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Abstract 

The Extended Elastic Impedance (EEI) as a seismic attribute was first introduced by Whitcombe 

(2002) as a method for fluid and lithology prediction. EEI is the application of angle rotation in 

the conventional acoustic impedance under certain approximation. It essentially works by 

projecting intercept and gradient together with different angles which highlights different 

features.  

EEI has capability to estimate elastic parameters such as S-wave impedance, VP VS⁄  ratio, bulk 

modulus, shear modulus, Poisson`s ratio and so on. It also provides reservoir physical properties 

like porosity, clay content and water saturation. 

EEI is an interesting subject in Geosciences and is very useful seismic reconnaissance attribute. 

Its ability to predict fluids and lithology is well proven especially in the area where the acoustic 

impedance of gas saturated sands and surrounding shale are almost equal. This approach allows a 

better distinction between seismic anomaly caused by lithology and those caused by fluid content 

(hydrocarbon).  

In this study, the concept of extended elastic impedance inversion is used to derived 

petrophysical properties and distribution of reservoir facies to create relationship between these 

attributes and well log data. The results show that EEI is worthy effort to highlight the difference 

between reservoir and non-reservoir to identify hydrocarbon area.  
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1.  Introduction 

1.1 Problem description  

While we can claim that all of easily exploited hydrocarbon fields have already been discovered, 

the global energy market is still striving for more oil and gas. Higher demands for hydrocarbon 

in recent years caused oil and gas industry players to focus on deep water, and frigid/hot regions 

around the world. Even by overcoming the geographical challenges there still remain serious 

problematic areas to deal with. 

Another challenge in the world of seismic exploration is the subsurface ambiguities, which can 

be a difficult task in most regions in addition to gathering and analyzing data quickly and 

efficiently. We are always looking for the best image of subsurface for more accurate and low 

risk decision making to reduce drilling risk (dry wells) and increasing yield. Advanced 

techniques provide vast amount of information that can help to address the challenges which 

improves our interpretation of subsurface structures and also reveal more information about 

hydrocarbon prospects. Global competition for hydrocarbon continues to drive the need to 

increase exploration and enhance recovery rate; however the cost of the operation is critically 

important. 

The seismic reflection method was used initially as a useful tool for structure identification; 

some kind of structures could act as trap (such as anticline) for hydrocarbon reservoir (Russell, 

Brian., Hampson, Dan., Bankhead, Bradley, 2006). So much effort has been made to improve 

our understanding of the amplitudes of the seismic reflection. It has been proved that a 

considerable amount of information is contained in seismic amplitude reflection that could be 

connected with porosity, lithology and even fluid change within the subsurface (Russell et al, 

2006). Although seismic amplitude is fairly good indicator in the subsurface; however, several 

case studies show that it is an ambiguous indicator of hydrocarbon.  

To overcome the limitation, amplitude versus offset (AVO) was born and developed as a 

commercial tool to analysis the pre-stack seismic data for reservoir prediction and hydrocarbon 

indication in petroleum industry. An AVO response is stemmed from a change in subsurface 
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reflectivity as a function of angle of incidence exhibited by seismic reflection events (Russell, 

1999). A consequence of increase in offset/angle is the reflectivity change. This reflectivity 

variation depending on the P-wave velocity, S-wave velocity (shear wave velocity) and density 

contrast over an interface. It has been proved that change in fluid or lithology can give rise to 

variation in these properties and therefore vary AVO response (Russell et al, 2006). 

In order to obtain more accurate seismic reservoir characterization (also known as reservoir 

geophysics) we should integrate all available seismic, petrophysical and geological information 

into the volumetric distribution of reservoir properties like porosity and saturation. Each of them 

has a piece of information which assists us to delineating or describing a reservoir or monitoring 

the change (Walls, Joel., Dvorkin, Jack., Carr, Matt, 2004). 

“Wells can measure several reservoir properties at high vertical resolution, but offer only sparse 

sampling laterally”, often at considerable cost (Russell, 1988). In addition difficulties arise; 

however, when we encounter poor wellbore condition or unexpected lithology or complexities 

related to subsurface structure. On the other hand, “seismic data provides nearly continuous 

lateral sampling at relatively low expense but with much less vertical resolution” (Russell, 1988). 

To address the challenges, seismic inversion for estimating the elastic properties was introduced. 

It is the latest advancement in an integration approach which is the inverse modeling of the logs 

from seismic data. 

By inversion, we convert seismic reflection amplitude to impedance profile (rock property 

information) and estimate model parameters (in term of impedance instead of reflectivity). Using 

inversion process, we try to “reduce discrepancies between observed and modeled seismic data” 

(Russell, 1988). The main objective here is to extract underlying geology and reservoir 

properties from some set of observed seismic data to use for better lithology and fluid prediction 

and prospect delineation (Russell, 1999). That is to say, the purpose is to obtain reliable estimate 

of P-wave velocity, S-wave velocity and density to calculate the physical properties and the 

earth`s structure. 

With more complex geological conditions and rise in cost of hydrocarbon explorations, the 

inversion technique has become more popular and is widely used in the seismic industry for 

exploration and development of existing field. Inversion technique is a useful tool to derive 
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elastic properties such as P-impedance, bulk modulus, Poisson`s ratio and so forth, which largely 

control the seismic response. As a result the outcomes we obtain from seismic inversion make up 

better volumetric estimation (hydrocarbon anomalies are better predicted) than seismic attributes 

derived from band limited seismic data (Connolly, 1999). 

It has been suggested to integrate inversion results with AVO and other attributes to improve 

interpretation accuracy and get more valuable results for reservoir modeling and characterization. 

1.2 Motivation 

The main idea of this research is to use application of extended elastic impedance inversion 

(EEI) to improve reservoir characterization and enhance lithology and fluid discrimination. The 

aim of this study is to determine the sensitivity of elastic parameters to seismic anomaly and 

show that extended elastic impedance is an effective way for lithology and fluid differentiation in 

clastic reservoir. The output of this work can be beneficial for static model building and 

volumetric calculation; therefore it might be advantageous in future field development. 

 

  

  



4 

1.3 Available dataset  

In this study, exported 2D seismic inversion data has been used along with a random line 

(including AI, VP VS⁄  and density) intersecting 2 wells located in Norwegian Sea. The data set is 

listed below: 

 

 Seismic information  

 Type of seismic data  Format  

 AI inversion  SEG-Y  

 VP VS⁄  inversion  SEG-Y  

 Density  SEG-Y  

 

Well log information 

Type of well log 

Well name 
Gamma ray Resistivity Density 

P-wave 

sonic 

S-wave 

sonic 

Check 

shot 

6507/11-8 × × × × × × 

6507/11-9 × × × × × × 

Table 1.1: Available data 
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1.4 Method  

The workflow used in this study is divided into three main phases with petrophysical analysis as 

the starting point. Rock physics of the formation will be examined to establish the relationship 

between petrophysical data and elastic properties. This step involves preparing the well logs to 

generate new log attributes, namely, VP VS⁄ , bulk modulus, shear modulus, Poisson`s ratio, LMR, 

etc. It is followed by well base cross plot analysis for lithology and fluid determination together 

with identification of reservoir. 

The second step will consider cross correlation study to determine best chi project angle for 

different elastic parameters and extended elastic impedance (EEI) analysis. 

The third and final step consists of implementation and processing of extended elastic impedance 

on seismic inversion data and interpretation of the outcomes of EEI inversion. This stage 

involves making new seismic inversion attributes for different petrophysical and elastic 

parameters (EEI seismic inversion attributes) to understand the key characteristic of reservoir, 

which enables us to distinguish different lithology and fluid content efficiently.  
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2.  Background Theory 

This chapter provides a brief summary of seismic inversion algorithm and describes several basic 

background topics necessary for understanding this thesis. Section 2.1 summarize the concept of 

inversion algorithm and two different categories used for inversion is discussed. Section 2.2 

describes the elastic impedance inversion method with section 2.3 dedicated to extended elastic 

impedance method (EEI) and present basic concepts involved in this approach which is the focus 

of the thesis. Section 2.4 is a brief overview of the study area which is adapted from Norwegian 

Petroleum Directorate (npd.no). 

2.1 Inversion Algorithm  

In this section a brief summary of inversion algorithm is presented. It is necessary to clarify 

exactly what is meant by inversion algorithm. Mathematically the main goal of an inversion 

algorithm is to “minimize or maximize an objective function”. A quantitative measure of the 

misfit between the observed data and the data predicted using the inverted model will always 

include in objective function (Technical Note, Earthworks-reservoir.com). 

In the field of seismic exploration, inversion algorithm is generally divided into two main 

categories, deterministic and stochastic. The term deterministic has come to be used to refer to a 

“model from which predictions are selected and determined directly through a functional 

relationship” (Technical Note, Earthworks-reservoir.com). The deterministic inversion gives one 

optimum result (best single answer) and is completely repeatable (Kemper, 2010). “The output 

of deterministic inversion algorithm is relatively smooth estimate of the impedance” (Francis, 

2006). Although it is a useful approach; major limitations, however, are still present in 

deterministic algorithm. Firstly, this could lead to potentially misleading and costly error in 

interpretation, since the model is embedded in the result and may potentially cause artifacts 

(Francis, 2002). The second restriction we probably face is, since this approach produce only 

optimal solutions, hence “unable to reproduce the full range of impedance observed in the well” 

(Francis, 2002).  
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To solve the deterministic challenges, stochastic inversion rise more demand and has evolved 

over the past several years. Stochastic inversion can provide a set of possible answers, in other 

words it gives various equi-probable realization of impedance. These multiple realizations 

potentially contain the correct impedance that agrees with the 3D seismic volume (Kemper, 

2010). By analyzing of the multiple impedance realizations we are able to explore uncertainty in 

lithology and fluid classification. It is important to notice that one cannot claim that a particular 

realization is the perfect and one hundred percent correct answer.  

It is not possible to repeat stochastic inversion since it uses random number generator to span the 

solution space. Therefore if we rerun stochastic inversion we could get slightly different 

realization from primary attempt (Francis, 2003). 

Stochastic inversion is divided into two sub-groups, elastic and petro-elastic. In elastic approach 

data is invert to impedances (for instance, “acoustic impedance if invert only a full stack or 

acoustic impedance and shear impedance if we invert two or more partial stacks”). In petro-

elastic approach we use rock physical models and invert them directly to petrophysical properties 

such as volume of shale, water saturation and porosity, etc. (Kemper, 2010). 

A common and often-described inversion techniques which is widely used in seismic exploration 

industry are coloured inversion (deterministic), sparse spike inversion (deterministic), model 

based simultaneous inversion (deterministic), geostatistical inversion (stochastic-elastic) and 

bayesian inversion (stochastic-petroelastic). Since the understanding of existing implementations 

of seismic inversion algorithm is out of the scope of this study, we will not drill into subject any 

further. 

