necessary in order to conduct a triangulation, and is obtained through

a camera calibration. Camera calibration is the process of using known information in a world

reference frame to obtain information about a corresponding two dimensional image frame.

The procedure for calibration is elaborated in section 2.2. How the 2D image space is related

to the 3D world space, is described by a camera model. Hence, a camera model consists of

parameters that are determined through a camera calibration [21].

The chapter starts with introducing a camera model, which is the most important topic in

order to understand the other mentioned techniques. Thereafter follow calibration techniques,

back projection of world coordinates, and tracking. At the end of this chapter, some informa-

tion about the apparatus and electronics used in the experiments and simulations conducted is

provided, including types of cameras and different software used.

7
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2.1 Camera modelling

Camera calibration is a necessary process in order to extract geometric information from two

dimensional images [18]. This means for instance being able to evaluate distances between,

and positions of, objects in the 3D space from a 2D image frame. Finding the relationship be-

tween an image frame and the world space, a camera can be modelled mathematically. Before

a calibration can be conducted, it is important to understand how the camera is modelled and

how the camera parameters in the model are connected. The most common and simple camera

model is based on the so called pinhole camera illustrated in figure 2.2, and is introduced in

the next section. Other camera models are for instance the fish-eye camera model depicted in

figure 2.1a and generic camera model in figure 2.1b [21], these will not be explained further in

this thesis.

2.1.1 Pinhole camera model and perspective projection

The pinhole model is the simplest camera model there is and is depicted in figure 2.2. The

pinhole camera model is a fairly accurate model for the geometry and optics in most modern

Vidicon, CMOS (Complimentary metal-oxide semiconductors), CCD (Charge coupled device)

and CID (Charge injection device) cameras [3]. CMOS cameras are used in the experimental

analysis in this thesis, and the theory of the pinhole model is therefore a suitable choice for

modelling the camera. Most of the theory given related to this model is gathered from Faugeras

(a) Fish-eye camera model [15] (b) Generic camera model [21]

Figure 2.1: Illustrations of additional camera models

8
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Figure 2.2: Pinhole camera model

[3].

With reference in figure 2.2, it consists of a retinal plane R, which the image is formed on

through a perspective projection. This operation happens through a point C, being the optical

center: An image m is formed at the retinal plane of the three-dimensional point M , through the

optical center illustrated by the dashed line from m to M in figure 2.2. The distance f between

the principal point C and the retinal plane is known as the focal length of the optical system. The

image point m gets the position in the retinal plane where the line 〈C, M〉 intersects the plane

[3]. The plane going through camera center C is called the focal plane F , and is parallel to R.

The line perpendicular to F and intersects C, is called the optical axis, and intersects the retinal

plane at c.

With these parameters known, we can look further into to the geometry: the coordinate sys-

tem of the three-dimensional space is defined as (C , X ,Y , Z ); and the retinal coordinate system

as (c,u, v). Following, the relationship between the image coordinates and 3D world coordinates

can be written as

− f

Z
= u

X
= v

Y
(2.1)

This relationship can be rewritten linearly as


U

V

S

=


− f 0 0 0

0 − f 0 0

0 0 1 0





X

Y

Z

1

 (2.2)

9
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Figure 2.3: Change of coordinate system in the retinal plane

where u = U
S and v = V

S if S 6= 0 [3]. S = 0 is the equation of the line at infinity of the retinal plane,

meaning the world point is located at the focal plane. The relationship between the projective

image- and 3D-world coordinates given in 2.2 is linear and can be written in matrix form as

m̃ = P̃M̃ (2.3)

where M̃ = [X ,Y , Z ,1]T , m̃ = [U ,V ,S]T are the augmented or homogeneous representation of

M = [X ,Y , Z ] and m = [u, v]. Homogeneous coordinates are a representation where each point

in Rn are associated with a line in Rn+1, a line that passes through origin [9]. P̃ is the perspective

projection matrix, consisting of all camera parameters to be elaborate din next section. Equa-

tion 2.3 implies how the camera system can be considered to perform a linear projective trans-

formation from the projective space P 3 into the projective plane P 2. By introducing this linear

relation, the power of linear algebra can be applied instead of dealing with nonlinear equations

[3]. Matrix P̃ can be written as
[
P p̃

]
, and can then be used to obtain useful information about

the camera center C and the the optical ray being the extension of 〈C,m〉. This will be described

later in this chapter.

2.1.2 Intrinsic and extrinsic camera parameters

To define intrinsic (internal) and extrinsic (external) parameters, a change of coordinate system

is first necessary.

10
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In camera calibration, the coordinate system of the image frame is usually centred in the

corner of the image. As described earlier, and illustrated in figure 2.2, the center is located at

point c as the center of the retinal plane. Figure 2.3 shows how the change of coordinate systems

happen in the retinal plane, changing the center from c to cn. The new path towards the image

point m is now cn - c - m. Introducing a scaling s =
[

ku 0
0 kv

]
from i and j, to I and J, and letting t

be the translation from cn to c, the projection matrix becomes

P̃ =


− f ku 0 u0 0

0 − f kv v0 0

0 0 1 0

 (2.4)

where u0 and v0 are the parameters of the principal point c, and ku and kv the scaling factors

expressed in pixels per meter. − f ku and − f kv can be interpreted as the size of the focal length

in horizontal and vertical pixels, respectively [3]. Neither − f ku , − f kv , u0 or v0 depends on the

location of the camera in space, and are known as the intrinsic parameters. The first 3×3 matrix

of equation 2.4 is therefore known as the intrinsic matrix, and is often written as

A =


α γ u0

0 β v0

0 0 1

 (2.5)

where α=− f ku , β=− f kv , and γ is the skew which equals zero for quadratic pixels. The quan-

tities u and v can now be written in pixel values as

u = U

S
=α

X

Z
+u0 (2.6)

v = V

S
=−βY

Z
+ v0 (2.7)

As changing the retinal coordinate system gives us the intrinsic camera parameters, the ex-

trinsic parameters are obtained by changing the world reference frame: the 3D coordinate sys-

tem. The extrinsic parameters indicate the position and the orientation of the camera in a world

reference frame, and can be defined mathematically by the camera center C and a 3x3 rotation

matrix R [19]. R consists of three individual rotation matrices where each determines a rotation
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about an axis. The three rotations are known as roll, pitch and yaw, and are rotations about x, y

and z-axis, respectively [4]. They are defined as

Rr ol l =


1 0 0

0 cos(θi ) −si n(θi )

0 si n(θi ) cos(θi )

 (2.8)

Rpi tch =


cos(θ j ) 0 si n(θ j )

0 1 0

−si n(θ j ) 0 cos(θ j )

 (2.9)

Ry aw =


cos(θk ) −si n(θk ) 0

si n(θk ) cos(θk ) 0

0 0 1

 (2.10)

where θi , θ j and θk are the Euler angels about x, y and z axis respectively. R is an orthogonal

matrix, i.e. Rt = R−1, and it follows that det R =±1.

To find the new projection matrix including the extrinsic parameters, the same procedure

as for the retinal coordinate system can be used. The aim is to find the path CM which now

Figure 2.4: Change of world reference frame
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equals CO+OM. The vector CO is denoted as a translation t = [tx , ty , tz]T , while OM is the new

coordinate values rotated from the old system to the new system depicted in figure 2.4. CM can

be written

CM = t+R


xnew

ynew

znew

 (2.11)

The projection matrix is therefore multiplied with the 4x4 matrix

K̃ =
 R t

0T
3 1


where R and t are the extrinsic parameters of the camera describing the orientation and posi-

tion of the camera, respectively, with respect to the new world coordinate system. The updated

perspective projection matrix can be found by multiplying matrix K̃ on the right side of the old

perspective projection matrix. Using the old matrix P̃ given in equation 2.4, the general form of

P̃ can be expressed as a function of both the intrinsic and the extrinsic parameters as

P̃ =


−αr1 +u0r3 αtx +u0tz

βr2 + v0r3 βty + v0tz

r3 tz

 (2.12)

or, written in matrix form as

P̃ = A [ R t ] (2.13)

2.1.3 Lens distortion

The pinhole camera model is collinear and has no distortion, meaning the straight line in ob-

ject space is mapped to a straight line in the image frame. Usually, a lens system causes some

distortion that contributes to a difference between the real image and the pinhole image [21].

Lens distortion can be divided into two types: radial distortion; and decentering distortion.

Radial distortion is symmetric and ideal image points are distorted along radial directions from
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Figure 2.5: Example of lens distortion of object with the distorted image to the left and undis-
torted image to the right [8]

the distorted center [18]. It is caused by imperfect lens shape, and can be as illustrated in figure

2.5. Decentering distortion is usually caused by improper lens assembly, and ideal image points

are distorted in both radial and tangential directions [18].

Zhang [18] introduces the steps of dealing with lens distortion as:

1. Lens distortion gives the true image coordinates by adding the distortion to u and v pro-

vided in equation 2.1. The new ŭ and v̆ coordinates becomes

ŭ =− f
X

Z
+δx

v̆ =− f
Y

Z
+δy

where δx and δy are the distortions.

2. Secondly, the affine transformation from the true image coordinates to pixel coordinates

given in equations 2.6 and 2.7, becomes udi st and vdi st with ŭ and v̆ :

udi st = kuŭ +u0

vdi st = kv v̆ + v0

The interested reader is referred to Zhang [18] for more elaborated information about lens dis-

tortion and how the parameters are derived.
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2.2 Camera Calibration

Up to now, the correlations between the camera parameters of a pinhole model are known. A

camera can then be calibrated to estimate the extrinsic and intrinsic camera parameters of the

model. These parameters are necessary to correlate the 2D image coordinates m to the 3D world

coordinates M. The calibration process involves capturing images of a known pattern, to use

the known dimensions in world space to calculate the camera parameters of the model [21],

described in previous section. Both 3D and 2D calibration objects can be used in this process,

consisting of a recognizable pattern where dimensions and shape are known [18]. The most

accessible object for 2D calibration is a checkerboard illustrated in figure 2.6a of white and black

squares. The corners of the board are easy to detect, and it is cheap to produce. Other typical

objects may consist of circle points, have variable depths, or consist of orthogonal planes. An

example of a 3D calibration object is depicted in figure 2.6b.

The 3D world points are defined with reference to the calibration object. From the image

frames, the corresponding 2D reference points are found, and a fit is performed. The image

frame consists of pixels determined by the resolution of the camera lens. For example, a frame

consisting of 1024x1024 pixels is a matrix of indices from 1 to 1024 in both lateral and longitudi-

nal direction, having same color within each index.

Zhang [18] suggests different calibration approaches: self-calibration, 1D line based, 2D

(a) 2D checkerboard calibration object (b) 3D calibration object from [18]

Figure 2.6: Examples of 2.6a 2D and 2.6b 3D calibration objects
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plane based, and 3D reference object calibration. Due to the necessity of good accuracy, only

2D and 3D apparatus calibration will be presented. The two different approaches of performing

a camera calibration is therefore: 1) a 2D approach where all the points at the calibration object

are assumed to be located at Z = 0, and 2) a 3D approach where the depth of the different points

are perfectly known.

2.2.1 2D calibration

The 2D calibration procedure is summarized by the flow chart below, figure 2.7. Multiple im-

ages are first captured of the plane calibration object from different orientations relative to the

camera. This is necessary to determine the correct intrinsic parameters of the camera. The cal-

ibration object does not necessarily need to cover the whole image frame, though it should be

moved around in the image frame to capture the radial distortion of the image [26], [18]. The

extrinsic parameters: the rotation and position of the camera, will obviously vary from image

to image with different orientations. That is due to the x y-plane always corresponds with the

plane of the checkerboard. Since all calibration points are assumed to be located in plane Z = 0,

one can substitute the actual projection matrix by an homography H. H omit the last row of the

rotation matrix, r3 and of the translation vector t, t3. The different parameters of H is denoted

hi .

