
Programmable Microcontroller
Peripherals

Anders Ruden

Master of Science in Electronics

Supervisor: Bjørn B. Larsen, IET
Co-supervisor: Tor Erik Leistad, Atmel Norway AS

Department of Electronics and Telecommunications

Submission date: June 2013

Norwegian University of Science and Technology

Problem Statement

Microcontroller hardware peripherals implement fixed, specific functions or protocols

which cannot be changed once silicon is made. A typical microcontroller will have

several peripherals multiplexed on the same pins, leaving some of the microcontroller

hardware unused in the end application.

A study is proposed to investigate if peripherals can be substituted by embedded pro-

grammable CPUs, which emulate features normally supported by a hardware mod-

ule, such as SPI, UART, TWI, or USB. The study should propose a specific solution

and implement this in HDL. One or more of the protocols should be implemented

to demonstrate the selected solution. The resulting area, power consumption, and

performance should be compared to a traditional hardware solution.

Acknowledgements

I would like to acknowledge the people that have helped me to complete this master

thesis.

First, I would like to thank my supervisor at Atmel, Tor Erik Leistad. He have been

extremely helpful by explaining all my questions in the smallest detail, in a manner

that is easily understandable. He have also given me good feedback on my work and

guided me when i have been stuck. Without him it would have been impossible for

me to finish this thesis.

In addition, I would like to thank my supervisor at NTNU, Professor Bjørn B Larsen

for the help and feedback he have given me throughout this school year on both the

preliminary work and the master thesis.

Last, I will thank my family and friends who have been supporting me throughout

the years of my master’s studies.

ii

Abstract

This thesis is a continuation of work done in a specialization project. The result from

the preliminary work have been used to implement a programmable peripheral proces-

sor in HDL that can replace non-programmable hardware modules. The implemented

solution have then been tested to find out if it is capable of doing the most basic op-

erations that a UART protocol require to do parallel-to-serial and serial-to-parallel

conversions. The results of the implementation and testing have been analysed and

the performance, area and power consumption have been presented. The resulting

performance and area have also been compared to traditional hardware solutions.

The results from the tests demonstrates that the presented peripheral processor is

capable of doing the basic operations that is required to do parallel-to-serial and serial-

to-parallel conversions. However, the area of the peripheral processor is significantly

larger than the total area of multiple non-programmable hardware modules. The

result of this is that the cost of utilizing a peripheral processor will be greater than

with existing solutions.

Sammendrag

Denne oppgaven er en fortsettelse p̊a arbeidet gjort i et fordypningsprosjekt. Re-

sultatet fra forarbeidet har blitt brukt til å implementere en proggrammerbar per-

ifer prosessor i HDL som kan erstatte ikke-programmerbar maskinvare. Den imple-

menterte løsningen har blitt testet for å finne ut om den er i stand til å gjøre de

mest elementære operasjonene som behøves for å gjøre seriell-til-parallell og parallell-

til-seriell datakonvertering p̊a samme m̊ate som en UART protokoll. Resultatet av

implementasjonen og testingen har deretter blitt analysert og ytelsen, størrelsen og

strømforbruket til prosessoren har blitt presentert. Ytelsen og strømforbruket har

ogs̊a blitt sammenlignet med tradisjonelle ikke-programmerbare løsninger.

Resultatene fra testene viser at den gjeldene prosessoren er i stand til å gjøre de

mest elementære operasjonene som kreves for seriell-til-parallell of parallell-til-seriell

convertering. Imidlertid, viser resultatene ogs̊a at prosessoren er betydelig større enn

størrelsen til flere ikke-programmerbare maskinvare moduler sammenlagt. Dette fører

til at ogs̊a kostnaden til den perifere prosessoren vil bli betydelig større en eksisterende

løsninger.

Contents

Problem Statement i

Acknowledgements ii

Abstract iii

Sammendrag iv

List of Figures ix

List of Tables xi

Abbreviations xiii

1 Introduction 1

1.1 Motivation . 1

1.2 Approach . 2

1.3 Outline . 2

2 Theory 5

2.1 Hardware Versus Processor . 5

2.2 Processor Architecture . 6

2.3 First Peripheral Processor . 8

2.4 USART . 9

Clock Generation . 9

Registers . 11

Frame Format . 14

Transmitter . 14

Receiver . 15

2.5 AMBA Bus . 17

AMBA APB . 18

3 Summary of Preliminary Work 21

3.1 Emulation . 21

3.2 Instruction Set . 22

3.3 Architecture . 24

3.4 Performance . 26

v

Contents vi

3.5 Cost Analysis . 27

4 Procedure 29

4.1 Verilog Implementation . 29

4.2 Test Programs . 31

4.3 Synthesis . 31

5 Results 33

5.1 CPU Core . 33

Register File . 36

ALU . 37

Instruction Decoder . 37

Branch Control and Program Counter 37

Program Memory . 38

5.2 External Modules . 38

Internal Data Bus . 38

APB Bus . 41

Data Stack . 41

Control and Status Registers . 42

Data In/Out Registers . 42

IRQ Line . 43

Timer/Counter . 43

Input/Output Port . 44

5.3 Instructions Implemented . 46

5.4 Simulation . 47

5.5 Synthesis Reports . 48

5.6 Net List Reports . 50

6 Discussion 53

6.1 Instruction Set . 53

6.2 CPU Core . 54

Pipelining . 54

Negative Numbers . 54

Shared Program Memory and Data Stack 54

PUSH and POP Instructions . 55

JUMP Instruction . 56

6.3 Exteral Modules . 57

Internal Data Bus . 57

Data Stack . 57

Control and Status Registers . 58

Data In/Out Registers . 58

Timer/Counter . 59

IRQ Line . 59

Input/Output Port . 59

6.4 Simulation . 60

Contents vii

Test of Instructions . 60

UART Test Program . 60

6.5 Performance . 62

Synthesis Timing . 63

Netlist Timing . 63

Speed of Operations . 65

Power . 66

Area and Cost . 67

Design For Test Coverage . 68

7 Conclusions 69

A Simulation results 71

A.1 Simulation of instructions . 71

A.2 UART simulation . 75

B Simulation programs 79

B.1 Test of instructions . 79

B.2 UART program . 80

C Verilog Code 85

C.1 Register File . 85

C.2 ALU . 86

C.3 Instruction Decoder . 88

C.4 Branch control . 96

C.5 Program Memory . 98

C.6 Internal Data Bus . 99

C.7 Data Stack . 102

C.8 Control and Status Registers . 104

C.9 Data In/Out Registers . 105

C.10 IRQ Line . 106

C.11 Timer/Counter . 107

C.12 Input/Output Port . 109

C.13 Topmodule Core . 111

C.14 Topmodule Peripheral Processor . 113

C.15 Parameters . 116

Bibliography 117

List of Figures

2.1 A Simple Processor . 7

2.2 Peripheral Processors in the CDC 6600 supercomputer [1] 8

2.3 Block diagram of a USART module 10

2.4 Frame Formats [2] . 14

2.5 Start Bit Sampling [2] . 15

2.6 Data and Parity Bit Sampling [2] . 15

2.7 Stop Bit Sampling and Next Bit Sampling [2] 16

2.8 A typical AMBA system [3] . 17

2.9 Write and read transfer for APB bus [3] 19

3.1 PPU Block Diagram [4] . 25

3.2 Excerpt from the UART C-code . 26

5.1 PPU Core Block Diagram . 34

5.2 PPU Block Diagram . 39

A.1 Branch and jump waveform . 71

A.2 Register operations waveform . 72

A.3 Stack operations waveform . 73

A.4 In/out and timer operations waveform 74

A.5 Checking for status bit . 75

A.6 Calculating parity bit . 76

A.7 Shifting data out . 77

A.8 Shifting data in . 78

ix

List of Tables

2.1 Line Control Register . 11

2.2 Line Status Register . 12

2.3 Interrupt Register . 13

2.4 Divisor Register . 13

2.5 AMBA APB signals . 18

3.1 16 bit opcode . 23

3.2 8 bit opcode . 24

3.3 Sum of logic . 27

5.1 Signal description . 35

5.2 Signal description . 36

5.3 Signal description . 40

5.4 Signal description . 41

5.5 Signal description . 43

5.6 Description of registers in the timer 44

5.7 Description of Control Register . 44

5.8 Gives the address used for different modes and outputs 45

5.9 Signal description . 45

5.10 Included instructions . 46

5.11 Area report . 48

5.12 Setup timing report . 48

5.13 Clock Gating report . 48

5.14 Design For Test Coverage . 49

5.15 Setup Timing report . 50

5.16 Hold Timing report . 51

5.17 Time Based Power . 51

xi

Abbreviations

AHB Advanced High-performance Bus
ALU Arithmetic Logic Unit
AMBA Advanced Microcontroller Bus Architecture
APB Advanced Peripheral Bus
ASB Advanced System Bus
ATPG Automatic Test Pattern Generator
CPU Central Processing Unit
DMA Direct Memory Access
FIFO First In First Out
HDL Hardware Description Language
IRQ Interrupt ReQuest
LCR Line Control Register
LIFO Last In First Out
LSB Least Significant Bit
LSR Line Status Register
MSB Most Significant Bit
NAND2 Not AND gate with 2 inputs
PPU Peripheral Processing Unit
RTL Register Transfer Level
SPI Serial Peripheral Interface
SRAM Static Random Access Memory
TWI Two Wire Interface
UART Universal Asynchronous Receiver and Transmitter
USART Universal Synchronous and Asynchronous Receiver and Transmitter
USB Universal Serial Bus

xiii

Chapter 1

Introduction

This thesis is a continuation of the preliminary work done in a specialization project

the autumn 2012. Some parts of this thesis will therefore include the same content

as given in the report for the preliminary work. It will be informed when the content

is from the preliminary work. The motivation is the same for this thesis and the

preliminary work [4].

1.1 Motivation

Data is often needed to be transferred between a microcontroller and other devices.

A common way to do this is by using a data transfer protocol that do a parallel to

serial conversion and then sends the data serially between the external device and

the microcontroller. There are several different protocols that support this type of

parallel to serial conversion. USART, SPI, TWI and USB are four common protocols.

Each protocol have separate advantages and limitations and is therefore not suitable

in the same situations.

A microcontroller have to support several different transfer protocols. Today this is

done on Atmel microcontrollers by having different hardware modules to control the

various data transfer protocols [2]. The disadvantage of this is that the microcontroller

is locked to only support the predefined data transfer protocols because these modules

1

Chapter 1. Introduction 2

are not programmable. If a user want to do data transfer with a protocol that is not

supported, the user have to program the CPU to control the data transfer. This is

complicated and uses a lot of CPU resources which could have been used for other

tasks, and is therefore not desirable. An alternative solution can therefore be to

implement a programmable peripheral processor to control the data transfer instead

of non-programmable hardware.

1.2 Approach

Based on the problem description and the result of the preliminary work, the following

bullet points summarizes the work that is done in this thesis:

• A peripheral processor is implemented in HDL. The results from the pre-

liminary work are used as a specification to implement a peripheral processor

in HDL.

• Simulations are run on the Implemented Solution. A test program that can

simulate the behaviour of a peripheral protocol is created.

• The Implemented Solution is analysed. The results are analysed to present

the performance, area and power consumption of the peripheral processor.

• The implemented Solution is compared to Existing Modules. The perfor-

mance, area and power consumption of the implemented solution are compared

to existing hardware modules.

1.3 Outline

The report presents first the theory required to understand the content of the thesis.

Next a summary of the preliminary work is presented in chapter 3. The summary

includes the most important results needed to give a specification of the peripheral

processor. Furthermore, chapter 4 gives a detailed description of the different steps in

Chapter 1. Introduction 3

the work towards the presented solution. The results of the implemented peripheral

processor is presented in chapter 5. Chapter 6 describes the functionality and explains

the reasons for the choices made. Last, the conclusions is given in chapter 7.

Chapter 2

Theory

The theory in chapter 2.1, 2.2, 2.3 and 2.4 is the same as in the preliminary work.

Chapter 2.5 summarizes the AMBA APB bus specification.

2.1 Hardware Versus Processor

There are two different methods to do data processing. One is by using a processor

and the other is by using non programmable hardware modules. Non programmable

hardware modules consists of logic gates such as AND, OR, XOR and NOT gates.

These logic gates are set up in order to do one specific task or several tasks simul-

taneously. The advantage of a non programmable hardware module is that it is

significantly faster than a processor and can do several tasks simultaneously. It is

also considerable cheaper to produce non programmable hardware modules if the

task to be solved are simple. However, when a non programmable hardware module

is produced, it can not be changed. If it is a requirement for another or a different

function, a new module have to be produced. This is where a processor have it biggest

advantage.

A processor has the same building blocks as non programmable hardware, that is logic

gates. The difference is that the processor can perform different tasks decided by the

program on the processor. The advantage of this is that a processor can do lot of

5

Chapter 2. Theory 6

different tasks on the same circuit by loading a different program to it. Nevertheless,

a processor is huge and costs a lot compared to simple hardware modules. In addition,

the processor can only do one task at a time and will often need long time to complete

a task.

Because of the drawbacks of a processor, many microcontroller producers have con-

cluded that using non programmable hardware is the best solution for serial com-

munication with external devices. This Includes, among others, Atmel [2], Texas

Instruments [5] and Energy Micro [6].

2.2 Processor Architecture

There are many different types of processors, but they all have some mutual compo-

nents that are essential for the processor to be able to operate. Figure 2.1 gives an

example of a simple processor.

The Arithmetic Logic Unit (ALU) is the component that does calculations and op-

erations on the data. The two inputs A and B are the data inputs and FS is the

function select input. The FS input selects what function to be done with the data

on input A and B. This function can for example be to add data A with data B. The

result is given on the output F. The V, C, N and Z signals are status bits that give

information about the data on the output F.

V: Overfow Indicator
C: Carry Flag
N: Negative Flag
Z: Zero Flag

The register file is the temporary memory where the data currently being processed

is stored. AA and BA gives the data address of the data to be placed on the data bus

A and B. DA gives the address of where in the register to write the data from the

ALU. WE is the write enable signal and is set high only if the data on the D Data

bus is to be stored. The A Data, B Data and D Data bus all have the same width

that is given by the width of the registers.

Chapter 2. Theory 7

Figure 2.1: A Simple Processor

The instruction register receives an instruction by the program memory. This instruc-

tion is then decoded by the instruction decoder and then the instruction decoder sets

all the pins to the value corresponding to the instruction to be executed. For example,

an instruction could be to add register 1 with register 2 and store the added value in

register 3. This would result in the following events:

1: The instruction register will be loaded with the instruction.
2: The instruction decoder will decode the signal in the.

instruction register and set its outputs.
3: The outputs are: DA=3, BA=2, AA=1, WE=1, MS=0, FS=ADD

PL=0, JB=0, and BC=0.
4: The instruction will be executed.

The program memory is where the program to be executed is stored. The program is

as a list with all the instructions stored in the order they are to be executed in. The

program counter is a pointer that points to the instruction that is to be executed.

For each instruction executed, the program counter is incremented with one and the

Chapter 2. Theory 8

next instruction will be executed.

The branch control is controlling the program counter. If PL is set to 1, a branch or

jump is called. JB determines if it is a branch or jump. If JB is set to 0, the program

counter is loaded with the data on the A Data bus. If JB is set to 1, a conditional

branch is called. BC will then select the branch condition from the status bits.

2.3 First Peripheral Processor

The first computer that used a peripheral processor to control Input/Output signals

was the CDC 6600 [7] [1]. The CDC 6600 was a supercomputer developed by Seymour

Cray for the firm Control Data Corporation in 1967. This supercomputer had one

CPU and ten identical peripheral processors. The Peripheral processors was much

smaller than the CPU. Each peripheral processor had a register that could store 4096

12-bit words and a repertoire of 62 instructions. Each peripheral processor also had

access to the central storage and access to all the 12 peripheral channels. Figure 2.2

gives an illustration of how the Peripheral Processors are included in the CDC 6600

computer.

Figure 2.2: Peripheral Processors in the CDC 6600 supercomputer [1]

Having ten independently constructed processors would use a lot of area and cost a

lot. Therefore did each peripheral processor actually share one ALU. This could be

done because of the time needed to read and write to the registers. For example each

peripheral processor would use 1000 nano seconds to add the value register in register

A to the value in register B and store it in register C. But the ALU would actually

Chapter 2. Theory 9

only use 100 nano seconds to perform the add operation. For that reason, one ALU

could be shared between 10 processors to maximize its efficiency. Each peripheral

processor was given a time slot where it had access to the ALU.

2.4 USART

The functionality of the USART is extracted from [2] and [8]. Universal Synchronous

and Asynchronous Receiver and Transmitter (USART) is a popular method for trans-

mitting serial data. Its main features, among others, is that it can switch between

synchronous and asynchronous communication and it can have different length on the

data frames. Synchronous operation uses a clock and data line while there is no sepa-

rate clock accompanying the data for asynchronous transmission. Both transmission

and reception can occur at the same time. This is known as full duplex operation.

The USART consists of three main modules that is a transmitter, a receiver and a

baud generator. Additional the USART also have registers for storing status flags

and data. A overview of a USART is given in figure 2.3

Clock Generation

The USART can operate on several different clock frequencies and baud rates. The

clock frequency decides the baud rate of the USART. When the USART operates as

a master, the user have to set the baud rate of the USART before it can be activated.

This is done by writing a value to the Divisor Register. The Baud Generator will

then use this value to calculate the baud rate. The baud rate is a function of both

the value in the Divisor Register and the CPU clock speed. Equation 2.1 gives the

formula for calculating the Divisor value if the preferred baud rate is known. The

baud rate can commonly range from 2400 bit/s to 1 Mbit/s depending on the clock

frequency the master is operating on.

DivisorV alue =
ClkCPU

16 ∗ (BaudRate)
− 1 (2.1)

Chapter 2. Theory 10

Figure 2.3: Block diagram of a USART module

Chapter 2. Theory 11

Registers

There are several registers in the USART for storing the different control signals and

status signals. The different registers are listed in table 2.1, to table 2.4.

LCR
Bit number Function

7 Transmit Data Bit 8
When bit 5 in LCR is set this bit is the 9th data bit of
the transmitted character.

6 Receive Data Bit 8
When bit 5 in LCR is set this bit is the 9th data bit of
the received character.

5 9 Bit Characters
0 = 5 to 8 bits character length.
1 = 9 bits character length.

4 Even Parity
0 = enable odd parity
1 = enable even parity

3 Parity enable
0 = send no parity bit after data bits
1 = generate or check a parity bit after data bits.

2 Stop bits
0 = transmit 1 stop bit after data bits are sent
1 = transfer 2 stop bits.

[1:0] Character length
00 = transmit 5 bits of data per frame
01 = transmit 6 bits of data per frame
10 = transmit 7 bits of data per frame
11 = transmit 8 bits of data per frame

Table 2.1: Line Control Register

Chapter 2. Theory 12

LSR
Bit number Function

7 Error flag
0 = The receive FIFO has no errors.
1 = the receive FIFO has parity, farming, or break con-
dition errors.

6 Transmitter empty flag
0 = transmitter is shifting data out to the serial line.
1= the transmit FIFO and transmit shift register are
both empty.

5 Transmit FIFO empty flag
0 = the transmit FIFO has at least 1 peace of data
remaining.
1 = the transmit FIFO is empty

4 Break indication
This is set to 1 if the receiver detects a string of 0 for
longer than a full word transmission time. Under this
condition the FIFO is loaded with a 0x00 character and
the receiver remains idle until it detects a valid start bit.

3 Farming error
This is set to 1 when the receiver detects an invalid stop
bit.

2 Parity error
This is set to one when the receives character has an
incorrect parity bit.

1 Overrun error
This is set to 1 when the receiver FIFO is full and a
completed character in the receive shift register is de-
stroyed.

0 Receiver data ready
0 = the receive FIFO is empty
1 = data is ready to be read from the receive FIFO.

Table 2.2: Line Status Register

Chapter 2. Theory 13

Interrupt Register
Bit number Function

7 USART Mode Select
0 = Asynchronous operation
1 = Synchronous operation

6 Enable Receiver Line status Interrupt
Set this bit to 1 to enable this interrupt.

5 Enable Transmit FIFO Empty Interrupt
Set this bit to 1 to enable this interrupt.

4 Enable Receive Data Available Interrupt and
Timeout Interrupt
Set this bit to 1 to enable this interrupt.

[3:1] Interrupt ID
These bits are used to identify the highest priority of
the interrupts

1 Interrupt pending
0 = an interrupt is pending
1 = there are no interrupts

Table 2.3: Interrupt Register

Divisor Register
Bit number Function

[15:0] Baud Rate

Table 2.4: Divisor Register

Chapter 2. Theory 14

Frame Format

When there is no data to be sent, the serial line is high. The first bit of a frame is

the start bit. This bit is always low and one clock cycle long. The next bits are the

data bits and these bits can vary from 5 to 9 bits. The least significant bit is sent

first and the most significant bit is sent last. The bit following after the data bits is

a parity bit only if parity is enabled in the Line Status Register. Last there is a stop

bit and can be defined as one or two clock cycles long. The stop bit is always high.

The stop bit can immediately be followed by a new start bit if there is more data to

be transferred. If there is no more data to be transferred the line will stay high.

Figure 2.4: Frame Formats [2]

St Start bit, always low.

(n) Data bits (0 to 8).

P Parity bit, always high.

Sp Stop bit, always high.

IDLE The line is high when there is no transfer.

Transmitter

For transmitting signals with the USART the processor first have to set the flags in

the LCR and IR registers so that the USART operates whit the correct mode. The

baud rate also have to be set before a transmission can be started. When the baud

rate and the control flags has been set, the processor can transmit data by writing to

the transmitter address as it was a memory space.

When the USART receives data it places the data into a FIFO buffer. The trans-

mitter pops data from the FIFO to a shift register and the shift register performs a

parallel to serial conversion by shifting data out on the serial line for transmission.

Chapter 2. Theory 15

The transmitter also generates the start bit, parity bit, and stop bit. When the trans-

mission is complete, the transmitter sets the Transmitter Empty flag to 1 to indicate

that the transmission is complete.