Figure 2.1 shows a flowchart on general approach to seismic inversion. We start with some type 

of seismic volume and build a geological model, and then we pass them into some inversion 

algorithms and come up with inverted seismic volume which attains the same physical property 

as geological model. 
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Figure 2.1: General approch in seismic inversion (adopted from Hampson-Russell 

knowledgebase). 

Figure 2.2 illustrates more recent inversion approach to build acoustic impedance (ρVP), shear 

impedance (ρVS) and density (ρ) models and invert the seismic angle gathers simultaneously. In 

brief, simultaneous inversion is the process of inverting pre-stack data for acoustic impedance, S-

impedance and density at the same time. We use the relationship between the background trends 

of these logs to guide the inversion process. 

 

Figure 2.2: Recent inversion approach to build impedance models by using simultaneous 

inversion (adopted from Hampson-Russell knowledgebase). 
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2.2 Elastic Impedance  

The basic idea behind conventional acoustic impedance (AI) inversion method is an assumption 

of a P-wave from subsurface interface at normal incidence angle (Latimer, Rebecca., Davison, 

Rick., Van Riel, Paul, 2000). Although in some circumstances like small offset range in a CDP 

gather, this assumption is almost fulfilled and the inversion produces reliable results; however, in 

many hydrocarbon reservoirs similar acoustic impedance value has been observed between 

hydrocarbon saturated reservoir and the surrounding shale which makes it difficult, or in some 

cases even impossible, to analyze and discriminate between reservoir sand and surrounding area 

on zero offset seismic data (Connolly, 1999). With recent progress on AVO technique which 

make easier differentiate hydrocarbon reservoir from the surrounding shale and cap rock, 

therefore , there is a rise in demand on analyze non-zero offset seismic data. Elastic parameters 

from non-zero offset data achieved by elastic impedance technique were represented by Patrick 

Connolly in 1999. Connolly`s method is suitable for fluid discrimination and lithology prediction 

for various reservoirs, since it includes more information of lithology and fluid than acoustic 

impedance. 

In total, “elastic impedance (EI) is a generalization of acoustic impedance for variable incidence 

angle. It provides a consistent and absolute framework to calibrate and invert non-zero offset 

seismic data” (Connolly, 1999). Preliminary work on elastic impedance undertaken by Connolly 

demonstrated that the elastic impedance approach provides better inversion results compared to 

traditionally quantitative use of AVO information (e.g. intercept and gradient method). The EI 

approximation is derived from linearization of Zoeppritz equations, usually Aki and Richards 

two term approximation, where θ is the angle of incidence at reflector. The most popular 

definition of elastic impedance is illustrated by equation 2.1. 

𝐸𝐼(𝜃) =  𝑉𝑝𝑎 ∗  𝑉𝑠𝑏 ∗  𝜌𝑐   (2.1) 

𝑎 = 1 +  𝑠𝑖𝑛2 𝜃 

𝑏 =  −8𝐾𝑠𝑖𝑛2𝜃 
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𝑐 = 1 − 4𝐾 𝑠𝑖𝑛2𝜃 

𝐾 = (
𝑉𝑆
𝑉𝑃

)2 

As shown in equation 2.1 the elastic impedance is a function of P-wave velocity (VP), S-wave 

velocity (VS), density (ρ) and incident angel (θ). The factor Κ is assumed constant and is usually 

set to the average of VP and VS velocity across the interface or over the zone of interest (ZOI). 

Connolly (1999) showed that EI decrease with increasing incident angle compared to AI at 

normal incidence(θ). While Connolly`s work provides good results and useful guides for 

enhanced reservoir characterization, restriction of incident angle of equation 2.1 was serious 

challenge. The key problem is that EI has strange unit and dimensions and the values do not 

scale correctly for different angles (Whitcombe, 2002). 

The EI limitation was overcome by Whitcombe (2002). He modified equation 2.1 by introducing 

reference or normalizing constant 𝛼∘,𝛽° ,𝜌∘ which represent average values of velocities and 

densities over the zone of interest or values at the top of the target zone (equation 2.2) 

(Whitcombe, 2002). By applying the normalizing constant consequently, we remove the variable 

dimensionality and provide the elastic impedance with the same dimensionality and correct the 

scale of acoustic impedance. Whitcombe further introduced extended elastic impedance 

approach or EEI. 

𝐸𝐼(𝜃) =  𝛼∘𝜌∘ ��
𝛼
𝛼∘
�
𝑎
∗  �𝛽

𝛽∘
�
𝑏
∗  �𝜌

𝜌∘
�
𝑐
�  (2.2) 

𝛼 = 𝑃 − 𝑤𝑎𝑣𝑒 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 

𝛽 = 𝑆 − 𝑤𝑎𝑣𝑒 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 

𝜌 = 𝐷𝑒𝑛𝑠𝑖𝑡𝑦 

𝛼∘,𝛽°, 𝜌∘ ∶ 𝑇ℎ𝑒 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑜𝑓 𝑃 − 𝑤𝑎𝑣𝑒 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦, 𝑆 − 𝑤𝑎𝑣𝑒 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝑎𝑛𝑑 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 
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2.3 Extend Elastic Impedance  

As mentioned before, impedance inversion is usually applied to zero offset data. In 2002, 

Whitcombe refined the definition of elastic impedance. He broadened the definition of elastic 

impedance to remove the dependence of its dimensionality on the angle θ. He recognized some 

properties of rock cannot be predicted from existing seismic gathering due to limitation on 

incidence angle range (0-30°) in the elastic impedance (Whitcombe, D. N., Connolly, P. A., 

Reagan, R. L., Redshaw, T. C, 2002). That is to say, sin2θ needs to exceed unity to estimate 

some petrophysical properties; however, it is impossible that the reflectivity values exceed unity 

without negative (and therefore unrealizable) impedance contrast (Hicks, G. J., Francis, A, 

2006). 

Therefore, Whitcombe et al. (2002) introduced the extended elastic impedance (EEI) concept to 

solve the elastic impedance limitation. He extended the angle range from 0-30° degrees (which is 

defined mathematically over a 0-90° angle (0-0.25) range which corresponds to sin2θ) by 

substituting sin2θ  with tan χ (Whitcombe et al. 2002). The variable θ is now a new function 

called χ (chi angle or project angle) which varies between -90° and +90° (Figure 2.3 and Figure 

2.4). The EEI equation is expressed as: 

 

𝐸𝐸𝐼(𝜒) =  𝛼∘𝜌∘ ��
𝛼
𝛼∘
�
𝑝
∗  �𝛽

𝛽∘
�
𝑞
∗  �𝜌

𝜌∘
�
𝑟
�    (2.3) 

Where              
𝑝 = (𝑐𝑜𝑠 𝜒 +  𝑠𝑖𝑛 𝜒) 

𝑞 =  −8𝐾 𝑠𝑖𝑛 𝜒 

𝑟 = (𝑐𝑜𝑠 𝜒 − 4𝐾 𝑠𝑖𝑛 𝜒) 
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Figure 2.3: Extended elastic impedance angles can range from -90° to +90°, at which 

values sin2 θ is physically impossible (adopted from Hampson-Russell help system). 

The distinct difference between the extended elastic impedance and normalized version of elastic 

impedance is the change of variable. EEI is a function of  χ (an angle in an abstract construction) 

and EI is a function of θ (an angel in a physical experiment) (Francis, A., Hicks, G. J, 2006). 

This can lead to EEI much more efficient than EI method and supposed to give different 

outcomes than standard EI inversion method. It is important to notice that new variable 

(χ) allows calculation of impedance value beyond physically observable range of angle θ 

(including imaginary angles not necessarily recorded in the gathers). A clear example of this 

situation happens when shear impedance corresponds to sin2θ = -1.25. It is obvious, negative 

angle is not physically recordable but can be projected from angle gathers by linear extrapolation 

(Hicks, G. J., Francis, A, 2006). 

It is easy to show that the EEI log at χ = 0 is similar to EI log at θ = 0, which is simply the 

acoustic impedance (AI). Whitcombe et al. (2002) provides a simple robust application for 

deriving lithological and fluid sensitive seismic impedance volumes. According to his 

perspective under certain approximation, the EEI log at various chi angles proportional to 

different rock elastic parameters (Figure 2.5). 

 

Normal incidence       
angles (0-30°) 
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Figure 2.4: The EEI functions for various χ values for particular well. Note the inverse 

correlation between EEI (𝜒 = 90°) and EEI (𝜒 = −90°). (Whitcombe et al. 2002) 

In other words the chi angle can be selected to optimize the correlation of the EEI curves with 

petrophysical reservoir parameters, such as VShale , Sw and porosity or with an elastic parameters 

such as bulk module, shear module and lamé constant and so on (Whitcombe et al. 2002). 

Therefore, EEI logs for specified angles from these parameters can be produced by using EEI 

equation which is suited for tie well data directly to seismic data (Figure 2.5). Directness of EEI 

method is the main advantages which provide an EEI volume attributes that correspond to 

petrophysical parameters of interest. 

Equation 2.4 is two term linearization of Zoeppritz equation for reflectivity (Aki & Richards, 

1980) 

𝑅𝑝(𝜃) = 𝐴 + 𝐵𝑠𝑖𝑛2𝜃   (2.4) 

Regarding to Whitcombe method when sin2θ replaced by tan χ , so equation 2.4 represented as 

equation 2.5 which allows angle to vary from −90° to +90° (A=intercept, B=gradiant). 
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Figure 2.5: Comparisons between elastic parameters and equivalent EEI curves for 

particular well, representing the high degree of correlation. The EEI function is defined as 

a function of the angle χ, not the reflection angle θ. (Whitcombe et al. 2002) 

 

𝑅𝑝(𝜃) = 𝐴 + 𝐵𝑠𝑖𝑛2𝜃 ⇒ 𝑅(𝒳) = 𝐴 + 𝐵 𝑡𝑎𝑛𝒳  (2.5) 

In this study we focus on the extended elastic impedance inversion, EEI method which is carried 

out to generate several seismic attributes (VP VS⁄ , LMR, Poisson`s ratio, bulk module, water 

saturation, etc.). Comparisons of these, help to determine the sensitivity of elastic parameters to 

seismic anomaly, improve reservoir characterization and enhance fluid and lithology imaging.  

