
Implementation, Test, and Verification of
a Specialized Real-Time Radio Protocol
Chip: AtMega128RFA1, Application: AutoStore

Ragnar Stuhaug

Master of Science in Electronics

Supervisor: Morten Olavsbråten, IET
Co-supervisor: Ingvar Hognaland, Hatteland Computer AS

Department of Electronics and Telecommunications

Submission date: July 2013

Norwegian University of Science and Technology

i

Preface

This thesis concludes my masters degree in electronics at the Norwegian University of
Technology and Science - NTNU - in Trondheim, at the same time that it allows me
to connect closer to the development department at Hatteland Computer, where I have
spend most of my summers, and more, during the last few years.

The background for the thesis is Hatteland Computers need for a new radio protocol
for their automated storage product, and with my focus throughout my studies being
logic and programming rather than differential equations and analog design, this task
was more or less a perfect fit.

The core concept of the new protocol is at the courtesy of Ingvar Hognaland, the
Technical Director at Hatteland Computer and the external supervisor on this thesis.
His advises and feedback has been invaluable throughout the whole process.

Thanks as well to supervisor at NTNU, Morten Olavsbråten, for advises on both
practical and administrative matters throughout the semester, even if he at times was
somewhat hard to get hold of.

Big thanks as well to Jørgen Heggebø, at Hatteland Computer, for supplying the
needed hardware and for giving advice on how to effectively debug the modules. There
is no question that this saved a lot of time during the first stages of the development.

Lastly a big thanks to my fellow students for providing fun lunch breaks, and to my
wife and son for allowing me to spend both evenings and weekends engulfed in c-code
and coffee.

Ragnar Stuhaug NTNU Trondheim

ii

NTNU Trondheim Ragnar Stuhaug

iii

Abstract

During this thesis a specialized radio protocol has been defined, implemented, and
tested. The conceptual functionality is based on a set of time synchronized access
points, all operating on a different channel within the 2.4GHz ISM band. These ac-
cess points will transmit beacons with a specific time offset between them, enabling
listeners to continuously cycle through all channels, receiving all beacons transmitted
by all access points within range. This also enables the access points to change channels
at will, making the protocol very dynamic.

When a node wish to transmit it will temporarily step out of the channel cycling
sequences, and access the preferred channel using CSMA/CA. If more than one channel
is available, a failure to access the best one will cause it to attempt on the second best and
so on. This method will cause the traffic to automatically distribute among all available
channels and access points.

The nodes measures the noise on each individual channel as they cycle through them,
sending regular reports to the access points. This enables the channel swaps to be made
intelligently, avoiding the most noisy channels and thus automatically adapting to any
interfering networks like Wi-Fi and others.

The protocol has been implemented for an AtMega128RFA1, and the protocol core
has been tested and verified to work as expected. The throughput is according to the-
oretical calculations and the access point is able to spontaneously swap channel with
minimal impact on the overall quality of service.

Some features of the protocol did not reach the needed accuracy during the imple-
mentation phase of the thesis work, still the sum of the currently observed behavior, the
bugs and problems later discovered, and the set of proposed solutions to these problems,
strongly indicates that the needed accuracy is well within reach. This is particularly the
case with the time synchronization of the access points and the automatic detection of
interference on the currently active channel.

In total the original conceptual idea has been proven to work in a real setting, giving
very good results and giving strong indications that the protocol will be very well suited
for the target application. The total amount of work needed to get the full protocol, with
all its features, completed proved too big for a single theses, thus the current system still
needs more development, debugging, and testing before it can be used in a commercial
product.

Still, as a proof of concept, and as a foundation for future work, this thesis must be
said to be a great success.

Ragnar Stuhaug NTNU Trondheim

iv

NTNU Trondheim Ragnar Stuhaug

v

Samandrag

Gjennom arbeidet med denne masteroppgåva har ein spesialisert radioprotokoll blitt de-
finert, implementert og testa. Den konseptuelle funksjonaliteten er basert på ei samling
tidssynkroniserte aksesspunkt, som alle opererer på forskjellige kanalar i 2.4GHz ISM
bandet. Desse aksesspunkta vil sende "beacons" ved faste intervall, desse sendingane
er så tidsforseinka ei spesifikk tid mellom kvar kanal. Dette gjer det mogeleg for ein
lyttar å rullere gjennom alle kanalane, og ta i mot samtlege "beacons" frå samtlege ak-
sesspunkt innan rekkevidde. Dette gjer det også mogeleg for aksesspunkta å bytte kanal
utan varsel, noko som gjer protokollen ekstremt dynamisk.

Når ein node ynskjer å sende vil den midlertidig forlate den normale kanal rulleringa
og søke tilgong til den gunstigaste kanalen ved bruk av CSMA/CA. Dersom det er fleire
kanalar tilgjengeleg, og den første kanalen ikkje er ledig, vil noden prøve igjen på den
nest best osv. På denne måten vil trafikken automatisk fordele seg mellom alle tilgjen-
gelege kanalar og aksesspunkt.

Nodane vil foreta energimålingar på kvar enkelt kanal undervegs i rulleringa, og
sende regelmessige rapportar til aksesspunkta. Dette gjer det mogeleg å ta intelligente
val for kanalbytter, og dermed unngå støyfyllte kanalar. På denne måten kan protokollen
automatisk tilpasse seg konkurrerande trafikk frå Wi-Fi og andre nettverk innan rekke-
vidde.

Protokollen har blitt implementert for AtMega128RFA1, og protokollkjernen har blitt
testa og verifisert til å verke som tiltenkt. Datagjennomstømming er på nivå med dei teo-
retiske utrekningane, og at aksesspunkta bytter kanal er knapt merkbart for applikasjo-
nen som nyttar radiolinken.

Visse funksjonar rakk ikkje å komme til eit nivå der dei fungerte fullt som tiltenkt
under utviklinga, likevel gir den observerte oppførselen, dei oppdaga kodefeila, og dei
føreslåtte korreksjonane, eit klart inntrykk av at ei fullt ut fungerande løysing er godt
innan rekkevidde. Dette gjeld spesielt tidssynkronisering av aksesspunkta og automatisk
oppdaging av støy på den aktive kanalen.

Totalt sett er den fundamentale ideen bevist å fungere i eit reelt oppsett, med svært
gode resultat. Dette indikerer at den nye protokollen vil vere ein god kandidat til nytt ra-
dio system for oppdragsgivar. Den totale arbeidsmengda for å få heile protokollen, med
all tilleggsfunksjonalitet, heilt ferdig, viste seg alt for stor for ei enkel masteroppgåve.
Dermed gjenstår det framleis ein heil del arbeid før protokollen kan nyttast i eit kom-
mersielt produkt.

Likevel, som eit funksjonsbevis og som base for vidare arbeid må oppgåva seiast å
vere ein stor suksess.

Ragnar Stuhaug NTNU Trondheim

vi Contents

Contents

1. Introduction 1
1.1. AutoStore - Automated storage system, [1] 1
1.2. Technical challenges and simplifications, [1] 2
1.3. Numerical requirements . 2
1.4. Research question . 3

2. Protocol design 4
2.1. Brainstorming . 4

2.1.1. Unacknowledged frames . 4
2.1.2. Dedicated acknowledge phase 4
2.1.3. Channel agility . 5
2.1.4. Sequence numbers . 6
2.1.5. Addressing . 7
2.1.6. Extended checksum . 7
2.1.7. Network ID . 7
2.1.8. Broadcasting . 8

2.2. Proprietary or according to standard 8
2.3. Hardware . 9

2.3.1. Radio module . 9
2.3.2. AtMega128RFA1 . 9

2.4. Final protocol concept . 11
2.5. Final protocol definition . 12

2.5.1. Frame header . 12
2.5.2. Frame layout . 13
2.5.3. Data Frame . 14
2.5.4. Acknowledge Frame . 14
2.5.5. Beacon Frame . 14
2.5.6. Beacon size . 16
2.5.7. Checksum . 19
2.5.8. Synchronization . 19
2.5.9. Functional description . 19

3. Implementation 21
3.1. Implementation and debug situation 21
3.2. Implementation tool . 21
3.3. Module independent code . 22

3.3.1. Transceiver control . 22
3.3.2. Symbol counter . 22

NTNU Trondheim Ragnar Stuhaug

Contents vii

3.3.3. Symbol counter busy-wait function 23
3.3.4. Protocol definitions . 23

3.4. Interface design . 25
3.4.1. Identification and addressing 25
3.4.2. Buffers . 26
3.4.3. Possible race conditions . 26

3.5. AP protocol core . 29
3.5.1. State machine . 29
3.5.2. Timers . 29
3.5.3. Frame reception triggers . 30
3.5.4. Beacon building . 30
3.5.5. Acknowledge reception . 33
3.5.6. Changing channel . 34

3.6. AP synchronization . 36
3.6.1. Initial version . 36
3.6.2. Second version . 36

3.7. Node protocol core . 38
3.7.1. State machine . 38
3.7.2. Timers . 38
3.7.3. Searching . 39
3.7.4. Beacon reception . 39
3.7.5. Acknowledge transmission . 40
3.7.6. Active channel registration . 40
3.7.7. Channel ranking . 43
3.7.8. CSMA/CA . 44
3.7.9. Transmission . 44

3.8. Channel management . 45
3.8.1. Desired behavior . 45
3.8.2. Quality of readings . 46
3.8.3. Access point view . 46
3.8.4. AP’s current channel assessment 47
3.8.5. Node view . 47
3.8.6. Node channel assessment model 48
3.8.7. Active channel ranking . 50
3.8.8. Channel info decoding . 53

3.9. Timing and parameter calculations . 55
3.9.1. Core timing . 55
3.9.2. Beacon frequency . 55
3.9.3. Channel data and values . 57
3.9.4. Node specific definitions . 57
3.9.5. AP specific definitions . 58

4. Test preparation 60
4.1. Main test plan . 60

4.1.1. Synchronization Signal . 60
4.1.2. AP-PC communication . 61

Ragnar Stuhaug NTNU Trondheim

viii Contents

4.1.3. Test setup . 61
4.1.4. Testing procedure . 62

4.2. Test program . 63
4.2.1. TCP/IP . 63
4.2.2. Test setup definitions and functionality 63
4.2.3. Test command sequence . 65
4.2.4. Node ID assignment . 66

4.3. Test environment . 67

5. Expected results 68
5.1. Theoretical models . 68
5.2. Parameters . 68

5.2.1. Collision window . 68
5.2.2. Parameter collection . 69

5.3. Estimators . 69
5.3.1. Transactions per second . 69
5.3.2. CSMA/CA misses . 70
5.3.3. Collisions . 71
5.3.4. AP reception . 71
5.3.5. AP transmission . 72

5.4. Calculations . 73

6. Test phase 75
6.1. Problems and delays . 75

6.1.1. Discarding TCP/IP . 75
6.1.2. Synchronization signal . 75
6.1.3. Synchronization function . 75
6.1.4. Equipment breakdown . 76
6.1.5. Testing at an actual AutoStore installation 76
6.1.6. Channel swap oversensitivity 77
6.1.7. Node deadlock . 77

7. Results 79
7.1. Test setup . 79
7.2. Test result adjustments . 80

7.2.1. Node measurements . 80
7.2.2. Channel statistics . 80
7.2.3. Beacon collision avoidance . 81
7.2.4. Test result files . 81

7.3. Synchronization test . 82
7.4. Synchronization disabled . 84
7.5. Synchronization and channel swap disabled 86
7.6. Multi-AP test (model) . 88
7.7. Channel swap throughput tests . 90
7.8. Channel swap throughput tests, after bug fix 92
7.9. Channel footprint tests . 94

NTNU Trondheim Ragnar Stuhaug

Contents ix

7.10. Single AP statistics tests . 101

8. Discussion 104
8.1. General results . 104
8.2. Synchronization problems . 104
8.3. AP Channel assessment errors . 106
8.4. Channel swap penalty . 107
8.5. Failed AP-transmissions . 108
8.6. Channel 16 noise . 109
8.7. Channel Footprint test . 111
8.8. Channel assessment algorithms . 114

8.8.1. Envelope . 114
8.8.2. Average . 114
8.8.3. Envelope with filter . 114
8.8.4. Conclusion . 115
8.8.5. Channel ranking on nodes . 115

8.9. Protocol parameters . 116
8.9.1. CSMA/CA behavior . 116
8.9.2. Beacon size . 118

9. Conclusion 120

10.Future work 122

Abbreviations 124

Bibliography 126

List of Figures 126

List of Tables 128

Appendices 129

A. Theoretical results 130

B. Archive file contents 135

Ragnar Stuhaug NTNU Trondheim

x Contents

NTNU Trondheim Ragnar Stuhaug

1. Introduction 1

1. Introduction

The work in this thesis is directly based on the work done in [1]. In section 1.1 and
section 1.2 the system presentation given in [1] is quoted directly. For convenience [1]
is also included in the archive file supplied with this report.

1.1. AutoStore - Automated storage system, [1]
AutoStore is a registered trademark of the Hatteland Group and identifies a patented
automated storage system [2]. Its physical structure is made up of a large aluminum grid
where bins containing goods are stored on top of another in high stacks. This makes
the system extremely compact compared to conventional storages using for instance
shelves. On top of this grid are tracks used by a number of remote controlled robots.
These robots pick up bins, move them to the desired position and take them to the
ports when they are requested. The ports are where the human interaction happens.
Here workers inserts goods by requesting empty bins to be filled with incoming wares,
and incoming orders are executed by requesting bins containing the ordered items. By
letting the system have at least a 30 minute work queue it will automatically arrange
and prepare the needed bins in a manner that makes it able to keep a continuous flow of
work to the operators, making the system very effective in that the user can be stationary
at one location and have all the requested items delivered to that station at a very high
pace.