The 2D object calibration method is applied in the experimental work to be conducted in

this thesis. The reason for this is the flexibility of this method in terms of cost and handling of a

checkerboard.

2.2.2 3D calibration

Calibrating a camera using a 3D object does not require multiple images to be captured. The

3D calibration object on the other hand, must either be angled or have different depths. Cubes

with checkerboard patterns on each sides are common, where the image frame captures three

sides of the cube. It can also be done using a plane object. Capturing images of the plate at

known and different displacements will also result in a 3D calibration. The procedure for the 3D

camera calibration can be summarized by the steps showed in figure 2.8, and are based on the
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Detect corners of checkerboard pattern

Assume model plane Z = 0 and that ith column of R denotes ri

then M̃ = [X ,Y ,1]T , and we can write sm̃ = HM̃ where H = A[r1 r2 t]

Make initial guess of homography H[
Xi Yi 1 0 0 0 −ui Xi −ui Yi −ui

0 0 0 Xi Yi 1 −vi Xi −vi Yi −vi

]
h = 0

Maximum likelihood nonlinear least squares:
n∑

i=1
||mi −m̂i ||2

Closed form solution

B = A−T A−1 ≡
B11 B12 B13

B21 B22 B23

B31 B32 B33


B is symmetric and defined by b = [B11, B12, B22, B13, B23, B33]T

Solve for[
vT

12
(v11 −v22)T

]
b = 0 ⇔ Vb = 0

with
vi j = [hi 1h j 1, hi 1h j 2 + hi 2h j 1, hi 2h j 2,hi 3h j 1 + hi 1h j 3, hi 3h j 2 +
hi 2h j 3, hi 3h j 3]

Obtain intrinsic parameters from B

B =λA−TA

λ= 1/
∥∥A−1h1

∥∥= 1/
∥∥A−1h2

∥∥
Obtain extrinsic parameters from A

r1 =λA−1h1 t =λA−1h3

r2 =λA−1h2

r3 = r1 × r2

R = [r1,r2,r3]

Maximum likelihood nonlinear least squares:
n∑

i=1

m∑
j=1

||mi j −m̂(A, Ri , ti , M j )||2

Estimate radial and tangential lense distortion

Figure 2.7: Flow chart of 2D camera calibration
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Detect corners of checkerboard pattern

Estimate projection matrix P using linear least squares:[
Xi Yi Zi 1 0 0 0 0 −ui Xi −ui Yi −ui Zi −ui

0 0 0 0 Xi Yi Zi 1 −vi Xi −vi Yi −vi Zi −vi

]
︸ ︷︷ ︸

Gi

p = 0

with G = [GT
1 ,GT

2 , ...,GT
n ], we can write Gp = 0

min
∥∥Gp

∥∥2
subject to

∥∥p
∥∥= 1

Recover intrinsic and extrinsic parameters

Intrinsic parameter is ex-
tracted from

K ≡ BBT = AAT

Since RRT = 1

Divide P into 2 submatrices
so that P = [B b]

Since P = A [R t] we have
B = AR and b = At

Now the extrinsic parame-
ters can be extracted from

R = A−1B

t = A−1b

Refine A,R and t, or P through a nonlinear optimization

min
∑

i

∥∥mi −φ(P, Mi )
∥∥2

Estimate radial and tangential lense distortion coefficients

Figure 2.8: Flow chart of 3D calibration steps

procedures of Faugeras [3] and Zhang [18].

2.3 Reconstruct world position

After a camera is calibrated and the parameters are obtained, the 2D image coordinates can

be back projected into 3D world coordinates through a process called triangulation. From the

name triangulation, it might be understood that three objects, at a minimum, are necessary.

The three objects are here referred to as two cameras and one object. Looking at figure 2.9, the
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Figure 2.9: Illustration of triangulation with two cameras: the same point, x is identified in
frames from two cameras as P1 and P2.

same point x are projected onto frames of both cameras as image coordinates P1 and P2.

Recalling equation 2.3, the pixel position m̃ is obtained from the world coordinate position

M̃ multiplied with the projection matrix. This relationship holds up to a scale factor λ, and can

be written as

λm̃ = P̃M̃ = A [ R t ]M̃ (2.14)

Rearranging the equation and using the rules of matrix calculations, the back projection of

a 3D world point can be written as

(
X
Y
Z

)
= C+λR−1A−1m̃ (2.15)

where λ = Z−C3
z3

and (z1, z2, z3)T = R−1 A−1m̃ [19]. The step by step calculation from equation

2.14 to 2.15 can be found in Appendix section A.1.

The expression on the right hand side corresponds to an optical ray, also known as the line

of sight from the camera lens, going through point
(

X
Y
Z

)
from the camera center C illustrated in

figure 2.9. Having knowledge about the depth is therefore required up to a certain extent, in

order to calculate a long enough line (ref. Z in equation for λ). In order to obtain the world

position of one point in corresponding images, this ray must be calculated for all cameras used

in the process, with their individual corresponding calibration parameters. The intersection

point of the optical rays from the cameras, will result in the exact 3D world position.

However, due to calibration errors and random errors due to image noise, corresponding

19



2.3. RECONSTRUCT WORLD POSITION CHAPTER 2. THEORY

Figure 2.10: Illustration of closest intersection point of almost intersecting lines of sight, from
Mann and Ott [13]

lines of sight from cameras does not intersect. They are usually very close, but will never cross

each other perfectly. A reasonable assumption which solves this problem, is assuming the point

is located at the closest intersection point of all lines. An algorithm finding this intersection

point of 3D lines are proposed by Mann and Ott [13], and relies on finding the minimum of the

sum of the squared distances S

S =
n∑

i=1
dist(p, li )2 (2.16)

where dist(p, li ) is the distance between the point p and line li illustrated in figure 2.10. The

point is found by introduce a parametric form for li : t → a+bt , with ||b|| = 1. dist(p, li ) is the

length of the projection p−a on to the plane perpendicular to b, hence

dist(p, l − i ) = ||Pb(p−a)|| with Pb = I −b⊗b (2.17)

Pb can also be expressed with indices as Pb,i j = δi j −bi b j . To find the minimum of the squared

distance, the gradient of the squared equation 2.17 must be set to zero. It can easily be shown

that ∇pdist(p, li ) = 2Pb(p−a) implying that

∇pS = 0 =⇒
n∑

i=1
Pbi p =

n∑
i=1

Pbi ai

p =
(

n∑
i=1

Pbi

)−1 n∑
i=1

Pbi ai (2.18)
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Substituting this value into equation 2.16, gives the minimum value for S [13].

2.4 Point Tracking

The aim of the thesis is to reconstruct the path of a rotating object in space. Procedures of point

tracking are therefore elaborated in this section in order to obtain the trajectory of a moving

object. There are many ways to track points in space depending on size, shape and quantity of

points to be tracked at a time. Point tracking and particle tracking are used in different appli-

cations. In fluids engineering particle tracking velocimetry (PTV) is a very common procedure

to measure the three dimensional velocity [12]. Here, many small particles are injected to the

flow, illuminated and tracked. They can then be recognised in images through their higher or

lower intensity than the flow background [12]. Motion tracking in film making is also a very

common procedure to transfer human movements over to animated movie figures [29]. There

are a number of different technologies for tracking human motion: magnetic trackers, optical

tracking systems and mechanical tracking systems, to name a few [29].

The tracking procedure of PTV is very close to the procedure to be used in this thesis. It

can be divided into four steps, where most of them are already described in earlier sections.

However, a brief repetition will be given in order to connect the steps together into the tracking

procedure.

Step 1

The first step in the procedure is calibration of the cameras to establish the camera characteris-

tics. These are necessary to evaluate the 3D particle position from 2D image pixel coordinates.

The procedure of evaluating these are discussed more thoroughly in the theory section 2.2 about

camera calibration. The typical installation in 3D PTV is three or four cameras positioned in an

angular configuration. Two cameras may also be used, but the accuracy decreases significantly

from three to two cameras, see Maas[12]. More than four cameras will rarely be necessary.

Step 2

At least two cameras must be used to capture frames of each timestep before the particles can

be identified [6]. Point or particle identification, can be determined by scanning through the in-

tensity of each pixel, or determine the point through shape recognition. Performing the particle
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intensity scan, a threshold is set for intensity, and pixels above the certain threshold is regis-

tered. After the search is completed, the size and centroid of the particles can be determined, as

well as those that are overlapping [6]. Performing the shape detection method, recognising cir-

cular objects can be done with implemented circle detection algorithm in MATLAB1. The center

point and size of the detected circles are then returned, and can be used further in the tracking

process.

Step 3

Reconstruction of the 3D particle or point position is the next step. Having found the center of

a point in the frame from one camera, the same point can be found in the frame of the another

camera(s). Calculating the lines of sight from all cameras, the three dimensional coordinates

of the point can be determined by finding the closest intersection point of the lines (see sec-

tion 2.3). After step three, one list of three dimensional point coordinates are obtained from

N×cameras lists of 2D image coordinates [6].

Step 4

The last step is particle tracking, which requires two sets of 3D coordinates of particles captured

at time t and t +∆t . For this to be done correctly, Step 2 is important in order to detect the same

point or particle in image t +∆t as in frame t [6]. A search window, or a constraint for how the

algorithm detects the point is often necessary. Having correct points from image t and t +∆t , a

3D displacement plot can be obtained.

To detect circular points in an image, MATLAB has a function imfindcircles [17], found

in the Image Processing Toolbox. The function is able to detect circular object in a gray scale

image using the Hough transform [7]. Radii and center values of the detected circles are returned

as vector and matrix forms, respectively. Different parameters can be changed to enhance the

detection of the circles[17], being circle radius span, object polarity, sensitivity, computation

method, and edge threshold. An elaborated description of how these parameters should be set

are provided in Appendix section A.2.

1MATLAB is a numerical computer software used for different purposes within among other computer vision
and image processing
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(a) Photron FASTCAM sa1.1 (b) Nikon AF micro Nikkar 60mm lens

Figure 2.11: Camera and lens used in experiments

2.5 Apparatus and Electronics

In this section the different equipment and devises used in the experiment are presented. For

calibration of cameras, post processing of results and investigating accuracies numerically, MAT-

LAB R2015b is used together with special toolboxes as Computer Vision Toolbox.

For the camera calibration and tracking experiment, two Photron FASTCAM SA1.1 high-

speed cameras as showed in figure 2.11a are used. The cameras can capture up to 5000 frames

per second (fps) at one mega pixel resolution. To capture and process the images, Photron FAST-

CAM Viewer (PFV) is installed on the computer and connected to the camera setup. From this

software, variables as fps, image resolution and triggering options can be selected.

The lenses used in both the calibration and point tracking experiment depicted in figure

2.11b, are of type Nikon AF micro Nikkar 60 mm 1:2.8 D.

Moving the tracking object is done by a SMSD-822 step motor controller from Smart Motor

Devices (see manual [25]). The controller responds on step signals, and is therefore connected

to a signal generator of type digimess FG200 2MHz.
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Chapter 3

Methodology

To reach the desired objectives of investigation, different analyses needs to be performed to

evaluate expected accuracy of tracking. In this chapter, the procedures of the experiments and

numerical analyses conducted are described. Primarily, the method applied for calibration of

the cameras is explained. This involves the approach for a camera calibration experiment, that

is done to evaluate the uncertainty of back projection, and the calibration before point tracking.

Secondly, the procedure behind the numerical analysis is presented. Here, the aim is to find the

optimal camera positioning at which the experiment should be performed. Last, the description

of the point tracking experiment is provided, which is conducted to estimate how well a path can

be reconstructed of a rotating object.