Receiver

The receiver is more complex than the transmitter. The receiver constantly monitors

the receive serial line. When the receiver notices that the line goes low, it starts a

sampling process to verify that it is a valid start bit. This sampling is done with a

frequency that is 16 times faster than the baud rate. When the start bit goes from

high to low the receiver will do 3 samples of the start bit. These samples will be done

on sample 8, 9 and 10. the receiver will then compare the 3 samples and if two or

more of the samples are logical low, the start bit is considered as a valid start bit.

If only one of the samples are logical low, the start bit is considered as a noise spike

and the receiver starts looking for a the next high to low transition. An illustration

of the sampling process is given in figure 2.5.

Figure 2.5: Start Bit Sampling [2]

If the start bit is considered as a valid start bit, the data recovery can begin. For

each data bit received, the same sampling that was done with the start bit is done

with all the bits received. The sampling of data bit and parity bit is the same and is

illustrated in figure 2.6

Figure 2.6: Data and Parity Bit Sampling [2]

The same sampling is done for the stop bit. But there is a difference after the last

sample. After the 10th sample is done, the receiver is immediately ready for a new

Chapter 2. Theory 16

high to low transition that indicating a new start bit. Figure 2.7 illustrates the

sampling of the stop bit and the earliest possible beginning of a new start bit. The

first point where a new start bit can occur is on the point marked (A), and (B) marks

a stop bit of full length.

Figure 2.7: Stop Bit Sampling and Next Bit Sampling [2]

The reason for the variable length for the stop bit is because of the possibility for

asynchronous transmission. The transmitter and receiver does not necessary operate

at the exact same clock frequency. If the transmitter is sending frames at too fast bit

rate, the variable stop bit length will minimize the difference. If the transmitter is

sending frames too fast or too slow compared to the internally generated baud rate,

the receiver will not be able to synchronize the frames. This will only be noticed if

the receiver expects a stop bit, but the received bit is logical low. When that happens

the Farming Error flag will be set in the Line Status Register. If the USART is using

synchronized transmission, the transmitter will send a clock to the receiver. The data

reception will have the same protocol for sampling data, but there will not be any

mismatch between the transmitter and receiver baud rate.

After one frame is shifted in to the receive Shift Register, the received frame is pushed

in to the receive FIFO and the Receiver Data Ready flag is set to one. This tells the

processor that at least one data frame is ready to be read. The receiving operation

can continue and new frames can be pushed into the FIFO. If the FIFO gets full and

a frame is written over a frame that yet is to be read by the processor, the Overrun

Error flag is set. If the parity bit does not match the received data the Parity Error

flag will be set.

Chapter 2. Theory 17

2.5 AMBA Bus

The Advanced Microcontroller Bus Architecture (AMBA) is a standard designed for

on-chip communication on high performance embedded microcontrollers [3]. The

AMBA specification is divided into three different buses:

• Advanced High-performance Bus (AHB)

• Advanced System Bus (ASB)

• Advanced Peripheral Bus (APB)

The AMBA AHB and ASB are in general used for the main bus system in a micro-

controller. The AHB is for high-performance, high clock frequency system modules

and is the most advanced bus of the three different AMBA buses. The ASB is an

alternative for the AHB where the high performance of the AHB is not required. The

AMBA APB is for peripheral modules and is optimized for minimal power consump-

tion. Figure 2.8 gives an overview of how a typical AMBA system is connected.

Figure 2.8: A typical AMBA system [3]

Chapter 2. Theory 18

AMBA APB

The AMBA APB is a bus optimized to be used with peripheral modules and is the

most relevant AMBA bus for this thesis. The APB is connected to the main bus via

a bridge that handles the communication between the main bus and the APB. All

the signals on the APB is controlled by a master connected to the main bus and all

the peripheral modules are connected as slaves to the APB. A big advantage with

the APB is that it is static when not in use and will therefore use minimal power in

this situation.

The signals used in the APB bus is named with the single letter P prefix. Table 2.5

shows the list of signals in the bus and a description.

Name Description
PCLK Bus clock
PRESETn Reset signal for bus, active low.
PADDR Address bus, 32 bit wide
PSELx A signal to each bus slave to indicate that the slave

is selected. There is a different PSELx signal for
each bus slave.

PENABLE Used to indicate the second cycle of a data trans-
fer.

PWRITE When set high, the signal indicates a write access,
when low a read access.

PRDATA Read data. Driven by the selected slave, 32 bit
wide.

PWDATA Write data, 32 bit wide.

Table 2.5: AMBA APB signals

The operation of the APB can be represented with three states: IDLE, SETUP and

ENABLE. The idle state is the default state of the bus. When a transfer is required

the bus moves to the SETUP state, stays in this state for one clock cycle and then

moves to the ENABLE state. The ENABLE state lasts for one clock cycle and if

a new transfer is required, the bus will move directly to the SETUP state after the

ENABLE state. If no new transfer is required, the bus will move back to the IDLE

state. Figure 2.9 shows both a write transfer and a read transfer. The first clock

cycle, T1->T2, shows the IDLE state of the bus, T2->T3 shows the SETUP state

and T3->T4 shows the transfer state.

Chapter 2. Theory 19

Figure 2.9: Write and read transfer for APB bus [3]

The write transfer starts with the SETUP state. In this state PADDR, PWRITE,

PSEL and PWDATA will be set. The next clock cycle the ENABLE state will be

asserted. The signals set in the SETUP state will remain the same and the PENABLE

signal will now be set high.

The timing of PADDR, PWRITE, PSEL and PENABLE is the same for the read

transfer, but PRDATA will not be set until the ENABLE state is reached.

Chapter 3

Summary of Preliminary Work

Some of the content in this chapter is the same as in the preliminary work.

3.1 Emulation

The preliminary work was a joint effort between the author and Joacim Dybedal.

This was the specialization project and was done the autumn 2012. The main goal

of the work was to find a possible solution for how a peripheral processor could be

implemented and compare this solution to existing hardware modules. This was done

by first emulating an SPI and UART module by writing software with the program-

ming language C, and then run this software on an Atmel AVR. The software was

then used to extract the instruction set used by the AVR to explore what operations

an implementation of a peripheral processor should be able to perform. The instruc-

tion set extracted was then used to create a new and optimized instruction set for a

peripheral processor. Also, a solution of how the peripheral processor could be im-

plemented was suggested. This solution was then compared with existing hardware

modules with respect to area, performance and power consumption.

When running the software to emulate a UART module on the AVR, a significant

issue with having a processor controlling the data transfer was found. The AVR was

running with a clock frequency of 11.05925 MHz. This resulted that the maximum

21

Chapter 3. Summary 22

baud rate of the UART could be 2400 bits/s. A non-programmable hardware module

can support a baud rate up to 250 KHz with the same clock frequency. In addition to

the problem with the baud rate, it was also a problem that full duplex mode not was

possible. The problem could be solved by simulating full duplex mode by switching

between transmitting and receiving, but this would result in a lower baud rate.

3.2 Instruction Set

The instruction set extracted from the UART and SPI software may not include all

the instructions needed. This is because the UART program did have less function-

ality than a fully functional UASRT. Furthermore, the peripheral processor is also

supposed to run other serial communication protocols, such as TWI and USB. How-

ever, the time limit made it impossible to investigate all the protocols and UART

and SPI where therefore prioritized. The UART was the most resource-demanding

program and used a total of 26 registers in the AVR. However, the compiler does not

care about reusing registers if it is not necessary. An estimation that 16 registers are

enough should therefore be valid.

Two suggestions of an optimized opcode was given based on the instruction set ex-

tracted from the UART and SPI software. The first suggestion was a reduction of

the opcode to 16 to 14 bits. A reduction of the opcode length from 16 to 14 bit will

reduce the amount of logic needed to decode the opcode. However, it will not reduce

the space needed to store the instructions. This is because the registers have a size of

8 bit and the instructions will therefore be stored in two registers anyway. Therefore,

a second suggestion was made. This suggestion was to divide the instruction set into

two parts. One part with 8 bit instructions and one part with 16 bit instructions.

With this solution, no bits will be wasted when the instructions are stored and the

instructions with 8 bits will be transferred to the instruction register faster. Table

3.2 and 3.1 gives the instructions included in the second solution.

Chapter 3. Summary 23

Instruction Opcode Instruction Opcode
MOVW 0000 0000 0ddd 0rrr STS 0011 0kkk dddd kkkk
CPC 0000 0001 dddd rrrr RJMP 0100 kkkk kkkk kkkk
SBC 0000 0010 dddd rrrr RCALL 0101 kkkk kkkk kkkk
ADD 0000 0011 dddd rrrr LDI 0110 KKKK dddd KKKK
CPSE 0000 0100 dddd rrrr BRCS 0111 00kk kkkk k000
CP 0000 0101 dddd rrrr BRLO 0111 00kk kkkk k000
SUB 0000 0110 dddd rrrr BREQ 0111 00kk kkkk k001
ADC 0000 0111 dddd rrrr BRMI 0111 00kk kkkk k010
TST 0000 1000 dddd dddd BRVS 0111 00kk kkkk k011
AND 0000 1000 dddd rrrr BRLT 0111 00kk kkkk k100
CLR 0000 1001 dddd dddd BRHS 0111 00kk kkkk k101
EOR 0000 1001 dddd rrrr BRTS 0111 00kk kkkk k110
OR 0000 1010 dddd rrrr BRIE 0111 00kk kkkk k111
MOV 0000 1011 dddd rrrr BRBS 0111 00kk kkkk ksss
IN 0000 1100 dddd aaaa BRCC 0111 01kk kkkk k000
OUT 0000 1101 rrrr aaaa BRSH 0111 01kk kkkk k000
SBR 0001 KKKK dddd KKKK BRNE 0111 01kk kkkk k001
COM 0010 0001 dddd 0010 BRPL 0111 01kk kkkk k010
NEG 0010 0001 dddd 0011 BRVC 0111 01kk kkkk k011
SWAP 0010 0001 dddd 0100 BRGE 0111 01kk kkkk k100
INC 0010 0001 dddd 0101 BRHC 0111 01kk kkkk k101
ASR 0010 0001 dddd 0110 BRTC 0111 01kk kkkk k110
ROR 0010 0001 dddd 0111 BRID 0111 01kk kkkk k111
DEC 0010 0001 dddd 1000 BRBC 0111 01kk kkkk ksss
JMP 0010 0001 kkkk 110k BLD 0111 1000 dddd 0bbb

kkkk kkkk kkkk kkkk BST 0111 1001 dddd 0bbb
CALL 0010 0001 kkkk 111k SBRC 0111 1010 rrrr 0bbb

kkkk kkkk kkkk kkkk SBRS 0111 1011 rrrr 0bbb
ADIW 0011 1kkk kddd kkkk SUBI 0010 01KK dddd KKKK
MUL 0010 0010 dddd rrrr SBCI 0010 10KK dddd KKKK
SER 0010 0001 dddd 1001 CPI 0010 11KK dddd KKKK
LDS 0011 0kkk dddd kkkk ORI 0111 11KK dddd KKKK

Table 3.1: 16 bit opcode

Chapter 3. Summary 24

Instruction Opcode Instruction Opcode
NOP 1000 0000 SEC 1001 1sss
ICALL 1000 0001 SEH 1001 1sss
IJMP 1000 0010 SEI 1001 1sss
RET 1000 0011 SEN 1001 1sss
RETI 1000 0100 SES 1001 1sss
SLEEP 1000 0101 SET 1001 1sss
CLC 1001 0sss SEV 1001 1sss
CLH 1001 0sss SEZ 1001 1sss
CLI 1001 0sss POP 1010 dddd
CLN 1001 0sss PUSH 1011 rrrr
CLS 1001 0sss LSL 1100 dddd
CLT 1001 0sss ROL 1101 dddd
CLV 1001 0sss TST 1110 dddd
CLZ 1001 0sss LSR 1111 dddd

Table 3.2: 8 bit opcode

3.3 Architecture

When studying the possibilities of how the architecture of the peripheral processor

could be, one question arisen. This was what parts of the processor that could be

shared between the CPU and the peripheral processor. It would be a benefit to

the cost of the peripheral processor to share the program memory with the main

CPU. However, if the program memory was to be shared between the CPU and

the peripheral processor, all the instructions to the peripheral processor had to be

transferred between the memory and the peripheral processor with the main bus in

the system. The problem with this is that the CPU will be unable to do anything if

the main data bus is occupied by the peripheral processor.

It was also looked into the sizes of the different memories and what extra logic that

was needed to control the peripheral processor. A suggestion of how the peripheral

processor could be is given in figure 3.1.

The core of the peripheral processor will primarily consist of a register file, ALU,

instruction decoder, SRAM and other control logic. The core is then connected to

external modules with an internal bus that is specifically designed for this peripheral

Chapter 3. Summary 25

Figure 3.1: PPU Block Diagram [4]

processor. C/S REG 0 to 7 are the control and status registers. These registers are

to set the settings and to read the status of the transfer protocol running on the

processor. DATA I REG and DATA O REG are the registers that the CPU writes

the data to be transmitted to and reads the data that is received. The IRQ LINES

are the interrupt and request signals from the peripheral processor to the CPU. The

DATA STACK and PROGRAM MEMORY have a size of 4096 bytes. Furthermore,

the peripheral processor will have direct connection to the input and output ports.

Additionally, the peripheral processor will need a 16 bit timer to control the transfer

Chapter 3. Summary 26

baud rate. The host system will be connected to the peripheral processor with an

AMBA APB bus, shown as the peripheral bus.

3.4 Performance

During the programming of the UART two issues about running a UART on a proces-

sor was found. The first one is that full duplex mode is not possible. This is because

a processor cannot do multiple tasks simultaneously. The other issue is that the baud

rate have to be significantly lower than it can be on non programmable hardware.

As mentioned in chapter 2.4 the receiver have to have a sampling frequency that is

16 times higher than the baud rate. In addition to this the processor will have to use

several clock cycles between each sample.

Figure 3.2: Excerpt from the UART C-code

Figure 3.2 gives an illustration of how many clock cycles needed from the second

sampling to the third. In this example the divisor value (clkCount) is set to 287 and

therefore the third sample will be done when TCNT1 is between 2583 (clkCount*9)

and 2870 (clkCount*10). When the program reaches line number 196 the first time

TCNT1 will be less than 2583 and the while-loop will have to do one more loop. The

next time the program reaches line 196 TCNT1 is 2731. Now the criteria for the

third sample is fulfilled, but the loop needed a total of 217 clock cycles to circle one

time. In this example divisor value was chosen to be 287. This value is taken from

[2] and results in a commonly used baud rate at 2400 bits/s.

Chapter 3. Summary 27

3.5 Cost Analysis

The suggestion given in chapter 3.3 was then used to estimate the cost of the periph-

eral processor. The total cost was given in NAND2 equivalents and was calculated

separate for the registers in each module. The formula used for calculating the num-

ber of NAND2 gates per register is given in equation 3.1. This is a formula Atmel

has provided. A list of the different registers with each corresponding number of bits

and NAND2 equivalents is given in table 3.3.

TotalNAND2 = NumberOfBits ∗ 10 ∗ 2 (3.1)

Register Number of bits Number of NAND2 gates Percent
Register file 128 2560 2.4%
C/S Registers 64 1280 1.2%
Data I/O 16 320 0.3%
Stack Ptr 8 160 0.2%
Program Counter 12 240 0.2%
Instruction Register 16 320 0.3%
I/O Ports 8 160 0.2%
Status Register 8 160 0.2%
Timer/Counter 104 2080 2.0%

Sum without SRAM 364 7280 6.9%
SRAM 32768 98304 93.1%

Total 33132 105584 100%

Table 3.3: Sum of logic

For comparison, the USART module in the ATmega128 microcontroller have a total

of 11 8-bit registers. This results in a total of about 11 ∗ 8 ∗ 10 ∗ 2 = 1760 NAND2

gates. Furthermore, the SPI module have a total of 4 8-bit registers. This results in

a total of about 4∗8∗10∗2 = 640 NAND2 gates. Last, the TWI module have a total

of 5 8-bit registers that results in a total of about 5 ∗ 8 ∗ 10 ∗ 2 = 800 NAND2 gates.

These three modules will therefore require a total of about 1760 + 640 + 800 = 3200

NAND2 gates.

Chapter 4

Procedure

The block diagram of the peripheral processor given in figure 3.1 was used as a

specification together with the block diagram given in figure 2.1 to implement the

peripheral processor in HDL. It is important to notice that figure 2.1 and 3.1 was

only used as a guideline to how the peripheral processor was to be implemented and

was not used as a complete specification.

The main HDL language in Amel is Verilog. It was therefore natural to use Verilog

to implement the processor in HDL. The main advantage of using this language was

that Atmel then could give the author access to all the necessary tools that Atmel

utilizes.

4.1 Verilog Implementation

All the modules discussed have a reset signal. This signal will reset all modules when

set to logical 0, but it will not be mentioned when discussing the different modules.

Also, some names of the input and output signals have been changed from their

original names in figure 2.1 and 3.1. Therefore, all names mentioned in this chapter

will have the same name as the final result given in chapter 5.

29

Chapter 4. Procedure 30

When starting on the code for the processor, the theory in chapter 2.2 was the starting

point. First the register file and the ALU was implemented. The register file was

given the same inputs and outputs as given in figure 2.1 but with a small name

change. When implementing the ALU, it was decided that functions important for

the processor to work would be implemented first, and that more functions would be

added later if time allowed it.

After the first draft of the register file and the ALU was implemented, the implemen-

tation of the instruction decoder was started. Before implementing the instruction

decoder, a decision of what size and layout of the opcode to be used had to be made.

It was chosen to use the same opcode layout as Atmel have on their 8-bit AVR. The

reason for the choice will be discussed in chapter 6. Similarly as the ALU, only a few

instructions where included in the instruction decoder at first.

The branch control and the program counter was implemented after the instruction

decoder was tested and working. The program counter was not implemented as a

separate module, but was included in the branch control. Also, two extra signals,

bset and offset, was added between the instruction decoder and the branch control.

As concluded in the preliminary work, an SRAM would be used as program memory

and stack to save area. The SRAM module was provided by Amel, but needed a

wrapper to be able to communicate with the rest of the system. First it was planned

to have a shared SRAM between the program memory and the stack, but this was

changed during the implementation to two separate SRAM modules for the program

memory and the stack.

The stack was moved out of the CPU core and the read and write procedure to the

stack was set to be done via the data bus. A timing issue occurred when reading

and writing to the stack. To correct this, two signals where added to the branch

control and instruction decoder: hold pc and done hold. hold pc was also added to

the program memory.

Chapter 4. Procedure 31

After reading and writing to the stack was working properly, all the other external

modules where implemented. And the internal data bus was extended each time a

new external module was added.

4.2 Test Programs

When all the modules were working and connected to the system, two test programs

were made. The first test program was made to check that all the instructions of the

peripheral processor was function properly. This was done with a test bench that

inserted the opcode for all the different instructions into the program memory at the

beginning of the simulation and then let the processor run trough all the instructions.

The second test program was made to be more realistic. This test program was loaded

into the peripheral processor by simulating the same method the host system would

use to program it. To do this, the test bench was made to load the instructions into

the memory one by one each clock cycle by using the input signals from the APB bus

into the peripheral processor.

The task of the test program was to behave as a simple UART module to verify that

the processor was able to do the most basic operations needed by a UART module.

For the transmitter part, this included checking the status register for new data on

the input register, loading 8 bit from the input register, calculating parity bit and

transmitting one data frame including start bit and stop bit.

The receiver part of the test program was to recognise a start bit on the input port,

shift 8 bits into a register, transfer this data to the output register and then sending

an interrupt to the host system.

4.3 Synthesis

When the peripheral processor was working on the RTL level, Spyglass was used to

check for problems with the design that is not possible to synthesize. The errors

Chapter 4. Procedure 32

and warnings where corrected and a synthesize was done. Synthesis was done with

Design Compiler by using a script that Atmel provided. This script did also analyse

the peripheral processor and printed several reports of the specifications of the circuit.

The most important reports where area, timing and fault coverage.

After the synthesis was done, Formality was run to check that all the modules did

behave the same way before and after the synthesis. When this test was succeeded, a

clock tree synthesis was done. This synthesis did a layout of the circuit so that more

specific reports could be presented.

Last, a power simulation was done. This was done by simulating the UART program

running on the peripheral processor with the same clock tree and layout made in the

previous step.

Chapter 5

Results

5.1 CPU Core

Figure 5.1 gives an illustration of the core of the peripheral processor. It has several

common features as the example processor given in chapter 2.2, but there are also

some major differences. Table 5.1 and 5.2 gives a short description of all the in/out

signals connected to each module including the bit size of the signals.

33

Chapter 5. Results 34

Figure 5.1: PPU Core Block Diagram

Chapter 5. Results 35

Signals from the register file:
Signal Bit Size Description
data a 8 Data to be transmitted from the register pointed

to by addr a to ALU.
data b 8 data to be transmitted from the register pointed

to by addr b to Mux.

Signals from the mux:
b in 8 Data to be transmitted from the mux to the ALU.

do cpu 8 Data to be transmitted to external modules.

Signals from the ALU:
data d 8 data to be written to the register pointed to by

addr d.
c r 1 Carry flag
z z 1 Zero flag

Signals from the instruction decoder:
addr a 4 Points to the register that is the output on data a.
addr b 4 Points to the register that is the output on data b.
addr d 4 Points to the register that the content on data d

is to be written to.
write 1 Is set high when the content on data d is written

to a register.
constant 8 Contains a constant given in an instruction.

ms 2 Signal to select input on the mux.
fs 5 Selects ALU function.

read bus 1 Is set high when the internal data bus is to be read.
write bus 1 Is set high when data is written to the internal

data bus.
databus addr 7 Gives the address of the location that data is to be

written to or read from via the internal data bus.
offset 7 Used when branching. Gives the number of steps

the program counter will jump. Is given in two’s
complement and can be both positive and nega-
tive.

hold pc 1 When held high, the program counter will not in-
crement. Used for instructions that need more
than one clock cycle to complete.

pl 1 When set high, a branch or jump is called.
jb 1 Determines if a branch or jump is called.
bc 2 Determines what status flag that triggers a branch.

bset 1 Determines if the branching is triggered on high or
low status flag.