(a) Robot (b) Example installation

Figure 1.1.: AutoStore [2]

Ragnar Stuhaug NTNU Trondheim

2 1. Introduction

1.2. Technical challenges and simplifications, [1]

The concept of the system makes it extremely versatile both in terms of physical lay-
out and in terms of scale. Adding more robots to an existing system will increase its
efficiency in peak cases, while the majority of the robots can be inactive in periods of
little load. The grid can have any shape desired by the customer. It can even consist
of multiple smaller sections connected by bridges of tracks where the robots can move
freely from one section to another. This means that the radio protocol has to be able to
handle a wide range of different physical topologies.

Obstacles The radio system has to be able to communicate with all robots at all
times, even if it is impossible to have line of sight to all positions on the grid. There
might be numerous obstacles like pillars and walls blocking the signals. Also this is
likely to introduce reflections that the radio protocol has to be able to handle.

Routing Since the installation is stationary, installing multiple cabled access points
is not a problem. The robots could then swap between them as needed, initiated by the
system or by the radio protocol as one see fit. It’s worth noting that the system will
know the exact position, and the target position, of each robot at all times, and as such
the need for advanced route discovery algorithms can easily be avoided. Generally there
is no requirement from the system’s point of view as to how the messages are routed, so
long as the overall timing and throughput requirements are fulfilled.

Channels In terms of channel choices the environment will by highly static. Interfer-
ing Wi-Fi is bound to be present, but the interference will to a large degree be constant
and limited to predictable frequencies. This means that in most cases one can choose,
and stick to, just a few channels and avoid most, if not all, interference from other net-
works. However it is desired that the protocol is robust enough to handle the occurrence
of interfering traffic in what was considered to be clean channels.

Emergency Stop Lastly, like all industrial systems, a failsafe emergency stop func-
tionality is required by law. This should be incorporated with the radio protocol as a
black channel concept where cutting the power of the access points should cause the
robots to go into emergency stop mode. What this means is that there has to be a mini-
mum of traffic over the channel just to indicate that the system is running.

1.3. Numerical requirements

The original requirements for the protocol as presented in [1] are shown in table 1.1.
These requirements forms the foundation upon which the detailed description and be-
havior of the protocol is discussed. In section 2.1 multiple new aspects and considera-
tions are presented and discussed leading up to the final protocol design.

NTNU Trondheim Ragnar Stuhaug

1.4. Research question 3

Maximum number of clients 250
Maximum number of routers No limit
Packet size Median 8 bytes

Max (protocol limit) bytes
Min 5 bytes

Packets/second/client Median 1
Max 7

Commands/second/client Median 0
Max 0,33

Minimum range 30m
Latency 50% <100ms

95% <300ms
99% <500ms

Power requirement No limit
Table 1.1.: Numerical system requirements, as stated in [1]

1.4. Research question
The task at hand is to implement, test and verify a new radio protocol to be used in
an automation setting, namely the AutoStore system made by Hatteland Computer AS.
The currently used protocol is based on polling and runs at 433MHz, a protocol the
system can be said to have outgrown both in terms of capacity and stability. A new
protocol running on the 2,4GHz ISM band is therefore to be developed. This work is a
continuation of the work done in [1].

1. Implement a specialized protocol for the ATmega128RFA1 with the following
properties:

• Access points dynamically avoiding noisy channels.

• Nodes scanning all available channels and ranking the active ones by signal
strength.

• Communication between access points and nodes through beacons.

• Communication between nodes and access points using CSMA/CA.

2. Test and verify the functionality of the protocol on physical hardware.

3. Test "Quality of Service" in realistic situations.

• Coexisting Wi-Fi, both on one and multiple channels.

• Measure capacity, latency and the protocols ability to avoid noisy channels
during the different tests.

Ragnar Stuhaug NTNU Trondheim

4 2. Protocol design

2. Protocol design

2.1. Brainstorming

In [1] the proposed solution was a custom protocol based on the 802.15.4 standard [5].
By using beacons and guaranteed time slots the system would fulfill the requirements
and provide a good solution. Beacons would contain messages from the access points
to the nodes and the nodes would transmit their messages using CSMA/CA.

Following the release of [1] a meeting was held at Hatteland Computer’s office in
Nedre Vats, to discuss the findings and the future work. Participants at the meeting was
the company’s Technical Director, and inventor of AutoStore, Ingvar Hognaland, and
the author.

During this meeting several more detailed suggestions to a protocol was made. These
aspects are further discussed throughout this chapter, with the final solution presented
in the final section.

2.1.1. Unacknowledged frames

It was suggested that direct acknowledgments could be skipped on messages being
transmitted from the nodes to the access points. Instead the acknowledgments could
be included in the beacons in the form of a list of node addresses. This approach would
significantly reduce the total overhead, with the downsides being larger beacons, a maxi-
mum delay between the frame and the acknowledgement equal to the beacon period, and
that the nodes would not be able to transmit more frequently than the beacon frequency.
With the requirements stating that the nodes will transmit at a maximum frequency of
7Hz, any beacon frequency above this would mean that the nodes are able to transmit
all the messages they want. It was assumed that it would be feasible to have beacon fre-
quencies of anywhere from 20 to 40Hz, making the beacon period somewhere between
50 and 25 ms. With the requirements stating that the majority of the messages should be
transmitted within 100ms we see that having to wait for up to 50ms for the acknowledge
still puts us well within what we are able to accept.

2.1.2. Dedicated acknowledge phase

Secondly it was suggested that a period of time somewhere during the access phase fol-
lowing the beacons was dedicated to acknowledgments from the nodes that had received
a message in the preceding beacon. This would ensure that the nodes were able to send
their acknowledgments compared to if they were to use CSMA/CA. Under the 802.15.4
standard this could be done by assigning GTS’es to the nodes that received a message,
wherein the node would transmit its acknowledge, and possibly also a message if it had

NTNU Trondheim Ragnar Stuhaug

2.1. Brainstorming 5

Channel
Beacon1

2

3

4

5

Time 1

Global time reference

6

7

Beacon

Beacon

Beacon

Beacon

Beacon

Beacon

Beacon

Beacon

2 3 4 5 6 7 8 9

Figure 2.1.: Basic beacon sequence example. (Not to scale)

one pending. The downside of this would be that the GTS’es are bound to be at the
end of the beacon period, meaning that the acknowledgement will arrive at the latest
possible time. Also the standard offers limited flexibility as to the size of the GTS’es, in
essence the GTS’es would be way oversized for only a single acknowledge, resulting in
wasted bandwidth. A possible solution to this would be to discard the 802.15.4 standard
and make a proprietary solution with GTS’es immediately following the beacon.

2.1.3. Channel agility

Lastly it was desired to make the system more dynamic and self-managing with respect
to channels, with the ultimate goal to have all channel handling hidden inside the proto-
col itself. A solution was proposed where all the channels would be assigned a unique
time offset relative to some global timing reference. Each access point would transmit
its beacons following the timing offset dedicated to its assigned channel.

An idle node will, once synced to the sequence, cycle through all the channels, de-
tecting beacons from all access points within range. A simple illustration of this is
presented in figure 2.1, showing an example using seven channels and how their bea-
cons is located sequentially in time. In this illustration channel 1 and 5 are active while
the rest of the channels are unused, meaning that the nodes will listen, but not pick up
any beacon, and thus not include the channel in its list of active channels. It is shown
how the sequence wraps around when it reach channel 7, going back to channel 1.

The introduction of a global time reference, which would make or break this ap-
proach, was possible, and convenient, because the existing protocol used in AutoStore
already has such a reference, thus only minor adjustments are needed to reuse this func-
tionality. The existing synchronization mechanism is in the form of a 130Hz signal
distributed to all the AP’s from the central safety module in connection to the AP’s POE
supply.

With the use of this approach the need for routing is reduced significantly. Nodes will
automatically detect when an AP goes in or out of range, and adjust its list of available
AP’s accordingly. When a node wishes to send, it will put the channel cycling on hold
and lock onto the channel that is best suited for transmission, here it will transmit its
message using CSMA/CA and, if the attempts succeeds, wait for the following beacon
containing the acknowledge. If the CCA fails the node is free to attempt access on

Ragnar Stuhaug NTNU Trondheim

6 2. Protocol design

another channel immediately if more than one channel is available. This way the traffic
load will spread among the available AP’s automatically.

When the server wishes to send a message to a node it will relay the message through
the AP where it last received a message from that node. This makes the routing table
for the server extremely simple and self managing.

The AP’s can also change channels at will without having to inform the nodes or
the server in advance, the node will simply assume that one AP got out of range while
another came within range, making the system extremely flexible.

One of two pitfalls with this approach is that a node might be transmitting on one
channel while it is receiving a message in a beacon on a different channel. This is
bound to happen when a node crosses the boundaries between two AP’s and thus change
what it considers as its preferred transmission channel. Also the node can simply have
moved out of range of the transmitting AP. In order to overcome this problem the most
important thing is to move all retransmission responsibility to the server. This way an
AP that does not receive an acknowledgement for a message will simply report back to
the server that the message failed. It is then up to the server to retransmit the message, on
the same or on a different AP. Using this approach each lost packet from this effect can
be retransmitted on the correct channel almost immediately since the channel connected
to the node in the server is in most cases updated in parallel to the first transmission
failing. Also it can be reasoned that, since the number of messages going from the
nodes to the server is a lot larger than the number of messages going the other way (1-7
per second vs. 0-1 per three seconds as stated in table 1.1), the node is very likely to
transmit a message on the new channel before the server attempts to transmit a new
message in the first place, thus making the event less likely to occur.

The second pitfall is that a node might be transmitting on a channel after the AP
has moved to a different one. This could be avoided by having the AP append some
information to the beacon that a channel swap is imminent, preventing the node from
transmitting, or one can simply accept that the packet loss from this event will occur.
Assuming a beacon period of 25-50ms the node can safely retransmit the message in
the next period and still be well within the 100ms latency requirement. As such this ar-
tifact could be considered an acceptable sacrifice given the benefits the overall approach
offers.

2.1.4. Sequence numbers

In this scenario, as with all acknowledged communication, a seemingly failed transmis-
sion can either be caused by the original message not being transmitted correctly, or
by the acknowledgement failing, making the transmission seem unsuccessful only from
the senders’ point of view. This is best handled by the use of sequence numbers, where
the receiver checks if the message is a retransmission of a previous message or not. In
this case, with the nodes moving between the AP’s in the seamless manner presented in
the previous section, it is clear that the AP’s will not be able to know whether or not a
message is a duplicate. This because any message it receives might have been attempted
transmitted on a different channel before. A node can, theoretically, swap between two
AP’s for each transmitted packet. Because of this the sequence numbers are meaning-
less to include in the protocol and has to be added on a higher level by the server and the

NTNU Trondheim Ragnar Stuhaug

2.1. Brainstorming 7

application running on the nodes. This creates the direct one to one link that is needed
for sequence numbers to work.

2.1.5. Addressing

In table 1.1 it is stated that the system should be able to handle 250 independent nodes, a
number implying that one byte addressing can be sufficient. However this requirement
is largely related to the throughput, not the number of nodes supported by the system.
As such it is highly desirable to enable addressing of more than 256 nodes. This will
make sure the solution is future proof for possible extensions and changes at a later
stage. The 802.15.4 standard use 16bit addresses during normal communication, and
can fall back to 64bit addresses if needed, utilizing a full standard MAC address. Even
if the need for 64bit addresses will most likely never be of any interest in this case,
16bits makes for a very reasonable number of nodes that should satisfy all the needs of
AutoStore in the near future.

2.1.6. Extended checksum

Another consideration presented in the meeting was the need for a larger checksum
than the normal 16bits used in 802.15.4. The reasons for this are previous experiences
with corrupted packets being accepted as genuine commands. Though only a 1/65534
chance, the amount of messages transmitted makes even such a small chance occur
multiple times per year if the radio environment is noisy and suboptimal, and the con-
sequences of such an event can be disastrous.

It is unlikely that this problem will be as big with the new protocol as it was for a
short period with this previous solution, but from that point on the choice was to be safe
rather than sorry, meaning that the addition of an extra 16 bit checksum is considered a
well worth overhead.

2.1.7. Network ID

In order for the channel cycling to work it is essential that the nodes are not confused
by alien beacons that can bring them out of the sequence timing. This can occur if
two AutoStore installations are within radio range of each other. The AP’s of the two
installations will not be following the same global clock and will thus be out of sync
with each other. A node searching for beacons could then be at risk of locking onto
the sequence of the wrong warehouse. To overcome this problem a Network ID can be
introduced. This will allow for the nodes to filter out the beacons that are not of any
interest to them, and it will also allow the AP’s to filter out any data frames from the
neighboring network.

Under normal running conditions neither event should generally happen since the
AP’s are to stay on different channels and, most likely, also out of sync, meaning that
a synchronized node will not pick up any fake beacons and no alien node will transmit
on a neighboring AP’s channel. However the moment a node loose synchronization and
has to search for beacons the conflict is imminent.

Ragnar Stuhaug NTNU Trondheim

8 2. Protocol design

One challenge with this approach is how the nodes should associate with the network
in the first place, as they are meant to communicate with the system purely through the
radio. To overcome this one specific network id can be set as a "don’t care" value where
the node will sync to any network, this value will then be the default value used by the
protocol. It is then up to the application to contact the server on that particular network,
asking if they should associate. If this is not the case that network id could be added to
a blacklist and the node forced to do a new beacon scan. When the correct network is
found this network id should be stored in nonvolatile memory for future use, meaning
that the association procedure only has to take place the very first time a node is added
to a network.

2.1.8. Broadcasting

In addition to the normal operation of the system a special mode for broadcasting has
to be supported. This mode is used to reprogram the nodes across the radio link. This
involves the AP’s broadcasting a large program file to all nodes, after verifying the file
a boot loader takes care of loading it on the module. This mode can be completely
separate from the normal operation as it will only be used when the system is in a
stationary and idle condition. Also this mode is relatively straight forward as the nodes
can, and should, lock onto one channel and receive the whole file from that AP. As such
the implementation of this feature is not of any interest for this thesis, but it has to be
taken into account when defining the protocol in order to get a unified system once the
work is completed.

