
BACHELOROPPGAVE:

Service architectures for educational pur-
poses

FORFATTERE:
Arnt-Helge Nilsen Øyan
Stian Svalstad
Sigve Næss

DATO:
18.05.2016

Service architectures for educational purposes

Sammendrag av Bacheloroppgaven

Tittel: Tjenestearkiteurer til bruk i utdanning

Dato: 18.05.2016

Deltakere: Arnt-Helge Nilsen Øyan
Stian Svalstad
Sigve Næss

Veiledere: Erik Hjelmås

Oppdragsgiver: Norwegian University of Science and Technology

Kontaktperson: Kyrre Begnum, kyrre.begnum@hioa.no

Nøkkelord: Norway, Norsk
Antall sider: 129
Antall vedlegg:
Tilgjengelighet: Åpen

Sammendrag: Flackr og Factory er to forskjellige tjenestearkutekturer
som kjører på moderne og relevante teknologier. Studen-
tene vil ta på seg rollen som systemadministrator og ha
ansvaret for systemdrift. De vil få en teoretisk og prak-
tisk innsikt i relevante og reelle IT temaer som skalering,
tilgjengelighet, single point of failure, og sikkerhet. Som
en del av dette skal de installere, konfigurer og drifte net-
tjenere, database, og servere som gjør lastbalansering av
inkommende trafikk.

i

Service architectures for educational purposes

Summary of Graduate Project

Title: Service architectures for educational purposes

Date: 18.05.2016

Participants: Arnt-Helge Nilsen Øyan
Stian Svalstad
Sigve Næss

Supervisor: Erik Hjelmås

Employer: Norwegian University of Science and Technology

Contact Person: Kyrre Begnum, kyrre.begnum@hioa.no

Keywords: Service-oriented architecture, MEAN, stack, architecture,
design, RabbitMQ, message queue, web application, IT
operations

Pages: 129
Attachments:
Availability: Open

Abstract: Flackr and Factory are part of two different service archi-
tectures running on modern and relevant technologies.
The students will take on the role as a system adminis-
trator and be responsible for system operation. They will
get a theoretical and practical insight on relevant and
real-world IT operational issues like scalability, availabil-
ity, single point of failure, and security. As a part of this
they have to install, configure and operate web servers,
databases, and servers doing load balancing of the incom-
ing traffic.

ii

Service architectures for educational purposes

Preface

This bachelor thesis has been an interesting and challenging project. During the time
working we have learned different technologies and better understand how they are
installed, configured and used at companies. Spending time researching, finding spe-
cific information and figuring out how to design a working system architecture has been
something to look back at. We really enjoyed taking IMT3441 database and application
administration when we took the course, and we hope this will contribute to making the
course even better in the future.

We would like to thank Erik Hjelmås for being our supervisor, keeping us engaged
by asking relevant questions and providing us with feedback throughout our bachelors
project. Kyrre Begnum for sending in the suggestion, his insight, our productive discus-
sions, and of course valuable feedback. Michael Behrns for helping with HTML and CSS.

iii

Service architectures for educational purposes

Contents

Preface . iii
Contents . iv
List of Figures . viii
List of Tables . ix
1 Introduction . 1

1.1 Project background . 1
1.2 Project description . 1
1.3 Target Audience . 2
1.4 Goal . 2
1.5 Academic Background . 2
1.6 Development Model . 2
1.7 Document Structure . 4
1.8 Terminology . 5

2 Requirement Specification . 6
2.1 Functionality . 6
2.2 Usability . 6
2.3 Reliability . 7
2.4 Security . 7

2.4.1 Web Application Security . 7
2.4.2 Architecture Security . 8

3 First Architecture - Flackr . 9
3.1 Technology . 9

3.1.1 MEAN Stack . 9
MongoDB . 9
Express.js . 9
Angular.js . 9
Node.js . 10

3.1.2 npm . 10
3.1.3 Mongoose . 10
3.1.4 Jade . 10
3.1.5 fs . 10
3.1.6 PM2 . 10
3.1.7 Nginx . 11
3.1.8 GlusterFS . 12

3.2 Design . 13
3.2.1 Application . 13

Node.js . 14
Jade . 14
Express.js . 15
Mongoose . 15

iv

Service architectures for educational purposes

PM2 . 16
3.2.2 Architecture . 16

Nginx . 17
Application server . 17
MongoDB . 17
GlusterFS . 18

3.3 Implementation . 18
3.3.1 Application . 18

Node.js and Express.js . 18
3.3.2 Architecture . 26

Node.js and Express.js . 26
MongoDB . 27
Mongoose . 30
PM2 . 30
Nginx . 31
GlusterFS . 32

3.4 Traffic generation . 34
3.4.1 Introduction . 34
3.4.2 Implementation . 34

3.5 MEAN Stack Security . 38
3.5.1 MongoDB . 38
3.5.2 Express.js . 39
3.5.3 Angular.js . 39
3.5.4 Node.js . 39

3.6 Testing . 40
3.6.1 System testing . 40
3.6.2 Static code analysis . 40
3.6.3 Performance testing . 41
3.6.4 User manual review . 41
3.6.5 Traffic generation script testing . 41

4 Second Architecture - Factory . 42
4.1 Technology . 42

4.1.1 RabbitMQ . 42
4.1.2 Flask . 42
4.1.3 Pika . 42
4.1.4 PM2 . 42
4.1.5 MongoDB . 42
4.1.6 Munin with RabbitMQ plugin . 43
4.1.7 RabbitMQ Management Plugin . 43

4.2 Design . 43
4.2.1 Application . 43

Entrypoint . 43
Workers and queues . 43
Safe . 43
Finished Job Entry System . 43
Common . 44

v

Service architectures for educational purposes

4.2.2 Architecture . 44
4.2.3 Monitoring . 44

Munin with RabbitMQ Plugin . 45
RabbitMQ Management Plugin . 45

4.3 Implementation . 45
4.3.1 Application . 45

Entrypoint . 45
Workers . 45
Safe . 47
Finished Job Entry System . 49

4.3.2 Architecture . 49
RabbitMQ . 49
Common . 50
MongoDB . 50

4.3.3 Monitoring . 50
Munin with RabbitMQ Plugin . 50
RabbitMQ Management Plugin . 52

4.4 Traffic generation . 52
4.4.1 Introduction . 52
4.4.2 Implementation . 53

4.5 RabbitMQ Security . 54
4.5.1 Access Control . 54
4.5.2 Messaging transport security . 54
4.5.3 RabbitMQ Security Checklist . 54

4.6 Testing . 54
4.6.1 System testing . 55
4.6.2 Static code analysis . 55
4.6.3 Performance testing . 55
4.6.4 User manual review . 55
4.6.5 Traffic generation script testing . 55

5 Discussion . 56
5.1 Results . 56

5.1.1 Project outcome . 56
5.1.2 What did we not do . 56
5.1.3 What could have been done differently 56
5.1.4 Technologies . 57
5.1.5 Time usage . 57
5.1.6 Complications . 57

5.2 Group evaluation . 58
5.3 Further Development . 59

6 Conclusion . 60
Bibliography . 61
A Application code and configuration files . 64

A.1 Flackr . 64
A.2 Factory . 71

B Traffic generating script for Flackr . 80

vi

Service architectures for educational purposes

C Traffic generating script for Factory . 86
D Disable Transparent Huge Pages . 89
E MongoDB configuration file . 90
F Nginx configuration file . 91
G User manuals . 92

G.1 Flackr . 92
G.2 Factory . 94

H Verification from Kyrre . 99
I A JSON example from https://randomuser.me 100
J Meeting logs . 101
K Pre plan document . 110
L Gantt . 129

vii

Service architectures for educational purposes

List of Figures

1 Iterative development model . 3
2 Nginx Reverse Proxy with Load Balancing 11
3 GlusterFS Design . 12
4 Deployment view of Flackr . 16
5 Deployment view of Factory . 44
6 Gantt chart . 129

viii

Service architectures for educational purposes

List of Tables

1 Table with versions . 14
2 Image scheme . 15
3 Comment scheme . 16
4 Comparing SQL and NoSQL . 18

ix

Service architectures for educational purposes

1 Introduction

1.1 Project background

In IMT3441 database and application administration at Norwegian University of Science
and Technology you get introduced to one of the more traditional service architectures
by implementing a web application called Bookface, a really simplified social network.
This architecture consists of the Linux Operating System, Apache HTTP Server, MySQL
Database and PHP for web development. This is more commonly known as the LAMP
stack. The students will be tasked with installing, configuring and operating this applica-
tion as it gets hammered with traffic. Implementing load balancing between several web
servers, caching technology on application level and much more in order to maintain
continuous operation.

Lately, it has been more relevant to provide an alternatives and more modern archi-
tectures in addition to the LAMP stack, in order for the student to benefit more from the
course. Examples would be a Node.js solution with API calls, unstructured databases, or
a gaming application service. This will be in addition to Bookface, in order to let the
students either choose, or operate them all.

1.2 Project description

This project deals with the design and implementation of alternative architectures. A
minimum of two complete architectures are expected to be delivered at the end of this
bachelor thesis. Hence, this project will be divided into two parts, one for each architec-
ture.

Each architecture will be used in IMT3441 Database and application administration.
However, it is expected that one of the architectures is of similar size as the current
Bookface application. Moreover, the other will be a smaller application to be used in a
two week period during the course as an addition to the two larger service architectures.
Furthermore, this project can be broken down into main objectives that is considered to
be the same for both architectures.

• Decide upon a service architecture and install required software
• Design, develop and implement an application
• Develop a tool for generating traffic
• Write user manuals

In addition to the architecture itself, our employer also requires the following:

• A codebase in a git repository, where the versions can tell a "story". For example
you start off with a version with several mistakes or errors by the developers. Either
they didn’t have time or resources to fix this before it had to be deployed

• Extra tools that are to be used from the "uptime" system, that directs traffic to the
architecture and puts it under load, so that it feels more realistic. Much like the
same way Bookface had users and posts added during the course

• Documentation. It can’t be too complex and preferably be based on standard pack-

1

Service architectures for educational purposes

ages in Ubuntu. One must also take in to account the technical expertise of the
persons taking the course. If there is too much hacking, it might overshadow the
big picture

There is no equivalent course given today. This bachelor project will introduce an unique
value for everyone who wants to learn more about operating large scale systems. Fur-
thermore, since the documentation is written in English, the possibility of offering this to
international students in the future will be achievable. Since the LAMP-stack is already
implemented in the current course, our solution will be based on another stack.

1.3 Target Audience

Our target audience is first of all our employer, however, as he is intending to use it in
one of his courses, the students are part of our target audience as well.

1.4 Goal

Our current goals for this project are as follows:
Learning

• Be able to understand and differentiate between different service architectures
• Learn to install, configure and implement software solutions
• Be able to design documentation that enhances quality of learning
• Further develop knowledge of relevant professional areas like programming, net-

work, scripting and, databases
• Implement the use of "Best practices"

Performance

• Design two or more service-oriented architectures to compliment the current Book-
face

• Write documentation so students can configure, install and operate the service ar-
chitectures

• Develop a method to send traffic to the service architecture

1.5 Academic Background

Our group consists of three students from two different study programs. Arnt-Helge
Nilsen Øyan and Stian Svalstad are studying Science in Network and System Admin-
istration. Sigve Næss is studying information security. Both courses are now combined in
to IT Operations and Information Security. All of us are third year students at NTNU in
Gjøvik (former Høgskolen i Gjøvik).

1.6 Development Model

Being able to add, remove or change previous steps during the design or development
is a major advantage, therefore an agile method would be the best fit for our project.
It was also necessary for us to be able to store, and keep track of possible features that
could be implemented at different stages of the project period. A solution to this would
be a product backlog, which is often used in agile methods. The way IMT3441 works
is you start by installing a webserver, put Bookface source files in the web root folder,
install MySQL servers, and connect them together. This is considered to be an incremental

2

Service architectures for educational purposes

way of working, which we acknowledge as a favourable method for developing system
architectures.

Depending on how our application will look, there will most likely be some devel-
opment or scripting. This largely depends on the outcome of our ideas. Therefore we
need our model to be flexible enough to handle the unpredictability. Based on this and
aspects earlier in the thesis we ended up with a incremental and iterative model [1]. The
development method is illustrated in figure 1.

Figure 1: Iterative development model

3

Service architectures for educational purposes

1.7 Document Structure

This project document is structured into the following sections:

1. Introduction: A brief introduction to the project as a whole, background of the
project and the planning process.

2. Requirement Specification: A document that describes how the system is expected
to perform and which precautionary methods has been considered.

3. First Architecture:

• Technology: A brief description of the different components and technologies
used in the first architecture.

• Design: Detailed description of the architecture and system design, and how
the different technologies are combined.

• Implementation: Documented details about the implementation of the system,
and explanation of decisions taken related to the implementation.

• Traffic Generation: Contains information and description about the tool that
developed to generate traffic in this system.

• Security: An architecture specific section that contains security related infor-
mation and recommendations about the relevant technologies used in this
architecture.

• Testing: Description of how the system has been tested.

4. Second Architecture:

• Technology: A brief description of the different components and technologies
used in the first architecture.

• Design: Detailed description of the architecture and system design, and how
the different technologies are combined.

• Implementation: Documented details about the implementation of the system,
and explanation of decisions taken related to the implementation.

• Traffic Generation: Contains information and description about the tool that
developed to generate traffic in this system.

• Security: An architecture specific section that contains security related infor-
mation and recommendations about the relevant technologies used in this
architecture.

• Testing: Description of how the system has been tested.

5. Discussion and Conclusion: Discussion of the results and a final evaluation of the
project and system.

6. Appendix All appendices.

4

Service architectures for educational purposes

1.8 Terminology

JS JavaScript programming language
JSON JavaScript Object Notation
LAMP Linux, Apache, MySQL, and PHP/Python/Perl
MEAN MongoDB, Express, Angular, Node.js
URI Uniform Resource Identifier
URL Uniform Resource Locator
THP Transparent Huge Pages
TLB Translation Lookasie Buffer
PPA Personal Package Archive
CSS Cascading Style Sheets
HTML HyperText Markup Language
pip Package manager for Python.
npm Node package manager
ODM Object Data Manager
TLS Transport Layer Security
SSL Secure Socket Layer
OWASP Open Web Application Security Project
HTTP Hypertext Transfer Protocol
HTTPS Hypertext Transfer Protocol Secure
SMTP Simple Mail Transfer Protocol
POP3 Post Office Protocol v3
IMAP Internet Message Access Protocol
UQL Unstructured Query Language
LTS Long Term Support
PID Process identifier
GUI Graphical User Interface
CLI Command Line Interface
YAML Human readable data serialization language

5

Service architectures for educational purposes

2 Requirement Specification

In this chapter the requirements for our architectures are discussed. Some of the required
functionality, as well as the specifications for usability and reliability are described.

2.1 Functionality

In terms of functionality there are certain requirements we have to comply with, as to
what is expected from our employer. First of all, we distinguish between the two archi-
tectures. The first architecture is expected to be of similar size as the current Bookface
stack, hence it has to include an application. This means that the required functionality
will have to include methods for accepting new entries as well as being able to display
them on a simple website. For it to be usable for our employer in one of his courses,
the application needs to be created in such a way that we can use scripting methods to
generate traffic to the application, in order for them to seem dynamic and authentic. In
terms of the architecture itself, and not the application, key features such as load bal-
ancing, support for scalability and storage methods including the use of a database, are
all key concepts that are expected regarding functionality. Whereas, the first architecture
is intended to be used alongside Bookface, the second architecture has a different area
of use. The intention of our employer is to use it at the end of his course to illustrate
operational issues, more about this later on. With this in mind our second architecture
has fewer of these concepts as requirements. However, the application still has to accept
data and display it in a representative way.

The traffic generating scripts for both architectures are required to have similar func-
tionality, this is due to the fact that our employer will use both scripts the same way.
Accordingly the method of execution for each script will be with command line argu-
ments for an IP address as well as the necessary options. The options will be different
for each script, these options are discussed in extent in the traffic generation section for
each respective architecture.

2.2 Usability

As specified in the task description, everything that needs to be installed has to be based
on native packages in Ubuntu, except the Git based code repositories. This is due to
the simple complexity that is required from our architectures. The installation has to be
simple enough for students with little to no experience to be able to install and configure
the systems. This means that the user manuals that we write will have to be accurate and
explicit, in order to ensure that the applications can be installed without implications. In
terms of our traffic generating scripts, the code has to be easily readable as well as easily
executable. Accordingly, we are following the Google Python Style Guide[2].

6

Service architectures for educational purposes

2.3 Reliability

In terms of reliability, it is a requirement that the solutions work with 14.04 Ubuntu
server LTS. However, the architectures should be created in such a way that it can be eas-
ily implemented and used with newer versions of Ubuntu server, without major changes.
It is expected that the solutions are able to operate for a time period of a school semester.

2.4 Security

Due to the requirements and circumstances of our bachelor thesis, our main focus will
be on architecture administration and operations, with less focus on the security aspect.
If we were to deploy our architectures on the public Internet we would have to put a lot
more effort and hours into the security of our systems.

Although our focus primarily will not be on security, it does not mean that we have
completely overlooked security. In each architecture there will be a part that focuses on
security. But first we will go through some basic concepts of architecture and application
security, which are relevant for our architectures.

2.4.1 Web Application Security

The first architecture will be a web application, and therefore looking into this kind of
security is relevant and important for us. Web application security is a major part of infor-
mation security that deals specifically with securing web applications, websites and web
services. Security measures should be applied continuously throughout the application
lifecycle to guarantee a secure application environment.

Due to the increasing security risks involved in Web Application Security, OWASP have
created several guides, cheat sheets and other documents to help organizations secure
their web applications.
In 2013 OWASP created this list of the top 10 critical web application risks[3]:

1. Injection
2. Broken Authentication and Session
3. Cross-Site Scripting(XSS)
4. Insecure Direct Object References
5. Security Misconfiguration
6. Sensitive Data Exposure
7. Missing Function Level Access Control
8. Cross-Site Request Forger(CSRF)
9. Using Known Vulnerable Components

10. Unvalidated Redirects and Forwards

If the web application was meant to be available on the open web, it would have been
recommended to go through a guide like the OWASP Application Security Guide[4] be-
fore a potential official release of the application.

7

Service architectures for educational purposes

2.4.2 Architecture Security

Architecture Security is a type of security design that covers potential risks involved in
a certain scenario or environment. It also describes where the security controls/counter-
measures are positioned, and how they relate to the system architecture. These security
controls/countermeasures are in place to maintain the architecture and system quality
such as confidentiality, integrity and availability.

It is important that we take security of each architecture component into considera-
tion while designing the architecture to ensure a secure environment. Architectures must
therefore be structured in a proper way so that appropriate security controls may easily
be implemented.

8

Service architectures for educational purposes

3 First Architecture - Flackr

The first part of this project will cover the development of an architecture based around
a photo sharing web application. The whole idea is based around the well-known and
already existing application named Flickr. We figured out that this kind of application
and it’s architecture would fit our project in terms of requirements and design. Flickr
is a popular web-based photo-sharing and hosting service with advanced and powerful
features. It supports an active and engaged community where people share and explore
each other’s photos[5]. Our application is a very simple version of Flickr, and has the very
creative name of Flackr. Since the core of our project is not focused around the front-end,
the application has limited user functionality. The next sections will discuss the whole
project process for Flackr, which is made up of Technology, Design, Implementation,
Traffic Generation, Security, and Testing.

3.1 Technology

First off in this section, all the modules, applications and other technologies that are re-
quired to make a complete deployment of Flackr are discussed. The idea of this chapter is
to get a basic understanding of how the different technologies work. Specific descriptions
on how the different technologies are used in this project will be presented in Design,
which is the next chapter.

3.1.1 MEAN Stack

MEAN is a free and open-source JavaScript software stack for building dynamic web
sites and web applications. The MEAN stack makes use of MongoDB, Express.js, Angu-
lar.js, and Node.js. Because all components of the MEAN stack support programs written
in JavaScript, MEAN applications can be written in one language for both server-side and
client-side execution environments[6].

The MEAN stack consists of the following components: MongoDB, Express.js, Angular.js
and Node.js.

MongoDB

MongoDB is the leading open source NoSQL database, which uses a document-oriented
data model.

Express.js

Express.js is a minimal and flexible Node.js web application framework, providing a ro-
bust set of features for building single and multi-page, and hybrid web applications.

Angular.js

Angular.js makes it possible to extend HTML vocabulary for an application. But since
the frontend of the application will not be used by real users, simple html will be used
instead.

9

Service architectures for educational purposes

Node.js

Node.js is a platform built on Chrome’s JavaScript runtime for easily building fast, scal-
able network applications.

3.1.2 npm

npm is the default package manager for the JavaScript environment Node.js. npm was
first created to make it easy for developers to manage dependencies for their JavaScript
applications. Most of the software, modules and packages used in this architecture is
based on JavaScript, and is not available on the more traditional package managers such
as APT.

3.1.3 Mongoose

Mongoose is an ODM library that translates data from the database to JavaScript objects
that can be used in the application. In this case the most useful part of mongoose is the
possibility to make structured schemes. Each schema maps to a MongoDB collection and
defines the shape of the documents within that collection.

3.1.4 Jade

Jade is a template language, which compiles to HTML. Jade makes your HTML code very
clean and easy to implement. There are many alternatives to Jade, but since Jade comes
as default in Express.js we decided to stay with it.

3.1.5 fs

The Node.js filesystem is a module that consist of over 50 different functions. The two
main functions in fs is reading and writing to a file.

3.1.6 PM2

PM2 is an advanced, production process manager for Node.js applications. PM2 is used
to keep your application in production at all times. It is able to control the state of the
application, by spawning a PM2 daemon. It can launch the application at system boot,
monitor it and log the application activities.

10

Service architectures for educational purposes

3.1.7 Nginx

Nginx is a web server that also works as a reserve proxy server for HTTP, HTTPS, SMTP,
POP3 and IMAP protocols. A reverse proxy server is a type of proxy server that directs
requests from clients to the appropriate back-end server.

Nginx can also be used as a load balancer. Load balancing is a commonly used tech-
nique for optimizing resource utilization, maximizing throughput, reducing latency, and
ensuring fault-tolerant configurations[7]. Load balancing helps distribute traffic to sev-
eral servers, which improves performance, scalability and reliability of the running ap-
plication.

Figure 2: Nginx Reverse Proxy with Load Balancing

11

Service architectures for educational purposes

3.1.8 GlusterFS

GlusterFS is a distributed scalable network filesystem. A distributed filesystem is a method
of storing and accessing files based in a client/server architecture. This means that the
file system will allow clients to access and process data stored on the server as if it were
on their own computer.

Figure 3: GlusterFS Design

12

Service architectures for educational purposes

3.2 Design

This chapter will dig into how the technologies that were discussed earlier work together
and how they are a part of the architecture. Our thought process and design solutions are
explicitly discussed. This section will be split in two. First the reader will become familiar
with how the application is built. The second part will cover how the architecture behind
it works in order to support the application.

Generally, all servers will run on Ubuntu Server 14.04.3 (Trusty Tahr) amd64 image
available in SkyHiGh. SkyHiGh is the university’s OpenStack solution and is used in
IMT3441.

3.2.1 Application

Initially we tried to look around to see if it was possible find an existing web application
that could run on the architecture we had in mind. The few already existing web appli-
cations that we found were either too complex, difficult to see how the components are
working together, or would most likely not be viable in the future. Therefore we decided
to develop our own application that would fit this project.

We didn’t think it was necessary for the employer and course coordinator to make
changes to the curriculum every semester the course is held, because of new releases. The
first version should be unpolished. As the students deploy newer versions, the stability
will improve and the code is revised.

As mentioned in the requirement specifications, this application will be available in
three different versions. The details can be seen in table 1. Version two and three has
implemented dark launch. The idea is to release a new feature, but keep it kind of hidden.
For example in the background the application can do queries every time a user does a
certain task, but the result of this query is hidden. This way you can test certain features
as close to a production environment without presenting the result to a user. Companies
like Facebook have used this to stress test their own infrastructure[8].[9]

13

Service architectures for educational purposes

Version Description
1

• Initial setup
• All entries on front page
• 1 application server
• Random logging
• PM2

2
• Limit the number of entries on front page
• 1 application server
• Dark launch: Database query for the most

viewed image

3
• GlusterFS replication between application

servers
• Nginx load balance, cache and reverse proxy
• 2-3 application servers
• Simple implementation of dark launch, query

result will now be shown on the front page

Table 1: Table with versions

Node.js

In this architecture, Node.js is what Apache is to the traditional LAMP. It is an asyn-
chronous HTTP server. Most of the code here is written by Express-generator module
that creates an application skeleton.

Jade

Jade is a template engine primarily used on server side to render templates in Node.js.
This way we can have static template files and fill them with variables at runtime. Cur-
rently there are two different templates, index and a single image page based on ID. They
both have a common layout template they build from.

An example snippet of our layout looks like this in HTML

<!DOCTYPE html>
<html>

<head>
<t i t l e ></t i t l e >
<l i n k r e l =" s t y l e s h e e t " h re f ="/ s t y l e s h e e t s / s t y l e . c s s ">
<div id="logo">

<a hre f ="/">

</div>
<h2>The #1 websi te f o r shar ing your images!</h2>

</head>
<body>
</body>

</html>

This is how it looks like in using a jade template

14

Service architectures for educational purposes

doctype html
html

head
t i t l e= t i t l e
l i n k (r e l =’ s t y l e s h e e t ’ , h re f =’/ s t y l e s h e e t s / s t y l e . css ’)
#logo

a(hre f = ’/ ’)
img(s r c =’/ images/ f l a c k r _ l o g o . png ’ , a l t =" F lack r Logo ")

h2 The #1 websi te f o r shar ing your images !
body

block content

Express.js

Express.js is a framework for Node.js, which is used to provide features for web and
mobile applications [10]. In this project, a Route Listings structure [11] with Router
class [12] will be used in order to create modular and mountable route handlers. This is
a complete middleware and routing system that will handle all requests.

The application have two pluggable views, which is the index site / and insert /insert.
Index presents a matrix with images and a single image page based on ID. Insert is used
for inserting either a new image or comment. All routes will respond with a template
site. Flackr have custom templates for 200 OK and 404 Not Found.

Mongoose

In this architecture Mongoose is used as an abstraction layer instead of using the native
driver for Node.js. By using Mongoose it is possible to abstract away named collections
of arbitrary objects, default values and it also has built in validation.

Mongoose uses a scheme to structure the data. This results in consistent schemes
across our database for every entry that gets inserted. Two different schemes will be
used, where the first one is for an image and the second is for comments. A single image
can have several comments.

Attribute Description
ID Unique identifier. We also use

this to find the image connected
to the post

Title Post title
Publisher Name of the publisher
Views Incremental view count
Comments Array of comments
Date The time when the image was

published on Flackr

Table 2: Image scheme

15

Service architectures for educational purposes

Attribute Description
Name Name of who posted the com-

ment
Text Comment
Date The time the comment was

posted on Flackr

Table 3: Comment scheme

PM2

It is highly recommended using a process manager to run Node.js applications, and there-
fore PM2 will be used. Advantages of using PM2 includes easier management, perfor-
mance monitoring and overview of resource consumption while running.

3.2.2 Architecture

The architecture needs to be simple and relevant. We started off by researching Web Ap-
plication Hosting in the Amazon Reference Architecture to plan the design. Web hosting
can be complex with wild swings in traffic pattern. Reliablility, scalability, security and
high performance are key words here [13]. Figure 4 is a concept design which represents
the architecture as a whole.

Figure 4: Deployment view of Flackr

16

Service architectures for educational purposes

Nginx

The point of entry into our application will be a server running Nginx, which has three
roles:

• Reverse proxy
• Load balancer
• Caching

There are several reasons why it is recommended to implement this in an architecture:

• Simplifying port assignments for multiple applications
• Increased reliability in case the application crashes
• Increased security by not letting the application directly connect to the Internet, ex-

posing possible open ports and preventing security flaws in one of the technologies
the application is using [14]

• Easier scaling with adding only the IP of the application server to the configuration
file

Load balancing with Nginx is easy to configure, and has a ton of features such as ses-
sion persistence, weighting slower servers, limiting connections, and health monitoring
to mention a few. This way it is possible to create a dynamical environment and tailor it to
meet the requirements needed. The student should be free to configure this themselves,
but a general configuration example will be available in appendix F.

In order to get the most out of the application, caching will be implemented. This way
it is possible to serve static content and lessen the traffic load on the application servers.
As well as serving static content, a 5 second cache of the front page will be implemented.
This is called microcaching[15] and it is used by sites like Imgur[16].

Application server

The application server is where Node.js environment, Node.js application and PM2 will
be installed and configured. There will not be a limit on these kind of servers, and there-
fore it is possible to scale and meet the demands from users.

MongoDB

Each image has its own entry in the database that consists of the data mentioned in
tables 2 and 3. This data will be stored using MongoDB, a NoSQL database. Compared
to MySQL, a traditional relational database. MySQL uses tables with certain keys to de-
fine the relation, in a pre-defined database schema, and uses SQL for database access.
MSSQL and SQLite are other SQL implementations. In MongoDB the tables are JSON-
like documents with dynamic schemes and key-pair values. There are no need to define
the structure of the document, such as fields or types of values. The query languages are
both rich, powerful and portable so there are no need to send multiple commands to
fetch the desired data. Other than MongoDB, Redis, Cassandra and CouchDB are other
alternatives of NoSQL implementations[17]. Table 4 is a summary of the comparison.

17

Service architectures for educational purposes

SQL NoSQL
Relation database Non-relational
Tables with rows and columns Documents of key-value pair
Predefined schema Dynamic schema
Vertically scaleable by increasing
the hardware

Horizontal by increasing the
number of database in the pool

SQL for defining and manipulat-
ing the data

Queries are focused on collection
of documents, sometimes called
UQL

MySQL, MSSQL, SQLite MongoDB, Redis, Cassandra,
CouchDB

Table 4: Comparing SQL and NoSQL

GlusterFS

Flackr will store all images in a file system within the operating system . In order for
Flackr to be scalable, it was required to find a way to replicate the images over several
servers. In IMT3441 students are introduced to GlusterFS, therefore this kind of tech-
nology will be used instead of using object storage or using a rsync/cronjob. By using
GlusterFS it will provide the architecture with fault tolerance and load balancing.

The GlusterFS setup in this architecture will consist of two GlusterFS servers with
a cinder volume attached. It was considered having several volumes attached, but this
is not supported in OpenStack at this moment [18]. The files will be accessed using
GlusterFS-client. This way the application servers have a mounted share where all the
images are replicated, so it does not matter which one gets the request.

3.3 Implementation

Implementation is the chapter where the installation process of our stack and application
is explained. It goes into specific details regarding commands, setup and written code.
This chapter is also considered to be the foundation for the user manual, which is added
as appendix G.1

As already mentioned, it is assumed that students know how to launch servers in
SkyHiGh, and connect through ssh.

3.3.1 Application

This section describes the process behind the creation of the Flackr application.

Node.js and Express.js

In a later section it is discussed how we started up with Node.js and Express.js, using a
template generator that creates a bunch of files required for a basic Node.js application.
Furthermore, some of these files are discussed in this section as well as certain important
aspects of the application.

Before discussing any of the code, it is briefly explained how the Express routing and
route methods work. Routing is the application end points (URIs) and decides how the
application should respond to the requests. This is done by attaching a HTTP request
method to an instance of the express class along with a path and handler. A path can
be the home-, customer, or information page on the website. Handler is the function
executed when the route is matched, typically a request (req) and response (res) object.
Request have the headers, body, and a query string. Response is the object being returned

18

Service architectures for educational purposes

when the application gets a request. This could be a simple HTTP status code, a query
string, and a template object. In Flackr, we’re using this along a router object. This creates
isolated instances of routing. This makes the application more structured, orderly, and
more module based. The modules can then be enabled to a particular root URL in the
app file for our project. For example, we want to route all of ’/hello’ to the file ’world’.
This way we could access the page using ’/hello/world’.