3.1 Camera calibration

Both experiments in this thesis involves camera calibration. The method applied in the two

experiments are equal, and follows the procedure of Zhang’s [18] 2D-algorithm described in

section 2.2.1. The algorithm is implemented in MATLAB Computer Vision Toolbox [16], and

needs images captured of a checkerboard at different orientations, and the size of the squares

on the checkerboard pattern object in mm. With this known, the algorithm calculates camera

parameters with functions from the camera calibration application. The parameters are then

processed further with functions for finding lines of sight and the camera center, a function for

finding intersection point of lines, and functions to generate post processing plots. The code for
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the calibration is provided in Appendix section C.1.

The checkerboard is of size 8x7 squares resulting in 42 calibration points, with square size of

25 mm, as depicted in figure 3.1. However, the tracking experiment calibrates the cameras using

two different checkerboards: a 8x7 squares and 9x4 squares of size 25 mm and 24.5 mm, result-

ing in 42 and 24 calibration points, respectively. The approach of the calibration experiment is

elaborated in the next section, while the methodology of the tracking is described later in this

chapter, more specific in section 3.3.

3.1.1 Experimental camera calibration

To estimate expected reconstruction errors, a simple camera calibration experiment is con-

ducted. The experimental setup consists of a Photron FASTCAM mounted onto a 100 cm long

traverse, and a checkerboard calibration object described in previous section mounted on a

small scaffold. The checkerboard is fastened to a hinge, which together with the scaffold can be

rotated about two out of three axes. The object can be elevated and lowered to desired height.

An image of the scaffold setup is depicted in figure 3.1.

Only one camera will be used in the experiment, but capturing images from different loca-

tions on the traverse will be done to simulate three camera views of the object. The camera

locations on the traverse are at 0 cm (left end of traverse), 50 cm and 100 cm to obtain as wide

Figure 3.1: Object fastened to scaffold used for calibration
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Figure 3.2: Experimental setup for the camera calibration

angles as possible between the cameras. An illustration of the setup is depicted in figure 3.2.

The angle between the cameras are 20◦, accounting for the lens being the center of the camera,

located about 10 cm away from the edge of the traverse. The positions of the cameras and pitch,

yaw and roll are summarized in table 3.1. The calibration object is located about 100 cm away

from the camera traverse.

In this calibration experiment, a number of 15 images will be captured and implemented in

the algorithm. MATLAB Camera Calibration application suggests between 10 and 20 images for

best results [16]. The choice of using 15 images is therefore sufficient in terms of accuracy and

time consumption.

Table 3.1: Position and orientation of camera on traverse

LEFT MIDDLE RIGHT

CAMERA ANGLE

Pitch 2.5◦ 2.5◦ 2.5◦

Yaw 25◦ 45◦ 65◦

Roll 0◦ 0◦ 0◦

LOCATION ON TRAVERSE 0 cm 50 cm 100 cm
REFERENCE POINT

x 168 px 103 px 126 px
y 902 px 912 px 895 px
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Table 3.2: Orientation of calibration object

ORDER ORIENTATION

1 Basea

2 30◦ left
3 30◦ right
4 45◦ up
5 45◦ down
6 45◦ up, 30◦ left
7 45◦ down, 30◦ left
8 45◦ up, 30◦ right
9 45◦ down, 30◦ right

10 15◦ right
11 15◦ left
12 25◦ up
13 25◦ down
14 25◦ up, 15◦ left
15 25◦ down, 15◦ left

a Base image plane is orthogonal to camera centerline

The 15 images are captured in two different procedures:

(A) One object orientation is captured from all three camera positions, Before moving the

object to the next position

(B) All 15 object orientations are captured from one camera position at the time, before the

same procedure is repeated for the remaining camera positions

The different object orientations of the calibration object can be found in table 3.2. The

height of the hinge is not changed during the process.

3.2 Numerical accuracy analysis

Numerical analysis of camera positioning is performed to estimate how it affects the accuracy

of back projection of world points. It is of interest to find the optimum angle between cameras

of which the tracking experiment should be performed, and how many cameras that should be

used. Different combinations of angles are therefore numerically tested with MATLAB using

Monte Carlo simulations.
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Figure 3.3: Illustration of spherical coordinates together cartesian coordinates [28]

To locate the cameras around the calibration object, spherical coordinates are most appro-

priate, where only the radius and plane angles are changeable variables. When estimating cam-

era parameters, the cameras are located a depth or radius away from the object, and the checker-

board surface reflects the x y-plane. A natural choice of angles to vary therefore corresponds to

a rotation of the xz-plane, α and y z-plane, θ. A representation of these customized spherical

coordinates combined with cartesian coordinates can be seen in figure 3.3.

The code for the analysis is written in MATLAB and can be found in Appendix section C.2.

Inputs to the analysis are following: an intrinsic camera matrix A; a radius or distance between

the cameras to the object, r; the angles α and θ; and the number of cameras. Additionally,

the rotation matrices are dependent on α and θ and must be changed from camera position

to camera position. Recalling R = Ry aw Rpi tchRr ol l , α is a pitch rotation, i.e. a rotation of the

xz-plane about the y-axis, while θ is a roll rotation, implying a rotation of the y z-plane about

Table 3.3: Input values for numerical angle study for camera calibration accuracy

PARAMETER VALUE

Intrinsic matrix A =


5386 0 494.6

0 5381 444.5

0 0 1


Radius r =−1000 [mm]

α 10◦ : 5 : 60◦

β 15◦ : 15 : 60◦

Number of cameras 2, 3 and 4

29



3.2. NUMERICAL ACCURACY ANALYSIS CHAPTER 3. METHODOLOGY

the x-axis. Therefore, when a camera is rotated in both pitch and yaw directions, the rotation

matrix of that particular camera will depend on both angles, contra only one angle if it is only

rotated in one direction. Similarly, the camera positions C depends on these angles and must be

changed for each camera setup. All of the different rotation matrices and camera positions set

for the numerical analysis are provided in Appendix, section B.

The intrinsic matrix applied is chosen to be constant for all the camera variations, and have

values equal to one matrix from the calibration experiment described in previous section. Choos-

ing this matrix is reasonable when simulating equal radial distance to the calibration object from

the camera lens. Fictive world points are then created, to calculate corresponding image points.

Bothα and θ will obviously vary, since these are two of the variable parameters to be tested. Fur-

thermore, varying the number of cameras makes it possible to check for the accuracy difference

between two, three and four cameras. All of the input values to the script are provided in table

3.3.

The analysis of angles between the cameras are done for a set of two, three and four cameras.

The choice of number of cameras is done due to Maas [12] accuracy estimation implying more

than four cameras will not improve the accuracy. Five different numerical analyses are being

performed: A study with 1) two cameras, 2) three cameras located asymmetrically, 3) Three

cameras located symmetrically in a triangle, 4) Four cameras located asymmetrically, and 5)

Four cameras located asymmetrically in a square. All of the five different camera setups are

shown in figures 3.4 - 3.6, including corresponding orientation of angles to be varied. A model

of the point to track is represented by the black dot in all the illustrations, which the cameras are

Figure 3.4: Camera position of two cameras
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Figure 3.5: Asymmetric camera position of three cameras

Figure 3.6: Symmetric camera position of three cameras

Figure 3.7: Asymmetric camera position of four cameras
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Figure 3.8: Symmetric camera position of four cameras

oriented about.

For each camera setup, a Monte Carlo simulation is performed with 1000 iterations. This

implies 1000 iterations through all θ and α variations. As reported in section 2.3, in a perfect

calibration the lines of sight from the calibration points will intersect. The camera parameters

of this analysis are fictive and the lines from the cameras will intersect perfectly. However, this is

never the case in real calibrations, and to account for noise and other sources of errors, a set of

random values are applied to the calibration points. These errors have a value between -1 and

1 pixel, and are applied as an addition of 2rand(1)− 1 to the x and y coordinate of the image

pixels, before lines of sight are calculated. rand() is a integrated function in MATLAB returning

a random value between 0 and 1. Furthermore, calculations of lines of sight and following in-

tersection point for each calibration point, i.e. all detected corners of the checkerboard in the

images in pixel values, are performed. Post processing of results are conducted with MATLAB

and provided in chapter 4.

3.3 Point Tracking

After the calibration parameters are obtained from the approach described in section 3.1, it

is possible to perform a tracking analysis of a moving object. This involves capturing a series

of images of the object marked with a point. Each pixel position of the point centers can be

reconstructed into world coordinates through the triangulation procedure explained in section

2.3. Performing this, the point must be detected in each image in order to obtain its center
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Figure 3.9: Sketch of plank used for tracking experiment. Dimensions are given on sketch.

coordinates. Different methods can be applied to do so, but circle detection with MATLAB is the

approach used in this thesis.

How the parameters of the function are set, vary from image sequence to image sequence.

Especially radius span and sensitivity must often be regulated in terms of how the object is an-

gled. A point viewed from an angle can for instance look like an ellipse or a skewed circle.

3.3.1 Experimental point tracking

Two Photron Fastcam cameras are mounted on a 150 cm long traverse and angled towards the

tracking object. The camera lenses are 60 mm Nikon lenses, and the tracking object is a wooden

plank of length 30 cm depicted in figure 3.9. The plank is connected to a stepper motor. Power to

the stepper motor is provided from a signal generator through a stepper motor controller. Setup

of the plank and the stepper motor is shown in figure 3.11. A black circular point is glued onto

the plank as depicted, which is the point to be tracked. Two different points of different radii are

used to evaluate the importance of size of circular mark. The points have diameters of 9.5 mm

and 5.5 mm, respectively.

Primarily, the cameras are calibrated as described in the first section of this chapter. The

different object setups are provided in table 3.4. Multiple sequences of the plank rotation are
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Table 3.4: Different positions of cameras and plank for point tracking experiment

TRACKING DEPTH CAMERA DISTANCE CAMERA ANGLE OBJECT ANGLE Dpoi nt

Arc 1 130 cm 120 cm 25◦ - 9.5 mm
Arc 2 130 cm 120 cm 25◦ - 5.5 mm
Arc 2 130 cm 86 cm 18◦ - 5.5 mm
Circle 1 160 cm 125 cm 20◦ 20◦ 5.5 mm
Circle 2 160 cm 125 cm 20◦ 35◦ 5.5 mm
Circle 3 160 cm 125 cm 20◦ 45◦ 5.5 mm

(a) Arc tracking setup (b) Full rotation tracking setup

Figure 3.10: Setups of tracking experiments

captured; only an arc of the circular path, and the whole circular path from an angled point

of view. The two different points of view are depicted in figure 3.10. In addition, capturing

sequences of the rotating plank from different camera angles, is done to examine how the depth

of the circular path can be determined.

The distance between the camera traverse and the plank are 120 cm for the arc detection,

and 160 cm for the full circular sequence. Limitations in the focal lens determine at what dis-

tance the whole plank (about 60 cm diameter) can be captured in one image frame. Also the

distance between the cameras are varied in order to obtain lines of sight from various angles.

All the sequences of tracking the arc, are rotated on a frequency of approximately 1500 Hz,

while the whole circle sequences are rotated at a frequency of about 2000 Hz. The stepper motor

has 200 steps per revolution, while the controller has several micro stepping modes [25], decid-

ing how many pulses each step are divided into. For all tracking sequences, the micro step mode

is set to 1
128 . This implies a rotational speed of 12 to 18 seconds per revolution.
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(a) (b)

Figure 3.11: Too many circles(a) and correct circle(b) detected in image from tracking sequence

The stepper motor is securely fastened to a table. However, the table is not fastened to the

floor properly, causing the stepper motors movements to vibrate the table. These movements

are also causing the plank to vibrate, and errors will be expected to occur in the back projection

of the path. Arc 2 is therefore a sequence of only 94 frames, 47 per camera, where the stepper

motor is off, and the plank is moved by hand one step at the time. One frame is captured by both

cameras of each step position, to be able to estimate the error occurring due to inner stepper

motor vibrations. The remaining sequences of an arc tracking consists of 300 frames per camera,

and for the full rotation tracking, between 800 and 900 frames per camera. The cameras captures

images through the computer program Photron FASTCAM Viewer at a speed of 50 frames per

second at a image resolution 1024x1024 pixels.