2.2. Proprietary or according to standard

Given the reasoning in section 2.1 the possibility of making a fully proprietary solution
arises. It is obvious that a protocol as specialized as this will benefit greatly from being
built from scratch without having to adjust to existing standards, also the system is not
supposed to communicate with any other system or module, in fact it is desired to make
such an event as difficult as possible to avoid errors. The use of 802.15.4 given the
strategy described in section 2.1 is possible, but the resulting protocol will be far from
optimal, and many of the features that 802.15.4 offers are not needed and will only add
unnecessary overhead in this case.

In order to maximize the efficiency of the protocol it was eventually decided to at-
tempt on a fully proprietary solution at MAC-level, but using the PHY-level described
in 802.15.4. This was done based on the fact that the majority of radio SoC’s support
802.15.4 and are built upon the physical description in this standard. However the func-
tionality on the MAC level is in many cases done partly in software, meaning that the
developer can easily deviate from the standard when desired.

NTNU Trondheim Ragnar Stuhaug

2.3. Hardware 9

2.3. Hardware

With respect to hardware the choice was in many ways already made as Hatteland Com-
puter had started work with porting the existing protocol from the 433MHz band to the
2.4GHz band using the Atmel chip AtMega128RFA1 [3]. This work was started in par-
allel with the work done with [1] as an attempt to solve the most pressing issues with
the old protocol. Since hardware had already been developed and produced in a small
batch for that project, the benefits of using the same hardware for this thesis was obvi-
ous. Also the chip of choice is a very versatile and powerful chip that in any case would
be a good choice.

2.3.1. Radio module

The hardware to be used consists of a Dresden Elektronik deRFmega128-22C02 [4].
This module encapsulates an AtMega128RFA1 chip and includes RF shielding, onboard
EEPROM, onboard crystal oscillators and onboard coaxial antenna connector. Virtually
all pins of the atmega is accessible on the outside making the chip a plug and play
hardware solution while still allowing the maximum flexibility.

This module is mounted on a custom radio module specifically made for AutoStore.
This chip also contains another microcontroller handling the TCP/IP communication on
the AP and the communication with the rest of the hardware on the robot.

During the work with this thesis the only module of concern are the AtMega128RFA1,
and the only interaction with the surrounding system is the reception of the synchroniza-
tion signal. Still this is simply a pulse on one of the GPIO pins of the chip triggering
an external interrupt on the AtMega128RFA1, thus no details of the surrounding system
is needed to reproduce the results. In total the work and the tests done throughout the
theses could have been performed on any module containing an AtMega128RFA1 and
because of this no further details of the surrounding modules are included.

2.3.2. AtMega128RFA1

The AtMega128RFA1 is a complete system on chip containing a powerful micropro-
cessor with direct access to the radio module. The radio module has an easy to use
interface with control and data registers accessible directly from software. It also has
several dedicated interrupts indicating all important radio events.

Transceiver

The transceiver implements the IEEE 802.15.4 physical layer modulation scheme, chan-
nel structure, physical preamble, checksum calculation and CCA. Also energy detection
and link quality indication is available in hardware. On the MAC level there are ded-
icated modes for automated acknowledgments, CSMA/CA transmissions and retrans-
missions according to the standard, and automated address filtering.

Other hardware accelerators include AES 128 bit cryptography, true random number
generator and PSDU rates higher than that supported in the 802.15.4 standard. Both 500
kb/s, 1 Mb/s and 2 Mb/s are supported.

Ragnar Stuhaug NTNU Trondheim

10 2. Protocol design

In total the chip allows easy implementation of any protocol built directly upon the
802.15.4 standard, but the transceiver is controllable at a level that allows the user to
deviate from the standard when needed. Among others the SFD is accessible through a
dedicated register allowing the radio to differentiate its frames from 802.15.4 frames on
the lowest possible "pre modulation" level.

Mac symbol counter

802.15.4 implies the use of a symbol counter to maintain the timing of the protocol,
this counter should be able to wake up the transceiver before the planned reception of a
frame, and it enables accurate execution of the GTS slots and CSMA/CA backoff slots
as stated in the standard.

In atmega128RFA1 this counter contains three independent comparators, as well as
a dedicated backoff slot counter and the possibility of automated beacon timestamping
when using 802.15.4 compliant frames.

RSSI and Energy detection

When in any receiving mode the chip will continuously update a register with the current
RSSI. This is a measurement of the current energy level on the channel, regardless of
whether the signal is decodable or not. This value can then be read directly or the more
accurate energy detection register can be used instead. The energy detection is hardware
driven and calculates the average RSSI over eight symbols. The completion of this
procedure is then signaled by an interrupt. In addition to the manual energy detection it
is always initiated automatically upon the reception of a valid SHR, meaning that once a
frame has been fully received the ED register will contain an indication of the physical
signal strength that was received.

NTNU Trondheim Ragnar Stuhaug

2.4. Final protocol concept 11

2.4. Final protocol concept
Following the requirements presented in section 1.3 and the following discussions through-
out this chapter a list of features for the protocol to satisfy is presented:

• Beacons transmitted at a set frequency, with a time offset between the channels
equal to the length of one such beacon.

• A global time reference for all AP’s, and subsequently, nodes, to synchronize to.

• Nodes scanning all channels, receiving all beacons unless it is busy transmitting.

• Data frames transmitted using CSMA/CA in the access window of the beacon
period.

• Failed CCA on one channel leads to the node attempting to access other available
channels.

• Acknowledgments for data frames sent as a list of node addresses in the following
beacon.

• A dedicated acknowledge phase immediately following each beacon, used by the
nodes that received a message.

• No retransmissions on protocol level, all failed transmissions are reported back to
the application.

• Measurement of channel quality and change of channels when needed. All con-
cealed within the protocol.

• Broadcast mode allowing AP’s to transfer larger files to all connected nodes.

• 16bit addressing of nodes, AP’s only identified by their channel.

• Network ID allowing multiple installations within close proximity.

• A total of 32 bit checksum.

• Specialized frame headers to minimize overhead.

Based on this list of features a modified version of the beacon sequence from figure
2.1 is shown in figure 2.2.

The addition of a dedicated acknowledge phase will shrink the data phase slightly,
but given that the acknowledgments would otherwise be transmitted within the access
window, this will have no effect at all on the overall throughput.

The total access window for each active channel will be equal to the number of avail-
able channels, minus two, multiplied with the length of one subperiod. Under normal
circumstances the 802.15.4 physical definition uses 16 channels in the 2.4GHz band.
This means that the channel is available for transmissions 14/16 of the time, while the
last 2/16 are occupied by the beacon and the acknowledge phase.

Ragnar Stuhaug NTNU Trondheim

12 2. Protocol design

Channel

Beacon1

2

3

4

5

Time 1

Global time reference

6

7

Beacon

Beacon

Beacon

Beacon

Beacon

Beacon

Beacon

Beacon

2 3 4 5 6 7 8 9

AckAck

Ack

Ack

Ack

Ack

Ack

Ack

Ack

Access window per active channel

Wrap around

Figure 2.2.: Simple example of the time offset between channels. (Not to scale)

Since the beacons should follow a strict timing it is essential that they are always
transmitting when they are supposed to, this means that there is no use in doing a CCA
prior to this transmission. This lack of collision avoidance measures can cause problems
for other networks in the area, Wi-Fi etc, but given the total available bandwidth in the
2.4GHz band it is a reasonable assumption that the protocol will be able to find channels
that are not shared with other systems. This way the direct transmission should not pose
any problems. In the event that there is a collision the worst case scenario for this
protocol is that the nodes are unable to decode the beacon, leading them to believe that
the AP has gotten out of range. This can trigger packet loss. Still this event, so long as
it does not happen too frequently, will only cause a temporal decrease in throughput.

In order to maximize the efficiency of the acknowledge phase it is also desired to
split it into dedicated slots where the nodes transmit their acknowledge frames directly.
How many slots we need depends on how many messages we fit into one beacon and is
further discussed in section 2.5.5.

2.5. Final protocol definition

As it is decided to deviate from the 802.15.4 standard, custom headers and frame struc-
tures has to be defined. Once this is in place the work with implementing the protocol
can begin.

2.5.1. Frame header

The protocol will utilize four different frame types, summarized in table 2.1. Four
different frame types can be represented using a two bit field in the header. It seems
unlikely that more frame types will be needed as the types used are quite general and
will most likely be reusable in most future scenarios.

The next field in the header should be the network id. It is very unlikely that more
than two or three independent installations are within range of each other. However with
very large installations it will be increasingly practical to split it into multiple physical
grids, thus a scenario where a single installation consists of multiple independent grids
is highly likely. In such a case one can imagine that 2-6, or even more, grids are within
range of each other, even if they in reality are part of the same overall installation. Some

NTNU Trondheim Ragnar Stuhaug

2.5. Final protocol definition 13

Frame Sender Receiver Timing
Beacon AP Node At regular intervals, time offset based on

channel number enable nodes to receive
beacons on all available channels.

Acknowledge Node AP A node that receives a command in a bea-
con frame will transmit an acknowledge
frame within a dedicated timeslot imme-
diately following the beacon frame.

Data Node AP Nodes transmit data frames outside the
beacon/acknowledge window using CS-
MA/CA. The node will attempt to trans-
mit on the perceived best channel. Ac-
knowledge for the frame is received in the
following beacon on the same channel.

Broadcast Both Both Used in broadcast mode, not elaborated
further in this thesis.

Table 2.1.: Frame descriptions.

Bit: 7-6 5-2 1-0
Contents: Type ID Reserved
Table 2.2.: Frame header definition.

network ID’s should also be reserved for special purposes, among them a "don’t care"
value that is accepted by all listeners. In total it is not unlikely that there might be a need
for more than 8 different ID’s, meaning that four bits, giving 16 different ID’s should be
the preferred choice.

In total that makes a 6bit header, in order to make it a full byte two extra bits are
added at the end. These bits are then available for future extensions or frame specific
features. For instance in connection to the channel management feature. The full header
is seen in table 2.2.

2.5.2. Frame layout

The chip to be used, atmega128RFA1 [3], supports hardware driven checksum genera-
tion and verification according to the 802.15.4 standard. Also it requires the first byte in
the frame buffer during transmission to be the PHR, also defined in 802.15.5. This byte
consists of the frame length and a bit to indicate if the frame complies with the 802.15.4
standard or not. The frame buffer is a total of 128 byte long giving us a frame layout
as seen in table 2.3. The available payload for a general frame is then a maximum of
122 bytes when checksums and other overhead are subtracted. How big the effective
payload is depends on what extra overhead the different frame types introduce and are
more thoroughly defined in the corresponding sections throughout this chapter.

Ragnar Stuhaug NTNU Trondheim

14 2. Protocol design

Bytes: (4) (1) 1 1 1-122 2 2
Contents: (Preamble) (SFD) PHR Header Payload Checksum FCS

Table 2.3.: Full frame layout, values in parenthesis are invisible to the software during transmis-
sion and reception.

Bytes: 1 1 2 1 1-119 2 2
Contents: PHR Header Node ID Data length Payload Checksum FCS

Table 2.4.: Full data frame layout.

2.5.3. Data Frame

The data frame is sent by the nodes to the AP’s using CSMA/CA in the access window,
since only one AP will listen on the given channel it does not need any target address,
but it must include the ID of the transmitting node. Also the number of data bytes is
appended before the list of data begins. In total this gives the layout seen in 2.4, and as
is seen here this allows for an effective payload of 119 bytes.

2.5.4. Acknowledge Frame

The acknowledge frame is sent by the node in a dedicated slot during the acknowledge
phase. It is transmitted directly without any sensing of the channel in order to maintain
strict timing. This frame only needs to contain the ID of the transmitting node, as this
is all the AP needs to confirm that the message addressed to that particular node was
received successfully. In order to keep the frame as small as possible the extra checksum
is skipped, leaving only the 16bit hardware driven checksum. This can be done since
the corruption of this frame is completely uncritical compared to the beacons and data
frames. The AP will only look for the node ID’s that it did in fact address in the previous
beacon, meaning that a corrupted frame with a random ID is unlikely to be accepted by
the AP even if the checksums happens to be correct. Thus the node ID itself effectively
acts as a checksum. In total this gives the frame layout shown in table 2.5

2.5.5. Beacon Frame

The beacon shall contain a list of acknowledgments for the data frames received in
the previous access window, and a varying number of messages addressed to differ-
ent nodes. In order to optimize the functionality of the protocol the most reasonable
approach will be to first add the list of acknowledgments, and then append as many
messages as there are room for. This means that in high traffic situations the "AP to
node"-throughput is the first to suffer, that will lead to the nodes not receiving com-
mands as frequent as they should, which again will lead to the nodes going idle more

Bytes: 1 1 2 2
Contents: PHR Header Node ID FCS

Table 2.5.: Full ack frame layout.

NTNU Trondheim Ragnar Stuhaug

2.5. Final protocol definition 15

frequent, thus generating less traffic "node to AP". This way the traffic flow is self
regulating.

In order for the nodes to interpret the beacon correctly with a varying number of
entries a beacon header is needed. This should contain the number of acknowledgments
in the list and the number of following messages. This will also make it easy for nodes
not expecting an acknowledgement to jump straight to the message list.

Acknowledge list

The longer the access window is, the more data frames is likely to be transmitted, and
the more acknowledgments has to fit into the beacon. In table 2.9 the absolute maximum
theoretical number of messages per access window is calculated assuming all transmit-
ted messages contains 8 bytes payload. However this number is highly theoretical due
to the random nature of CSMA/CA. Still it can be used as an indicator when dimension-
ing the fields. We see that, at a beacon frequency of 30Hz, the maximum theoretical
number of data frames are 33 and at 25Hz the number increase to 40 frames.