Table 5.1: Signal description

Chapter 5. Results 36

Signals from the branch control:
pc r 11 Program counter

done hold 1 This signal is set high one clock period after
hold pc is set high. Used when writing to and
reading from the stack.

msd 1 Used when jumping. This signal decides if the sig-
nal to the instruction decoder comes from the pro-
gram memory or if it is set to zero.

Signals from the program memory:
di ireg 32 The instructions to be decoded. Is 32 bit wide and

contains two instructions.
instr pntr 1 A pointer that points to the part of the instruction

register that is to be decoded.

Signals from the exterior:
Signal Bit Size Description

instr data 32 Used when programming the memory. Contains
the data to be written to the program memory.

inst addr 9 Used when programming the memory. Points to
the memory location where the instruction data is
to be written.

write mem 1 Is set high if the program memory is to be pro-
grammed.

cpu disable n 1 When held low, the CPU will be paused.
cpu reset n 1 When set low, the CPU will jump to the start of

the program memory. No registers will be reset.

Table 5.2: Signal description

Register File

The register file have sixteen registers each with the size of eight bit. Writing to the

register will occur at the rising edge of the clock and when write is set to logical one.

The input on data d will then be written to the address given by addr d. The output

on data a and data b is not driven by the clock, but will always give the data where

addr a and adddr b is pointing to.

Chapter 5. Results 37

ALU

The ALU is primarily combinatorial and not driven by the clock. The only elements

of the ALU that is sequential is the status flags c r and z r. These two signals will at

the rising clock edge be given the value that was generated by the operation done at

that clock edge.

Instruction Decoder

The instruction decoder have been changed a lot compared to chapter 2.2. The

instruction register and instruction decoder are now in the same module. Also, the

data into the instruction register, di ireg, is 32 bit, but each instruction is only 16

bit. Therefore an extra signal, instr pntr, is added to indicate what part of the 32

bit data that is to be decoded. The instruction decoder has no clock and is therefore

100% combinatoric. The signal hold pc is used when instructions that need two clock

periods is executed. Because the instruction decoder do not have a clock, a signal

from the branch control is needed to indicate the start of the second clock period.

This is the done hold signal. The two signals cpu rst n and cpu disable n have the

same functionality in the instruction decoder. Both signals will set the instruction

decoder to do NOP-operations.

The instruction decoder is using the same opcode layout and addressing mode used

in the AVR Instruction Set[9].

Branch Control and Program Counter

The branch control and program counter have been included in one module. The

offset signal is used when branching and is given in two’s complement. This is because

the program counter have to be able to branch in both directions. The msd signal

is used when a jump is called. This signal is necessary to prevent the instruction

decoder to decode the jump address as an instruction. When a jump is called, the

32 bit in the next program memory location is used as the address for the jump.

Chapter 5. Results 38

This address can accidentally have the same binary number as a valid instruction for

the instruction decoder and will cause the processor to execute a random instruction

while the branch control is jumping to an address. Therefore the msd signal will set

the ireg signal from Mux 2 to be zero when a jump is called.

Program Memory

The Program memory is based on an SRAM module provided by Atmel and have

a size of 512 x 32 bits. This size will give room for a program with 1024 16-bit

instructions. The program memory consists of a wrapper and the SRAM module.

The wrapper is controlling the signals to and from the program memory so that the

SRAM module is compatible with the rest of the system. Among others, the wrapper

is inverting the clock signal to the SRAM. This is to prevent reading from it to require

two clock cycles.

5.2 External Modules

Figure 5.2 gives an illustration of the whole peripheral processor with the bus system

and all the modules connected to it.

Internal Data Bus

The 8-bit internal data bus is the bus that connects the CPU core together with

all the external modules. The CPU core is the master of the bus and no reading

or writing operations are done without the CPU core controlling it. When writing

is to be done, the CPU core will send three signals to the data bus: databus addr,

do cpu and write bus. The signal databus addr is a 7-bit signal that is divided into

two parts. The first three bits gives the address of the external module where the

data is to be sent and the last four bits gives what register in the external module

Chapter 5. Results 39

Figure 5.2: PPU Block Diagram

that is to be written to. The signal do cpu is the data signal from the CPU core to

the external modules.

For example, if data is to be written to the first register of the control and status

register. The CPU core will set the 7 bits in the databus addr signal to 0010001. The

first three bits (001) is the address of the control and status register and the last four

bits (0001) is the address of the first register in the control and status register. Also

the CPU core will set write bus high. Because databus addr points to the control

and status register and write bus is set high, the data bus will set the signal w cs reg

high, forward the last four bits of databus addr to cs reg addr and forward the data

on do cpu to di cs reg. The control and status register will notice that w cs reg is set

high and therefore write the data on di cs reg to the address on ca reg addr.

Reading from an external module works with the same principle, however the CPU

core does only need to set the address to the register it will read from. The signal

read bus is only needed when reading from the data stack and the timer.

Chapter 5. Results 40

Table 5.3 gives a short description of the signals from the CPU core and the data

bus.

Signals from the CPU core:
do cpu 8 Data out from the CPU core to the internal data

bus.
databus addr 7 Gives the address where the data on the data bus

is sent to or read from.
write bus 1 Is set high when the data on the data bus is to be

written to an external module.
read bus 1 Is set high when the CPU core is to read data from

the data bus.

Signals from the internal data bus:
di cpu 8 The data to the CPU core.

write stack 1 Is set high when data is to be written to the stack.
read stack 1 Is set high when data is to be read from the stack.
di stack 8 The data to the stack.
w cs reg 1 Is set high when data is to be written to the control

and status register.
cs reg addr 4 Gives the address of what register in the control

and status register to read from or written to.
di cs reg 8 The data to the control and status register.
w io reg 1 Is set high when data is to be written to the in-

put/output register.
di io reg 8 The data to the input/output register.
w timer 1 Is set high when data is to be written to the timer.
r timer 1 Is set high when data is to be read from the timer.

timer addr 4 Gives the address of what register in the timer that
is to be read from or written to.

di timer 8 The data to the timer.
w irq 1 Is set high when data is to be written to the IRQ

line.
di irq 8 The data to the IRQ line.

w io port 1 Is set high when data is to be written to the in-
put/output port.

io port addr 4 Gives the address of whet register in the input/out-
put port that is to be rad from or written to.

di io port 8 The data to the input/output port.

Table 5.3: Signal description

Chapter 5. Results 41

APB Bus

The APB bus described in chapter 2.5 is the bus that controls the communication

between the host system and the peripheral processor. The APB bus have not been

implemented, but the signals from the APB bus to the modules have been named to

match the APB bus. Table 5.4 describes the signals from the APB bus.

Signals from the APB bus:
paddr 32 The address of to the internal registers of the active

module.
pwrite 1 Is set high for doing a write operation and low for

reading.
psel 1 Is set high activate the modules.

penable mem 1 Is set high to enable the program memory.
penable cs 1 Is set high to enable the control and status register.
penbale io 1 Is set high to enable the input/output register.
penable irq 1 Is set high to enable the interrupt request register.

pwdata 32 The data to the enabled module.

Table 5.4: Signal description

Data Stack

The data stack is the external storage for the CPU core and consist of the same SRAM

type as the program memory and a wrapper. Writing and reading to the stack works

with the LIFO (last in, first out) principle and therefore no internal address is needed

when reading from and writing to the data stack.

When writing to the data stack, the stack will use its internal stack pointer to store the

data in the correct location. Each time data is stored to the stack, the stack pointer

will increment with one and give the position of the next storing location. When

reading from the stack, the read bus signal have to be set high. The read bus signal

will then be forwarded to the read stack signal and the data stack will decrement the

stack pointer with one.

Chapter 5. Results 42

Control and Status Registers

The control and status registers consists of eight 8-bit registers and is used to store

both control and status signals. The main CPU can use these registers to control

the behaviour of the program running on the peripheral processor. The peripheral

processor can use these registers to store information regarding the status of it self.

How the peripheral processor and the host processor utilizes these registers will be

decided by the software running on the peripheral processor and host processor.

However, two bits in the first register are reserved. These two bits are the LSB (least

significant bit) and the LSB+1 in the first register (cs reg[0][1:0]). These two bits are

respectively connected to cpu reset n and cpu disable n given in table 5.2.

Both the internal data bus and the APB bus can write to the control and status

registers at the same time, as long as they don’t write to the same internal register.

If both the internal bus and the APB bus writes to the same internal register simul-

taneously, the APB bus will have first priority and the data from the internal bus

will be lost.

Data In/Out Registers

The data in/out registers consists of one input register and one output register. The

CPU core have only access to write to the output register and read from the input

register. Furthermore, the host processor has only access to write to the input register

and read from the output register. Reading and writing to both registers can be done

simultaneously.

Table 5.5 describes the signals from the data stack, the control and status registers

and the in/out registers

Chapter 5. Results 43

Signals from the data stack:
do stack 8 The data to the internal data bus.

Signals from the control and status register:
do cs reg 8 The data to the internal data bus.

cpu reset n 1 When this signal is low, the CPU core will be reset.
cpu dissable n 1 When this signal is low, the CPU core will be set

on pause.
prdata cs 32 The data to the AMBA bus. Only the last 8 bits

will contain data.

Signals from the input/output registers:
do is reg 8 The data to the internal bus.
prdata io 32 The data to the AMBA bus. Only the last 8 bits

will contain data.

Table 5.5: Signal description

IRQ Line

The IRQ line is the interrupt request line from peripheral processor to the host system.

The 1-bit value stored in this module is directly connected to the interrupt unit in

the host system. If both the APB bus and the internal bus writes to the IRQ line

at the same time, both values will pass through an or gate and then be stored. This

is to prevent the host system to clear the interrupt the same time as the CPU core

writes a new interrupt to make sure that no interrupt is lost.

Timer/Counter

The timer/counter is a 16 bit counter and does have two modes of operation, that is,

compare-on and compare-of. If compare is turned off, the timer will count until it is

reaching the hexadecimal number FFFF and then start over. If compare is turned on,

the counter will count until it reaches the same number that is stored in the compare

register. When this number is reached, a compare flag is written to the MSB of the

internal register c r and the counter starts over.

The CPU core have access to read the data in all the registers in the counter, but

all the registers are divided into two and only one part of each register is possible to

read at a time. This is because the internal data bus only is 8 bit wide while the

Chapter 5. Results 44

counter register and the compare register is 16 bit wide. Also, the control register

is divided. This is because reading from the control bits not shall interfere with the

compare flag. If the compare flag is read, the compare flag will be reset to 0. Table

5.6 gives an overview of the different registers in the counter. Table 5.7 describes the

functionality of the control register.

Register description
Register[Bit part] Read/Write access Internal address

counter r[7:0] Read only 0000
counter r[15:8] Read only 0001
compare r[7:0] Read/Write 0010
compare r[15:8] Read/write 0011

c r[3:0] Read/write 0100
c r[7] Read only 0101

Table 5.6: Description of registers in the timer

Control Register (c r)
Bit number Function

7 Compare flag.
[6:3] Unused

2 Compare on/of, 0 = compare off, 1 = compare on
1 Reset counter, reset is active low
0 Counter on/off, 0 = counter off, 1 = counter on

Table 5.7: Description of Control Register

Input/Output Port

The input/output port is the module that controls the signals to the input/output

pad on the microcontroller. The input/output pad is the circuit that directly controls

the pins on the microcontroller and the input/output port is connected to this pad.

The input/output port have four outputs to the pad and one input. The outputs

to the pad is paired in two sets. One pair is pull up (PU) and pull down (PD) and

the other pair is OUT and output enable (OE). Which pair to use is decided by the

device that is connected to the pins. The outputs are described in table 5.9.

Writing to the different outputs in the input/output port have four different modes.

These modes are clear, set, toggle and force. If the clear mode is used, the zeros in

Chapter 5. Results 45

the data from the CPU core will set a zero on the corresponding output from the

input/output port. The bits in the data from the CPU core that is set to 1 will not

change the output. If the set mode is used, only the ones in the data from the CPU

core will set a 1 on the corresponding output from the input/output port. The bits in

the data from the CPU core that is set to 0 will not change the output. If the toggle

mode is used, the bits in the data from the CPU core that is set to 1 will toggle these

bits on the corresponding output. The force mode will set the corresponding output

to the same as the data from the CPU core.

The address bus into the input/output port is used to choose what output port to

write to and what mode to use. The first two bits in the address are used to choose

what output to write to, and the last two bits are used to choose what mode to use.

Table 5.8 gives the address used for different modes and outputs.

Modes and output addresses
io port addr Mode Output

xx00 clear -
xx01 set -
xx10 toggle -
xx11 force -
00xx - OUT
01xx - OE
10xx - PU
11xx - PD

Table 5.8: Gives the address used for different modes and outputs

Signals from the Timer/Counter:
do timer 8 The data to the internal data bus.

Signals from the input/output port:
do io port 8 The data to the internal data bus.

OUT 8 Output to the pad
OE 8 Output enable, is set high to activate OUT signal

to the pad.
PU 8 Pull Up, Used to set the output pin high.
PD 8 Pull Down, Used to set the output pin low.

Table 5.9: Signal description

Chapter 5. Results 46

5.3 Instructions Implemented

Table 5.10 lists all the instructions implemented including the opcode for each in-

struction and a description. The destination register is marked with ”d”, and the

source register is marked with ”r”. ”K” is marking a constant, ”k” is marking an

address and ”x” is used for don’t-care bits.

Instruction Opcode Description
NOP 0000 0000 0000 0000 No operation
ADC 0001 11xx dddd rrrr Add with Carry
ADD 0000 11xx dddd rrrr Add without Carry
AND 0010 00xx dddd rrrr Logical AND
SBC 0000 10xx dddd rrrr Subtract with Carry
SUB 0001 10xx dddd rrrr Subtract without Carry
LDI 1110 KKKK dddd KKKK Load Immediate
LSL 0000 11xx dddd dddd Logical Shift Left
LSR 1001 010x dddd 0110 Logical Shift Right
ROL 0001 11xx dddd dddd Rotate Left trough Carry
ROR 1001 010x dddd 0111 Rotate Right trough Carry
OR 0010 10xx dddd rrrr Logical OR

XOR 0010 01xx dddd rrrr Exclusive OR
CP 00001 01xx dddd rrrr Compare

CPC 0000 01xx dddd rrrr Compare with Carry
CPI 0011 KKKK dddd KKKK Compare with Immediate

SUBI 0101 KKKK dddd KKKK Subtract Immediate
SBCI 0100 KKKK dddd KKKK Subtract Immediate with Carry
DEC 1001 010x dddd 1010 Decrement
INC 1001 010x dddd 0011 Increment

MOV 0010 11xx dddd rrrr Copy Register
POP 1001 000x dddd 1111 Pop Register from Stack

PUSH 1001 001x dddd 1111 Push Register to Stack
STS 1010 1kkk dddd kkkk Store Direct to Data Space
LDS 1010 0kkk dddd kkkk Load Direct from Data Space

BRCS 1111 00kk kkkk k000 Branch if Carry Set
BRCC 1111 01kk kkkk k000 Branch if Carry Cleared
BREQ 1111 00kk kkkk k001 Branch if Equal
BRNE 1111 01kk kkkk k001 Branch if Not Equal
JMP 1001 010x xxxx 110x Jump

kkkk kkkk kkkk kkkk Jump address

Table 5.10: Included instructions

Chapter 5. Results 47

5.4 Simulation

The waveforms of the simulations is given in appendix A and the program code

for each simulation is given in appendix B. Appendix A.1 shows a check of all the

instructions when running the program in appendix B.1. Table 5.10 can be used

together with the waveforms to verify that all the instructions are executed correctly.

Appendix A.2 displays the result of the UART simulation. The program for this

simulation is given in B.2 Figure A.5 shows the part of the simulation where the

program is waiting for an input from APB bus. The data in control register 7 is used

to check for new data in the input register. The data in the input register is loaded

into register 7 in the register file. The next figure, figure A.6 shows the part of the

program where the parity bit is calculated. Register 7 is used to calculate the parity

bit and the parity bit is stored in the LSB in register 6. Figure A.7 shows the that

the same value loaded from the input register is shifted out. This includes a start

bit, the data, a parity bit and the stop bit. Each bit is set to be held on the output

port for two clock cycles.

The last figure, figure A.8, in appendix A.2 shows the serial-to-parallel conversion

part of the UART program. The program is waiting for a start bit on the input

port and is then shifting in the data from this port into register 4. This data is then

written to the output register and the interrupt request to the host system is set. No

parity bit is included in this part.

Chapter 5. Results 48

5.5 Synthesis Reports

Table 5.11, 5.12, 5.13 and 5.14 gives the relevant reports printed by the synthesis

tool.

Area
Number of ports: 199
Number of nets: 334
Number of cells: 75
Number of combinational cells: 67
Number of sequential cells: 0
Number of macros: 0
Number of buf/inv: 65
Number of references: 65 12

Combinational area: 7755 (72.5%)
Noncombinational area: 2935 (27.5%)

Total cell area: 10690 (100%)

Table 5.11: Area report

Setup timing
Startpoint: C1/PM/U SRAM MEM

(rising edge-triggered flip-flop clocked by clk’)
Endpoint: C1/A1/z r reg

(rising edge-triggered flip-flop clocked by clk)
Path Group: clk
Path Type: max
Data required time 23.51
Data arrival time -23.51
slack (MET) 0.00
Clock period 24.00

Table 5.12: Setup timing report

Clock Gating
Number of Clock gating elements 33
Number of Gated registers 272 (93.15%)
Number of Ungated registers 20 (6.85%)
Total number of registers 292

Table 5.13: Clock Gating report

Chapter 5. Results 49

Uncollapsed Stuck Fault Summary Report
Fault Class Code #Faults
Detected DT 20569
Possibly detected PT 37
Undetectable UD 543
ATPG untestable AU 468
Not detected ND 469

total faults 22086
test coverage 95.56%

Table 5.14: Design For Test Coverage

Chapter 5. Results 50

5.6 Net List Reports

Table 5.15, 5.16 and 5.17 gives the relevant reports printed by the clock tree synthesis

tool.

Setup Timing
Startpoint: rst n
Endpoint: C1/R1/reg r reg 1 5
Path Group: async default
Path Type: max
Data required time 25.03
Data arrival time -3.37
slack (MET) 21.66

Startpoint: C1/PM/U SRAM MEM
Endpoint: C1/R1/clk gate reg r reg 5 /latch
Path Group: clock gating default
Path Type: max
Data required time 23.16
Data arrival time -24.87
slack (VIOLATED) -1.70

Startpoint: write mem (input port)
Endpoint: STACK1/U SRAM STACK
Path Group: REGIN
Path Type: max
Data required time 12.53
Data arrival time -10.94
slack (MET) 1.59

Startpoint: C1/PM/U SRAM MEM
Endpoint: C1/R1/reg r reg 1 6
Path Group: clk
Path Type: max
Data required time 24.62
Data arrival time -26.12
slack (VIOLATED) -1.50

Table 5.15: Setup Timing report

Chapter 5. Results 51

Hold Timing
Startpoint: rst n (input port)
Endpoint: TIMER/counter r reg 15
Path Group: async default
Path Type: min
Data required time 0.61
Data arrival time -0.68
slack (MET) 0.07

Startpoint: penable io (input port)
Endpoint: IO1/clk gate data in r reg/latch
Path Group: clock gating default
Path Type: min
Data required time 0.17
Data arrival time -0.21
slack (MET) 0.04

Startpoint: pwdata[3] (input port)
Endpoint: IO1/data in r reg 3
Path Group: REGIN
Path Type: min
Data required time 0.40
Data arrival time -0.40
slack (VIOLATED) 0.00

Startpoint: C1/B1/jmp ctrl reg
Endpoint: C1/B1/jmp ctrl reg
Path Group: clk
Path Type: max
Data required time 0.42
Data arrival time -0.72
slack (MET) 0.29

Table 5.16: Hold Timing report

Power
Net Switching Power 9.433e-04W 58.13%
Cell Internal Power 6.796e-04W 41.87%
Cell Leakage Power 1.150e-08W 0.00%

Total Power 1.623e-03W 100.00%
Total Power per MHz 3.892e-05

Table 5.17: Time Based Power

Chapter 6

Discussion

6.1 Instruction Set

In the preliminary work it was given two solutions to an optimized instruction set.

This was done because the peripheral processor do not need as many instructions

as the 8-bit AVR. Due to that, the opcode for the instructions can be simplified.

The best solution was found to be a combination of both 8-bit instructions and 16-

bit instructions. However, it has been chosen to use the same opcode layout for

the instructions in the peripheral processor as the instructions in the 8-bit AVR. The

reason for this is that the same compiler can then be used for the peripheral processor

and the 8-bit AVR. If a new instruction set were to be used, a compiler would have

to be written for it.

A negative effect of this is that it will be parts of the opcode that is not needed when

giving instructions to the peripheral processor. The unused parts are the bits marked

as don’t-care bits in table 5.10.

53

Chapter 6. Discussion 54

6.2 CPU Core

Pipelining

The CPU core was primarily implemented by using the theory given in chapter 2.2,

but several decisions had to be made during the implementation of the different mod-

ules. First of all, the processor does only have two steps in the pipeline. Instruction

fetch and execute are in the same step and the last step is write back. As a conse-

quence of this, the ALU and instruction decoder had to be fully combinatorial. Also,

the output from the register file is combinatorial. The main reason for this choice is

that a processor with few pipelined steps is more easy to implement and to debug.

However, there are some disadvantages with this solution. One disadvantage is that

the clock frequency have to be lower than in a processor with more pipelining. Ad-

ditionally, if the results show that the processor is too slow it will be complicated to

add a more pipelined structure without changing the whole processor.

Negative Numbers

Most processors have the functionality to support negative numbers. It have been

chosen that this peripheral processor will not have that functionality. This is because

this processor is made for doing parallel-to-serial and serial-to-parallel conversion

and be able to run the different protocols that handle this type of data conversion.

Most protocols that do this, do not need negative numbers, therefore the support

for negative numbers have not been included. An advantage of this is that the

processor can handle bigger positive numbers when the support for negative numbers

is excluded.

Shared Program Memory and Data Stack

In the preliminary work it was suggested that the program memory and data stack

would share the same SRAM. This was suggested because the size of the data stack

Chapter 6. Discussion 55

can be much smaller than the program memory. Therefore only one SRAM module

is needed if the data stack is implemented as a small part of the program memory.