After the tracking sequence, the images are loaded into a MATLAB script to detect the circu-

lar mark with imfindcircles(). To avoid detection of wrong circles, as depicted in figure 3.11,

a constraint is given in the algorithm. This constraint is a start point located within a radius of

10 pixels from the wanted circle. If a detected circle are further away than 10 pixels from the

start point, it will be ignored. The detected circle then becomes the new start point. The circles

detected in all images are saved, and reconstructed into world coordinates by finding lines of

sight and intersection point. Tracking results are then plotted and investigated with MATLAB.
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Chapter 4

Results and Discussion

The results from the experiments and numerical analysis performed are presented in this chap-

ter. The presentation of the studies follow the same order as arranged in the previous chapter:

Primarily the experimental camera calibration results; the numerical angle analysis; and last,

the experimental tracking results. A discussion of the results follows after each subsection. Both

graphical and tabulated findings are provided accomplished by the most important information

necessary to conclude from the analyses.

4.1 Experimental camera calibration

The experimental camera calibration was performed in order to obtain the expected accuracy

of reconstructing world points from 2D image points through back projection. The aim was to

determine the error connected to the deviation of the reconstructed 3D points from the actual

world points. Furthermore, the camera parameters obtained in the calibration experiment, was

Table 4.1: Table of camera calibration results

APPROACH DIR MEAN [mm] STD. DEVIATION [mm] VARIANCE [mm2]

APPROACH (A)
x 0.05 0.07 0.006
y 0.04 0.05 0.003
z 0.08 0.11 0.012

APPROACH (B)
x 0.05 0.07 0.004
y 0.04 0.05 0.003
z 0.10 0.15 0.023
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used in the numerical analysis presented in next section.

Recalling from section 3.1.1 only one camera was used to simulate a three camera setup.

The image sequences necessary for the calibration were captured by two different approaches

to determine any significance of difference. The two image capturing methods were

(A) one calibration object orientation was captured from all three camera positions, before

the object position was changed

(B) all 15 object orientations were captured form one camera position, before the camera was

moved and procedure repeated

(a) Error in x-direction (b) Error in y-direction

(c) Error in z-direction

Figure 4.1: Approach (A). Histograms of errors in x, y and z-direction obtained from capturing
one object orientation from all camera positions at a time
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(a) Error in x-direction (b) Error in y-direction

(c) Error in z-direction

Figure 4.2: Approach (B). Histograms of errors in x, y and z-direction from the procedure where
all object orientations are captured from one camera position at a time

The code provided in appendix section C.1, recognises the checkerboard corners as calibra-

tion points. However, in two of the images captured with approach (B) the corners could not

be detected. Therefore, these images needed to be removed from the calibration of sequence in

both approaches to make then comparable. A total number of 13 images were therefore used in

the two sequences.

Results of the reconstruction errors are provided in both table 4.1 and as histograms in fig-

ures 4.1 and 4.2, for approach (A) and (B), respectively. The mean values in the table are the

mean of the absolute value of the errors, implying the expected error in mm away from the

actual point. The histograms show the distribution of the reconstruction error around the ac-
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tual world position in x, y and z-directions. There are 30 pillars in each plot referring to the

quantities of errors of that specific magnitude. From 42 calibration points in each image, this

corresponds to a number of 42×13 = 546 back projections and also data points in the plot.

Reconstruction errors of approach (A) are provided in figure 4.1. Error in x-direction have

an absolute mean of 0.05 mm and standard deviation of 0.07 mm. The distribution spreads out

to about ±0.3 mm in extremal values, but these values are of low frequency. In y-direction, the

reconstruction error are lowest, implying the most accurate back projection direction. Mean re-

construction error are 0.04 mm and standard deviation 0.05 mm. Results in z-direction are least

accurate, and have extremal values up to 0.5 mm away from actual world point. The absolute

mean and standard deviation are 0.08 mm and 0.11 mm, twice as high error as in y-direction.

In figure 4.2, histograms of sequence (B) are depicted. All three figures are visually showing a

high frequency of errors very close to zero. Results in x and y-direction are equal as in sequence

(A), however, in z-direction, the error is 0.02 mm larger.

From table 4.1, the differences in results between (A) and (B) are negligibly small in both

mean values, standard deviation.

Contour plots of total reconstruction errors corresponding to each image used in the camera

calibrations are provided in figure 4.3. The total error is defined as Etot =
√

E 2
x +E 2

y +E 2
z . Image

three are providing significantly larger errors than the rest of the images, especially in approach

(a) Contour of total error from approach (A) (b) Contour of total error from approach (B)

Figure 4.3: Contour plots of total reconstruction errors from images used in the camera calibra-
tion

40



CHAPTER 4. RESULTS AND DISCUSSION 4.2. NUMERICAL ANGLE ANALYSIS

(B). The calibration points corresponding to these are 6, 12, 18, 24, 30, 36 and 42, and are the

points corresponding to the right edge of the checkerboard. The checkerboard was then angled

30◦ to the right.

4.1.1 Discussion camera calibration

Image capturing method (A) and (B) does not differ significantly in order to result in one method

being better than the other. The main difference lies in estimating the depth, being 0.02 mm in

difference of mean. This difference can be a result of image number 3, seen in figure 4.3b, having

much higher reconstruction errors than the rest of the images. Despite the standard deviation

difference of 0.05 mm, the errors are too small to result in large deviations in accuracy of the

two methods. From this experiment, one can expect reconstruction errors due to calibration of

magnitude 0.05 mm in x-direction, 0.04 mm in y-direction, and up to 0.1 mm in z-direction.

However, the standard deviations are somewhat close to the actual mean values, implying even

larger errors can occur. Again, the depth reconstruction are particularly exposed for large varia-

tions in results with standard deviations of magnitude 0.1 mm.

Images showing larger reconstruction errors in contour plots can be omitted from the cali-

bration, and may result in better accuracy. It showed that calibration objects oriented at a sharp

angle did not enhance the reconstruction error of the calibration. Adding more object orienta-

tions at different elevations, might decrease errors. Especially moving the checkerboard to cover

the edges of the frame, can result in better accuracy.

4.2 Numerical angle analysis

The numerical analysis was performed to determine the number of cameras in a setup and the

corresponding angle between them, resulting in most accurate back projection. Results from

this analysis was meant to be applied in the water tank experiment, but are for now only prepa-

ration work to establish expected errors related to camera angles.

Contour plots of mean error corresponding to the different angles between the variety of

camera setups are depicted in figures 4.4 to 4.8. Only plots for error in y-direction and z-

direction are provided. The depth estimation is the most relevant for the tracking procedure,
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(a) Contour of error in y-direction, color bar values
are in mm

(b) Contour of error in z-direction, color bar values
are in mm

Figure 4.4: Mean error contour for corresponding angles α and θ for a two-camera setup

due it being difficult to achieve perfectly. The errors are smallest in x-direction from table

4.2, and therefore of least importance of total reconstruction error. Hence, contour plots in

x-direction are not provided.

In the two-camera setup provided in figure 4.4, the lowest error values are seen for α angles

of about 45◦. Looking solely in y-direction, the low values of purple color, are independently of

variations in θ, and therefore only dependent of camera setup in vertical direction. The highest

however, are present for large θ angles, and small α’s, respectively. In the z-direction, low θ and

α results in largest reconstruction error. Best results are also present for higher θ for the depth

estimation.

For the asymmetric three-camera setup showed in figure 4.5, the results are more dependent

of θ than in the two-camera setup. Results in y-direction shows smallest reconstruction errors of

θ close to 60◦ andα= 45◦. In z-direction, best results are obtained for anα between 40◦ and 60◦,

over a span of 15◦ < θ < 30◦. This implies a large variety in camera orientations corresponding

to low errors.

The symmetric three-camera setup are independent of θ in both y and z-direction. Similarly,

the magnitude of the maximum errors are smaller than for the previous setups, implying an

enhanced depth estimation. The smallest error in y-direction occurs at an α of 45◦, while for

40◦ < α < 50◦ in z-direction. This error width of α does not change with θ in y-direction, but
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(a) Contour of error in y-direction, color bar values
are in mm

(b) Contour of error in z-direction, color bar values
are in mm

Figure 4.5: Mean error contour for corresponding angles α and θ for an asymmetric three-
camera setup, see figure 3.5

becomes more narrow for bigger θ angles in z-direction. At an angle of θ = 60◦, the optimal α is

45◦. On the contrary, small α angles leads to largest error in both y and z-direction.

In the setups of four cameras, both the asymmetric and symmetric results, depicted in fig-

ures 3.7 and 3.8, are showing similar trends as the symmetric three camera setup seen in figure

3.6. The smallest error in both y and z-direction corresponds to an α of about 45◦, more or less

Table 4.2: Minimum and maximum mean error values

CAMERA SETUP DIR MIN. ERROR [mm] MAX. ERROR [mm] STD. DEVIATION[mm]

2 CAMERAS

x 0.003 0.252 0.034
y 0.004 0.103 0.048
z 0.005 0.229 0.043

3 CAMERAS ASYMMETRIC

x 0.039 0.065 0.057
y 0.011 0.062 0.039
z 0.015 0.250 0.077

3 CAMERAS SYMMETRIC

x 5.6e −4 0.047 0.023
y 0.003 0.067 0.037
z 0.001 0.174 0.037

4 CAMERAS ASYMMETRIC

x 3.6e −4 0.044 0.021
y 0.002 0.060 0.032
z 7.6e −4 0.181 0.037

4 CAMERAS SYMMETRIC

x 3.7e −4 0.041 0.020
y 0.003 0.076 0.036
z 0.001 0.130 0.029
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(a) Contour of error in y-direction, color bar values
are in mm

(b) Contour of error in z-direction, color bar values
are in mm

Figure 4.6: Mean error contour for corresponding angles α and θ for a symmetric three-camera
setup, see figure 3.6

(a) Contour of error in y-direction, color bar values
are in mm

(b) Contour of error in z-direction, color bar values
are in mm

Figure 4.7: Mean error contour for corresponding anglesα and θ for an asymmetric four-camera
setup, see figure 3.7

independent of θ. Furthermore, the largest inaccuracies of the symmetric setup can be found at

the smallest and largest θ angles of 15◦ and 60◦ in y and z-directions, respectively. These occur

at an angle of α= 10◦. Large errors of the asymmetric four-camera setup are appearing equally

as for the symmetric three-camera setup provided above.

All the minimum and maximum values are provided in table 4.2. A decreasing trend of max-

imum values can be seen from top to bottom of the table, where the two-camera setup having
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(a) Contour of error in y-direction, color bar values
are in mm

(b) Contour of error in z-direction, color bar values
are in mm

Figure 4.8: Mean error contour for corresponding angles α and θ for a symmetric four-camera
setup, see figure 3.8

highest error and the symmetric four-cameras having smallest. Neither of the minimum values

are of significant magnitude (< 10−3 mm).

Figures 4.9 to 4.11 are showing plots of the total root mean squared (rms) error versus angle

α. The total rms error is here defined as errorr ms =
√∑

x2
i +y2

i +z2
i

2

N , where N is the number of

intersection points. Figures 4.9, 4.10b and 4.11 are all showing minimum point at α equal 45◦.

Figure 4.9: Total rms error of a 2 camera setup
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(a) Asymmetric camera setup see fig 3.5 (b) Symmetric camera setup, see figure 3.6

Figure 4.10: Total rms error for 3 cameras in; (a) asymmetric setup; and (b) symmetric setup for
corresponding α and θ angle.