Another factor is the maximum size of the beacon. With each acknowledge taking
up two bytes, a list of 32 acknowledgments will take up 64 bytes. From table 2.9
the number of symbols available for the whole beacon phase can be found, and taking
into consideration that a significant portion of these symbols will be used for overhead
and synchronization between the nodes and the AP it can be assumed that the beacon
frequency must be far below 30Hz for it to be able to fit more than 64 bytes or actual
data.

Based on this it is clear that a maximum of 32 acknowledgments, requiring five bits
to indicate the list length, should be sufficient under any realistic circumstances.

Message list

The maximum number of messages has to be evaluated in a similar manner as the num-
ber of acknowledgments. Here two matters have to be considered. Firstly the acknowl-
edge phase has to be able to fit a number of acknowledgments equal to the maximum
allowed number of messages. As stated in table 2.5 one acknowledge frame contains
five bytes of data in addition to the physical header consisting of another five bytes as
shown in table 2.3. In total this means that an acknowledge frame needs 20 symbols to
fully transmit, in addition to this the acknowledge slots has to allow some drift, meaning
that a minimum of 25 symbols should be used as a basis for any calculations. As seen
in table 2.9 each subperiod will be 130 symbols long with 30Hz beacon frequency. This
can allow up to five acknowledgments.

Secondly the maximum number of messages has to fit in the beacon frame. Each
message will be represented by the node ID, a parameter stating the amount of data, and
the data itself. Using the requirements stated in table 1.1, with average message size of
8 bytes, this means 11 bytes per message. In addition to this the requirements states that
the ratio between incoming and outgoing messages from the AP’s will be somewhere
between 3/1 and 21/1. Meaning that each outgoing message can be assumed to be
accompanied by at least three acknowledges for incoming messages. In total this means
that one outgoing message from the AP can be assumed to take up an average of at least

Ragnar Stuhaug NTNU Trondheim

16 2. Protocol design

Bit: 7 6-2 1-0
Contents: Reserved Ack number (0-31) Message number (0-3)

Table 2.6.: Beacon header definition.

Bytes: 1 2 a ∗ 2 ∑i
0−m(3 + ki) 2 2

Contents: PHR Headers Ack list Messages Checksum FCS
Table 2.7.: Full beacon frame layout.

17 bytes in the beacon, and in many cases a lot more because of a much higher number
of acknowledgments.

Based on the two limitations mentioned above the message list is set to a maximum of
three, making the list length possible to code with only two bits. This gives the beacon
header one additional reserved bit that can be used at a later stage.

Message uniqueness

The way the protocol is designed there is nothing preventing an AP from adding mul-
tiple messages addressed to the same node to a single beacon. However that would
require both the node and the AP to be able to handle the acknowledgment of all the
said messages, adding unwanted complexity. The need for multiple simultaneous trans-
missions should never occur in the use cases the protocol is made for, and generally
it is assumed that the application will concatenate the messages before adding them to
the buffer, as this will save a reasonable amount of overhead. As such a simple rule is
added to the protocol definitions, no beacon shall contain more than one message per
node, and any broadcast message should be the only message within its beacon. This
limit implies that the AP has to filter the messages to prevent any collisions, but the
node will never have to wake up for more than one acknowledgement transmission.

Full beacon header

The final beacon header can be seen in table 2.6. The full beacon frame can be seen in
table 2.7. Here the variable a indicates the number of acknowledgments added, m the
number of messages and ki the number of data bytes contained in message i. The sum
(a ∗ 2)+ (

∑i
0−m(3+ ki)) + 7 cannot grow larger than the maximum beacon size for the

current beacon frequency. This maximum size is further discussed in section 2.5.6.

2.5.6. Beacon size

The beacon frame is limited in size by the beacon frequency. In table 2.9 the symbol
length of a beacon period at different frequencies can be seen. The calculations are
based on 62500 802.15.4-symbols per second. One such symbol make out four bits
meaning that one byte requires two symbols.

NTNU Trondheim Ragnar Stuhaug

2.5. Final protocol definition 17

Node

AP

Timing buffer Overhead
CH

Swap InterpretationReception Idle

Transmission

Accepted beacon start

Acknowledge phase
AP Beacon trigger

On Air PHY DATA

Transmission completed
Node beacon trigger Node beacon timestamp

CH
Swap

IdleIdle

Transmission on air

Interrupt routine returns

Node beacon trigger

Figure 2.3.: Sketch showing the different phases of a beacon transmission.

Channel swap

In figure 2.3 a rough sketch of a beacon transmission and the connected phases are
shown. In order for the node to be prepared to receive a beacon it has to adjust to
the new channel before the AP starts its transmission. The time this takes has to be
subtracted from the time available for beacon transmission.

According to [3] the time needed for the transceiver to settle on a new channel is a
maximum of 24µs. The delay on interrupts are stated to be a maximum of 9µs. Since
the channel swap on the node is initiated as an interrupt it can be estimated that the total
time needed is 9 + 24µs + the computation time needed to initiate the swap. With a
symbol length of 16µs this equates to minimum 2.1 symbols. Rounding this up to 3
symbols would then be reasonable.

AP drift

Secondly there has to be room for some timing drift between the AP’s, it cannot be
assumed that the AP’s are perfectly synced, down to a single symbol, at all times. With
a timing buffer in place two AP’s can drift as far apart as the size of the buffer without
causing any problems. If they drift further apart the AP that triggers too early risk
triggering before the nodes has adjusted to the channel, thus the nodes will not be able
to receive the beacon, and subsequently no nodes will transmit on that channel since
they assume that the AP has gotten out of range or gone offline. The size of this buffer
depends solely on the accuracy of the AP synchronization, meaning that it is very hard
to estimate beforehand. A buffer of length 10 will allow the AP’s to deviate 5 symbols
in any direction from the correct timing, or 80µs. If the synchronization can be made far
better than this the value can be adjusted down at a later stage to allow bigger beacons.

Interpretation

Lastly the node has to be able to complete its interpretation of the beacon before the next
beacon trigger, or else the beacon trigger will be delayed and the node risks getting out
of sync, with disconnects as the result. The length of this period will be hard to estimate
theoretically, and the best way is most likely to set up a "worst case" test procedure and
find the tipping point at which it starts failing.

Ragnar Stuhaug NTNU Trondheim

18 2. Protocol design

Phase CH swap Timing buffer Overhead Interpretation Sum
Time >33µs 160µs 384µs X (160)µs 737µs
Symbols 3 10 24 X (10) 47

Table 2.8.: Total timing overhead to be subtracted from beacon period.

Freq Subperiod
size

Max beacon
size (bytes)

Effective
beacon
size

Access
window
size

Max number
of messages

15 260 130 106 3640 67
18 217 108 84 3038 56
20 195 97 73 2730 50
22 177 88 64 2478 45
24 162 81 57 2268 42
25 156 78 54 2184 40
26 150 75 51 2100 38
27 144 72 48 2016 37
28 139 69 45 1946 36
29 134 67 43 1876 34
30 130 65 41 1820 33
31 126 63 39 1764 32
32 122 61 37 1708 31
33 118 59 35 1652 30
34 114 57 33 1596 29
35 111 55 31 1554 28
36 108 54 30 1512 28
38 102 51 27 1428 26
40 97 48 24 1358 25

Table 2.9.: Timing and beacon calculations at different beacon frequencies.

Overhead

Once the part that does not include on air transmission is subtracted the actual overhead
can be evaluated. As seen in table 2.3 a general frame has 11 bytes of overhead. Adding
the beacon header makes it 12 bytes, or 24 symbols.

Note that not all this overhead is located in front of the frame, as it also includes the
checksum and FCS at the end. When dimensioning timing variables and constants in
the program itself this has to be taken into account.

Resulting size

In table 2.8 the timing overhead surrounding each beacon is summarized according to
the phases in figure 2.3. The time needed for interpretation is set to ten initially and
should be tested later to find the optimal value.

NTNU Trondheim Ragnar Stuhaug

2.5. Final protocol definition 19

2.5.7. Checksum
The custom checksum does not need to have error correcting abilities as most corrupted
frames will typically have a large degree of corruption. Therefore a simple XOR of all
the bytes in the frame is used. With two bytes checksum the first is the XOR of all odd
indexed bytes while the second is the XOR of all even indexed bytes. In the event that
a frame contains only one byte of payload the second byte should hold its initial value,
zero. Note that the PHR is not included in the checksum as this byte is not inserted into
the frame buffer when a frame is received. As such the first byte to be included in the
checksum is the custom frame header..

2.5.8. Synchronization
As stated in section 2.1.3 a global timing reference is introduced to maintain the strict
timing requirement between the access points. The frequency of this signal must not
exceed the beacon frequency. As such the existing 130Hz is unusable. For simplicity it
is defined that the synchronization signal should be 1Hz. It is then up to the developers
of the application to generate and supply the signal according to this requirement.

2.5.9. Functional description
In figure 2.4 four examples of the communication sequence are shown.

In figure 2.4(a) a simple reception is shown. The node receives a message within
the beacon on channel five and stays locked to that channel throughout the following
acknowledge phase to transmit its acknowledge.

In figure 2.4(b) the node attempts to access channel one for transmission and imme-
diately gains access. As seen the node is not able to receive the beacon on channel five,
as it is transmitting on channel one at that time. This will only pose a problem if the
received beacon on channel five contains a message for the node, or a broadcast. How-
ever, as discussed in section 2.1.3 the chance of the node losing a directly addressed
message this way is sufficiently small for it to be an acceptable penalty.

In figure 2.4(c) the node fails its CCA on channel one, and at that point in time channel
five is blocked by the beacon and acknowledge phase. Following this the node performs
a random timeout and retries its transmission at a later stage.

In figure 2.4(d) the node has changed the ranking of the channels and attempts to
transmit on channel 5 first, this fails, but since channel one is currently available it
immediately retries there, with success. Note that just like in figure 2.4(b) this cause the
node to miss the beacon on channel 5.

Ragnar Stuhaug NTNU Trondheim

20 2. Protocol design

Channel

Beacon1

2

3

4

5

Time 1

Global time reference

6

7

Beacon

Beacon

Beacon

Beacon

Beacon

Beacon

Beacon

Beacon

2 3 4 5 6 7 8 9

AckAck

Ack

Ack

Ack

Ack

Ack

Ack

Message

Ack transmission

A

(a) Receiving message.

Channel

Beacon1

2

3

4

5

Time 1

Global time reference

6

7

Beacon

Beacon

Beacon

Beacon

Beacon

Beacon

Beacon

Beacon

2 3 4 5 6 7 8 9

AckAck

Ack

Ack

Ack

Ack

Ack

Ack

Ack

Transmit request Ack

CCA Data

(b) Transmitting with immediate access to the channel.

Channel

Beacon1

2

3

4

5

Time 1

Global time reference

6

7

Beacon

Beacon

Beacon

Beacon

Beacon

Beacon

Beacon

Beacon

2 3 4 5 6 7 8 9

AckAck

Ack

Ack

Ack

Ack

Ack

Ack

Ack

Transmit request AckTimeout Trigger

CCA failure CCA Success

CCA DataCCA

(c) Transmitting with one failed CCA, retry on same channel since the other channel is blocked by the
beacon and ack phase.

Channel

Beacon1

2

3

4

5

Time 1

Global time reference

6

7

Beacon

Beacon

Beacon

Beacon

Beacon

Beacon

Beacon

Beacon

2 3 4 5 6 7 8 9

AckAck

Ack

Ack

Ack

Ack

Ack

Ack

Ack

Transmit request

Ack

CCA failure

CCA Success

CCA

DataCCA

(d) Transmitting with one failed CCA, immediate retry on other channel succeeds.

Figure 2.4.: Illustrations of transmission and reception for a node. Red squares show what
channel the node is linked too. Blue show when the node is actively receiving. Orange is CCA
measurement of the channel. Green is node transmissions. (Not to scale)

NTNU Trondheim Ragnar Stuhaug

3. Implementation 21

3. Implementation

In this chapter the source code produced for the protocol is presented and described
in detail. Instead of including all the produced code as appendices, as that would be
impractical and decrease readability, it is chosen to include the most vital code blocks
when needed throughout this chapter. Two different approaches are used; for simple
code performing a specific task, or describing an isolated procedure, the original code
from the source files is imported directly. The source file is then indicated in the caption
and the line numbers corresponds to the line numbers in the original file. All source
files can be found in the archive supplied together with the report. More advanced
procedures that either requires a large amount of code, or algorithms that have their
functionality spread across multiple functions, will instead be described using a simpli-
fied, but functionally equivalent, pseudo code. Here as well the source file containing
the actual implementation is specified in the caption, but no line numbers are given.

3.1. Implementation and debug situation

During the whole design and implementation period the author was located at NTNU
in Trondheim, meaning that there was no immediate access to the representatives of
Hatteland Computer except through e-mail and telephone. A set of hardware modules
was shipped to Trondheim to allow the implementation to be tested and debugged. This
kit contained two AP’s, four nodes and one POE power supply to power the AP’s. This
enabled testing of most of the features of the protocol, but not all. For instance there was
no synchronization signal present, making that part of the code virtually un-testable.
This also meant that there was no effective way to test functionality connected to the
use of more than one channel, since the AP’s, even if there were two available, would
not be synchronized. Lastly the number of nodes was limited, and even with one AP
acting as a node the maximum number of competing nodes would be 5. This meant that
any artifacts appearing with a higher number of nodes would not be detected during the
debugging. As seen in section 6.1 this did indeed cause a variety of problems throughout
the test period

3.2. Implementation tool

During implementation the tool CodeVisionAVR V2.60 [6] was used with its default
compiler and compiler settings. A lisence was supplied by Hatteland Computer for the
full version. This tool was also used for programming the modules, with the exception
of when debugging was to be done with JTAG, in these cases AtmelStudio 6.1 [7] was
used and the compiled object file from CodeVisionAVR was imported into AtmelStudio.