Figure 2.6 shows the general concept on EEI inversion approach. We can see from the flowchart 

EEI inversion method involves building an EEI (χ) model and inverting EEI (χ) volume using an 

inversion algorithm to create an EEI output. 
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Figure 2.6: General concept on extended elastic impedance (EEI) inversion approach 

(adopted from Hampson-Russell knowledgebase). 
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2-4 Study area  

The study area is Yttergryta field located in Norwegian Sea, Yttergryta is a subsea gas and 

condensate field located approximately 5 km north of the Midgard deposit (33 km east of Åsgard 

B). The average water depth in the area is about 300 meters. The field was discovered by the 

exploration well 6507/11, that was drilled by the Stena Don semi-submersible rig in July 2007. 

The reservoir contains gas in Middle Jurassic sandstone of the Fangst Group and lie at depth of 

2390 up to 2490 meters (npd.no). 

According to Norwegian Petroleum Directorate’s report, the field came on stream in January 

2009, and was shut down in late 2011 because of water production in the gas production well. 

Figure 2.7 shows the location of study area in the Norwegian Sea. 

In this study, two wells have been considered for detail studies. The well 6507/11-8 and well 

6507/11-9 which both overlay available seismic section. 

Well 6507/11-8 ( 429994.97 EW UTM  , 7221898.70 NS UTM ) was drilled as sixth exploration 

well on Yttergryta prospect (total vertical depth of 2749 m below the sea surface ) which is 

located on the eastern part of the Halten Terrace, approximately 1 km of the north of the Midgard 

discovery. The main purpose of the well was to identify gas in reservoir rock from the early to 

middle Jurassic. The secondary objective of well was to acquire data and test for possible 

hydrocarbons in the Tilje and Åre formations (npd.no). 

Generally, the available well report indicates that the lithology down to top Garn formation 

where the sand reservoir occurs (at 2416 m) was mainly claystone with no reservoir quality. The 

petrophysical evaluation showed high hydrocarbon saturation in the Garn formation, and 

excellent reservoir quality with 28% porosity and up to 6 Darcy permeability. Available MDT 

pressure data illustrated that the reservoir was in a dynamic stage of depletion due to production 

from the Åsgard Field (Midgard discovery). The preliminary estimate of the discovery is 

between 1 and 3 billion standard cubic meters of recoverable gas (npd.no). 

 

javascript:void(window.open('http://factpages.npd.no/FactPages/default.aspx?nav1=field&nav2=PageView%7CAll&nav3=4973114&menu=No&culture=en','popup','width=700,height=800,resizable=yes,scrollbars=yes'))
javascript:void(window.open('http://factpages.npd.no/FactPages/default.aspx?nav1=field&nav2=PageView%7CAll&nav3=4973114&menu=No&culture=en','popup','width=700,height=800,resizable=yes,scrollbars=yes'))
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Figure 2.7: Location of study area in the Norwegian Sea (from www.npd.no) 

Well 6507/11-9 ( 425900.64 EW UTM ,7226521.88 NS UTM ) was drilled as third exploration 

well on the Natalia prospect (total vertical depth of 3040 m below the sea surface ) which is 

located on the eastern part of the Halten Terrace in the Grinda Graben, approximately 5 km north 

of the Midgard Field in the Norwegian Sea. The subsurface structure is interpreted a rotated fault 

block and comprise of Jurassic reservoir sandstones. The primary target of the well was to prove 

presence of hydrocarbons in Jurassic sandstones. Also the hydrocarbon migration route in the 

prospect area was examined as secondary objective (npd.no). 

Operation report indicates that the well penetrated rocks of Quaternary, Tertiary, Cretaceous and 

Jurassic age. Similar to well 6507/11-8, the lithology down to top Garn formation is claystone 

with no reservoir quality. The well penetrated the reservoir section at about 2597 m. The well 
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analysis proved that there is approximately 40 m of gas sand in the Garn formation which is 

estimated at about 1.5 billion standard cubic meters of recoverable gas. The reservoir properties 

and sedimentary facies observed in the well (porosity 26% and permeability is estimated 4 

Darcy) are comparable to the excellent reservoir properties observed on the Midgard Field 

(npd.no). 

Figure 2.8 shows the location of well 6507/11-8 and well 6507/11.9 in the Norwegian Sea. 

 

Figure 2.8: Location map of Well 6507/11-8 and Well 6507/11.9 (Adopted from 

www.npd.no) 
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3. Well Log Analysis 

Well log data can provide vital and valuable information which is very helpful in defining a 

reservoir and other important interval in the well. In this study, three wells were considered but 

only two have sufficient logs with good quality located in seismic area. In this work well 

6057/11-8 and well 6057/11-9 have been considered for detail studies. However, well 6507/11-6 

has been also analyzed in some aspects for extended elastic impedance and determining optimum 

chi angle and was compared with the main wells to improve correlation study results. 

In this chapter, analysis of well log data is provided for well 11-8 and 11-9 to evaluate the 

relationship between elastic parameters along with their potential for predicting lithology and 

fluid contents. Both wells have good quality P-wave and S-wave velocity and density log which 

were used as main input to obtain petrophysical parameters and other attribute pairs required for 

rock physics study. All of these were derived algebraically from key seismic parameters VP,VS, ρ. 

In addition, good quality gamma ray (GR) log and resistivity log provide sufficient knowledge 

about location of reservoir sand and improve log interpretation. The results of interpreted well 

logs revealed that two hydrocarbon zones in the well 11-8, the gas saturated reservoir occurs at 

2425 – 2447 m and also between 2460 – 2510 m (MD from KB). Also one hydrocarbon zone 

accrues between the depth range of 2608 - 2636 m (MD from KB) for well 11-9. Figure 3.1 and 

Figure 3.2 show the available logs and location of interpreted hydrocarbon zones for well 11-8 

and 11-9 respectively. At each well, the target area is the sandstone (highlighted by red color) 

with lower P-wave velocity and density than top and bottom of surrounding area. All depth in 

this study refer to KB (Kelly bushing) unless otherwise stated. 

The well based cross plot analysis of acoustic and elastic impedance parameters used as a tool to 

establish quantitative relationship between reservoir properties, distinguish different lithologies 

and fluid contents. In this section, the most useful rock physic cross plots will be summarized to 

delineate the gas sand reservoir and provide better comprehension of the relationship between 

rock physic parameters and lithology-pore fluid in the zone of interest (ZOI). 
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This step is the fundamental stage for reservoir characterization. The main objective of this 

section is to evaluate and gain knowledge about sandstone reservoir quality, sand distribution 

and fluid content in zone of interest. This will improves our understanding of the expected 

seismic signature in inversion step. 

Hampson-Russell software package (HRS-9) and MATLAB have been used for log editing and 

calculation, application of fluid substitution, check shot calibration and plot the data. 

3.1 Well log interpretation 

3.1.1 Density  

A density log measures the space between electrons in a rock. “The bulk density is the density of 

formation and all it is components and will be function of volume of porosity, matrix and fluid” 

(Schlumberger, 1972). Density log helps identify evaporate minerals, detect gas bearing zone 

and complex lithology. Normally the density will decrease from shale unit to sand unit. 

As shown in Figure 3.1 well 11-8 records a low density of about ~ 1.95 - 2 g/cc in the sand 

reservoirs at 2425 – 2447 m and also between 2460 – 2510 m. Likewise well 11-9 (Figure 3.2) 

shows similar behavior and record low density value of about ~ 2.05 g/cc in target area (~2608 - 

2636 m). Although all sand units show low densities; however, as we can see from both figures, 

density log strongly affected by the presence of gas and record the lowest density values. These 

figures show that there have been marked fall in the target area which suggest presence of 

hydrocarbon.  

3.1.2 P-wave velocity  

A P-wave sonic log (compressional velocity) measures “the transit time (Δt in m/s) of an 

acoustic waveform between a transmitter and a receiver” (Schlumberger, 1972). Figure 3.1 and 

Figure 3.2 show P-wave velocity logs.  
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Figure 3.1: Available logs for well 11-8 (from left to right: GR, resistivity, P-wave velocity, S-wave velocity and density 

log). The read area represents the hydrocarbon zones 
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Figure 3.2: Available logs for well 11-9 (from left to right: GR, resistivity, P-wave velocity, S-wave velocity and density 

log). The read area represents the hydrocarbon zones 
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It can be seen from the figures that P-wave velocities clearly decrease in reservoir for both wells. 

The P-wave logs show there is about 20 percent velocity reduction (well 11-8) and about 15 

percent velocity reduction (well 11-9) occur when logs moving into the reservoir sandstone. 

3.1.3 S-wave velocity 

Shear waves or secondary wave, have a slower velocity when compared to the P-waves for given 

geological information. Both wells in this study have had good quality and long enough shear 

waves logs within target intervals. Under the situation of lack of share wave data, one method 

would be to predict a pseudo shear wave log from a measured compressional velocity by 

equation 3.1 called Greenberg-Castagna equation (1992). 

𝑉𝑃  = 1.16 𝑉𝑆 + 1.36   (3.1) 

We should consider the fact that this simplified equation (Castagna`s relationship) will only yield 

the background trends which may be different from real shear wave measured in the field. 

Figure 3.3 shows a cross plot of  VP and VS in well 11-8. The black arrows represent fluid effects 

and porosity effects which are superimposed onto cross plot. This figure is quite revealing that 

porosity controls the change in velocity, higher porosity values falling at lower left and lower 

porosity values falling at the upper right. This trend is general behavior in clastic reservoir. 

The red polygon represents gas sand reservoir. The gas saturated area and non-reservoir area 

(brine sand and shaly sand) fall along two well separated trends, trend of gas bearing sandstone 

and trend of water bearing sandstone and shale. This notable trend is a cornerstone for all direct 

hydrocarbon detection method and also proves the importance of shear information function for 

discriminating lithology and pore fluid content. “Variation in porosity, shaliness and pore 

pressure move data up and down along the trends, while changes in fluid saturation move data 

from one trend to another” (Avseth, P., Mukerji, T., Mavko, G., 2005). 
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Figure 3.3: Crossplot of VP  vs VS  for well 11-8, The black arrows represent direction of 

increasing porosity and pore pressure .The saturation trend is perpendicular to that for 

porosity, caly and pore pressure. 

 

It is important to notice that all the selected ellipses/polygons in this research are based on 

simultaneously comparison study with well log observation. 

3.1.4 Gamma ray log 

Gamma ray logs measure the radioactivity of formations in the well (naturally accruing or put 

there in mud system) which connected to clay mineral, oil source rock, organic matter and shale 

in reservoir rock (Schlumberger, 1972). Gamma ray log is known to aid in lithology 

identification and recognize layers of different petrophysical property in the formation. In 

addition, we will consider gamma ray log often as a good shale indicator (providing sand/shale 

cutoff). Shale free sandstones and carbonates normally have low radioactive concentrations 

hence represent low gamma ray reading (less than 70-75 API units). 