(a) Asymmetric camera setup see fig 3.7 (b) Symmetric camera setup, see figure 3.8

Figure 4.11: Total rms error for 4 cameras in; (a) asymmetric setup; and (b) symmetric setup for
corresponding α and θ angles

4.2.1 Discussion numerical analysis

Recalling the conclusion of Lawson et. al [11] for a stereo camera setup having the smallest error

at an angle α of 45◦, it is not surprisingly to obtain similar findings of an numerical analysis of

a two camera setup. Furthermore, it is interesting how the rest of the remaining four camera

setups also obtain the most accurate back projection at an angle α of 45◦, completely indepen-

dent of θ for most setups. Obviously, an orthogonal view of the cameras in the vertical direction
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leads to the most accurate results. Additionally, the results or the total reconstruction error of

symmetric three-cameras, and both of the four-camera setups showed in figures 4.10b to 4.11b,

are seemingly equal. Obtaining similar results as Maas [12] can therefore be concluded.

Interestingly is the large error obtained for an asymmetric three camera setup. From figure

4.10a, the minimum value at θ = 15◦ does not reach an error below 0.05 mm, while the other

results obtain almost zero reconstruction error at their minimum point. Not applying this kind

of camera setup of a tracking procedure is therefore of preference in future calibration experi-

ments.

4.3 Point tracking experiment

The point tracking experiment was performed to establish how well the path of a rotating plank

could be reconstructed. That included reconstruction of the path radius and depth, and to check

for vibrations of the plank during rotation. Experimental results from reconstructing the path of

the plank are provided in this section. The results reflects tracking of a point glued to the plank

of diameter 9.5 mm and 5.5 mm as described in section 3.3. Primarily, the results from tracking

of an arc of the rotation are presented. Secondly, results from the whole rotational sequences

are provided. Important results from both procedures are the reconstructed radius of the path,

and how well it corresponds with the actual radius, and depth estimation.

4.3.1 Arc of rotation

Three different arc tracking sequences was performed. Within each sequence, two comparable

series with equal radius, point size and frequency were conducted. In all sequences, the dis-

tance from the camera traverse to the tracking object was 130 cm. The plank was rotated in

the x y-plane approximately parallel to the camera traverse, meaning the rotational plane not

having significant depth difference in z-direction. Recalling table 3.4 in section 3.3, the main

parameters separating the three experiments were: the camera locations; and the size of the

traceable point. In table 4.3, the results from the three different sequences are presented with

values of mean radius and depth predicted.

The real radius Rreal is the measured distance between the center of the rotational axis of
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the plank and the center of the tracking point. The estimated radius Restimated however, is the

calculated radius of a circle fitted to the tracked path, i.e. experimental results. Fitting a circle

to the arc is obtained through a multi-step procedure. This procedure is used for both the arc

reconstruction, and reconstruction of the full rotation presented in the next section. The steps

are the following:

• A plane is first fitted to the reconstructed center points through a least squares fit.

• If the fitted plane is not located accurately in the x y-plane, a rotation is applied to the

center points.

• The rotation matrix is obtained through the calculation provided in Appendix section ??,

using normal vectors.

• After rotating the fitted plane and center points onto the x y-plane, a 2D circle can be fitted

to the "new" center points. The code used for circle fit was written by Bucher [2].

Plots of the reconstructed paths of the parallel x y-plane are depicted in figures 4.12, 4.14

and 4.16. Each figure displays two plots being results from a sequence with equal actual radius,

equal point size and same camera distance. Figure (a) corresponds to the first row of data in

each arc sequence in table 4.3, and similarly (b) corresponds to the second row.

Figures 4.13, 4.15 and 4.17 shows the fitted plane rotated onto the x y-plane. The corre-

sponding rotated points are plotted as the fluctuating graph on the plane. These fluctuating

values would follow the plane accurately if the path reconstruction was perfect, and the rotating

plank was non vibrating. However, this is not the case, and the variations of depth is here illus-

trated as errors. The mean values of the errors and the standard deviations are provided in table

4.3. Each plot corresponds to the same series, (a) and (b), as described for the path plots above.

Table 4.3: Tracking results from reconstruction of arc

SEQUENCE NO Rreal Restimated STD. R MEAN DEPTH STD. DEPTH

Arc 1
(a) 195 mm 195.7 mm ±0.093 mm 0.12 mm ±0.15 mm
(b) 195 mm 196.1 mm ±0.141 mm 0.22 mm ±0.32 mm

Arc 2
(a) 195 mm 194.0 mm ±0.107 mm 0.13 mm ±0.10 mm
(b) 195 mm 193.1 mm ±0.179 mm 0.11 mm ±0.09 mm

Arc 3
(a) 195 mm 195.3 mm ±0.070 mm 0.18 mm ±0.15 mm
(b) 195 mm 193.8 mm ±0.075 mm 0.16 mm ±0.13 mm
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(a) (b)

Figure 4.12: Projected paths of sequences of Arc 1

(a) (b)

Figure 4.13: Fluctuating depth values of reconstructed points in sequences of Arc 1

Arc 1

Starting with the results from sequence Arc 1. The distance between the cameras was 120 cm,

and the distance from the camera traverse to the plank was 130 cm. The calibration estimated a

total angle of 50◦ between the cameras, corresponding to a θ of 25◦ compared with the numeri-

cal analysis in section 4.2. The diameter of the tracking point was 9.5 mm, the largest point used

in all sequences.

The reconstructed paths plotted in figure 4.12 are visually showing very similar results. Se-

quence Arc 1 (a) are showing best results in both estimating the radius, and the depth as seen

in table 4.3. The radius estimation of (a) being 195.7 mm is only 0.7 mm larger than the actual

radius. Sequence (b) estimated the radius to be 196.1, which is 1.1 mm larger than the actual
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radius.

Comparing figures 4.13a and 4.13b, the depth error of (a) is slightly smaller than the error

estimated in (b). This can be seen of the plots from the large fluctuations, and is also provided

in table 4.3 where the difference between the mean values are 0.1 mm.

Arc 2

The two sequences of Arc 2 were captured in two different ways, in order to find out how the

inner vibration affects the accuracy of the depth estimation. In sequence (a), the stepper mo-

tor was run by the controller, and a number of 300 images was captured by each camera. In

sequence (b) however, the stepper motor was not started, but physically moved one step at a

time between each frame capturing. This resulted in a total of only 47 frames per camera, and

no vibrations caused by the motor.

The results from sequence Arc 2 are provided in figure 4.14 and 4.15. As seen from the pro-

jected paths in figure 4.14, the two plots corresponds very good. Sequence (a) predicts the radius

slightly better than sequence (b). The two radii are 194 mm and 193.1 mm, being different from

actual radius by 1 mm and 1.9 mm, respectively. In figures 4.15, the depth fluctuations are pro-

vided. It is clear from figure 4.15b that less images are used in the reconstruction of the path,

and the extremal values looks smaller than in figure 4.15a. The depth fluctuations have a mean

of 0.11 mm and standard deviation of ±0.09 mm. Sequence (b) predicts a mean depth error of

0.13 mm with a standard deviation of ±0.10 mm, and are only 0.02 mm larger than (b). These

(a) (b)

Figure 4.14: Projected paths of sequences of Arc 2
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(a) (b)

Figure 4.15: Fluctuating depth values of reconstructed points in sequences of Arc 2

values are the smallest depth errors obtained from all three arc tracking experiments.

Arc 3

The results from the last arc tracking series, Arc 3, are depicted in figure 4.16 and 4.17. Arc

3 differ from Arc 1 and 2 by having a smaller angle between the cameras, meaning a shorter

distance between the cameras on the traverse. The angle and distance between the cameras

were 18◦ and 86 cm, respectively. Moreover, the diameter of the tracking point was 5.5 mm.

From table 4.3 the radius estimations are 195.3 mm with a standard deviation of ±0.07 mm

from sequence (a) and 193.8 mm and standard deviation of ±0.075 mm from sequence (b). The

(a) (b)

Figure 4.16: Projected paths of sequences of Arc 3
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(a) (b)

Figure 4.17: Fluctuating depth values of reconstructed points in sequences of Arc 3

two plots of the reconstructed path can be seen in figures 4.16a and 4.16b. The depth estima-

tions are quite similar in both sequences, and can be seen in figures 4.17a and 4.17b. The mean

depth estimations are 0.18 mm and 0.16 mm, with standard deviations of ±0.15 and ±0.13 mm

for (a) and (b) respectively.

4.3.2 Discussion of arc tracking

The aim of reconstructing the path of the arc has been reached. In the figures plotted of the

arcs, its trajectories were well reconstructed visually and dimensionally. All of the sequences

predicted the radius within 99.4% of the actual radius. The best prediction of radius was given

from sequence Arc 3 (a) and was only 0.3 mm away from the actual radius. Recalling the calibra-

tion results from section 2.2, the expected error in x and y-direction was 0.05 mm and 0.04 mm,

respectively, implying a small error is expected in both directions from the calibration alone.

Additional error can be resulted by the circle detection of the tracking point. If the center of

the point is not determined properly, an error corresponding to pixel size is obtained. In these

experiments the size of each pixel corresponds to 0.5×0.5 mm, and an error of similar size can

be expected. Furthermore, measurements of the actual radii were done with a measuring tape.

Inaccuracies of measuring the actual radius from the center of the point to the center of the

rotating axis, are not excluded as a source of error. More exact measurements of actual radius

should therefore be conducted in future experiments, to exclude this source of error completely.
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More information on error analysis are provided in the last section of this chapter.

Depth estimation are showing most deviating results from actual plane depth. Samper et

al. [22] concluded with largest reconstruction errors in z-direction, and suggested extra care

taking when estimating the camera parameters in depth. No special care was taken of these

parameters during calibration, but can be enhances in future work by calibrating the cameras

using 3D objects. Results from the camera calibration of this thesis, provided in section 4.1

however, implies an expected error in z-direction of 0.1 mm. Accounting for an error of 0.1 mm

due to calibration, the results of the tracking implies much better accuracy of depth estimation

in all sequences.

Arc 2 was conducted to check if vibrations of the stepper motor caused higher errors in either

x, y or z-directions. The extremal values depth reconstruction of Arc 2 (b) were seemingly lower

than for the comparable sequence Arc 2 (a). However, the mean error value of 0.11 mm did not

stand out from the other results. If this is trustworthy results or not can and should be tested in

a future experiment. An easily implemented method to check for this accuracy, can be to track

the plank from the side. More elaborated description of the method is provided in next chapter

as future work.

Using a large tracking point contra a small tracking point did not results in better accuracy

neither in radius estimation nor depth prediction. The results are seemingly equal, and using

one point size rather than another, should therefore not change results significantly.

4.3.3 Full rotation tracking

In the full rotation tracking experiments the rotation axis of the plank is shifted an angle away

from the parallel x y-plane, seen from figure 3.10b. This is done to get a variable depth of the

circular trajectory to check how well the reconstruction of the depth can be done, and how this

affects the radius estimation.

Table 4.4: Tracking results from reconstruction of circular path

SEQUENCE ANGLE Rreal Restimated STD. R MEAN DEPTH STD. DEPTH

Circle 1 20◦ 195 mm 193.3 mm ±0.44 mm 0.14 mm ±0.18 mm
Circle 2 35◦ 195 mm 193.3 mm ±0.35 mm 0.15 mm ±0.21 mm
Circle 3 45◦ 195 mm 192.9 mm ±1.41 mm 0.21 mm ±0.28 mm
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Recalling table 3.4, the distance between the camera traverse and tracking object was in-

creased from 130 cm to 160 cm. The rotation plane was shifted 20◦, 35◦ and 45◦ clockwise from

the earlier parallel path, and were divided into three sequences: Circle 1, Circle 2 and Circle 3,

respectively. Unlike the arc tracking, only one series was performed per sequence. Results from

radius and depth estimations from all sequences are provided in table 4.4.

The three sequences will be compared with each other to establish how the different angles

affect the accuracy of the tracking. To estimate the radius of the circular path, the approach of

rotating center points onto the x y-plane as described in the previous section, is applied. Plots

of the circle fittings are provided in figures 4.18a, 4.18b and 4.18c. The blue circle reflects the

(a) 20◦ rotated clockwise (b) 35◦ rotated clockwise

(c) 45◦ rotated clockwise

Figure 4.18: x and y coordinates of rotated tracking results in x y-plane.
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tracked path, and the red circle is the fitted circle with radius equal to Restimated provided in

table 4.4. The red star reflects the center point of the fitted circles.