During the implementation it was found that a shared program memory and data

stack was difficult to implement and it would also decrease the performance of the

processor.

The reason for the implementation difficulties was that it is only possible to do one

read or one write operation at a time to the SRAM. Therefore, it is impossible to

read the next instruction from the program memory if the data stack is active. One

solution to solve this problem was to include an instruction buffer in the decoder that

contained a certain amount of instructions. This buffer was then used to fetch the next

instruction when PUSH/POP instructions to the data stack was executed. However,

both the branch control and the instruction decoder was already implemented and

this solution needed huge changes in both modules. Furthermore, it was several

other issues with this solution and it was uncertain that it would give the required

performance.

Because of these reasons, it was chosen to have separate program memory and data

stack. This will increase the cost and the area of the processor, but the performance

would be better because of the possibility to read the program memory at the same

time as the data stack is active.

PUSH and POP Instructions

When the data stack was implemented, it was found a problem when reading and

writing to it. This problem did only occur when the PUSH and POP instruction was

stored in the second half of a 32 bit program memory location (bit 0 to 15). In this

situation the data stack did not respond. This was happening because reading and

writing to an SRAM module have a delay and the delay when reading the program

memory was added to the delay in the data stack. This total delay was longer than

a half clock cycle and the data stack could therefore not respond before a new clock

Chapter 6. Discussion 56

cycle was reached. The half clock cycle time limit is because of the inverted clock in

the SRAM.

It was thought of a couple of different solutions for this problem, but it was found

that the best solution was to extend the PUSH and POP instructions to last for

two clock cycles. To do this, the hold pc and done hold signals was added between

the instruction decoder and the branch control. If a PUSH or POP instruction is

given, the instruction decoder will set the hold pc signal high. The next clock cycle

the branch control will set the done hold signal high and then the PUSH or POP

instruction will be executed. The operation in the first clock cycle will then only con-

sist of loading the instruction into the instruction register. The next clock cycle, the

instruction register will already have the instruction stored and the program memory

is not needed to be read. The second clock cycle, the PUSH or POP instruction can

be executed without the delay from the program memory.

The disadvantage with this solution is that the PUSH and POP instructions will

require twice as long time to be executed and the performance of the processor will

therefore be decreased.

JUMP Instruction

The branch instructions do a relative branch in the program memory form the current

position in both positive and negative directions. However, these instructions can

not be used to branch more than 64 steps in either direction. Therefore a JUMP

instruction is needed to be able to reach the whole program memory. This instruction

is different from the other instructions because it is a 32 bit instruction. The first

16 bits is used for the opcode of the instructions while the last 16 bits are the jump

address.

Because the JUMP instruction was divided into two 16 bit parts, a problem occurred

when this instruction was implemented. If the jump address was the same as the

opcode for an instruction, the instruction decoder would decode the address as if it

was an instruction. This is the reason Mux 2 in figure 5.1 is implemented. If a jump is

Chapter 6. Discussion 57

called, the branch control will set the msd signal in mux 2 to give a NOP instruction

to the instruction decoder while the branch control is executing the jump.

6.3 Exteral Modules

Internal Data Bus

The internal data bus is designed to be both fast and have low power consumption. It

is fully combinatorial and the delay in the internal data bus will therefore only depend

on the amount of logic the data have to pass from the input to the output. Because

of the bus design, the data have to only pass one multiplexer or demultiplexer to go

from the input to the output. The longest data path in the bus was originally given

in the report presented in table 5.15, but the complete data path had to be removed

due to corporate secrets at Atmel. However, this report showed that the longest data

path in the internal data bus would use about 2 ns from the input to the output.

This is not much compared to the 24 ns long clock period.

The power consumption will also be low in the internal data bus. This is because

the bus does not have any clock and is only active when it is triggered by the CPU

core. Additionally, there is only the relevant outputs that will toggle when the bus

is active. The inputs to the unused modules will be held low during a transmission.

Data Stack

The data stack was previously defined to be a part of the same SRAM used by

the program memory. But because of the problems discussed in chapter 6.2 it was

chosen to have a separate SRAM module for the data stack. The result of this is

that the cost of the processor will increase because an extra SRAM module have

to be implemented and the SRAM module implemented is much bigger than what

is required for the data stack. Nevertheless, it is easy to change the implemented

Chapter 6. Discussion 58

SRAM and that is something Atmel may do if they chose to do further work with

the peripheral processor.

Control and Status Registers

The decision to have eight control and status registers was taken in the preliminary

work. The software for a USART will typically only need five control and status

registers and SPI require even less, but the peripheral processor is supposed to run

other protocols as well, for example USB. Therefore as much as eight control and

status register are needed. The programmer does also have the alternative to use

the unused control and status registers as a storage place. The unused registers will

therefore not be wasted.

The cpu reset n and cpu disable n signals are added to give the host processor more

control of the peripheral processor. First of all, the cpu reset n signal have to be

used when the host processor is programming the peripheral processor. This will

reset the program counter and hold it so that the program memory can be written

to without the peripheral processor is trying to read the program memory. The

cpu disable n signal is to pause the peripheral processor. If this signal is active, the

peripheral processor will do nothing, and will not be reset. The peripheral processor

will continue from its current state when cpu disable n is not active any more.

Data In/Out Registers

The data in/out registers could have been implemented as a part of the control and

status registers and let the software running on the peripheral processor decide what

registers to use for data and what registers to use for control and status bits. However,

having a separate module controlling the data transfer to and from the peripheral

processor would make it more easy for the programmer to keep track of the different

registers.

Chapter 6. Discussion 59

The data in/out registers are implemented to behave as only one register. The periph-

eral processor can only read the input register and only write to the output register.

Therefore, no internal addressing is required when reading and writing to the in/out

registers. This will prevent the peripheral processor to overwrite input data and the

host processor cannot overwrite output data from the peripheral processor.

Timer/Counter

It was experienced that a 16-bit counter was necessary when writing the software to

emulate an UART in the preliminary work. The timer/counter have therefore been

implemented with 16 bits. The functionality of the counter have been limited to only

include the most basic functions for a counter. This is because a peripheral processor

should be as simple as possible and the functions implemented was only the functions

used in the preliminary work.

One argument to implement a more advanced counter is because the processor should

be able to run other protocols than those investigated in the preliminary work. How-

ever, all the extra functionality a counter can have, can also be made with software.

IRQ Line

Both the peripheral processor and the host processor have access to write to the IRQ

line. This is to make the peripheral processor able to set an interrupt request and

the host processor is able to clear an interrupt request. It is no limitation for any

of the two processors to do both reading and writing to the IRQ line. Therefore the

programmer have to be careful to not write a wrong bit to the IRQ line.

Input/Output Port

The input/output port was implemented to give the peripheral processor several

methods to write data to the output port. The clear, set, toggle and force modes

Chapter 6. Discussion 60

can be used in different situations where different writing modes are necessary. The

different modes and outputs of the output port was the reason for needing four

bits to address the internal registers of the external modules. However, the extra

functionality to the output port gave a bigger advantage than having one less bit in

the address of the internal data bus.

6.4 Simulation

Test of Instructions

The waveforms in appendix A.1 shows the result of running the program given in

appendix B.1. This program does not do anything useful other than showing that

each separate instruction is doing what it is supposed to do. Figure A.1 shows that

the processor is able to branch and jump. The red line in the figure shows the point

where the first branch instruction is executed. The opcode is f42a which indicates

a branch-if-carry-set instruction with a distance of 5 steps in the program counter.

One can see that the carry bit is set and the program counter jumps from 31 to 36

which is a distance of 5.

By going through all the other instructions given in appendix A.1 together with the

program given in appendix B.1, one can confirm that all the instructions are doing

what they are supposed to do and that all the external modules are responding correct

when they are accessed.

UART Test Program

The waveforms in appendix A.2 shows the result of running the program given in

appendix B.2. This program was made to test if the processor was able to run a

program that did the most basic operations of what is expected by an UART. The

operation done by the program is to use the status register to check for new data in

the data in register. If new data is found, the processor will first calculate a parity

Chapter 6. Discussion 61

bit for the data and then shift the data out with the same frame format the UART

protocol is using. The program will also check for a start bit on the input port and

shift data in if a start bit is recognized.

Figure A.5 shows the first part of the program where the status register is checked.

The first red line indicates the time the host processor writes to the status register to

indicate that new data is written to the data in register. The time between the first

and second line is the part where the status register is analysed. At the second line,

it has been registered that new data is available and the peripheral processor does

a jump to the function for calculating parity bit. The third line indicates the time

the data in the data in register is loaded into the internal register of the peripheral

processor and the calculation of the parity bit is started.

The third line in figure A.5 is the same line as the first in figure A.6. Register 6, 7

and 13 is used for the parity bit calculation and the calculation procedure is given

with comments in appendix B.2. Register 7 is used to load the data from the data

in register and register 6 is the register that stores the parity bit. If register 6 ends

up containing an even number the parity bit is 1 and opposite if register 6 ends

up containing a odd number. Bit 0 in register 6 can therefore be used as a parity

bit. The second line in figure A.6 indicates the time where the peripheral processor

has calculated the number of ones in register 7. At this time register 6 contains

the hexadecimal number 5 and the data in the data in register is the hexadecimal

number 6d that is equivalent to the binary number 01101101. This binary number

have 5 ones and confirms that the calculation is correct. The data in register 6 is

then incremented with one so that bit 0 in register 6 can be used as the parity bit.

The third line in figure A.6 is the same as the first line in figure A.7. This line

indicates the start of the shift out procedure. First the data in the data in register is

loaded into register 0. Then the status register is updated so that the host processor

can write new data to the data in register. After that, the shifting out starts. First

a start bit is loaded to the output followed by the data in register 0. The first bit to

be shifted out is the LSB and the data is set to be held for two clock cycles before it

shifts to the next bit. Last, the parity bit is loaded to the output after the MSB in

Chapter 6. Discussion 62

register 0. The parity bit is followed by a stop bit and the output will be held high

until the next shift out procedure. The last red line on figure A.7 indicates the end

of the shift out procedure and the peripheral processor jumps back to the start to

check for new inputs.

Figure A.8 shows a situation where the peripheral processor recognizes a start bit on

the input port. A jump to the shift-in procedure is done at the time given by the

first red line. The data is shifted in with the LSB first. At the second red line the

shifting is done and the data in register 4 is loaded into the data out register. The

next clock cycle an interrupt request is sent to the host processor to indicate that

new data is available. The last red line indicates the time the processor acknowledges

the interrupt and resets the interrupt request.

It is important to notice that this program does not behave as a valid UART. It is

only made to test and demonstrate that the processor is capable to do the most basic

operations required by the UART protocol and other serial-to-parallel conversion

protocols. However it gives a good indication that the peripheral processor is capable

to emulate a fully functional SPI or UART module. This is because most of the

operations in these protocols are reading and writing to the status registers and

doing fault checking on received data in addition to shifting data in and out. All of

these operations are demonstrated in the UART test program.

6.5 Performance

The performance of the peripheral processor is decided by two elements: The clock

frequency and how fast the processor can do operations frequently required by the

program running on the processor. For example, a processor that is frequently re-

quired to do multiplications, but do not have a multiplication instruction, will have

to utilize the other instructions in its instruction set to do multiplications. The re-

sult of this is that one multiplication procedure will require several clock cycles to

be performed and the overall performance of the processor will decline in accordance

with how many multiplications operations needed.

Chapter 6. Discussion 63

Synthesis Timing

The timing report from the synthesis tool given in table 5.12 is giving a good indica-

tion of what the clock period have to be. The timing report presents the longest path

in the design, how fast the data is required to pass through the longest path and how

fast the data is passing trough the longest path. With a clock period of 24 ns The

data arrival time and the required time was the same (23.51 ns). This resulted that

the clock period could not be shorter than 24 ns and gives a clock frequency at 41.7

MHz.

The start point in the longest path was the SRAM in the program memory. Because

of the lack of pipelining, it was chosen to invert the clock in the SRAM. This would

let the SRAM respond within the same clock cycle it is accessed. However, this had

a huge affect on the timing in the processor. Because the start point of the longest

path was the SRAM and this was clocked on the negative clock edge, the data would

leave the SRAM first after one half clock period (12 ns). The consequence of this

is that the first half of the clock period is lost and the current longest path is 12 ns

longer than actually necessary. If an extra instruction-fetch step in the pipeline had

been included the inverting of the clock in the program memory would not have been

necessary and the longest data path could potentially have been 12 ns shorter.

Because the peripheral processor is connected to the host system with an APB bus,

it is restricted to the clock frequency of the bus, which again is restricted to the clock

frequency of the host processor. The maximum frequency of the peripheral processor

can therefore not be higher than the clock frequency of the host processor. However,

it is possible to implement handshaking between the control and status registers in the

peripheral processor and the host processor. This will allow the peripheral processor

to have an asynchronous clock that can be faster than the clock in the host processor.

Netlist Timing

As described in chapter 4.3, the timing reports presented after the clock three syn-

thesis was more detailed than the earlier timing report. The setup and hold timing

Chapter 6. Discussion 64

reports are the result of four different tests done by the clock three synthesis tool.

The tests are divided into four different groups: async default, clock gating default,

regin and clk. The async default test checks the longest path for an input signal. The

clock gating default test checks the longest path for a signal to reach the input to a

clock gate. The regin test checks the longest path for an internal signal to reach a

register. Last, the clk test checks the longest path for the clock input. The numbers

in the tests are given in nano seconds.

The first report, named Setup Timing, gives the results for a test that checks if the

data signal reaches its end point before the clock signal at a worst case scenario. The

two tests that belong to the path group async default and regin are both passed.

In both tests, the data arrives before the clock and no problem will arise in these

situations. However, the two tests that belong to the path group clock gating de-

fault and clk was not passed. In these situations the signal will arrive later than

required and this can cause the peripheral processor to malfunction. However these

tests checks the peripheral processor at a worst case scenario. For example at high

temperatures. Therefore, the peripheral processor will probably function correctly in

normal circumstances.

Nevertheless, it is optimal if all the tests is passed. The easy solution is to decrease

the clock frequency, but there are also other methods that can be utilized. As men-

tioned in chapter 6.3, the complete data path is removed from the timing reports.

However, the original report shows that having a clocked instruction register between

the program memory and instruction decoder as an extra pipelined step could save

up to 4 ns. The result would then have been that both the violated tests in table

5.15 was passed. A third method to correct the violated tests is to manually make

changes to the data path so the data signal will arrive earlier. This process require a

lot of experience and takes long time and is therefore not desirable.

The second report, named Hold Timing, gives the result for a test that checks if the

data is held stable on a register long enough after the clock arrives. If these tests

are violated, a register can store an incorrect value and the peripheral processor can

malfunction. These tests are more critical and have to pass. The report in table 5.16

Chapter 6. Discussion 65

shows that all the tests are passed except the test in the regin group. The report

shows that the data required time is the same as the data arrival time but because of

the inaccuracy with only two decimals the test tool assumes that the test is violated.

If there is a timing violation in this test, a solution to the violation can be to manually

add a buffer between the flip-flops in the current register.

Speed of Operations

As discussed in the start of this chapter, it is not only the clock frequency that

defines the performance of the processor. How many clock cycles the processor need

to perform an operation is also essential. This is decided by the instructions available

and how a program is written. The test program given in appendix B with its

simulation results given in appendix A.2 is not optimal for doing a performance

analysis, but can be used to give an estimation of the performance.

One can see from figure A.5 that it is 14 clock cycles between the first and the second

red line. This is the time from the status register is updated to the parity calculation

is started. The first and the last line in figure A.6 shows that the parity calculation

require 36 clock cycles. These two numbers indicates that approximately 50 clock

cycles are required from the time new data is available to be transferred to the data

is ready to be transferred. The UART protocol is defined to be able to transfer a new

data frame immediately after the stop bit at the end of the frame. Therefore, the

peripheral processor have to be capable of checking for new data and calculate parity

bit within the period of one stop bit. If the stop bit is set to be the same size as the

rest of the bits, only one bit can be transferred each fiftieth clock cycle. Because the

clock period is set to be 24 ns, the maximum baud rate will be 833Kbit/s as given in

equation 6.1. The typical baud rate of a UART range from 2.4Kbit/s to 1Mbit/s [2].

BaudRate =
1s

(24 ∗ 50)ns
= 833Kbit/s (6.1)

In this case, the parity bit was calculated separately. It could have been calculated

while shifting out to improve the performance. Nevertheless, this is the absolute

Chapter 6. Discussion 66

maximum if the peripheral processor is only to transmit data and no data reception

is to be done. If data reception is done available simultaneously as data reception, the

baud rate will decrease significantly. This is because the UART receiver includes fault

checking when receiving data as given in chapter 2.4. This fault checking will require

several clock cycles within each sample and the baud rate will therefore decrease.

How much the baud rate will decrease is hard to estimate without having a fully

functional UART program to run on the peripheral processor.

Under optimal circumstances, a fully functional UART, SPI and TWI program should

have been programmed to run on the peripheral processor to be able to investigate

the performance. Nevertheless, this was not possible because of the time limit.

Because this processor is only to be used as a peripheral processor, specialised in-

structions could be added to reduce the required clock cycles needed to do operations

that are frequently requested. For example, a calculate-parity-bit instruction can be

added so that the parity bit calculation can be done in only one clock cycle. This

would increase the area of the ALU, but at the same time probably increase the max-

imum baud rate for a UART transmission. If fully functional UART, SPI and TWI

programs had been made, these programs could be used to analyse what operations

that would be beneficial to include as separate instructions.

Power

When synthesising, the synthesis tool will add clock gates in front of registers that

are activated with equal conditions to save power. Adding a clock gate is beneficial

if three or more registers are activated by the same condition. The report presented

in table 5.13 show that more than 93% of all the registers are clock gated. This is a

good result and it will be hard so save more power by adding additional clock gates.

The power report given in table 5.17 is the result of a power analysis done when

running the UART program in appendix B.2. It is hard to compare this value to

other circuits, but it can be calculated how long a normal battery can power the

peripheral processor when it is running the tested program.

Chapter 6. Discussion 67

The ATmega128 microcontroller can operate at a voltage ranging from 2.7V to 5.5V.

It is therefore reasonable to assume that the peripheral processor can operate at 3V

that is the same as two AAA batteries connected serially. A typical AAA battery

can have a capacity of 750mAh. At 3V the peripheral processor will have a current

consumption of 1.623mW/3V = 0.541mA. The peripheral processor can therefore

run the UART program for 750/0.541 = 1386 hours. This is obviously an unrealistic

value because the peripheral processor cannot function without the rest of the AVR.

Nevertheless, it gives a number to associate with the power consumption.

Area and Cost

Table 5.11 presents the total area of the peripheral processor without the SRAM. This

is because the SRAM modules implemented are only implemented to make testing of

the peripheral processor possible. The SRAM modules can easily be changed without

having to do fundamental changes in the architecture of the peripheral processor.

The area is given in NAND2 equivalents and presents both the combinatorial and

noncombinatorial area. Because of the lack of pipelining, it is reasonable that the

combinatorial area is 72.5% of the total area. If extra pipelined steps is to be added,

the combinatorial area will presumably be unchanged, but the noncombinatorial area

will increase.

The total area for the peripheral processor is reasonable compared to the estimation

given in the preliminary work in table 3.3. The extra area is the result of a combi-

nation of the unreliability in the area calculations and extra logic added during the

implementation of the peripheral processor.

The total area given in table 5.11 consists of 10690 NAND2 gates. The total area

of the non programmable USART, SPI and TWI modules is 3200 NAND2 gates all

together, as given in chapter 3.5. The peripheral processor is therefore more than 3

times bigger and more expensive than these thee modules together.

In addition to this the SRAM have to be included as well. The area and cost of

the SRAM will vary depending of what SRAM is chosen and the size of it. The

Chapter 6. Discussion 68

SRAM size and type is a choice Atmel have to take if they decide to continue the

development of the peripheral processor.

Design For Test Coverage

Table 5.14 presents the DFT coverage of the peripheral processor. This result should

be as high as possible and preferably above 98%. The 98% limit is a requirement for

units to be qualified to be used in automotive areas, such as cars, trains and other

industrial elements. It would therefore be desirable to have a DFT coverage above

98%. However, one can argue that the peripheral processor is only a small part of a

huge system. Therefore, given that the rest of the system is much larger than this

module, a test coverage of 95.56% will not have a significant impact of the DFT

coverage of the whole system.

The reason that the result is below 98% is, among others, because of some combina-

torial logic on the inputs and outputs that not is testable. However, these problems

will disappear if the peripheral processor is included into the host system and then

tested. The synthesis tool do not give a detailed DFT coverage report, and it would

be easier to analyse the DFT coverage if an ATPG tool had been used after the

synthesis. This is not done because of the time limit.

Chapter 7

Conclusions

In the preliminary work it was found that a processor is significantly slower than non

programmable hardware. Therefore utilising a processor instead of non programmable

hardware to control serial communication with external devices would have a huge

affect on the maximum baud rate. The result from the implementation confirms this,

but the affect on the baud rate can be much smaller than first anticipated. This

is because a peripheral processor can have a higher clock frequency than the host

system and it is easier to optimize the program when the instruction composition is

programmed manually instead of using a high level programming language, such as

C.

The peripheral processor implemented can have a maximum clock frequency of 41.7

MHz. This is almost four times higher than the clock frequency used in the prelimi-

nary work that was 11.1 MHz. In addition to this, the implementation is done with

only two pipelined steps. This is not an optimal solution if high clock frequency is

desired and was only chosen to simplify the design of the peripheral processor due to

the time limit. The timing reports from the synthesis tools show that the clock fre-

quency can be doubled if a more pipelined structure is chosen. Furthermore, several

small adjustments can be made to further increase the clock frequency. The baud

rate given in equation 6.1 is unrealistically high because of the lack of functionality in

the UART program. However, if the clock frequency is increased to around 80 MHz

a baud rate of around 0.5Mbit/s may be possible. Nevertheless, a fully functional

69

Chapter 7. Conclusion 70

UART program should be made and tested on the peripheral processor if further work

is to be done with it. A fully functional USART program will give a good feedback

about the maximum baud rate, also at different clock frequencies.