In the file ’application-name/routes/world.js’

rou te r . get (’ / world ’ , func t ion (req , res , next) {
re s . send (’ Hel lo back at you . ’)

}

And then ’app.js’, the main file.

app . use (’ / he l lo ’ , world) ;

First of all certain changes have to be made to the app.js file. This file is the core of
the application, it is the file that controls everything. When the application is started,
app.js is the starting point. Express-generator has created a basic structure of the file.
Which has been edited and more configuration has been added to it. As the file is rather
large, it is included as a whole in appendix A.1.1. and only the most important syntax is
discussed here.

The app.js file deals with the connection to the database, this section of the file is
discussed later on. Express needs to be initialized with the syntax

var app = express () ;

The application endpoints are defined

var routes = requ i r e (’ . / routes / index ’) ;
var i n s e r t = requ i r e (’ . / routes / i n s e r t ’) ;

This tells the app to load these files when the application launches, they will be used
later on in the file. Next it is specified which rendering engine should be used, in this
case it is jade.

app . s e t (’ view engine ’ , ’ jade ’) ;

Considering that the filesystem is used for image storing, in combination with GlusterFS
in version 3. Therefore a variable is declared so that the application knows where they
are stored.

app . use (express . s t a t i c (con f i g . photos . f o l d e r)) ;

When express.static is used with a folder location, it is now possible to access the photos
without using a full path. Next, it is defined which addresses are to be associated with
which route. Now the ip address of the server + a ’/’ ending will do the routing located
in the ’routes/index’ file, and the ’/insert’ will do the routing located at ’routes/insert’.

app . use (’ / ’ , rou tes) ;
app . use (’ / i n s e r t ’ . i n s e r t) ;

The last element that has been modified, was to configure which port the application will
be listening on. We used either 3000 or 4000 when developing.

app . l i s t e n (4000 , func t ion (e r r) {
console . e r ro r (’ p re s s CTRL+C to ex i t ’) ;

}) ;

19

Service architectures for educational purposes

The remaining of the file are handlers for development and production, including a gen-
eral 404 not found handler. Before the routes and views are discussed, we have created
a configuration file to specify environment variables such as usernames and IP addresses
[19].

var con f i g = {} ;

con f i g . mongodb = {};
con f i g . image = {};

con f i g . mongodb . ip = ’ ’ ;
con f i g . mongodb . name = ’ ’ ;

con f i g . mongodb . username = ’ ’ ;
con f i g . mongodb . password = ’ ’ ;

con f i g . image . f r o n t p a g e l i m i t = 20;

con f i g . image . f o l d e r = ’ ’

con f i g . image . topviews = 0;

module . expor t s = con f ig ;

The variables are fairly self explanatory. The variable config.image.topviews is a part
of the dark launch concept mentioned earlier. The intention being that the application
does a query to the database, but the results aren’t being displayed on the website. This
means that the students can test the backend load with a query to the database every
time someone visits a page. This will be implemented in the second version as mentioned
earlier and is enabled by changing the zero to one. Config.image.folder variable is a full
path to a folder. Once the folder is created, change the ownership to whoever is running
the application. This will most likely be the user ’ubuntu’.

mkdir −p / data / images
chown ubuntu : ubuntu / data / images

As already mentioned, Mongoose uses schemas to define a document standard for
creating a collection in MongoDB. Hence, a schema for the application is defined. This is
an extract from the imageSchema.js file. It shows how it is possible to define a schema
that can be used, and accordingly all the entries in the database will have the same
structure as the schema.

var mongoose = requ i r e (’ mongoose ’) ;
var Schema = mongoose . schema ;

var Comment = new Schema({
name : Str ing ,
t e x t : S t r ing ,
date : { type : Date , d e f a u l t : Date . now }

}) ;

var Image = new Schema({
id : { type : Number , unique : t rue } ,
t i t l e : S t r ing ,

20

Service architectures for educational purposes

pub l i she r : St r ing ,
views : Number ,
comments : [Comment] , // array of comment schemas
date : { type : Date , d e f a u l t : Date . now}

}) ;

It is now possible to require the ImageSchema file in our app.js file, as shown below.

var Image = requ i r e (’ . / imageSchema ’) ;

Mongoose has the ability to have embedded documents, meaning that a schema can
have an array of another schema. This makes it possible to have a single Image with
many comments. As shown in the example above. There will now be a new document
for each comment in the database.
To be able to use the database, a connection has to be established. In the application
we are using a simple configuration file, in which the students will have to specify the
appropriate IP address and database name. If the database doesn’t exist, Mongoose will
create it. Mongoose handles the connection with the following syntax, extracted from
our app.js. Note that the error handling function has been removed for readability. First
of all it requires the package Mongoose, as it is used to connect to the database. All of
the environment variables are taken from the configuration file discussed earlier.

var mongoose = requ i r e (’ mongoose ’) ;
var con f i g = requ i r e (’ . / conf ig ’) ;

connect ion = (’ mongodb : / / ’ + (con f ig . mongodb . username) + ’ : ’ + (
con f i g . mongodb . password) + ’@’ + (con f i g . mongodb . ip) + ’ / ’ +

(con f i g . mongodb . name)) ;
console . log (connect ion) ;

var opt ions = {
auth : {authdb : " admin "}

} ;

mongoose . connect (connection , opt ions , func t ion (e r r) {
i f (e r r) {

console . log (’ Er ror connect ing to database ’ , e r r) ;
} e l s e {

console . log (’ Connected to database ’) ;
}

Earlier, it is defined that the app.js should look for a file named routes/index.js to
handle the routing for ’/’ endings, this includes the handling for the front page and each
individual site for each picture. The following code is the routing for the front page. The
first part is the query for our dark launch feature flag, it finds the image with most views
from the database and saves it in a variable, all depending on whether the feature flag is
enabled.

/∗ GET p i c t u r e ∗/
route r . get (’ / ’ , func t ion (req , res , next) {

// I f f ea tu r e f l a g i s enabled , f i nd image with the most views
i f (con f i g . image . topviews == 1) {

Image . findOne ({}) . s o r t ({ views : −1}) . exec (func t ion (err ,
topImage) {

21

Service architectures for educational purposes

i f (e r r) {
console . log (’ Er ror was thrown . . . ’) ;
throw (e r r) ;

}
e l s e {

console . log (" Most views ID : " + topImage . id) ;
req . topImage = topImage ;

}
}) ;

}
e l s e {

req . topImage = n u l l ;
}

Regardless of whether the feature flag is enabled or not, the application has to get the
images for the front page and their associated data. It also limits the amount of pictures
it returns with the config.image.frontpagelimit from the configuration file. This would
give the students the opportunity to control or limit the amount of data requested. After
the query has been completed, assuming an error wasn’t thrown, it renders the requested
data onto the handler for the views, located at views/index.jade, which we will discuss
later on.

// Find top based on f r o n t p a g e l i m i t and render i t
Image . f i nd ({}) . s o r t ({ date : −1}) . l i m i t (con f i g . image .

f r o n t p a g e l i m i t) . exec (func t ion (err , images) {
i f (e r r || ! images . length) {

re s . s t a t u s (404) ;
re s . render (’ e r ror ’ , {

t i t l e : ’ f l a c k r ’ ,
message : ’ Object returned from database i s empty . ’

}) ;
}
e l s e {

re s . render (’ index ’ , {
t i t l e : ’ f l a c k r ’ ,
images : images ,
l a s t I D : images [0] . id ,
topView : req . topImage

}) ;
}

}) ;

The function for handling a single image is similar to finding all of them, the difference
being that it uses the Mongoose query findOne() instead of find(). The error handling
code has been omitted here, but it can be viewed in the appendix. Assuming it didn’t
throw an error, it increments the image variable views with one, saves it, and renders the
rest to views/image.jade.

/∗ GET : id ∗/
route r . get (’ / : id ’ , func t ion (req , res , next) {

// Find one image based on route
Image . findOne ({ id : req . params . id } , func t ion (err , oneImage) {

−−−−−−−Omitted code−−−−−−−
// Increment i f page i s v i s i t e d

22

Service architectures for educational purposes

oneImage . views++;
oneImage . save () ;

r e s . render (’ image ’ , {
t i t l e : ’ f l a c k r ’ ,
image : oneImage

}) ;
}

}) ;
}) ;

Before discussing the views files, the routing for inserting new images and data to the
application is explained. In order for the traffic script to be able to insert new images and
comments, the application requires an URL entry point that accepts image data. More
about that in the traffic script section.

Insert.js is split into two sections, both using the HTTP GET method. One for adding
a new image and a second for adding a new comment to an image. The code is split out
to a function with a callback. By using callbacks we do not wait around for a function to
finish. Therefore, it can keep on doing other things while waiting for it. In this case, this
function is used to find an ID for the new image entry while still continuing to do other
tasks like sending a request for the image. If we encounter any errors while trying to find
an ID, nothing will be written to disk or commited to the database. The complete code
can be seen in appendix A.1.3.

func t ion handlerDatabaseQuery (c a l l b a c k) {
// Mongoose query
Image . findOne () . s o r t ({ ’ id ’ : −1}) . exec (func t ion (err , query) {

// I f e r ro r from database , re turn with e r ro r
i f (e r r) {

console . log (’ Er ror occured ’) ;
re turn ;

} e l s e i f (query === n u l l) {
// Spec i a l case ; i f database i s empty we don ’ t know the l a s t

i n s e r t ID
var newId = 1;
console . log (’New ID : ’ + newId) ;
c a l l b a c k (newId) ;

} e l s e {
// Error handling and s p e c i a l case , l a s t i s tha t we get an

ID
console . log (’ Las t ID : ’ + query . id) ;
var newId = query . id +1;
console . log (’New ID : ’ + newId) ;
c a l l b a c k (newId)

}
}) ;

}

Once the function returns the callback, an imagepath can be generated. This is the full
path to the destination where the image will be written to. The following functions takes
an imagepath, a response object from a request sent towards an image site and passes it
along. Once it is done writing the image to disk, the size is returned with the callback.
This function is called upon when request get a response from the image site.

23

Service architectures for educational purposes

func t ion handlerImageDownload (response , loca lPa th , c a l l b a c k) {
// Creates a stream to the path provided
var writeStream = f s . createWri teStream (loca lPa th) ;
// Wri t ing data
response . pipe (writeStream) ;
// When done wr i t ing data , check the s i z e and send i t back
response . on (’ end ’ , func t ion () {

f s . s t a t (loca lPa th , func t ion (err , s t a t s) {
s i z e = s t a t s [’ s i ze ’] ;
c a l l b a c k (s i z e) ;
}) ;

}) ;
} ;

−−−−−−Omitted code−−−−−−
// F i l ep a th concat
var imagepath = conf ig . image . f o l d e r + newId + ’ . jpg ’ ;

Everything up until now is saved in an imageschema, ready to be committed to the
database.

var saveImage = new Image ({
id : newId ,
t i t l e : req . query . t i t l e ,
pub l i she r : req . query . pub l i sher ,
views : 0 ,
comments : [] ,
date : Date . now()

}) ;

A request is then sent to the image site. When a response is given, the content-type
is checked for ’image/jpeg’. If this criteria is met, handlerImageDownload is called upon
with the response, path and a callback. This writes the image to disk. The size is checked
and sent back. If the image is larger than what is defined, the image schema is committed
to the database. If the content-type is not what is expected, we respond with Node.js
writehead HTTP status code 400. If the server could not save the schema or a general
error, it will respond with 500.

reques t . get (req . query . image) . on (’ response ’ , func t ion (
response) {

var contype = response . headers [’ content−type ’] ;
// Checking i f we got an image back
i f (! contype || contype . indexOf (’ image/ jpeg ’) !== 0) {

re s . writeHead (400) ;
re s . end (’RESPONSE NOT AN IMAGE ’) ;

} e l s e i f (contype === ’ image/ jpeg ’) {
handlerImageDownload (response , imagepath , func t ion (s i z e)

{
// V e r i f y i n g the da ta s i z e
i f (s i z e >= 10000) {

// Save Mongoose schema to database with e r ro r
handl ing

imageSchema . save (func t ion (err , saveImage) {
i f (e r r) {

24

Service architectures for educational purposes

r e s . writeHead (500) ;
re s . end (’ERROR WRITING TO DB ’) ;

}
}) ;

} e l s e {
re s . writeHead (500) ;
re s . end (’NOT ENOUGH DATA FOR IMAGE ’) ;

}
}) ;
// Everyth ing went ok !
re s . writeHead (200) ;
re s . end (’SAVED IMAGE, WROTE TO DATABASE ’) ;

} e l s e { // Everyth ing e l s e i s responded with i n t e r n a l
s e r ve r e r ro r

re s . writeHead (500)
re s . end (’ INTERNAL SERVER ERROR’) ;

}
}) ;

}) ;
}) ;

The last routing handler is used for adding a new comment to an already existing
image. This is basically using the Mongoose findOne function and getting the image ID
that is provided in the URL query. Then the comment text which is also part of the query,
is pushed into the array of comments that each image has. If the push is successful, it
will respond with a JSON object.

/∗ Get new comment ∗/
route r . get (’ /newComment ’ , func t ion (req , res , next) {

var comment = { name : req . query . name , t e x t : req . query . tex t ,
date : Date . now() } ;

Image . findOneAndUpdate ({ ’ id ’ : req . query . id } ,
{$push : {comments : comment}} ,
{ $sa fe : true , /∗ upser t : t rue ∗/} ,

func t ion (err , imageComment) {
re s . j sonp (imageComment) ;

}
) ;

}) ;

Express uses a template engine to respond to the request. This is done by using
res.render. At runtime the engine uses a static file and replaces variables in a template
file with actual values [20].

The following code is an example of this. Here the static file ’index’ is used to map
variables to the one in the template. The left column is the variable names in the file and
the right column is variables in the previous code snippets. The code as a whole can be
read in appendix A.1.3.

r e s . render (’ index ’ , {
t i t l e : ’ f l a c k r ’ ,
images : images ,
l a s t I D : images [0] . id ,
topView : req . topImage

}) ;

25

Service architectures for educational purposes

This is the jade template index file. It can be used to extend the layout template for
the whole page, and everything in this file is an extension of this. The variable title is in
the layout file and not seen here. Rest of the variables are from the previous code snippet.

extends layout

block content
p Number of e n t r i e s in database : #{ l a s t I D }
i f topView

p The image with most views : #{topView . id }
// For each o b j e c t in o b j e c t a r r a y
each image in images

#gr id
. gr id−element

a (hre f =’#{image . id } ’)
img(s r c =’#{image . id } . jpg ’)

3.3.2 Architecture
Node.js and Express.js

Node.js and Express go hand in hand. It is already mentioned that an express-generator
is used to get started with a basic setup. However, it is required to install other packages
first.

sudo apt−get update
sudo apt−get i n s t a l l npm nodejs−l egacy

Node.js and npm has now been installed. npm can now be used to install express. First
of all a directory is created for the application. Then express and the express-generator is
installed. The last module is used to create a simple basic folder and files structure, which
is explains in detail at a later point. To generate a basic starting point for the application,
the command express "application name" is executed. Since the directory folder already
exists, express will prompt a message saying that the destination is not empty, this can
be ignored.

mkdir f l a c k r
cd f l a c k r
sudo npm i n s t a l l express −−save
cd ~
sudo npm i n s t a l l express−generator −g
express f l a c k r

Running the express "application name" command, gives the following output.

d e s t i n a t i o n i s not empty , cont inue ? [y/N] y

c rea t e : f l a c k r
c rea t e : f l a c k r / package . j son
c rea t e : f l a c k r /app . j s
c r ea t e : f l a c k r / pub l i c
c r ea t e : f l a c k r / pub l i c / j a v a s c r i p t s
c r ea t e : f l a c k r / pub l i c / images
c rea t e : f l a c k r / pub l i c / s t y l e s h e e t s
c r ea t e : f l a c k r / pub l i c / s t y l e s h e e t s / s t y l e . c s s
c r ea t e : f l a c k r / routes

26

Service architectures for educational purposes

c rea t e : f l a c k r / routes / index . j s
c r ea t e : f l a c k r / routes / user s . j s
c r ea t e : f l a c k r / views
c rea t e : f l a c k r / views / index . jade
c rea t e : f l a c k r / views / layout . jade
c rea t e : f l a c k r / views / e r ro r . jade
c rea t e : f l a c k r / bin
c rea t e : f l a c k r / bin /www

i n s t a l l dependencies :
$ cd f l a c k r && npm i n s t a l l

run the app :
$ DEBUG=f l a c k r :∗ npm s t a r t

As displayed above it sets up the basic directories and files required to run a "hello
world" application. It generates the file package.json which is basically metadata for the
application, it contains all the dependencies required. This means that whenever we
install a package with npm, it will save the module name and its version to that file.
Running the command npm install in the application directory will check whether all the
dependencies listed in package.json are installed.

MongoDB

MongoDB provides packages for 64-bit long-term-support Ubuntu releases.[21] Which
means that it can be installed with apt on Ubuntu 14.04 LTS. We have followed the guide
that is written in the docs for MongoDB[21]. First of all the official MongoDB public GPG
Key is immported, as shown in step 1. Then in step 2 a list file is created. Reload the local
package database. And finally, install the latest stable version og MongoDB.

1 . sudo apt−key adv −−keyserver hkp :// keyserver . ubuntu . com:80 −−
recv EA312927

2. echo " deb ht tp :// repo . mongodb . org / apt /ubuntu t r u s t y /mongodb−
org /3.2 mul t i ve r se " | sudo tee / e t c / apt / sources . l i s t . d/
mongodb−org −3.2. l i s t

3 . sudo apt−get update

4 . sudo apt−get i n s t a l l −y mongodb−org

Now that MongoDB is installed, we can start configuring it. First of all it is checked which
port and which IP addresses it listens to. The configuration file is located at /etc/mon-
god.conf. The port is 27017 by default, and the IP address is 127.0.0.1 also known as
localhost. For the simplicity it is changed it to 0.0.0.0 for now. As shown in the config file
extract below. The complete file is found in the appendix MongoDB Configuration FileE.

network i n t e r f a c e s
net :

por t : 27017
bindIp : 0 . 0 . 0 . 0

Linux uses a known memory management system called THP, it reduces the overhead
of TLB lookups on machines with large amounts of memory by using larger memory

27

Service architectures for educational purposes

pages. This is known to be a performance issue with MongoDB, considering that database
workloads often perform poorly with THP, because they tend to have sparse rather than
contiguous memory access patterns.[22] MongoDB have provided a script that can be
implemented to disable THP. The script, located in appendix D, has the following func-
tionality: It locates the path of two files, depending on which Linux distro, then it con-
catenates ’never’ into these configuration files. It must then be configured to start on
system boot, and after a restart THP will be disabled.

case $1 in
s t a r t)

i f [−d / sys / kerne l /mm/ transparent_hugepage] ; then
thp_path=/sys / kerne l /mm/ transparent_hugepage

e l i f [−d / sys / kerne l /mm/ redhat_transparent_hugepage] ; then
thp_path=/sys / kerne l /mm/ redhat_transparent_hugepage

e l s e
re turn 0

f i

echo ’ never ’ > ${ thp_path }/ enabled
echo ’ never ’ > ${ thp_path }/ defrag

unset thp_path
; ;

esac

sudo chmod 755 / e t c / i n i t . d/ d i sab le−t ransparent−hugepages
sudo update−rc . d d i sab le−t ransparent−hugepages d e f a u l t s

After MongoDB has been configured, the service will need to be started again.

sudo s e r v i c e mongod s t a r t

MongoDB is now running as a service and should also be listening for incoming traffic as
specified in the configuration file earlier. To check if its configured correctly, it is possible
to verify that the mongod service listens to the correct IP address.

sudo n e t s t a t −tu lpen | grep 27017

tcp 0 0 0.0 .0 .0 :27017 0 . 0 . 0 . 0 : ∗ LISTEN 106 9517
1318/mongod

Furthermore, users and authentication has to be created and enabled respectively. Cre-
ating user accounts in MongoDB is a step by step procedure, which has to be followed
strictly and in chronological order. First of all the shell is entered as shown in step 1.
Secondly, the admin database is created for storing users. Step 3 creates a user with
dbOwner access, meaning it is able to administrate users and its databases. Of course the
password should be set to something a little more complex, however, for readability it is
set to something simple. The user for the Flackr database is also created, which is to be
used with a mongoose connection, as explained later on in this chapter. This user only
has a read/write role.

1 . mongo

2. use admin

28

Service architectures for educational purposes

3. db . c rea teUser (
{ user : " userAdmin " ,

pwd: " userAdminPassword " ,
r o l e s : [{ r o l e : " dbOwner " , db : " admin " }]

}
)

4 . db . c rea teUser (
{ user : " f l a c k r " ,

pwd: " f lackrPassword " ,
r o l e s : [{ r o l e : " readWrite " , db : " f l a c k r " }]

}
)

The mongo shell is now exited, and the configuration file for MongoDB is opened again.
The commenting sign from the security section is removed and the following is added.

s e c u r i t y :
au tho r i za t i on : enabled

The service is then restarted and we can log in with the admin user, to make sure ev-
erything is correct. It is required to specify in which database the user credentials are
located to be able to log in.

sudo s e r v i c e mongod r e s t a r t

mongo −u " userAdmin " −p " userAdminPassword " −−
authent i ca t ionDatabase " admin "

To verify that the users exist, the following commands are executed and the output given
shows the result.

>use admin
> db . getUsers ()
[

{
" _ id " : " admin . userAdmin " ,
" user " : " userAdmin " ,
" db " : " admin " ,
" r o l e s " : [

{
" r o l e " : " userAdminAnyDatabase " ,
" db " : " admin "

}
]

} ,
{

" _ id " : " admin . f l a c k r " ,
" user " : " f l a c k r " ,
" db " : " admin " ,
" r o l e s " : [

{
" r o l e " : " readWrite " ,
" db " : " f l a c k r "

}

29

Service architectures for educational purposes

]
}

]

Now that MongoDB has been installed and the users have been created, it is time to look
at replication between two MongoDB instances. After launching a new server MongoDB
is installed the same way as above. Once again the configuration file is edited, to include
the replica set name.

r e p l i c a t i o n :
replSetName : rs0

Then one of the servers were elected to be the primary or master server. In order to
get started with replication, there are some commands that have to be issued from the
master, these have to be entered in the mongo shell.

r s . i n i t i a t e () # S t a r t r e p l i c a t i o n s e t
r s . conf () # Conf igure r e p l i c a s e t
r s . add (’ ip add of s lave ’)

If MongoDB successfully added a slave, it returns an "ok" message.

Return : { " ok " : 1 }

To verify if the replication is correctly configured, the status command can be issued.

r s . s t a t u s ()

" _ id " : 0 , " s t a t e S t r " : " PRIMARY" and " _ id " : 1 , " s t a t e S t r " : " SECONDARY"

which means that its all synchronized.
MongoDB is now ready for use with the application.

Mongoose

Mongoose is used to communicate with the database in a simple manner. It needs to be
installed using the npm package manager.

npm i n s t a l l mongoose

PM2

PM2 needs to be installed with npm.

sudo npm i n s t a l l pm2 −g

This command installs PM2 globally on the application server. When launching your app
for the first time, PM2 takes a number of commands. Some of them are optional. The
following command starts the the application by running the file app.js, which requires
that you are in the directory of the application files. Otherwise, the path must be speci-
fied. To keep things simple, in case one has more than one application, it is wise to give
it a name, using the –name "name" option.

By default PM2 logs to the folder /.pm2/logs/, and to have more specific log entries
it is possible to add a timestamp to the log entry.

pm2 s t a r t app . j s −−name " f l a c k r " −−log−date−format="YYYY−MM−DD
HH:mm Z "

PM2 has a number of useful commands for handling your application. "pm2 list" will list
all the applications that are running with relevant information such as memory used,

30

Service architectures for educational purposes

PID, status and uptime. The command "pm2 monit" initiates a live monitoring session of
the running applications, showing the amount of memory currently being used. The rest
are self-explanatory.

pm2 l i s t
pm2 monit
pm2 r e s t a r t " appname "
pm2 stop " appname "

Now that pm2 is installed, it is useful to have it launch at system boot. To be able to do
this the "pm2 startup" command is used.

pm2 s t a r t u p ubuntu
[PM2] You have to run t h i s command as root . Execute the

fo l lowing command:
sudo su −c " env PATH=$PATH:/ usr / bin pm2 s t a r t u p ubuntu −u

ubuntu −−hp /home/ubuntu "

Nginx

Nginx is fairly simple to install and configure in this setup. It can be downloaded and
installed using APT. To enable caching in Nginx, a directory has to be defined in the
configuration file.

1 . sudo apt−get update
sudo apt−get i n s t a l l nginx

2 . sudo mkdir −p / data / nginx / cache
sudo chown <username> / data / nginx / cache
sudo chmod 700 / data / nginx / cache

Now that Nginx is installed the configuration file located at /etc/nginx/sites-available/default
has to be edited. The levels parameter specifies how the cache will be organized. Nginx
will create a cache key by hashing the value of a key. The levels configured below will dic-
tate that a single character directory with a two character subdirectory is created. These
characters are taken from a hashed key, configured in the next line with proxy_cache_key.
The keys_zone parameter defines the name for the current cache zone, with parameters
for how much metadata to store. Each megabyte is able to hold approximately 8000
entries of keys. The max_size parameter is the maximum cache size.[23]

proxy_cache_path / data / nginx / cache / l e v e l s =1:2 keys_zone=
backcache :8m max_size=50m;

proxy_temp_path / data / nginx / cache /tmp ;
proxy_cache_key "

$scheme$request_method$host$request_ur i$ is_args$args " ;

The parameter proxy_cache_valid can be specified multiple times , it allows us to config-
ure how long to cache certain values depending on the status code. In this case the hits
are stored for 5 seconds and the cache for 404 not found expire every minute.

proxy_cache_va l id 200 302 5s ;
proxy_cache_va l id 404 1m;

Since Nginx is used to load balance between a pool of servers, the server IP addresses
need to be defined in the configuration. The port Nginx will listen to is specified.

31

Service architectures for educational purposes

upstream f l ack rapp {
se rve r " a p p l i c a t i o n se rve r ip "
s e r ve r " second a p p l i c a t i o n se rve r ip "

}

s e r ve r {
l i s t e n 80;
l i s t e n [: :] : 8 0 ;

Furthermore, it is required to specify when Nginx has to use the cache. This is done
by saying in the locations section where it is proxied to a backend. Nginx shall use the
backcache zone that was configured earlier. It is then configured that it needs to contain
an indicator as to whether the service requests a fresh, non-cached version, with the
proxy_cache_bypass directive and its parameter. An extra header is added, named X-
Proxy-Cache. This sets a header that allows it to be seen if the request resulted in a cache
hit, miss or bypassed. If no caching is found, the request is passed to a server from the
upstream pool.

l o c a t i o n = / {
proxy_cache backcache ;
proxy_cache_bypass $ht tp_cache_cont ro l ;
add_header X−Proxy−Cache $upstream_cache_status ;

proxy_pass ht tp :// f l a ck rapp ;
}

l o c a t i o n / {
proxy_pass ht tp :// f l a ck rapp ;

}

}

Nginx is now installed and configured properly for use with the Flackr application. It
might take a few minutes for it to correctly pass on the connections. The configuration
file can also be found in appendix F.

GlusterFS

The setup of GlusterFS requires two servers, each with one Cinder volume attached.
These can be created in OpenStack and will not be explained here. In addition, naturally,
GlusterFS client software has to be installed on the application servers.

On all servers that are using GlusterFS in any way it is required to update and down-
load some repositories. Software-properties-common is installed to easily handle PPA’s
with APT [24]. It is also recommended to install attr, in order to access the extended
attributes added by GlusterFS, but this is not necessary.

sudo apt−get update
sudo apt−get i n s t a l l software−proper t i e s−common
sudo apt−get i n s t a l l a t t r

The community GlusterFS PPA is added.

sudo add−apt−r e p o s i t o r y ppa : g l u s t e r / g l u s t e r f s −3.5
sudo apt−get update

GlusterFS is now ready to be installed. The following commands should only be executed
on the servers intended to be used as GlusterFS-Servers.

32

Service architectures for educational purposes

sudo apt−get i n s t a l l g l u s t e r f s −s e r ve r

Now that GlusterFS server is installed on both nodes, the process of setting up storage
volumes can begin. From one of the hosts it is necessary to peer the other, the gluster01
server was chosen for simplicity as a master[25].

sudo g l u s t e r peer probe ip−address−of−g lus te r02

A filesystem has to be created on the attached disks.

mkfs . x f s − i s i z e=512 /dev/ d i sk /by−id / v i r t i o −b6dde619−feed−455b−a

A Directory is created, where disks are mounted. Note that the directory has a different
name on server 2.

sudo mkdir −p / data / g l u s t e r b r i c k 0 1

sudo mount /dev/ d i sk /by−id / v i r t i o −b6dde619−feed−455b−a / data /
g l u s t e r b r i c k 0 1

Now that the disks have been mounted to the storage directories, replication can set up
with GlusterFS[26].

sudo g l u s t e r volume c rea te imagestorage r e p l i c a 2 t r a n s p o r t tcp
ip−address−of−g lus te r01 :/ data / g l u s t e r b r i c k 0 1 ip−add−of−
g lus te r02 :/ data / g l u s t e r b r i c k 0 2 fo r ce

As instructed by GlusterFS the volume has to be launched.

sudo g l u s t e r volume s t a r t imagestorage

volume s t a r t : imagestorage : succes s

GlusterFS is installed on the clients, which are the web application servers.

sudo apt−get i n s t a l l g l u s t e r f s −c l i e n t

After installing the client software, a directory has to be created and then it is possible to
mount the remote volume.

sudo mkdir / data / imagestorage

sudo mount −t g l u s t e r f s ip−add−of−g lus te r01 : imagestorage / data /
imagestorage /

It can also be mounted automatically at system boot.

sudo v i / e t c / f s t a b

ip−add−of−g lus te r01 :/ imagestorage / data / imagestorage g l u s t e r f s
de fau l t s , nobootwait , _netdev , backupvo l f i l e−s e r ve r=ip−add−of−
glus ter02 , d i r e c t −io−mode=d i s a b l e 0 0

All that is left now is to change the ownership on the web application servers, so that
node can access the directories and files.

sudo chown ubuntu : ubuntu / data / imagestorage

Now the files can be copied from the application folder to the network filesystem. In
the following example, the files are copied from the source /images and to destination
/data/imagestorage/ created previously.

33

Service architectures for educational purposes

cp ~/images / data / imagestorage

Now a redundant storage pool with GlusterFS is set up for usage with our application
and the variable config.image.folder can be specified with the imagestorage directiory to
redundantly save the images.

3.4 Traffic generation

3.4.1 Introduction

An important part of our project is to create a script that is able to generate traffic to the
application, in order to simulate real environment traffic. Currently our employer uses his
script by spawning several virtual machines that executes his script. The script in his case
adds new users or comments on a post to his current site. The traffic script developed in
this architecture should have similar functionality and parameters, in order to easily use
it in his current setup. The script has to be able to add a new picture, comment to it, visit
the frontpage and visit all the pictures individually.

3.4.2 Implementation

The script has several possible command line arguments. One of the command line ar-
guments has to be the IP address for the entry point of the application. It is checked
whether the option "U" is included in the beginning of the script, more of the options are
used later on in the script, but as the option "U" is vital to the script, it is checked first. As
seen below, the accepted arguments are "U,P,V,F,C,H,R" where options U, V, and C take
a parameter. If option ’U’ is found, the parameter is set to be the URL variable to be used
throughout the script. If it can’t find the option, then an error is thrown, as the script
would be useless without the URL.