Both results from Circle 1 and 2 matches the fitted circle seemingly well. This can be seen

from no significant amount of blue color visible outside the fitted red circles. Looking at Circle

3 in figure 4.18c however, the blue path alternate of being inside and outside the red circle.

This error can be associated with the large standard deviation of ±1.41 mm of estimated radius.

Nevertheless, comparing the mean error values, the difference between the three sequences are

less than 0.2 mm. The radii estimation of Circle 1 and 2 are giving equal results of 193.3 mm, but

have slightly different standard deviation of ±0.44 and ±0.35 mm, respectively.

(a) 20◦ rotated clockwise (b) 35◦ rotated clockwise

(c) 45◦ rotated clockwise

Figure 4.19: Fluctuating depth reconstruction of full rotation tracking
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Fluctuations of depth reconstructions are plotted in figure 4.19. Visually, the errors of Center

1 are showing best results. The extremal values of figure 4.19a are -0.56 and 0.64 mm, being

smaller than the spikes seen in figures 4.19b and 4.19c of magnitudes close to ±1 mm. The

mean and standard deviations provided in table 4.4 on the contrary, are very similar. Circle 1

and 2 have means separated by only 0.01 mm, and standard deviations separated by 0.03 mm.

Circle 3 are estimating largest reconstruction errors in both radius and depth reconstructions.

4.3.4 Discussion of full rotation tracking

The results from the reconstruction of the rotational path of the plank shows good radius esti-

mation in all sequences. The worst predicted mean radius, done by Circle 3, was only 98.92%

wrongly estimated. Expectingly, this error occurs when the plane is rotated most, i.e. 45◦. Rea-

sons for this can be caused by the circle detection struggling to detect the exact circle when

viewed from an angle. The tracking point viewed from the one camera, will be skewed and

not completely circular as showed in figure 4.20. The circle detection code estimate the cen-

ter point, hence, the possibility of miscalculation of the point may increase when the point is

skewed. Similar phenomena can also be found in depth estimation in figures 4.19b and 4.19c.

The fluctuations are more extreme at low values in y-direction. When y has smallest value, the

plank is located as showed in figure 4.20, and the tracking point resembles an ellipse more than

Figure 4.20: Illusration of skewed tracking point when viewed from angle
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a circle.

Enhancement of this error can be done by using different recognition tools for detecting the

tracking point. In PIV and PTV, the particles are found by scanning through each image pixel

and detect intensities higher or lower than a certain threshold. Applying this method to this

thesis’ approach requires the surroundings of the object to be a solid color without objects of

equal intensity as the point intensity.

Furthermore, similar discussion as for the arc tracking can be applied for the full rotation

tracking. Applying expected calibration errors from section 4.1 to each directions enhances the

results slightly. However, the extremal values are still quite high, and other causes may be of

more significance, as for instance the circle detection discussed above. Additionally, the phys-

ical errors due to wrongly measured distances of real radius, can be questioned if are of more

importance in the full rotation results than the arc results. All of the three reconstructions of

radii spans over 0.4 mm from 192.9 to 193.3 mm. If 0.5 mm error can be expected from each end

of the distance measured, a total of 1 mm can have been wrongly measured. Better tools than a

measuring band could have been used in order to reduce this possible source of error.

Comparing the accuracy of the arc tracking and the full rotation tracking, the arc tracking

are showing better results for the radii estimation. The mean depth errors does not differ sig-

nificantly. However, extremal values illustrated in the plots of depth fluctuations, indicates a

larger variations of depth in the full rotation reconstruction. To establish how an angled object

may cause less accurate results, a full rotation experiment parallel to the camera traverse should

have been performed.

4.4 Uncertainty analysis

This thesis, may in general, be interpreted as an uncertainty analysis of this particular tracking

procedure with cameras. All the experiments conducted are to evaluate accuracy, and the nu-

merical analysis is performed to establish an optimal camera setup. However, there will still be

some errors related to the equipments used, and human errors related to for example measur-

ing. Some sources of error are already mentioned in the previous discussion sections, but will

be included here to get an overview of all uncertainties relevant for the results.
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The sources related to reconstructing the path of an object with cameras can be

• Wrongly measured distances of radius. This will cause the error of the reconstructed radii

to be higher or lower than the actual error.

• Badly recognised tracking point in image frames. The center point can be slightly wrong,

causing an error of n×wrong pixels× [mm]
pixel .

• Movements of camera traverse during imaging. The traverse was located at a table next to

the computer, which was vibration-sensitive to movements close to the table.

• Reconstruction errors related to individual calibrations. Expected errors from calibration

are often individual. The results from the first calibration experiment in section 4.1 are

therefore guiding, but not completely representative for each tracking sequence.
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Chapter 5

Conclusion

The work of the thesis are presented in the earlier chapters. In this last chapter, the most im-

portant findings are repeated, and a conclusion is drawn from the objectives stated in the in-

troduction. Additionally, suggestions for further work are thereafter given, meant as a possible

continuation of the work conducted in this thesis.

5.1 Conclusions

The path of a rotating object has been tracked in the 3D world space. Its circular trajectories have

been reconstructed and analysed to estimate the accuracy of the tracking. A camera calibration

experiment was performed to estimate expected reconstruction errors that may be caused due

to inaccuracies of the calibration. To determine the sensitivity of positioning the cameras used

in the tracking procedure, a numerical investigation was performed. Both number of cameras

to use and the angle between them, were numerically studied. Last, tracking experiments of

different setups were conducted to establish the accuracy of reconstructing the trajectory and

the depth variation of the path of a rotating plank.

Both image capturing methods of the camera calibration experiment predicted approxi-

mately equal reconstruction errors of mean and standard deviations. The errors, resulted in

0.05 mm in x-direction, 0.04 mm in y-direction, and 0.1 mm in z-direction. The error in z-

direction was obviously the largest error, coinciding with literature study of calibration accuracy

[22]. Small errors are therefore to expect in all directions when reconstructing world points from
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image coordinates. To decrease the sensitivity of the depth estimation, using 3D calibration ob-

ject is suggested.

The numerical study of finding the optimal camera positioning in space, by varying the num-

ber of cameras and the angle between them, resulted in smallest errors of an asymmetric four

camera setup as depicted in figure 3.7. However, insignificant differences in error values was

seen for the symmetric four camera and symmetric three camera setups, coinciding with results

from Maas [12]. Expectingly, using two cameras gave highest errors. However, the asymmetric

three camera setup resulted in almost as bad errors, concluding with applying a symmetric se-

tups when only three cameras are available. Furthermore, all of the camera setups resulted in an

optimal angleα= 45◦. The majority of the results did not depend on θ, implying the positioning

in xz-plane, or vertical direction, being of most importance.

Results from the tracking experiment obtained good estimations of the shape of the rotating

trajectory. The radius of the arc tracking path being parallel to the camera traverse estimated

the radius within 99.4% of the actual path radius. Turning the rotational plane away from the

parallel plane 20◦, 35◦ and 45◦ resulted in radius estimation accuracy of 99.1%, 99.1% and 98.9%,

respectively. The depth fluctuations of the two experiments did not differ significantly in mean

values. However, from the plots, the scale in z-direction implied higher extremal values when

reconstructing the full rotation. Best results are therefore to be expected in plane rotation par-

allel to the camera traverse. Reasons for the fluctuations of depth caused by vibrations, can not

be concluded with from these experiments. Arc 2, sequence (a) which was the non-vibrating

series, did not result in significantly different mean errors or standard deviations in z-direction

compared with Arc 2 (b). Nevertheless, closer investigation of the vibrations of the plank caused

by the stepper motor should be conducted as further work.

Applying the knowledge to the water tank facility experiment, one can conclude with the

use of four cameras being optimal and resulting in best accuracy. Locating the cameras in a

symmetric or an asymmetric setup, will not change the accuracy significantly. The angle in

vertical direction, however, should be 45◦, and the calibration of the cameras should include

images of the checkerboard at different orientations covering also the corners of camera frames.
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5.2 Recommendations for Further Work

In this section, suggestions for further work are presented. The suggestions are related to the

work that has been conducted in this thesis, and are either enhancement of methods or contin-

ued study with the applied methods.

Recalling the aim of the thesis being to reconstruct the trajectories of a rotating object using

cameras. This objective had the purpose of being applied to a future water tank experiment in

the Fluids Department at NTNU. How the work from this thesis can be applied to this experi-

ment are elaborated in upcoming section 5.2.1.

Furthermore, suggestions for other experimental approaches of the tracking procedure are

proposed to obtain better accuracy and minimize the uncertainties related to the analysis. These

recommendations are provided in section 5.2.2.

5.2.1 Water tank experiment

The natural extension of the thesis is to perform the water tank experiment planned in the Fluids

Department at NTNU. Unfortunately, time for construction of the tank exceeded the time of this

master thesis, and the planned experiments in the tank was not performed. However, objectives

for this experiment are suggested to be

• Track the helical path of the rotating turbine blades

• Identify vibrations or uneven trajectories of the turbine

• Visualize the wing tip vortices and the evolution of the wake

The experimental facility will become as depicted in figure 5.1. It consists of two main parts:

the water tank; and the traverse with two stepper motors to rotate and translate the turbine

blades. The tank has a cylindrical shape, but consists of 12 vertical Plexiglas plates glued prop-

erly together around the baseplate. This implies an angle of 30◦ between the views orthogonal

to the 12 wall plates, and towards the center of the tank. This information is necessary in order

to locate the cameras around the tank without compensating for radial shift in multimedia (air,

Plexiglas and water) geometry [12]. Since camera angles solely was dependent on the angle in
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the vertical direction, positioning the cameras orthogonal to the glass plates should not affect

the accuracy of the tracking.

Figure 5.1: Experimental Towing tank rig

Primarily, preparations already conducted to run the water tank experiments, but not used

in the thesis, are

• Writing a risk assessment report

• Writing a Labview script for controlling the stepper motors

Moreover, codes for camera calibration and tracking of a point in an image sequence has been
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written. The codes are used in the experimental tracking of this thesis, and are provided in

Appendix section C.1 and C.3.

The risk assessment report can be used further as a guideline for creating the new risk report

by the next user. Relevant parts of the report are provided in Appendix section D, and contains

evaluation of the risks assessed as important for the water tank facility in figure 5.1. Controlling

the stepper motors can be done with Labview through a DAQ-device with both digital input-

s/outputs and counters. The Labview script providing signals for the stepper motor controller

are provided in Appendix section C.4.

These preparations are only guidelines of how this experiment can be done, and no solution

manual. For instance, a new risk assessment must be conducted by the next scientist, and the

codes written may not be suitable for all applications.

Track helical path of turbine blades

The first objective suggested is reconstructing the helical path of rotating and translated turbine

blades. This implies applying the same method as for tracking a point of a rotating object de-

scribed in section 3.3, in terms of the calibration and tracking code. The number of cameras to

be used and how they should be located, can be interpreted from the results in chapter 4. Hav-

ing four cameras available is therefore optimal in terms of accuracy, and locating them with a

vertical angle 2×α of 90◦ between them will result in the most accurate tracking results. Con-

necting the stepper motors to a computer and controlling them with the Labview script would

be the next step.

Regarding the turbine blades, it would be interesting to test the procedure for actual wind

turbine blades. However, starting by assembling simplified flat blades are a good way to check

the tracking method and setup of the rig. Real turbine blades can be tested when the simplified

ones shows good results of reconstructing their trajectories.

Identify vibrations of turbine blades

The second objective is to identify possible vibrations of the turbine blades in vertical direction.