Another problem found in the preliminary work was the area of the peripheral pro-

cessor. This problem is still significant. The fact that the peripheral processor is

more than three times larger than the total area of the non programmable USART,

SPI and TWI modules together cannot be ignored. The area of the SRAM will also

be added to this. For that reason, the cost of the peripheral processor have to be

valued against the advantages of its ability to be reprogrammed.

The value of having a reprogrammable peripheral processor is huge if the existing

protocols are being updated and if new communication protocols are released after

the microcontroller have been produced. A microcontroller with a programmable

peripheral processor will then last much longer than a microcontroller with non-

programmable peripherals.

It is hard to give a sturdy conclusion if a peripheral processor is a good solution or

not. A peripheral processor will both have significant advantages and disadvantages.

However, this thesis illustrates that it is possible to substitute non-programmable

peripherals with a programmable peripheral processor.

Appendix A

Simulation results

A.1 Simulation of instructions

Figure A.1: Branch and jump waveform

71

Appendix A. Simulation results 72

Figure A.2: Register operations waveform

Appendix A. Simulation results 73

Figure A.3: Stack operations waveform

Appendix A. Simulation results 74

Figure A.4: In/out and timer operations waveform

Appendix A. Simulation results 75

A.2 UART simulation

Figure A.5: Checking for status bit

Appendix A. Simulation results 76

Figure A.6: Calculating parity bit

Appendix A. Simulation results 77

Figure A.7: Shifting data out

Appendix A. Simulation results 78

Figure A.8: Shifting data in

Appendix B

Simulation programs

B.1 Test of instructions

module instruction_test ();

‘include "cpu_params.sv"

initial begin

#10;

tb.scan_test_mode = 0;

tb.write_mem = 0;

tb.instr_addr = 0;

tb.instr_data = 0;

end

task run ();

begin

$display ("Start test ");

wait(tb.clk ==0);

tb.U_DUT.CS1.reg_r [0] = 8’h03;

tb.U_DUT.C1.R1.reg_r [0] = 8’h00;

tb.U_DUT.C1.R1.reg_r [1] = 8’h01;

tb.U_DUT.C1.R1.reg_r [2] = 8’h02;

tb.U_DUT.C1.R1.reg_r [3] = 8’h03;

tb.U_DUT.C1.R1.reg_r [4] = 8’h04;

tb.U_DUT.C1.R1.reg_r [5] = 8’hab;

tb.U_DUT.C1.R1.reg_r [6] = 8’hac;

tb.U_DUT.C1.R1.reg_r [7] = 8’had;

tb.U_DUT.C1.R1.reg_r [8] = 8’hae;

tb.U_DUT.C1.R1.reg_r [9] = 8’haf;

tb.U_DUT.C1.R1.reg_r [10] = 8’hfa;

tb.U_DUT.C1.R1.reg_r [11] = 8’hfb;

tb.U_DUT.C1.R1.reg_r [12] = 8’hfc;

tb.U_DUT.C1.R1.reg_r [13] = 8’hfd;

tb.U_DUT.C1.R1.reg_r [14] = 8’hfe;

tb.U_DUT.C1.R1.reg_r [15] = 8’hff;

tb.U_DUT.C1.PM.U_SRAM_MEM.u0.mem_core_array [0] = 32’ h00000000;

// NOP , NOP

tb.U_DUT.C1.PM.U_SRAM_MEM.u0.mem_core_array [1] = 32’ h1cf11cf1;

// ADC rf <-r1 , ADC rf<-r0

tb.U_DUT.C1.PM.U_SRAM_MEM.u0.mem_core_array [2] = 32’ h0cee0c21;

// ADD re <-re , ADD r2<-r1

tb.U_DUT.C1.PM.U_SRAM_MEM.u0.mem_core_array [3] = 32’ h945a205c;

// DEC r5 , AND r5<-rc

tb.U_DUT.C1.PM.U_SRAM_MEM.u0.mem_core_array [4] = 32’ h186e1864;

// SUB r6 <-rd , SUB r6<-r4

tb.U_DUT.C1.PM.U_SRAM_MEM.u0.mem_core_array [5] = 32’ h08d108d0;

// SBC rd <-r1 , SBC rd<-r0

tb.U_DUT.C1.PM.U_SRAM_MEM.u0.mem_core_array [6] = 32’ h40324f3f;

79

Appendix B. Simulation programs 80

// SBCI r3 <-02, SBCI r3<-ff

tb.U_DUT.C1.PM.U_SRAM_MEM.u0.mem_core_array [7] = 32’ h94379436;

// ROR r3, LSR r3

tb.U_DUT.C1.PM.U_SRAM_MEM.u0.mem_core_array [8] = 32’ h24452865;

// XOR r4<-r5 , OR r6 <-r5

tb.U_DUT.C1.PM.U_SRAM_MEM.u0.mem_core_array [9] = 32’ h14781477;

// CP r7 -r8, CP r7-r7

tb.U_DUT.C1.PM.U_SRAM_MEM.u0.mem_core_array [10] = 32’ h04870477;

// CPC r7-r8 , CPC r7 -r7

tb.U_DUT.C1.PM.U_SRAM_MEM.u0.mem_core_array [11] = 32’ h3b60306a;

// CPI r6-b0 , CPI r6 -0a

tb.U_DUT.C1.PM.U_SRAM_MEM.u0.mem_core_array [12] = 32’ h927f2c67;

// PUSH r7, MOV r6<-r7

tb.U_DUT.C1.PM.U_SRAM_MEM.u0.mem_core_array [13] = 32’ h929f928f;

// PUSH r9, PUSH r8

tb.U_DUT.C1.PM.U_SRAM_MEM.u0.mem_core_array [14] = 32’ h92bf92af;

// PUSH r11 , PUSH r10

tb.U_DUT.C1.PM.U_SRAM_MEM.u0.mem_core_array [15] = 32’ he281e070;

// LDI r8 <-21, LDI r7 <-00

tb.U_DUT.C1.PM.U_SRAM_MEM.u0.mem_core_array [16] = 32’ h907fef9c;

// POP r7, LDI r9<-fc

tb.U_DUT.C1.PM.U_SRAM_MEM.u0.mem_core_array [17] = 32’ h909f908f;

// POP r9, POP r8

tb.U_DUT.C1.PM.U_SRAM_MEM.u0.mem_core_array [18] = 32’ haa70a972;

// STS io_reg <- r7, cs_r[2]<-r7

tb.U_DUT.C1.PM.U_SRAM_MEM.u0.mem_core_array [19] = 32’ hab03ab22;

// STS timer_compare <-{r0,r3}

tb.U_DUT.C1.PM.U_SRAM_MEM.u0.mem_core_array [20] = 32’ hab44e047;

// timer_c_r <-r4, r4 <-07

tb.U_DUT.C1.PM.U_SRAM_MEM.u0.mem_core_array [21] = 32’ h00000000;

tb.U_DUT.C1.PM.U_SRAM_MEM.u0.mem_core_array [22] = 32’ h00000000;

tb.U_DUT.C1.PM.U_SRAM_MEM.u0.mem_core_array [23] = 32’ h0000a3f5;

// r15 <-timer_c_r

tb.U_DUT.C1.PM.U_SRAM_MEM.u0.mem_core_array [24] = 32’ hf42a0ced;

// BRCS +5, ADD r14 <-r13

tb.U_DUT.C1.PM.U_SRAM_MEM.u0.mem_core_array [25] = 32’ h0000f442;

// NOP , BRPL +8

tb.U_DUT.C1.PM.U_SRAM_MEM.u0.mem_core_array [26] = 32’ h00000000;

tb.U_DUT.C1.PM.U_SRAM_MEM.u0.mem_core_array [27] = 32’ h0000f7e0;

// NOP , BRCC -4

tb.U_DUT.C1.PM.U_SRAM_MEM.u0.mem_core_array [28] = 32’ h00000000;

tb.U_DUT.C1.PM.U_SRAM_MEM.u0.mem_core_array [29] = 32’ h0000940c;

// NOP , JMP 01

tb.U_DUT.C1.PM.U_SRAM_MEM.u0.mem_core_array [30] = 32’ h00000001;

tb.U_DUT.C1.PM.U_SRAM_MEM.u0.mem_core_array [31] = 32’ h00000000;

#1500;

$display ("TEST OK");

end

endtask // run

endmodule // instruction_test

B.2 UART program

module toptest ();

‘include "cpu_params.sv"

initial begin

#10;

tb.write_mem = 0;

tb.instr_addr = 0;

tb.instr_data = 0;

tb.scan_test_mode = 0;

end

Appendix B. Simulation programs 81

task run ();

begin

$display ("Start test ");

wait(tb.clk ==0);

#24;

tb.paddr = 32’h00000000; //reset cpu and hold PC so prog_mem can be programmed

tb.pwdata = 8’h00;

tb.pwrite = 1’b1;

tb.psel = 1’b1;

tb.penable_cs = 1’b1;

tb.instr_addr = 9’h000; // start programming of prog_mem

tb.instr_data = 32’h00000000; // NOP

tb.write_mem = 1’b1;

#24;

tb.penable_cs = 1’b0;

tb.instr_addr = 9’h001;

tb.instr_data = 32’he011e031; // LDI r1 <-1, r3 <-1

#24;

tb.instr_addr = 9’h002;

tb.instr_data = 32’he0e1a580; // LDI r14 <-1, LDS r8<-io_port

#24;

tb.instr_addr = 9’h003;

tb.instr_data = 32’ha127ade3; // LDS r2<-cs_r[7], FORCE OUT r14 (set stop bit)

#24;

tb.instr_addr = 9’h004;

tb.instr_data = 32’h14f12012; // CP r15 r1, AND r1<- r2

#24;

tb.instr_addr = 9’h005;

tb.instr_data = 32’h940cf420; // JMP addr 52, BRCC +4

#24;

tb.instr_addr = 9’h006;

tb.instr_data = 32’h00000052; // Jump to START PARITY

#24;

tb.instr_addr = 9’h007;

tb.instr_data = 32’h2038a580; // AND r3<-r8, LDS r8<-io_port

#24;

tb.instr_addr = 9’h008;

tb.instr_data = 32’h940cf0f1; // JMP addr3 , BREQ to shift in (addr +30)

#24;

tb.instr_addr = 9’h009;

tb.instr_data = 32’h00000002;

#24;

//START SHIFT OUT

tb.instr_addr = 9’h00a;

tb.instr_data = 32’ha9f7a200; // STS cs_reg[7]<-r15 , LDS r0<-io_reg

#24

tb.instr_addr = 9’h00b;

tb.instr_data = 32’hadf3adf3; // FORCE OUT <-r15 , FORCE OUT <-r15 (set start bit)

#24;

tb.instr_addr = 9’h00c;

tb.instr_data = 32’h9406ad03; // LSR r0, FORCE OUT <-r0

#24;

tb.instr_addr = 9’h00d;

tb.instr_data = 32’h9406ad03; // LSR r0, FORCE OUT <-r0

#24;

tb.instr_addr = 9’h00e;

tb.instr_data = 32’h9406ad03; // LSR r0, FORCE OUT <-r0

#24;

tb.instr_addr = 9’h00f;

tb.instr_data = 32’h9406ad03; // LSR r0, FORCE OUT <-r0

#24;

tb.instr_addr = 9’h010;

tb.instr_data = 32’h9406ad03; // LSR r0, FORCE OUT <-r0

#24;

tb.instr_addr = 9’h011;

tb.instr_data = 32’h9406ad03; // LSR r0, FORCE OUT <-r0

#24;

tb.instr_addr = 9’h012;

tb.instr_data = 32’h9406ad03; // LSR r0, FORCE OUT <-r0

#24;

Appendix B. Simulation programs 82

tb.instr_addr = 9’h013;

tb.instr_data = 32’ h9406ad03; // LSR r0, FORCE OUT <-r0

#24;

tb.instr_addr = 9’h014;

tb.instr_data = 32’ had63ad63; // FORCE OUT <-r6 , FORCE OUT <-r6(parity bit)

#24;

tb.instr_addr = 9’h015;

tb.instr_data = 32’ h940cade3; // JMP , FORCE OUT <-r14(stop bit)

#24;

tb.instr_addr = 9’h016;

tb.instr_data = 32’ h00000003; // Jump to start

#24;

//START SHIFT IN

tb.instr_addr = 9’h017;

tb.instr_data = 32’ ha550e040; // LDS r5<-io_port , LDI r4 <-0

#24;

tb.instr_addr = 9’h018;

tb.instr_data = 32’ h94479456; // ROR r4, LSR r5

#24;

tb.instr_addr = 9’h019;

tb.instr_data = 32’ h9456a550; // LSR r5, LDS r5 <-io_port

#24;

tb.instr_addr = 9’h01a;

tb.instr_data = 32’ ha5509447; // LDS r5<-io_port , ROR r4

#24;

tb.instr_addr = 9’h01b;

tb.instr_data = 32’ h94479456; // ROR r4, LSR r5

#24;

tb.instr_addr = 9’h01c;

tb.instr_data = 32’ h9456a550; // LSR r5, LDS r5 <-io_port

#24;

tb.instr_addr = 9’h01d;

tb.instr_data = 32’ ha5509447; // LDS r5<-io_port , ROR r4

#24;

tb.instr_addr = 9’h01e;

tb.instr_data = 32’ h94479456; // ROR r4, LSR r5

#24;

tb.instr_addr = 9’h01f;

tb.instr_data = 32’ h9456a550; // LSR r5, LDS r5 <-io_port

#24;

tb.instr_addr = 9’h020;

tb.instr_data = 32’ ha5509447; // LDS r5<-io_port , ROR r4

#24;

tb.instr_addr = 9’h021;

tb.instr_data = 32’ h94479456; // ROR r4, LSR r5

#24;

tb.instr_addr = 9’h022;

tb.instr_data = 32’ h9456a550; // LSR r5, LDS r5 <-io_port

#24;

tb.instr_addr = 9’h023;

tb.instr_data = 32’ haa409447; // STS io_reg <-r4, ROR r4

#24;

tb.instr_addr = 9’h024;

tb.instr_data = 32’ h940cace0; // JMP addr03 , STS irq <-r14

#24;

tb.instr_addr = 9’h025;

tb.instr_data = 32’ h00000003;

#24;

//START CALCULATE PARITY

tb.instr_addr = 9’h026;

tb.instr_data = 32’ he0e1a270; // LDI r14 <-1, LDS r7<-io_reg

#24;

tb.instr_addr = 9’h027;

tb.instr_data = 32’ h2cdee060; // MOV r13 <-r14 , LDI r6 <-0

#24;

tb.instr_addr = 9’h028;

tb.instr_data = 32’h0c6d20d7; // ADD r6<-r13 , AND r13 <-r7

#24;

tb.instr_addr = 9’h029;

tb.instr_data = 32’h2cde9476; // MOV r13 <-r14 , LSR r7

#24;

Appendix B. Simulation programs 83

tb.instr_addr = 9’h02a;

tb.instr_data = 32’h0c6d20d7; // ADD r6<-r13 , AND r13 <-r7

#24;

tb.instr_addr = 9’h02b;

tb.instr_data = 32’h2cde9476; // MOV r13 <-r14 , LSR r7

#24;

tb.instr_addr = 9’h02c;

tb.instr_data = 32’h0c6d20d7; // ADD r6<-r13 , AND r13 <-r7

#24;

tb.instr_addr = 9’h02d;

tb.instr_data = 32’h2cde9476; // MOV r13 <-r14 , LSR r7

#24;

tb.instr_addr = 9’h02e;

tb.instr_data = 32’h0c6d20d7; // ADD r6<-r13 , AND r13 <-r7

#24;

tb.instr_addr = 9’h02f;

tb.instr_data = 32’h2cde9476; // MOV r13 <-r14 , LSR r7

#24;

tb.instr_addr = 9’h030;

tb.instr_data = 32’h0c6d20d7; // ADD r6<-r13 , AND r13 <-r7

#24;

tb.instr_addr = 9’h031;

tb.instr_data = 32’h2cde9476; // MOV r13 <-r14 , LSR r7

#24;

tb.instr_addr = 9’h032;

tb.instr_data = 32’h0c6d20d7; // ADD r6<-r13 , AND r13 <-r7

#24;

tb.instr_addr = 9’h033;

tb.instr_data = 32’h2cde9476; // MOV r13 <-r14 , LSR r7

#24;

tb.instr_addr = 9’h034;

tb.instr_data = 32’h0c6d20d7; // ADD r6<-r13 , AND r13 <-r7

#24;

tb.instr_addr = 9’h035;

tb.instr_data = 32’h2cde9476; // MOV r13 <-r14 , LSR r7

#24;

tb.instr_addr = 9’h036;

tb.instr_data = 32’h0c6d20d7; // ADD r6<-r13 , AND r13 <-r7

#24;

tb.instr_addr = 9’h037;

tb.instr_data = 32’h940c9463; // JUMP to 14, INC r6

#24;

tb.instr_addr = 9’h038;

tb.instr_data = 32’h00000014; // Jump to START SHIFT OUT

#24;

tb.IN = 8’h01;

tb.write_mem = 1’b0; // stop writing to U_SRAM_MEM

tb.paddr = 32’h00000007; // writing to cs_reg [7]

tb.pwdata = 8’hd0; // writing data 8’h00

tb.penable_cs = 1’b1; // enable cs_reg to write data

#24;

tb.paddr = 32’h00000000; // writing to cs_reg [0]

tb.pwdata = 8’h03; // writing data 8’h03 (enable cpu)

#48;

tb.penable_cs = 1’b0;

#240;

tb.pwdata = 8’h6d; // writing ’h6d to io_reg

tb.penable_io = 1’b1; // writing ’h6d to io_reg

#24;

tb.paddr = 32’h00000007; // writing to cs_reg

tb.pwdata = 8’h01; // set cs_reg [7][0] to 1 for cpu to shift out

tb.penable_io = 1’b0;

tb.penable_cs = 1’b1;

#24;

tb.penable_cs = 1’b0;

#2544;

tb.IN = 8’h0; // Start data to be shifted in

#72;

tb.penable_cs = 1’b0;

tb.IN = 8’h1;

Appendix B. Simulation programs 84

#72;

tb.IN = 8’h0;

#72;

tb.IN = 8’h1;

#72;

tb.IN = 8’h2;

#72;

tb.IN = 8’h1;

#72;

tb.IN = 8’h1;

#72;

tb.IN = 8’h0;

#72;

tb.IN = 8’h1;

#240;

tb.pwdata = 8’h0;

tb.pwrite = 1’b1;

tb.psel = 1’b1;

tb.penable_irq = 1’b1;

#24;

tb.penable_irq = 1’b0; // Clear interrupt

#480;

$display ("TEST OK");

end

endtask // run

endmodule // toptest

Appendix C

Verilog Code

C.1 Register File

module register (/* AUTOARG */

// Outputs

data_a , data_b ,

// Inputs

write , clk , rst_n , addr_a , addr_b , addr_d , data_d

);

‘include "cpu_params.sv"

input write , clk , rst_n;

input [ADDR_MSB :0] addr_a , addr_b , addr_d;

input [DATA_MSB :0] data_d;

output [DATA_MSB :0] data_a , data_b;

reg [DATA_MSB :0] data_a , data_b;

reg [DATA_MSB :0] reg_r[REG_NUMBERS :0];

int i;

always@(posedge clk or negedge rst_n) begin

if (!rst_n) begin

for (i = 0; i <= REG_NUMBERS; i=i+1) begin

reg_r[i] = ’b00000000;

end

end

else if (write) begin

case (addr_d)

0 : begin reg_r [0] <= data_d; end

1 : begin reg_r [1] <= data_d; end

2 : begin reg_r [2] <= data_d; end

3 : begin reg_r [3] <= data_d; end

4 : begin reg_r [4] <= data_d; end

5 : begin reg_r [5] <= data_d; end

6 : begin reg_r [6] <= data_d; end

7 : begin reg_r [7] <= data_d; end

8 : begin reg_r [8] <= data_d; end

9 : begin reg_r [9] <= data_d; end

10 : begin reg_r [10] <= data_d; end

11 : begin reg_r [11] <= data_d; end

12 : begin reg_r [12] <= data_d; end

13 : begin reg_r [13] <= data_d; end

14 : begin reg_r [14] <= data_d; end

15 : begin reg_r [15] <= data_d; end

endcase // case (addrd)

end // if (write)

85

Appendix C. Verilog Code 86

end // always@ (posedge clk)

always@ (*) begin

data_a = reg_r[addr_a];

data_b = reg_r[addr_b];

end

endmodule // register

C.2 ALU

module alu (/* AUTOARG */

// Outputs

data_d , v_r , c_r , n_r , z_r , do_cpu ,

// Inputs

clk , rst_n , ms, data_a , data_b , di_cpu , constant , fs

);

‘include "cpu_params.sv"

input clk , rst_n;

input [1:0] ms;

input [DATA_MSB :0] data_a , data_b , di_cpu , constant;

input [MSB_FS :0] fs;

output [DATA_MSB :0] data_d;

output v_r , c_r , n_r , z_r;

output [DATA_MSB :0] do_cpu;

reg [DATA_MSB :0] data_d;

reg v_r , c_r , n_r , z_r;

reg v, c, n, z;

reg [DATA_SIZE :0] temp;

reg [DATA_MSB :0] b_in;

assign do_cpu = b_in;

always@ (*) begin

case (ms)

0 : begin b_in = data_b; end

1 : begin b_in = di_cpu; end

2 : begin b_in = constant; end

default : begin b_in = data_b; end

endcase // case (ms)

end // always@ (*)

always@(posedge clk or negedge rst_n) begin

if (!rst_n) begin

v_r <= 1’b0;

c_r <= 1’b0;

n_r <= 1’b0;

z_r <= 1’b0;

end

else begin

v_r <= v;

c_r <= c;

n_r <= n;

z_r <= z;

end // else: !if(rst_n == 0)

end // always@ (negedge clk or negedge rst_n)

always@ (*) begin

/* AUTORESET */

// Beginning of autoreset for uninitialized flops

c = 1’h0;

data_d = {(1+(DATA_MSB)){1’b0}};

n = 1’h0;

Appendix C. Verilog Code 87

temp = {(1+(DATA_SIZE)){1’b0}};

v = 1’h0;

z = 1’h0;

// End of automatics

case (fs)

NOP : begin // NOP

data_d = ’b0;

end

ADD : begin // ADD

temp = data_a + b_in;