Ragnar Stuhaug NTNU Trondheim

22 3. Implementation

Code 3.1: Convenience functions for transceiver access [ASRadioGeneral/general_radio.h].
97 void GR_generalRadioInit();
98
99 //------ Checksum Calculation ---

100 //Calculates Checksum directly from the framebuffer
101 uint16_t GR_calculateChecksum(uint8_t start, uint8_t end);
102 uint8_t GR_validChecksum(uint8_t length);
103
104 inline uint16_t GR_get16BitAt(uint8_t pos);
105
106 #define GR_initiateCCA() (PHY_CC_CCA |= (1 << CCA_REQUEST))
107 #define GR_channelIdle() (TRX_STATUS & (1 << CCA_STATUS))
108 #define GR_disableReception() (RX_SYN |= (1 << RX_PDT_DIS))
109 #define GR_enableReception() (RX_SYN &= ~(1 << RX_PDT_DIS))
110
111 inline void GR_activateCCA_ED_DONE_I();
112 #define GR_deactivateCCA_ED_DONE_I() (IRQ_MASK &= ~(1 << CCA_ED_DONE_EN))
113
114 inline void GR_activateRX_END_I();
115 #define GR_deactivateRX_END_I()(IRQ_MASK &= ~(1 << RX_END_EN))
116
117 #define GR_getTRX_STATUS() (TRX_STATUS & TRX_STATE_MASK)
118 #define GR_getTRAC_STATUS() ((TRX_STATE & TRAC_STATUS_MASK) >> 5)
119 #define GR_setTRX_CMD(cmd) (TRX_STATE = cmd & TRX_CMD_MASK)
120 #define GR_fcsValid() (PHY_RSSI & (1 << RX_CRC_VALID))

Code 3.2: IEEE 802.15.4 PHR type [ASRadioGeneral/general_radio.h].
20 typedef struct __PHR{ //PHY header
21 union{
22 struct{
23 unsigned int length : 7; // Frame length
24 unsigned int IEEE : 1; // Frame IEEE compliant or not
25 };
26 uint8_t byte;
27 };
28 } __PHR_t;

3.3. Module independent code

3.3.1. Transceiver control

In order to simplify the programming a simple interface is made to access the most
commonly used parts of the transceiver. This interface was expanded gradually as the
need for new functionality became clear.

The interface gives intuitive defines for activating and deactivating interrupts, check-
ing and setting the transceiver state etc. In code 3.1 and 3.2 parts of this is shown to give
a general idea of the approach.

3.3.2. Symbol counter

With the symbol counter being the core timing module of the protocol it is vital to have
a simple and easy to use interface for this as well. In code 3.3 and 3.4 the interface for
one counter is presented, the other two is exactly similar, only with other registers being
accessed.

NTNU Trondheim Ragnar Stuhaug

3.3. Module independent code 23

Code 3.3: Symbol counter headers [ASRadioGeneral/mac_symbol_counter.h].
61 inline void MSC_initMacSymbolCounter();
62 #define MSC_forceBeaconTimestamp() (SCCR0 |= (1 << SCMBTS))
63
64 inline void MSC_setCompare1(uint32_t ticks);
65 inline void MSC_setCompare116Bit(uint16_t ticks);
66 inline void MSC_reactivateCompare1();
67 #define MSC_deactivateCompare1() (SCIRQM &= ~(0x01))
68 #define MSC_compare1Set() (SCIRQS & 0x01)

Code 3.4: Symbol counter implementations [ASRadioGeneral/mac_symbol_counter.c].
20 inline void MSC_setCompare1(uint32_t ticks){
21 SCOCR1HH = ticks >> 24;
22 SCOCR1HL = ticks >> 16;
23 SCOCR1LH = ticks >> 8;
24 SCOCR1LL = ticks;
25 //Clear any pending interrupts
26 SCIRQS = 0x01;
27 //Activate interrupt for given compare
28 SCIRQM |= 0x01;
29 }
30
31 inline void MSC_setCompare116Bit(uint16_t ticks){
32 SCOCR1LH = ticks >> 8;
33 SCOCR1LL = ticks;
34 //Clear any pending interrupts
35 SCIRQS = 0x01;
36 //Activate interrupt for given compare
37 SCIRQM |= 0x01;
38 }

3.3.3. Symbol counter busy-wait function

In order to ensure accurate timing, specifically when interpreting a frame at the same
time as it is being received, some dynamic delay functionality is needed. To accom-
plish this two functions are implemented in the symbol counter driver, one to initialize
the procedure, and one to perform a busy wait loop until the counter has reached, or
passed, the desired value. The two functions can be seen in code 3.5. This enables
accurate synchronization of the frame buffer reading when needed, and if parts of the
data interpretation require a lot of calculations, causing the microcontroller to lag be-
hind the transceiver, the functions will simply not perform any waiting for the following
calls. This makes the microcontroller drift back in sync without ever being in the risk
of reading a byte too early, so long as the wait loop is initialized and used correctly.

3.3.4. Protocol definitions

As well as the functionality for accessing the hardware the protocol definitions are also
common for all modules throughout the system. These are included in the general radio
interface shared by the separate projects implementing the different modules. In code
3.6 type definitions for the headers and frame structures are presented. In addition to
this the calculation of the custom checksum is presented in code 3.7.

Ragnar Stuhaug NTNU Trondheim

24 3. Implementation

Code 3.5: Busy wait functionality [ASRadioGeneral/mac_symbol_counter.c].
100 static uint8_t Reference;
101 inline void MSC_setReference(){
102 while(SCSR & (1 << SCBSY))delay_us(1);
103 Reference = SCCNTLL;
104 };
105 inline void MSC_waitXAndSetReference(uint8_t x){
106 uint8_t tmp = 0;
107 do{
108 while(SCSR & (1 << SCBSY))delay_us(1);
109 tmp = SCCNTLL - Reference;
110 }while(tmp < x);
111 Reference += x;
112 };

Code 3.6: Type definitions for core protocol structures [ASRadioGeneral/general_radio.h].
33 typedef struct __FRAME_HEADER{
34 union{
35 struct{
36 unsigned int reserved : 2;
37 unsigned int networkId : 4; // Network/System ID
38 unsigned int msgType : 2; // 0 = beacon, 1 = ack, 2 = data
39 };
40 uint8_t byte;
41 };
42 }__FRAME_HEADER_t;
43
44 typedef struct __BEACON_CTRL{
45 union{
46 struct{
47 unsigned int msgNum : 2; // Number of commands
48 unsigned int ackNum : 5; // Number of Acknowledges
49 unsigned int reserved : 1;
50 };
51 uint8_t byte;
52 };
53 }__BEACON_CTRL_t;
54
55 typedef struct __BEACON_HEADER{
56 __PHR_t phr;
57 __FRAME_HEADER_t frameHeader;
58 __BEACON_CTRL_t beaconCtrl;
59 }__BEACON_HEADER_t;
60
61 typedef struct __DATA_HEADER{
62 __PHR_t phr;
63 __FRAME_HEADER_t frameHeader;
64 uint16_t node;
65 }__DATA_HEADER_t;

NTNU Trondheim Ragnar Stuhaug

3.4. Interface design 25

Code 3.7: Checksum function [ASRadioGeneral/general_radio.c].
24 uint16_t GR_calculateChecksum(uint8_t start, uint8_t end){
25 uint8_t i = start;
26 uint8_t sum1 = 0;
27 uint8_t sum2 = 0;
28
29 if(end > 127) end = 127;
30
31 //Checksum is xor of all bytes.
32 while(i < end){
33 sum1 ^= (&TRXFBST)[i++];//First byte -> even numbered (0,2,4..)
34 sum2 ^= (&TRXFBST)[i++];//Second byte -> odd numbered (1,3,5..)
35 }
36 //Special case with only one byte, second byte is 0.
37 if(start == end) sum1 ^= (&TRXFBST)[start];
38
39 return (sum1 << 8) | sum2;
40 }

3.4. Interface design

As with most software development it is desirable to implement the protocol as a stan-
dalone module that a user application can access through a simple interface. This will
both simplify the development and debugging as well as clearly defining the boundaries
of the work to be done in this thesis. All application specific features are abstracted
away and only the core functionality is of any interest.

Given the deep transceiver to software integration atmega128RFA1 offers, through
interrupts and direct register access, it is decided to make the protocol completely inter-
rupt driven. By using the mac symbol counter as timing reference it will be possible to
keep all radio functionality hidden from the user. Once the application has initiated the
protocol and enabled interrupts no further protocol actions has to be made within the
main loop besides accessing the buffers.

Still the application has to be designed to allow the protocol to do its job as effectively
as possible. This means that the use of interrupts besides the ones used by the protocol
must be minimized. This to prevent that the protocol interrupts are delayed because of
other ongoing interrupts. This will easily lead to stability issues and, in the worst case,
cause the protocol to fall apart if the beacons are thrown completely out of sync.

3.4.1. Identification and addressing

The nodes will have a unique node ID set by the application. It is the responsibility of the
application to ensure the uniqueness, and an address conflict will cause unpredictable
behavior. The protocol will initialize the node ID to the highest available value, FFFF
in hexadecimal, and the application must set the new ID using the supplied interface
functions after initializing the protocol. A suggested procedure for assigning node ID’s
are presented in section 4.2.4.

The network ID should also be set by the application, both on the node and on the AP
side. It shall be initialized to the highest available value, F in hexadecimal, on the AP
side, while it will be initialized to 0 on the nodes. 0 indicates a special mode where the
module will accept all network ID’s, a frame with network ID 0 will also be accepted

Ragnar Stuhaug NTNU Trondheim

26 3. Implementation

by AP’s with a different ID, meaning that a node without a specified network ID will
synchronize and communicate with any AP in range. Note that this feature has not been
implemented as it is of no significance for the core functionality of the protocol. As
such this functionality should be added at a later stage.

3.4.2. Buffers

The interface is made up of two buffers, one for output and one for input. These buffers
consist of a specialized structure containing all the information connected to a mes-
sage, including a collection of flags used to indicate the status of the transmission. The
structures are presented in code 3.8.

The same structures are used for both the input and output buffers on both the nodes
and the AP’s, this is done to keep the interface unified and easier to use for the appli-
cation. Still this means that the out buffer in the AP is able to hold messages that are
far larger than what the beacon are able to fit. This means that the application has to
ensure that messages added to the buffer is within the limits. The maximum message
size will be defined in the interface. If a message is found to be too large for a single
transmission the application can split it into several smaller pieces.

The node ID will have a different meaning depending on the direction of the message.
This comes from the nature of the protocol and the fact that the AP’s are not identified
in any way. For messages being transmitted from the nodes to the AP’s the node ID
identifies the sender node, while for messages being transmitted from the AP’s to the
nodes the node ID indicate the receiving node. For the node the protocol will overwrite
any node ID with the node ID of the node, making it impossible for the application to
fake its ID. When receiving messages the protocol will filter the messages based on the
node ID, only letting through directly addressed messages and broadcasted messages
with node ID 0. The control flags are only used in the output buffer, as the reception of
frames does not require any control logic besides the indexes. Still the control byte is
included to enable the use of the same structures across the whole system.

3.4.3. Possible race conditions

One important thing to consider in this situation is the fact that the indexes can be
modified by two independent and concurrent sources. This is a scenario where race
conditions can easily cause undefined behavior. The application can be interrupted by
the protocol while being in the middle of updating an index, causing the protocol to read
the old value instead of the new value. If the protocol is planning on updating the same
index the end result will be that the new value written by the protocol is immediately
overwritten by the application when the interrupt routine returns.

The obvious solution is to make the macros atomic. However when going through
the functionality of the interface it is clear that each index will only ever be modified by
one of the two interacting parts, while the other part will only read the value.

The protocol will increment the In_Begin index when a new message is received, the
application on the other hand will never modify this index, only read it. In_End on the
other hand is only modified by the application, once it is ready to release that buffer slot.

NTNU Trondheim Ragnar Stuhaug

3.4. Interface design 27

Code 3.8: General interface types and functions [ASRadioGeneral/general_radio_if.h].
14 //------ Messages --------------------------------------
15 #define MAX_MESSAGE_DATA_SIZE 119
16 typedef struct __MSG_CTRL{
17 union{
18 struct{
19 unsigned int sent : 1; // Message sent
20 unsigned int sending : 1; // Message being sent
21 unsigned int acked : 1; // Message acknowledged
22 unsigned int reject : 1; // Message rejected
23 unsigned int toBig : 1; // Message to large
24 unsigned int : 3;
25 };
26 uint8_t byte; //Should only be used to clear all flags
27 };
28 }__MSG_CTRL_t;
29
30 typedef struct __MESSAGE{
31 uint16_t node; // Node ID
32 uint8_t length; // Length of data
33 uint8_t data[MAX_MESSAGE_DATA_SIZE]; // Data
34 }__MESSAGE_t;
35
36 typedef struct __MESSAGE_OBJ{
37 __MSG_CTRL_t ctrl;
38 __MESSAGE_t msg;
39 }__MESSAGE_OBJ_t;
40
41 //-------- IN BUFFER --------------------------------------
42 volatile extern __MESSAGE_OBJ_t In_Buffer[IN_MAX+1];
43 volatile extern uint8_t In_Begin, In_End;
44 #define incrementInIndex(x) (x = (x+1)%(IN_MAX+1))
45 #define inBufferEmpty() (In_End == In_Begin)
46 #define inBufferFull() ((In_End == In_Begin-1) || (!In_Begin && In_End == IN_MAX))
47
48 //-------- OUT BUFFER --------------------------------------
49 volatile extern __MESSAGE_OBJ_t Out_Buffer[OUT_MAX+1];
50 volatile extern uint8_t Out_Begin, Out_End;
51 #define incrementOutIndex(x) (x = (x+1)%(OUT_MAX+1))
52 #define outBufferEmpty() (Out_End == Out_Begin)
53 #define outBufferFull() ((Out_End == Out_Begin-1)||(!Out_Begin && Out_End == OUT_MAX))

The out buffer indexes will only be modified by the application because of the control
flags, Out_Begin is incremented when a new message is added to the buffer, the protocol
detects the index change and transmits the message, setting the control flags according to
the status of the transmission, once the message is transmitted, successfully or not, it is
up to the application to increment the Out_End index to make room for more messages.