FOUND_OPTION_U = Fa l se
OPTIONS , REM = getopt . getopt (sys . argv [1 :] , ’U: PV : FC :HR’)
f o r a l t , argum in OPTIONS : #Check i f arguments have −U

i f a l t in ’−U ’ :
URL = argum
FOUND_OPTION_U = True

i f not FOUND_OPTION_U:
p r i n t "NO URL GIVEN "
sys . e x i t ()

The option "F" is a simple function for visiting the front page of our application. It works
by creating a folder with a random name. A simple wget is performed to download all
of the contents of the front page, including its pictures, CSS and HTML code. The wget
will simulate someone visiting the front page. After it has done the wget, it deletes all
the content downloaded.

def f ront_page () :
" " " Function , v i s i t f rontpage of f l a c k r " " "
rand = g e t _ i n t (0 , 1000) # Get random i n t f o r f o l d e r name

f o l d e r = TEMPDIR + s t r (rand) # make f o l d e r path of tempdir
and random i n t

os . mkdir (f o l d e r) # Make new f o l d e r
os . chd i r (f o l d e r) # Change d i r e c t o r y to f o l d e r

34

Service architectures for educational purposes

os . system (" wget −t 2 −T 5 −p −q "+URL)
Wget a l l elements from webpage inc css , logo , photos

os . system (" rm −r "+ f o l d e r) # Remove f o l d e r and i t s content s

p r i n t " v i s i t e d f r o n t page "

Before creating the function for adding a new picture, functions to generate random
names and titles has to be implemented. There is a website located at https://randomuser.me/api/
which generates a JSON object with lots of random information as shown in the appendix
I. The python "urllib2" module, which is an extensible library for opening URLs[27], is
used to download the JSON object. The object is then parsed into a variable, using a
python JSON parser. However, as only the first and last names are required, they can be
extracted from the parsed JSON object, and returned as a combined name.

def get_random_name () :
" " " Funct ion fo r g e t t i n g a random user name " " "

Downloads a j son document with random
user in format ion

response = u r l l i b 2 . urlopen (’ h t tp :// api . randomuser .me/1.0/?
nat=gb , us&inc=name&noinfo ’) . read ()

parsed_ j son = json . loads (response) # Parse the j son in to
v a r i a b l e

f i r s tname = parsed_ j son [" r e s u l t s "] [0] [" name "] [" f i r s t "] . t i t l e
()
S e l e c t f i r s tname and c a p i t a l i z e

lastname = parsed_ j son [" r e s u l t s "] [0] [" name "] [" l a s t "] . t i t l e ()
s e l e c t Lastname and c a p i t a l i z e

name = f i r s tname + " " + lastname # Add names toge ther

re turn name # Return generated name

The scripts also has a function for creating picture titles. It is almost exactly the same
as the get_random_name function. The only difference is shown in the extract below.
Where the last name value from the JSON object is extracted, and a "The" is added to
make it sound like a title. This is a simple implementation, but it works.

temp = parsed_ j son [" r e s u l t s "] [0] [" name "] [" l a s t "] . t i t l e ()
S e l e c t only lastname and c a p i t a l i z e

t i t l e = " The " + " " + temp # Make i t sound l i k e a t i t l e

re turn t i t l e

Now that the name and title functions have been completed, the function for adding
new pictures to the website can be constructed. It gets the name and title variables from
calling each individual function. The python "urllib" module is used to access the URL
with the route "/insert", to add a new user. For the pictures a placeholder image site at
http://lorempixel.com is used, where it is possible to access the URL with parameters for
the image size, and it gives a random picture from their database in return. If the HTTP
code is anything but 200 (OK), the database should not insert the data.

def new_picture () :
" " " Funct ion fo r adding new p i c t u r e to websi te " " "
name = get_random_name () # Get name and t i t l e

35

Service architectures for educational purposes

t i t l e = get_random_t i t l e ()
uses u r l l i b module f o r opening up connect ion to

webpage
and add a new p i c t u r e using the / i n s e r t route

response = u r l l i b . urlopen (URL+" i n s e r t /newUser? t i t l e =" + \
t i t l e + "& pub l i she r =" + name \

+ "&image=ht tp :// lorempixe l . com
/1280/720/")

#p r i n t "%s " % response
p r i n t " added new p i c t u r e "

Considering that there is a function for visiting the front page, it makes sense to have a
function that could perform the action of visiting each individual image site. It is based
on the same idea as for visiting the front page, however, the function takes a parameter
for whether to visit all the sites, or visiting a certain amount of random site. In the
beginning of this project, we were provided with a file containing random sentences from
our employer, which he currently uses for his Bookface application. This is implemented
in the function for generating comments. Before the function is able generate comments,
there needs to be a function for extracting a sentence from the file. It works by opening
the file, jumping to a random line, checking if the sentence is acceptable and of correct
length and then returns it.

def get_random_text () :
" " " Get a random sentence from the sentences f i l e " " "
f i n d _ l i n e = Fa l se # bool v a r i a b l e

i f os . path . i s f i l e (FILEPATH) : # check i f f i l e can be found
temp = open (FILEPATH) # Open f i l e
t e x t = temp . r e a d l i n e s () # read a l l the l i n e s
while f i n d _ l i n e i s Fa l se : # U n t i l i t f i n d s a proper

l i n e
l i n e = g e t _ i n t (0 , LINE_LIMIT) # Get random l i n e
i f i s _ s en tence (t e x t [l i n e]) i s Fa l se :

Use i s _ sen tence func t ion to check i f accep tab le
f i n d _ l i n e i s True # Set bool value to t rue to

stop while loop
sentence = check_sentence_ length (t e x t [l i n e])
Check i f sentence i s too long
re turn sentence # Return the sentence

temp . c l o s e ()
e l s e :

p r i n t " Could not f ind f i l e ! ! ! "

The function for generating comments also takes a parameter, it can either comment to
all images once or comment a certain amount to random sites. If the function is called
with parameter R, for random, it will generate half times the amount of currently ex-
isting pictures. However, it will comment to a random picture each time, unlike the all
command, which comments to all pictures from 1 to the end.

def gen_comment(opt ion) :
−−−omitted comment−−−

i tems = get_webpage_items ()
opt_random = Fa l se

36

Service architectures for educational purposes

i f opt ion == ’R ’ :
i tem_range = items / 2
opt_random = True

e l s e :
item_range = items

fo r item in range (1 , item_range + 1) :
comment to a l l or random , +1 i s compensation f o r range .

name = get_random_name () # Get random name from
func t ion

t e x t = get_random_text () # Get a sentence from the
sentences f i l e

i f opt_random : # I f opt ion R , get random i n t f o r ID
i tem_id = g e t _ i n t (1 , i tems)

e l s e :
i tem_id = item # Open up the u r l / i n s e r t route

response = u r l l i b . urlopen (URL+" i n s e r t /newComment? id=" \
+ s t r (i tem_id) +"&name=" +

name \
+ "& t e x t =" + t e x t)

#p r i n t "%s " % response
p r i n t " generated comment to : " + s t r (i tem_id)

One of the command line parameters that can be used is the option -R. This is a simple
implementation of a random function, meaning that when the option -R is passed it will
either generate a new picture, comment randomly, view random sites or just visit the
front page. Being a simple implementation, it generates a random integer between 0 and
100, based on the value it will call a specific function.

def random_operation () :
" " " Funct ion fo r doing one of the provided opt ions

randomly " " "
random_number = g e t _ i n t (0 , 100) # Gets i n t in provided

range
i f random_number <= 25: # Depending on i n t i t does one of

the opt ions
new_picture ()

e l i f random_number > 25 and random_number <= 50:
gen_comment (’R ’)

e l i f random_number > 50 and random_number <= 75:
gen_views (’R ’)

e l i f random_number > 75 and random_number <= 100:
f ront_page ()

The last part of the script is the main. Which calls the individual functions based on the
command line options and their arguments.

def main () :
" " " Main menu , takes opt ion as command l i n e argument " " "
f o r opt , arg in OPTIONS : # And based on input , c a l l s

requ i red func t i on s
i f opt in ’−P ’ :

new_picture ()
e l i f opt in ’−F ’ :

f ront_page ()
e l i f opt in ’−C ’ :

37

Service architectures for educational purposes

i f arg == ’A ’ or arg == ’R ’ or arg == ’O ’ :
gen_comment(arg)

e l s e :
r a i s e ValueError (" wrong ARGUMENT! A , R or O! ! ")

e l i f opt in ’−V ’ :
i f arg == ’A ’ or arg == ’R ’ :

gen_views (arg)
e l s e :

r a i s e ValueError (" Wrong argument ! A or R ! ! ! ")
e l i f opt in ’−H’ : # For now i t adds H_RANGE user s

f o r _ in range (H_RANGE) :
new_picture ()

f ront_page () # V i s i t s f rontpage
gen_comment (’A ’) # comments to a l l
gen_views (’A ’) # views a l l

e l i f opt in ’−R ’ :
random_operation ()

i f __name__ == ’ __main__ ’ :
main ()

3.5 MEAN Stack Security

In recent years full stack development methods like the MEAN stack has become a very
popular way to develop applications and systems. This new way of development brings
along some security problems and complications that we did not encounter before. In
the past it was normal to have dedicated system administrators for the different parts of
the system. Nowadays when dealing with full stack development the developers have a
lot more responsibility when it comes to security and testing compared to before.

3.5.1 MongoDB

MongoDB is a NoSQL database that is well known for being JavaScript friendly, and can
be largely used in the same manner as the well known MySQL database. But there is a
common misconception that MongoDB is not vulnerable to SQL injection-type attacks.
Although MongoDB is not vulnerable to the SQL language attacks, it is still vulnerable
to various injection attacks and cross-site request forgery (CSRF) threats. To improve the
MongoDB security, we have implemeted some security related key points and tips from
the official MongoDB documentation[28], which helped us create a secure MongoDB
environment.

• Enable Access Control and Enforce Authentication
Authentication requires that all clients and servers provice valid credentials before
they can connect to the system. This can be enabled in the MongoDB config.

• Restrict connections to the database
Make sure the database is not accessible from the public Internet and restrict which
other entities are allowed to connect to the MongoDB server. It is recommended
to only allow your application/web servers access to the MongoDB server. In this
project it is possible to restrict connections to the database by configuring the Open-
Stack configurations or use the ’iptables’ application on the database server.

38

https://en.wikipedia.org/wiki/Iptables

Service architectures for educational purposes

• Restrict MongoDB to listen only on relevant interfaces
By default MongoDB will bind to all available network interfaces on the server. To
limit this to only the relevant network interfaces, it is possible to add "bind_ip =
IP_ADDRESS" in the MongoDB config.

• Enable TLS/SSL for all incoming and outgoing connections

3.5.2 Express.js

Express.js is a minimal and flexible server-side Node.js web application framework. Ex-
press.js is vulnerable to various injection and cross-site attacks and is also exposed to all
of Node.js’s underlying vulnerabilities. To improve the Express.js security, we have im-
plemeted some security related key points and tips from the official Express.js documentation[29],
which helped us create a secure application environment.

• Use the latest version
Since the release of Express version 4, older versions(2.x and 3.x) are no longed
maintained. This means that security and performance issues in these versions will
not be fixed.

• Disable HTTP headers
There are several different HTTP headers that is vulnerable to exploits, and it is
therefore recommended to disable some of them. It is possible to turn the headers
off manually, but the easiest way is to install Helmet. Helmet can help protect the
application from well-known web vulnerabilities by setting HTTP header appropri-
ately. [30]

• Avoid known web vulnerabilities
Just like any other web application, Express.js applications can be vulnerable to a
variety of well known web attacks. It is therefore important to keep up with general
web vulnerabilities to ensure a secure web application.

• Use Transport Layer Security(TLS)
It is strongly recommended to enable TLS encyption in Express.js, especially if the
application deals or transmits sensitive data. Since Flackr is meant to be deployed
in an closed environment, TLS is considered to not be important.

3.5.3 Angular.js

Angular.js is a JavaScript framework developed and maintained by Google. Since the
beginning of Angular.js, the framework have had some issues that it could be vulnerable
to various cross-site scripting attacks. These vulnerabilities have been patched and fixed
in the latest versions of Angular.js. Since Angular.js is a part of Google, it is very well
maintained security wise, and therefore the best security advice is to keep it up to date.
[31]

3.5.4 Node.js

Node.js enables the building of web applications with extensive server-side and network-
ing capabilities, and enables real-time two-way communications between the client and
server. Arguably the defining component of the MEAN stack, Node.js is not without its
own vulnerabilities—not only does it inherit all JavaScript-related vulnerabilities, but
also gains some new attack vectors while executing on the server side. As we did with
MongoDB and Express.js, we have implemeted some security related key points and tips

39

Service architectures for educational purposes

from the official Node.js documentation[32], which helped us create a secure application
environment.

• Avoid running applications as root
Running the Node.js application as root can lead to the whole system going down
in case of an error/bug in the app.

• Use an HTTP server/proxy to forward requests
It is strongly recommended that an HTTP server/proxy handles incoming requests
for the application. In the first version of Flackr, the application does NOT use an
HTTP server/proxy and is therefore very vulnerable to various attacks. The second
version of Flackr uses an Nginx reverse proxy to handle all requests between the
application and the external network.

• Be careful placing sensitive data
When deploying front end applications make sure not to expose sensitive informa-
tion in the source code, as it can be readable by anyone.

• Static code analysis
It is always important to test your code for errors and problems. In our project we
have used JSLint to analyze our JS code.

3.6 Testing

Testing is an essential part of this project, especially since Flackr is a system which is
required and expected to work in a real environment. By testing the architecture and
application, it ensures that what we have created does what it is supposed to do, and we
were able to discover parts where improvements could be made. Since an agile devel-
opment method is used in this project, testing has been involved throughout the entire
development period.

Testing of Flackr have mainly involved five different testing methods:

• System testing
• Static code analysis
• Performance testing
• User manual review
• Traffic generation scrip testing

3.6.1 System testing

By doing System testing, we evaluate the complete system’s compliance with its specified
requirements. This made it possible for us to find errors, fix them and implement overall
improvements to the architecture.

3.6.2 Static code analysis

For all of our JavaScript code we have tested it using JSLint, which is a code quality tool
that looks for problems in JavaScript programs. If JSLint detects a problem, it will return
a message describing the problem and where the problem is located within the code. For
our traffic generation script we have used pylint, which has basically exactly the same
functions as JSLint, but for Python code.

40

http://www.jslint.com/

Service architectures for educational purposes

3.6.3 Performance testing

Except to just test our Nginx server by performing overall system tests, we also ran some
performance tests to evaluate our Nginx load balancer. There are several performance
tools meant for this kind of testing, and one of them is ApacheBench. ApacheBench is a
benchmarking tool for measuring the performance of HTTP web servers. The usage of a
benchmarking tool provided us with information on how well our Nginx load balancer
interact with our web servers.

3.6.4 User manual review

Since the students will follow the user manuals when setting up this architecture, it is
very important that the user manuals provide the correct information. Therefore we have
completed the setup process of Flackr multiple times using the user manuals.

3.6.5 Traffic generation script testing

Testing of our Traffic generation script included both Static code analysis of the script
itself, but also basic system testing. In this case system testing involves pushing a lot of
traffic onto the servers by running the script in a loop, as well as testing all the function-
ality of the script.

41

Service architectures for educational purposes

4 Second Architecture - Factory

The second architecture is developed using AMQP, a message layer middleware. This
system is supposed to represent a factory which has an assembly line. The factory has an
entry point where incoming jobs will be accepted and placed on a queue. In the factory
there are multiple workers which take jobs from the queue and start processing them.
When a job has successfully gone through the whole assembly line it is completed and
will be stored in a database. By developing an architecture using message queueing, we
wanted to present the potential of asynchronous messaging, and how applications easily
can connect to each other as components of a larger application. Operational challenges
like scalability, availability, uptime and single points of failure are also covered. Although
the architecture in this case represents a factory and an assembly line as the base idea,
the architecture can represent anything that requires processing through several steps.

4.1 Technology

Just like in the first architecture this section starts off by going through all the mod-
ules, applications and other technologies that are required to make a complete message
queueing system. The idea of this section is to get a basic understanding of how the dif-
ferent technologies work. Specific description on how the technologies are used in the
project will be presented in Design, which is the next section.

4.1.1 RabbitMQ

RabbitMQ is an open source message broker software that implements the Advanced
Message Queuing Protocol (AMQP). The RabbitMQ server is written in the Erlang pro-
gramming language and is built on the Open Telecom Platform framework for clustering
and failover.

4.1.2 Flask

Flask works as a microframework that aims to have a simple but extensible core. You
decide on what database, form validation or anything else as long as there is a supported
extension for it[33].

4.1.3 Pika

Pika is a pure-Python implementation of the AMQP 0-9-1 protocol that tries to stay fairly
independent of the underlying network support library.[34]

4.1.4 PM2

PM2 is a production process manager for Node.js applications with a built-in load bal-
ancer. It allows you to keep applications alive forever, to reload them without downtime
and to facilitate common system admin tasks.

4.1.5 MongoDB

MongoDB is the leading open source NoSQL database, which uses a document-oriented
data model.

42

Service architectures for educational purposes

4.1.6 Munin with RabbitMQ plugin

Munin is a free and open-source computer system monitoring, network monitoring and
infrastructure monitoring software application. It offers monitoring and alerting services
for servers, switches, applications and services. In addition to the standard munin setup,
it uses the RabbitMQ munin plugin to monitor the RabbitMQ message brokers.

4.1.7 RabbitMQ Management Plugin

The rabbitmq-management plugin provides an HTTP-based API for management and
monitoring of a RabbitMQ server, along with a browser-based UI and a built-in CLI tool.

4.2 Design

This architecture will not have any versions, which was decided during a meeting with
our employer. An e-mail with verification can be found in appendix H.

4.2.1 Application
Entrypoint

The point of entry in this architecture is a server running a Python Flask application, API
and RabbitMQ. The role of this server is to accept jobs in a certain format, add relevant
data of its own, and push it on the local RabbitMQ queue ready for workers to take over.

Workers and queues

The worker machines will be running a Python application, it will be the same appli-
cation on every worker, but it has differences in each individual configuration file. The
application will have functions for consuming messages from a given queue, process the
job and add its own time stamp to it and eventually pass it on to the next queue in the
assembly line.

Safe

The safe server is considered to be the end of the assembly line and is responsible for
completing the jobs that pass through the factory, and write the jobs to the database. The
idea is that it listens to jobs from its local queue, picks one, processes it and puts a time
stamp on it before it goes on and writes it to the database. Furthermore, it also runs a
Python Flask application that displays all the jobs on a website, which is discussed in the
next paragraph.

Finished Job Entry System

All jobs that have successfully gone through the Factory system will be placed in a
database. A web application will fetch all jobs from this database, and present it on a
web page. All jobs will consist of 6 different variables:

• ID: Each job have it’s own unique ID
• Name: Name of the user that requested the job
• Jobtype: Represents what kind of job it is, can vary from 1-5. Each jobtype causes

different processing.
• Start Time: The timestamp when the job was initially started.
• Stop Time: The timestamp when the job was completed.
• Worker Stamps: Array of stamps. One for each worker that it passes through.

This web application will help the students monitor the RabbitMQ architecture by keep-
ing track of completed jobs that were sent through the whole system.

43

Service architectures for educational purposes

Common

All the machines described above uses PM2 to handle their applications. PM2 also pro-
vides basic monitoring as well as logging for each individual application. The Python
applications that are involved with either consuming or producing messages uses Pika,
which is the recommended Python client by the RabbitMQ team[35].

4.2.2 Architecture

As shown in figure 5, the architecture resembles a basic assembly line. Initially, there
will be only one worker taking jobs off the queue, processing them and adding a time
stamp before pushing it onto the next queue. Eventually, it will start to pile up on the
queues because of the massive quantity of incoming jobs. This can be solved by adding
new worker servers and scale vertically which also solves the concern for single point of
failures. For example, if worker01 goes down for maintenance, worker03 can continue
and keep everything operational. Entrypoint01, queue01, safe and mongodb01 are all
single point of failures here. But the main idea is to discuss important operational topics,
this is intentional and by design. In a real world production environment, this should not
be the case.

Figure 5: Deployment view of Factory

4.2.3 Monitoring

Management and monitoring something that is immediately interesting when planning
this architecture. The idea is to create a simple and effective way for the students to get
an overview of their system. There are several possibilities when it comes to RabbitMQ
Management and Monitoring.[36]. The most well known alternatives would be Nagios
and Zabbix, but they are both way too heavy and advanced for our project, so therefore
we decided to go with the following applications.

44

Service architectures for educational purposes

Munin with RabbitMQ Plugin

The primary monitoring tool for the Factory will be Munin with a RabbitMQ plugin.
Munin will by default provide alot of information about a server/node, but it is also pos-
sible to provide additional information by easily installing third party plugins. By using
the RabbitMQ Munin Plugin, munin will provide the students and the course supervisor
with an overview of all the RabbitMQ servers, and individual information about every
server. All munin information will automatically be presented in graphs.

RabbitMQ Management Plugin

In addition to Munin, the usage of the official RabbitMQ Management Plugin is a great
way to manage and monitor our RabbitMQ servers/nodes. This plugin will provide us
with a browser-based GUI with queue management and monitoring for each server/node.
The downside with this plugin is that it can only manage a single server/node, while in
Munin it is possible to monitor multiple nodes in the same GUI.

4.3 Implementation

4.3.1 Application

All Python applications in this architecture use a YAML based configuration file. Which
contains environment variables such as IP addresses, ports, RabbitMQ credentials and
the queue names.

Entrypoint

As mentioned earlier, this server is running a Flask Flask application with the Flask-
RESTful extension. In order to simulate users sending in jobs, an exposed REST API is
provided, in the same way someone from a shop is sending in an order to a factory that
gets processed on an assembly line. The application itself is simple, it accepts jobs only
if the request method is POST, "Content-Type" header is "application/json", and it has a
name. If the criteria is met, it will add a starting time and initialize an empty array. When
this is done, Pika will take over. Since the Entrypoint is also running RabbitMQ, Pika will
set up the connection to itself and push the job onto the queue waiting for workers to
take over.

The RESTful API is built as resources on top of pluggable views. An example of a
resource can be seen in the follwing code where thhe class works as a resource. Functions
are typical HTTP methods exposed from the resource.

c l a s s NewJob(Resource) :
def post (s e l f) :

−−−−−−−Omitted code−−−−−−−

The next code snippet is an endpoint. The resource is added to the API and matched
to an url.

ap i . add_resource (NewJob , ’ / job ’)

The code as a whole can be seen in appendic A.2.4.

Workers

The workers are assigned with a specific task, consume and produce messages from and
to RabbitMQ. The application code can be viewed in full detail in the appendixA.2.1.First
of all, the application needs to declare a connection to RabbitMQ. Since it has to both
consume and produce a message, it has to have a connection with two different brokers.

45

Service architectures for educational purposes

The connection uses the credentials saved in the configuration file, which are the cre-
dentials created when installing RabbitMQ. It then declares a connection to the queue
by using the "parametersConsume" variable. This variable uses the IP address found in
the configuration file. In case the server is unreachable, it tries to establish a connection
5 times with a 15 second delay in between. It is the same case for "parametersProduce",
which has the queue it needs to deliver its messages to.

c r e d e n t i a l s = pika . P l a i n C r e d e n t i a l s (c fg [’ rabb i tUser ’] , c fg [’
rabbitPsw ’])

parametersConsume = pika . ConnectionParameters (c fg [’ receiveFrom
’] , c fg [’ port ’] , \

’ / ’ , c r e d e n t i a l s , r e t r y_ d e l a y
=15, \

connect ion_at tempts=5)
parametersProduce = pika . ConnectionParameters (c fg [’ produceTo ’] ,

c fg [’ port ’] , \
’ / ’ , c r e d e n t i a l s , r e t r y_ d e l a y

=15, \
connect ion_at tempts=5)

Now that the variables have been declared, a connection can be established between the
workers and queues. Considering that neither of the workers will be at the entrypoint, it
is natural for it to always be listening to a queue for jobs, before it can do work and pass
it along to the next queue. Hence, the consuming connection is started first.

connectionConsume = pika . BlockingConnect ion (parametersConsume)
channelConsume = connectionConsume . channel ()

Before it is possible to start consuming messages, the queue has to be declared. It is
declared as durable so that RabbitMQ does not lose the items in a queue when rebooting.

channelConsume . queue_declare (queue=cfg [’ queue ’] , durable=True)

When consuming messages, a callback function has to be used in order for the applica-
tion to subscribe to a queue. Whenever a message is placed on the queue, the callback
function is called by the Pika library. The function loads the message as a JSON object, it
then reads the sleep tag, which in this scenario is a basic "jopType" representing the type
of job and how long it is going to process it. Processing in this case is just a simple sleep,
it serves as a method of doing tentative work. Furthermore, a stamp is added to the JSON
object. Before it passes the message along to another function, a basic acknowledgement
is sent to RabbitMQ saying that it has consumed the message and that RabbitMQ is free
to delete it from the queue. This ensures that no jobs are lost, in case of a connection
failure. The message can now be passed along to the producer function.

def c a l l b a c k (ch , method , p rope r t i e s , body) :
" " " Funct ion fo r consuming messages from message queue " " "
p r i n t " [∗] " + timeStamp () + " Accepted job "
data = json . loads (body)
s l eep_ tag = i n t (data [" jobType "])
time . s l eep (s l eep_ tag)
stamptime = timeStamp ()
data [" stamp "] . append ({ c fg [’ worker ’] : stamptime })
channelConsume . bas i c_ack (d e l i v e r y _ t a g=method . d e l i v e r y _ t a g)

46

Service architectures for educational purposes

p r i n t " [∗] " + timeStamp () + " Done consuming , s t a r t i n g
producing "

produce (data)
p r i n t " [∗] " + timeStamp () + " Waiting f o r next job "

The producer function establishes a connection to the RabbitMQ server, where it declares
the queue, and publishes the message that was sent as a parameter from the callback
function.

def produce (item) :
" " " Funct ion fo r producing a message to a message queue " " "
#S t a r t producing connect ion
connect ionProduce = pika . BlockingConnect ion (

parametersProduce)
channelProduce = connect ionProduce . channel ()
channelProduce . queue_declare (queue=cfg [’ queue ’] , durable=

True)
message = json . dumps(item)
#Publ i sh message to queue
channelProduce . ba s i c _pub l i sh (exchange = ’ ’ , rout ing_key=cfg [’

queue ’] , \
body=message , \
p r o p e r t i e s=pika . B a s i c P r o p e r t i e s (

\
delivery_mode=2, \
content_type =’ a p p l i c a t i o n /

json ’))
connect ionProduce . c l o s e ()
p r i n t " [∗] " + timeStamp () + " Done producing "

Earlier it is mentioned that to be able to consume messages a callback function is re-
quired. Pika takes messages from the queue and passes them to the callback function.

channelConsume . basic_consume (ca l lback , queue=cfg [’ queue ’])
channelConsume . s tar t_consuming ()

Safe

As shown in our diagram earlier, the safe machine is the end of the assembly line, and is
responsible for wrapping up the jobs and writing them to the database. The last workers
in the assembly line, send their messages to the queue at the safe machine. The task of
the safe machine is to listen to its local queue, process the jobs one at a time and write
them to the database. The application starts off by connecting to the database which is
critical, because if there is no connection, then no jobs will be written to the database.
The python syntax "try and except" is implemented to catch the error if no connection
could be established. Using the native error handling from the pymongo package, if there
is no established connection to the database the application shuts down.

#Connect to database
t r y :

dbCon = MongoClient (’ mongodb : / / ’ +c fg [’ databaseIP ’] + \
’ : ’ + c fg [’ databasePort ’] + ’ / ’)

dbCon . s e r v e r _ i n f o ()
db = dbCon[c fg [’ db ’]]
pos t s = db[c fg [’ c o l l e c t i o n ’]]

47

Service architectures for educational purposes

c o l l e c t i o n _ e x i s t = db . co l lec t ion_names ()
except pymongo . e r r o r s . ServerSe lec t ionT imeoutEr ror as e r r :

p r i n t " [!] Could not connect to DB: %s " % er r
p r i n t " [!] No items w i l l be wr i t t en to DB ! ! "
sy s . e x i t ()

Considering that the application has to connect with RabbitMQ, Pika is once again re-
quired, but since the code for connecting is very similar it is not discussed here.

Nevertheless, there is still a callback function that will be called when messages ap-
pear on the queue. Some of the code is the same as on a worker, however, instead of
adding a timestamp to the array, it sets the "timeStop", which is the time when the job is
considered to be finished.

The most important task for the safe application is to deal with the database. It is
responsible for setting the "ID" of a job, as well as writing the job iteself to the database.
This is implemented by quering the database when establishing a connection, and check-
ing if the collection used exists. If it doesn’t exist then the "ID" is automatically set to 1,
because MongoDB doesn’t create any collection before something is written to it. This
will only happen the first time the application accepts a job.

The Pymongo syntax "find()" is used to query the database. When using "find()", it
always returns it as a pymongo cursor object, which has to be iterated in order to extract
values. To safely try and extract the "ID" value, "try and except" is implemented to catch
the python KeyError if the "ID" field doesn’t exist. This would indicate an error in the
database and the application is stopped.

If the "ID" has been set, data can be inserted with the syntax "posts.insert_one(data)",
unless there is a connection failure, then the job is successfully written to the database.

def c a l l b a c k (ch , method , p rope r t i e s , body) :
" " " Funct ion fo r consuming messages from queue " " "
p r i n t " [∗] " + time_stamp () + " Accepted job "
data = json . loads (body)
time . s l eep (2)
data [" timeStop "] = time_stamp ()
i f not c o l l e c t i o n _ e x i s t :

data [" id "] = 1
e l s e :

t r y :
get = pos t s . f i nd ({} , { " id " : 1 , " _ id " : 0 }) \

. s o r t ([(" _ id " , pymongo . DESCENDING)]) . l i m i t
(1)

f o r doc in get :
t r y :

va l = i n t (doc [’ id ’]) +1
data [" id "] = va l

except KeyError :
p r i n t " [!] " + time_stamp () + \

" Error in database ! ID f i e l d not found "
sys . e x i t ()

except pymongo . e r r o r s . Connect ionFa i lure as e r r :
p r i n t " [!] " + time_stamp () + \

" Could not get ID from database ! ! %s " % er r
sys . e x i t ()

t r y :

48

Service architectures for educational purposes

pos t s . i n se r t _one (data)
p r i n t (" [∗] Wrote to database , ID : { } " . format (data [’ id

’]))
except pymongo . e r r o r s . Connect ionFa i lure as e r r :

p r i n t " [!] " + time_stamp () + \
" Could not post to database ! %s " % er r

sys . e x i t ()
channel . bas i c_ack (d e l i v e r y _ t a g=method . d e l i v e r y _ t a g)

As previously stated, a method to call the function is needed, when items appear on the
queue.

channel . basic_consume (ca l lback , queue=cfg [’ queue ’])
channel . s tar t_consuming ()

This concludes the consumption of messages from RabbitMQ. Furthermore, the safe ma-
chine also runs one of the Flask applications that presents all the jobs on a straightfor-
ward website, which will be described in the next paragraph.

Finished Job Entry System

This is a simple Flask application using PyMongo for queries and the built-in jinja2 tem-
plate engine, with a specific purpose to show a certain number of entries that have gone
through the architecture with stamps and an end date.

@app . route (’ / ’)
def index () :

’ ’ ’ POST GET ’ ’ ’
Query database f o r e n t r i e s
query = c o l l e c t i o n . f i nd () . s o r t (" id " , −1) . l i m i t (c fg [’

f rontpageL imi t ’])
re turn render_template (’ index . html ’ , e n t r i e s=query)

The application is written using the normal route decorator to bind a function to URL.
In this case it binds the index page to the function named index. When the query is
completed, it is sorted by the last ID and the amount of entries is limited by a setting in
the configuration file.

Flask has built-in error handling for HTTP status codes, however, a custom made error
page for code 404 is implemente,d which displays a simple 404 with an image of a cute
kitten. This is done by using abort to end the request early and the errorhandler function
will then handle the exception.

@app . e r ro rhand le r (404)
def page_not_found (e r ro r) :

’ ’ ’ E r ror handl ing fo r 404 ’ ’ ’
r e turn render_template (’404 . html ’ , e r r=er ro r) , 404

The variables are then passed to the jinja engine, which will populate the web page. The
website consist of a index.html template, which is used to build up a HTML page when
Flask gets a request. The template is located in appendix A.2.3.

4.3.2 Architecture
RabbitMQ

RabbitMQ has to be installed on all servers that deal with messaging and queuing, which
includes all servers except the database. The repository has to be added to the sources
list, and the RabbitMQ public key has to be added to the trusted key list.