Increasing pore 
pressure 

Fluid effect 

Gas effect 
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From Figure 3.1 and Figure 3.2 we can clearly observe the transition between shale unit and sand 

formation around 2425 m for well 11-8 and 2608 m for well 11-9 (reservoir sand shows 

deflection to the left in both wells). 

Low value of gamma ray log in clastic sediments typically shows that log has moved into clean 

formation (sand units). The reservoir interval for well 11-8 and well 11-9 record low values of 

gamma ray, ~ 55 − 65 and ~ 50 − 55 respectively. Gradual decrease in gamma ray log as 

shown in Figure 3.2 is likely to represent small amount of clay in top of the reservoir. Likewise 

from Figure 3.1 we can interpret that first hydrocarbon zone is almost clean sandstone, however 

gamma ray log indicates that second hydrocarbon zone is slightly shaly at the bottom (a shale 

layer at ~ 2450 separates first gas zone from second gas zone). Regarding the gamma ray log, 

below the reservoir sand is interpreted as combination of wet sand and clay layers for both wells. 

3.1.5 Resistivity log 

Resistivity is “the property of a material or substance to obstruct or resists the flow of an electric 

current” (Schlumberger, 1972). Salt water is conductive while hydrocarbon acts as insulator 

(non-conductive) therefore we expected a low resistivity values in brine saturated rock and high 

resistivity values in hydrocarbon saturated rock. In other words, when the hydrocarbon saturation 

of pores increases, rock resistance to transmit the current will increase too. The combination of 

the gamma ray log and resistivity log are normally used to differentiate between hydrocarbon 

and non-hydrocarbon bearing zones. 

A clear example of gamma ray and resistivity log combination are shown on Figure 3.1 and 

Figure 3.2 for well 8-11 and 9-11 respectively. It is apparent from the figures that available 

resistivity logs increases significantly due to presence of non-conducting hydrocarbon in target 

area (low GR value) as compared to lower values in the surrounding formation (high GR value). 

The marked area represents hydrocarbon saturated reservoir.  
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3.2 Generate other logs and interpretations  

Once the basic rock physics parameters are determined and analyzed, it is possible to generate 

other parameters that enhance lithology and fluid discrimination. 

3.2.1 𝐕𝐏 𝐕𝐒 ⁄  ratio 

Castagna et al. (1985) indicated that the use of  VP VS⁄  ratio (the ratio of compressional velocity 

to shear velocity) is “key issue for determination of lithology from seismic or sonic log data, as 

well as for direct seismic identification of pore fluid” (Avseth et al. 2005). Several studies have 

stated that the use of  VP, VS and VP VS⁄  ratio in seismic exploration as reliable fluid discriminator 

in siliciclastic environments. The P-wave velocity is more sensitive to fluid changes than the S-

wave velocity. Compressional velocities travel through both rock and fluid and are slower in gas 

area, as compared to water area. In contrast S-wave velocity is mostly insensitive to fluids and 

only moves through the rock. This means that the differences in the VP VS⁄  ratio inside a reservoir 

would indicate different fluid saturation. 

Figure 3.8 and Figure 3.9 show VP VS⁄  ratio logs for well 8-11 and 9-11 respectively. Here a 

significant drop in the  VP VS⁄  ratio shows the presence of hydrocarbons (gas sand reservoir). For 

instance we can see that, the value of  VP VS⁄  in the gas saturated reservoir are approximately 

1.62 while brine saturated sand below the target area has a VP VS⁄  ratio value about 1.83. (Figures 

with higher quality are included in appendix B). 

Several case studies and rock physic reports confirm that, high values of  VP VS⁄  ratio are 

normally correlated with low quality reservoir rock while low value of VP VS⁄  correlates with 

good quality reservoir rock. We should note that, although the VP VS⁄  ratio may show a good 

degree of fluid discrimination and reservoir quality, is not, however, sufficient for final decision 

making. 

Figure 3.4 shows a cross plot between P-wave velocity and VP VS⁄  ratio for well 11-8. The gas 

sand reservoir is highlighted within the red polygon in the cross plot. As shown in Figure 3.4 

presence of gas causes significant drop in P-wave velocity and VP VS⁄  ratio; however, there is 

poor fluid discrimination in higher velocities (stiffer rock). 



 

27 
 

 

Figure 3.4: The reservoir sand can be clearly interpreted on  VP VS⁄  versus P-wave velocity 

cross plot (well 11-8). 

 

Figure 3.5 shows acoustic impedance log (AI) - also called P-impedance versus S-impedance log 

for well 11-9. Acoustic impedance is the product of P-wave velocity and density and 

traditionally is a popular technique for lithology and pore fluid prediction. (S-impedance is the 

product of S-wave velocity and density). It is clear from Figure 3.5 that in study area, presence of 

gas cause decrease in P-wave velocity and density. As a consequence, reduction in acoustic 

impedance (AI) observed in gas saturated sand compared to surrounding non-reservoir area 

(shale and shaly sand). From Figure 3.8, it is apparent that the S-impedance decrease in gas 

reservoir for well 11-8, is mostly because the additional parameter, density which is significantly 

drop in target area. 

The cross plot between P-impedance versus S-impedance for well 11-9 is shown in Figure 3.5, 

the cross plot is color coded by depth (m). It is apparent from this figure that combination of P-

impedance with S-impedance in this study area is quite effective to distinguish reservoir sand 

facies from non-reservoir facies. 
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Figure 3.5: Acoustic impedance (P-impedance) versus S-impedance cross plot for well 11-

9. Good separation between gas sand zone and other lithologies was confirmed. 

 

Figure 3.6 shows a cross plot between acoustic impedance (AI) and VP VS⁄  ratio for well 11-9. 

Generally the cross plot of acoustic impedance versus VP VS  ⁄ identify geologic trend and 

facilitated the discrimination of gas sand from brine sand as well as the separation between sand 

and shale; however, one should be aware that this finding is not general and is not repeated in all 

cases (Avseth et al. 2005). In some area shale and sand formation have similar Al values which 

make lithology and fluid prediction difficult or indistinguishable. High risk targets due to lack of 

contrast between acoustic impedance and adjacent shale causes an increase in demand for other 

techniques for lithology-pore fluid prediction to reduce uncertainty. 

Figure 3.7 represents the corresponding log sections for P-impedance vs. S-impedance and 

VP VS⁄  vs. P-wave velocity , where the captured polygons are shown in log sections.  

                    

Gas 

Water 
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  Figure 3.6: Acoustic impedance versus VP VS⁄  ratio cross plot (well 11-9). 

 

               

Figure 3.7: Log sections for P-impedance vs. S-impedance and VP VS⁄  vs. P-wave velocity. 

Shale  

Brine Sand & (Claystone) 

Gas Sand 
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According to Figure 3.6 we can define four clusters in the cross plot domain and separate 

lithology and pour fluid. Purple polygon represents gas sand area which has low value of  VP VS⁄  

and acoustic impedance. Shale represents by red polygon with high value of VP VS  ⁄ and low 

value of acoustic impedance. Brine sand and shaly sand are also shown by gray and blue polygon 

respectively. As we expected brine sand has higher acoustic impedance and VP VS⁄  valuesthen 

gas sand. 

 

Figure 3.8: From left to right:VP VS⁄ , P-Impedance ,S-Impedance and Poisson Impedance 

log for well 11-8, blue rectangle parts represent the hydrocarbon (gas) zones. The acoustic 

impedance logs differentiate the gas saturated reservoir from surrounding area. Note 

predicted drop in VP VS⁄  ratio at the zone of interest. 
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Figure 3.9: From left to right:VP VS⁄ , P-Impedance ,S-Impedance and Poisson Impedance 

log for well 11-9, blue rectangle represent the hydrocarbon (gas) zones. The acoustic 

impedance logs differentiate the gas saturated reservoir from surrounding area. Note 

predicted drop in  VP VS⁄  ratio. 

3.2.2 Poisson impedance  

In 2006, Quakenbush introduced Poisson impedance method as new hydrocarbon indicator tool. 

“The Poisson Impedance (PI) is an attribute value by performing the rotation to the cross plot of 

P-impedance (acoustic impedance) versus S-impedance (shear impedance)” (Quakenbush, M., 

Shang, B., Tuttle, C, 2006). 

In his major study, Quakenbush et al. (2006) showed that in some area it is difficult to 

distinguish the lithology-fluid distribution on acoustic impedance and share impedance cross plot 

and highlights the need for new approach. He proposed axis rotation of P-impedance and S-

impedance cross plot to make the axis parallel with the trends, this may result in distinct 

discrimination of lithology – fluid distribution. Mathematically, this relation is called Poisson 

impedance and can be shown as equation (3.2). 

 



 

32 
 

𝑃𝐼 = 𝐴𝐼 − 𝒞 𝑆𝐼  (3.2) 

Where 𝒞 is the term that optimizes the rotation (rotation of the axis) to improve fluid and 

lithology discrimination. Figure 3.10 illustrates the idea of Poisson impedance and axis rotation 

introduced by Quakenbush et al. (2006). 

The biggest advantage of Poisson impedance is that “it can excellently characterize lateral 

variations of sandstone – mudstone layers and oil-gas-water layers in some area”. Moreover it 

has the capability to remove mudstone background of P and S impedance, hence can be feasible 

in regions with larger structural amplitude (Tian, Lixin., Zhou, Donghong., Lin, Gulkang., Jiang, 

Longcong, 2010). Cross plotting PI and other elastic parameters with varied lithological and 

fluid sensitivity could provide new and favorable method to predict the sandstone reservoir 

distribution, reservoir quality, and fluid content potential. 

 

Figure 3.10: schematic view of AI-SI cross plot with shale, brine sand and oil sand. Note 

that define clusters are not discriminated along the AI or SI cross plot alone , but with a 

rotation of the axes, clusters in this case can be perfectly discriminated (Adopted from 

Hampson-Russell help system) 

SI 

AI 

SI 

AI 

PI 
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A serious weakness of this method, however, is that sometimes it is difficult to get the exact 

value of constant 𝒞 in equation (3.2) in practical application. For more accurate 𝒞 calculation, 

Target Correlation Coefficient Analysis (TCCA) method has been used in this work which has 

been introduced by Tian et al. (2010). This method carries out the calculation of the correlation 

coefficient between Poisson impedance versus target parameters (here water Saturation (Sw)) for 

different 𝒞 values. The maximum correlation coefficient is reached in 𝒞 = 1.761 for Sw 

(correlation coefficient = 0.731) (well 11-8). Then the Poisson impedance attribute was derived 

from equation (3.2) by inserting 1.761 for 𝒞 value (Figure 3.8). 