The protocol will use internal indexes, not visible to the application, to keep track of
what messages has been sent and acknowledged. This way no race conditions will ever
occur and the need for atomic operations is not present.

Ragnar Stuhaug NTNU Trondheim

28 3. Implementation

Code 3.9: AP specific interface [ASRadioAP/ap_radio_if.h].
12 //-------- BUFFERS --
13 #define IN_MAX 40
14 #define OUT_MAX 10
15
16 //---- Include Buffer definitions ----
17 #include "../ASRadioGeneral/general_radio_if.h"
18
19 //-------- Functions --------------------------------------
20 //Initializer
21 void initApRadio();
22
23 //NetId initialized to 0
24 void setNetId(uint8_t netId);
25
26 //Synchronization function, to be called at exact 1Hz
27 void globalSecTick();
28
29 //Overrides the internal channel analysis
30 void forceChannelSwap();

Code 3.10: Node specific interface [ASRadioNode/node_radio_if.h].
12 //-------- BUFFERS -------------------------------------
13 #define IN_MAX 5
14 #define OUT_MAX 3
15
16 //---- Include Buffer definitions ----
17 #include "../ASRadioGeneral/general_radio_if.h"
18
19 //-------- Functions -----------------------------------
20 void initNodeRadio();
21
22 //Node initialized to nodeNo 0xFFFF.
23 void setNodeNo(uint16_t no);
24
25 //NetID initialized to 0
26 void setNetId(uint8_t netId);
27 void blackListNetId(uint8_t netId);
28
29 //Returns 1 if node is synced to one or more AP’s. 0 if not.
30 uint8_t connected();

NTNU Trondheim Ragnar Stuhaug

3.5. AP protocol core 29

Listen Data

Listen Ack

Send Beacon

Figure 3.1.: Simple state machines for the access point module.

Listen Data

Listen Ack

Send Beacon

Mark ack

Mark rejects

Set pending Ack Put in In_Buffer

RX-Data Frame

RX-Ack Frame

TX Done

Beacon Timer

Ack Timer

Figure 3.2.: Expanded state machine for the access point module.

3.5. AP protocol core

3.5.1. State machine

In isolation the behavior of a single AP, and thus a single channel, is simply the trans-
mission of a beacon, followed by a dedicated acknowledge phase, followed by an access
window where anyone can transmit using CSMA/CA. A simple state machine for this
is shown in figure 3.1.

In figure 3.2 the state machine from figure 3.1 are expanded with the major sub states
and the triggers causing the transitions. As seen in this figure the main triggers are the
reception of a frame, either acknowledge or data, the completion of beacon transmis-
sion, and two timers, one indicating that the acknowledge phase is over and the other
indicating that it is time to transmit a new beacon.

3.5.2. Timers

The two main timers are handled by the MAC symbol counter. The values of the timers
will depend on the configuration of the system, most importantly the beacon frequency.
The configuration options and calculations are presented in section 3.9.

The beacon timer will trigger each time the AP is to transmit a beacon. The timer will
be set according to the current channel and the global timing reference.

The acknowledge timer will be set to trigger two subperiods after the beacon trigger.
One subperiod is again equal to the beacon period divided by the number of available
channels. When this timer triggers the AP will look through the acknowledgements
received during that phase and match them with the messages that were included in the
beacon. Any message that does not have a matching acknowledgement will be marked
as rejected while the rest is marked as acknowledged.

Ragnar Stuhaug NTNU Trondheim

30 3. Implementation

3.5.3. Frame reception triggers

The reception of a frame is indicated with two interrupts. First the RX_START interrupt
that triggers once a correct preamble, SFD and PHR is received. This interrupt enables
the module to read the incoming frame while it is being received. With this approach
it has to be made sure that the bytes are not read faster than the radio is receiving and
writing them. In order to ensure this the symbol counter busy wait function described
in section 3.3.3 can be used. Another aspect is that it is impossible to know if the data
is corrupted before the full frame is received and the checksums are calculated. This
means that it must be possible to invalidate any actions or values set throughout the
interpretation.

The second interrupt is RX_END, this triggers when a full frame has been received
and also indicates that the automatic FCS is done calculating. If the reading and interpre-
tation of the frame is started by this trigger, the validity of the frame can be tested before
starting the read procedure. Thus the fallback feature needed when using RX_START
is no longer needed. Also no concern has to be made regarding delays since all the data
is ready in the buffer to begin with. The use of this interrupt introduces another pitfall
however; unless reception of new frames is disabled, the radio will overwrite the buffer
when a new frame is received. This means that the routine reading the buffer has to
ensure that no byte is read at a time where is can possibly have been overwritten. The
minimum theoretical timing between two frames "on-air" is 140µs for the CCA [3] plus
10 symbols (160µs) for the preamble and the SFD. The last byte of the physical header
is the PHR containing the length of the frame, and this is the first byte accessible to soft-
ware that will be overwritten. After this the data bytes of the frame will be overwritten
one by one every 2 symbols.

In practice it is possible to read the previous frame while receiving a new one so long
as data byte i is not read later than (332+ i∗32)µs after the RX_END interrupt. In most
cases this should be a relatively simple requirement to satisfy regarding the data, with
the exception of the frame length byte that will be needed to know when to stop reading.
To prevent corruption of this value it should be copied into a temporary variable instead
of using the register directly.

Given the above considerations there is little gain for the AP in reading the data
frames in parallel, meaning that the simplest solution with reading once the frame is
completed is chosen. The interpretation of the received frames are shown in code 3.11,
the functions encoded with ACM_∗ are related to the channel management function-
ality and is further described in section 3.8. The function for reading the data frame is
shown in code 3.12.

3.5.4. Beacon building

In the early versions of the protocol there were significant stability issues. Nodes would
disconnect randomly and the overall performance showed that a large amount of frames
were lost. After some analyzing this was narrowed down to the accuracy of the beacon
timing. To begin with the whole process of building the beacon and filling the frame
buffer was done when the beacon timer triggered. Since the computation time needed
to build the frame would vary depending on the content, the actual transmission of

NTNU Trondheim Ragnar Stuhaug

3.5. AP protocol core 31

Code 3.11: Frame reception interrupt [ASRadioAP/ap_radio.c].
276 interrupt [TRX24_RX_END] void receptionCompleted(){
277 uint8_t length = TST_RX_LENGTH;
278
279 //Check validity of frame
280 if((Flag.IncludesChecksum && !GR_validChecksum(length)) || !GR_fcsValid()){
281 ACM_registerFailedFrame();
282 return;
283 }
284
285 //Read contents
286 if(Incomming_Frame_Header.networkId == NetId){
287 switch(Incomming_Frame_Header.msgType){
288 case BEACON_FRAME:
289 ACM_registerOtherNetwork();
290 break;
291 case DATA_FRAME:
292 frameInterrupt();
293 if(Incomming_Frame_Header.reserved) ACM_readChInfoFromFrameBuffer(length-8);
294 break;
295 case ACK_FRAME:
296 Inc_Ack[Inc_Ack_End] = GR_get16BitAt(1);
297 Inc_Ack_End++;
298 break;
299 case BROADCAST_FRAME:
300 break;
301 }
302 }else{
303 ACM_registerOtherNetwork();
304 }
305 }

Code 3.12: Data frame read function [ASRadioAP/ap_radio.c].
255 void frameInterrupt(){
256 uint8_t i = 0;
257 //If receive buffer is full, discard message
258 if(inBufferFull() || Ack_End > 31) return;
259
260 //Copy message into receive buffer
261 In_Buffer[In_End].msg.length = (&TRXFBST)[3];
262 In_Buffer[In_End].msg.node = GR_get16BitAt(1);
263 for(i = 0; i < In_Buffer[In_End].msg.length; i++)
264 In_Buffer[In_End].msg.data[i] = (&TRXFBST)[4+i];
265
266 //Append node ID to the Ack list
267 Ack_Pending[Ack_End] = In_Buffer[In_End].msg.node;
268
269 //Update indexes
270 Ack_End++;
271 incrementInIndex(In_End);
272 }

Ragnar Stuhaug NTNU Trondheim

32 3. Implementation

Listen Data

Listen AckSend Beacon

Mark ack

Mark rejects

Set pending Ack Put in In_Buffer

RX-Data Frame

RX-Ack Frame

TX Done

Beacon Timer

Ack Timer

Build Beacon Beacon Build Timer

Figure 3.3.: AP state machine with the addition of the beacon build

the beacon could be delayed by an unpredictable amount of symbols. This caused the
nodes to push their beacon timer forward, expecting that the change was legitimate. If a
computationally heavy beacon was followed by a nearly empty one there was a risk that
the second transmission was initiated before the nodes had locked on to the channel,
causing the nodes to miss the preamble and thus miss the entire frame. The solution to
this was to introduce a third timer initiating the beacon building. This timer will trigger
a set period before the beacon timer and prepare the beacon frame in the frame buffer.
When the beacon timer triggers its only task will be to initiate the transmission, giving a
high degree of timing accuracy. The further expanded state machine for the AP module
including this timer is seen in figure 3.3. Once this was in place the stability of the
protocol increased dramatically.

The building of the beacon consists of three main phases. The first phase involves in-
serting all the acknowledgements that has been generated during the last access window.
Given the definitions of the protocol the acknowledgements should have priority over
the messages, meaning that as many acknowledgements as possible should be inserted
up to the maximum 31. The timing of this phase will be proportional to the number of
acknowledgements plus a constant factor. Each acknowledgement takes up two bytes,
as it is simply the id of the transmitting node.

The second phase is the addition of messages. Firstly it has to be checked that there
are pending messages and that the first message in line is not too large to fit within the
remaining free space of the beacon. Secondly the protocol states that each node can
only receive a single message per beacon as discussed in section 2.5.5. To ensure this
limit some extra structures are needed, specifically it is needed to filter the addresses
to see if the next pending message has the same address as another, already inserted,
message. Secondly a broadcast message can only be inserted if it is the first message
in the queue, and after the insertion of such a message no more messages can be added
even if there is still room for more.

The third phase is the construction and insertion of the header information, including
the PHR and the checksum described in section 3.3.4. Pseudo code for the beacon

NTNU Trondheim Ragnar Stuhaug

3.5. AP protocol core 33

Code 3.13: Pseudo code for the beacon building procedure [ASRadioAP/ap_radio.c].
prepareBeaconFrame(){

//--- Phase 1 - Acknowledge insertion -----
if(NormalBeacon){ //First beacon on a new channel shall be empty

while(moreAcksLeft AND moreRoomInBeacon){
InsertNextAckInFrameBuffer();

}
SetAckNumberInBeaconHeader(AckNumber);

}
//Acks that did not fit in frame are discarded as nodes will only listen once.
ResetOutGoingAckBuffer();

//--- Phase 2 - Message insertion -----
if(NormalBeacon){

//Append as many messages as possible without exceeding max size.
while(PendingMessage AND RoomForMessageInBeacon){
//Prevent more than one message per node per beacon
if(MessageIsBroadcast AND OtherMessagesAlreadyAddedToBeacon) break;
if(MessageAddressAlreadyPresentInBeacon) break;
AddMessageAddressToAddressMask(Message.NodeID);
InsertCompleteMessageIntoFrameBuffer();
IncrementMessageNumberInBeaconHeader();
//Allow only a single message if the message is a broadcast
if(MessageIsBroadcast) break;

}
}

//--- Phase 3 - Header and checksum insertion -----
InsertFrameHeaderInfo();
CalculateAndInsertCustomChecksum();

}

building helper function can be seen in code 3.13. The different phases are separated
with comment lines.

3.5.5. Acknowledge reception

Once a beacon has been transmitted the AP will enter acknowledge mode for the du-
ration of the next subperiod. More accurately it will enter this mode immediately after
having transmitted the beacon, and stay there until the following subperiod is com-
pleted. This will happen regardless of whether there were messages in the beacon or not
since the acknowledge phase is blocked from being used for normal data traffic in any
case. The state transition is triggered by the TRX24_TX_END interrupt that triggers
immediately after the last frame symbol has been transmitted on air.

The acknowledge phase is split into three slots where the nodes transmit their ac-
knowledge frames according to what index their message had in the beacon. This means
that the third slot will only be used when there are three messages in the beacon etc. The
received acknowledgements are temporarily stored in an array for the duration of the
acknowledge phase. Once the timer indicating the transition to the access window trig-
gers, the AP will loop through the received acknowledgements marking the transmitted
messages as rejected or acknowledged accordingly. This routine is shown in code 3.14.
This routine also contains code for changing channels, this part is further described in
section 3.5.6.