49

Service architectures for educational purposes

echo ’ deb ht tp ://www. rabbitmq . com/ debian / t e s t i n g main ’ |
sudo tee / e t c / apt / sources . l i s t . d/ rabbitmq . l i s t

wget −O− h t tp s : //www. rabbitmq . com/ rabbitmq−s ign ing−key−pub l i c .
asc | sudo apt−key add −

Before installing the rabbitmq-server package it is recommended to perform an update.

sudo apt−get update
sudo apt−get i n s t a l l rabbitmq−s e r ve r

When RabbitMQ is installed it is required to add a user with adminstrator rights. This
is the username and password that is used by Pika in our workers to authenticate to
RabbitMQ.

sudo rabb i tmqc t l add_user f a c t o r y f a c t o r y P a s s
sudo rabb i tmqc t l s e t _ u s e r _ t a g s f a c t o r y admin i s t r a to r
sudo rabb i tmqc t l s e t _pe rmi s s i ons f a c t o r y " . ∗ " " . ∗ " " . ∗ "

sudo s e r v i c e rabbitmq−s e r ve r r e s t a r t

Common

All of the workers require a couple of packages installed to be able to download and
execute the application code, located in a git repository. Additionally, it is required to
install a Python package for Python to be able to communicate with RabbitMQ.

sudo apt−get i n s t a l l −y python python−pip g i t

sudo pip i n s t a l l p ika

Now that the tools for executing the application code is installed, software for handling
the applications has to be installed. Considering that PM2 is able to handle Python ap-
plications as well, it fits this architecture. Installing PM2 requires that npm and Node.js
is already installed.

sudo apt−get update
sudo apt−get i n s t a l l −y npm nodejs−l egacy

sudo npm i n s t a l l pm2@latest −g

MongoDB

As MongoDB is the chosen database for this architecture, it requires configuration, how-
ever, it is exactly the same configuration as covered in the first architecture. Hence, it is
not discussed here again. The complete commands for installation will be covered in the
user manuals.

4.3.3 Monitoring

Monitoring was something our employer requested to be implemented into this archi-
tecture. It was therefore necessary to create a simple and effective way for the students
to get an overview of their system. The Factory architecture will consist mainly of two
different monitoring applications.

Munin with RabbitMQ Plugin

Munin is available in two different software packages depending on which role the server
as assigned.

50

Service architectures for educational purposes

Munin Master:
The Munin master is responsible for gathering data from Munin nodes. For Munin to
work it is required to have a working Munin master server. Most of the Munin configura-
tion and setup process is implemented on the Munin master. Considering that the course
supervisor will host and manage the Munin master, it is only required that the students
configure and set up their Munin nodes.
Munin Node:
The Munin node is the agent process running on the servers that shall be monitored by
the Munin master. When Munin is installed, it will automatically start on boot and listen
on port 4949/TCP accepting connections from the Munin master. The process of setting
up a Munin node and getting it up and running is really simple.

The Munin node should be installed on appropriate servers that are going to be mon-
itored.

sudo apt−get update
sudo apt−get i n s t a l l −y munin−node

When the Munin node software package is successfully installed, the connection between
the Munin node and the Munin master needs to be established. To create this connection,
it is required to allow the IP address of the Munin master in the Munin node config,
located at /etc/munin/munin-node.conf.

al low ÎP_OF_MASTER_NODE$

If the Munin Server is correctly configured, it should now be possible to monitor the
Munin Node through the Munin master GUI. Munin will by default present a lot of basic
system information about the server. Although this information is useful, the whole idea
by using Munin in this architecture is to monitor RabbitMQ. To enable monitoring for
RabbitMQ it is required to install a third-party plugin.

cd / usr / share /munin/ p lug ins
sudo g i t c lone h t tp s : // gi thub . com/ ask / rabbitmq−munin . g i t
sudo cp rabbitmq−munin/∗ .

After downloading the plugin, symlinks between the plugins and the Munin folder have
to be created. To see which plugins that require a symlink, it is possible to run the munin-
node-configure script.

sudo munin−node−con f igure −−s h e l l

sudo ln −s ’ / usr / share /munin/ p lug ins / rabbitmq_connect ions ’ ’ / e t c
/munin/ p lug ins / rabbitmq_connect ions ’

sudo ln −s ’ / usr / share /munin/ p lug ins / rabbitmq_consumers ’ ’ / e t c /
munin/ p lug ins / rabbitmq_consumers ’

sudo ln −s ’ / usr / share /munin/ p lug ins / rabbitmq_messages ’ ’ / e t c /
munin/ p lug ins / rabbitmq_messages ’

sudo ln −s ’ / usr / share /munin/ p lug ins /
rabbitmq_messages_unacknowledged ’ ’ / e t c /munin/ p lug ins /
rabbitmq_messages_unacknowledged ’

sudo ln −s ’ / usr / share /munin/ p lug ins /
rabbitmq_messages_uncommitted ’ ’ / e t c /munin/ p lug ins /
rabbitmq_messages_uncommitted ’

sudo ln −s ’ / usr / share /munin/ p lug ins /rabbitmq_queue_memory ’ ’ /
e t c /munin/ p lug ins /rabbitmq_queue_memory ’

51

Service architectures for educational purposes

The munin-node-configure script is also able to check if plugins are enabled and sym-
linked. If all the rabbit_* plugins states are yes|yes it means that the plugins are enabled.

sudo munin−node−con f igure −−sugges t

After symlinking the plugins, it is recommended to restart the node service.

sudo s e r v i c e munin−node r e s t a r t

The final step of the plugin installation is to add the plugins in the /etc/munin/plugin-
conf.d/munin-node configuration file, and give them root permissions.

[rabbi tmq_connect ions]
user root

[rabbitmq_consumers]
user root

[rabbitmq_messages]
user root

[rabbitmq_messages_unacknowledged]
user root

[rabbitmq_messages_uncommitted]
user root

[rabbitmq_queue_memory]
user root

RabbitMQ Management Plugin

The management plugin is included in the RabbitMQ distribution, and therefore the
only thing that requires for it work, is to enable it and have a user with administrator
permissions.

rabbitmq−p lug ins enable rabbitmq_management

Since the 3.3.0 release of RabbitMQ, the server will prevent access using the default
guest/guest credentials except via localhost. Hence, to access the RabbitMQ database
remotely it is required to have a user with admin rights. This user was created earlier
when installing RabbitMQ. The Management plugin browser-based UI is now available
by logging in with the username and password at http://ip-address-of-server:15672/.

4.4 Traffic generation

4.4.1 Introduction

A part of our requirements is to implement a script that is able to generate traffic in order
to simulate a real environment. As mentioned earlier, this architecture is something that
will be set up in a short period of time at the end of the course, to illustrate certain
operational challenges.

For this script we wanted a way to use the API provided by the application entrypoint,
to add data that can be processed by workers in the assembly line. The previous script
has been used as a base and modified to fit our requirements for this architecture. Fur-
thermore, the script has two new argument options which will be explained in depth in
the following section.

52

Service architectures for educational purposes

4.4.2 Implementation

With the script from the first architecture as a baseline, we kept the base structure with
arguments using "getopt" for parsing the command line arguments. Functions named
¨front_page¨ and ¨get_random_name¨ will be used as well. The two new functions are
option ’O’ for one new entry and "M" for many new entries. Everything is still written in
Python, and uses a mix of standard modules and an additional module named ’request’.
This module will do the actual HTTP request towards the entrypoint to simulate a person
sending a new job entry.

A single new entry has several steps. First it use the get_random_name function which
is the name of the person who sent in a job order. Second step is to generate a random
integer that will simulate what type of job it is. The third step is to build up the request,
where we define what the payload and headers will consists of. Eventually the request is
executed with simple error handling.

def new_entry () :
" " " Funct ion to add a s i n g l e new entry " " "
name = get_random_name ()
jobType = randin t (1 , 5)
Cons t ruc t ing the reques t
payload = { ’name ’ : name , ’ jobType ’ : jobType }
headers = { ’ Content−Type ’ : ’ a p p l i c a t i o n / json ’ }
Execute the reques t with e r ro r handling f o r genera l and

404
t r y :

req = reques t s . post (URL , data=json . dumps(payload) ,
headers=headers)

except reques t s . excep t ions . RequestExcept ion as e r r :
pr in t_er ror_msg (e r r)
sys . e x i t (TRACEBACK)

e l s e :
i f req . s ta tus_code == 404:

pr in t_er ror_msg (req . r a i s e _ f o r _ s t a t u s ())
sys . e x i t (TRACEBACK)

P r i n t out the rep ly t e x t
p r i n t req . t e x t
re turn req . t e x t

Many new entries make use of the previous function. However, it loops a certain
number of times based on the number and adds a new entry each time.

def many_new_entries (number) :
" " " Funct ion to add s e v e r a l new jobs , us ing prev ious

func t i on s " " "
For number in range , add a new entry
i f number . i s d i g i t () :

f o r i in range (i n t (number)) :
new_entry ()

e l s e :
pr in t_er ror_msg (" Passed v a r i a b l e i s not a number .

E x i t i n g . . . ")
sy s . e x i t (TRACEBACK)

p r i n t " Done ! Sent %s new e n t r i e s . " % number

53

Service architectures for educational purposes

4.5 RabbitMQ Security

This section will discuss security hardening approaches for RabbitMQ, which uses the
AMQP protocol. Security is an important part of application layer protocols, and there-
fore it is very relevant for us to clarify what we have done to improve RabbitMQ security
in this architecture.

4.5.1 Access Control

Access Control contains authentication and authorisation. Authentication in RabbitMQ
is defined as "identifying who the user is", and authorization is defined as "determining
what the user is and is not allowed to do".[37]

When a new RabbitMQ server is started up, it initialises a database with default login
credentials, which is "guest" as username and password. It is strongly recommended to
create a new user, and delete the default "guest" user. Since the 3.3.0 release of Rab-
bitMQ, the server will prevent access using the default guest/guest credentials except via
localhost. So to access the RabbitMQ database remotely it is required to create a new
user with admin rights through the server command-line interface.

4.5.2 Messaging transport security

AMQP based solution support transport-level security using TLS. It is highly recommend
enabling transport-level cryptography for a message queue. Since RabbitMQ 3.4.0, TL-
S/SSL is automatically disabled to prevent the so called POODLE attack.[38] Using the
TLS/SSL support in RabbitMQ will provide protection of the communication between the
client and server. To implement TLS/SSL in RabbitMQ, it is required to do some configu-
ration on the RabbitMQ server. Since this architecture is running in a closed environment,
we have decided to not enable TLS on our RabbitMQ servers. More information on how
to enable TLS in RabbitMQ can be found here.

4.5.3 RabbitMQ Security Checklist

Additionally we have created this security checklist to improve the security in the Rab-
bitMQ environment:

• Make sure the RabbitMQ client is up to date - earlier versions of RabbitMQ had
multiple cross-site scripting(XSS) vulnerabilities.

• Enable TLS/SSL
• RabbitMQ was not meant to be exposed directly to the public Internet, so if this

is a requirement, it is recommended to use for example HAproxy in front of the
RabbitMQ servers.

• Make sure the default login credentials for the RabbitMQ database is either re-
moved or changed.

4.6 Testing

Testing is an essential part of our project, especially since our Message Queueing system
is required and expected to work in a real environment. By testing the architecture and
system, we ensure that what we have created does what it is supposed to do, and we
are able discover parts where improvements can be made. Since we are using an agile
development method, testing has been involved during the entire development period.

For the Factory we have mainly tested the the architecture in five different ways:

54

https://www.rabbitmq.com/ssl.html

Service architectures for educational purposes

• System testing
• Static code analysis
• Performance testing
• User manual review
• Traffic generation scrip testing

4.6.1 System testing

By doing System testing, we evaluate the complete system’s compliance with its specified
requirements. This made it possible for us to find errors, fix them and implement overall
improvements to the architecture.

4.6.2 Static code analysis

To analyze the code in our traffic generation script for the Factory, we have used pylint,
which is a source code bug and quality checker for the Python programming language.

4.6.3 Performance testing

Except to just test the Factory by performing overall system tests, some benchmarking
tests have also been launched to evaluate the performance of RabbitMQ. To perform this
kind of testing on the RabbitMQ servers, we used PerfTest. PerfTest is a performance test-
ing tool.It starts up zero or more producers and consumers, and reports the rate at which
messages are sent and received, along with the latency (i.e. time taken for messages to
pass through the broker). The usage of a performance testing tool provided us with in-
formation on how well our RabbitMQ servers perform, and where improvements should
be implemented.

4.6.4 User manual review

Since the students will follow the user manuals when setting up this architecture, it is
very important that the user manuals provide the correct information. Therefore we have
completed the setup process of the Factory multiple times using the user manuals.

4.6.5 Traffic generation script testing

Testing of our traffic generation script included both Static code analysis of the script
itself, but also basic system testing. In this case system testing involves pushing a lot
of traffic onto the servers by running the script in a loop, as well as testing all of the
functionality in the script.

55

Service architectures for educational purposes

5 Discussion

5.1 Results

In this chapter we will discuss and reflect on what we have accomplished throughout this
bachelor thesis.

5.1.1 Project outcome

We have created two architectures to be used in IMT3441 database and application ad-
ministration. This included deciding upon a design, investigating which technologies to
use, developing an application that suits the architecture, developing a tool for generat-
ing traffic, and writing documentation.

Our first architecture is Flackr, a web application that shares images on a website.
Built using the MEAN stack, PM2, GlusterFS and Nginx. Here the students will be chal-
lenged with installing, maintaining and upgrading the application. As they upgrade the
application to newer versions, they can expect overall improvements regarding perfor-
mance, stability and security.

The second architecture is named Factory, which uses technologies such as RabbitMQ,
MongoDB, Flask, Pika and RESTful API to create a workflow where jobs pass through an
assembly line. Once the jobs are done, they are committed to a database. Students will
get a theoretical and practical view on operational issues such as single point of failure,
bottlenecks, scalability and high uptime. Additionally, the students are introduced to
message queues which is widely used in system architectures.

The learning aspect has been broad, interesting and challenging. Looking into differ-
ent technologies, learning how they work by installing and trying them out, and figuring
out what could work together was definitely an interesting experience. Deciding whether
to develop our own application or finding an existing alternative wasn’t an easy decision
for us. Neither of us has experience developing web applications. We expected to write
code in form of scripts or simple applications. Once we realised that most of the web
applications we found, was either changing too often, used as a non-functional example,
or were not really relevant. We took on the challenge of developing on our own, and saw
it as an opportunity to learn something new.

5.1.2 What did we not do

Pretty much all of our project goals were met, both learning and performance wise. When
it comes to the requirements specification regarding functionality, usability, reliability and
security from chapter 2, these are all fulfilled. There is still room for improvement, and
this will be discussed in a later section.

5.1.3 What could have been done differently

User testing is something that could have been done earlier, and in a much larger scale.
We could have been more consistent when it comes to writing documentation during the
different design and installation phases.

56

Service architectures for educational purposes

5.1.4 Technologies

In order to find relevant technologies, we spent a great amount of time researching
alternatives. Criteria such as what works well together, other peoples experiences with
it, and the documentation played an important role in deciding.

For Flackr, there were not that many full stack alternatives to LAMP. The task descrip-
tion mentioned both Node.js and NoSQL, so the decision to use MEAN was an easy one.
GlusterFS was mainly chosen because it is already teached in the course, it works well
as a distributed network file system, and could handle the load required transferring the
images between the application servers. Because of this it was chosen as the preferred
alternative instead of Ceph. We briefly discussed using object storage after having a split-
brain issue with GlusterFS, and we would have looked more in to it if the current version
of SkyHiGh supported it. Nginx and PM2 were chosen when we were looking into run-
ning a Node.js application in production. We did not chose to look for other alternatives
as both documentation and experiences was overall positive. Using Python as the script-
ing language for the trafficscript was decided early. We wanted to learn more about the
language as it is rising in popularity, and it is able to perform wanted functionality.

Factory is based around the idea of using a message queuing system. We tried out both
RabbitMQ and ZeroMQ, after careful consideration based on the requirements stated
earlier, we ended up going with RabbitMQ. Overall, it was easier to understand and the
documentation was better. However, if we had more time to study the documentation
and test, then ZeroMQ would probably be the preferred choice. The reasoning behind
MongoDB was simple, we already had a positive experience with implementing it with
Flackr and it seemed like a good idea to save time. This way we could spend more
time on other areas. In order to send in data to the architecture, we started looking
into RESTful API. The group had experience using Flask. Alternatives were Node.js, but
the desire to learn more Python made the choice simple. Initially, we did not plan on
showing the entries written to the database, however, after a meeting with the employer
who requested to implement this for educational purposes. At this point the development
with Flask using API had started, and therefore the decision was made to continue using
Flask for this as well.

5.1.5 Time usage

In our initial planning phase we created a Gantt chart to illustrate our project schedule.
As we were tasked with designing two architectures, we felt that it was natural to divide
our time into two equal segments. Additionally we set aside time at the end of each
segment to write documentation. Dividing our time into segments was a bit of a risk, due
to the fact that it provides little flexibility. On the other hand, it gave us a date to work
towards during the project, where an architecture would have to be completed in order
to progress and move on to the next. This worked well for us, we were able to follow our
initial planning scheme and made great progress throughout the project period. Using a
Gantt chart in our planning phase really payed off, as it provided us with a time line to
follow. The Gantt can be seen in appendix L.

5.1.6 Complications

Wrong JSON format
In the traffic generating scripts, we used a website named randomuser.me. Which is
a free, open-source API for generating random user data. However, after using it for

57

Service architectures for educational purposes

a while, we had problems when parsing the JSON data trying to extract the informa-
tion that we wanted. After much troubleshooting, we noticed that randomuser.me had
changed the structure of their JSON, when upgrading to a new version of their website.
According to their documentation, it is possible to specify which version of the API to
use, thus we implemented this in our function to ensure that the traffic scripts would
work as intended, despite any future updates.
Lorempixel
Flackr is a website where displaying images is the main feature. We needed a website to
extract images from. After some googling around we ended up using Lorempixel, which
was stable and had the exact features that we wanted. Initially, we had a great success
until it went down in March, around the time we were starting the documentation phase.
At this point, our error checking wasn’t the greatest and we learned a lot about error han-
dling when it comes to using status code and content type. All of these things mentioned
are now checked for whenever an insert is requested. If status code is 200, content type
in the HTTP header is ’image/jpeg’, and the file size is larger than 10 kilobytes then the
schema is committed to the database. So in the end, something good came outfrom the
initial issue.
MongoDB Authentication
We had some issues when attempting to implement authentication with MongoDB. Ac-
cording to MongoDB documentation, there are two ways to implement authentication.
First of all we started the Mongo shell, then added users with the db.CreateUser com-
mand, which was not the issue. The issue arose when trying to restart the Mongo shell
with parameters for adding authentication, after trying this we were not able to start
the Mongo shell again. The reason for this, is that earlier we used a configuration file
for specifying which port and which IP addresses are allowed, and when trying to en-
able authentication by starting the Mongo shell with the –auth option, which did not
work. It seems as if MongoDB prefers that one either uses a configuration file or only
using parameters for starting the Mongo shell. After starting from scratch, we only used
the configuration file for enabling access control and did a sudo service mongod restart
instead, then we were able to implement authentication without any new issues.

5.2 Group evaluation

Group organization is described in the appendix. The group leader role have not been
used as much since the group dynamic was great. Most of the discussions have ended in
an agreement, and when not, they usually occured because the message wasn’t conveyed
clearly enough. The only exception to this is a discussion about how much time we
wanted to spend developing the application once we decided to do it ourselves.

By using tools like Toggl to track time spent on a day to day basis, Trello to organize
tasks, Git to document code, and Google Docs to document everything else we have had
a good flow throughout the project. Everything we wanted to do has been a card in
Trello and discussed in our internal group meetings. This is something that have worked
exceptionally well for us.

We have met with our supervisor on a weekly basis to discuss various topics. Having
someone to bounce off ideas and topics have been helpful.

58

Service architectures for educational purposes

5.3 Further Development

In this section we discuss how the architectures and application can be further improved
and developed.
Trafficscript independence from Lorempixel
Relying on a third party site for images it not necessarily a bad idea, until it either com-
pletely shuts down or maintenance needs to be done. Controlling this part by generating
an image on the workers running the user script, then transferring it over would be a
way to control this aspect and ensure it is working at all times.
Implement more operational difficulties
During the installation, configuration and operation of these architectures, the student
will become familiar with operational challenges like scaling, reliability, uptime, and sin-
gle point of failures. Adding ways to present monitoring and centralized logging are other
examples that should be implemented. These are important topics in the real world, and
by exposing the students could potentially better prepare them.

59

Service architectures for educational purposes

6 Conclusion

After spending 5 months working on this project, we feel that we have been able to apply
the knowledge gained throughout the three years here at NTNU into our bachelor thesis
work.

At first, we were sceptical to the task description, but after the first meeting with the
employer, we quickly understood that the choice of taking on this bachelor project was
the correct decision. Our experiences with IMT3441 as a course has been very positive, as
we consider it as one of the best during the time here. Being able to help further broaden
the knowledge of future students by developing alternative architectures has definitely
been a motivating factor.

When we started off this project we set ourselves a few goals, which we hoped to
accomplish during the project period. One of the goals was to understand and differen-
tiate between different service architectures, in order to do this we set of with designing
two fully independent architectures, named Flackr and Factory. When designing these
architectures, a lot of time was spent installing, configuring and implementing differ-
ent technologies. Additionally, we used our fundamental education to write scripts, use
databases, develop applications and implement security by design. The only learning
goal we feel we have spent less time with is networking, instead the focus was more on
further enhancing previously mentioned skills. Another goal was to research and under-
stand best practices, which helps us prepare for working with real-world IT operations.

We have also learned a lot when it comes to working with larger projects in a group.
This is something that we believe we will benefit from in a real working environment.

Last not but least, we are satisfied with what we have accomplished in this bachelor
thesis, and hope that our employer can use this in his course to improve the educational
outcome.

60

Service architectures for educational purposes

Bibliography

[1] Wikipedia, "iterative and incremental development". https://en.wikipedia.
org/w/index.php?title=Iterative_and_incremental_development&oldid=
680280418. (Online; Visited 20 February 2016).

[2] Google, "python style guide". https://google.github.io/styleguide/pyguide.
html. (Online; Visited 27 March 2016).

[3] Owasp, "web application top 10 risks 2013". https://www.owasp.org/index.php/
Top_10_2013-Top_10. (Online; Visited 23 April 2016).

[4] Owasp, wapplication security guide for cisosw. https://www.owasp.org/images/
5/52/OWASP_Testing_Guide_v4.pdf. (Online; Visited 23 April 2016).

[5] Cnet.com, "newbie’s guide to flickr". http://www.cnet.com/news/
newbies-guide-to-flickr/. (Online; Visted 1 March. 2016).

[6] Mean.io, "mean". http://mean.io. (Online; Visited 12 Feb. 2016).

[7] Nginx, "using nginx as http load balancer". http://nginx.org/en/docs/http/
load_balancing.html. (Online; Visited 15 Feb. 2016).

[8] Facebook, "hammering usernames". https://www.facebook.com/notes/
facebook-engineering/hammering-usernames/96390263919/. (Online; Vis-
ited 28 March 2016).

[9] Changelog, "dark launching software features". http://changelog.ca/log/2012/
07/19/dark_launching_software_features. (Online; Visited 28 March 2016).

[10] Express, "index page". http://expressjs.com/. (Online; Visited 5 March 2016).

[11] Express faq, "route listings". http://expressjs.com/en/starter/faq.html. (On-
line; Visted 1 Feb. 2016).

[12] Express, "router api". http://expressjs.com/en/4x/api.html#router. (Online;
Visited 5 February 2016).

[13] Amazon, "aws reference architecture". https://aws.amazon.com/architecture/.
(Online; Visited 23 February 2016).

[14] Nokola breznjak, "using nginx as a reverse proxy in front of your
node.js application". http://www.nikola-breznjak.com/blog/nodejs/
using-nginx-as-a-reverse-proxy-in-front-of-your-node-js-application/.
(Online; Visited 15 Feb. 2016).

[15] Howtoforge, "why you should always use nginx with microcaching". https://www.
howtoforge.com/why-you-should-always-use-nginx-with-microcaching.
(Online; Visited 15 Feb. 2016).

61

https://en.wikipedia.org/w/index.php?title=Iterative_and_incremental_development&oldid=680280418
https://en.wikipedia.org/w/index.php?title=Iterative_and_incremental_development&oldid=680280418
https://en.wikipedia.org/w/index.php?title=Iterative_and_incremental_development&oldid=680280418
https://google.github.io/styleguide/pyguide.html
https://google.github.io/styleguide/pyguide.html
https://www.owasp.org/index.php/Top_10_2013-Top_10
https://www.owasp.org/index.php/Top_10_2013-Top_10
https://www.owasp.org/images/5/52/OWASP_Testing_Guide_v4.pdf
https://www.owasp.org/images/5/52/OWASP_Testing_Guide_v4.pdf
http://www.cnet.com/news/newbies-guide-to-flickr/
http://www.cnet.com/news/newbies-guide-to-flickr/
http://mean.io
http://nginx.org/en/docs/http/load_balancing.html
http://nginx.org/en/docs/http/load_balancing.html
https://www.facebook.com/notes/facebook-engineering/hammering-usernames/96390263919/
https://www.facebook.com/notes/facebook-engineering/hammering-usernames/96390263919/
http://changelog.ca/log/2012/07/19/dark_launching_software_features
http://changelog.ca/log/2012/07/19/dark_launching_software_features
http://expressjs.com/
http://expressjs.com/en/starter/faq.html
http://expressjs.com/en/4x/api.html#router
https://aws.amazon.com/architecture/
http://www.nikola-breznjak.com/blog/nodejs/using-nginx-as-a-reverse-proxy-in-front-of-your-node-js-application/
http://www.nikola-breznjak.com/blog/nodejs/using-nginx-as-a-reverse-proxy-in-front-of-your-node-js-application/
https://www.howtoforge.com/why-you-should-always-use-nginx-with-microcaching
https://www.howtoforge.com/why-you-should-always-use-nginx-with-microcaching

Service architectures for educational purposes

[16] Imgur, "tech tuesday: Our technology stack". https://blog.imgur.com/2013/06/
04/tech-tuesday-our-technology-stack/. (Online; Visited 15 Feb. 2016).

[17] Mongodb, "mongodb and mysql compared". https://www.mongodb.com/compare/
mongodb-mysql. (Online; Visited 10 May 2016).

[18] Openstack, "attach a single volume to multiple hosts". https://specs.openstack.
org/openstack/cinder-specs/specs/kilo/multi-attach-volume.html. (On-
line; Visited 4 March 2016).

[19] Stackoverflow, "how to store node.js configuration set-
tings". http://stackoverflow.com/questions/5869216/
how-to-store-node-js-deployment-settings-configuration-files. (On-
line; Visited 25 Feb 2016).

[20] Express, "using template engines with express". http://expressjs.com/en/
guide/using-template-engines.html. (Online; Visited 25 February 2016).

[21] Mongodb, "mongodb installation guide". https://docs.mongodb.org/manual/
tutorial/install-mongodb-on-ubuntu/. (Online; Visited 12 Feb. 2016).

[22] Mongodb documentation, "transparent huge pages". https://docs.mongodb.org/
manual/tutorial/transparent-huge-pages/. (Online; Visited 15 Feb. 2016).

[23] Digialocean, "understanding nginx http proxying, load balancing, buffer-
ing, and caching". https://www.digitalocean.com/community/tutorials/
understanding-nginx-http-proxying-load-balancing-buffering-and-caching.
(Online; Visted 1 March. 2016).

[24] Getting started install glusterfs. http://www.gluster.org/community/
documentation/index.php/Getting_started_install. (Online; Visited 13
March 2016).

[25] Gluster, "getting started configure glusterfs". http://www.gluster.org/
community/documentation/index.php/Getting_started_configure. (Online;
Visited 13 March 2016).

[26] Glusterfs, "how to create a redundant storage pool using glusterfs on
ubuntu servers". https://www.digitalocean.com/community/tutorials/
how-to-create-a-redundant-storage-pool-using-glusterfs-on-ubuntu-servers.
(Online; Visited 9 March 2016).

[27] Python docs, "urllib2 - extensible library for opening urls". https://docs.python.
org/2/library/urllib2.html. (Online; Visited 14 March 2016).

[28] Mongodb, "security guide". https://docs.mongodb.org/manual/
MongoDB-security-guide-master.pdf. (Visited 24 April 2016).

[29] Express production best practices: Security. http://expressjs.com/en/
advanced/best-practice-security.html. (Online; Visited 24 March 2016).

[30] npmjs, "help secure express/connect apps with various http headers". https://
www.npmjs.com/package/helmet. (Online; Visited 26 March 2016).

62

https://blog.imgur.com/2013/06/04/tech-tuesday-our-technology-stack/
https://blog.imgur.com/2013/06/04/tech-tuesday-our-technology-stack/
https://www.mongodb.com/compare/mongodb-mysql
https://www.mongodb.com/compare/mongodb-mysql
https://specs.openstack.org/openstack/cinder-specs/specs/kilo/multi-attach-volume.html
https://specs.openstack.org/openstack/cinder-specs/specs/kilo/multi-attach-volume.html
http://stackoverflow.com/questions/5869216/how-to-store-node-js-deployment-settings-configuration-files
http://stackoverflow.com/questions/5869216/how-to-store-node-js-deployment-settings-configuration-files
http://expressjs.com/en/guide/using-template-engines.html
http://expressjs.com/en/guide/using-template-engines.html
https://docs.mongodb.org/manual/tutorial/install-mongodb-on-ubuntu/
https://docs.mongodb.org/manual/tutorial/install-mongodb-on-ubuntu/
https://docs.mongodb.org/manual/tutorial/transparent-huge-pages/
https://docs.mongodb.org/manual/tutorial/transparent-huge-pages/
https://www.digitalocean.com/community/tutorials/understanding-nginx-http-proxying-load-balancing-buffering-and-caching
https://www.digitalocean.com/community/tutorials/understanding-nginx-http-proxying-load-balancing-buffering-and-caching
http://www.gluster.org/community/documentation/index.php/Getting_started_install
http://www.gluster.org/community/documentation/index.php/Getting_started_install
http://www.gluster.org/community/documentation/index.php/Getting_started_configure
http://www.gluster.org/community/documentation/index.php/Getting_started_configure
https://www.digitalocean.com/community/tutorials/how-to-create-a-redundant-storage-pool-using-glusterfs-on-ubuntu-servers
https://www.digitalocean.com/community/tutorials/how-to-create-a-redundant-storage-pool-using-glusterfs-on-ubuntu-servers
https://docs.python.org/2/library/urllib2.html
https://docs.python.org/2/library/urllib2.html
https://docs.mongodb.org/manual/MongoDB-security-guide-master.pdf
https://docs.mongodb.org/manual/MongoDB-security-guide-master.pdf
http://expressjs.com/en/advanced/best-practice-security.html
http://expressjs.com/en/advanced/best-practice-security.html
https://www.npmjs.com/package/helmet
https://www.npmjs.com/package/helmet

Service architectures for educational purposes

[31] Angularjs, "angularjs security". https://docs.angularjs.org/guide/security.
(Online; Visited 25 April 2016).

[32] Risingstack, "node.jssecurity tips". https://blog.risingstack.com/
node-js-security-tips/. (Online; Visited 24 April 2016).

[33] Flask, "foreword". http://flask.pocoo.org/docs/0.10/foreword/. (Online; Vis-
ited 15 April 2016).

[34] Pika documentation, "introduction to pika". http://pika.readthedocs.io/en/
latest/index.html#. (Online; Visited 3 April 2016).

[35] Rabbitmq, "python - get started". https://www.rabbitmq.com/tutorials/
tutorial-one-python.html. (Online; Visited 20 March 2016).

[36] Rabbitmq management and monitoring. https://www.rabbitmq.com/how.html#
management. (Online; Visited 1 May 2016).

[37] Rabbitmq, "rabbitmq authentication". https://www.rabbitmq.com/
access-control.html. (Online; Visited 24 March 2016).

[38] Us-cert, "ssl 3.0 protocol vulnerability and poodle attack". https://www.us-cert.
gov/ncas/alerts/TA14-290A. (Online; Visited 23 April 2016).