 
    Figure 3.11: Poisson impedance versus Sw cross plot for well 11-8 

Although P-impedance and S-impedance cross plot in this study area show reasonable separation 

between wet sand and gas sand, Poisson impedance result is encouraging too. Figure 3.11 

presents the cross plot of Poisson impedance versus  Sw content and shows the advantage of 

Poisson impedance for distinguishing gas sand reservoir from water sand. As can be seen from 

the Figure 3.11 the interpreted hydrocarbon zone has been highlighted by the application of 



 

34 
 

Poisson impedance. Cross section of red polygon with logs indicates good fit with field 

observation. 

3.2.3 Shale Volume  

Shale is usually more radioactive than sand or carbonate. Volume of shale can be calculated from 

the gamma ray log and can indicate the presence or absence of clay. The volume of shale (VShale) 

is expressed as a fraction or percentage. 

Several relationships exist for VShale  calculation from gamma ray log (non-linear empirical 

responses as well as a linear response). The none-liner responses include Larinov equation 

(1969) for tertiary and older rocks, also the Steiber (1970) and the Clavier (1971) equations 

(Appendix A). All non-linear responses are based on geographic area or formation age. They are 

also more optimistic and produce lower shale volume values than the linear responses 

(Krygowski, 2004).  

 

Figure 3.12: Volume of shale and VP VS ⁄  ratio cross plot for well 11-8. The gas sand zone 

spreads out from non-reservoir area. 
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In normal circumstances when the VShale log shows very low value, it is interpreted to be clean 

facies like sand while a high VShale value is interpreted as clay rich facies such as shale. For more 

accuracy and to reduce uncertainty in interpretation, it is important to take into account our 

knowledge about the geology of the subsurface to avoid some pitfalls in interpretation. 

Figure 3.12 shows cross plot between volume of shale and VP VS⁄  ratio for well 11-8. As can be 

seen from the plots, the VP VS⁄  ratio is less for gas sand which is captured by polygon (almost 

clean facies). 

3.2.4 LMR 

In 1997, Goodway proposed a method to extract rock properties. He promoted the usage of 

relationship between lamé parameters λ (Incompressibility), μ (rigidity) and ρ (density) and their 

ability to perform inversion. λ and μ are obtained from equation (3.3) and (3.4). Goodway (1997) 

demonstrated that, how LMR (Lambda-Mu-Rho) approach can be used to separate lithologies 

and identify gas sands. 

𝑍𝑠2 = (𝜌𝑉𝑠 )2 =  𝜇𝜌    (3.3) 

𝑍𝑝2 = (𝜌𝑉𝑝)2 = (𝜆 + 2𝜇)𝜌   ⇒  𝜆𝜌 = 𝑍𝑝2−2𝑍𝑠2  (3.4) 

Mu-Rho or rigidity is defined as the “resistance to strain resulting in shape change with no 

volume change” (Goodway, B., Chen, T., Downton, J., 1997). This parameter is very useful for 

lithology discrimination and is related to the rock matrix. Quartz is the dominant mineral in the 

sand matrix, therefore sandstone usually associated with high rigidity than shale and coal 

(Goodway et al. 1997). The most interesting result from this principle is that sand matrix has 

higher value of Mu-Rho (MR) than the overlying shale. 

Lambda-Rho or incompressibility is a very useful parameter to distinguish fluid content which is 

subjected to pore fluid. A number of studies have found that sandstone containing hydrocarbon is 

less dense than sandstone containing water and also are more compressive than wet sandstone. 

As a result, in sand reservoir containing hydrocarbon the Lambda-Rho (LR) log shows low 

incompressibility values. 
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Figure 3.13 and Figure 3.14 show lambda-Mu-Rho, lamé constant and shear module log which 

generate from input logs for well 11-8 and 11-9 respectively. Blue rectangular parts represent 

hydrocarbon (gas) zones. (High quality figures are included in appendix B). 

 

 

Figure 3.13: From left to right: Lambda– Rho, lamé constant, Mu-Rho and shear module 

log for well 11-8. 

We expected share modulus to be consistent or no significant change in gas sand reservoir; 

however, Figure 3.13 indicates that the shear modulus decrease significantly and read low values 

in the zone of interest. The possible explanation for this event, as is clearly seen from Figure 3.1, 

is that the density log read low value in a gas zone compared to water zone, so this will cause the 

shear modulus to drop. 

If the filtrate invasion is very shallow (which we sometimes see in gas zones) the density log will 

almost reflect the true formation density, so the density log, and the computed shear modulus, 

will read particularly low compared to water/oil, and even other gas zones where the invasion is 

much deeper. It is important to note that we will not get consistent shear modulus in a gas zone if 

the invasion depth is changing, so causing the density log to change as it sees more or less gas. 



 

37 
 

Normally some fluid substitution corrections are required for the invasion effects on input data. 

Also it is crucial to be sure about the quality of the input shear sonic and density data to 

determine if either of these read unusually low value. For example the density could read a 

washout instead of formation, or the shear sonic could be incorrectly measured from the 

waveforms. 

 

Figure 3.14: From left to right: Lambda– Rho, lamé constant, Mu-Rho and shear module 

log for well 11-9. 

 

Different lithology has different rock properties behavior which is related to fluid content and 

mineral properties. In order to identify lithology and fluid separation, the LMR cross plotting 

was performed (𝜇ρ in y axis and 𝜆ρ in x axis). 

Regarding the rigidity and incompressibility, gas sand reservoir should correspond to the low λ 

incompressibility (<20 GPa) combined with high rigidity μ (>15 GPa) of sand grain. We should 

consider the fact that neither 𝜆 nor 𝜇 are powerful and accurate indicator individually, however 

the combination of  λ and µ exerts a direct indicator for both lithology and fluid content (Hazim, 

H., Al-Dabagh., Alkhafaf, Shireen, 2011). 
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Figure 3.15 shows the guideline plot for interpretation of 𝜆ρ versus 𝜇ρ cross plot, presented by 

Goodway et al. (1997). The threshold cut off, separate porous gas sand from shaly gas sand and 

also separate clastic rocks from carbonates. 

 

 

Figure 3.15: Guideline plot for LMR interpretation (adopted from Goodway et al. (1997)) 

 

Figure 3.16 shows the LMR cross plot for well 11-8 and 11-9 respectively. The plots show 

different clusters that are associated with varied lithologies and fluid. The gas sand reservoirs are 

captured with polygons in both cross plots. 

The sand reservoir is corresponded to low 𝜆 value and high 𝜇 value. The results confirm that we 

can use this method with confidence to determine reservoir characteristics and separating gas 

sands from brine sands and shale. 
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Figure 3.16: The cross plot shows how the LMR volume discriminate reservoir, typically 

the reservoir zone is interpreted along the edge with low λρ value which represents area 

with relatively low incompressibility. A) Well 11-8, B) Well 11-9 

A 

B 



 

40 
 

Figure 3.17 shows cross plot between 𝜆 𝜇�  and density (𝜌) for well 11-9. What is interesting in 

this cross plot is that the gas sand reservoir spreads out from non-reservoir area. 

Figure 3.18 shows cross plot between 𝜆 𝜇�  and acoustic impedance for both wells (11-8 and 11-

9). It is clear that one is able to define different clusters regarding to  𝜆 𝜇�  values. Yellow polygon 

represents gas saturated sand areas which are easily distinguished from the other lithologies. 

 

 

Figure 3.17: Cross plot between λ/μ and density (ρ) for well 11-9. 

 

Figure 3.19 represents the corresponding log sections for cross plot between 𝜆 𝜇�  and acoustic 

impedance for well 11-8 and 11-9 where the captured polygon is shown in log sections. 
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Figure 3.18: Cross plot between λ⁄μ and acoustic impedance for well 11-8 and 11-9. 

 

 

         Figure 3.19: Corresponding log sections for P-impedance vs. λ⁄μ cross plot. 
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3.2.5 Bulk Modulus 

Bulk modulus is a measure of a material’s resistance to change in volume. “The presence of 

porosity in a rock decreases the rock’s resistance to change in volume and hence decreases bulk 

modulus” (David, C., Ravalec-Dupin, M., 2007). Regarding the hydrocarbon exploration, bulk 

modulus is one of the practical porosity indicators especially in the presence of stiff rocks 

(equation 3.5). 

𝐾 =  𝜌 �𝑉𝑃2 − �4 × �𝑉𝑆2 3⁄ ���   (3.5) 

Figure 3.20 and Figure 3.21 show the behavior of bulk modulus log in reservoir sand and 

surrounding shale. By increasing porosity of the rock in sand reservoir, stiffness of the rock will 

be decreased as we expected, therefore we observed low values of bulk modulus in target area 

for both wells. 

There is a large volume of published studies describing the role of the bulk modulus in 

exploration industry. These studies have revealed that the bulk modulus is much more strong as 

young`s modulus specially in stiff rocks (e.g. carbonate). 

3.2.6 Poisson’s ratio 

Another important parameter is the Poisson's ratio (σ). It measures “how compression or tension 

can change a body of material” (David et al. 2007). The importance of Poisson's ratio was 

discovered when Ostrander (1984) published his famous paper and stated that “presence of the 

gas in the reservoirs lead to Poisson's ratio possess low values”. Ostrander defined Poisson's ratio 

as the ratio of the relative change in radius to the relative change in length (Ostrander, 1984). A 

change in the ratio could potentially indicate a change in pore fluid and pronounced on AVO 

characteristic. 

Poisson's ratio can be derived in several ways such as velocity method or LMR (equation 3.6 and 

3.7, respectively). In this work Poisson's ratio log was achieved by using velocity method 

calculation. 
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𝜎 =  
�𝑉𝑝
𝑉𝑠
�
2
− 2

2 �𝑉𝑃
𝑉𝑠
− 1�

 3.6 

𝜎 =
𝜆𝜌

2(𝜆𝜌 + 𝜇𝜌) 3.7 

Figure 3.20 and Figure 3.21 show the computed Poisson's ratio logs. Blue rectangular parts 

represent hydrocarbon (gas) zones. We observe that the gas saturated formation possess very low 

Poisson's ratio (~0.15 – 0.2 for well 11-8 and well 11-9) compared to the surrounding formations 

in both wells. For different lithologies of the same fluid, normally the shalier lithology will plot 

at relatively higher Poisson`s ratio than the sand lithology. 

 

Figure 3.20: From left to right: bulk modulus, Poisson`s ratio and density log for well 11-

8.The reservoir sands are characterized by low density, bulk modulus and Poisson`s ratio 

value. 
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It is possible to identify hydrocarbon zones by investigating the relationship of Poisson`s and 

VP VS⁄  ratios. Figure 3.22 shows the guideline plot for interpretation of Poisson's ratio 

versus VP VS⁄  ratio for hydrocarbon detection. 

According to the guideline plot and based on additional log information, we can classify gas, 

water and shale zone in the area. Figure 3.23 shows a cross plot of Poisson's ratio versus VP VS⁄  

ratio in log domain for well 11-9. Cross section of selected area on the cross plot domain 

completely good fit with our pervious observation about gas reservoir location. 