The transmission of broadcast messages are naturally not acknowledged, still the ac-

Ragnar Stuhaug NTNU Trondheim

34 3. Implementation

Code 3.14: Acknowlede phase completion routine [ASRadioAP/ap_radio.c].
367 interrupt [SCNT_CMP2] void ackPeriodCompleted(){
368 uint8_t a = 0;
369 uint32_t offset;
370 MSC_reactivateCompare2();
371
372 State = LISTEN;
373 //Loop through received ack’s and the messages waiting for ack. Mark as needed.
374 a = 0;
375 while(Out_Unacked != Out_Unsent){
376 if(a < Inc_Ack_End
377 && Out_Buffer[Out_Unacked].msg.node == Inc_Ack[a])
378 {
379 Out_Buffer[Out_Unacked].ctrl.acked = 1;
380 a++;
381 }else if(!Out_Buffer[Out_Unacked].msg.node){
382 //Broadcasts are always marked as acked.
383 Out_Buffer[Out_Unacked].ctrl.acked = 1;
384 }else{
385 Out_Buffer[Out_Unacked].ctrl.reject = 1;
386 }
387 incrementOutIndex(Out_Unacked);
388 }
389 Inc_Ack_End = 0;
390
391 if(Flag.ChChange){
392 a = (Channel - OldChannel);
393 while(a >= CH_LAST) a -= CH_LAST;
394 a -= CH_FIRST - 1;
395 if(a < 4) a += CM_ChCount();
396
397 offset = (uint32_t)a * SUBPERIOD;
398 MSC_setCompare1(offset);
399 MSC_setCompare3(offset - BEACON_BUILD_TIME);
400
401 CM_apply_channel(Channel);
402 Flag.Synced = 1;
403 Flag.ChChange = 0;
404 Flag.EmptyBeacon = 1;
405 Flag.RssiReading = 0;
406 }
407 }

knowledge status is set for any transmitted broadcasts at the end of the acknowledge
phase to signal that the message has been transmitted. This is done to simplify the in-
terface, allowing the application to always listen for the acknowledge/reject statuses to
determine when a message can be cleared from the buffer.

3.5.6. Changing channel

Upon request from the application, or upon the channel quality falling below the desired
level, the AP will move to a different channel. The evaluation and ranking of the chan-
nels, as well as how the information is gathered, is presented in section 3.8 as this can
be seen as a standalone feature besides the normal operation of the protocol.

The actual channel change however has to be incorporated into the protocol to make
sure it does not cause unnecessary problems. First of all it is not indifferent at what
point in the beacon sequence the channel swap is executed. The subperiod where the
AP is actually transmitting its beacon is obviously excluded, and this extends to the

NTNU Trondheim Ragnar Stuhaug

3.5. AP protocol core 35

acknowledge phase. This way it can be ensured that the messages transmitted by the
AP do not suffer unnecessary from the channel change. The received messages however
are bound to trigger retransmissions. If the AP listens for frames before it moves, the
frames received will be falsely marked as unacknowledged by the transmitting node
since it will be listening for the acknowledgement on the wrong channel. As such it
is better that the AP swap channels just as the data phase is starting, this way the data
frames transmitted within the data period is truly lost, giving a more consistent and
correct view of the situation for all involved parties.

This means that the channel change should be executed upon the completion of the
acknowledge phase. This can be seen in code 3.14.

To change channel firstly involves a change of transmission frequency, but given the
functionality of the protocol it also involves that the AP has to recalculate its beacon
timing to adjust to its new position in the beacon sequence. This is done by calculating
the offset between the current channel and the new, and then set the timers according
to the new channel. If the offset is very small, meaning that the new channel has a
beacon slot within only a few subperiods following the original channel, a full period is
added to the offset to make sure that the AP has time to initiate the beacon transmission
properly.

Ragnar Stuhaug NTNU Trondheim

36 3. Implementation

Code 3.15: Pseudo code for first sync. function [ASRadioAP/ap_radio_.c].
globalSecTick(){
SymbCnt = GetSymbolCounter();
if(ExpectedSymbCnt > SymbCnt){

SymbolDiff = ExpectedSymbCnt - SymbCnt;
ExpectedSymbCnt += 62500 - CorrectionFactor;

}else if(ExpectedSymbCnt < SymbCnt){
SymbolDiff = SymbCnt - ExpectedSymbCnt;
ExpectedSymbCnt += 62500 + CorrectionFactor;

}else{
SymbolDiff = 0;
ExpectedSymbCnt += 62500;

}

if(SymbolDiff < ErrorLimit){
Offset = (CurrentChannel * SubperiodTiming) + Adjustments;
SetTimers(Offset);

}
}

3.6. AP synchronization

In order to keep the access points synchronized a global timing signal is supplied. This
is defined to be 1Hz in section 2.5.8, and should reset the timers of the module to the
correct values according to the currently active channel. This will make sure that all
access points are at their dedicated position within the channel cycling sequence.

One main thing to take into consideration when designing this function is that the
triggering of the interface function can be delayed by ongoing interrupts. This means
that the timers cannot be set directly, but only when it can be assumed that the signal is
not delayed.

3.6.1. Initial version

The initial approach to this was to use the symbol counter as a reference, setting an
"expected symbol count" for when the synchronization should arrive, and then only
trigger the timers if the actual signal is within a given offset of the expected value. In
addition to this a factor is added or subtracted to account for any clock offsets compared
to 1Hz. Pseudo code for this procedure is presented in code 3.15.

During implementation the synchronization had to be tested using internal timers in
the AP, as the global signal was not available. It would have been possible to supply
a 1Hz signal from some outside source, using a separate microcontroller and some di-
rectly soldered wires, but this was not considered worthwhile at the time. The result of
this decision was that the system seemingly worked perfectly, since any clock drift and
other errors was not present when generating the sync signal locally on the AP chip.

3.6.2. Second version

Once a proper external sync signal was supplied the original functionality turned out
to be more or less unusable, as described in section 6.1.3. The reason for the instabil-
ity was that the static correction factor on the expected symbol count initially was too

NTNU Trondheim Ragnar Stuhaug

3.6. AP synchronization 37

Code 3.16: Pseudo code for second sync. function [ASRadioAP/ap_radio_.c].
globalSecTick(){

SymbCnt = GetSymbolCounter();
if(ExpectedSymbCnt > SymbCnt){

SymbolDiff = ExpectedSymbCnt - SymbCnt;
if(SymbolDiffIncreasing())DynamicOffset--;
else(random1in4chance())DynamicOffset--;

}else if(ExpectedSymbCnt < SymbCnt){
SymbolDiff = SymbCnt - ExpectedSymbCnt;
if(SymbolDiffIncreasing())DynamicOffset++;
else(random1in4chance())DynamicOffset++;

}else{
SymbolDiff = 0;

}
ExpectedSymbCnt += 62500 + DynamicOffset;

if(SymbolDiff < ErrorLimit){
Offset = (CurrentChannel * SubperiodTiming) + Adjustments;
SetTimers(Offset);

}
}

small, causing the sync signal to drift away as the expected value was not incremented
enough each time. This revealed the need for a dynamic factor, adjusted according to
the current offset between the expected and the received value. Since this error was first
discovered during the testing phase the general situation was rather stressful and the
resulting function was mostly produced throughout trial and error rather than through
a proper design process. Pseudo code for the second version is presented in code 3.16.
The fundamental concept is simply to adjust the correctional factor if the symbol differ-
ence is growing. Otherwise the factor has a random chance of being modified so long
as the difference is not zero.

Unfortunately this new version did not fully fix the issue, even if it provided a far more
versatile solution that the initial function. However the functionality was not improved
further for other reasons described in section 6.1.4.

A thorough analysis of the synchronization functionality is given in section 8.2 with
proposals for future improvements.

Ragnar Stuhaug NTNU Trondheim

38 3. Implementation

CSMA/CA
Transmission

Cycle - Beacon listeningSearching

Channel++

Any State

Acknowledge

BeaconListen

Message?

Yes

No

Figure 3.4.: Simple state machine for the node modules.

Cycle - Beacon listening

Searching

Channel++

Any State

Acknowledge

Beacon
Listen

Message?

Yes

No

Beacon Timer

No Active Channels

RX-Beacon Frame Transmit Timer

RX-Beacon Frame

TX Done

Idle
Ack Timer

Valid?

Yes

No
Activate CCA

Ch Idle?

Transmit

CCA Done

Yes

No

TX Done

Figure 3.5.: Expanded state machine for the node modules.

3.7. Node protocol core

3.7.1. State machine

The main feature of the nodes is the cycling through all available channels. To begin
with a search procedure has to be executed to locate and lock on to the global timing of
the AP’s. Once the node is synchronized it will follow the timing of the beacons, cycling
through all channels accordingly. This sequence will only be interrupted when the node
wish to send, at which point it will find a suited channel and attempt to access it using
a customized CSMA/CA algorithm. A simple state machine for the node can be seen
in figure 3.4. Note how the beacon timer and the corresponding channel incrementation
is always performed no matter what state the node is in, this is to ensure that it can
jump right back into the sequence after a completed transmission no matter how long
the CSMA/CA and transmission procedure takes.

In figure 3.5 the simple state machine from figure 3.4 is expanded in greater detail
and with the major triggers.

3.7.2. Timers

The functionality of the node is centered on the beacon timer, synchronized to the global
timing each time a new beacon is received. When a beacon is analyzed, and a message
addressed to that particular node is detected, the acknowledge timer is activated based
on the index of the message. This cause the node to transmit its acknowledge within its
designated slot in the acknowledge phase. The last timer is the transmit trigger, prepar-
ing the data frame and initiating the CCA. This timer is activated a random number
of subperiods following the detection of a new message in the outgoing buffer. The
timer itself also has a random value as it is to trigger at an arbitrary point in time within
the given subperiod. This high degree of randomness is a fundamental part of the CS-
MA/CA procedure as it will minimize the probability that two nodes access the channel

NTNU Trondheim Ragnar Stuhaug

3.7. Node protocol core 39

at the exact same time.

3.7.3. Searching

The search phase is very simple, the node will cycle through the channels as normal,
but instead of listening on each channel for one subperiod’s duration it listens for a full
beacon period. This means that if there is an AP transmitting on the given channel the
node is bound to pick up the beacon at some point during that period. Once a beacon is
registered the global timing is immediately known and the node can commence with the
normal cycling, detecting any beacons on other channels as it moves through the normal
channel sequence.

If at any point during normal operation the node believes that there are no active
channels it will go back to the search phase until it once again receives a beacon.

With 16 channels and a beacon frequency of around 30Hz it will take the node a
maximum of just over 0.5 seconds to find and lock on to the beacons. This also means
that it will take the node 0.5 seconds to confirm that no channels are active if all AP’s
go offline. This is particularly interesting in connection to the emergency stop function
mentioned in section 1.2.

3.7.4. Beacon reception

After locking onto a new channel in the channel sequence, the node will stay idle, lis-
tening. When a valid preamble and SFD is detected the TRX24_RX_START interrupt
indicates that a frame is being received. In order to maximize the throughput of the
protocol it is essential to minimize the portion of the subperiod that is not actively used
for beacon transmission, as described in section 2.5.6. Because of this it is desired to
do the majority of the needed computation in parallel. Still, as stated in section 3.5.3,
this requires the possibility to undo any changes invoked by the interpretation in case
the frame is corrupted.

For the beacon reception this is relatively easy to accomplish by the use of flags.
One flag indicates if an acknowledgement targeted at the specific node was detected,
if the beacon frame is validated this flag is used to mark the transmitted frame as ac-
knowledged or rejected. If the beacon frame was invalid the transmitted frame has to
be marked as rejected regardless of the flag value. Any messages targeted at the node,
both addressed and broadcasts, can be copied into the incoming buffer during interpre-
tation if the buffer is not full, a flag will then indicate if a message has been copied and
a variable indicates the index of the message in the beacon message list. The fallback
procedure is then simply to leave the index of the in buffer unchanged if the frame was
invalid, thus the copied data is simply overwritten the next time a message is received.
A valid frame will cause the index to be incremented normally and the acknowledge
timer to be activated according to the stored message index if the message was directly
addressed.

Initially the beacon was interpreted after the full frame had been received. This was
done in order to get the protocol up and running as fast as possible. The transition to

Ragnar Stuhaug NTNU Trondheim

40 3. Implementation

parallel interpretation was then made at a later stage once the conceptual functionality
was confirmed to work as intended.

In table 3.1 some test results from the debugging phase is presented, showing how
the stability of the protocol increased drastically once this change was made. The pre-
sented data are the numbers accumulated since the module was last reset, meaning that
the higher the numbers the longer the system has been operating. Initially the system
worked well with 30 beacons per second, when this was increased to 35 the system got
unusable with close to 25% lost packets and disconnects at a regular basis. With the
change to parallel interpretation of the beacons the numbers changed drastically and the
system was able to run for days at 35Hz with only a completely insignificant amount of
unexpected errors.

3.7.5. Acknowledge transmission

The node transmits the acknowledge frame according to the index of the received mes-
sage in the beacon frame, the setting of the timer can be seen in code 3.17. The interrupt
routine of the acknowledge timer is shown in code 3.18. One thing to note is that the
acknowledge frame is being built while it is being transmitted. The transmission is ini-
tiated immediately after inserting the PHR. Then the remaining data, the header and
the node ID, is inserted while the transceiver is busy transmitting. This is possible be-
cause the transceiver is transmitting far slower than the microcontroller is writing. This
allows the code related to the acknowledge frame to be kept in one place, while still
ensuring that the transmission is initiated as close to the desired time as possible. The
acknowledge frame does not add the custom checksum, as explained in section 2.5.4.

3.7.6. Active channel registration

Given the dynamic nature of the channels the nodes will pick up the beacons from all
AP’s within range. The channels are then marked as active from the node’s point of
view and can be used for transmission. When a node listens for a beacon on an active
channel without receiving any, it has to assume that it has moved out of that AP’s range
or that the AP has gone offline. Given that the beacon frequency is sufficiently high
compared to the maximum physical speed of the nodes it will be possible for the nodes
to consider its list of active channels to be correct at all times.

When the node wishes to transmit, it will have to choose a channel for transmission.
This could be done randomly among the active ones, but naturally it is better if the
node choose the channel that appears to have the best signal strength, indicating that
the physical distance is the shortest or that destructive interference is the lowest. The
ATmega128RFA1 chip implements an energy measurement according to the 802.15.4
standard [5] to enable this, this is further described in section 2.3.2, and is a measure-
ment of the energy of any received signal on the channel. By storing this value each
time a beacon is received the node will have a good indicator on how strong the signal
is on that particular channel, enabling the channels to be ranked in an effective way.