63

https://docs.angularjs.org/guide/security
https://blog.risingstack.com/node-js-security-tips/
https://blog.risingstack.com/node-js-security-tips/
http://flask.pocoo.org/docs/0.10/foreword/
http://pika.readthedocs.io/en/latest/index.html#
http://pika.readthedocs.io/en/latest/index.html#
https://www.rabbitmq.com/tutorials/tutorial-one-python.html
https://www.rabbitmq.com/tutorials/tutorial-one-python.html
https://www.rabbitmq.com/how.html#management
https://www.rabbitmq.com/how.html#management
https://www.rabbitmq.com/access-control.html
https://www.rabbitmq.com/access-control.html
https://www.us-cert.gov/ncas/alerts/TA14-290A
https://www.us-cert.gov/ncas/alerts/TA14-290A

Service architectures for educational purposes

A Application code and configuration files

A.1 Flackr

A.1.1 app.js

1 /∗ F l ack r
2 IMT3912 Bache l o r oppgave IMT
3 ∗/
4
5 // Mongoos e modu l e , con f i gur a t i on f i l e and s chema
6 va r mongoos e = r equ i r e (’mongoos e ’) ;
7 va r con f i g = r equ i r e (’ . / con f i g ’) ;
8 va r Schema = mongoos e . Schema;
9

10 // Da t aba s e connec t i on
11 connec t i on = (’mongod b : / / ’ + (con f i g .mongod b . us e rname) + ’ : ’ + (

con f i g .mongod b . pa s swor d) + ’ @’ + (con f i g .mongod b . i p) + ’ / ’ +
(con f i g .mongod b . name)) ;

12 conso l e . l og(connec t i on) ;
13
14 va r op t i ons = {
15 au t h: {au t hdb: " admi n"}
16 } ;
17
18 mongoos e . connec t (connec t i on , op t i ons , f unc t i on(e r r) {
19 i f (e r r) {
20 conso l e . l o g(’ Er r o r connec t i ng t o da t aba s e ’ , e r r) ;
21 } e l s e {
22 conso l e . l o g(’Connec t ed t o da t aba s e ’) ;
23 }
24 }) ;
25
26 // Make a s cheme ba s ed on t emp l a t e
27 va r Image = r equ i r e (’ . / imageSchema . j s ’) ;
28
29
30 // Requ i r e s f r om gene r a t o r
31 va r expr e s s = r equ i r e (’ exp r e s s ’) ;
32 va r pa t h = r equ i r e (’ pa t h ’) ;
33 va r f av i con = r equ i r e (’ s e r ve− f av i co n ’) ;
34 va r l ogge r = r equ i r e (’mor ga n ’) ;
35 va r cook i ePa r s e r = r equ i r e (’ cook i e−pa r s e r ’) ;
36 va r bodyPa r s e r = r equ i r e (’ body−pa r s e r ’) ;
37
38 // De f i ne expr e s s i ns t ance
39 va r app = expr e s s () ;
40
41 // App l i ca t i on endpo i n t s
42 va r r ou t e s = r equ i r e (’ . / r ou t e s/ i nde x ’) ;

64

Service architectures for educational purposes

43 va r i ns e r t = r equ i r e (’ . / r ou t e s/ i ns e r t ’) ;
44
45
46 // V i ew eng i ne s e t up
47 ap p. s e t (’ v i ews ’ , pa t h . j o i n(__d i rname , ’ v i ews ’)) ;
48 ap p . s e t (’ v i ew eng i n e ’ , ’ j ad e ’) ;
49
50 // Us e s
51 //ap p . us e(f av i con(pa t h . j o i n(__d i rname , ’ pub l i c ’ , ’ f av i co n. i c o ’))

) ; no t us ed
52 ap p. us e(l ogge r (’ de v ’)) ;
53 ap p . us e(bodyPa r s e r . j son()) ;
54 ap p . us e(bodyPa r s e r . ur l encoded({ ex t ende d: f a l s e })) ;
55 ap p . us e(cook i ePa r s e r ()) ;
56 ap p . us e(expr e s s . s t a t i c(pa t h . j o i n(__d i rname , ’ pub l i c ’))) ;
57 ap p . us e(expr e s s . s t a t i c(con f i g . imag e . f o l de r)) ;
58 ap p . d i s ab l e (’ x−powe r ed−b y ’) ;
59
60 // npm s t a r t
61 ap p . l i s t en(3000 , f unc t i on(e r r) {
62 conso l e . e r r o r (’ p r e s s CTRL+C t o ex i t ’) ;
63 }) ;
64
65 // Load i ng r ou t e r modu l e s i n t he app l i ca t i on
66 ap p. us e (’ / ’ , r ou t e s) ;
67 ap p . us e (’ / i ns e r t ’ , i ns e r t) ;
68
69
70 // Ca t ch i ng 404 and f o rwa rd t o e r r o r hand l e r
71 ap p . us e(f unc t i on(r e q , r e s , nex t) {
72 va r e r r = new Er r o r (’No t Foun d ’) ;
73 e r r . s t a t us = 404;
74 nex t (e r r) ;
75 }) ;
76
77 // Deve l opmen t e r r o r hand l e r
78 // wi l l p r i n t s t ack t r ace
79 i f (ap p . ge t (’ en v ’) === ’ deve l opmen t ’) {
80 ap p. us e(f unc t i on(e r r , r e q , r e s , nex t) {
81 r e s . s t a t u s(e r r . s t a t us || 500) ;
82 r e s . r ende r (’ e r r o r ’ , {
83 me s s ag e : e r r .me s s ag e ,
84 e r r o r : e r r
85 }) ;
86 }) ;
87 }
88
89 // Pr oduc t i on e r r o r hand l e r
90 // no s t ack t r ace s l eaked t o us e r
91 ap p. us e(f unc t i on(e r r , r e q , r e s , nex t) {
92 r e s . s t a t u s(e r r . s t a t us || 500) ;
93 r e s . r ende r (’ e r r o r ’ , {
94 me s s ag e : e r r .me s s ag e ,

65

Service architectures for educational purposes

95 e r r o r : {}
96 }) ;
97 }) ;
98
99

100 modu l e . expo r t s = app;

A.1.2 routes/index.js

1 va r expr e s s = r equ i r e (’ exp r e s s ’) ;
2 va r f s = r equ i r e (" f s ") ;
3 va r pa t h = r equ i r e (" pa t h") ;
4 va r con f i g = r equ i r e (’ . . / con f i g ’) ;
5 va r mongoos e = r equ i r e (’mongoos e ’) ;
6 va r Image = r equ i r e (’ . . / imageSchema . j s ’) ;
7 va r r ou t e r = expr e s s . Rou t e r () ;
8
9

10 /∗ GET p i c t ur e ∗/
11 r ou t e r . ge t (’ / ’ , f unc t i on(r e q , r e s , nex t) {
12 // I f f ea t ur e f l ag i s enab l e d , f i nd image wi t h t he mos t v i ews
13 i f (con f i g . imag e . t opv i ews == 1) {
14 Imag e . f i ndOne({}) . so r t ({ v i ews : −1}) . exe c(f unc t i on(e r r , t op Im

age) {
15 i f (e r r) {
16 conso l e . l o g(’ Er r o r wa s t hr own . . . ’) ;
17 t hr ow (e r r) ;
18 } e l s e {
19 conso l e . l o g("Mos t v i ews I D: " + t op Imag e . i d) ;
20 r e q . t op Image = t op Imag e ;
21 }
22 }) ;
23 }
24 e l s e {
25 r e q . t op Image = nu l l ;
26 }
27
28 // F i nd t op ba s ed on f r on t page l imi t and r ende r i t
29 Imag e . f i nd({}) . so r t ({ da t e : −1}) . l imi t (con f i g . imag e . f r on t page l i

mi t) . exe c(f unc t i on(e r r , image s) {
30 i f (e r r || ! image s . l eng t h) {
31 r e s . s t a t us(404) ;
32 r e s . r ende r (’ e r r o r ’ , {
33 t i t l e : ’ f l ack r ’ ,
34 me s s age : ’Ob j ec t r e t urned f r om da t aba s e i s emp t y . ’
35 }) ;
36 }
37 e l s e {
38 r e s . r ende r (’ i nde x ’ , {
39 t i t l e : ’ f l ack r ’ ,
40 image s : image s ,
41 l a s t ID : image s [0] . i d ,
42 t opV i ew : r e q . t op Image
43 }) ;

66

Service architectures for educational purposes

44 }
45 }) ;
46 }) ;
47
48 /∗ GET : i d ∗/
49 r ou t e r . ge t (’ / : i d ’ , f unc t i on(r e q , r e s , nex t) {
50 // F i nd one image ba s ed on r ou t e
51 Imag e . f i ndOne({ i d: r e q . pa r ams . i d} , f unc t i on(e r r , one Image) {
52 // Check s i f f i ndOne r e t urns e r r , no t h i ng o r i d i s i nva l i d
53 i f (e r r || one Image == nu l l || i sNaN(r e q . pa r ams . i d) == t rue)

{
54 // Re t urn 404 wi t h e r r o r page
55 r e s . s t a t us(404) ;
56 r e s . r ende r (’ e r r o r ’ , {
57 t i t l e : ’ f l ack r ’ ,
58 me s s age : ’Documen t no t f oun d . ’
59 }) ;
60 } e l s e {
61 // I nc r emen t i f page i s v i s i t ed
62 one Imag e . v i ews++;
63 one Imag e . s av e() ;
64
65 r e s . r ende r (’ imag e ’ , {
66 t i t l e : ’ f l ack r ’ ,
67 image : one Image
68 }) ;
69 }
70 }) ;
71 }) ;
72
73 modu l e . expo r t s = r ou t e r ;

A.1.3 routes/insert.js

1 va r expr e s s = r equ i r e (’ exp r e s s ’) ;
2 va r mongoos e = r equ i r e (’mongoos e ’) ;
3 va r Image = r equ i r e (’ . . / imageSchema . j s ’) ;
4 va r Image = mongoos e .mode l (’ Imag e ’) ;
5 va r r eque s t = r equ i r e (’ r eque s t ’) ;
6 va r f s = r equ i r e (’ f s ’) ;
7 va r con f i g = r equ i r e (’ . . / con f i g ’) ;
8
9 va r r ou t e r = expr e s s . Rou t e r () ;

10
11 va r p l aceho l de r = ’ h t t p://p l aceho l d . i t/1280 x720 ’ ;
12
13 // Down l oads t he image we go t , sp l i t t ed ou t so t h i s can be done

a s ync
14 f unc t i on hand l e r ImageDown l oad(r e spons e , l oca l Pa t h , ca l l bac k) {
15 // Cr ea t e s a s t r eam t o t he pa t h pr ov i ded
16 va r wr i t eS t r eam = f s . c r ea t eWr i t eS t r eam(l oca l Pa t h) ;
17 // Wr i t i ng da t a
18 r e spons e . p i pe(wr i t eS t r eam);
19 // When done wr i t i ng da t a , check t he s i ze and s end i t back

67

Service architectures for educational purposes

20 r e spons e . o n(’ en d ’ , f unc t i on() {
21 f s . s t a t (l oca l Pa t h , f unc t i on (e r r , s t a t s) {
22 s i ze = s t a t s [’ s i z e ’] ;
23 ca l l bac k(s i z e) ;
24 }) ;
25 }) ;
26 } ;
27
28 // Que r y t he da t aba s e t o f i nd t he ID f o r t he new i ns e r t
29 f unc t i on hand l e rDa t aba s eQue r y(ca l l bac k) {
30 // Mongoos e que r y
31 Imag e . f i ndOne() . so r t ({ ’ i d ’ : −1}) . exe c(f unc t i on(e r r , que r y) {
32 // I f e r r o r f r om da t aba s e , r e t urn wi t h e r r o r
33 i f (e r r) {
34 conso l e . l o g(’ Er r o r oc cur e d ’) ;
35 r e t ur n;
36 } e l s e i f (que r y === nu l l) {
37 // Spec i a l ca s e ; i f da t aba s e i s emp t y we don ’ t know t he l a s t

i ns e r t ID
38 va r newI d = 1;
39 conso l e . l o g(’New I D: ’ + newI d) ;
40 ca l l bac k(newI d) ;
41 } e l s e {
42 // Er r o r hand l i ng and spec i a l ca s e , l a s t i s t ha t we ge t an

ID
43 conso l e . l o g(’ La s t I D: ’ + que r y . i d) ;
44 va r newI d = que r y . i d+1;
45 conso l e . l o g(’New I D: ’ + newI d) ;
46 ca l l bac k(newI d)
47 }
48 }) ;
49 }
50
51 /∗ GET New Us e r ∗/
52 r ou t e r . ge t (’ / newUs e r ’ , f unc t i on(r e q , r e s , nex t) {
53 // Da t aba s e hand l i ng
54 // Que r y t o f i nd t he l a s t ID
55 hand l e rDa t aba s eQue r y(f unc t i on(newI d) {
56
57 // F i l epa t h conca t
58 va r imagepa t h = con f i g . imag e . f o l de r + newI d + ’ . j p g ’ ;
59
60 // Ge t t i ng t he s cheme r eady f r om que r y s t r i ng and ID
61 va r imageSchema = new Imag e({
62 i d : newI d ,
63 t i t l e : r e q . que r y . t i t l e ,
64 pub l i she r : r e q . que r y . pub l i she r ,
65 v i ews : 0 ,
66 commen t s : [] ,
67 da t e : Da t e . now()
68 }) ;
69
70 // Doe s a r eque s t f o r an image t o t he URL spec i f i ed

68

Service architectures for educational purposes

71 r eque s t . ge t (r e q . que r y . image) . o n(’ r e spons e ’ , f unc t i on(r e spons
e) {

72 va r con t ype = r e spons e . heade r s [’ con t ent− t yp e ’] ;
73 // Check i ng i f we go t an image back
74 i f (! con t ype || con t yp e . i ndexOf (’ image/ j pe g ’) !== 0) {
75 r e s .wr i t eHead(400) ;
76 r e s . en d(’RESPONSE NOT AN IMAGE ’) ;
77 } e l s e i f (con t ype === ’ image/ j pe g ’) {
78 hand l e r ImageDown l oad(r e spons e , imagepa t h , f unc t i on(s i z e)

{
79 // Ve r i f y i ng t he da t a s i ze
80 i f (s i ze >= 10000) {
81 // Save Mongoos e s chema t o da t aba s e wi t h e r r o r hand l

i ng
82 imageSchema . s av e(f unc t i on (e r r , s ave Image) {
83 i f (e r r) {
84 r e s .wr i t eHead(500) ;
85 r e s . en d(’ERROR WRI T ING TO DB ’) ;
86 }
87 }) ;
88 } e l s e {
89 r e s .wr i t eHead(500) ;
90 r e s . en d(’NOT ENOUGH DATA FOR IMAGE ’) ;
91 }
92 }) ;
93 // Eve r y t h i ng wen t o k!
94 r e s .wr i t eHead(200) ;
95 r e s . en d(’ SAVED IMAGE , WROTE TO DATABAS E ’) ;
96 } e l s e { // Eve r y t h i ng e l s e i s r e sponded wi t h i n t e rna l s e r

ve r e r r o r
97 r e s .wr i t eHead(500)
98 r e s . en d(’ INTERNAL SERVER ERROR ’) ;
99 }

100 }) ;
101 }) ;
102 }) ;
103
104
105 /∗ Ge t new commen t ∗/
106 rou t e r . ge t (’ / newCommen t ’ , f unc t i on(r e q , r e s , nex t) {
107 va r commen t = { name: r e q . que r y . name , t ex t : r e q . que r y . t ex t ,

da t e : Da t e . now() } ;
108 Imag e . f i ndOneAndUpda t e ({ ’ i d ’ : r e q . que r y . i d} ,
109 {$pus h: {commen t s : commen t}} ,
110 {$s a f e : t rue , /∗ups e r t : t rue∗/} ,
111 f unc t i on(e r r , imageCommen t) {
112 r e s . j sonp(imageCommen t) ;
113 }
114) ;
115 }) ;
116
117 modu l e . expo r t s = r ou t e r ;

A.1.4 config_template.js

69

Service architectures for educational purposes

1 va r con f i g = {} ;
2
3 con f i g .mongodb = {};
4 con f i g . image = {};
5
6 con f i g .mongod b . i p = ’ ’ ;
7 con f i g .mongod b . name = ’ ’ ;
8
9 con f i g .mongod b . us e rname = ’ ’ ;

10 con f i g .mongod b . pa s sword = ’ ’ ;
11
12 con f i g . imag e . f r on t page l imi t = 20;
13
14 con f i g . imag e . f o l de r = ’ ’
15
16 con f i g . imag e . t opv i ews = 0;
17
18 modu l e . expo r t s = con f i g ;

A.1.5 views/layout.jade

1 oc t ype h tml
2 h tml
3 head
4 t i t le= t i t l e
5 l i nk(r e l= ’ s t y l e shee t ’ , h r e f= ’/ s t y l e shee t s/ s t y l e . c s s ’)
6 #l ogo
7 a(hr e f= ’/ ’)
8 img(s r c= ’/ image s/ f l ack r _ l og o . pn g ’ , a l t="F l ack r Log o")
9 h2 The #1 webs i t e f o r sha r i ng your image s !

10 body
11 b l ock con t en t

A.1.6 views/index.jade

1 doc t ype h tml
2 h tml
3 head
4 t i t le= t i t l e
5 l i nk(r e l= ’ s t y l e shee t ’ , h r e f= ’/ s t y l e shee t s/ s t y l e . c s s ’)
6 #l ogo
7 a(hr e f= ’/ ’)
8 img(s r c= ’/ image s/ f l ack r _ l og o . pn g ’ , a l t="F l ack r Log o")
9 h2 The #1 webs i t e f o r sha r i ng your image s !

10 body
11 b l ock con t en

A.1.7 views/image.jade

1 ex t ends l ayou t
2
3 b l ock con t en t
4
5 h1 #{ imag e . t i t l e}
6 img(s r c=’#{ imag e . i d} . j p g ’)
7 h3 Pub l i shed by #{ imag e . pub l i she r}

70

Service architectures for educational purposes

8 p(s t y l e=’wh i te−spac e : p r e ; ’)
9 | V i ews : #{ imag e . v i ews}

10 | Da t e : #{ imag e . da t e . t oDa t eS t r i ng() }
11
12 h3 Commen t s
13 t ab l e
14 each commen t i n imag e . commen t s
15 t r
16 t d(s t y l e=’wh i te−spac e : p r e ; ’)
17 | #{commen t . name}
18 | #{commen t . t ex t}
19 | #{commen t . da t e . t oDa t eS t r i ng() }

A.1.8 views/error.jade

1 ex t ends l ayou t
2
3 b l ock con t en t
4 h1= me s s age

A.2 Factory

A.2.1 Worker
Application code

1 #!/us r/ b i n/env py t hon
2 # −∗− cod i ng: u t f−8 −∗−
3 " " " Wor ke r code f o r p r oduc i ng and consumi ng Rabb i tMQ me s s age s
4 " " "
5 impor t p i ka
6 impor t j son
7 impor t t ime
8 impor t yaml
9

10 #open con f i gur a t i on f i l e
11 wi t h ope n(" con f i g . yml " , ’ r ’) a s yml f i l e :
12 c f g = yaml . l oad(yml f i l e)
13
14 #Dec l a r e r abb i tmq connec t i ons
15 c r eden t i a l s = p i k a . P l a i nCr eden t i a l s (c f g [’ r abb i tUs e r ’] , c f g [’ r abb

i t Ps w ’])
16 pa r ame t e r sConsume = p i k a .Connec t i onPa r ame t e r s (c f g [’ r e ce i veF r o

m ’] , c f g [’ po r t ’] , \
17 ’ / ’ , c r eden t i a l s , r e t r y_de l a

y=15, \
18 connec t i on_a t t emp t s=5)
19 pa r ame t e r sPr oduce = p i k a .Connec t i onPa r ame t e r s (c f g [’ p r oduceTo ’] ,

c f g [’ po r t ’] , \
20 ’ / ’ , c r eden t i a l s , r e t r y_de l a

y=15, \
21 connec t i on_a t t emp t s=5)
22
23 #S t a r t consumi ng connec t i on
24 connec t i onConsume = p i k a .B l ock i ngConnec t i on(pa r ame t e r sConsume)
25 channe l Consume = connec t i onConsume . channe l ()
26 #Dec l a r e dur ab l e queue

71

Service architectures for educational purposes

27 channe l Consume . queue_dec l a r e(queue=c f g[’ queu e ’] , dur ab le=True)
28
29 #Func t i on f o r ge t t i ng cur r en t t ime
30 de f t imeS t amp() :
31 " " " Func t i on f o r gene r a t i ng t ime s t amp " " "
32 s t amp = t ime . c t ime(i n t (t ime . t ime()))
33 r e t urn s t amp
34
35 #Func t i on f o r p r oduc i ng me s s age s
36 de f p r oduc e(i t em):
37 " " " Func t i on f o r p r oduc i ng a me s s age t o a me s s age queu e " " "
38 #S t a r t p r oduc i ng connec t i on
39 connec t i onPr oduce = p i k a .B l ock i ngConnec t i on(pa r ame t e r sPr oduc

e)
40 channe l P r oduce = connec t i onPr oduc e . channe l ()
41 channe l P r oduc e . queue_dec l a r e(queue=c f g[’ queu e ’] , dur ab le=Tru

e)
42 me s s age = j so n.dump s(i t em)
43 #Pub l i sh me s s age t o queue
44 channe l P r oduc e . ba s i c_pub l i s h(exchang e= ’ ’ , r ou t i ng_key=c f g[’ q

ueu e ’] , \
45 body=me s s ag e , \
46 pr ope r t i es=p i k a .Ba s i cP r ope r t i e s (

\
47 de l i ve r y_mode=2, \
48 con t en t _ t ype=’app l i ca t i on/ j s

o n ’))
49 connec t i onPr oduc e . c l o s e()
50 pr i n t " [∗] " + t imeS t amp() + " Done produc i ng"
51
52 #Func t i on f o r consumi ng me s s age s
53 de f ca l l bac k(c h , me t hod , p r ope r t i e s , body) :
54 " " " Func t i on f o r consumi ng me s s age s f r om me s s age queu e " " "
55 pr i n t " [∗] " + t imeS t amp() + " Ac cep t ed j o b"
56 da t a = j so n. l oad s(body)
57 s l eep_ t ag = i n t (da t a [" j obTyp e "])
58 t ime . s l eep(s l eep_ t ag)
59 s t amp t ime = t imeS t amp()
60 da t a [" s t amp "] . append({ c f g[’wo r ke r ’] : s t amp t ime})
61 channe l Consume . ba s i c_ac k(de l i ve r y_ t ag=me t ho d.de l i ve r y_ t ag)
62 pr i n t " [∗] " + t imeS t amp() + " Done consumi ng , s t a r t i ng pro

duc i ng"
63 pr oduc e(da t a)
64 pr i n t " [∗] " + t imeS t amp() + " Wa i t i ng f o r nex t j o b"
65
66 pr i n t " [∗] " + t imeS t amp() + " Wa i t i ng f o r j o b"
67
68 channe l Consume . ba s i c_consume(ca l l bac k , queue=c f g[’ queu e ’])
69 channe l Consume . s t a r t _consumi ng()

YAML configuration file

1 −−−
2
3 r ece i veF r om: 192.168.200.129

72

Service architectures for educational purposes

4 pr oduceTo: 192.168.200.141
5 po r t : 5672
6 queu e : a s s emb l y
7 wor ke r : wor ke r1
8 r abb i tUs e r : f ac t o r y
9 r abb i t Psw: f ac t o r yPa s s

10 . . .

A.2.2 Worker-end
Application code

1 #!/us r/ b i n/env py t hon
2 # −∗− cod i ng: u t f−8 −∗−
3 " " " Wor ke r code f o r endpo i n t , wr i t i ng t o da t aba s e " " "
4 impor t p i ka
5 impor t s y s
6 impor t j son
7 impor t pymongo
8 f r om pymongo impor t MongoC l i en t
9 impor t t ime

10 impor t yaml
11
12 #open con f i g f i l e
13 wi t h ope n(" con f i g . yml " , ’ r ’) a s yml f i l e :
14 c f g = yaml . l oad(yml f i l e)
15
16 #Connec t t o da t aba s e
17 t r y :
18 dbCon = MongoC l i en t (’mongod b : / / ’ +c f g[’ da t aba s e I P ’] + ’ : ’ +

\
19 c f g[’ da t aba s ePo r t ’] + ’ / ’)
20 db = dbCon[c f g[’ d b ’]]
21 pos t s = db[c f g[’ co l l e c t i o n ’]]
22 co l l e c t i on_ex i s t = d b . co l l e c t i on_name s ()
23 excep t pymong o . e r r o r s . Se r ve rSe l ec t i onT imeou t Er r o r a s e r r :
24 pr i n t " [!] Cou l d no t connec t t o DB: %s " % e r r
25 pr i n t " [!] No i t ems wi l l be wr i t t en t o DB ! ! "
26 s y s . ex i t ()
27
28 #Es t ab l i sh p i ka connec t i on t o r abb i tmq
29 c r eden t i a l s = p i k a . P l a i nCr eden t i a l s (c f g [’ r abb i tUs e r ’] , c f g [’ r abb

i t Ps w ’])
30 pa r ame t e r s = p i k a .Connec t i onPa r ame t e r s (hos t= ’ l oca l hos t ’)
31 connec t i on = p i k a .B l ock i ngConnec t i on(pa r ame t e r s)
32
33 channe l = connec t i o n . channe l ()
34
35 #dec l a r e a dur ab l e queue
36 channe l . queue_dec l a r e(queue=c f g[’ queu e ’] , dur ab le=True)
37
38 de f t ime_ s t amp() :
39 " " " Func t i on f o r ge t t i ng t ime s t amp " " "
40 s t amp = t ime . c t ime(i n t (t ime . t ime()))
41 r e t urn s t amp

73

Service architectures for educational purposes

42
43 #Func t i on t ha t consume s me s s age s
44 de f ca l l bac k(c h , me t hod , p r ope r t i e s , body) :
45 " " " Func t i on f o r consumi ng me s s age s f r om queu e " " "
46 pr i n t " [∗] " + t ime_ s t amp() + " Ac cep t ed j o b"
47 da t a = j so n. l oad s(body)
48 t ime . s l ee p(2)
49 da t a [" t imeS t o p"] = t ime_ s t amp()
50 i f no t co l l e c t i on_ex i s t :
51 da t a [" i d "] = 1
52 e l s e :
53 t r y :
54 ge t = pos t s . f i nd({} , { " i d " :1 , " _ i d " :0}) \
55 . so r t ([(" _ i d " , pymong o .DESCENDING)]) . l imi

t (1)
56 f o r doc i n ge t :
57 t r y :
58 va l = i n t (do c [’ i d ’]) +1
59 da t a [" i d "] = va l
60 excep t KeyEr r o r :
61 pr i n t " [!] " + t ime_ s t amp() + \
62 " Er r o r i n da t aba s e ! ID f i e l d no t f ound"
63 s y s . ex i t ()
64 excep t pymong o . e r r o r s . Connec t i onFa i l ur e a s e r r :
65 pr i n t " [!] " + t ime_ s t amp() + \
66 " Cou l d no t ge t ID f r om da t aba s e ! ! %s " % e r r
67 s y s . ex i t ()
68 t r y :
69 pos t s . i ns e r t _one(da t a)
70 pr i n t (" [∗] Wro t e t o da t aba s e , I D: { } " . f o rma t (da t a [’ i

d ’]))
71 excep t pymong o . e r r o r s . Connec t i onFa i l ur e a s e r r :
72 pr i n t " [!] " + t ime_ s t amp() + \
73 " Cou l d no t pos t t o da t aba s e ! %s " % e r r
74 s y s . ex i t ()
75 channe l . ba s i c_ac k(de l i ve r y_ t ag=me t ho d.de l i ve r y_ t ag)
76 pr i n t " [∗] " + t ime_ s t amp() + " Job f i n i she d"
77 pr i n t " [∗] " + t ime_ s t amp() + " Wa i t i ng f o r nex t j o b"
78
79 pr i n t " [∗] " + t ime_ s t amp() + " Wa i t i ng f o r j o b"
80
81 channe l . ba s i c_consume(ca l l bac k , queue=c f g[’ queu e ’])
82 channe l . s t a r t _consumi ng()

YAML configuration file

1 −−−
2
3 da t aba s e I P: 192.168.200.125
4 da t aba s ePo r t : ’27017 ’
5 db: f ac t o r y
6 co l l e c t i on: pos t s
7 queu e : a s s emb l y
8 r abb i tUs e r : f ac t o r y
9 r abb i t Psw: f ac t o r yPa s s

74

Service architectures for educational purposes

10
11 . . .

A.2.3 Finished Job Entry System
app.py

1 #!/us r/ b i n/env py t hon
2 # −∗− cod i ng: u t f−8 −∗−
3 " " " S imp l e web app l i ca t i on
4 Th i s app l i ca t i on i s bu i l t us i ng F l a s k and PyMong o . I t wi l l que r y

t he da t aba s e
5 and pr e s en t t he da t a on a s imp l e webs i t e us i ng a t emp l a t e .
6 " " "
7
8 # Impor t
9 impor t yaml

10 f r om pymongo impor t MongoC l i en t , e r r o r s
11 f r om f l a s k impor t F l a s k , r ende r _ t emp l a t e
12
13
14 # De f i ne
15 app = F l a s k(__name_ _)
16 maxSevSe lDe l ay = 3000
17
18 # Con f i g f i l e s e t up
19 pr i n t " ∗ Con f i gur a t i on f i l e s e t u p . . . "
20 wi t h ope n(" con f i g . yml " , ’ r ’) a s yml f i l e :
21 c f g = yaml . l oad(yml f i l e)
22
23 # Da t aba s e s e t up
24 pr i n t " ∗ Da t aba s e s e t u p . . . "
25 t r y :
26 dbCon = MongoC l i en t (’mongod b : / / ’ + c f g[’ da t aba s e I P ’] + ’ : ’ +

\
27 c f g[’ da t aba s ePo r t ’] + ’ / ’ , s e r ve rSe l ec t i onT imeou tMS=

maxSevSe lDe l a y)
28 dbCo n. s e r ve r _ i n f o()
29 excep t pymong o . e r r o r s . Se r ve rSe l ec t i onT imeou t Er r o r a s e r r :
30 pr i n t " ∗ Cou l d no t connec t t o DB: %s " % e r r
31
32 db = dbCon[c f g[’ d b ’]]
33 co l l e c t i on = db[c f g[’ co l l e c t i o n ’]]
34
35
36 @ap p. r ou t e (’ / ’)
37 de f i nde x() :
38 ’ ’ ’ POST GET ’ ’ ’
39 # Check s i f spec i a l mode i s enab l ed
40 dogeMode = { ’ va l u e ’ : c f g [’ dogeMod e ’] }
41 # Que r y da t aba s e f o r en t r i e s
42 que r y = co l l e c t i o n . f i nd() . so r t (" i d " , −1) . l imi t (c f g [’ f r on t pag

eL imi t ’])
43 r e t urn r ende r _ t emp l a t e (’ i nde x . h tml ’ , en t r i es=que r y , dogeMod

e=dogeMode)

75

Service architectures for educational purposes

44
45 @ap p. e r r o rhand l e r(404)
46 de f page_no t _ f ound(e r r o r) :
47 ’ ’ ’ E r r o r hand l i ng f o r 404 ’ ’ ’
48 r e t urn r ende r _ t emp l a t e(’404 . h tml ’ , e rr=e r r o r) , 404
49
50
51 i f __name__ == " __ma i n_ _ " :
52 ap p . run(debug=True , po r t=5100, hos t = ’ 0 . 0 . 0 . 0 ’)

requirements.txt

1 an i s o8601==1.1.0
2 F l a s k==0.10.1
3 F l a sk−REST f ul==0.3.5
4 i t sdange r ous==0.24
5 J i n j a2==2.8
6 Ma r kupSa f e==0.23
7 pymongo==3.2.2
8 py t hon−da t eu t i l==2.5.2
9 py t z==2016.3

10 PyYAML==3.11
11 s i x==1.10.0
12 We r kzeug==0.11.5

config.yml

1 −−−
2
3 da t aba s e I P: 192.168.200.125
4 da t aba s ePo r t : ’27017 ’
5 db: f ac t o r y
6 co l l e c t i on: pos t s
7 f r on t pageL imi t : 5000
8 dogeMod e : Fa l s e
9

10 . . .

template/index.html

1 <!DOCTYPE h tml>
2 <h tml l ang="en">
3 <head>
4 <t i t l e>F i n i shed Job En t r y Sy s t em − FJES</t i t l e>
5 {% i f dogeMod e . va l ue == t rue %}
6 <l i nk r e l=" s t y l e shee t " hr e f="{{ ur l _ f o r (’ s t a t i

c ’ , f i l ename=’ i ndex−dog e . c s s ’) }}">
7 {% e l s e %}
8 <l i nk r e l=" s t y l e shee t " hr e f="{{ ur l _ f o r (’ s t a t i c ’ , f i l ena

me=’ i nde x . c s s ’) }}">
9 {% end i f %}

10 </head>
11 <body>
12 <cen t er>
13 <h1>F i n i shed j obs</h1>
14 </cen t er>

76

Service architectures for educational purposes

15 <hr>
16 </hr>
17 {% f o r en t r y i n en t r i e s %}
18 <p>
19 <d i v i d="page−wr apper">
20 <h2> I D: {{ en t r y . i d }} </h2>
21
22 <l i> Name: {{ en t r y . name }} </ l i>
23 <l i> Job t yp e : {{ en t r y . j obType }} </ l i>
24 <l i> S t a r t : {{ en t r y . t imeS t a r t }} </ l i>
25 <l i> S t o p: {{ en t r y . t imeS t op }} </ l i>
26 <l i> S t amp s : </ l i>
27
28 {% f o r s t amp i n en t r y . s t amp %}
29 {% f o r wor ke r , t ime i n s

t amp. i t ems () %}
30 <l i> {{ wor ke r

}} : {{ t ime
}} </ l i>

31 {% end f o r %}
32 {% end f o r %}
33
34
35 </d iv>
36 </p>
37 {% end f o r %}
38 </body>
39 </h tml>

template/404.html

1 <!DOCTYPE h tml>
2 <h tml l ang="en">
3 <head>
4 <t i t l e>F i n i shed Job En t r y Sy s t em − 404</t i t l e>
5 <l i nk r e l=" s t y l e shee t " hr e f="{{ ur l _ f o r (’ s t a t i c ’ , f i l ena

me=’ i nde x . c s s ’) }}">
6 </head>
7 <body>
8 <cen t er>
9 <h1>Page No t Found</h1>

10 <cen t er>
11 <hr>
12 </hr>
13 <p>Wha t you we r e l oo i ng f o r i s j us t no t he r e . . . </p>
14
15 </body>
16 </h tml>

A.2.4 entrypoint
app.py

1 #!/us r/ b i n/env py t hon
2 # −∗− cod i ng: u t f−8 −∗−
3 " " " S imp l e web app l i ca t i o n .