 

 

Figure 3.21: From left to right: bulk modulus, Poisson`s ratio and density log for well 11-

9. The reservoir sand are characterized by low density, bulk modulus and Poisson`s ratio 

value. 
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Figure 3.22: Guideline plot for Poisson`s ratio versus VP VS⁄  (adopted from Per Avseth lecture 

note). 

 

 

Figure 3.23: Poisson`s ratio versus VP VS⁄  cross plot. The gas sand reservoir captured by 

read polygon. 

Gas Sand  
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3.3 Rock Physic Template  

Rock physics templates (RPTs) are efficient tools which allow us to overly petrophysical 

interpretive templates over a cross plot and is associated to enhance lithology and pore fluid 

prediction (Avseth et al. 2005). The ultimate goal of rock physics template is to interpret and 

categorize well log and seismic data in order to reduce hydrocarbon exploration risk. Rock 

physics templates were introduced by Ødegaard and Avseth (2003) and were further developed 

by Avseth (2005) as an advantageous toolbox to evaluate the relationship between local geologic 

parameters, rock physics properties and prediction of lithology and pore fluid. 

Avseth (2005) pointed out that the rock physics templates enable geoscientists to “determine 

variation in inverted seismic signature as function of well log attributes such as VP, Vs and 

density in relation to pore fluid saturation, porosity, etc.”(Avseth et al. 2005). In his major study 

he also demonstrated that RPT provides a guidance about how seismic response from subsurface 

structure could be potentially altered by a change in pressure, temperature, burial depth and 

digenetic effects. 

Figure 3.24 represents an example of RPT superimposed onto VP VS⁄  versus acoustic impedance 

cross plot. It contains porosity trends for different lithologies, and increased gas saturation for 

sand formation. The black arrows indicate different geologic trends: 1) increasing shaliness, 2) 

increasing cementation, 3) increasing porosity, 4) decreasing effective pressure, and 5) 

increasing gas saturation (Avseth et al. 2005). 

It is clear from Figure 3.24 that RPT shows porosity increasing from right to left and gas 

saturation increasing from top to bottom. However, it is important to notice that, due to some 

reasons the rock physics templates are not unique and absolutely true, while they mostly will be 

handy in our interpretation and delineation of promising zones. 

Figure 3.25 provides the calculated rock physics template superimposed onto cross plot of 

VP VS⁄  versus acoustic impedance for in-situ data of well 11-8 and 11-9. The cross plot points are 

color coded as a function of VP VS⁄  ratio shown on the color bar. The rock physics template is 

calibrated by well 11-8; however, almost similar geological environment makes it applicable for 

well 11-9 as well. 
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Figure 3.24: Typical example of rock physic template (RPT) superimposed onto VP VS⁄   

versus acoustic impedance cross plot (Avseth et al. 2005). 

 

Three clusters can be identified in the data. Based on log information we can easily separate 

lithology and pore fluid (shale, gas sand, brine sand and clystone). From the figure we can see 

that, shale has higher VP VS⁄  ratio and low acoustic impedance while the hydrocarbon (gas) sand 

has very low VP VS⁄  ratio and low acoustic impedance values. As expected brine sand has higher 

acoustic impedance and VP VS⁄  value than the gas sand area. RPT indicates that our reservoir 

sands fall within a porosity range of about 22% - 30%. Another useful information we can obtain 

from combination of rock physics template with cross plot data is that at least the sand reservoir 

not for well 11-8 nor 11-9, is 100% gas saturated (dotted lines indicate the gas saturation) and 

from this we can interpret that sand reservoirs probably contain about 10% - 15% water (Figure 

3.25).
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  Figure 3.25: VP VS⁄  vs Al cross plot for well 11-8 and 11-9 superimposed with the calculated rock physic template 
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3.4 FRM well modeling 

The fluid replacement modeling (FRM) allows us to see what logs would look like or behave 

with different quantities not encountered in any well (Avseth, P., Dvorkin, J., Mavko, G., and 

Rykkje, J., 2000). Fluid substitution also shows how the presence of different fluid changes the 

reservoir properties and quantifying the various scenarios away from well control. In lack of well 

log observation, we employ rock physics in fluid substitution for understanding and predicting 

how seismic velocity depends on pore fluid. 

The famous Gassman`s relation (1951) is main core of fluid substitution which estimates any 

pore fluid saturation. With same porosity, softer rock is more sensitive to fluid replacement than 

a stiffer rock. We model different fluid saturation scenarios in order to test rock property 

estimation by seeing which properties generate model that matches with the real logs (Avseth et 

al. 2000). 

In fluid replacement approach we deal with three fundamental elements: P-wave velocity, S-

wave velocity and density which are applied over the zone of interest. Adding shear wave 

velocity information often allows us to better understand the pore fluid type and fluid signature. 

It is important to note that fluid substitution and log modeling must be carefully evaluated and 

needs accurate and reliable log data (high quality density and porosity) information. 

To achieve this purpose, fluid substitution model has been applied for both water and gas in 

Gassman theory using standard values for quartz sand, water and gas for shear modulus, bulk 

modulus and density. By doing this, a new set of P-wave, S-wave and density logs (e.g. S-

wave.frm) were created for wells to show what the logs would have looked like over the new 

reservoir condition. 

Figure 3.26 indicates the expanded view of in-situ P-wave, S-wave, density and Poisson`s ratio 

logs (original logs for well 11-9) superimposed on brine saturated logs on the reservoir section 

(the in-situ fluid is gas in the zone of interest). Comparing in-situ gas saturated logs with the 

brine saturated logs reveals that VS (shear velocity) slightly decreases when gas is replaced with 

brine in well due to the density effect. Replacing gas with brine also causes density and 

VP (compressional velocity) logs increase in the zone of interest. 
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Figure 3.26: Expanded view of in-situ gas interval (blue) is replaced with brine (red) on the reservoir section (Well 11-9). 

From left to right: P-wave, S-wave, density and Poisson`s ratio log. 
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4 Extended Elastic Impedance  

As we discussed earlier the extended elastic impedance (EEI) is defined as implement rotation in 

the acoustic impedance and gradient impedance and can be used to obtain elastic parameters and 

physical properties of reservoir. The basic idea behind EEI inversion method and the key issues 

which we should view with great care were explained. In this chapter the extended elastic 

impedance approach is considered to derive several seismic attributes. By applying EEI, the 

quantitative estimate of reservoir properties are provided which validate the well log and rock 

physics analysis in third chapter. The main goal of this chapter is to evaluate the sensitivity of 

EEI approach to seismic anomaly, highlight the difference between reservoir and non-reservoir 

and identify hydrocarbon zones. 

4.1 Extended Elastic Impedance  

The initial step in extended elastic impedance method is to determine the best projection angle 

(χ) (called chi angle) for reservoir target parameters. Practically in any EEI study, determining 

the optimum angle for a particular target logs is the key to successful application of EEI and 

should be carefully evaluated. For the purpose of project angle estimation, log attributes which 

were already estimated in chapter 3 are used, namely, VP VS⁄  ratio, bulk modulus(κ), lamé 

constant (λ,µ), water saturation (Sw),  S-Impedance, porosity (ϕ) and so on for cross correlation 

coefficient study. 

The main objective is to cross correlate the petrophysical and elastic parameters from the well 

log data with extended elastic impedance (EEI) values which are also derived from our reliable 

P-wave, S-wave and density log (equation 2.3, 11) to find best chi angle (χ) for each target 

parameters at maximum correlation. 

The EEI log spectrum method is used for cross correlation study. In this method, first we 

generate EEI log spectrum and cross correlate the log reflectivities with the desired reservoir 

parameters to obtain the optimum angle to use. Figure 4.1 illustrates the procedure for 

determining the value for χ (called EEI spectrum method). 
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      Figure 4.1: EEI spectrum procedure for best chi angle determination 

One of the problematic areas in the application of extended elastic impedance is the calculation 

of project angles. Although extensive research have been carried out on this angle calculation 

method, angles estimated from petrophysical data will not give precisely the same optimum 

angles estimated for real seismic data. This is caused both by uncertainties in the seismic 

velocities and angle calculation. Noise, anisotropy effect and velocity error can cause systematic 

errors in chi angle calculation (EEI log spectrum method). 

Moreover, the optimum chi angle depends on the time window over which correlation coefficient 

analysis is carried out. Therefore, for more accurate projection angle estimation for different 

elastic parameters, instead of using the entire log extent (which could potentially include too 

much geological variation), we should focus on optimum time window that cover only zone of 

interest (target area) for better geological consistency. The other option to optimize the response 

is to fulfill the correlation coefficient analysis with desired well logs after removing the low 

frequency trend from logs data. Since low frequency trend sometimes mask lithology or fluid 

information (Sharma, 2013). 
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It is important to note that for different wells with diverse lithology and fluid, the estimation of 

optimum rotation angle may be different, so it can be hard to find exact optimum chi angle for 

multiple wells. To tackle this issue, separate chi angles for both wells were calculated as shown 

in Table 4.1, then some of the angles in the seismic section were reanalyzed and modified to 

obtain best outcome to improve the lithology and fluid separation. 

Whitcombe et al. (2002) demonstrated that “bulk modulus (𝜅) and lamé`s parameter (𝜆) tend to 

lie within an area of EEI space with values of χ from about 10° to 30°”. He also stated that shear 

modulus and VP VS  ⁄ ratio would lies within a range of χ from about -30° to -90° and about 45° 

repectively. “These areas are therefore likely to be good starting points to look for optimum fluid 

and lithology impedance functions, respectively” (Whitcombe et al. 2002). Regarding Table 4.1, 

we can observe that the calculated chi angles are comparable with values stated by Whitcombe. 

 

A        Target Log 𝛘 angle (in degree) Correlation coefficient (%) 

 VP VS⁄  39 0.992 

 SW 43 0.445 

 Bulk modulus 18 0.987 

 Lambda-Rho 24 0.948 

 Mu-Rho -42 0.99 

 Shear Modulus -53 0.983 

 Porosity 42 0.392 

 Poisson`s ratio 34 0.797 

 GR 17 0.571 

 VClay 13 0.531 

 S-impedance -36 0.996 



 

54 
 

B   Target Log 𝛘 angle (in degree) Correlation coefficient (%) 

 VP VS⁄  35 0.98 

 SW 25 0.462 

 Bulk modulus 15 0.978 

 Lambda-Rho 19 0.983 

 Mu-Rho -41 0.99 

 Shear Modulus -56 0.983 

 Porosity - - 

 Poisson`s ratio 29 0.975 

 GR 15 0.84 

 VClay 19 0.632 

 S-impedance -39 0.995 

Table 4.1: Cross correlation study result represents the maximum correlation of target 

logs and corresponding chi angle A) well 11-8, B) well 11-9 

 

Figure 4.2 shows the correlation coefficient versus chi angle between EEI curves with VP VS⁄  

ratio and Sw for well 11-8, respectively. According to this, the maximum correlation coefficient 

for VP VS⁄  and Sw occur at 0.99 (χ = 39°) and 0.445 (χ = 43°), respectively. 