{c,data_d} = data_a + b_in;

// c = temp[DATA_SIZE];

z = (temp == 0) ? 1 : 0;

end

ADC : begin // ADC

temp = data_a + b_in + c_r;

{c,data_d} = data_a + b_in +c_r;

// c = temp[DATA_SIZE];

z = (temp == 0) ? 1:0;

end

SUB : begin // SUB , SUBI

data_d = data_a - b_in;

c = (b_in > data_a) ? 1:0;

z = (data_a ==b_in) ? 1:0;

end

SBC: begin // SBC , SBCI

data_d = data_a - b_in - c_r;

c = (b_in+c_r > data_a) ? 1:0;

z = ((data_a -b_in -c_r)==0) ? 1:0;

end

LDI : begin // LDI

data_d = b_in;

end

LSL : begin // LSL

data_d = (data_a << 1);

c = data_a[DATA_MSB];

z = (data_a << 1) ? 0:1;

end

LSR : begin // LSR

data_d = (data_a >> 1);

c = data_a [0];

z = (data_a >> 1) ? 0:1;

end

ROL : begin // ROL

temp = (data_a << 1);

temp [0] = c_r;

data_d = temp[DATA_MSB :0];

c = data_a[DATA_MSB];

z = (temp[DATA_MSB :0]) ? 0:1;

end

ROR : begin // ROR

temp = (data_a << 1);

temp = (temp >> 1);

temp[DATA_SIZE] = c_r;

data_d = temp[DATA_SIZE :1];

c = temp [0];

z = (temp[DATA_SIZE :1]) ? 0:1;

end

AND : begin // AND

data_d = data_a & b_in;

z = (data_a & b_in) ? 0:1;

end

OR : begin // OR , ORI

data_d = data_a | b_in;

z = (data_a | b_in) ? 0:1;

end

XOR : begin // XOR , CLR

data_d = data_a ^ b_in;

z = (data_a ^ b_in) ? 0:1;

end

CP : begin // CP , CPI

Appendix C. Verilog Code 88

c = (b_in > data_a) ? 1:0;

z = (data_a ==b_in) ? 1:0;

end

CPC : begin // CPC

c = (b_in+c_r > data_a) ? 1:0;

z = ((data_a -b_in -c_r)==0) ? 1:0;

end

DEC : begin // DEC

data_d = data_a - 1;

z = (data_a -1)==0 ? 1:0;

end

default : begin

temp = 0;

data_d = 0;

v = 1’b0;

c = 1’b0;

n = 1’b0;

z = 1’b0;

end

endcase // case (fs)

end // always@ (*)

endmodule // alu

C.3 Instruction Decoder

module decode (/* AUTOARG */

// Outputs

addr_a , addr_b , addr_d , constant , write , pl, jb, bset , hold_pc , bc, fs, ms ,

databus_addr , write_bus , read_bus , offset ,

// Inputs

instr_pntr , done_hold , di_ireg , cpu_reset_n , cpu_disable_n , msd

);

‘include "cpu_params.sv"

input instr_pntr;

input done_hold; // from brctrl to tell that the pc have been holded

input [31:0] di_ireg;

input cpu_reset_n , cpu_disable_n;

input msd; // Mux Select Decode

output [ADDR_MSB :0] addr_a , addr_b , addr_d;

output [DATA_MSB :0] constant;

output write , pl, jb, bset;

output hold_pc; // to brctrl to hold the pc for one clock cycle

output [2:0] bc;

output [MSB_FS :0] fs;

output [MUXA_MSB :0] ms;

output [BUSADDR_MSB :0] databus_addr;

output write_bus , read_bus;

output [6:0] offset;

reg [ADDR_MSB :0] addr_a , addr_b , addr_d;

reg [DATA_MSB :0] constant;

reg write , pl, jb, bset , write_bus , read_bus;

reg hold_pc;

reg [2:0] bc;

reg [MSB_FS :0] fs;

reg [MUXA_MSB :0] ms;

reg [BUSADDR_MSB :0] databus_addr;

reg [OPCODE_MSB :0] opcode;

reg [6:0] offset;

wire [31:0] ireg;

/* AUTOINPUT */

/* AUTOREG */

Appendix C. Verilog Code 89

/* AUTOWIRE */

assign ireg = msd ? 32’h00000000:di_ireg;

always@ (*) begin

opcode = ireg [15:0];

offset = ireg [9:3];

if (! instr_pntr) begin

opcode = ireg [15:0];

offset = ireg [9:3];

end

else begin

opcode = ireg [31:16];

offset = ireg [25:19];

end

end

always@ (*) begin

/* AUTORESET */

// Beginning of autoreset for uninitialized flops

addr_a = {(1+(ADDR_MSB)){1’b0}};

addr_b = {(1+(ADDR_MSB)){1’b0}};

addr_d = {(1+(ADDR_MSB)){1’b0}};

bc = 3’h0;

bset = 1’h0;

constant = {(1+(DATA_MSB)){1’b0}};

databus_addr = {(1+(BUSADDR_MSB)){1’b0}};

fs = {(1+(MSB_FS)){1’b0}};

hold_pc = 1’h0;

jb = 1’h0;

ms = {(1+(MUXA_MSB)){1’b0}};

pl = 1’h0;

read_bus = 1’h0;

write = 1’h0;

write_bus = 1’h0;

// End of automatics

if (! cpu_disable_n || !cpu_reset_n) begin // CPU disabeled

hold_pc = 1;

addr_a = ’b0000;

addr_b = ’b0000;

addr_d = ’b0000;

write = ’b0;

write_bus = ’b0;

read_bus = ’b0;

pl = ’b0;

jb = ’b0;

bc = ’b000;

fs = NOP;

ms = ’b0;

end // if (! cpu_disable_n)

else if (opcode == OPC_NOP) begin // NOP

hold_pc = 0;

addr_a = ’b0000;

addr_b = ’b0000;

addr_d = ’b0000;

write = ’b0;

write_bus = ’b0;

read_bus = ’b0;

pl = ’b0;

jb = ’b0;

bc = ’b000;

fs = NOP;

ms = ’b0;

end // if (opcode == OPC_NOP)

else if (opcode[OPCODE_MSB :10] == OPC_ADC) begin //ADC and ROL

hold_pc = 0;

addr_a = opcode [7:4];

addr_b = opcode [3:0];

addr_d = opcode [7:4];

write = 1;

write_bus = 0;

Appendix C. Verilog Code 90

read_bus = 0;

ms = 0;

fs = ADC;

pl = 0;

jb = 0;

bc = 0;

end // if (opcode[OPCODE_MSB :10] == OPC_ADC)

else if (opcode[OPCODE_MSB :10] == OPC_ADD) begin // ADD , LSL

hold_pc = 0;

addr_a = opcode [7:4];

addr_b = opcode [3:0];

addr_d = opcode [7:4];

write = 1;

write_bus = 0;

read_bus = 0;

ms = 0;

fs = ADD;

pl = 0;

jb = 0;

bc = 0;

end // if (opcode[OPCODE_MSB :10] == OPC_ADD)

else if (opcode[OPCODE_MSB :10] == OPC_AND) begin // AND

hold_pc = 0;

addr_a = opcode [7:4];

addr_b = opcode [3:0];

addr_d = opcode [7:4];

write = 1;

write_bus = 0;

read_bus = 0;

ms = 0;

fs = AND;

pl = 0;

jb = 0;

bc = 0;

end // if (opcode[OPCODE_MSB :10] == OPC_AND)

else if (opcode[OPCODE_MSB :9] == OPC_DEC [10:4]

&& opcode [3:0] == OPC_DEC [3:0]) begin // DEC

hold_pc = 0;

addr_a = opcode [7:4];

addr_d = opcode [7:4];

write = 1;

write_bus = 0;

read_bus = 0;

fs = DEC;

pl = 0;

jb = 0;

bc = 0;

end // if (opcode[OPCODE_MSB :9] == OPC_DEC [10:4] && opcode [3:0] == OPC_DEC [3:0])

else if (opcode[OPCODE_MSB :10] == OPC_SUB) begin // SUB

hold_pc = 0;

addr_a = opcode [7:4];

addr_b = opcode [3:0];

addr_d = opcode [7:4];

write = 1;

write_bus = 0;

read_bus = 0;

ms = 0;

fs = SUB;

pl = 0;

jb = 0;

bc = 0;

end // if (opcode[OPCODE_MSB :10] == OPC_SUB)

else if (opcode[OPCODE_MSB :12] == OPC_SUBI) begin // SUBI

hold_pc = 0;

addr_a = opcode [7:4];

addr_d = opcode [7:4];

write = 1;

write_bus = 0;

read_bus = 0;

ms = 2;

fs = SUB;

Appendix C. Verilog Code 91

constant = {opcode [11:8] , opcode [3:0]};

pl = 0;

jb = 0;

bc = 0;

end // if (opcode[OPCODE_MSB :12] == OPC_SUBI)

else if (opcode[OPCODE_MSB :10] == OPC_SBC) begin // SBC

hold_pc = 0;

addr_a = opcode [7:4];

addr_b = opcode [3:0];

addr_d = opcode [7:4];

write = 1;

write_bus = 0;

read_bus = 0;

ms = 0;

fs = SBC;

pl = 0;

jb = 0;

bc = 0;

end // if (opcode[OPCODE_MSB :10] == OPC_SBC)

else if (opcode[OPCODE_MSB :12] == OPC_SBCI) begin // SBCI

hold_pc = 0;

addr_a = opcode [7:4];

addr_d = opcode [7:4];

write = 1;

write_bus = 0;

read_bus = 0;

ms = 2;

fs = SBC;

constant = {opcode [11:8] , opcode [3:0]};

pl = 0;

jb = 0;

bc = 0;

end // if (opcode[OPCODE_MSB :12] == OPC_SBCI)

else if (opcode[OPCODE_MSB :12] == OPC_LDI) begin // LDI

hold_pc = 0;

addr_d = opcode [7:4];

constant = {opcode [11:8] , opcode [3:0]};

write = 1;

write_bus = 0;

read_bus = 0;

ms = 2;

fs = LDI;

pl = 0;

jb = 0;

bc = 0;

end

else if (opcode[OPCODE_MSB :9] == OPC_LSR [10:4]

&& opcode [3:0] == OPC_LSR [3:0]) begin // LSR

hold_pc = 0;

addr_a = opcode [7:4];

addr_d = opcode [7:4];

write = 1;

write_bus = 0;

read_bus = 0;

ms = 0;

fs = LSR;

pl = 0;

jb = 0;

bc = 0;

end

else if (opcode[OPCODE_MSB :9] == OPC_ROR [10:4]

&& opcode [3:0] == OPC_ROR [3:0]) begin // ROR

hold_pc = 0;

addr_a = opcode [7:4];

addr_d = opcode [7:4];

write = 1;

write_bus = 0;

read_bus = 0;

ms = 0;

fs = ROR;

pl = 0;

Appendix C. Verilog Code 92

jb = 0;

bc = 0;

end

else if (opcode[OPCODE_MSB :10] == OPC_OR) begin // OR

hold_pc = 0;

addr_a = opcode [7:4];

addr_b = opcode [3:0];

addr_d = opcode [7:4];

write = 1;

write_bus = 0;

read_bus = 0;

ms = 0;

fs = OR;

pl = 0;

jb = 0;

bc = 0;

end // if (opcode[OPCODE_MSB :10] == OPC_OR)

else if (opcode[OPCODE_MSB :10] == OPC_XOR) begin // XOR

hold_pc = 0;

addr_a = opcode [7:4];

addr_b = opcode [3:0];

addr_d = opcode [7:4];

write = 1;

write_bus = 0;

read_bus = 0;

ms = 0;

fs = XOR;

pl = 0;

jb = 0;

bc = 0;

end // if (opcode[OPCODE_MSB :10] == OPC_XOR)

else if (opcode[OPCODE_MSB :10] == OPC_CP) begin // CP

hold_pc = 0;

addr_a = opcode [7:4];

addr_b = opcode [3:0];

write = 0;

write_bus = 0;

read_bus = 0;

ms = 0;

fs = CP;

pl = 0;

jb = 0;

bc = 0;

end // if (opcode[OPCODE_MSB :10] == OPC_CP)

else if (opcode[OPCODE_MSB :10] == OPC_CPC) begin // CPC

hold_pc = 0;

addr_a = opcode [7:4];

addr_b = opcode [3:0];

write = 0;

write_bus = 0;

read_bus = 0;

ms = 0;

fs = CPC;

pl = 0;

jb = 0;

bc = 0;

end // if (opcode[OPCODE_MSB :10] == OPC_CPC)

else if (opcode[OPCODE_MSB :12] == OPC_CPI) begin // CPI

hold_pc = 0;

addr_a = opcode [7:4];

constant = {opcode [11:8] , opcode [3:0]};

write = 0;

write_bus = 0;

read_bus = 0;

ms = 2;

fs = CP;

pl = 0;

jb = 0;

bc = 0;

end // if (opcode[OPCODE_MSB :10] == OPC_CPI)

else if (opcode[OPCODE_MSB :10] == OPC_MOV) begin // MOV

Appendix C. Verilog Code 93

hold_pc = 0;

addr_b = opcode [3:0];

addr_d = opcode [7:4];

write = 1;

write_bus = 0;

read_bus = 0;

ms = 0;

fs = LDI;

pl = 0;

jb = 0;

bc = 0;

end // if (opcode[OPCODE_MSB :10] = OPC_MOV)

else if (opcode[OPCODE_MSB :10] == OPC_BRVS [8:3]

&& opcode [2:0] == OPC_BRVS [2:0]) begin // BRVS

hold_pc = 0;

write = 0;

write_bus = 0;

read_bus = 0;

fs = NOP;

pl = 1;

jb = 1;

bset = 1;

bc = ’b00;

end

else if (opcode[OPCODE_MSB :10] == OPC_BRVC [8:3]

&& opcode [2:0] == OPC_BRVC [2:0]) begin // BRVC

hold_pc = 0;

write = 0;

write_bus = 0;

read_bus = 0;

fs = NOP;

pl = 1;

jb = 1;

bset = 0;

bc = ’b00;

end

else if (opcode[OPCODE_MSB :10] == OPC_BRCS [8:3]

&& opcode [2:0] == OPC_BRCS [2:0]) begin // BRCS

hold_pc = 0;

write = 0;

write_bus = 0;

read_bus = 0;

fs = NOP;

pl = 1;

jb = 1;

bset = 1;

bc = ’b01;

end

else if (opcode[OPCODE_MSB :10] == OPC_BRCC [8:3]

&& opcode [2:0] == OPC_BRCC [2:0]) begin // BRCC

hold_pc = 0;

write = 0;

write_bus = 0;

read_bus = 0;

fs = NOP;

pl = 1;

jb = 1;

bset = 0;

bc = ’b01;

end

else if (opcode[OPCODE_MSB :10] == OPC_BRMI [8:3]

&& opcode [2:0] == OPC_BRMI [2:0]) begin // BRMI

hold_pc = 0;

write = 0;

write_bus = 0;

read_bus = 0;

fs = NOP;

pl = 1;

jb = 1;

bset = 1;

bc = ’b10;

Appendix C. Verilog Code 94

end

else if (opcode[OPCODE_MSB :10] == OPC_BRPL [8:3]

&& opcode [2:0] == OPC_BRPL [2:0]) begin // BRPL

hold_pc = 0;

write = 0;

write_bus = 0;

read_bus = 0;

fs = NOP;

pl = 1;

jb = 1;

bset = 0;

bc = ’b10;

end

else if (opcode[OPCODE_MSB :10] == OPC_BREQ [8:3]

&& opcode [2:0] == OPC_BREQ [2:0]) begin // BREQ

hold_pc = 0;

write = 0;

write_bus = 0;

fs = NOP;

pl = 1;

jb = 1;

bset = 1;

bc = ’b11;

end

else if (opcode[OPCODE_MSB :10] == OPC_BRNE [8:3]

&& opcode [2:0] == OPC_BRNE [2:0]) begin // BRNE

hold_pc = 0;

write = 0;

write_bus = 0;

read_bus = 0;

fs = NOP;

pl = 1;

jb = 1;

bset = 0;

bc = ’b11;

end

else if (opcode[OPCODE_MSB :9] == OPC_PUSH [10:4]

&& opcode [3:0] == OPC_PUSH [3:0]) begin // PUSH

if (! done_hold) begin

hold_pc = 1;

addr_b = opcode [7:4];

ms = 0;

write = 0;

fs = NOP;

pl = 0;

jb = 0;

bc = 0;

databus_addr = ’b000000;

write_bus = 0;

read_bus = 0;

end

else begin

hold_pc = 0;

addr_b = opcode [7:4];

ms = 0;

write = 0;

fs = NOP;

pl = 0;

jb = 0;

bc = 0;

databus_addr = ’b000000;

write_bus = 1;

read_bus = 0;

end // else: !if(! done_hold)

end // if (opcode[OPCODE_MSB :9] == OPC_PUSH [10:4]

&& opcode [3:0] == OPC_PUSH [3:0])

else if (opcode[OPCODE_MSB :9] == OPC_POP [10:4]

&& opcode [3:0] == OPC_POP [3:0]) begin // POP

if (! done_hold) begin

hold_pc = 1;

addr_b = opcode [7:4];

Appendix C. Verilog Code 95

ms = 0;

write = 0;

fs = NOP;

pl = 0;

jb = 0;

bc = 0;

databus_addr = ’b000000;

write_bus = 0;

read_bus = 0;

end

else begin

hold_pc = 0;

ms = 1;

write = 1;

write_bus = 0;

read_bus = 1;

addr_d = opcode [7:4];

fs = LDI;

pl = 0;

jb = 0;

bc = 0;

databus_addr = ’b000000;

end // else: !if(! done_hold)

end // if (opcode[OPCODE_MSB :9] == OPC_POP [10:4] && opcode [3:0] == OPC_POP [3:0])

else if (opcode[OPCODE_MSB :11] == OPC_STS) begin // STS

hold_pc = 0;

ms = 0;

write = 0;

write_bus = 1;

read_bus = 0;

addr_b = opcode [7:4];

fs = NOP;

pl = 0;

jb = 0;

bc = 0;

databus_addr = {opcode [10:8] , opcode [3:0]};

end // if (opcode[OPCODE_MSB :11] == OPC_STS)

else if (opcode[OPCODE_MSB :11] == OPC_LDS) begin // LDS

hold_pc = 0;

ms = 1;

write = 1;

write_bus = 0;

read_bus = 1;

addr_d = opcode [7:4];

fs = LDI;

pl = 0;

jb = 0;

bc = 0;

databus_addr = {opcode [10:8] , opcode [3:0]};

end // if (opcode[OPCODE_MSB :11] == OPC_LDS)

else if (opcode[OPCODE_MSB :0] == OPC_JMP) begin // JMP

hold_pc = 0;

ms = 0;

write = 0;

write_bus = 0;

read_bus = 0;

fs = NOP;

pl = 1;

jb = 0;

bc = 0;

end // if (opcode[OPCODE_MSB :0] == OPC_JMP)

end // always@ (posedge clk or negedge rst_n)

endmodule // decode

Appendix C. Verilog Code 96

C.4 Branch control

module brctrl (/* AUTOARG */

// Outputs

pc_r , done_hold , msd ,

// Inputs

clk , rst_n , v_r , c_r , n_r , z_r , pl, jb , bset , bc, hold_pc , cpu_reset_n ,

offset , jmp_addr

);

‘include "cpu_params.sv"

input clk , rst_n , v_r , c_r , n_r , z_r , pl, jb, bset;

input [2:0] bc;

input hold_pc , cpu_reset_n;

input signed [6:0] offset;

input [PC_MSB :0] jmp_addr;

output [PC_MSB :0] pc_r;

output done_hold;

output msd; // Mux Select Decode

reg [PC_SIZE :0] pc;

reg [PC_MSB :0] pc_r;

reg done_hold , jmp_ctrl , msd;

reg signed [(PC_SIZE +2):0] temp;

wire signed [(PC_MSB +2):0] s_pc , s_offset;

always@(posedge clk or negedge rst_n) begin

if (!rst_n) begin

pc_r <= ’h0;

done_hold <= ’b0;

jmp_ctrl <= 0; // To controll jump procedure

msd <= 0;

end

else if (! cpu_reset_n) begin

pc_r <= ’h0;

done_hold <= ’b0;

msd <= 0;

end

else if (hold_pc) begin // if cpu is disabeled

pc_r <= pc[PC_MSB :0] -1;

done_hold <= 1;

msd <= 0;

end

else if (jmp_ctrl) begin // if a jump is to be done

jmp_ctrl <= 0;

pc_r <= jmp_addr;

msd <= 0;

end

else if (pl && !jb) begin // if jump is called

pc_r <= pc_r +2;

jmp_ctrl <= 1;

msd <= 1;

end

else begin

pc_r <= pc[PC_MSB :0];

done_hold <= 0;

msd <= 0;

end

end

assign s_offset = {5’b11111 , offset }; // signed offset

assign s_pc = {2’b00 ,pc_r}; // signed pc

always@ (*) begin

pc = 0;

temp = 0;

if (pc_r == 0) begin

pc = 1;

temp = 0;