77

Service architectures for educational purposes

4 Th i s app l i ca t i on bu i l t wi t h F l a s k and REST f u l wor k s a s an en t r yp
o i n t t o t he

5 a r ch i t e c t ur e . Th i s wi l l ac cep t POST JSON, pr oduce a j ob and pu t
i n on t he

6 me s s age queue s wi t h P i k a .
7 " " "
8 # Impor t
9 f r om f l a s k impor t F l a s k , r eque s t , abo r t

10 f r om f l a s k_ r e s t f u l impor t Re sour c e , Ap i
11 impor t yaml
12 impor t t ime
13 impor t p i ka
14 impor t j son
15
16 # De f i ne
17 app = F l a s k(__name_ _)
18 ap i = Ap i (app)
19
20 # Con f i g s e t up
21 wi t h ope n(" con f i g . yml " , ’ r ’) a s yml f i l e :
22 c f g = yaml . l oad(yml f i l e)
23
24 # Rou t e / j ob , POST on l y
25 c l a s s NewJob(Re sour c e) :
26 " " " AP I r e sour ce
27 " " "
28 de f pos t (s e l f) :
29 " " " Take r eque s t da t a , pu t s i n t o an
30 ob j ec t and pa s s e s i t a l ong t o a queu e .
31
32 >>> cur l − i −H "Con t ent−Typ e : app l i ca t i on/ j son" −X \
33 POST −d ’ { " name" : "Ol a No rdman n" , " j obTyp e" : 2} ’

127.0.0 .1:5000/ j ob
34 HTTP/1.0 201 CREATED
35 Con t ent−Typ e : app l i ca t i on/ j son
36 Con t ent−Leng t h: 119
37 Se r ve r : We r kzeug/0.11.5 Py t ho n/2.7 .6
38 Da t e : Tue , 12 Apr 2016 16:51:18 GMT
39
40 {
41 " j obTyp e " : 2 ,
42 " name " : "Ol a Nordman n" ,
43 " s t amp " : [] ,
44 " t imeS t a r t " : "Tue Apr 12 18:51:18 2016"
45 }
46
47 " " "
48
49 # No t JSON, no name t hen 400 i t .
50 i f no t r eque s t . j son o r no t ’ name ’ i n r eque s t . j son:
51 abo r t(400)
52 # Cr ea t e a va r i ab l e cur r en t t ime .
53 l oca l t ime = t ime . c t ime(i n t (t ime . t ime()))

78

Service architectures for educational purposes

54 # Ge t r eque s t ed da t a and s ave i t .
55 j son_d i c t = r eque s t . ge t _ j son(f o r ce=True)
56 # Append s t amp a r r ay and t ime va r i ab l e .
57 j son_d i c t . upda t e ({ " s t amp " : [] , " t imeS t a r t " : l oca l t ime})
58
59 # P i ka connec t i on au t h
60 pa r ame t e r s = p i k a .Connec t i onPa r ame t e r s (hos t= ’ l oca l hos t ’)
61 connec t i on = p i k a .B l ock i ngConnec t i on(pa r ame t e r s)
62 channe l = connec t i o n . channe l ()
63
64 # Dec l a r e t he queue and us e pe r s i s t an t me s s age s .
65 channe l . queue_dec l a r e(queue=’a s s emb l y ’ , dur ab le=True)
66
67 # P i ka me s s age and de l i ve r y
68 me s s age = j so n.dump s(j son_d i c t)
69 channe l . ba s i c_pub l i s h(exchang e= ’ ’ , r ou t i ng_key=’a s s emb l

y ’ , \
70 body=me s s ag e , p r ope r t i es=p i k a .Ba s i cP r ope r t i e s (de

l i ve r y_mode=2, \
71 con t en t _ t ype=’app l i ca t i on/ j so n ’))
72 pr i n t " Sen t %r " % me s s age
73
74 #C l os e connec t i on
75 connec t i o n . c l o s e()
76 r e t urn j son_d i c t , 201
77
78 # Abs t r ac t REST f u l r e sour ce s
79 ap i . add_ r e sour c e(NewJob , ’ / j o b ’)
80
81
82 i f __name__ == " __ma i n_ _ " :
83 ap p . run(debug=True , hos t = ’ 0 . 0 . 0 . 0 ’)

requirements.txt

1 an i s o8601==1.1.0
2 F l a s k==0.10.1
3 F l a sk−REST f ul==0.3.5
4 i t sdange r ous==0.24
5 J i n j a2==2.8
6 Ma r kupSa f e==0.23
7 p i ka==0.10.0
8 pymongo==3.2.2
9 py t hon−da t eu t i l==2.5.2

10 py t z==2016.3
11 PyYAML==3.11
12 s i x==1.10.0
13 We r kzeug==0.11.5

79

Service architectures for educational purposes

B Traffic generating script for Flackr

1 #!/ u s r/ b i n/py t hon
2 # −∗− c od i n g : u t f−8 −∗−
3 " " " S c r i p t f o r g ene ra t i ng t r a f f i c t o f l a c k r
4 " " "
5 impor t ur l l i b2
6 impor t ur l l i b
7 impor t r andom
8 impor t os
9 impor t j son

10 impor t ge t op t
11 impor t s y s
12
13 " " " Op t i on s :
14 U = URL REQUI RED OPT ION
15 P = add new p i c t ur e
16 V = v i ews + A a l l o r R random(wr i t e s webpag e t o t a l x2 random v i e

ws)
17 F = down l oad " v i s i t " f r on t Pag e
18 C = c ommen t + A a l l , o r R random(g en numbe r o f c ommen t s (max 1/2

t o t a l)
19 and t hen c ommen t s t o random i d)
20 H = add s H_RANGE p i c t ur e s , v i s i t s f r on t pag e , c ommen t s t o a l l
21 v i s i t s a l l p i c t ur e s onc e
22 R = E i t he r i n s e r t s p i c t ur e , c ommen t s wi t h op t R , v i ews wi t h op t

R
23 o r v i s i t s f r on t pag e F
24
25 Examp l e : . / t r a f f i c S c r i p t . py −U " h t t p://192.168.200.136:80/" −P
26 IMPORTANT: Remembe r ’ / ’ a t t he end!
27
28 H_RANGE var i ab l e c an be chang e d , depend i ng on how many p i c t ur e s

you
29 wan t t o be added wi t h op t i on H " " "
30
31 F I LEPATH = " /home/ubun t u/ t r a f f i c s c r i p t/ s en t ence s . t x t " #chang e f o

r env i r onmen t
32 TEMPDIR = " / run/ shm/"
33 L INE_L IMI T = 2200
34 SENTENCE_LENGTH = 150
35 H_RANGE = 50 # Var i ab l e c an be chang ed depend i ng on wan t ed l oa

d .
36
37
38 FOUND_OPTION_U = Fa l s e
39 OPT IONS , REM = ge t op t . ge t op t (s y s . a r g v [1 :] , ’ U:PV:FC:HR ’)
40 f o r a l t , a r gum i n OPT IONS: #Che c k i f a r gumen t s hav e −U
41 i f a l t i n ’−U ’ :

80

Service architectures for educational purposes

42 URL = a r gum
43 FOUND_OPTION_U = True
44
45 i f no t FOUND_OPTION_U:
46 pr i n t "NO URL GIVEN"
47 s y s . ex i t ()
48
49 de f ge t _webpage_ i t ems () :
50 " " " g e t numbe r o f p i c t ur e s f r om webpag e " " "
51
52 r and = ge t _ i n t (0 , 1000) # Ge t random i n t f o r f o l de r name
53 f o l de r = TEMPDIR + s t r (r and) #make f o l de r pa t h o f t empd i r an

d random i n t
54
55 o s .mkd i r (f o l de r) # Make new f o l de r
56 o s . chd i r (f o l de r) # Chang e d i r e c t o r y t o f o l de r
57 o s . s y s t em("wge t −t 2 −T 5 −q "+URL) # Wg e t f r on t pag e
58
59 t emp f i l e = f o l der+" / i nde x . h tml "
60 i f o s . pa t h . i s f i l e(t emp f i l e) : # Che c k i f f i l e e x i s t s
61 i ndex_ f i l e = open(t emp f i l e) # Open s i t
62 va r = i ndex_ f i l e . r ea d() # Read en t i r e f i l e
63 var2 = va r . sp l i t () # s p l i t f i l e i n t o l i ne s
64 s ea r ch_ i t em = " da t aba s e : " # Wha t t o s ea r ch f o r
65 s ea r ch_ i ndex = va r 2 . i nde x(s ea r ch_ i t em)
66 # f i nd t he i nde x o f t he s ea r ched i t em.
67 da t aba s e_coun t = i n t (va r2[s ea r ch_ i ndex+1])
68 # Se t ne x t i t em a f t e r s ea r ch i t em t o be t he c oun t ,
69 # a s t he f o l l owi ng i t em wi l l b e a numbe r
70 i ndex_ f i l e . c l o s e() #c l o s e f i l e
71 o s . s y s t em(" rm −r "+f o l de r) # Remov e f o l de r and i t s c on t

en t s
72 r e t urn da t aba s e_coun t
73 e l s e :
74 pr i n t " Er r o r , cou l d no t f i nd o r l oca t e da t aba s e_coun t "
75
76 de f ge t _ i n t (a r g1 , a r g2) :
77 " " " r e t urn s random i n t i n rang e o f a r g1 and a r g2 " " "
78 r e t urn r andom. r and i n t (a r g1 , a r g2)
79
80 de f i s _ s en t enc e(t x t) :
81 " " " Func t i on f o r che c k i f s en t enc e s t a r t s wi t h no t a l l owed c

ha ra c t e r s " " "
82 r e t urn t x t . s t a r t swi t h(’<< ’) o r t x t . s t a r t swi t h(’>> ’) o r \
83 t x t . s t a r t swi t h(’ , ’) o r t x t . s t a r t swi t h(’ ELECTRONIC

’) o r \
84 t x t . s t a r t swi t h(’ PROHIB I TED ’)
85
86 de f check_ s en t ence_ l eng t h(t ex t) :
87 " " " Func t i on t o che c k i f s en t enc e i s wi t h i n l imi t s " " "
88 i f l en(t ex t) > SENTENCE_LENGTH: # Che c k i f s en t enc e i s l ong

e r t han a l l owed
89 t emp = t ex t [: SENTENCE_LENGTH]. sp l i t ()

81

Service architectures for educational purposes

90 # Sp l i t s en t enc e i n t o s epa ra t e wo rd s , bu t on l y up t o a
l l owed l eng t h

91 new_ s en t ence = " " . j o i n(t emp[: l en(t emp)−1])
92 # j o i n t he wo rd s f r om t he l i s t , −1 s o l a s t wo r d i sn t s

p l i t
93 r e t urn new_ s en t ence # r e t urn new s en t enc e
94 e l s e :
95 r e t urn t ex t # i f no t l ong e r t han a l l owe d , r e t urn o r i g i n

a l
96
97
98 de f f r on t _pag e() :
99 " " " Func t i o n , v i s i t f r on t pag e o f f l a c k r " " "

100 r and = ge t _ i n t (0 , 1000) # Ge t random i n t f o r f o l de r name
101
102 f o l de r = TEMPDIR + s t r (r and) # make f o l de r pa t h o f t empd i r a

nd random i n t
103 o s .mkd i r (f o l de r) # Make new f o l de r
104 o s . chd i r (f o l de r) # Chang e d i r e c t o r y t o f o l de r
105
106 o s . s y s t em("wge t −t 2 −T 5 −p −q "+URL)
107 # Wg e t a l l e l emen t s f r om webpag e i nc c s s , l og o , pho t o s
108 o s . s y s t em(" rm −r "+f o l de r) # Remov e f o l de r and i t s c on t en t s
109
110 pr i n t " v i s i t ed f ron t page "
111
112 de f ge t _ r andom_name() :
113 " " " Func t i on f o r g e t t i ng a random us e r name " " "
114 # Down l oad s a j s on do cumen t wi t h random us

e r i n f o rma t i on
115 r e spons e = ur l l i b2.ur l open(\
116 ’ h t t p:// ap i . r andomus e r .me/1.0/?nat=gb ,us& i nc=name&no i n f o ’)

. r ea d()
117 pa r s ed_ j son = j so n. l oad s(r e spons e) # Par s e t he j s on i n t o va

r i ab l e
118 f i r s t name = pa r s ed_ j son[" r e su l t s "] [0][" name "][" f i r s t "] . t i t l

e()
119 # Se l e c t f i r s t name and c ap i t a l i z e
120 l a s t name = pa r s ed_ j son[" r e su l t s "] [0][" name "][" l a s t "] . t i t l e()
121 # s e l e c t La s t name and c ap i t a l i z e
122
123 name = f i r s t name + " " + l a s t name # Add name s t og e t he r
124
125 r e t urn name # Re t urn g ene ra t ed name
126
127 de f ge t _ r andom_ t i t l e() :
128 " " " Func t i on f o r mak i ng a random t i t l e " " "
129 # Same p r o c edur e a s p r e v i ou s f unc t i on
130 r e spons e = ur l l i b2.ur l open(\
131 ’ h t t p:// ap i . r andomus e r .me/1.0/?nat=gb ,us& i nc=name&no i n f o ’)

. r ea d()
132 pa r s ed_ j son = j so n. l oad s(r e spons e)
133 t emp = pa r s ed_ j son[" r e su l t s "] [0][" name "][" l a s t "] . t i t l e()

82

Service architectures for educational purposes

134 # Se l e c t on l y l a s t name and c ap i t a l i z e
135 t i t l e = "The " + " " + t emp # Make i t s ound l i k e a t i t l e
136
137 r e t urn t i t l e # Re t urn g ene ra t ed t i t l e
138
139 de f new_p i c t ur e() :
140 " " " Func t i on f o r add i ng new p i c t ur e t o web s i t e " " "
141 name = ge t _ r andom_name() # Ge t name and t i t l e
142 t i t l e = ge t _ r andom_ t i t l e()
143 # us e s ur l l i b modu l e f o r open i ng up c onne c t i on t o webp

ag e
144 # and add a new p i c t ur e u s i ng t he / i n s e r t r ou t e
145 r e spons e = ur l l i b . ur l open(URL+" i ns e r t/ newUs e r? t i t le=" + \
146 t i t l e + "&pub l i sher=" + name \
147 + "&image=h t t p:// l o r emp i xe l . co

m/1280/720/ ")
148 #p r i n t "% s " % r e s pon s e
149 pr i n t " added new p i c t ur e "
150
151 de f gen_v i ews(op t i on) :
152 " " " Ha s 2 f unc t i on s , v i s i t a l l onc e , v i s i t r andom, v i s i t 1 ,
153 v i s i t a f ew many t ime s . The i dea i s t he s ame a s e xp l a i ned
154 i n op t i on A f o r a l l o f t hem, on l y d i f f e r enc e i s
155 how many pag e s a r e v i s i t e d . " " "
156
157 i t ems = ge t _webpage_ i t ems ()
158 op t _ r andom = Fa l s e
159 i f op t i on == ’R ’ :
160 i t em_ r ange = i t ems ∗ 2 # V i s i t a l l pag e s o r random
161 op t _ r andom = True
162 e l s e :
163 i t em_ r ange = i t ems
164 f o r i t em i n r ang e(1 , i t em_ r ange + 1) :
165 # Rang e f r om 1 t o nr o f p i c t ur e s , c ompen s a t e +1 f o r rang e
166 r and = ge t _ i n t (0 , 1000) # Gene ra t e random i n t f o r f o l de r

name
167 i f op t _ r andom:
168 i t em_ i d = ge t _ i n t (1 , i t ems)
169 e l s e :
170 i t em_ i d = i t em
171 ur l s i t e = URL+s t r (i t em_ i d) # Make URL
172 f o l de r = TEMPDIR+s t r (r and) #Make f o l de r pa t h
173 o s .mkd i r (f o l de r) # Make f o l de r
174 o s . chd i r (f o l de r) # Chang e d i r e c t o r y t o f o l de r
175 o s . s y s t em("wge t −t 2 −T 5 −p −q "+ur l s i t e)
176 # Down l oad e v e r y t h i ng f r om webpag e
177 o s . s y s t em(" rm −r "+f o l de r) # De l e t e aga i n
178 pr i n t "V i ew "+s t r (i t em_ i d)
179 pr i n t "V i s i t ed "+s t r (i t em_ r ange) + " numbe r o f s i t e s "
180
181 de f ge t _ r andom_ t ex t () :
182 " " " Ge t a random s en t enc e f r om t he s en t enc e s f i l e " " "
183 f i nd_ l i ne = Fa l s e # boo l va r i ab l e

83

Service architectures for educational purposes

184
185 i f o s . pa t h . i s f i l e(F I LEPATH) : # che c k i f f i l e c an be f ound
186 t emp = open(F I LEPATH) # Open f i l e
187 t ex t = t emp. r ead l i ne s () # r ead a l l t he l i ne s
188 wh i l e f i nd_ l i ne i s Fa l s e : # Un t i l i t f i nd s a p r ope r l i n

e
189 l i ne = ge t _ i n t (0 , L INE_L IMI T) # Ge t random l i ne
190 i f i s _ s en t enc e(t ex t [l i ne]) i s Fa l s e :
191 # Us e i s _ s en t enc e f unc t i on t o che c k i f a c c ep t ab l e
192 f i nd_ l i ne i s True # Se t boo l va l ue t o t rue t o

s t op wh i l e l oop
193 s en t ence = check_ s en t ence_ l eng t h(t ex t [l i ne])
194 # Che c k i f s en t enc e i s t oo l ong
195 r e t urn s en t ence # Re t urn t he s en t enc e
196 t emp. c l o s e()
197 e l s e :
198 pr i n t "Cou l d no t f i nd f i l e ! ! ! "
199
200 de f gen_commen t (op t i on) :
201 " " " 2 f unc t i on s , c ommen t t o a l l onc e , c ommen t t o random x t i

me s .
202 A l l op t i on s u s e t he s ame me t ho d ,
203 on l y d i f f e r enc e b e i ng amoun t o f c ommen t s " " "
204
205 i t ems = ge t _webpage_ i t ems ()
206 op t _ r andom = Fa l s e
207 i f op t i on == ’R ’ :
208 i t em_ r ange = i t ems / 2
209 op t _ r andom = True
210 e l s e :
211 i t em_ r ange = i t ems
212 f o r i t em i n r ang e(1 , i t em_ r ange + 1) :
213 # c ommen t t o a l l o r random, +1 i s c ompen s a t i on f o r rang e .
214 name = ge t _ r andom_name() # Ge t random name f r om f unc t

i on
215 t ex t = ge t _ r andom_ t ex t () # Ge t a s en t enc e f r om t he s e

n t enc e s f i l e
216 i f op t _ r andom: # I f op t i on R , g e t r andom i n t f o r ID
217 i t em_ i d = ge t _ i n t (1 , i t ems)
218 e l s e :
219 i t em_ i d = i t em # Open up t he ur l / i n s e r t r ou t e
220 r e spons e = ur l l i b . ur l open(URL+" i ns e r t/ newCommen t? id=" \
221 + s t r (i t em_ i d) +"&name=" + nam

e \
222 + "&t ext= " + t ex t)
223 #p r i n t "% s " % r e s pon s e
224 pr i n t " gene r a t ed commen t t o: " + s t r (i t em_ i d)
225
226 de f r andom_ope r a t i on() :
227 " " " Func t i on f o r do i ng one o f t he p r ov i ded op t i on s
228 r andoml y " " "
229 r andom_numbe r = ge t _ i n t (0 , 100) # Ge t s i n t i n p r ov i ded rang

e

84

Service architectures for educational purposes

230 i f r andom_numbe r <= 25: # Depend i ng on i n t i t do e s one o f t h
e op t i on s

231 new_p i c t ur e()
232 e l i f r andom_numbe r > 25 and r andom_numbe r <= 50:
233 gen_commen t (’R ’)
234 e l i f r andom_numbe r > 50 and r andom_numbe r <= 75:
235 gen_v i ews(’R ’)
236 e l i f r andom_numbe r > 75 and r andom_numbe r <= 100:
237 f r on t _pag e()
238
239 de f ma i n() :
240 " " " Ma i n menu , t ake s op t i on a s c ommand l i ne a r gumen t " " "
241 f o r op t , a r g i n OPT IONS: # And ba s ed on i npu t , c a l l s r equ i r

ed f unc t i on s
242 i f op t i n ’−P ’ :
243 new_p i c t ur e()
244 e l i f op t i n ’−F ’ :
245 f r on t _pag e()
246 e l i f op t i n ’−C ’ :
247 i f a r g == ’A ’ o r a r g == ’R ’ :
248 gen_commen t (a r g)
249 e l s e :
250 r a i s e Va l ueEr r o r ("wr ong ARGUMENT! A or R ! ! ! ")
251 e l i f op t i n ’−V ’ :
252 i f a r g == ’A ’ o r a r g == ’R ’ :
253 gen_v i ews(a r g)
254 e l s e :
255 r a i s e Va l ueEr r o r ("Wr ong a r gumen t ! A o r R ! ! ! ")
256 e l i f op t i n ’−H ’ : # Fo r now i t add s H_RANGE us e r s
257 f o r _ i n r ange(H_RANGE) :
258 new_p i c t ur e()
259
260 f r on t _pag e() # V i s i t s f r on t pag e
261 gen_commen t (’A ’) # c ommen t s t o a l l
262 gen_v i ews(’A ’) # v i ews a l l
263 e l i f op t i n ’−R ’ :
264 r andom_ope r a t i on()
265
266 i f __name__ == ’ __ma i n__ ’ :
267 ma i n()

85

Service architectures for educational purposes

C Traffic generating script for Factory

1 #!/ u s r/ b i n/ env py t hon
2 # −∗− c od i n g : u t f−8 −∗−
3 " " " S c r i p t f o r g ene ra t i ng t r a f f i c t o rabb i tmq s e r v i c e a r ch i t e c t u

r e
4 " " "
5
6 f r om r andom impor t r and i n t
7 impor t os
8 impor t ge t op t
9 impor t s y s

10 impor t ur l l i b2
11 impor t ur l l i b
12 impor t j son
13 impor t r eque s t s
14
15 " " " Op t i on s :
16 U = URL REQUI RED OPT ION
17 O = One new en t r y
18 M = Many new en t r i e s
19
20 Examp l e :
21 >>> . / s c r i p t Tra f f i c . py −U " h t t p://192.168.200.129:5000/ j o b" −M 2
22 {
23 " j obTyp e " : 5 ,
24 " name " : " Sam Nea l " ,
25 " s t amp " : [] ,
26 " t imeS t a r t " : "Mon Ap r 25 16:14:27 2016"
27 }
28
29 {
30 " j obTyp e " : 2 ,
31 " name " : " Be v e r l y Pa r ke r " ,
32 " s t amp " : [] ,
33 " t imeS t a r t " : "Mon Ap r 25 16:14:27 2016"
34 }
35
36 JobType c an r ep r e s en t any t h i n g . Fo r e xamp l e 1 c an be a c a r , 2 c a

n be a p l ane
37 and s o f o r t h .
38
39 " " "
40
41 # CONSTANTS
42 TEMPDIR = " / run/ shm/"
43 TRACEBACK = 1
44
45 # Che c k i ng i f URL (−U) i s pa s s ed a s a r gumen t

86

Service architectures for educational purposes

46 FOUND_OPTION_U = Fa l s e
47 OPT IONS , REM = ge t op t . ge t op t (s y s . a r g v [1 :] , ’ U:OM:F ’)
48 f o r a l t , a r gum i n OPT IONS:
49 i f a l t i n ’−U ’ :
50 URL = a r gum
51 FOUND_OPTION_U = True
52
53 i f no t FOUND_OPTION_U:
54 pr i n t "NO URL GIVEN"
55 s y s . ex i t ()
56
57
58 de f ge t _ r andom_name() :
59 " " " Func t i on f o r g e t t i ng a random us e r name " " "
60 # Down l oad s a j s on do cumen t wi t h random us e r i n f o rma t i on
61 r e spons e = ur l l i b2.ur l open(’ h t t p:// ap i . r andomus e r .me/1.0/?na

t=gb ,us& i nc=name&no i n f o ’) . r ea d()
62 pa r s ed_ j son = j so n. l oad s(r e spons e) # Par s e t he j s on i n t o va

r i ab l e
63 f i r s t name = pa r s ed_ j son[" r e su l t s "] [0][" name "][" f i r s t "] . t i t l

e()
64 # Se l e c t f i r s t name and c ap i t a l i z e
65 l a s t name = pa r s ed_ j son[" r e su l t s "] [0][" name "][" l a s t "] . t i t l e()
66 # s e l e c t La s t name and c ap i t a l i z e
67
68 name = f i r s t name + " " + l a s t name # Add name s t og e t he r
69
70 r e t urn name # Re t urn g ene ra t ed name
71
72
73 de f f r on t _pag e() :
74 " " " Func t i on t ha t v i s i t s t he f r on t pag e " " "
75 r and = r and i n t (0 , 1000) # Ge t random i n t f o r f o l de r name
76
77 f o l de r = TEMPDIR + s t r (r and) # make f o l de r pa t h o f t empd i r a

nd random i n t
78 o s .mkd i r (f o l de r) # Make new f o l de r
79 o s . chd i r (f o l de r) # Chang e d i r e c t o r y t o f o l de r
80
81 o s . s y s t em("wge t −t 2 −T 5 −p −q "+ URL)
82 # Wg e t a l l e l emen t s f r om webpag e i nc c s s , l og o , pho t o s
83 o s . s y s t em(" rm −r "+ f o l de r) # Remov e f o l de r and i t s c on t en t

s
84
85 pr i n t " v i s i t ed f ron t page "
86
87
88 de f new_en t r y() :
89 " " " Func t i on t o add a s i ng l e new en t r y " " "
90 name = ge t _ r andom_name()
91 j obType = r and i n t (1 , 5)
92 # Cons t ruc t i ng t he r eque s t
93 pay l oad = { ’ name ’ : name , ’ j obType ’ : j obType}

87

Service architectures for educational purposes

94 heade r s = { ’Con t ent−Type ’ : ’ app l i ca t i on/ j son ’ }
95 # Ex e cu t e t he r eque s t wi t h e r r o r hand l i ng f o r g ene ra l and

404
96 t r y :
97 r eq = r eque s t s . pos t (URL , da ta=j so n.dump s(pay l oad) , heade

rs=heade r s)
98 excep t r eque s t s . excep t i on s . Reque s t Excep t i on a s e r r :
99 pr i n t _e r r o r _ms g(e r r)

100 s y s . ex i t (TRACEBACK)
101 e l s e :
102 i f r e q . s t a t us _code == 404:
103 pr i n t _e r r o r _ms g(r e q . r a i s e_ f o r _ s t a t u s ())
104 s y s . ex i t (TRACEBACK)
105 # Pr i n t ou t t he r ep l y t e x t
106 pr i n t r e q . t ex t
107 r e t urn r e q . t ex t
108
109 de f many_new_en t r i e s (numbe r) :
110 " " " Func t i on t o add s e v e ra l new j ob s , u s i ng p r e v i ou s f unc t i o

n s " " "
111 # Fo r numbe r i n rang e , add a new en t r y
112 i f numbe r . i sd i g i t () :
113 f o r i i n r ange(i n t (numbe r)) :
114 new_en t r y()
115 e l s e :
116 pr i n t _e r r o r _ms g(" Pa s s ed va r i ab l e i s no t a numbe r . Ex i t i n

g . . . ")
117 s y s . ex i t (TRACEBACK)
118 pr i n t "Don e! Sen t %s new en t r i e s . " % numbe r
119
120
121 de f p r i n t _e r r o r _ms g(e r r) :
122 " " " S imp l e e r r o r p r i n t hand l e r " " "
123 pr i n t " Er r o r me s s ag e : %s " % e r r
124
125
126 de f ma i n() :
127 " " " Ma i n menu , t ake s op t i on a s c ommand l i ne a r gumen t " " "
128 # Depend i ng on t he i npu t , choo s e an op t i on
129 f o r op t , a r g i n OPT IONS:
130 i f op t i n ’−F ’ :
131 f r on t _pag e()
132 e l i f op t i n ’−O ’ :
133 new_en t r y()
134 e l i f op t i n ’−M’ :
135 many_new_en t r i e s (a r g)
136
137
138 i f __name__ == ’ __ma i n__ ’ :
139 ma i n()

88

Service architectures for educational purposes

D Disable Transparent Huge Pages

/etc/init.d/disable-transparent-hugepages

1 !/ b i n/ sh
2 ### BEGIN INI T INFO
3 # Pr ov i de s : d i s ab l e− t r an s pa r ent−hug epag e s
4 # Requ i r ed−S t a r t : $ l o c a l _ f s
5 # Requ i r ed−S t o p :
6 # X−S t a r t−Be f o r e : mongod mongodb−mms−au t oma t i on−ag en t
7 # De f au l t−S t a r t : 2 3 4 5
8 # De f au l t−S t o p : 0 1 6
9 # Sho r t−De s c r i p t i o n: Di s ab l e L i nux t ran s pa r en t hug e pag e s

10 # De s c r i p t i o n: Di s ab l e L i nux t ran s pa r en t hug e pag e s , t o im
p r ov e

11 # da t aba s e pe r f o rmanc e .
12 ### END INI T INFO
13
14 ca s e $1 i n
15 s t a r t)
16 i f [−d / s y s/ ke rne l /mm/t r anspa r en t _hugepage] ; t hen
17 t hp_pa th=/s y s/ ke rne l /mm/t r anspa r en t _hugepage
18 e l i f [−d / s y s/ ke rne l /mm/r edha t _ t r anspa r en t _hugepage] ; t hen
19 t hp_pa th=/s y s/ ke rne l /mm/r edha t _ t r anspa r en t _hugepage
20 e l s e
21 r e t urn 0
22 f i
23
24 echo ’ neve r ’ > ${ t hp_pa t h}/enab l ed
25 echo ’ neve r ’ > ${ t hp_pa t h}/de f r ag
26
27 uns e t t hp_pa t h
28 ; ;
29 e s ac

89

Service architectures for educational purposes

E MongoDB configuration file

1 # mongo d . c on f
2
3 # f o r do cumen t a t i on o f a l l op t i on s , s e e :
4 # h t t p :// do c s .mongod b . o r g/manua l / r e f e r enc e/ c on f i gura t i on−op t i o

n s/
5
6 # Whe r e and how t o s t o r e da t a .
7 s t o r ag e :
8 dbPa t h: /va r/ l i b/mongodb
9 j ourna l :

10 enab l e d: t rue
11 # eng i n e :
12 # mmap v1:
13 # wi r edT i g e r :
14
15 # whe r e t o wr i t e l ogg i ng da t a .
16 s y s t emLo g:
17 de s t i na t i on: f i l e
18 l ogAppend: t rue
19 pa t h: /va r/ l og/mongodb/mongo d. l og
20
21 # ne two r k i n t e r f a c e s
22 ne t :
23 po r t : 27017
24 b i nd I p: 0 . 0 . 0 . 0
25
26 #p r o c e s sManag emen t :
27
28 s ecur i t y :
29 au t ho r i za t i on: enab l ed
30 #ope ra t i onPr o f i l i n g :
31
32 #r ep l i c a t i o n:
33 r ep l Se tName: r s0
34 #shard i n g :
35
36 ## En t e r p r i s e−On l y Op t i on s :
37
38 #aud i t Lo g :
39
40 #snmp:

90

Service architectures for educational purposes

F Nginx configuration file

File /etc/nginx/sites-available/default

1 pr oxy_cache_pa t h /da t a/ng i nx/ cache/ l eve l s=1:2 key s _zone=backcac
he:8m max_ s i ze=50m;

2 pr oxy_ t emp_pa t h /da t a/ng i nx/ cache/ tmp;
3 pr oxy_cache_key " $s cheme$r eque s t _me t hod$hos t $ r eque s t _ur i $ i s _a r g s

$a r g s " ;
4 p r oxy_cache_va l i d 200 302 5 s ;
5 pr oxy_cache_va l i d 404 1m;
6
7 ups t r eam f l ack r app {
8 s e r ve r 192.168.200.104:3001;
9 s e r ve r 192.168.200.112:3001;

10 }
11
12 s e r ve r {
13 l i s t en 80;
14 l i s t en [: :] : 8 0 ;
15
16
17 l oca t i on = / {
18 pr oxy_cache backcach e ;
19 pr oxy_cache_bypa s s $h t t p_cache_con t r o l ;
20 add_heade r X−Pr oxy−Cache $ups t r eam_cache_ s t a t u s ;
21
22 pr oxy_pa s s h t t p:// f l ack r app;
23 }
24 l oca t i on / {
25 pr oxy_pa s s h t t p:// f l ack r app;
26 }
27
28 }

91

Service architectures for educational purposes

G User manuals

G.1 Flackr

The user manual is supposed to give a brief and simple setup guide to get Flackr up
and running. It is basically a shortened and compressed version of the Implementation
section. The user manual is designed for the students. The guide will go through setting
up the node.js webservers, MongoDB database, GlusterFS network filesystem and Nginx.
If you want to read more about the technologies used to deploy Flackr, go to section 3.1
Technologies.