This phenomena will occur if the turbine blades are of a flexible material, or if the rod connect-

ing the blade and the traverse moves in horizontal direction. For this to be measured, cameras
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can be placed to capture one image frame of a point on the blades at every rotation. Being able

to capture the frame at the same blade position, the rotational speed of the turbine is necessary.

Visualize wing tip vortices and wake evolution

The previous objective can be connected to why visualization of the wing tip vortices are of in-

terest. If vibrations of the blades are found, investigation of how these vibrations affects the

wake evolution is an interesting topic. A method for how the visualization easily can be per-

formed is by having dye exiting the tips of the blades. The dye must be neutrally buoyant, and

will then follow the flow downstream of the blades and show the flow of the wake. Limitations

by using this visualization method is that the tank holds a volume of about 6000 litres of water,

that must be drained between each experimental sequence.

5.2.2 Tracking enhancement

Enhancement of point tracking will mostly be dependent on the camera calibration and their

setups. Therefore, objectives to be studied further in terms of accuracy are

• verification of the numerical accuracy analysis of camera positioning

• perform camera calibration with a 3D calibration object

• estimate vibrations of tracking object

Due to limitations of cameras available in the experiments, the different camera setups nu-

merically investigated were not verified experimentally. Conducting an experiment with the

camera orientations of three and four - symmetric and asymmetric - camera setups can be done

to verify the numerical analysis. These experiments depends on camera availability and variable

scaffolds to mount the cameras onto.

Performing the camera calibration with 3D calibration objects may be performed to enhance

the accuracy of the calibration slightly, see [22]. An object with three dimensional geometry are

therefore necessary. These objects are expensive to make, and not as easily applicable as the

checkerboard used in this thesis.
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To neglect errors due to instrumental causes, a procedure of evaluating the vibrations of the

apparatus can be conducted. This can be done, as presented in section 4.3.2, by imaging the

tracking object from the side. If a sideways tracking is performed, it will change the coordinate

system primarily being the xz-plane, to be the x y-plane. Earlier mentioned literature of Samper

et al. [22] states smaller reconstruction errors in x and y-directions, making the predictions of

the vibrations more accurate from the side. In this experiment, capturing more than 50 fps could

be necessary to investigate the movements thoroughly.
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Appendix A

Additional Information

Additional information of theory is provided in this chapter.

A.1 Derivation of equation 2.15 in section 2.3

Starting with equation 2.14 and applying the relationship between the camera center and trans-

lation vector and rotation matrix given in equation 2.11, we can write

λm̃ = PM̃ = A[ R t ]M̃ = A[ R −RC ]M̃

writing M̃ =
( X

Y
Z
1

)
, we get

λm̃ = A[ R −RC ]

( X
Y
Z
1

)
Since R is a 3 by 3 matrix and −RC is a 3 by 1 matrix, it follows

λm̃ = AR
(

X
Y
Z

)
−ARC

Multiplying with the R−1A−1 on both sides of the equation

R−1A−1λm̃ = R−1A−1AR
(

X
Y
Z

)
−R−1A−1ARC =

(
X
Y
Z

)
−C

i



A.2. SETTING PARAMETERS OF IMFINDCIRCLES APPENDIX A. ADDITIONAL INFORMATION

which leads to the wanted equation 2.15 for the world point

(
X
Y
Z

)
= C+R−1A−1λm̃

A.2 Setting parameters of imfindcircles

• circle radius span [rmi n rmax]. This makes the function only search for circles with radius

within the minimum and maximum value.

• ObjectPolarity must be set to determine weather the circle is bright or dark in compar-

ison with the image background.

• Sensitivity. If the circle can be difficult to detect, the Sensitivity of detection can be

increased. This is a value between 0 and 1, where a high value may detect more circular

objects. Setting a high Sensitivity may also result in false circle detections.

• computational Method can be chosen between two different types; Atheron and Kerbyson’s

PhaseCode method, or the method used in TwoStage circular Hough transform.

• EdgeThreshold, which sets the gradient threshold for determining the edge pixels in the

image. The value can be set between 0 and 1, where a lower threshold value detects more

circles, and vice versa.
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Appendix B

Numerical parameters

In the following tables, all the rotation matrices used in the numerical angle analysis are listed.

Only the roll, pitch and yaw matrices are given, while the total rotation matrix for the camera is

the product of all three rotational directions in following order:

Rtot = Ry aw Rpi tch Rr ol l

The camera positions are also presented as x, y and z-coordinates.
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APPENDIX B. NUMERICAL PARAMETERS

Table B.1: Rotation matrices and camera coordinates for numerical angle study of two cameras

CAMERA NO CAMERA COORDINATES ROTATION MATRIX

Camera 1
x = r si n(−α) Rr ol l =

1 0 0
0 cos(θ) −si n(θ)
0 si n(θ) cos(θ)


y = r si n(θ) cos(−α) Rpi tch =

 cos(−α) 0 si n(−α)
0 1 0

−si n(−α) 0 cos(−α)


z = r cos(θ) cos(−α) Ry aw =

cos(0) −si n(0) 0
si n(0) cos(0) 0

0 0 1



Camera 2
x = r si n(α) Rr ol l =

1 0 0
0 cos(−θ) −si n(−θ)
0 si n(−θ) cos(−θ)


y = r si n(−θ) cos(−α) Rpi tch =

 cos(−α) 0 si n(−α)
0 1 0

−si n(−α) 0 cos(−α)


z = r cos(−θ) cos(−α) Ry aw =

cos(0) −si n(0) 0
si n(0) cos(0) 0

0 0 1


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APPENDIX B. NUMERICAL PARAMETERS

Table B.2: Rotation matrices and camera coordinates for numerical angle study of three cameras
located in a symmetric triangle

CAMERA NO CAMERA COORDINATES ROTATION MATRIX

Camera 1
x = r si n(α) Rr ol l =

1 0 0
0 cos(0) −si n(0)
0 si n(0) cos(0)


y = 0 Rpi tch =

 cos(α) 0 si n(α)
0 1 0

−si n(α) 0 cos(α)


z = r cos(α) Ry aw =

cos(0) −si n(0) 0
si n(0) cos(0) 0

0 0 1



Camera 2
x = r si n(−α) Rr ol l =

1 0 0
0 cos(θ) −si n(θ)
0 si n(θ) cos(θ)


y = r si n(θ) cos(−α) Rpi tch =

 cos(−α) 0 si n(−α)
0 1 0

−si n(−α) 0 cos(−α)


z = r cos(θ) cos(−α) Ry aw =

cos(0) −si n(0) 0
si n(0) cos(0) 0

0 0 1



Camera 3
x = r si n(−α) Rr ol l =

1 0 0
0 cos(−θ) −si n(−θ)
0 si n(−θ) cos(−θ)


y = r si n(−θ) cos(−α) Rpi tch =

 cos(−α) 0 si n(−α)
0 1 0

−si n(−α) 0 cos(−α)


z = r cos(−θ) cos(−α) Ry aw =

cos(0) −si n(0) 0
si n(0) cos(0) 0

0 0 1


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APPENDIX B. NUMERICAL PARAMETERS

Table B.3: Rotation matrices and camera coordinates for numerical angle study of three cameras
located in an asymmetric triangle

CAMERA NO CAMERA COORDINATES ROTATION MATRIX

Camera 1
x = r si n(α) Rr ol l =

1 0 0
0 cos(0) −si n(0)
0 si n(0) cos(0)


y = 0 Rpi tch =

 cos(α) 0 si n(α)
0 1 0

−si n(α) 0 cos(α)


z = r cos(α) Ry aw =

cos(0) −si n(0) 0
si n(0) cos(0) 0

0 0 1



Camera 2
x = r si n(−α) Rr ol l =

1 0 0
0 cos(0a) −si n(0)
0 si n(0) cos(0)


y = 0 Rpi tch =

 cos(−α) 0 si n(−α)
0 1 0

−si n(−α) 0 cos(−α)


z = r cos(−α) Ry aw =

cos(0) −si n(0) 0
si n(0) cos(0) 0

0 0 1



Camera 3
x = 0 Rr ol l =

1 0 0
0 cos(θ) −si n(θ)
0 si n(θ) cos(θ)


y = r si n(θ) Rpi tch =

 cos(0) 0 si n(0)
0 1 0

−si n(0) 0 cos(0)


z = r cos(θ) Ry aw =

cos(0) −si n(0) 0
si n(0) cos(0) 0

0 0 1


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APPENDIX B. NUMERICAL PARAMETERS

Table B.4: Rotation matrices and camera coordinates for numerical angle study of four cameras
located symmetrically

CAMERA NO CAMERA COORDINATES ROTATION MATRIX

Camera 1
x = r si n(α) Rr ol l =

1 0 0
0 cos(θ) −si n(θ)
0 si n(θ) cos(θ)


y = r si n(θ) cos(α) Rpi tch =

 cos(α) 0 si n(α)
0 1 0

−si n(α) 0 cos(α)


z = r cos(θ) cos(α) Ry aw =

cos(0) −si n(0) 0
si n(0) cos(0) 0

0 0 1



Camera 2
x = r si n(−α) Rr ol l =

1 0 0
0 cos(θ) −si n(θ)
0 si n(θ) cos(θ)


y = r si n(θ) cos(−α) Rpi tch =

 cos(−α) 0 si n(−α)
0 1 0

−si n(−α) 0 cos(−α)


z = r cos(θ) cos(−α) Ry aw =

cos(0) −si n(0) 0
si n(0) cos(0) 0

0 0 1



Camera 3
x = r si n(α) Rr ol l =

1 0 0
0 cos(−θ) −si n(−θ)
0 si n(−θ) cos(−θ)


y = r si n(−θ) cos(α) Rpi tch =

 cos(α) 0 si n(α)
0 1 0

−si n(α) 0 cos(α)


z = r cos(−θ) cos(α) Ry aw =

cos(0) −si n(0) 0
si n(0) cos(0) 0

0 0 1



Camera 4
x = r si n(−α) Rr ol l =

1 0 0
0 cos(−θ) −si n(−θ)
0 si n(−θ) cos(−θ)


y = r si n(θ) cos(−α) Rpi tch =

 cos(−α) 0 si n(−α)
0 1 0

−si n(−α) 0 cos(−α)


z = r cos(θ) cos(−α) Ry aw =

cos(0) −si n(0) 0
si n(0) cos(0) 0

0 0 1


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Table B.5: Rotation matrices and camera coordinates for numerical angle study of four cameras
located asymmetrically

CAMERA NO CAMERA COORDINATES ROTATION MATRIX

Camera 1
x = r si n(α) Rr ol l =

1 0 0
0 cos(0) −si n(0)
0 si n(0) cos(0)


y = 0 Rpi tch =

 cos(α) 0 si n(α)
0 1 0

−si n(α) 0 cos(α)


z = r cos(α) Ry aw =

cos(0) −si n(0) 0
si n(0) cos(0) 0

0 0 1



Camera 2
x = r si n(−α) Rr ol l =

1 0 0
0 cos(0) −si n(0)
0 si n(0) cos(0)


y = 0 Rpi tch =

 cos(−α) 0 si n(−α)
0 1 0

−si n(−α) 0 cos(−α)


z = r cos(−α) Ry aw =

cos(0) −si n(0) 0
si n(0) cos(0) 0

0 0 1



Camera 3
x = r si n(α) Rr ol l =

1 0 0
0 cos(θ) −si n(θ)
0 si n(θ) cos(θ)


y = r si n(θ) cos(α) Rpi tch =

 cos(α) 0 si n(α)
0 1 0

−si n(α) 0 cos(α)


z = r cos(θ) cos(α) Ry aw =

cos(0) −si n(0) 0
si n(0) cos(0) 0

0 0 1



Camera 4
x = r si n(−α) Rr ol l =

1 0 0
0 cos(θ) −si n(θ)
0 si n(θ) cos(θ)


y = r si n(θ) cos(−α) Rpi tch =

 cos(−α) 0 si n(−α)
0 1 0

−si n(−α) 0 cos(−α)


z = r cos(θ) cos(−α) Ry aw =

cos(0) −si n(0) 0
si n(0) cos(0) 0

0 0 1


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Appendix C

MATLAB and Labview scripts

MATLAB and Labview scripts used in the thesis are here provided.