Alternatively we could extract the minimum correlations (i.e. zero crossing) for lithology, 

(χ = −18°) for VP VS⁄  . Any anomalies at this angle then should not be related to the lithology. 

This trick could be a good way to highlight fluid also. 
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Figure 4.2: The correlation coefficients between EEI and a)VP VS⁄ , b) Sw curve for range of 

values of χ (for VP VS⁄  and Sw the highest correlation occur at 0.99 at 39° and 0.445 at 43°) 

A 

B 
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The second step is generating EEI log for each target log at the premium angle of maximum 

correlation according to equation 2.3 (11) (EEI curves is parameterized by the project angle). In 

order to quality control and confirm that selected chi angle would work, we should plot EEI log 

attributes against equivalent well log derived attributes. If they track and well fit, it means that 

our project angle calculations are reliable. 

Figure 4.3 and Figure 4.4 illustrate the EEI logs with target logs for well 11-8 and 11-9 

respectively. It is apparent from these figures that, except for scaling factor (EEI log units are 

impedance); the EEI curves show satisfactory similarity with well log curves particularly in 

reservoir area. As figures show, the high correlation is with the Lambda-Rho, VP VS⁄  ratio and 

bulk modulus in the zone of interest (ZOI) which confirms the capability of the EEI log at these 

angles. These results indicate that we can proceed one step further and use petrophysical 

volumes derived through EEI approach for quantitative interpretation. It is important to note that, 

under the situation of not satisfactory correlation, we should check our data quality and our 

parameters again then redo the process from starting point. 

The EEI log spectrum method did not show good results for porosity in both wells. As Table 4.1 

illustrates, the poor correlation coefficient associated with project angle, make it impossible to 

determine reliable chi angle for porosity from this method.  
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Figure 4.3: Calculated EEI logs superimposed on target logs for well 11-8. EEI log for Lambda-Rho, VP VS⁄   ratio and bulk 

modulus closely resemble the attribute logs generated from the well but the units are impedance (from left to right: Lambda-

Rho, Mu-Rho, bulk modulus, volume of shale, VP VS⁄  ratio, water saturation and GR log). 
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Figure 4.4: Calculated EEI logs superimposed on target logs for well 11-9. EEI log for Lambda-Rho, VP VS⁄   ratio and Mu-

Rho closely resemble the attribute logs generated from the well but the units are impedance (from left to right: Lambda-Rho, 

Mu-Rho, bulk modulus, volume of shale, VP VS⁄  ratio, water saturation and GR log). 
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Another quality control method is EEI log spectrum analysis which shows the EEI computation 

for every angle between -90° and +90°. This approach allows us to see which angle value seems 

most reasonable. Figure 4.5 shows the EEI spectrum analysis for well 11-8.  

 

 

Figure 4.5: EEI log spectrum for well 11-8 shows the EEI computation for every angle 

between -90° and +90°. (There is no difference at (χ = 0°) 

In the next step, the EEI equation (equation 2.3, 11) was utilized again with the same chi angles 

found from cross correlation study and was applied on seismic inversion data to generate 

equivalent pseudo seismic volumes (EEI attributes). Implementation of extended elastic 

impedance to generate the desired volume attributes was performed using TraceMath scripts tool 

on Hampson-Russell software (HRS 9).  

For this purpose, first seismic key volumes, VP, VS, ρ were derived from the input data volume 

(AI and VP VS⁄ ), then EEI equation (equation 2.3, 11) used to project new seismic volume 

corresponding to the chi angles designated for each elastic parameters described in the previous 

step. In order to obtain more accurate results, instead of using constant value 0.25, the Κ value 

was computed directly from the P-wave and S-wave velocity volumes (TraceMath scripts). 

qthelp://help.hampson-russell.com/HRS-9.1.4/Seismic/Seismic_TraceMaths.htm
qthelp://help.hampson-russell.com/HRS-9.1.4/Seismic/Seismic_TraceMaths.htm
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The products is EEI volumes corresponding to different elastic and petrophysical parameters 

such as bulk modulus, VP VS⁄  ratio, LMR,  Sw, etc. which are present in the following pages. The 

results indicate that chi angles obtained in cross correlation study can provide good separation 

between fluid and lithology on the zone of interest.  

Check shot correction and log correlation were carried out for a well to seismic tie. By doing 

this, seismic attributes were studied in comparison with well log data. The present results are 

well defined and delineate gas sand reservoir. 

Figure 4.6 shows the section view of EEI lambda volume (χ = 24°). The equivalent log overlay 

on pseudo seismic volume (EEI volume) represents good fit and confirms inverted EEI result 

(Figure 4.7). It can be seen from the inverted result that the gas sand reservoir has low 

impedance (yellow) encased with high impedance shale (blue) at the well locations. The EEI 

lambda attribute is crisp and distinct within the gas zone encountered by the wells.  

 

Figure 4.6: EEI lambda attribute (χ = 24°) 
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Figure 4.7: Expanded view of EEI lambda attribute around well 11-8 (χ = 24°) 

 

Figure 4.8: VP VS ⁄  EEI attribute (χ = 39°) 
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EEI VP VS⁄  volume (χ = 39°) which shows excellent definition of the gas sand reservoir is 

presented in Figure 4.8. It is apparent from the figure that the correlation between EEI inversion 

result and VP VS⁄  ratio log is interesting and gas sand zone is well defined. 

Figure 4.9 shows the cross plot of acoustic impedance versus EEI VP VS⁄  volume (km s⁄ ∗

g cm3⁄ ). 

 

      Figure 4.9: Acoustic impedance versus EEI VP VS⁄  volume cross plot. 

Figure 4.10 demonstrates a) The cross plot of EEI VP VS⁄  volume versus EEI Lambda-Rho 

volume with cluster covering the gas sand reservoir. The attributes plotted as km s⁄ ∗ g cm3,⁄  the 

observed EEI values are in the range of 4-8 (km s⁄ ∗ g cm3⁄ ) which is typical for moderately 

consolidated rocks (the cross plot is color coded by VP VS⁄  ratio), and b) Cross section of selected 

polygon on seismic section which shows approximate location of hydrocarbon reservoir. Cross 

plotting enables us to enhance recognition of zone of interest and layer properties from the 

inversion data. These in turn could be useful to better understanding and definition of 

hydrocarbon reservoir. 
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Figure 4.10: a) The cross plot of EEI VP VS⁄  volume versus EEI Lambda-Rho volume with 

cluster covering the gas sand reservoir and b) Cross section of selected polygon on seismic 

section 

A 

B 
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Figure 4.11 shows inverted EEI bulk modulus (χ = 17°) overlaid on bulk modulus log. As 

Figure 4.12 shows, the gas sand reservoir has the correct low EEI bulk modulus (yellow) values 

around well 11-8. 

Figure 4.13 and Figure 4.14 illustrate the expanded view of VShale and Sw volumes obtained from 

EEI application respectively. From Figure 4.13 we can see that the inverted results showing good 

correlation with GR log around well 11-9. The target area shows low volume of shale as 

expected from well log analysis. Also as shown in Figure 4.14 we can clearly see the low EEI  

Sw around well 11-8 which is correlates well with water saturation log around well 11-8. 

 

 

Figure 4.11: EEI bulk modulus attribute (χ = 17°) 



 

65 
 

 

Figure 4.12: Expanded view of EEI bulk modulus attribute around well 11-8 (χ = 17°) 

 

Figure 4.13: Expanded view of EEI VClay attribute around well 11-9 (χ = 13°) 
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Figure 4.14: Expanded view of EEI  Sw attribute around well 11-8 (χ = 43°) 

The EEI attributes for shear modulus at (χ = −53°) are presented on Figure 4.15 which correlate 

with shear modulus log (shear modulus is independent of fluid). 

 

Figure 4.15: EEI shear modulus attribute (χ = −53°) 
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5 Discussion 

In this chapter the results of this study will be discussed and a further study with more focus on 

specific area will be suggested. As mentioned in the previous chapter, according to EEI volume 

results, the gas discoveries in the two wells were clearly identified in the EEI sections. Another 

important finding was that similar anomalies are above the reservoir or away from the well 

locations.   

The single most striking observation to emerge from the Lambda and VP VS⁄  EEI attributes is a 

probable prospect area with low VP VS⁄  and Lambda-Rho has been identified close to well 11-8 

location. Anomaly 1 indicates the location of drillable prospect zone (Figure 5.1). Gas 

accumulation is one possible reason for this anomaly, thereby creating an area of interest. This 

zone could, therefore, be recognized in its own right for potential gas production. 

According to the available well report, the lithology down to sand reservoir (which occurs at 

~2416 m) was mainly claystone with no reservoir quality (npd.no). One unanticipated finding 

was that, anomaly 2 was found in above the gas reservoir around well 11-8 location highlighted 

in Figure 5.1. Surprisingly this anomaly also captured by polygon in the cross plot of EEI VP VS⁄  

volume versus EEI Lambda-Rho volume (Figure 4.10). Lack of well log data has limited our 

interpretation ability and makes it difficult to explain this result.  

The EEI lambda-Rho section has a normalized color scale. In a QI study we aim to relate, 

calibrate or connect some properties (quantitative) between our inversion products (in this case 

LR) to actual values calculated at well locations. The EEI inversion results could suggests that a 

weak link may exist between anomaly 2 and gas leakage from the reservoir. One possible 

explanation is due to some amount of gas movement from the sandstone reservoir to above 

formation causing this kind of anomaly. Gas leakage will yield deem seismic data (it means we 

are unable to see any reflectors in leakage area). 
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      Figure 5.1: EEI Lambda-Rho (LR) at optimum chi angle 

This type of anomalies should always be assessed in 3D seismic within the context of structure, 

however since 3D seismic was not available for this study, by only judging from the inverted 

section; it doesn’t seem to be the leakage case. It is important to bear in mind that the 

interpretation of LR attribute alone is not easy since it can be interpreted as a range of lithologies 

or lithologies with different pore fluid material, hence caution must be applied, as the findings 

might not be transferable to facts. Anomaly 2 can be better interpreted if we compare it on MR 

(EEI Mu-Rho) values at the same place. There are, however, other possible explanations like 

lithology effect witch are discuss in the following pages as the most likely causes of anomaly 

number 2.  