To deploy a complete Flackr system you will need the following servers:

• 1-3 Node Webservers
• 1 MongoDB
• 2 x GlusterFS
• 1 Nginx

G.1.1 Webserver

1 1. sudo apt−ge t i ns t a l l npm g i t node j s− l egacy
2 2. C l one t he r epos i t o r y
3 3 . Change t o t he d i r ec t o r y
4 4 . Checkou t t ags/<ve r s i on number>
5 5. sudo npm i ns t a l l −g
6 6. cp t emp l a t e_con f i g . j s con f i g . j s
7 7 . F i l l ou t t he va r i ab l e s
8 8 . sudo npm i ns t a l l pm2 −g
9 9. sudo npm i ns t a l l pm2− l og r o t a t e

10 10. S t a r t t he app l i ca t i on wi t h l ogg i ng and au t os t a r t wi t h t he f o
l l owi ng commands

11 10 .1 . pm2 s t a r t ap p . j s −−name " f l ack r "
12 10 .2 . sudo pm2 s t a r t up ubun t u
13 10 .3 . sudo pm2 l og r o t a t e −u ubun t u
14 10 .4 . Logg i ng can be ve r i f y by check i ng /e t c/ l og r o t a t e . d/pm2

G.1.2 MongoDB

1 1. sudo apt−key adv −−key s e r ve r hk p:// key s e r ve r . ubun t u . com:80 −−
r ecv EA312927

2 2. echo " deb h t t p:// r ep o .mongod b . o r g/ap t/ ubun t u t rus t y/mongodb−o
r g/3.2 mu l t i ve r s e " | sudo t ee /e t c/ap t/ sour ce s . l i s t . d/mongod
b−o r g−3.2. l i s t

3 3 . sudo apt−ge t upda t e
4 4 . sudo apt−ge t i ns t a l l −y mongodb−o r g
5 5. Copy d i s ab l e− t r anspa r ent−hugepage s f i l e f r om append i x
6 6 . sudo chmod 755 /e t c/ i n i t . d/d i s ab l e− t r anspa r ent−hugepage s
7 7 . sudo upda te−r c . d d i s ab l e− t r anspa r ent−hugepage s de f au l t s
8 8 . Add t he f o l l owi ng t o /e t c/mongo d. con f

92

Service architectures for educational purposes

9 # ne two r k i n t e r f a c e s
10 ne t :
11 po r t : 27017
12 b i nd I p: 0 . 0 . 0 . 0
13 9. mongo
14 10. us e admi n
15 11. d b . c r ea t eUs e r (
16 { us e r : " us e rAdmi n " ,
17 pwd: " us e rAdmi nPa s sword " ,
18 r o l e s : [{ r o l e : " dbOwne r " , db: " admi n " }]
19 }
20)
21
22 12. d b . c r ea t eUs e r (
23 { us e r : " f l ack r " ,
24 pwd: " f l ack rPa s sword " ,
25 r o l e s : [{ r o l e : " r eadWr i t e " , db: " f l ack r " }]
26 }
27)
28 13. Ex i t
29 14. Add t he f o l l owi ng t o /e t c/mongo d. con f
30 s ecur i t y :
31 au t ho r i za t i on: enab l ed
32 15. sudo s e r v i ce mongod r e s t a r t
33 16. mongo −u " us e rAdmi n " −p " us e rAdmi nPa s swo rd " −−au t hen t i ca t i on

Da t aba s e " admi n "
34 17. >us e admi n
35 > d b. ge tUs e r s ()
36 ex i t
37
38 Rep l i ca t i on
39 1. Add t he f o l l owi ng t o /e t c/mongo d. con f
40 r ep l i ca t i on:
41 r ep l Se tName: r s0
42 2. r s . i n i t i a t e() # S t a r t r ep l i c a t i on s e t
43 3. r s . con f () # Con f i gur e r ep l i c a s e t
44 4. r s . ad d(’ i p add s l av e ’)
45 Gi ve s :
46 Re t ur n: { " ok " :1}
47 5. r s . s t a t u s ()

G.1.3 GlusterFS

All servers involved with GlusterFS:

1 1 . sudo apt−ge t upda t e
2 2 . sudo apt−ge t i ns t a l l so f twa re−pr ope r t i es−common
3 3. sudo apt−ge t i ns t a l l a t t r
4 Then add t he commun i t y Gl us t e r FS PPA:
5 4 . sudo add−apt− r epos i t o r y pp a: g l us t e r/ g l us t e r f s−3.5

GlusterFS servers:

1 1 . sudo apt−ge t upda t e
2 2 . sudo apt−ge t i ns t a l l g l us t e r f s−s e r ve r
3 3 . sudo apt−ge t i ns t a l l x f sp rog s

93

Service architectures for educational purposes

4 a t t ach s t o r age vo l ume i n s kyh i gh , and r eboo t s e r ve r s .
5 Do t he f o l l owi ng on Gl us t e r FS s e r ve r01:
6 3 . sudo g l us t e r pee r p r obe ip−addr e ss−of−g l us t e r02
7 Bo t h hos t s (NOTE: t he f o l de r name i s d i f f e r en t on each s e r ve r)
8 4 . l s /dev/d i s k/by− i d/
9 examp l e i d: v i r t i o−b6dde619− f eed−455b−a

10 5. mk f s . x f s − i s i ze=512 /dev/d i s k/by− i d/v i r t i o−b6dde619− f eed−455
b−a

11 Remembe r t o do t h i s on bo t h s e r ve r s (g l us t e r b r i ck01 and g l us t e r b r
i c k02) :

12 6. sudo mkd i r −p /da t a/g l us t e rb r i ck01
13 7. sudo moun t /dev/d i s k/by− i d/v i r t i o−b6dde619− f eed−455b−a /da t a/

g l us t e rb r i ck01
14 On ma s t e r hos t :
15 8 . sudo g l us t e r vo l ume c r ea t e image s t o r age r ep l i ca 2 t r anspo r t t

cp ip−addr e ss−of−g l us t e r01:/da t a/g l us t e rb r i ck01 ip−add−of−g l
us t e r02:/da t a/g l us t e rb r i ck02 f o r ce

16 9. sudo g l us t e r vo l ume s t a r t image s t o r age

1 C l i en t s :
2 1 . sudo apt−ge t upda t e
3 2 . sudo apt−ge t i ns t a l l g l us t e r f s−c l i en t
4 3 . sudo mkd i r −p /da t a/ image s t o r age
5 4. sudo moun t −t g l us t e r f s i p−add−of−g l us t e r01: image s t o r age /da t

a/ image s t o r age/
6 5. sudo v i /e t c/ f s t ab
7 ip−add−of−g l us t e r01:/ image s t o r age /da t a/ image s t o r age g l us t e r

f s de f au l t s , noboo twa i t , _ne t de v ,backupvo l f i l e−s e r ver= ip−a
dd−of−g l us t e r02 ,d i r ect− i o−mode=d i s ab l e 0 0

8 6. sudo chown ubun t u:ubun t u /da t a/ image s t o r age

G.1.4 Nginx

1 1. sudo apt−ge t upda t e
2 sudo apt−ge t i ns t a l l ng i nx
3
4 2. sudo mkd i r −p /da t a/ng i nx/ cache
5 sudo chown <us e rname> /da t a/ng i nx/ cache
6 sudo chmod 700 /da t a/ng i nx/ cache
7
8 3. Add con t en t f r om con f i gur a t i on f i l e i n t he append i x .

G.2 Factory

The following user manuals requires a minimum of 6 servers.

• 1 Entrypoint server
• 2 Workers
• 1 Queue server
• 1 Safe server
• 1 Database server

G.2.1 Application servers

Has to be installed on all servers, except the database server. Note that on the Queue
server, ONLY RabbitMQ has to be installed.

94

Service architectures for educational purposes

G.2.2 RabbitMQ

1 echo ’ deb h t t p://www. r abb i tmq . com/deb i an/ t e s t i ng ma i n ’ |
2 sudo t ee /e t c/ap t/ sour ce s . l i s t . d/ r abb i tmq . l i s t
3
4 wge t −O− h t t p s : / /www. r abb i tmq . com/r abb i tmq−s i gn i ng−key−pub l i c . a s

c | sudo apt−key add −
5
6 sudo apt−ge t upda t e
7 sudo apt−ge t i ns t a l l r abb i tmq−s e r ve r
8
9 sudo r abb i tmqc t l add_us e r f ac t o r y f ac t o r yPa s s

10 sudo r abb i tmqc t l s e t _us e r _ t ag s f ac t o r y admi n i s t r a t o r
11 sudo r abb i tmqc t l s e t _pe rmi s s i ons f ac t o r y " .∗ " " .∗ " " .∗ "
12
13 sudo s e r v i ce r abb i tmq−s e r ve r r e s t a r t

G.2.3 Python packages, Nodejs and PM2

1 sudo apt−ge t i ns t a l l −y py t hon py t hon−p i p g i t
2
3 sudo apt−ge t upda t e
4 sudo apt−ge t i ns t a l l −y npm node j s− l egacy
5
6 sudo npm i ns t a l l pm2@l a t e s t −g

G.2.4 Safe server

Install the database flask application.

1 Pu l l / c l one FJES f r om g i t
2 cd t he c l oned f o l de r
3 sudo p i p i ns t a l l −r r equ i r emen t s . t x t
4 chmod +x ap p. py
5 Ed i t t he con f i gur a t i on f i l e :
6 da t aba s e I P: I P addr e s s t o s e r ve r con f i gur ed wi t h MongoDB
7 da t aba s ePo r t : Po r t t ha t t he da t aba s e us e s , de f au l t : 27017
8 db: Da t aba s e name
9 co l l e c t i on: Co l l e c t i on name

10 f r on t pageL imi t : L imi t t he numbe r o f en t r i e s on f r on t pag e , de f
au l t : 5000

11 dogeMod e : {True | Fa l s e}
12
13 pm2 s t a r t ap p . py −−name FJES

Install the worker application.

1 Pu l l / c l one wor ke rEnd app f r om g i t
2 cd f o l de r
3 sudo p i p i ns t a l l −r r equ i r emen t s . t x t
4 chmod +x wor ke rEnd. py
5 Ed i t con f i gur a t i on f i l e :
6 da t aba s e I P: I P addr e s s o f MongoDB s e r ve r
7 da t aba s ePo r t : Po r t o f da t aba s e s e r ve r , de f au l t : 27017
8 db: Da t aba s e name
9 co l l e c t i on: Co l l e c t i on name

95

Service architectures for educational purposes

10 queu e : Queue name
11 r abb i tUs e r : Rabb i tMQ us e r
12 r abb i t Psw: Rabb i tMQ pa s sword
13 pm2 s t a r t wor ke rEnd. py −−name wor ke rEnd

G.2.5 Entrypoint app server

1 Pu l l / c l one f r om g i t
2 cd t he c l oned f o l de r
3 sudo p i p i ns t a l l −r r equ i r emen t s . t x t
4 chmod +x ap p. py
5 pm2 s t a r t ap p . py −−name en t r ypo i nt−app

G.2.6 Worker application servers

Note that the configuration file is individual for each worker. Make sure IP addresses are
correct. Draw diagram if uncertain.

1 Pu l l / c l one wor ke r app l i ca t i on f r om g i t
2 cd c l oned f o l de r
3 chmod +x wor ke r . py
4 ed i t con f i gur a t i on f i l e :
5 r ece i veF r om: s e r ve r t o f e t ch me s s age s f r om
6 pr oduceTo: s e r ve r t o s end me s s age s t o
7 po r t : Rabb i tMQ por t , de f au l t : 5672
8 queu e : Rabb i t queue t o be us e d. (s ame on a l l)
9 wor ke r : wor ke r0x (X i s t he numbe r o f t he wor ke r , s t a r t i ng a

t 1)
10 r abb i tUs e r : Rabb i tMQ us e rname
11 r abb i t Psw: Rabb i tMQ pa s sword
12
13 pm2 s t a r t wor ke r . py −−name wor ke rX (x i s wor ke r numbe r)

G.2.7 MongoDB

1 1. sudo apt−key adv −−key s e r ve r hk p:// key s e r ve r . ubun t u . com:80 −−
r ecv EA312927

2 2. echo " deb h t t p:// r ep o .mongod b . o r g/ap t/ ubun t u t rus t y/mongodb−o
r g/3.2 mu l t i ve r s e " | sudo t ee /e t c/ap t/ sour ce s . l i s t . d/mongod
b−o r g−3.2. l i s t

3 3 . sudo apt−ge t upda t e
4 4 . sudo apt−ge t i ns t a l l −y mongodb−o r g
5 5. Copy d i s ab l e− t r anspa r ent−hugepage s f i l e f r om append i x
6 6 . sudo chmod 755 /e t c/ i n i t . d/d i s ab l e− t r anspa r ent−hugepage s
7 7 . sudo upda te−r c . d d i s ab l e− t r anspa r ent−hugepage s de f au l t s
8 8 . Add t he f o l l owi ng t o /e t c/mongo d. con f
9 # ne two r k i n t e r f a c e s

10 ne t :
11 po r t : 27017
12 b i nd I p: 0 . 0 . 0 . 0
13 9. sudo s e r v i ce mongod r e s t a r t

G.2.8 Monitoring

1 Mun i n Nod e :
2

96

Service architectures for educational purposes

3 sudo apt−ge t upda t e
4 sudo apt−ge t i ns t a l l −y mun in−node
5 sudo nano /e t c/mun i n/mun in−nod e . con f
6 Change t h i s l i ne so i t ma t che s wi t h t he mun i n ma s t e r node I P: a l

l ow ^127.0.0.1\$
7 cd /us r/ sha r e/mun i n/p l ug i ns
8 sudo g i t c l one h t t p s : / / g i t hu b . com/a s k/ r abb i tmq−mun i n. g i t
9 sudo cp r abb i tmq−mun i n/∗ .

10 sudo mun in−node−con f i gur e −−she l l
11
12 sudo l n −s ’ / us r/ sha r e/mun i n/p l ug i ns/ r abb i tmq_connec t i on s ’ ’ / e t

c/mun i n/p l ug i ns/ r abb i tmq_connec t i on s ’
13 sudo l n −s ’ / us r/ sha r e/mun i n/p l ug i ns/ r abb i tmq_consume r s ’ ’ / e t c/m

un i n/p l ug i ns/ r abb i tmq_consume r s ’
14 sudo l n −s ’ / us r/ sha r e/mun i n/p l ug i ns/ r abb i tmq_me s s age s ’ ’ / e t c/mu

n i n/p l ug i ns/ r abb i tmq_me s s age s ’
15 sudo l n −s ’ / us r/ sha r e/mun i n/p l ug i ns/ r abb i tmq_me s s age s _unacknowl

edge d ’ ’ / e t c/mun i n/p l ug i ns/ r abb i tmq_me s s age s _unacknowl edge d ’
16 sudo l n −s ’ / us r/ sha r e/mun i n/p l ug i ns/ r abb i tmq_me s s age s _uncommi t t

e d ’ ’ / e t c/mun i n/p l ug i ns/ r abb i tmq_me s s age s _uncommi t t e d ’
17 sudo l n −s ’ / us r/ sha r e/mun i n/p l ug i ns/ r abb i tmq_queue_memor y ’ ’ / e t

c/mun i n/p l ug i ns/ r abb i tmq_queue_memor y ’
18
19 sudo mun in−node−con f i gur e −−sugge s t (s j ekk om r abb i t _∗ e r ye s| ye

s)
20 sudo s e r v i ce mun in−node r e s t a r t
21 sudo nano /e t c/mun i n/p l ug in−con f . d/mun in−node
22 Add t he f o l l owi ng:
23
24 [r abb i tmq_connec t i on s]
25 us e r r oo t
26
27 [r abb i tmq_consume r s]
28 us e r r oo t
29
30 [r abb i tmq_me s s age s]
31 us e r r oo t
32
33 [r abb i tmq_me s s age s _unacknowl edged]
34 us e r r oo t
35
36 [r abb i tmq_me s s age s _uncommi t t ed]
37 us e r r oo t
38
39 [r abb i tmq_queue_memor y]
40 us e r r oo t
41
42 sudo s e r v i ce mun in−node r e s t a r t
43
44 You wi l l no t i ce an c r i t i ca l e r r o r on t he r abb i tmq_queue_memor y ,

t h i s i s no t h i ng impor t an t and you can f i x i t by ed i t i ng t he
p l ug i n on a l l node s :

45 sudo nano /e t c/mun i n/p l ug i ns/ r abb i tmq_queue_memor y

97

Service architectures for educational purposes

46
47 Commen t ou t t he f o l lwi ng 2 l i ne s :
48 #QUEUE_WARN=${queue_war n:−10000}
49 #QUEUE_CR IT=${queue_ c r i t:−20000}
50
51
52 sudo s e r v i ce mun in−node r e s t a r t

98

Service architectures for educational purposes

H Verification from Kyrre

Fra: Kyrre Begnum
Til: Stian Svalstad
Cc: Arnt-Helge Nilsen Øyan , Sigve Næss , Stian Asphoug Svalstad
Tittel: Re: Møte rundt arkitektur nr 2
Dato: 08-04-2016 12:39
Jeg bekrefter herved at forskjellige versjoner ikke er blir en del av spesifikasjonen til
arkitektur 2.

99

Service architectures for educational purposes

I A JSON example from https://randomuser.me

1 {
2 " r e su l t s " : [
3 {
4 " us e r " : {
5 " gende r " : " f ema l e " ,
6 " name " : {
7 " t i t l e " : "mi s s " ,
8 " f i r s t " : " soph i e " ,
9 " l a s t " : " snyde r "

10 } ,
11 " l oca t i on " : {
12 " s t r ee t " : " 5329 h i gh s t r ee t " ,
13 " c i t y " : " r i pon " ,
14 " s t a t e " : " cumbr i a " ,
15 " z i p " : " T7 5AG"
16 } ,
17 " ema i l " : " soph i e . snyde r@examp l e . com" ,
18 " us e rname " : "wh i t edog998 " ,
19 " pa s sword " : " ca shmone " ,
20 " s a l t " : " nMXhFzRZ " ,
21 "md5 " : " 1474f06 ead8dd8e f423 f f ad911a2dc7d " ,
22 " sha1 " : " 2c608bbcd1 f f88 ed80335db7510e6583a676 f

a24 " ,
23 " sha256 " : " a4b323b3f922e24e1a8d5a85cc621 f6d29c34

e f d289c0 f3 aaab9dd1d782013aa " ,
24 " r eg i s t e r ed " : 1114644312,
25 " dob " : 271565566,
26 " phone " : " 016973 61866 " ,
27 " ce l l " : " 0784−561−342 " ,
28 "NINO" : " PK 35 13 36 Y " ,
29 " p i c t ur e " : {
30 " l a r ge " : " h t t p s : / / r andomus e r .me/ap i / po r t r a i t

s/wome n/34. j pg " ,
31 "med i um" : " h t t p s : / / r andomus e r .me/ap i / po r t r a i

t s/med/wome n/34. j pg " ,
32 " t humbna i l " : " h t t p s : / / r andomus e r .me/ap i / po r t

r a i t s/ t humb/wome n/34. j pg "
33 }
34 }
35 }
36] ,
37 " na t i ona l i t y " : "GB" ,
38 " s eed " : " e f ddc3c6b8e3b f8d08 " ,
39 " ve r s i on " : " 0.8 "
40 }

100

Service architectures for educational purposes

J Meeting logs

This is a compilation of all meetings throughout the bachelor thesis in Norwegian.

2016-01-11 Kjapt møte med ErikH
Avtale møtetider - Mandag 13:30
Tolkning av oppgaven (for å få et annet perspektiv) - Amazon reference architecture
Miljø vi kan jobbe på (SkyHigh) - SkyHigh burde gå greit - Brukerkontoer fra neste

uke - Hvor mye kapasitet trenger vi?
Alternativer til LAMP stack (MEAN: MongoDB, Express.js, Angular.js, Node.js) - Øns-

ket at Erik kunne sette seg inn litt mer.
Oppetid-system - Ønskelig at Erik også setter seg inn litt her. - Se hvordan Kyrres

løsning brukes per dags dato mot
Ta kontakt med Kyrre asap.
Spørsmål rettet til Kyrre: Forstå hvordan genering av trafikk fungerer per dags dato

(gjenbruk i den grad vi kan?)

2016-01-15 Første møte med Kyrre
Oppmøtte: Arnt-Helge, Sigve, Stian, Kyrre. K108

OBS: Dette er en veldig tl;dr av noe av det Kyrre sa.
Nettside som f.eks Galleriside eller noe med rikt tekstdokument (qQuotes (replikker),

hente fram forskjellige quotes.)
Tenk kule nettsider, løsninger. Tenk på hva vi bruker per dags dato (reddit, pinterest,

flickr, etsy mm).
Bruke API’en vår til å legge inn data. Samme måte som bookface gjør nå.
CouchDB
Standardiserer. Glusterfs, memcached osv.
Kult fra Kyrre: RabbitMQ, ZeroMQ, osv. Putter på kø, jobbgreie som kverner på køen,

bra skalering,
Muligens test på slutten mot klassen IMT3441.
Vi burde brainstorme, få ned noen idéer på papiret. Dermed gruble litt på disse. Send

forslagene til Kyrre og snakk med han. Ha en åpen dialog med Kyrre hele veien. Positiv
til møte hver 3-4 uke.

2016-01-18 Erikmøte
Tilstede: Arnt, Stian og Erik.

* Invite Erik med leserettigheter til ShareLatex prosjektet. Worst case scenario sende
pdf. (evt andre enn webtjenester) * Sigve: Spesielt ansvar om at rapporten at vi har tenkt
sikkerhet. Sikkerhetsaspektet skal ikke være et hinder. * Skriv ned kravspesifikasjon for
SkyHigh bruker, send til Eigil og Erik.

2016-01-25 Erik
Tilstede: Arnt, Erik, Stian

101

Service architectures for educational purposes

Generell status Prosjektplan, verktøy, skal vi ha "fasit" utrulling med Puppet på en
måte. Referens Erik Hjelmås (bare skriv ned)

* Generelt om progresjonen i prosjektplanen (verktøy) Selv om den er nesten ferdig,
så gjør vi det lurt i å fortsette med andre ting. * Spørsmål om vi skal ha en slags "fasit".
Automatisk utrulling i Puppet eller lignende.

(Off-topic) (Greit å skrive Erik som referens på CV, trenger ikke å spørre.) (Ikke ta
med alt tull på CV’en, kjør heller på med generell utdanning og erfaring, deretter fyll på
med hva man er stolt av/gjort/lignende). (Karaktersnitt, studiepoeng)

2016-02-01 Møte
TIlstede: Arnt, Sigve, Stian

Møte med Kyrre
Hva har dere gjort i forrige uke? Sigve: Prosjektrapport, les igjennom tidligere rap-

porter anbefalt av Tom, copy-paste forprosjekt, mongoose + bilder Stian: Mongoose,
mongodb, bilder, mongoose + gridfs, flackrbilder mappen Arnt: Bloggen, express, bilder,
mongoose

Skjerpings på klokken. Mulig endre avtalt møtetid for å jobbe sammen? Stian: Høre
med kjærringa om når det går ann å møtes. Forventer tilbakemelding i morgen. Sigve:
Møtes 10-18 Arnt: Samme for meg

Database og bilder (TENK UTENFOR BOKSEN!) - Database skal lagre data - Filsys-
temer er laget for å håndtere filer. Bilder er filer. - Klokt valg å lagre bildene i NoSQL?
- GridFS er laget for å lagre STORE bilder For hvert bilde trenger vi en fs.file og en
fs.chunk. Vi trenger chunks. Men om file er veldig små, får vi overheaden uten å egentlig
dra fordel med chunksene. Bad bad bad performancewise.

Versjonsbasering - Ha dette i tankene.
User stories, epics, flows. - Views på bilder - Trending - Comments
Møte med Erik i dag - Vise hvor langt vi er kommet - Hvilken adresse vi skal invitere

han til de forskjellige verktøyene - Yolo
Eventuelt

2016-02-02 Erik
Utsatt av Erik Tilstede: Arnt, Erik og Sigve

Kommentar forprosjekt: Framdriftsplanen er grei så lenge dere hoder til hva man skal
gjøre. Risiko da den er lite spesifisert. Fornuftig med lik tid på begge deler? (Nei

Alternative idéer fra Erik: RT, CRM, redmine, (nei, vi vil ikke bruke disse.
Avtale møte med Kyrre, avklaring på hva som skal lages. Nøkkelord: lage nettside selv

blant annet
Oppskriften av rapporten, hvor mye fokus på rapporten. Ikke nok med at den skal

brukes som noe Kyrre kan lage et utdanningsopplegg på, men vi skal få karakter basert
på dette. Viktigste: produsere noe som Kyrre kan bruke.

Ressurspersoner: Rune Hjeldsvold, Mariuz, Øyvind Kolloen, Gerardo, Simon
Tenk som Kyrre!!!

2016-02-10 Gruppemøte
Kjapt statusmøte. Tilstede: Arnt, Sigve, Stian

Info: Trello - Må brukes mer aktivt. Lite oppdateringer. Er vi stuck?

102

Service architectures for educational purposes

Info: Blogg - Arnt har tatt ansvaret. Oppdaterer bloggen en gang i uken basert på
trello.

Sigve: ShareLatex - lag nytt prosjekt
Arnt: Møte med Kyrre - Sender e-post... igjen. :D Fortelle hvilken idéer vi har gått for.

- Vise fram hva vi har gjort hittil. - Hva den er bygd opp av - Hva vi tenker på. - Hvordan
han generer trafikk til Bookface (navn + bilde, kommentar, poster)!!

Info: Nettsiden
Status: MongoDB + bilder - Hente ut bildet

2016-02-12 Kyrremøte rundt brukerscript
Tilstede: Sigve, Arnt, Kyrre

webuse.perl 3 (4) options 1. Ny bruker 2. Ny post 3. Ny kommentar (4. last ned
forside)

1. Simulere trafikkflyten API for å hente navn URL avatardb
2. Forsiden Plukker 1 Poster i vedkommenes navn
3. Laste ned forsiden Plukker et navn Plukker et annet navn Poster noe der
4. Laster ned forsiden
Kyrre skulle grave fram perl scriptet sitt (Må sikkert minne han på om dette... :D)
—————-
Skriptet skal genere bildet lokalt, for å sende det over. Da vil du få trafikken for å

sende ting over. Tenk at en bruker har et bilde på mobilen han vil laste opp sammen med
sin brukerinformasjon og dato.

Problemer å ha javascript å browseren er å simulere det etterpå (Kommentar Arnt:
ikke at vi har så veldig mye javascript på browsersiden uansett..., her er det mer at alt
rundt (Node og Express primært) er skrevet i JS.

Ikke tenk en interaktiv nettside. Hvis det ikke kan puttes i et skript så er det ikke verdt
å gjøre. Derfor ikke tenk på å klikke videre inne på /pictures sånn som vi vurderte

Lag noen flows, epics, (user stories) . og når dette tenkes så tenk at det skal automa-
tiseres: * Hjemmesiden, hente bildet som man kan embedde inn på deres hjemmeside. *
Antall views på bildene /:picture * Trender (reddit hug of death, slashdotta)

————————
Dette er noe jeg og Sigve diskuterte i etterkant
Versjonsbasering v1: bilde i mongodb v2: migrering av bilde fra mongodb til en image

server som gir url. url skal være i mongodb istedenfor bilde data.

2016-02-15 Gruppemøte
Tilstede: Arnt, Sigve, Stian

Hva har dere gjort i forrige uke? Stian: Counters (telle opp ID’en) som ikke fungerte,
Mongoose auto increment som ikke fungerte, samarbeid med Arnt om å lagre bildene/hente
fram. Sigve: Bilder lagret lokalt, begynte å skrive i dokumentasjon Arnt: Samarbeid med
Stian om bilder, views fungerer, legge inn data i databasen ved bruk av URL, fikse en
måte å telle opp ID’en

Versjonsbasering: Limit antall bilder på forsiden.
Møte med Erik i dag: Ingenting spesielt.
Hva skal gjøres denne uken: Stian: Legge inn comments Arnt: Forsiden, ahref. Ta ting

sånn som det kommer. Sigve: Rapporten fram til tirs/onsdag. Deretter se på script.