C.1 MATLAB camera calibration code

Following matlab code used for camera calibration:

1 %Camera calibration with a 2D object.

2 clear all; close all;

3 for i = numImages

4 imageName = sprintf('left%d000001.tif',i);

5 imageNames{i} = fullfile('\imageFolder', imageName);

6 end

7 %General parameters:

8 squareSize = 25;%size of the checkerboard squares

9 %Extract calibration points and board size from the different images.

10 [iP, boardSize, imagesUsed] = detectCheckerboardPoints(imageNames); ...

%detect pattern and estimate u and v from image

11 imageNames = imageNames(imagesUsed);

12 %Generate known points corresponding to the calibration points in the world

13 %coordinate system.

14 wP = generateCheckerboardPoints(boardSize, squareSize);

15 calibrationPoints = size(iP,1); %how many points used for the calibration

ix



C.1. MATLAB CAMERA CALIBRATION CODE APPENDIX C. MATLAB AND LABVIEW SCRIPTS

16 [cameraParams, imagesUsed, estimationErrors] = ...

estimateCameraParameters(iP, wP, ...

17 'EstimateSkew', false, 'EstimateTangentialDistortion', false, ...

18 'NumRadialDistortionCoefficients', 2, 'WorldUnits', 'mm');

19 R_transposed = cameraParams.RotationMatrices; %extract rotation ...

matrices from camera parameters

20 t = cameraParams.TranslationVectors; %extract translation vectors

21 A = cameraParams.IntrinsicMatrix; %extract instrinsic parameters

22 numImages = size(imagesUsed,1);

23 [imagePoints, worldPoints, A, t, R, P] = fixParameters(iP, wP, ...

A,t,R_transposed, numImages, calibrationPoints);

Find parameters for all camera locations. Determine the lines of sight an calculate intersec-

tion point:

1 %% Determine the deviation from original point.

2

3 ∆ = zeros(calibrationPoints, numImages);

4 pointCoordinates2 = zeros(3,calibrationPoints, numImages);

5 ∆x = zeros(calibrationPoints, numImages);

6 ∆y = zeros(calibrationPoints, numImages);

7 ∆z = zeros(calibrationPoints, numImages);

8 for i = 1:numImages

9 for j = 1:calibrationPoints

10 imagePoint_left2 = imagePoints_left(:,j,i); %pixel value of ...

point from left camera

11 imagePoint_right2 = imagePoints_right(:,j,i); %pixel value of ...

point from right camera

12 imagePoint_middle2 = imagePoints_middle(:,j,i); %pixel value of ...

point from middle camera

13 [worldPosition_left2, C_left2] = calculateLinesOfsight(A_left, ...

R_left(:,:,i), t_left(:,i), imagePoint_left2);

14 [worldPosition_right2, C_right2] = ...

calculateLinesOfsight(A_right, R_right(:,:,i), t_right(:,i), ...

imagePoint_right2);

x



APPENDIX C. MATLAB AND LABVIEW SCRIPTS C.2. MATLAB NUMERICAL ANALYSIS CODE

15 [worldPosition_middle2, C_middle2] = ...

calculateLinesOfsight(A_middle, R_middle(:,:,i), ...

t_middle(:,i), imagePoint_middle2);

16 pointCoordinates2(:,j,i) = ...

detectIntersectionPoint(worldPosition_left2, ...

worldPosition_right2, worldPosition_middle2);

17 ∆x(j,i) = (wP(j,1) − pointCoordinates2(1,j,i));

18 ∆y(j,i) = (wP(j,2) − pointCoordinates2(2,j,i));

19 ∆z(j,i) = (0 − pointCoordinates2(3,j,i));

20 ∆(j,i) = norm([wP(j,:)';0] − pointCoordinates2(:,j,i));

21 end

22 end

C.2 MATLAB numerical analysis code

Code used in numerical angle analysis

1 close all; clear all;

2 %Monte carlo of angle study

3 t2 = [15 30 45 60];

4 a = [10 15 20 25 30 35 40 45 50 55 60];

5

6 for l = 1:length(t2)

7 for h = 1:length(a)

8 alpha1 = a(h);

9 theta1 = t2(l);

10

11 for k = 1:1000

12 Numerical_angle3cam

13 end

14 end

15 end

16

17 %This function/script conducts a numerical study of diffetent angles
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C.2. MATLAB NUMERICAL ANALYSIS CODE APPENDIX C. MATLAB AND LABVIEW SCRIPTS

18 %between cameras on a traverse. It needs a camera matix, as the intrinsic

19 %parameters of a camera, and then the extrinsic parameters, as the rotation

20 %and camera position, are varied to simulate cameras at different angles.

21

22 A = [5386, 0, 494.6; 0, 5381, 444.5; 0, 0, 1];

23

24 %Generate checkerboard world points as reference points

25 row = [0 25 50 75 100 125];

26 row2 = [0 25 50 75 100 125 150];

27 for i = 1:7

28 worldPoints(((i−1)*6+1):((i−1)*6+6),1) = row2(i);

29 worldPoints(((i−1)*6+1):((i−1)*6+6),2) = row';

30 end

31

32 numberOfCameras = 4;

33

34 %Need to define radius and angles to get camera position:

35 r = −1000; %1000mm from object, all cameras

36 alpha = alpha1;%45;

37 theta = theta1;

38

39 %convert to radians

40 alpha_rad = alpha*(pi/180);

41 theta = theta*(pi/180);

42

43 %Define rotation matrices for cameras, must be changed for each camera ...

setup:

44 R = zeros(3,3,numberOfCameras);

45 C = zeros(3,numberOfCameras);

46

47 %pitch = y−axis, roll = x−axis, yaw = z−axis
48 %cam 1:

49 R_roll1 = [1, 0, 0; 0, cos(theta), −sin(theta); 0, sin(theta), cos(theta)];

50 R_pitch1 = [cos(alpha_rad), 0, sin(alpha_rad); 0, 1, 0; ...

−sin(alpha_rad), 0, cos(alpha_rad)];

51 R_yaw1 = [cos(0), −sin(0), 0; sin(0), cos(0), 0; 0, 0, 1];
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APPENDIX C. MATLAB AND LABVIEW SCRIPTS C.2. MATLAB NUMERICAL ANALYSIS CODE

52 R(:,:,1) = R_yaw1*R_pitch1*R_roll1;

53

54 %cam 2:

55 R_roll2 = [1, 0, 0; 0, cos(theta), −sin(theta); 0, sin(theta), cos(theta)];

56 R_pitch2 = [cos(−alpha_rad), 0, sin(−alpha_rad); 0, 1, 0; ...

−sin(−alpha_rad), 0, cos(−alpha_rad)];
57 R_yaw2 = [cos(0), −sin(0), 0; sin(0), cos(0), 0; 0, 0, 1];

58 R(:,:,2) = R_yaw2*R_pitch2*R_roll2;

59

60 %cam 3:

61 R_roll3 = [1, 0, 0; 0, cos(−theta), −sin(−theta); 0, sin(−theta), ...

cos(−theta)];
62 R_pitch3 = [cos(alpha_rad), 0, sin(alpha_rad); 0, 1, 0; ...

−sin(alpha_rad), 0, cos(alpha_rad)];

63 R_yaw3 = [cos(0), −sin(0), 0; sin(0), cos(0), 0; 0, 0, 1];

64 R(:,:,3) = R_yaw3*R_pitch3*R_roll3;

65

66 %cam 4:

67 R_roll4 = [1, 0, 0; 0, cos(−theta), −sin(−theta); 0, sin(−theta), ...

cos(−theta)];
68 R_pitch4 = [cos(−alpha_rad), 0, sin(−alpha_rad); 0, 1, 0; ...

−sin(−alpha_rad), 0, cos(−alpha_rad)];
69 R_yaw4 = [cos(0), −sin(0), 0; sin(0), cos(0), 0; 0, 0, 1];

70 R(:,:,4) = R_yaw4*R_pitch4*R_roll4;

71

72 %camera position must be changed for each setup

73 %camera 1:

74 x(1) = r*sin(alpha_rad);

75 y(1) = r*sin(theta)*cos(alpha_rad);

76 z(1) = r*cos(theta)*cos(alpha_rad);

77

78 %camera 2:

79 x(2) = r*sin(−alpha_rad);
80 y(2) = r*sin(theta)*cos(−alpha_rad);
81 z(2) = r*cos(theta)*cos(−alpha_rad);
82
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83 %camera 3:

84 x(3) = r*sin(alpha_rad);

85 y(3) = r*sin(−theta)*cos(alpha_rad);
86 z(3) = r*cos(−theta)*cos(alpha_rad);
87

88 %camera 3 for 4 cameras:

89 x(4) = r*sin(−alpha_rad);
90 y(4) = r*sin(−theta)*cos(−alpha_rad);
91 z(4) = r*cos(−theta)*cos(−alpha_rad);
92

93 C = [x(1,:); y(1,:); z(1,:)];

94

95 for i = 1:numberOfCameras

96 %Translation vector

97 t(:,i) = −R(:,:,i)*C(:,i);
98 %Projection matrix

99 P(:,:,i) = A*[R(:,:,i) t(:,i)];

100 end

C.3 MATLAB point tracking code

Code for tracking after loading images and calibrating cameras:

1 %Detect circle in image

2 %Need to find approximate circle radius to make the detection faster

3 figure(1)

4 imshow(images1{1})

5 d = imdistline;

6 %Measure the radius of the point in image (in pixels)

7 %delete(d);

8 min_radius = 'What is the minimum radius?';

9 max_radius = 'What is the maximum radius?';

10 start1 = 'Give coordinates of startpoint 1:';

11 r1 = input(min_radius); %set minimum radii
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12 r2 = input(max_radius); %set maximum radii

13 startPoint1 = input(start1);

14 figure(2)

15 imshow(images2{1})

16 start2 = 'Give coordinates of startpoin 2:';

17 startPoint2 = input(start2);

18 %Detect circles:

19 Centers1 = zeros(nf,2);

20 Centers2 = zeros(nf,2);

21 Radius1 = zeros(nf,1);

22 Radius2 = zeros(nf,1);

23 for i = 1:nf

24 [center1, radii1] = imfindcircles(images1{i}, [r1 ...

r2],'ObjectPolarity','dark',...

25 'Sensitivity',0.86, 'Method', 'twostage');

26 [center2, radii2] = imfindcircles(images2{i}, [r1 ...

r2],'ObjectPolarity','dark',...

27 'Sensitivity',0.87, 'Method', 'twostage');

28 for j = 1:size(center1,1)

29 if (norm(center1(j,:) − startPoint1) < 8 && center1(j,1) 6= 0)

30 Centers1(i,:) = center1(j,:);

31 Radius1(i) = radii1(j);

32 startPoint1 = Centers1(i,:);

33 end

34 end

35 for k = 1:size(center2,1)

36 if (norm(center2(k,:) − startPoint2) < 8 && center2(k,1) 6= 0)

37 Centers2(i,:) = center2(k,:);

38 Radius2(i) = radii2(k);

39 startPoint2 = Centers2(i,:);

40 end

41 end

42 end
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C.4 Labview script step motor

Controlling the stepper motors to be used for rotating the shafts in the water tank, is done

through Labview. A PCI-6602 device from National Instruments is used to send square signals

to the stepper motor controller. The PCI-6602 device has 8 up/down, 32-bit counters and 32

digital I/O lines.

The labview code starts and accelerate the motor, make it run on constant speed for a given

time period, and then decelerate it before it stops. These different sequences are devided into

different case structures. The block diagram of the code is provided below.
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Appendix D

Risk assessment

Most relevant information from the conducted risk assessment are here provided.
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