As can be seen from the Figure 5.1 a flat spot could be identified below the gas discoveries (well 

11-8 location) (anomaly number 3). Generally “when a horizontal reflector crosses dipping 

stratigraphy we may have an instance of a horizontal fluid contact making an impedance contrast 

with the surrounding geology” (McQuillin, R., Bacon, M., Barclay, W, 1984). It seems possible 

from EEI inversion outcomes that this result is due to gas/water interface since, as discussed 

earlier, the velocity and density for gas filled reservoir are normally much lower than for water 
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filled reservoir. Therefore this anomaly could be related to circumstantial evidence for 

hydrocarbons accumulation. However this is weak interpretation again, according to Norwegian 

Petroleum Directorate (npd.no) and published wellbore report, since they have observed 

gas/water contact in the well, then we cannot expect flat spot deeper than the contact. Anomaly 3 

follows the structural dips and is most likely due to geology aspects (stratigraphy). It might be 

related to presence of coal in Åre formation (oldest penetrated formation) which contains some 

amount of gas. 

Another interesting anomaly is the one in the synclines adjacent to structure traps defining the 

reservoirs (anomaly number 4 in Figure 5.1). It seems the anomalies in the syncline are 

syntectonic (Alaei, 2013). This means that while the faults were moving the blocks the sediments 

deposited, so we can see the thickness variations which are not caused by erosion at the top 

because the reflectors are not truncated. It seems that this anomaly couldn't be directly related to 

hydrocarbon prospect and geology is the most likely cause of this occurrence. 

One question that needs to be answered, however, is: are those similar anomalies above or below 

the gas sand reservoir area related to another reservoir, hydrocarbon accumulation/leakage, or 

they are caused by lithology effect or other sources? (Figure 4.6 and Figure 4.8). As discussed 

above, there are several possible explanations for this. Another one would be that presence of 

soft shale/hot shale, shallow overburden or digenetic effect that may have caused observed low 

values for lambda-Rho. We should also pay attention to the extent of the anomaly. Although we 

are looking on a 2D line but the anomaly (anomaly 2) is limited and usually shale lithologies 

extended spatially in larger areas than sands (Alaei, 2013). In addition, the reason for low VP VS⁄  

value outside the hydrocarbon reservoir may have something to do with layers which are well 

consolidated/cemented. In order to overcome the similar anomalies challenge we should study 

EEI attributes in combination with well log data. This combination provides some support for 

EEI attributes and well log property correlation. 

In case of lack of well log data or when data do not match with EEI anomalies, we cannot trust 

inversion result. However this could provide abundant room for further progress and evaluate the 

risk factors for each of the uncertain area in the prospect zone. It is important to bear in mind the 

high uncertainty in these respond demand that data interpreted with great caution because of 
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probable pitfall. That is to say, the well logs should be used as quality control at the well 

location; if the well logs and associated EEI attributes reasonably match then we can confidently 

link the impedance to the reservoir quality. For instance, as shown in Figure 4.6 and Figure 4.8, 

our rock physic study represent that low VP VS⁄  and Lambda-Rho correspond to gas discoveries 

which are perfectly fit with related EEI volumes. 

Table 5.2 summarizes the finding results from extended elastic impedance study. From the Table 

5.2 we can see that the gas discoveries in two wells are identified in most of the EEI sections. In 

addition, other anomalies which have discussed earlier are also repeated on some EEI sections. 

Table 5.1: Summarize presence or absence of gas discoveries and observed anomalies 

within different EEI inversion volumes. 

This research has in turn raised many questions in need of further investigations. It is therefore, 

recommended that further research be undertaken in the following areas:  

Further work needs to be carried out to establish scaled reflectivity seismic spectrum at each well 

location and cross correlate with the desired reservoir reflectivity parameter to determine the 

optimum χ angle. By comparing the scaled reflectivity method along with EEI spectrum method 

(method used in this work) we are able to evaluate the probable errors, fix possible lapse and 

obtain strongest anomaly at optimum fluid angle. To do this, we should have angle gather 

 EEI 

𝐕𝐏 𝐕𝐒⁄  

EEI Lambda-

Rho (LR) 

EEI Mu-

Rho (MR) 

EEI bulk 

modulus 
EEI 
𝐒𝐖 

EEI 
𝐕𝐂𝐥𝐚𝐲 

Gas discovery in 

well 11-8 
* * * * * * 

Gas discovery in 

well 11-9 
* * * * * * 

Anomaly 1 * * * * * * 
Anomaly 2 * *  *   
Anomaly 3 * * * *  * 
Anomaly 4 * *  *   
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volume and determine accurate intercept (A) and gradient (B). In addition, it might be possible to 

study on sensitivity of EEI outcomes when Κ values vary in the future investigations. 

Future research should concentrate on the investigation of an algorithm generated from Gaussian 

statistical models of AVO intercept and gradient data for the purpose of determining the most 

anomalous seismic samples. Transformation of intercept and gradient to extended elastic 

impedance could potentially provide more insights for anomaly hunting and identification of the 

AVO background trend. It would be interesting to compare the anomalousness of EEI results 

with intercept and gradient outcomes. 

Recent studies have revealed the weakness of EEI application for fluid discrimination in 

carbonate reservoir (Peng at el. 2008). It has been demonstrated that both gas bearing zone and 

water bearing zone have low EEI values in carbonate reservoir even under optimal project angle. 

A future study could assess and develop recently published approach called multi angle elastic 

impedance (MEEI) and investigate the change trend of EEI series within the range of incident 

angles for gas and water differentiation.  
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6 Conclusion  

Well log data can provide valuable information in defining a reservoir and other important 

intervals in the well. Another key element is to understand the rock physics at the well locations. 

Integration of petrophysics with rock physics allows geoscientist to identify seismic anomaly 

associated with hydrocarbon accumulation or other reasons such as lithology effects and 

intelligently assess the risk and opportunities involved. 

In recent years the inversion technique were well proven as worthy effort to justify placement of 

the well. Higher resolution outcomes with much less ambiguity resulting from integration study 

of extended elastic impedance (EEI) inversion along with additional pre stack attributes and 

different inversion techniques can give rise to a better reservoir valuation. More accurate results 

can lead to reducing the risk for successful field development by placing new wells in the most 

appropriate trajectory. 

There are two main goals in interpreting inversion data: lithology and fluid identification (called 

QI or LFP), the main link for us to validate the interpretation or reduce uncertainty or address 

non-uniqueness of inversion is to link our interpretation to well data through rock physics. 

In this study, well logs, rock physics cross plots and seismic inversion have been investigated for 

hydrocarbon and analyzed by extended elastic impedance method (EEI). 

This study has given an account of and the reasons for the widespread use of extended elastic 

impedance (EEI) application for pre fluid and lithology prediction. The purpose of the current 

study was to assess how EEI inversion incorporates with petrophysical data and rock physics 

analysis to discriminate between lithology and fluid content and thereby improve reservoir 

characterization. 

The results of this research support the idea that EEI can enhance interpretability and is a feasible 

approach to obtain detail reservoir delineation. EEI successfully identified and delineated gas 

sand reservoir in the study areas. Taken together, these results suggest the preference of using 
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multiples EEI attributes instead of single fluid and lithology attributes for the prospect 

assessment. 

The most evident finding of this study would be that the robust EEI results suggest this approach 

as a really efficient and worthy effort for hydrocarbon differentiation and generating new 

prospects in calstic environment (anomalies away from the well locations); however, it is 

important to emphasize that for final decision making and more detailed prediction of specific 

reservoir properties, seismic inversion (simultaneous inversion) seems to be more appropriate. 

Also more detailed study with different techniques (e.g. AVO attributes) needs to be undertaken 

to evaluate possible options and authenticate EEI outcomes. In other words, EEI can be an 

excellent precursor for more detailed seismic inversion studies. 

Finally, a number of caveats need to be noted regarding the present study. First, correlation 

coefficient study for different curves is a major step in EEI application and must be viewed with 

great care as any mistake in pervious calculation will ruin the correlation analysis. Second, the 

rapidly varying geology (both vertically and laterally) often makes the EEI interpretation as a 

difficult task. We should note that EEI inversion technique need additional information to 

enhance delineation of reservoir. Under this situation impedance value of the non-reservoir areas 

considerably overlap those of reservoir sand area and are easily misinterpreted. We should 

consider the EEI inversion technique cannot stand alone and to avoid probable pitfalls, additional 

information about rock physics of the area is required. 
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Appendix A: Various equations for shale volume calculation  

Linear response ( 𝑉𝑆ℎ𝑎𝑙𝑒 =  𝐼𝐺𝑅 ): 

𝑉𝑆ℎ𝑎𝑙𝑒 =  𝐼𝐺𝑅 =  
𝐺𝑅𝑙𝑜𝑔 −  𝐺𝑅𝑚𝑖𝑛
𝐺𝑅𝑚𝑎𝑥 −  𝐺𝑅𝑚𝑖𝑛

 

𝐺𝑅𝑚𝑖𝑛= minimum gamma ray reading within clean facies (sand unit) 

𝐺𝑅𝑚𝑎𝑥= maximum gamma ray reading within clay rich facies (shale unit) 

 

The nonlinear responses: 

Larionov (1969) for Tertiary rocks : 

𝑉𝑆ℎ = 0.083 (22.7𝐼𝐺𝑅 − 1) 

Steiber (1970): 

𝑉𝑆ℎ= 
𝐼𝐺𝑅

3 − 2 × 𝐼𝐺𝑅
 

Clavier (1971): 

𝑉𝑠ℎ =1.7 − [(3.38 − (𝐼𝐺𝑅 + 0.7)2)]
1
2 

Larionov (1969) for older rock: 

𝑉𝑆ℎ = 0.33 × (22𝐼𝐺𝑅 − 1)
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Appendix B: 

 

Figure B.1: From left to right:VP VS⁄ , P-Impedance ,S-Impedance and Poisson Impedance log for well 11-8. Blue rectangles 

represent the hydrocarbon (gas) zones. 
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Figure B.2: From left to right:VP VS⁄ , P-Impedance ,S-Impedance and Poisson Impedance log for well 11-9. Blue rectangle 

represents the hydrocarbon (gas) zones. 
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Figure B.3: From left to right: Lambda– Rho, lamé constant, Mu-Rho and shear module log for well 11-8. Blue rectangles 

represent the hydrocarbon (gas) zones 
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Figure B.4: From left to right: Lambda– Rho, lamé constant, Mu-Rho and shear module log for well 11-9. Blue rectangle 

represents the hydrocarbon (gas) zones.  
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Figure B.5: Calculated EEI logs superimposed on target logs for well 11-8. 
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Figure B.6: Calculated EEI logs superimposed on target logs for well 11-9. 
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