Appendix C. Verilog Code 97

end

else if (pc[PC_SIZE] == 1) begin // pc owerflow

pc = 0;

end

else if (!pl) begin // if not jump/branch

pc = pc_r +1;

end

else if (jb && bc==’b00) begin // if branch and trigging on v_r

if (v_r && bset) begin // trigging on v_r set

if (offset [6] == ’b1) begin // if offset is negative

temp = s_pc+s_offset;

pc = {1’b0,temp[PC_MSB :0]};

end

else begin // offset not negative

pc = pc_r+offset;

end

end

else if (!v_r && !bset) begin // trigging on v_r not set

if (offset [6] == ’b1) begin // if offset negative

temp = s_pc+s_offset;

pc = {1’b0,temp[PC_MSB :0]};

end

else begin // offset not negative

pc = pc_r+offset;

end

end

else begin

pc = pc_r +1;

end // else: !if(!v_r && !bset)

end // if (jb && bc==’b00)

else if (jb && bc==’b01) begin

if (c_r && bset) begin

if (offset [6] == ’b1) begin

temp = s_pc + s_offset;

pc = {1’b0,temp[PC_MSB :0]};

end

else begin

pc = pc_r+offset;

end

end

else if (!c_r && !bset) begin

if (offset [6] == ’b1) begin

temp = s_pc+s_offset;

pc = {1’b0,temp[PC_MSB :0]};

end

else begin

pc = pc_r+offset;

end

end

else begin

pc = pc_r +1;

end // else: !if(c_r)

end // if (jb && bc==’b01)

else if (jb && bc==’b10) begin

if (n_r && bset) begin

if (offset [6] == ’b1) begin

temp = s_pc + s_offset;

pc = {1’b0,temp [PC_MSB :0]};

end

else begin

pc = pc_r+offset;

end

end

else if (!n_r && !bset) begin

if (offset [6] == ’b1) begin

temp = s_pc+s_offset;

pc = {1’b0,temp[PC_MSB :0]};

end

else begin

pc = pc_r+offset;

end

Appendix C. Verilog Code 98

end

else begin

pc = pc_r +1;

end // else: !if(!n_r && !bset)

end // if (jb && bc==’b10)

else if (jb && bc==’b11) begin

if (z_r && bset) begin

if (offset [6] == ’b1) begin

temp = s_pc + s_offset;

pc = {1’b0,temp [PC_MSB :0]};

end

else begin

pc = pc_r+offset;

end

end

else if (!z_r && !bset) begin

if (offset [6] == ’b1) begin

temp = s_pc+s_offset;

pc = {1’b0,temp[PC_MSB :0]};

end

else begin

pc = pc_r+offset;

end

end

else begin

pc = pc_r +1;

end // else: !if(!z_r && !bset)

end // if (jb && bc==’b11)

end // always@ (*)

endmodule // brctrl

C.5 Program Memory

module prog_mem (/* AUTOARG */

// Outputs

di_ireg , instr_pntr ,

// Inputs

clk , write_mem , pc_r , instr_addr , instr_data , scan_test_mode

);

‘include "cpu_params.sv"

input clk , write_mem;

input [PC_MSB :0] pc_r;

input [8:0] instr_addr;

input [31:0] instr_data;

output [31:0] di_ireg;

output instr_pntr; // output to point to part of di_ireg to be decoded

input scan_test_mode;

reg [31:0] di_ireg;

reg [8:0] sram_addr;

reg [31:0] sram_di;

reg [3:0] sram_wem;

reg sram_we;

wire [31:0] tmp_do;

wire instr_pntr; // points to part of di_ireg to be decoded

wire [8:0] mem_pntr; // points to the memory location to be read

wire clk_n;

assign clk_n = ~clk;

assign mem_pntr = (pc_r >> 1);

assign instr_pntr = pc_r [0];

always@ (*) begin

Appendix C. Verilog Code 99

sram_we = 0;

sram_addr = 0;

sram_di = 0;

di_ireg = 0;

sram_wem = 4’b0000;

if (! write_mem) begin

sram_we = 0;

sram_addr = mem_pntr;

di_ireg = scan_test_mode ? instr_data : tmp_do ;

sram_wem = 4’b0000;

end

else begin

sram_we = 1;

sram_addr = instr_addr;

sram_di = instr_data;

di_ireg = 0;

sram_wem = 4’b1111;

end // else: !if(! write_mem)

end // always@ (*)

//SRAM block

sram_512x32cm4sw8 U_SRAM_MEM(.\do (tmp_do),

.addr (sram_addr),

.di (sram_di),

.wem (sram_wem),

.we (sram_we),

.oe (1’b1),

.me (1’b1),

.clk (clk_n),

.awt (1’b0),

.taddr (9’h0),

.tdi (32’h0),

.twem (4’h0),

.twe (1’b0),

.toe (1’b0),

.tme (1’b0),

.biste (1’b0),

.test1 (1’b0),

.rm (4’hF));

endmodule // prog_mem

C.6 Internal Data Bus

module databus (/* AUTOARG */

// Outputs

write_stack , read_stack , w_cs_reg , w_io_reg , w_irq , cs_reg_addr , di_cs_reg ,

di_io_reg , di_stack , di_cpu , di_irq , di_timer , di_io_port , w_io_port ,

io_port_addr , timer_addr , r_timer , w_timer ,

// Inputs

write_bus , read_bus , do_cpu , do_stack , databus_addr , do_cs_reg , do_io_reg ,

do_io_port , do_timer

);

‘include "cpu_params.sv"

input write_bus , read_bus;

input [DATA_MSB :0] do_cpu , do_stack;

input [BUSADDR_MSB :0] databus_addr;

input [DATA_MSB :0] do_cs_reg , do_io_reg;

input [DATA_MSB :0] do_io_port , do_timer;

output write_stack , read_stack;

output w_cs_reg , w_io_reg;

output w_irq;

output [EXREG_ADDR_MSB :0] cs_reg_addr;

Appendix C. Verilog Code 100

output [DATA_MSB :0] di_cs_reg , di_io_reg;

output [DATA_MSB :0] di_stack , di_cpu;

output [DATA_MSB :0] di_irq , di_timer , di_io_port;

output w_io_port;

output [EXREG_ADDR_MSB :0] io_port_addr , timer_addr;

output r_timer , w_timer;

reg write_stack , read_stack;

reg [DATA_MSB :0] di_stack , di_cpu;

reg [EXREG_ADDR_MSB :0] cs_reg_addr;

reg [DATA_MSB :0] di_cs_reg , di_io_reg;

reg w_cs_reg , w_io_reg;

reg [DATA_MSB :0] di_irq;

reg w_irq;

reg [DATA_MSB :0] di_io_port;

reg [EXREG_ADDR_MSB :0] io_port_addr;

reg w_io_port;

reg [DATA_MSB :0] di_timer;

reg [EXREG_ADDR_MSB :0] timer_addr;

reg w_timer , r_timer;

always@ (*) begin

case(databus_addr[BUSADDR_MSB:EXREG_ADDR_SIZE])

0 : begin // Stack

di_stack = do_cpu;

di_cpu = do_stack;

write_stack = write_bus;

read_stack = read_bus;

di_cs_reg = 0;

w_cs_reg = ’b0;

cs_reg_addr = 0;

di_io_reg = 0;

w_io_reg = 0;

di_irq = 0;

w_irq = ’b0;

di_io_port = 0;

w_io_port = 0;

io_port_addr = 0;

di_timer = 0;

w_timer = 0;

r_timer = 0;

timer_addr = 0;

end // case: 0

1 : begin // cs register

di_cs_reg = do_cpu;

di_cpu = do_cs_reg;

w_cs_reg = write_bus;

cs_reg_addr = databus_addr[EXREG_ADDR_MSB :0];

di_stack = 0;

write_stack = ’b0;

read_stack = ’b0;

di_io_reg = 0;

w_io_reg = 0;

di_irq = 0;

w_irq = ’b0;

di_io_port = 0;

w_io_port = 0;

io_port_addr = 0;

di_timer = 0;

w_timer = 0;

r_timer = 0;

timer_addr = 0;

end // case: 1

2 : begin // data in/out

di_io_reg = do_cpu;

di_cpu = do_io_reg;

w_io_reg = write_bus;

di_stack = 0;

Appendix C. Verilog Code 101

write_stack = ’b0;

read_stack = ’b0;

di_cs_reg = 0;

w_cs_reg = ’b0;

cs_reg_addr = 0;

di_irq = 0;

w_irq = ’b0;

di_io_port = 0;

w_io_port = 0;

io_port_addr = 0;

di_timer = 0;

w_timer = 0;

r_timer = 0;

timer_addr = 0;

end // case: 2

3 : begin // timer

di_timer = do_cpu;

di_cpu = do_timer;

w_timer = write_bus;

r_timer = read_bus;

timer_addr = databus_addr[EXREG_ADDR_MSB :0];

di_stack = 0;

write_stack = ’b0;

read_stack = ’b0;

di_cs_reg = 0;

w_cs_reg = ’b0;

cs_reg_addr = 0;

di_io_reg = 0;

w_io_reg = 0;

di_irq = 0;

w_irq = ’b0;

di_io_port = 0;

w_io_port = 0;

io_port_addr = 0;

end // case: 3

4 : begin // irq_ine

di_irq = do_cpu;

w_irq = write_bus;

di_stack = 0;

di_cpu = 0;

write_stack = ’b0;

read_stack = ’b0;

di_cs_reg = 0;

w_cs_reg = ’b0;

cs_reg_addr = 0;

di_io_reg = 0;

w_io_reg = 0;

di_io_port = 0;

w_io_port = 0;

io_port_addr = 0;

di_timer = 0;

w_timer = 0;

r_timer = 0;

timer_addr = 0;

end // case: 4

5 : begin // io_port

di_io_port = do_cpu;

w_io_port = write_bus;

io_port_addr = databus_addr[EXREG_ADDR_MSB :0];

di_cpu = do_io_port;

di_stack = 0;

write_stack = ’b0;

read_stack = ’b0;

di_cs_reg = 0;

w_cs_reg = ’b0;

cs_reg_addr = 0;

di_io_reg = 0;

w_io_reg = 0;

Appendix C. Verilog Code 102

di_irq = 0;

w_irq = ’b0;

di_timer = 0;

w_timer = 0;

r_timer = 0;

timer_addr = 0;

end // case: 5

default : begin

di_stack = 0;

di_cpu = 0;

write_stack = ’b0;

read_stack = ’b0;

di_cs_reg = 0;

w_cs_reg = ’b0;

cs_reg_addr = 0;

di_io_reg = 0;

w_io_reg = 0;

di_irq = 0;

w_irq = ’b0;

di_io_port = 0;

w_io_port = 0;

io_port_addr = 0;

di_timer = 0;

w_timer = 0;

r_timer = 0;

timer_addr = 0;

end // case: default

endcase // case (addr_in [5:3])

end // always@ (*)

endmodule // databus

C.7 Data Stack

module stack (/* AUTOARG */

// Outputs

do_stack ,

// Inputs

clk , rst_n , write_stack , read_stack , di_stack , scan_test_mode

);

‘include "cpu_params.sv"

input clk , rst_n , write_stack , read_stack;

input [DATA_MSB :0] di_stack;

input scan_test_mode;

output [DATA_MSB :0] do_stack;

reg [DATA_MSB :0] do_stack;

reg [8:0] sram_addr;

reg [31:0] sram_di;

reg [3:0] sram_wem;

reg sram_we;

wire [31:0] tmp_do;

reg [31:0] tmp_di;

reg [8:0] p1; // pointer size given by 1/4 stack size 2^9=512= STACK_SIZE

reg [1:0] p2; // pointer counting bytes in each word

wire clk_n;

assign clk_n = ~clk;

always@(posedge clk or negedge rst_n) begin // pointer counters

if (!rst_n) begin

p1 <= 0;

p2 <= 0;

end

else if (write_stack == 1) begin

Appendix C. Verilog Code 103

if (p2 < ’d3) begin

p2 <= p2+1;

end

else if (p1 < ’d511) begin

p1 <= p1+1;

p2 <= 0;

end

else begin

p1 <= 0;

p2 <= 0;

end

end // if (write_stack == 1)

else if (read_stack == 1) begin

if (p2 > ’d0) begin

p2 <= p2 -1;

end

else if (p1 > ’d0) begin

p1 <= p1 -1;

p2 <= ’d3;

end

else begin

p1 <= ’d511;

p2 <= ’d3;

end

end // if (read_stack == 1)

else begin

p1 <= p1;

p2 <= p2;

end // else: !if(read_stack == 1)

end // always@ (posedge clk or negedge rst_n)

always@ (*) begin

sram_addr = 0;

sram_di = 0;

sram_wem = 0;

sram_we = 0;

do_stack = 0;

if (write_stack) begin // write to sram

sram_we = 1;

tmp_di = 0;

sram_wem = 0;

sram_wem = 1 << p2;

sram_addr = p1;

tmp_di[p2*8 +: 8] = di_stack;

sram_di = tmp_di;

sram_we = write_stack;

end

else if (read_stack) begin // read sram

sram_we = 0;

sram_wem = 0;

if (p2 > 0) begin

sram_addr = p1;

do_stack = scan_test_mode ? di_stack : tmp_do [(p2 -1)*8 +: 8];

end

else begin

sram_addr = p1 -1;

do_stack = scan_test_mode ? di_stack : tmp_do [(p2+3)*8 +: 8];

end

end // if (read_stack)

else begin // Give 32-bit instruction

sram_addr = 0;

sram_di = 0;

sram_wem = 0;

sram_we = 0;

do_stack = 0;

end // else: !if(read_stack)

end // always@ (*)

//SRAM block

sram_512x32cm4sw8 U_SRAM_STACK(.\do (tmp_do),

.addr (sram_addr),

Appendix C. Verilog Code 104

.di (sram_di),

.wem (sram_wem),

.we (sram_we),

.oe (1’b1),

.me (1’b1),

.clk (clk_n),

.awt (1’b0),

.taddr (9’h0),

.tdi (32’h0),

.twem (4’h0),

.twe (1’b0),

.toe (1’b0),

.tme (1’b0),

.biste (1’b0),

.test1 (1’b0),

.rm (4’hF));

endmodule // stack

C.8 Control and Status Registers

module cs_reg (/* AUTOARG */

// Outputs

do_cs_reg , prdata_cs , cpu_reset_n , cpu_disable_n ,

// Inputs

clk , rst_n , w_cs_reg , cs_reg_addr , di_cs_reg , paddr , pwrite , psel ,

penable_cs , pwdata

);

‘include "cpu_params.sv"

input clk , rst_n , w_cs_reg;

input [EXREG_ADDR_MSB :0] cs_reg_addr;

input [DATA_MSB :0] di_cs_reg;

input [31:0] paddr;

input pwrite , psel , penable_cs;

input [DATA_MSB :0] pwdata;

output [DATA_MSB :0] do_cs_reg;

output [31:0] prdata_cs;

output cpu_reset_n , cpu_disable_n;

wire [DATA_MSB :0] do_cs_reg;

reg [DATA_MSB :0] reg_r[CSREG_MSB :0];

integer i;

always@(posedge clk or negedge rst_n) begin

if (!rst_n) begin

for (i = 0; i < (CSREG_MSB +1); i=i+1) begin

reg_r[i] <= ’h00;

end

end

else begin // Write to different register at same time is possibe

if (paddr == ’d0 && pwrite && psel && penable_cs) begin // AMBA first priority

reg_r [0] <= pwdata;

end

else if (w_cs_reg && cs_reg_addr == ’h0) begin

reg_r [0] <= di_cs_reg;

end

if (paddr == ’h1 && pwrite && psel && penable_cs) begin

reg_r [1] <= pwdata;

end

else if (w_cs_reg && cs_reg_addr == ’h1) begin

reg_r [1] <= di_cs_reg;

end

Appendix C. Verilog Code 105

if (paddr == ’h2 && pwrite && psel && penable_cs) begin

reg_r [2] <= pwdata;

end

else if (w_cs_reg && cs_reg_addr == ’h2) begin

reg_r [2] <= di_cs_reg;

end

if (paddr == ’h3 && pwrite && psel && penable_cs) begin

reg_r [3] <= pwdata;

end

else if (w_cs_reg && cs_reg_addr == ’h3) begin

reg_r [3] <= di_cs_reg;

end

if (paddr == ’h4 && pwrite && psel && penable_cs) begin

reg_r [4] <= pwdata;

end

else if (w_cs_reg && cs_reg_addr == ’h4) begin

reg_r [4] <= di_cs_reg;

end

if (paddr == ’h5 && pwrite && psel && penable_cs) begin

reg_r [5] <= pwdata;

end

else if (w_cs_reg && cs_reg_addr == ’h5) begin

reg_r [5] <= di_cs_reg;

end

if (paddr == ’h6 && pwrite && psel && penable_cs) begin

reg_r [6] <= pwdata;

end

else if (w_cs_reg && cs_reg_addr == ’h6) begin

reg_r [6] <= di_cs_reg;

end

if (paddr == ’h7 && pwrite && psel && penable_cs) begin

reg_r [7] <= pwdata;

end

else if (w_cs_reg && cs_reg_addr == ’h7) begin

reg_r [7] <= di_cs_reg;

end

end // else: !if(! rst_n)

end // always@ (posedge clk)

assign do_cs_reg = reg_r[cs_reg_addr];

assign prdata_cs [31: DATA_SIZE] = 0;

assign prdata_cs[DATA_MSB :0] = reg_r[paddr];

assign cpu_reset_n = reg_r [0][0]; // first bit of reg_r [0] will reset cpu

assign cpu_disable_n = reg_r [0][1]; // second bit of reg_r [0] will hold cpu

endmodule // cs_reg

C.9 Data In/Out Registers

module io_reg (/* AUTOARG */

// Outputs

do_io_reg , prdata_io ,

// Inputs

clk , rst_n , w_io_reg , di_io_reg , pwrite , psel , penable_io , pwdata

);

‘include "cpu_params.sv"

input clk , rst_n , w_io_reg;

input [DATA_MSB :0] di_io_reg;

input pwrite , psel , penable_io;

input [DATA_MSB :0] pwdata;

output [DATA_MSB :0] do_io_reg;

output [31:0] prdata_io;

wire [DATA_MSB :0] do_io_reg;

reg [DATA_MSB :0] data_in_r , data_out_r;

Appendix C. Verilog Code 106

always@(posedge clk or negedge rst_n) begin

if (!rst_n) begin

data_in_r <= 0;

data_out_r <= 0;

end

else begin

if (pwrite && psel & penable_io) begin

data_in_r <= pwdata;

end

if (w_io_reg) begin

data_out_r <= di_io_reg;

end

end // else: !if(! rst_n)

end // always@ (posedge clk or negedge rst_n)

assign do_io_reg = data_in_r;

assign prdata_io [31: DATA_SIZE] = 0;

assign prdata_io[DATA_MSB :0] = data_out_r;

endmodule // io_reg

C.10 IRQ Line

module irq_line (/* AUTOARG */

// Outputs

irq ,

// Inputs

clk , rst_n , w_irq , di_irq , paddr , pwrite , psel , penable_irq , pwdata

);

‘include "cpu_params.sv"

input clk , rst_n , w_irq;

input [DATA_MSB :0] di_irq;

input [31:0] paddr;

input pwrite , psel , penable_irq;

input [DATA_MSB :0] pwdata;

output irq;

reg irq;

always@(posedge clk or negedge rst_n) begin

if (!rst_n) begin

irq <= 0;

end

else if (paddr == ’h0 && pwrite && psel && penable_irq && w_irq) begin

irq <= (di_irq [0] || pwdata [0]);

end

else if (paddr == ’h0 && pwrite && psel && penable_irq) begin

irq <= pwdata [0];

end

else if (w_irq) begin

irq <= di_irq [0];

end

else begin

irq <= irq;

end

end // always@ (posedge clk or negedge rst_n)

endmodule // irq_line

Appendix C. Verilog Code 107

C.11 Timer/Counter

module timer_counter (/* AUTOARG */

// Outputs

do_timer ,

// Inputs

clk , rst_n , w_timer , r_timer , timer_addr , di_timer

);

‘include "cpu_params.sv"

input clk , rst_n , w_timer , r_timer;

input [EXREG_ADDR_MSB :0] timer_addr;

input [DATA_MSB :0] di_timer;

output [DATA_MSB :0] do_timer;

reg [15:0] counter_r , compare_r;

reg [DATA_MSB :0] c_r; // control and status reg , c_r [7] is compare flag

reg set_flag , clear_flag;

reg [DATA_MSB :0] do_timer;

always@(posedge clk or negedge rst_n) begin

if (!rst_n) begin

counter_r <= 0;

set_flag <= 0;

end

else if (c_r [0]) begin // if counter is on

if (!c_r [1]) begin // if reset counter

counter_r <= 0;

set_flag <= 0;

end

else if (!c_r [2]) begin // if not reset counter and compare off

set_flag <= 0;

if (counter_r < ’hffff) begin

counter_r <= counter_r +1;

end

else begin

counter_r <= 0;

end

end

else begin

if (counter_r < compare_r -1) begin

counter_r <= counter_r +1;

set_flag <= 0;

end

else if (counter_r == compare_r -1) begin

counter_r <= counter_r +1;

if (c_r [2]) begin

set_flag <= 1;

end

end

else if (counter_r == compare_r) begin

counter_r <= 0;

end

else begin

counter_r <= 0;

set_flag <= 0;

end

end // else: !if(!c_r [1])

end // if (c_r [0])

else begin

counter_r <= counter_r;

end // else: !if(c_r [0])

end // always@ (posedge clk or negedge rst_n)

always@ (posedge clk or negedge rst_n) begin

if (!rst_n) begin

c_r [6:0] <= 0;

compare_r <= 0;

end

Appendix C. Verilog Code 108

else if (w_timer) begin

if (timer_addr == ’h2) begin

compare_r[DATA_MSB :0] <= di_timer;

end

else if (timer_addr == ’h3) begin

compare_r [15: DATA_SIZE] <= di_timer;

end

else if (timer_addr == ’h4) begin

c_r [6:0] <= di_timer [6:0];

end

else begin

compare_r <= compare_r;

c_r [6:0] <= c_r [6:0];

end

end // if (w_timer)

else begin

if (!c_r [1]) begin

c_r [0] <= c_r [0];

c_r [1] <= 1; // to remove the rset automatically

c_r [2] <= c_r [2];

compare_r <= compare_r;

end

else begin

c_r [6:0] <= c_r [6:0];

compare_r <= compare_r;

end

end // else: !if(w_timer)

end // always@ (posedge clk or negedge rst_n)

always@(posedge clk or negedge rst_n) begin

if (!rst_n) begin

c_r [7] <= 0;

end

else if (clear_flag) begin

c_r [7] <= 0;

end

else if(set_flag) begin

c_r [7] <= 1;

end

else begin

c_r [7] <= c_r [7];

end

end // always@ (posedge clk or negedge rst_n)

always@ (*) begin

clear_flag = 0;

if (timer_addr == ’h0) begin

do_timer = counter_r[DATA_MSB :0];

clear_flag = 0;

end

else if (timer_addr == ’h1) begin

do_timer = counter_r [15: DATA_SIZE];

clear_flag = 0;

end

else if (timer_addr == ’h2) begin

do_timer = compare_r[DATA_MSB :0];

clear_flag = 0;

end

else if (timer_addr == ’h3) begin

do_timer = compare_r [15: DATA_SIZE];

clear_flag = 0;

end

else if (timer_addr == ’h4) begin

do_timer = c_r;

clear_flag = 0;

end

else if (timer_addr == ’h5 && r_timer) begin

do_timer = c_r;

clear_flag = 1;

end

else begin

Appendix C. Verilog Code 109

clear_flag = 0;

do_timer = 0;

end

end // always@ (*)

endmodule // timer_counter

C.12 Input/Output Port

module io_port (/* AUTOARG */

// Outputs

do_io_port , OUT , OE, PD, PU ,

// Inputs

clk , rst_n , w_io_port , io_port_addr , di_io_port , IN

);