103

Service architectures for educational purposes

Eventuelt: Onsdag blir halv dag. Stian og Arnt har eksamen torsdagen og vil veldig
gjerne jobbe litt med det. 08:00-12:00.

2016-02-15 ErikH
Tilstede: Arnt, Stian, Sigve, Erik

Spørre Rune Hjelmås og Øivind Kolloen angående lagring av bilder
Verdien i oppgaven ligger i knytningen til skripting, trafikkgenerering, alt rundt selve

applikasjonen.
Hvordan skal Kyrres bruke dette i kurset.
Google lignende arkitekturer, normal ville bruke noe ala dette, men vi trenger å lage

et system er enklere, transparent, laget for å virke sammen med eksisterende teknologier
som Kyrre bruker allerede nå.

erik.hjelmas gmail for google ting

2016-02-22 Gruppemøte
Tilstede: Arnt, Stian, Sigve

Versjonsbasering (glusterfs implementasjon: istedenfor å ta backup av mappen bilder
så kan du få redundans ved bruk av glusterfs)

2016-02-29 Gruppemøte
Tilstede: Stian, Sigve

Kort tid igjen.
Hva gjorde dere forrige uke og hva er status? Arnt: Limit på antall bilder, grid på

forsiden, error routing i hytt og pine, comment section css, layout for :id, endret rutingen
fra /image/:id til /:id, litt json og python med Stian Stian: Mandag: Routingen Insert
comment. Ryddet opp skjemaet. Ons: Lest og forstått kyrre script. Started opp git repo
for script. Fredag,Lørdag,Søndag: Scripting. Timer jobbet ca 25. Status: Script nesten
ferdig. Må testes. Sigve: man/tirs: introduction/system req. ons: lese opp på script tors:
document structure

Versjonsbasering For nå er det det som står i Trello. Liten brainstorm?
Lage en enkel installasjonsguide som kan utdypes på et senere tidspunkt - Lagt til

noen punkter på trello under generelt. Greit å ha som huskepinne, skulle kanskje hatt
dette tidligere..... :D

Skrive, skrive, skrive.

2016-03-04 Kyrre
Tilstede: Arnt, Sigve, Stian, Kyrre

* Tanker rundt versjoner Versjonene tilknyttet arkitektur, går greit Problemer med at
man kan gå rett til siste Bra med LB og content distrbution

Feature flags - Skru på memcache - Presentasjon 2009 devops (Sigve har den kan-
skje), Flickr, dark launch (introdusere et vindu i flickr, hvor du kan se aktiviteten til dine
venner), feature som simulerer trafikken men kaster det bort. Noe som gjør ekstra spør-
ringer, klienten gjør det men viser det ikke, gjør det og viser det. - Introdusere et eller
annet driftsproblematikk: udefinerte variabler og lignende, spyr ut feilmeldinger,

* Om neste arkitekturen Noe å jobbe videre med Fabrikk Dokument (human read-
able, json) som går igjennom flere "maskiner" Samlebånd Generisk rammeverk: en kø,

104

Service architectures for educational purposes

flere fabrikkstasjoner, tar et dokument, prosesserer (aktiv: bruker cpu eller io/passiv:
timeout), stamp, sender videre til en annenn kø, api

Konfigurasjon: en stasjon med veldig mange arbeidere med forskjellige køtid. Trello
CLI hvor du kan dytte kortene framover. En visuelt representasjon. Et punkt må en person
dytte den over i neste køen.

Politisk faktor Salg av mobilabonnement: salg (oppretter tilbudet) -> oppretter bruk-
erkonto -> pakke sammen pakken

* Overlevering Tagger, og ikke brancher. Lage kronologisk rekkefølge på push. Hvor-
dan dette blir brukt, oppgaver og lignende, ta utgangspunktet at en person kan ta i bruk
dette, hvordan sjekke at dette fungerer (liste o.l.).

* Egenutviklet Eksisterende er så komplisert, endring fra semseter til semester, keep
it simple stupid, se matrix (se hvordan alt er bygget opp)

2016-02-29 The gruppe guys
Tilstede: Arnt, Sigve, Stian

(Brukte mye tid på å få inn bilder i databasen)
Hva gjorde dere forrige uke og hva er status? Arnt: Node app i produksjon, nginx,

glusterfs, testing. Stian: Script + debugging, writing python standard . PM2. Testing.
Remove default URL from python script is the only thing left. Sigve: Rapporten, doku-
mentstruktur, mongodb

Sammendrag fra møtet med Kyrre - What to do next - Limited time Dark launch: v2
query, dumper data. v3 implemetasjon, enkel entry på forsiden "Bilde nr x har mest
views". Logging: Work in progress. Fant en node modul som kan sjekkes. Driftprob-
lematikk: Udefinerte variabler, spyr ut feilmeldinger og lignende.

Møte med Erik: Dark lanuch Logging Finpuss

2016-03-07 ErikH
Møte med Erik: versjonsbasering, skript

Bør ha møte med kyrre på fredag. Planlegg godt, mulig vi ikke ser kyrre før etter
påske. Greit å vite at vi får nok info fra kyrre slik at vi kan jobbe godt fremover den neste
mnd. Spør om versjonene. Legg planer for neste case.

Pass på å skrive kvalitetskode!! Python og node.js Skrive i rapporten, at vi har fulgt
kodestandarer. Sikkerhets testing verktøy? Demonstere for sensor at vi har holdningen
at koding skjer med kvalitet. Ikke bare for å få ting til å virke :D

Sjekke for vanlige programmeringsfeil i python.

2016-03-07 Veiledningsmøte
Tilstede: Arnt, Sigve, Stian, Erik

Sende utkast til Erik etter onsdag 16/03

2016-03-14 Møte med Erik
Tilstede: Arnt, Sigve, Erik

Skrive, skrive, skrive.
Trafikkgenerering er viktig, neste så det skulle ha hatt et eget kapittel på samme måte

som teknologi, design og lignende.

105

Service architectures for educational purposes

2016-03-30 Gruppe
Tilstede: Arnt, Sigve

Arnt: Blogg, ZeroMQ vs RabbitMQ, sett på hvordan fabrikker er bygd. Sigve: Lesing
av prosjektoppgaven.

Fra mandagen 11/04 SKAL Toggl brukes framover i to uker (med forebehold om at
Arnt og Stian har eksamen i Ruting og Svitsjing på mandagen 07/04)

2016-04-04 Gruppemøte
Tilstede: Arnt, Sigve, Stian

RabbitMQ, planlegging, teknologier, design,
E-post til Kyrre - Blir gjort etter møte med Erik
Møte med Erik - Innholdet i e-posten til Kyrre - Sende PDFen til Erik etter møtet,

trenger bare en leserunde først - Driftsproblematikk - Sikkerhet?

2016-04-04 Erik
Tilstede: Erik, Arnt, Sigve, Stian

Status * Skriving - ok, mangler punkt testing og user guides. En dag med dette så
burde det være good. Erik sjekker ShareLatex. * Arkitektur - går bra

Kyrre - Skala, driftsproblematikk, få noe mer ut av Message Queue, versjonsbasert,
mulig konfigurasjonsverktøy, Trello CLI. - Erik hadde ikke så mye å tilføye...

Driftsproblematikk som vi kan introdusere med denne arkitekturen - Ingenting konkret
akkurat nå

Sikkerhet - Blir "vi" (Sigve) spurt om spesifikt sikkerhetsaspekt - Generell sikker-
het/Bevissthet rundt dette - Hvordan er prosjektet relevant for informasjonssikkerhet - En
release til en annen forbedrer sikkerheten - Sertifikater for å kommunisere mellom køer
- Redundans - Aksesskontrol - DoS (lett å fylle opp køen, ressurser) - Greit å aksepterer
risikoen så lenge man vet om det, men hvis man ikke vet om det - Vil studentene som
bruker denne arkitekturen få et dårlig forhold til sikkerhet? Reflekter!

Relatere dette til en case, som også er IT orientert - E-post - Digitalt postkontor - PDF
Asynkron i forhold til flere applikasjoner Ie OpenStack booter flere instanser med param-
etere Tenk over use case

2016-04-08 KyrreMøte!

Viktig med litt variasjon, flackr, bookface som webapps, og et annet
Fabrikk
Skalering: - Flaskehals - Oversikt/overvåkning, relevant men ikke bruk icinga/nagios.

Ha heller en enkel nettside med rabbitmq list queues og f.eks 100 siste jobber. - 1x sam-
lebånd, Lee Shore stopper en server så vil hele samlebåndet stoppe, tenk redundans

Driftsproblematikk: - Generell overvåking ok, mindre jo bedre. - Konfigurasjonsverk-
tøy, ikke bruk - Flaskehals - Single point of failure - Kompleksitet, like navn, klare skiller,
overblikk, tegne hvordan det ser ut -

Versjonsbasering: - Få det skriftlig at vi kan avvike fra oppgaven på arkitektur nr 2.
Se e-post.

Teknologimessing: - bare til info
Undervisningsverktøy/Use case - det skal brukes i undervisning - Use case * Kjøper

106

Service architectures for educational purposes

abonnement, programmerer GSM, kviterer ut, salgsavdeling opprette business og fak-
turering, pakke ned og sende det. Saksflyt, saksbehandling. * Dokumentprossesering på
et sykehus, kjøre MR resultater, lagt i en kø, generere high resolution, scanne (image
recognation) * Snapchat, bilder. Får inn bildet, gjøre endringer, lagre dette, distribure
dette. - Der vi bruker en kø.

To køer - En jobbkø - En svarkø
JSON objektet har start tid, for å se hvor lang tid det tar

2016-04-11 Gruppemøte
Tilstede: Arnt, Sigve, Stian

* Toggl
* Arnt reiser sannsynligvis i løpet av 2 uker
* Messenger, ubytte av melon? 2 mot 1. - Byttet ut til et kvinnfolk
* Sikkerhet - Stort sett done, for nå
Framover Mandag 11/04: Deploye Flackr. Arnt: Flask, restful API med POST Stian:

Applikasjonen skal kjøre på worker. Feilsøking. Sigve: Monitoring
Monitoring: - Enkel nettside - Relevant data
Møte med Erik - Use case - Nedskalering - Ingen versjonsbasering

2016-04-11 Erik
Tilstede: Arnt, Stian, Sigve, Erik

Hvordan går Fabrikk?
Testing av Flackr - teste med klassen, får se hva som skjer
Use case - Anbefales å ta det med i rapporten eller når vi presenterer det så binde det

opp mot et use case for å bedre kunne presentere.
Hvis noen kan frigjøres til skrive, så gjør gjerne det...
Sigve, sikkerhet - skriv gjerne på begge caser - hva, hvordan vil denne kunne angripes

hvis den var sluppet ut i den virkelige verden - anta at noen vil alltid angripe det
Til neste gang: Sendt rapport til Kyrre Enkel prototype Erik: Prorektor kommer, han

må være med på noe fra 11:15. Møtes 10:30.

2016-04-18 Erik
Tilstede: Arnt, Sigve, Stian, Erik

Sensor: Aleksander Ballastvik - Vise fram at vi har gjort noe teknisk vanskelig, fått det
til - Leverer en strøken rapport

To prototyper, stresser trafikkscriptet , interegrering mot Kyrre.
Om de to prototypene: Subjektivt mening, ta det litt med salt Hvorfor Fulgt en god

utviklingsmetodikk Tom Røise! Git Visualisere git commit log
Sikre leveransen til Kyrre Sensor vil snakke med oppdragsgiver.

2016-04-18 Gruppe
Tilstede: Arnt, Sigve, Stian

Hva har blitt gjort sist uke Stian: Testing, consumer/producer testing. Python worker,
queues, fredag fikset trafikkskript. Sigve: Testing, skrev om sikkerhet og litt testing, user
manual. Monitorering m/Forskjellige løsninger. Arnt: Testing. Entrypoint (API, sende
videre til queue, best practices) og DB utvikling (hente fra databasen, presenterer data)

107

Service architectures for educational purposes

Monitorering - Over til eget punkt/møte/whatever.
Toggl - Fortsette å bruke det. - Vær konsistens

2016-04-25 Erik
Tilstede: Arnt, Sigve, Erik

Ingenting spesielt

2016-04-25 Gruppe
Tilstede: Arnt, Sigve

What was was done last week? Sigve: Munin, Munin, Munin, og litt skriving. Arnt:
Finishing database/entry. Begynne å skrive. Stian: Install worker on safe. Teste at durable
queues overlever reboot. Implementerte retry connection på en av workererne. Satt opp
bruk av yaml på alle workers. Left: Retry connection på resten. Unexpected sleep fea-
tures. Litt code cleanup, samt se over all kommentering + evt pylint på workers/safe.

Toggl Looks good. A few hours here and there probbaly not counted for.
Tiden fremover/hva gjenstår: 3 uker. * 1 uker med Fabrikk * 2ish uker med skriving

Stian: Retry connection på resten. Unexpected sleep features. Litt code cleanup, samt
se over all kommentering + evt pylint på workers/safe. Sigve: A’ok! Mer skriving om
sikkerhet rundt RabbitMQ og Flackr. Arnt: DogeMode feature! Brukerscript.

Monitor Munin, rabbitmq controlpanel. Stort sett a’ok!
Kyrre, testing 29/04 - Høre når han planlegger å ha det - Sigve planlegger å være der

29/04
(Dokumentasjon: Så mange figurer som mulig, skrive ferdig Flackr)
Møtet med Erik

2016-05-02 Gruppemøte
Tilstede: Arnt, Stian

Hva har blitt gjort Arnt: DogeMode, brukerscript, error handling (blant annet bildet),
flackr slow query. Stian: Keepalive på worker mot queues, error handling, lint, skrive
(zzz) Sigve: Skriving, monitor.

Trello Litt slack på Arnt og Stian.
Hva gjenstår - Flackr: Dele opp i versjoner. Branch/egne repo/tagging? - Flackr: Git

commit på 192.168.200.130 til Flackr repo - Flackr: Skrive om replikering - Fabrikk:
Passiv

Avslutningsmøte med Kyrre - Sende e-post i dag til Kyrre med ønske om møte. - Siste
møte hvor vi planlegger overlevering

Passiv testing på fabrikk - sleep(randint(3, 5))
- Tag som kommer inn - Basert på tag så genereres en hvis tid

2016-05-02 Møte med Erik
Tilstede: Arnt, Stian...

Ingen Erik? Forsøkt å komme i kontakt med han uten svar.
EDIT 13:45: Han er i Trondheim! :D

2016-05-05 Skypemøte med Kyrre

108

Service architectures for educational purposes

- git repo med 3 versjoner - 2 forskjellige repoer -flackr - factory - Hver sin README
som inneholder sin User Manual + configs (hele setup guiden) - Boookface README ek-
sempel får vi på epost - Få noen til å teste det når vi er "ferdig" å sette sammen systemene
- Levere REPO før 12 mai.

2016-05-09 Møte med gruppen
Tilstede: Arnt, Sigve, Stian

Trello - Litt slack, vær mer konsistens
Status skriving - Sigve: Monitorering starter i dag Sikkerhet done
- Stian: Generell requirements specification, startet med
- Arnt: Se på Flackr insert siden den ble endret
Oppsummering fra Kyrremøtet - Tagging - Legge til installasjonsguide i README.md.
Levering til Kyrre - Frigjøre en person til å jobbe med versjonsdelingen (ferdig mandag)

| Arnt
- En person starter å se over Flackr (ferdig mandag) | Arnt
Møte med Erik - Spørre han pent om han kan lese igjennom en av røddagene
Eventuelt
———————————————— Rapport: Innledning Diskusjonspunktet (bra stør-

relse)

2016-05-09 Erik Hjelmås
- Erik leser igjennom Lørdag, så vi må ha det meste klart fredag kveld.

- Rapport: presis, vitenskapelige referanser? referanser: hvem, hva, hvor, når.

109

Service architectures for educational purposes

K Pre plan document

On the following page, the pre plan project report delivered in January is included.

110

BACHELOROPPGAVE:

Bookface 2.0

FORFATTERE:
Arnt-Helge Nilsen Øyan
Stian Svalstad
Sigve Næss

DATO:
28.01.2015

Bookface 2.0

Sammendrag av Bacheloroppgaven

Tittel: Bookface 2.0

Dato: 28.01.2015

Deltakere: Arnt-Helge Nilsen Øyan
Stian Svalstad
Sigve Næss

Veiledere: Erik Hjelmås

Oppdragsgiver: Norwegian University of Science and Technology

Kontaktperson: Kyrre Begnum, kyrre.begnum@hioa.no

Nøkkelord: Norway, Norsk
Antall sider: 13
Antall vedlegg:
Tilgjengelighet: Åpen

Sammendrag: I Database- og Applikasjonsdrift har det blir brukt en
tradisjonell tjenestearkitektur. I det siste har interessen
for å bruke andre arkitekturer enn en tradisjonell LAMP
stack. Dette skal vi se på i vår bacheloroppgave.

i

Bookface 2.0

Summary of Graduate Project

Title: Bookface 2.0

Date: 28.01.2015

Participants: Arnt-Helge Nilsen Øyan
Stian Svalstad
Sigve Næss

Supervisor: Erik Hjelmås

Employer: Norwegian University of Science and Technology

Contact Person: Kyrre Begnum, kyrre.begnum@hioa.no

Keywords: SOA, Service Architecture Bookface2.0, Bachelor, IMT
Pages: 13
Attachments:
Availability: Open

Abstract: In Database- and application administration a traditional
service architecture is used for Bookface. Lately there has
been an increase in using different architecture than a
LAMP stack. This is what we will look at in this bache-
lor thesis.

ii

Bookface 2.0

Contents

Contents . iii
List of Figures . iv
1 Introduction . 1

1.1 Background . 1
1.2 Project goals . 1
1.3 Team members . 1

2 Extent . 2
2.1 Task description . 2
2.2 Delimitation . 2

2.2.1 Concrete delimitation . 2
2.3 Field . 3

3 Project organization . 4
3.1 Responsibilities and roles . 4
3.2 Procedures and code of conduct . 4
3.3 Tools . 4

3.3.1 ShareLaTeX . 4
3.3.2 Messenger . 4
3.3.3 Trello . 5
3.3.4 Git . 5
3.3.5 Google Docs . 5

4 Planning, supervision and report . 6
4.1 Choice of system development model . 6
4.2 Plan for status meeting and decision point 6
4.3 Required resources . 7

5 Organization of quality assurance . 8
5.1 Risk Assessment . 8

5.1.1 Identifying and analyzing project risks 8
5.1.2 Risk Analysis Table . 8

5.2 Documentation . 9
6 Plan for implementation . 10

6.1 Milestones . 10
6.2 Gantt-chart . 10

Bibliography . 12

iii

Bookface 2.0

List of Figures

1 Iterative development model . 6
2 Gantt chart . 11

iv

Bookface 2.0

1 Introduction

1.1 Background

In IMT3441 database and application administration at Norwegian University of Science
and Technology you get introduced to one of the more traditional service architectures
by implementing a web application called Bookface, a 1500th century micro blog. This is
done by using the Linux Operating System, Apache HTTP Server, MySQL Database and
PHP for web development. This is more commonly known as the LAMP stack. You as a
student will be challenged to install, configure and operate this application as it gets ham-
mered with traffic. Implementing load balancing between several web servers, caching
technology on application level and more in order to maintain continuous operation.

Lately it has become more relevant to offer alternative architecture to benefit more
from the course.

1.2 Project goals

Our current goals for this project is as follows
Learning

• Be able to understand and differentiate between different service architectures.
• Learn to install, configure and implement software solutions.
• Be able to design documentation that enhances quality of learning.
• Further develop knowledge of relevant professional areas like programming, net-

work, scripting and database.
• Implement the use of "Best practices".

Performance

• Design two or more service-oriented architectures to compliment the current Book-
face.

• Write documentation so students can configure, install and operate the service ar-
chitectures.

• Develop a method to send traffic to the service architecture.

1.3 Team members

Our group consists of three persons from two different study programs. Arnt-Helge Nilsen
Øyan and Stian Svalstad are studying Science in Network and System Administration
(now IT Operations and Information Security). Sigve Næss is studying information secu-
rity. All of us are third year students at NTNU in Gjøvik (former Høgskolen i Gjøvik).

1

Bookface 2.0

2 Extent

2.1 Task description

IMT3441 database- and application operations has in recent years used a more tradi-
tional service architecture for its Bookface solution. Lately, it has been more relevant to
provide an alternative architecture than the LAMP stack, so the students can benefit more
from the course. Examples would be a node.js solution with API calls and unstructured
databases, or a gaming application service. This will be in addition to Bookface, so the
students can either choose or operate them all in this course.

The idea with this bachelor project is to design two or more alternative architectures
that can be used in the course. Every architecture must consists of the following

• A codebase in a git repository, where the versions can tell a "story". For example
you start off with a version with several mistakes or errors by the developers. Either
they didn’t have time or resources to fix this before it had to be deployed. Here you
can use your creativity.

• Extra tools that are to be used from the "uptime" system, that directs traffic to the
architecture and puts it under load, so that it feels more realistic. Much like the
same way Bookface had users and posts added during the course.

• Documentation. It can’t be too complex and preferably be based on standard pack-
ages in Ubuntu. One must also take in to account the technical expertise of the
persons taking the course. If there is too much hacking, it might overshadow the
big picture.

There is no equivalent course given today. This bachelor project will introduce an unique
value for everyone who wants to learn more about administrating large scale systems.
Furthermore, if the documentation is written in English, the possibility of offering this
to international students in the future will be achievable. We will not be investigating
the LAMP-stack as it is already in use in the current course. Our solution will have to be
based on another stack.

2.2 Delimitation

As written in the task description, we are looking to design two or more alternative
architectures. The extent of our ideas will decide whether two will be adequate or if more
will be required. We will not be looking at Bookface or doing any means of development
to it. Furthermore, we will not introduce configuration management in our architectures,
as this is already covered in the course System Administration.

2.2.1 Concrete delimitation

Our employer has supplied some specifications that we have to work alongside.

• Final product has to be based on standard packages in Ubuntu
• Codebase in git repository, preferably with multiple versions.
• Documentation in English.

2

Bookface 2.0

2.3 Field

This bachelor thesis will allow all of us to practice the skills we have learnt here at
NTNU, and take them one step further into an unknown setting and applying them. This
includes programming, scripting, database and system administration, operating systems
and so forth. This project will challenge us to acquire new skills, such as learning a new
programming language or an administrating a previously unknown architecture. Since
one us has information security as his field, we will focus throughout the project to
endeavour security by design.

3

Bookface 2.0

3 Project organization

3.1 Responsibilities and roles

In our bachelor thesis we have chosen Arnt-Helge to be our project leader, and will there-
fore have some additional obligations. Our project leader will have the responsibility to
maintain regular communication with our supervisor and employer. The project leader
will also be responsible for scheduling additional meetings outside of the normal sched-
ule if needed. Our employer for this bachelor thesis is Kyrre Begnum, which is the course
coordinator for IMT3441 Database and Application Administration. In this course Book-
face is used and maintained on the servers managed by the students. It is therefore very
important for us to have good communication and regular meetings with Kyrre during
the project period. Kyrre is also currently working as an Associate Professor at Oslo Uni-
versity College (HiOA). Also helping us we have Erik Hjelmås acting as our supervisor,
which will assist us with technical competence and advice during the project. Erik is an
Associate professor, Dr. scient and is currently the program director for IT operations and
Information Security, formerly known as Science in Network and System Administration
at NTNU. He also had a key role in development of the Norwegian Information Security
Laboratory(NISlab).

3.2 Procedures and code of conduct

This project will require lots of collaboration, in order to deal with conflict situations and
to ensure that the project is executed in an honorable fashion, a code of conduct (CoC)
document has been developed within the team, which has been signed and agreed upon.
It is available in appendix A.

3.3 Tools

For our project we have chosen 5 different tools which will help us with planning and
organizing. All the tools have been reviewed by the group, and we have all agreed to use
them on a regular basis throughout the project period.

3.3.1 ShareLaTeX

ShareLaTeX is an online LaTeX editor which allows for real tile collaboration and online
compiling of projects to PDF format.[1] We decided to write our project in LaTeX, be-
cause it provides us with a high quality document compared to more traditional systems
(e.g. GoogleDocs, Word, OpenOffice). Additionally NTNU have a LaTeX Bachelor Thesis
template for us to use, which made it an easy choice. This tool also includes BibTeX for
references. This will be used for its intended purpose.

3.3.2 Messenger

To communicate with the others in the project, we needed an easy application that was
available for both Android and iOS. We decided to use Messenger, which is an instant
messaging service and software application which provides text and voice communication.[2]
It is also possible to quickly send files to the other group members while we are on the

4

Bookface 2.0

move.

3.3.3 Trello

To organize tasks, we have decided to use Trello. Trello is a collaboration tool that orga-
nizes your projects into boards. In one glance, Trello tells you what’s being worked on,
who’s working on what, and where something is in a process.[3] We all have experience
with using Trello in previous projects, and additionally it is available on all platforms
(e.g. Android, iOS and Web) which makes it a perfect fit for us.

3.3.4 Git

The use of Git will provide us with a simple, fast and easy source code management
system. Since we are going to hand in different versions of our system, using Git will
make it easy for us to manage and organize them during the project period. Not to
mention we can look at commits, changes and develop on branches. For this project we
will be using Bitbucket by Atlassian [4].

3.3.5 Google Docs

Google Docs is a free web-based office suite, which allows users to create and edit docu-
ments online while collaborating with other users in real-time.[5] Since we already write
our project in ShareLaTeX, the use of Google Docs will be minimal. But Google Docs is
still a great and very easy accessible tool that we probably will use for smaller tasks like
sharing notes and drafts.

5

Bookface 2.0

4 Planning, supervision and report

4.1 Choice of system development model

We wanted to go with an agile model for this thesis. Being able to add, remove or change
previous steps during design or development is a huge advantage. We also want some
sort of product log since we might figure out features we want to implement during,
but can’t do it at the current time. The way IMT3441 works is you start by installing a
webserver, put Bookface source files in the web root folder, install MySQL servers, and
connect them together. It is an incremental way of working which we want to continue
because Kyrre could possible use this in his class.

Depending on how our application will look, there will most likely be some develop-
ment or scripting. This largely depends on the outcome of our ideas. Therefore we need
our model to be flexible enough to handle the unpredictability.

Based on this and aspects earlier in the thesis we ended up with a incremental and
iterative model [6]. There are several reasons for this. We have a product backlog we
can use to base our work upon. This will be filled during the initialization step, where
we will design our application architecture. We take something from our backlog, run it
through an iteration phase. If everything goes well it can be added to our application.
This is illustrated in figure 1.

Figure 1: Iterative development model

4.2 Plan for status meeting and decision point

Each week we will have two planned meetings.

• Monday 10:15, group meeting
• Monday 13:30, meeting with supervisor, Erik Hjelmås.

Official meetings with our employer, Kyrre Begnum will for the most part predeter-
mined since he is at NTNU only on fridays and is dependent on the train. Throughout the
project we will have an open communication through e-mails, calls and Skype meetings
if necessary so we do not have to wait for every friday.

6

Bookface 2.0

4.3 Required resources

We need an environment where we can spin up virtual machines with Linux Operating
System and network access. For this we will use the SkyHigh, an openstack implementa-
tion here at NTNU maintained by our supervisor. This is also the environment currently
used by IMT3441s Bookface, which makes it perfect to test in.

7

Bookface 2.0

5 Organization of quality assurance

5.1 Risk Assessment

5.1.1 Identifying and analyzing project risks

The chances that any unforeseen event that may affect the performance of the project
while the project is in progress is real. To assess these, we use a categorization with 3
degrees within probability and 4 in consequence. For the consequences of an event, the
different values represent the following scenario:

1. Slightly damaged — 2. Moderate damage — 3. Large damage — 4. Catastrophic damage

An event with little damage for the project will lead to between 1 and 3 day impact for
implementation of the project within the time spent. Events with moderate damage for
the project will result in up to 10 extra days for project implementation. Large damage
of the will result in delays of up to 20 days. Catastrophic damage to the project involves
more than 30 days delay or that the project can not continue.

For the probability of an event occurring, the following scale will be used:

1. Unlikely — 2. Probable — 3. Very likely — 4. Certainly

Unlikely means that the incident statistically will occur once per 5 years. A probable
event will statistically occur once per year. An Event that is highly likely to occur will
statistically occur once per six months. With a weighted model that uses these values
it is possible to calculate which event must be prepared for, and which events that is
not needed to prepare for.If the probability is low for an event occurring, the need of
measures for the event will also be low. Any event with the weighted result over 5 must
have measures.

5.1.2 Risk Analysis Table
Event Probability Consequence Weighted result Measures
Exceeding time frames 2 3 6 Yes
Break of contract between the
group and the employer

1 4 4 No

The project is not documented
well enough

2 3 6 Yes

Internal conflict in the group 2 3 6 Yes
Development/implementation
of the system becomes too
extensive

2 3 6 Yes

Long-term disease in group 1 4 4 No
Lack of expertise in group 1 3 3 No
Data loss 1 3 3 No

8

Bookface 2.0

5.2 Documentation

Since the project is based on the purpose of teaching students, high quality and easily
understandable documentation will be necessary. The documentation must be suitable
for both the students, and the course leader. It is therefore very important that all doc-
umentation and notes during the project period is organized well so that all relevant
information is presented in the final report. Our learnings and experiences should be
strongly taken into consideration when preparing the final report. It will help us get a
good understanding how we should present our findings for new students in an easy and
efficient way. All newly added, changes or removals of any code/configuration will have
to be documented. It is also strongly preferred that all relevant decisions we make is
explained (for example why we chose X instead of Y, because of ...). Any code developed
by us should be commented in a way so that it is easy understood by students that are
new to the course.

9

Bookface 2.0

6 Plan for implementation

6.1 Milestones

• Pre-planning delivery date 28.01.2016
• Website. By end of February
• Final report delivery 18.05.2016

6.2 Gantt-chart

Our Gantt chart takes its characteristics from our project, as we are tasked with designing
2 architectures, we have split our development time into two sections. During this period
of time we will take items off the product backlog and run it through the iteration phase.
We decided to plan extra time for finalizing the documentation, this is due to the fact
that it needs to be written in a way that enhances the learning experience. Lastly, we are
finalizing the permanent draft of our own report for delivery.

10

Bookface 2.0

Figure 2: Gantt chart

11

Bookface 2.0

Bibliography

[1] 2016. Sharelatex. https://www.sharelatex.com/learn/Learn:About/. (Visited
Jan. 2016).

[2] 2016. Messenger. https://www.messenger.com/features/. (Visited Jan. 2016).

[3] 2016. Trello. http://help.trello.com/article/708-what-is-trello/. (Visited
Jan. 2016).

[4] Atlassian. 2015. About bitbucket. [Online; accessed 22-January-2016]. URL: https:
//www.atlassian.com/software/bitbucket.

[5] 2016. Google docs. https://support.google.com/docs/answer/49008?hl=en/.
(Visited Jan. 2016).

[6] Wikipedia. 2015. Iterative and incremental development — wikipedia,
the free encyclopedia. [Online; accessed 18-January-2016]. URL:
https://en.wikipedia.org/w/index.php?title=Iterative_and_incremental_
development&oldid=680280418.

12

Service architectures for educational purposes

L Gantt

Figure 6: Gantt chart

129

	Preface
	Contents
	List of Figures
	List of Tables
	Introduction
	Project background
	Project description
	Target Audience
	Goal
	Academic Background
	Development Model
	Document Structure
	Terminology

	Requirement Specification
	Functionality
	Usability
	Reliability
	Security

	First Architecture - Flackr
	Technology
	Design
	Implementation
	Traffic generation
	MEAN Stack Security
	Testing

	Second Architecture - Factory
	Technology
	Design
	Implementation
	Traffic generation
	RabbitMQ Security
	Testing

	Discussion
	Results
	Group evaluation
	Further Development

	Conclusion
	Bibliography
	Application code and configuration files
	Flackr
	Factory

	Traffic generating script for Flackr
	Traffic generating script for Factory
	Disable Transparent Huge Pages
	MongoDB configuration file
	Nginx configuration file
	User manuals
	Flackr
	Factory

	Verification from Kyrre
	A JSON example from https://randomuser.me
	Meeting logs
	Pre plan document
	Gantt