‘include "cpu_params.sv"

input clk , rst_n , w_io_port;

input [EXREG_ADDR_MSB :0] io_port_addr; // extend to 4 bit

input [DATA_MSB :0] di_io_port , IN;

output [DATA_MSB :0] do_io_port;

output [DATA_MSB :0] OUT , OE , PD, PU;

reg [DATA_MSB :0] OE;

reg [DATA_MSB :0] OUT;

reg [DATA_MSB :0] PD;

reg [DATA_MSB :0] PU;

wire [DATA_MSB :0] do_io_port;

assign do_io_port = IN;

always@(posedge clk or negedge rst_n) begin

if (!rst_n) begin

// do_io_port <= 0;

OUT <= 0;

OE <= 0;

PU <= 0;

PD <= 0;

end

else begin

case(io_port_addr [1:0])

CLEAR : begin

// do_io_port <= IN;

if (w_io_port) begin

if (io_port_addr [3:2] == 00) begin

OUT <= OUT & di_io_port;

end

else if (io_port_addr [3:2] == 01) begin

OE <= OE & di_io_port;

end

else if (io_port_addr [3:2] == 10) begin

PU <= PU & di_io_port;

end

else if (io_port_addr [3:2] == 11) begin

PD <= PD & di_io_port;

end

end // if (w_oi_port)

else begin

OUT <= OUT;

OE <= OE;

PU <= PU;

PD <= PD;

end // else: !if(w_io_port)

end // case: CLEAR

SET : begin

// do_io_port <= IN;

Appendix C. Verilog Code 110

if (w_io_port) begin

if (io_port_addr [3:2] == 00) begin

OUT <= OUT | di_io_port;

end

else if (io_port_addr [3:2] == 01) begin

OE <= OE | di_io_port;

end

else if (io_port_addr [3:2] == 10) begin

PU <= PU | di_io_port;

end

else if (io_port_addr [3:2] == 11) begin

PD <= PD | di_io_port;

end

end // if (w_io_port)

else begin

OUT <= OUT;

OE <= OE;

PU <= PU;

PD <= PD;

end // else: !if(w_io_port)

end // case: SET

TOGGLE : begin

// do_io_port <= IN;

if (w_io_port) begin

if (io_port_addr [3:2] == 00) begin

OUT <= OUT ^ di_io_port;

end

else if (io_port_addr [3:2] == 01) begin

OE <= OE ^ di_io_port;

end

else if (io_port_addr [3:2] == 10) begin

PU <= PU ^ di_io_port;

end

else if (io_port_addr [3:2] == 11) begin

PD <= PD ^ di_io_port;

end

end // if (w_io_port)

else begin

OUT <= OUT;

OE <= OE;

PU <= PU;

PD <= PD;

end // else: !if(w_io_port)

end // case: TOGGLE

FORCE : begin

if (w_io_port) begin

if (io_port_addr [3:2] == 00) begin

OUT <= di_io_port;

end

else if (io_port_addr [3:2] == 01) begin

OE <= di_io_port;

end

else if (io_port_addr [3:2] == 10) begin

PU <= di_io_port;

end

else if (io_port_addr [3:2] == 11) begin

PD <= di_io_port;

end

end // if (w_io_port)

else begin

OUT <= OUT;

OE <= OE;

PU <= PU;

PD <= PD;

end // else: !if(w_io_port)

end // case: READ_OUT

default : begin

// do_io_port <= 0;

OUT <= 0;

OE <= 0;

PU <= 0;

Appendix C. Verilog Code 111

PD <= 0;

end

endcase // case (io_port_addr [1:0]

end // else: !if(! rst_n)

end // always@ (*)

endmodule // io_port

C.13 Topmodule Core

module cpu(/* AUTOARG */

// Outputs

do_cpu , databus_addr , write_bus , read_bus ,

// Inputs

clk , rst_n , di_cpu , instr_addr , instr_data , write_mem , cpu_disable_n ,

cpu_reset_n , scan_test_mode

);

‘include "cpu_params.sv"

input clk , rst_n;

input [DATA_MSB :0] di_cpu;

input [8:0] instr_addr;

input [31:0] instr_data;

input write_mem , cpu_disable_n , cpu_reset_n;

input scan_test_mode;

output [DATA_MSB :0] do_cpu;

output [BUSADDR_MSB :0] databus_addr;

output write_bus , read_bus;

wire [DATA_MSB :0] data_a , data_b , data_d , constant;

wire [ADDR_MSB :0] addr_a , addr_b , addr_d;

wire write;

wire [1:0] ms;

wire [31:0] di_ireg;

wire [MSB_FS :0] fs;

wire v_r , c_r , n_r , z_r , pl, jb , bset;

wire [2:0] bc;

wire [PC_MSB :0] pc_r;

wire [DATA_MSB :0] do_cpu;

wire [BUSADDR_MSB :0] databus_addr;

wire write_bus , read_bus;

wire [6:0] offset;

wire instr_pntr;

wire done_hold , hold_pc;

wire msd;

register R1(/* AUTOINST */

// Outputs

.data_a (data_a[DATA_MSB :0]),

.data_b (data_b[DATA_MSB :0]),

// Inputs

.write (write),

.clk (clk),

.rst_n (rst_n),

.addr_a (addr_a[ADDR_MSB :0]),

.addr_b (addr_b[ADDR_MSB :0]),

.addr_d (addr_d[ADDR_MSB :0]),

.data_d (data_d[DATA_MSB :0]));

alu A1(/* AUTOINST */

// Outputs

.data_d (data_d[DATA_MSB :0]),

.v_r (v_r),

.c_r (c_r),

.n_r (n_r),

.z_r (z_r),

Appendix C. Verilog Code 112

.do_cpu (do_cpu[DATA_MSB :0]),

// Inputs

.clk (clk),

.rst_n (rst_n),

.ms (ms[1:0]) ,

.data_a (data_a[DATA_MSB :0]),

.data_b (data_b[DATA_MSB :0]),

.di_cpu (di_cpu[DATA_MSB :0]),

.constant (constant[DATA_MSB :0]),

.fs (fs[MSB_FS :0]));

decode D1(/* AUTOINST */

// Outputs

.addr_a (addr_a[ADDR_MSB :0]),

.addr_b (addr_b[ADDR_MSB :0]),

.addr_d (addr_d[ADDR_MSB :0]),

.constant (constant[DATA_MSB :0]),

.write (write),

.pl (pl),

.jb (jb),

.bset (bset),

.hold_pc (hold_pc),

.bc (bc[2:0]) ,

.fs (fs[MSB_FS :0]),

.ms (ms[MUXA_MSB :0]),

.databus_addr (databus_addr[BUSADDR_MSB :0]),

.write_bus (write_bus),

.read_bus (read_bus),

.offset (offset [6:0]) ,

// Inputs

.instr_pntr (instr_pntr),

.done_hold (done_hold),

.di_ireg (di_ireg [31:0]) ,

.cpu_reset_n (cpu_reset_n),

.cpu_disable_n (cpu_disable_n),

.msd (msd));

prog_mem PM(/* AUTOINST */

// Outputs

.di_ireg (di_ireg [31:0]) ,

.instr_pntr (instr_pntr),

// Inputs

.clk (clk),

.write_mem (write_mem),

.pc_r (pc_r[PC_MSB :0]),

.instr_addr (instr_addr [8:0]) ,

.instr_data (instr_data [31:0]) ,

.scan_test_mode (scan_test_mode));

/* brctrl AUTO_TEMPLATE (

.jmp_addr (di_ireg[PC_MSB :0]),

);

*/

brctrl B1(/* AUTOINST */

// Outputs

.pc_r (pc_r[PC_MSB :0]),

.done_hold (done_hold),

.msd (msd),

// Inputs

.clk (clk),

.rst_n (rst_n),

.v_r (v_r),

.c_r (c_r),

.n_r (n_r),

.z_r (z_r),

.pl (pl),

.jb (jb),

.bset (bset),

.bc (bc[2:0]) ,

.hold_pc (hold_pc),

.cpu_reset_n (cpu_reset_n),

Appendix C. Verilog Code 113

.offset (offset [6:0]) ,

.jmp_addr (di_ireg[PC_MSB :0])); // Templated

endmodule // cpu

C.14 Topmodule Peripheral Processor

module top (/* AUTOARG */

// Outputs

prdata_io ,

prdata_cs ,

irq , OE, OUT ,

PU, PD ,

// Inputs

clk , rst_n ,

write_mem ,

instr_addr ,

instr_data ,

paddr ,

penable_io ,

penable_cs ,

penable_irq ,

psel , pwrite ,

pwdata , IN

);

‘include "cpu_params.sv"

input clk , rst_n , write_mem;

input [8:0] instr_addr;

input [31:0] instr_data;

input [31:0] paddr;

input penable_io , penable_cs , penable_irq , psel , pwrite;

input [DATA_MSB :0] pwdata , IN;

output [31:0] prdata_io , prdata_cs;

output irq;

output [DATA_MSB :0] OE, OUT , PU, PD;

wire [DATA_MSB :0] do_cpu , di_cpu;

wire [DATA_MSB :0] do_stack , di_stack;

wire [BUSADDR_MSB :0] databus_addr;

wire write_bus , read_bus;

wire write_stack , read_stack;

wire w_cs_reg , w_io_reg;

wire [EXREG_ADDR_MSB :0] cs_reg_addr;

wire [DATA_MSB :0] di_cs_reg , do_cs_reg , di_io_reg , do_io_reg;

wire cpu_disable_n , cpu_reset_n;

wire [DATA_MSB :0] di_irq;

wire w_irq;

wire [DATA_MSB :0] di_io_port; // From BUS1 of databus.v

wire [DATA_MSB :0] di_timer; // From BUS1 of databus.v

wire [DATA_MSB :0] do_io_port; // From IO_PORT of io_port.v

wire [DATA_MSB :0] do_timer; // From TIMER of timer_counter.v

wire [EXREG_ADDR_MSB :0] io_port_addr; // From BUS1 of databus.v

wire r_timer; // From BUS1 of databus.v

wire [EXREG_ADDR_MSB :0] timer_addr; // From BUS1 of databus.v

wire w_io_port; // From BUS1 of databus.v

wire w_timer; // From BUS1 of databus.v

cpu C1(/* AUTOINST */

// Outputs

.do_cpu (do_cpu[DATA_MSB :0]),

.databus_addr (databus_addr[BUSADDR_MSB :0]),

.write_bus (write_bus),

.read_bus (read_bus),

// Inputs

.clk (clk),

Appendix C. Verilog Code 114

.rst_n (rst_n),

.di_cpu (di_cpu[DATA_MSB :0]),

.instr_addr (instr_addr [8:0]) ,

.instr_data (instr_data [31:0]) ,

.write_mem (write_mem),

.cpu_disable_n (cpu_disable_n),

.cpu_reset_n (cpu_reset_n));

databus BUS1 (/* AUTOINST */

// Outputs

.write_stack (write_stack),

.read_stack (read_stack),

.w_cs_reg (w_cs_reg),

.w_io_reg (w_io_reg),

.w_irq (w_irq),

.cs_reg_addr (cs_reg_addr[EXREG_ADDR_MSB :0]),

.di_cs_reg (di_cs_reg[DATA_MSB :0]),

.di_io_reg (di_io_reg[DATA_MSB :0]),

.di_stack (di_stack[DATA_MSB :0]),

.di_cpu (di_cpu[DATA_MSB :0]),

.di_irq (di_irq[DATA_MSB :0]),

.di_timer (di_timer[DATA_MSB :0]),

.di_io_port (di_io_port[DATA_MSB :0]),

.w_io_port (w_io_port),

.io_port_addr (io_port_addr[EXREG_ADDR_MSB :0]),

.timer_addr (timer_addr[EXREG_ADDR_MSB :0]),

.r_timer (r_timer),

.w_timer (w_timer),

// Inputs

.write_bus (write_bus),

.read_bus (read_bus),

.do_cpu (do_cpu[DATA_MSB :0]),

.do_stack (do_stack[DATA_MSB :0]),

.databus_addr (databus_addr[BUSADDR_MSB :0]),

.do_cs_reg (do_cs_reg[DATA_MSB :0]),

.do_io_reg (do_io_reg[DATA_MSB :0]),

.do_io_port (do_io_port[DATA_MSB :0]),

.do_timer (do_timer[DATA_MSB :0]));

stack STACK1 (/* AUTOINST */

// Outputs

.do_stack (do_stack[DATA_MSB :0]),

// Inputs

.clk (clk),

.rst_n (rst_n),

.write_stack (write_stack),

.read_stack (read_stack),

.di_stack (di_stack[DATA_MSB :0]));

cs_reg CS1(/* AUTOINST */

// Outputs

.do_cs_reg (do_cs_reg[DATA_MSB :0]),

.prdata_cs (prdata_cs [31:0]) ,

.cpu_reset_n (cpu_reset_n),

.cpu_disable_n (cpu_disable_n),

// Inputs

.clk (clk),

.rst_n (rst_n),

.w_cs_reg (w_cs_reg),

.cs_reg_addr (cs_reg_addr[EXREG_ADDR_MSB :0]),

.di_cs_reg (di_cs_reg[DATA_MSB :0]),

.paddr (paddr [31:0]) ,

.pwrite (pwrite),

.psel (psel),

.penable_cs (penable_cs),

.pwdata (pwdata[DATA_MSB :0]));

io_reg IO1(/* AUTOINST */

// Outputs

.do_io_reg (do_io_reg[DATA_MSB :0]),

.prdata_io (prdata_io [31:0]) ,

Appendix C. Verilog Code 115

// Inputs

.clk (clk),

.rst_n (rst_n),

.w_io_reg (w_io_reg),

.di_io_reg (di_io_reg[DATA_MSB :0]),

.pwrite (pwrite),

.psel (psel),

.penable_io (penable_io),

.pwdata (pwdata[DATA_MSB :0]));

irq_line IRQ1 (/* AUTOINST */

// Outputs

.irq (irq),

// Inputs

.clk (clk),

.rst_n (rst_n),

.w_irq (w_irq),

.di_irq (di_irq[DATA_MSB :0]),

.paddr (paddr [31:0]) ,

.pwrite (pwrite),

.psel (psel),

.penable_irq (penable_irq),

.pwdata (pwdata[DATA_MSB :0]));

timer_counter TIMER (/* AUTOINST */

// Outputs

.do_timer (do_timer[DATA_MSB :0]),

// Inputs

.clk (clk),

.rst_n (rst_n),

.w_timer (w_timer),

.r_timer (r_timer),

.timer_addr (timer_addr[EXREG_ADDR_MSB :0]),

.di_timer (di_timer[DATA_MSB :0]));

io_port IO_PORT (/* AUTOINST */

// Outputs

.do_io_port (do_io_port[DATA_MSB :0]),

.OUT (OUT[DATA_MSB :0]),

.OE (OE[DATA_MSB :0]),

.PD (PD[DATA_MSB :0]),

.PU (PU[DATA_MSB :0]),

// Inputs

.clk (clk),

.rst_n (rst_n),

.w_io_port (w_io_port),

.io_port_addr (io_port_addr[EXREG_ADDR_MSB :0]),

.di_io_port (di_io_port[DATA_MSB :0]),

.IN (IN[DATA_MSB :0]));

endmodule // top

Appendix C. Verilog Code 116

C.15 Parameters

// register and alu parameters

parameter ADDR_BITS = 4; // Number of bits in data address to register file

parameter ADDR_MSB = ADDR_BITS -1;

parameter DATA_SIZE = 8; // Size of the registers

parameter DATA_MSB = DATA_SIZE -1;

parameter REG_NUMBERS = 15; // REG_NUMBERS -1

parameter FS_BITS = 6; // Number of bits in Function Select

parameter MSB_FS = FS_BITS -1;

parameter MUXA_MSB = 1;

//ALU function parameters

parameter NOP=6’b000000 , ADD=6’b000001 , ADC=6’b000010 , SUB=6’b000011 , SBC=6’b000100 ,

LDI=6’b000101 ,

LSL=6’b000110 , LSR=6’b000111 , ROL=6’b001000 , ROR=6’b001001 , AND=6’b001010 ,

OR=6’b001011 , XOR=6’b001100 , CP=6’b001101 , CPC=6’b001110 , MOV=6’b001111 ,

DEC=6’b010000 , INC=6’b010001;

// Instruction decoder

parameter OPCODE_SIZE = 16;

parameter OPCODE_MSB = OPCODE_SIZE -1;

parameter OPC_NOP=’b0000000000000000 , OPC_ADC=’b000111 , OPC_ADD=’b000011 ,

OPC_AND=’b001000 , OPC_SUB=’b000110 , OPC_SUBI=’b0101 , OPC_SBC=’b000010 ,

OPC_SBCI=’b0100 , OPC_LDI=’b1110 , OPC_LSR=’b10010100110 , OPC_ROR=’b10010100111 ,

OPC_OR=’b001010 , OPC_XOR=’b001001 , OPC_CP=’b000101 , OPC_CPC=’b000001 ,

OPC_CPI=’b0011 , OPC_MOV=’b001011 , OPC_DEC=’b10010101010 , OPC_INC=’b10010100011 ,

OPC_BRCS=’b111100000 , OPC_BRCC=’b111101000 , OPC_BRVS=’b111100011 ,

OPC_BRVC=’b111101011 , OPC_BRMI=’b111100010 , OPC_BRPL=’b111101010 ,

OPC_BREQ=’b111100001 , OPC_BRNE=’b111101001 , OPC_PUSH=’b10010011111 ,

OPC_POP=’b10010001111 , OPC_STS=’b10101 , OPC_LDS=’b10100 ,

OPC_JMP=’b1001010000001100;

parameter PC_SIZE = 10;

parameter PC_MSB = PC_SIZE -1;

parameter MEM_SIZE = 31;

parameter BUSADDR_SIZE = 7;

parameter BUSADDR_MSB = BUSADDR_SIZE -1;

parameter EXREG_ADDR_SIZE = 4;

parameter EXREG_ADDR_MSB = EXREG_ADDR_SIZE -1;

parameter STACK_SIZE = 15;

parameter BUFFER_SIZE = 4;

parameter BUFFER_MSB = BUFFER_SIZE -1;

parameter CSREG_SIZE = 8;

parameter CSREG_MSB = CSREG_SIZE -1;

// io_port

parameter CLEAR=2’b00 , SET=2’b01 , TOGGLE=2’b10 , FORCE=2’b11;

Bibliography

[1] J. E. Thornton. Design of a computer the control data 6600, 1970.

[2] Atmel. 8-bit atmel microcontoller with 128kbytes in-system programmable flash.
2011.

[3] ARM. Amba spesifications. 1999.

[4] Anders Ruden. Programmable microcontroller peripherals, 2012.

[5] Stellaris lm4f252h5qd microcontroller. 2012.

[6] Micro Energy. Efm32g refrence manual. 2012.

[7] Mary Bellis. Seymour cray - cray supercomputers, 2012.

[8] QuickLogic. Universal asynchronous receiver/transmitter (uart) data sheet. 2008.

[9] Atmel. Avr instruction set. 2010.

117

	Problem Statement
	Acknowledgements
	Abstract
	Sammendrag
	List of Figures
	List of Tables
	Abbreviations
	1 Introduction
	1.1 Motivation
	1.2 Approach
	1.3 Outline

	2 Theory
	2.1 Hardware Versus Processor
	2.2 Processor Architecture
	2.3 First Peripheral Processor
	2.4 USART
	Clock Generation
	Registers
	Frame Format
	Transmitter
	Receiver

	2.5 AMBA Bus
	AMBA APB

	3 Summary of Preliminary Work
	3.1 Emulation
	3.2 Instruction Set
	3.3 Architecture
	3.4 Performance
	3.5 Cost Analysis

	4 Procedure
	4.1 Verilog Implementation
	4.2 Test Programs
	4.3 Synthesis

	5 Results
	5.1 CPU Core
	Register File
	ALU
	Instruction Decoder
	Branch Control and Program Counter
	Program Memory

	5.2 External Modules
	Internal Data Bus
	APB Bus
	Data Stack
	Control and Status Registers
	Data In/Out Registers
	IRQ Line
	Timer/Counter
	Input/Output Port

	5.3 Instructions Implemented
	5.4 Simulation
	5.5 Synthesis Reports
	5.6 Net List Reports

	6 Discussion
	6.1 Instruction Set
	6.2 CPU Core
	Pipelining
	Negative Numbers
	Shared Program Memory and Data Stack
	PUSH and POP Instructions
	JUMP Instruction

	6.3 Exteral Modules
	Internal Data Bus
	Data Stack
	Control and Status Registers
	Data In/Out Registers
	Timer/Counter
	IRQ Line
	Input/Output Port

	6.4 Simulation
	Test of Instructions
	UART Test Program

	6.5 Performance
	Synthesis Timing
	Netlist Timing
	Speed of Operations
	Power
	Area and Cost
	Design For Test Coverage

	7 Conclusions
	A Simulation results
	A.1 Simulation of instructions
	A.2 UART simulation

	B Simulation programs
	B.1 Test of instructions
	B.2 UART program

	C Verilog Code
	C.1 Register File
	C.2 ALU
	C.3 Instruction Decoder
	C.4 Branch control
	C.5 Program Memory
	C.6 Internal Data Bus
	C.7 Data Stack
	C.8 Control and Status Registers
	C.9 Data In/Out Registers
	C.10 IRQ Line
	C.11 Timer/Counter
	C.12 Input/Output Port
	C.13 Topmodule Core
	C.14 Topmodule Peripheral Processor
	C.15 Parameters

	Bibliography