NTNU Trondheim Ragnar Stuhaug

3.7. Node protocol core 41

Test results 09:57 8. mars 2013: 30 Beacons/sec
Timings changed from 20 b/s to 30 b/s.

Node: 1 - Sent: 51704 - Recv: 50302 - (51703 / 0)
B: 74340 - Recv: 51703 - Sent: 50485 - (50301 / 184) - DC’s: 0
Node: 2 - Sent: 51703 - Recv: 50010 - (51702 / 0)
B: 74340 - Recv: 51702 - Sent: 50469 - (50009 / 460) - DC’s: 0
Node: 3 - Sent: 51703 - Recv: 50078 - (51702 / 0)
B: 74340 - Recv: 51703 - Sent: 50520 - (50077 / 443) - DC’s: 0
Node: 4 - Sent: 51703 - Recv: 50407 - (51702 / 0)
B: 74339 - Recv: 51701 - Sent: 50414 - (50406 / 8) - DC’s: 0

Test results 10:11 8. mars 2013: 35 Beacons/sec
Timings changed from 30 b/s to 35 b/s.

Node: 1 - Sent: 2791 - Recv: 2041 - (2295 / 495)
B: 3844 - Recv: 2326 - Sent: 2041 - (2004 / 37) - DC’s: 36
Node: 2 - Sent: 2443 - Recv: 1670 - (1815 / 627)
B: 3511 - Recv: 1844 - Sent: 1681 - (1623 / 58) - DC’s: 46
Node: 3 - Sent: 2666 - Recv: 1887 - (2098 / 567)
B: 3670 - Recv: 2131 - Sent: 1895 - (1846 / 49) - DC’s: 40
Node: 4 - Sent: 2621 - Recv: 1841 - (2057 / 563)
B: 3673 - Recv: 2086 - Sent: 1856 - (1799 / 57) - DC’s: 41

Test results 11:12 23. mars 2013: 35 Beacons/sec
Beacons are now interpreted while being received.

Node: 1 - Sent: 3687974 - Recv: 5560166 - (3685053 / 2920)
B: 9024962 - Recv: 3687970 - Sent: 5564583 - (5560165 / 4418) - DC’s: 0
Node: 4 - Sent: 3687946 - Recv: 5548594 - (3681085 / 6860)
B: 9024910 - Recv: 3687927 - Sent: 5565838 - (5548586 / 17252) - DC’s: 2
Node: 6 - Sent: 3687974 - Recv: 5494521 - (3670926 / 17047)
B: 9024957 - Recv: 3687972 - Sent: 5579759 - (5494520 / 85239) - DC’s: 0
Node: 7 - Sent: 3687973 - Recv: 5514514 - (3675147 / 12825)
B: 9024959 - Recv: 3687970 - Sent: 5581907 - (5514513 / 67394) - DC’s: 0
Node: 9 - Sent: 3678635 - Recv: 5504148 - (3668045 / 10592)
B: 9007645 - Recv: 3678613 - Sent: 5568175 - (5504136 / 64039) - DC’s: 3

Test results 14:22 25. mars 2013: 35 Beacons/sec
Fixed a bug causing the nodes to transmit data within the acknowledge-phase.

Node: 1 - Sent: 2411199 - Recv: 4597175 - (2411194 / 4)
B: 6200028 - Recv: 2411194 - Sent: 4637167 - (4597171 / 39996) - DC’s: 1
Node: 2 - Sent: 2411199 - Recv: 4566480 - (2411197 / 1)
B: 6200037 - Recv: 2411196 - Sent: 4662923 - (4566479 / 96444) - DC’s: 0
Node: 3 - Sent: 2411198 - Recv: 4623580 - (2411197 / 0)
B: 6200039 - Recv: 2411197 - Sent: 4637116 - (4623579 / 13537) - DC’s: 0
Node: 4 - Sent: 2411191 - Recv: 4594623 - (2411190 / 0)
B: 6200037 - Recv: 2411189 - Sent: 4658072 - (4594622 / 63450) - DC’s: 0
Node: 5 - Sent: 2411188 - Recv: 4549124 - (2411186 / 1)
B: 6200039 - Recv: 2411186 - Sent: 4649751 - (4549123 / 100628) - DC’s: 0

Table 3.1.: Test results during debugging showing the improvement of parallel interpretation of
the beacon frame.

Ragnar Stuhaug NTNU Trondheim

42 3. Implementation

Code 3.17: Pseudo code for beacon reception [ASRadioNode/node_radio.c].
receiveBeacon(){
SetTimingReference();
WaitXSymbols(3); //Wait for first byte to be written (frame header).
FrameHeader = FrameBuffer[0];
if(FrameHeader.networkId == MyNetId){

if(FrameHeader.msgType == BEACON){
ForceBeaconTimeStamp();
SetBeaconTimer(CONSTANTVALUE); //Synchronize

//--- Ack reception --------
WaitXSymbols(2); //Wait for beacon header
BeaconHeader = FrameBuffer[1];
if(WaitingForAck){

while(AcksLeftInBeacon){
WaitXSymbols(4); //Wait for the next Ack
if(NextAck == MyId) ReceivedAck = TRUE;

}
}else WaitXSymbols(BeaconHeader.AckNumber * 4); //Wait for the whole ack list

//--- Message reception --------
while(MessagesLeftInBeacon){

WaitXSymbols(4);//Wait for address
if(NoMessageReceived AND GetNextMessageAddress == MyId){

InBuffer.Id = MyId;
WaitXSymbols(2); //Wait for lenght
InBuffer.Length = GetMessageLength;
while(MoreDataInMessage){

WaitXSymbols(2); //Wait for one byte
InBuffer.NextData = FrameBuffer.NextData;

}
}else if(NoMessageReceived AND MessageIsBroadcast){

InBuffer.Id = 0;
WaitXSymbols(2); //Wait for lenght
InBuffer.Length = GetMessageLength();
while(MoreDataInMessage()){

WaitXSymbols(2); //Wait for one byte
InBuffer.NextData = FrameBuffer.NextData;

}
}else{ //Uninteresting messages

WaitXSymbols(2); // Wait for lenght
WaitXSymbols(GetMessageLength() * 2); //Wait for all the data

}
}

//--- Conclude the validity of the frame -------
WaitXSymbols(4); //Wait for two checksum bytes
WaitXSymbols(5); //Wait for two CRC bytes plus some calculation time
if(ChecksumIsValid AND CRCIsValid){

if(WaitingForAck){
if(ReceivedAck) MarkSentMessageAsAcknowledged();
else MarkSentMessageAsRejected();

}
if(ReceivedMessage){

if(MessageShouldBeAcknowledged){
SetAckTrigger(Position*ACKINTERVAL + ACK_DELAY);

}
UpdateInBufferIndex();

}
}else{//The frame was corrupted

MarkSentMessageAsRejected();
}

}else{ //Reception of other frames not currently of any interest }
}else{ //Reception of frames with other network ID ignored }

}

NTNU Trondheim Ragnar Stuhaug

3.7. Node protocol core 43

Code 3.18: Acknowledge transmission interrupt [ASRadioNode/node_radio.c].
497 interrupt [SCNT_CMP3] void ackInterrupt(){
498 MSC_deactivateCompare3();
499
500 //Copy header byte into framebuffer
501 (&TRXFBST)[0] = Ack_Header.phr.byte;
502
503 //Initiate transmission
504 GR_setTRX_CMD(TRX_CMD_TX_START);
505
506 //Insert rest of frame
507 (&TRXFBST)[1] = Ack_Header.frameHeader.byte;
508 (&TRXFBST)[2] = (Ack_Header.node >> 8) & 0x00FF;
509 (&TRXFBST)[3] = Ack_Header.node & 0x00FF;
510 }

Code 3.19: Transmission channel interface [ASRadioNode/node_channel_management.h].
69 //------ Transmission cycling ---
70 void NCM_sortChannels();
71
72 //0 means no more channels are available at this time.
73 inline void NCM_setNextTransmitChannel(uint8_t msgLength);

3.7.7. Channel ranking

To keep track of the channels the node has a specialized channel management module.
This module is explained in more detail in section 3.8.5, but the function header used to
select a channel for transmission is presented in code 3.19. The function will take the
length of the message data as input and set the shared "TransmitChannel" variable to the
currently most suited channel. Based on the message length the function determines if
there is a chance that the node will not have time to transmit the whole frame before the
next beacon. This is critical to avoid both that the node transmits a message that the AP
is not able to fully receive, and to prevent the node from transmitting when the AP starts
transmitting the beacon, possibly corrupting the beacon. If no channels are currently
available given the current position in the beacon sequence, the transmit channel is set
to 0. This should be interpreted as a CCA miss, invoking a new random timeout.

By default the function will only consider the three channels with the highest energy
readings. These three channels will be returned in sequence upon the first, second and
third call of the function. The fourth call will return 0. However, if any of the channels
are not available at the given time this channel will be skipped and the next in line
is returned instead. Upon successful transmission of a frame the cycling through the
available channels are reset to prepare for the next access attempt.

In order for the transmit channel to be set correctly it is important that the channel
sorting function is called regularly. Since this function might need to loop through the
channels a few times it should be called at a point where timing is not too critical. This is
achieved by calling it when an energy measurement is performed on an idle channel. At
this point in time the reception of a beacon is not expected, and the energy measurement
will only be initiated if no outgoing messages are pending, meaning that the node is to
be considered mostly idle.

Ragnar Stuhaug NTNU Trondheim

44 3. Implementation

Code 3.20: Pseudo code for the custom CSMA/CA algorithm [ASRadioNode/node_radio_.c].
TransmitProcedure(){
NCM_setNextTransmitChannel(frameLength);
while(TransmitChannel){

SetChannel(TransmitChannel);
PerformCCA();
if(CCASuccess) {

InitiateTransmission();
return;

}
else NCM_setNextTransmitChannel(frameLength);

}
SetTransmitTrigger(RandomTimeOut());

}

3.7.8. CSMA/CA
Transmission is done according to the CSMA/CA methodology where the nodes will
perform a random delay before assessing the channel to see if it is safe to transmit.
If this is the case the transmission is initiated, if not, the node steps back for another
random period before retrying. In this particular case however there is one major twist
to the regular CSMA/CA algorithm as the node will have access to multiple channels.
Upon a failed CCA on one channel the node will immediately move to the next in line
and retry the assessment. This procedure is repeated until there are no more available
channels at the given time. This way the traffic load will distribute evenly among the
available channels even when all the nodes are considering the same AP to be their
preferred one. Pseudo code for this procedure is presented in code 3.20

3.7.9. Transmission
Once the CCA returns an idle channel the transmission should be started as fast as
possible to minimize the gap between the CCA and the signal occurring on the channel.
This is necessary to minimize the chance of collisions. With CSMA/CA there is always
a certain statistical chance for collisions caused by two nodes assessing the channel in
exact parallel and thus starting transmission on top of each other. The larger the gap
between the CCA and the transmission, the greater risk there is for this to happen.

Once the transmission is initiated the remaining parts of the frame is inserted into
the frame buffer. This can be done in parallel with the transmission so long as any
given byte is written before the transceiver attempts to transmit it. Generally this is no
problem when transmitting since the microcontroller is a lot faster than the on air bit
rate, assuming that there is no time-consuming processing involved.

To insert the majority of the frame after transmission is initiated also saves computa-
tion time overall since the alternative would be to insert the full frame before the CCA
was completed, thus the work with inserting the frame would be done in vain each time
a CCA returned a failure.

NTNU Trondheim Ragnar Stuhaug

3.8. Channel management 45

3.8. Channel management

Assuming that the core functionality works perfectly as intended the next step is to
include analysis of the channels and make the modules automatically avoid noisy or
occupied channels. This functionality can be seen to be completely separate from the
core functionality as it should have no impact on the functionality in a noise free en-
vironment. The main target is to get a system that will detect when a new competing
network shows up, and moves away from the afflicted channels without the applications
in either end detecting any change in performance.

The AP is the module that decides upon what channel that is to be used. As such this
is where the channel quality information has to be located. However the AP is operating
on a single channel, with no knowledge of anything that might be happening on the other
channels. Even the existence of other AP’s is unknown to the AP unless it is explicitly
told about it from an outside source. The AP might of course swap to a more or less
random channel, and in cases with little to no noise and interfering networks this could
work fairly well on average, however the worst case scenario of this approach will be
an infinite amount of channel swaps in all situations where more than one channel are
unusable.

In order to supply the AP with information there could be a module that scanned all
the channels to assess the quality and indicate where other networks are located, both
in the form of other AP’s and alien networks. In fact this is in part already done by
the nodes, they cycle through all the channels sequentially, and all AP’s that are within
range will be listed within its internal structures in order to be part of the transmission
algorithm. By having the nodes perform energy measurements on all channels as they
loop through them, they will be able to get a good view of where other interfering
networks are located, giving us exactly the information needed by the AP.

Naturally having to relay the information across the radio link is a drawback as it
will increase the overhead and directly reduce the overall capacity. Still this is mainly
a tradeoff between pure throughput, and robustness and stability. Given that throughput
can be increased by adding more AP’s, while stability is very hard to improve externally,
the choice is simple.

3.8.1. Desired behavior

In a made up scenario an AP is transmitting on channel 7, suddenly a new Wi-Fi net-
work is set up on channel 6. Given that a Wi-Fi channel spans 22MHz while 802.15.4
channels spans 5MHz the Wi-Fi signal will be present, with different strength, in chan-
nels 4 to 8. Once the AP detects regular alien transmissions within its frequency band,
and potentially an increase in the number of corrupted frames caused by this, it should
swap to a new channel that is not polluted by outside noise. If no other networks are
within range this can be any channel from 1-3 and 9-16. Assuming there are two other
AP’s in range, one working on channel 15 and another working on channel 2, these two
channels should be blocked by the swapping AP making it choose between channel 1,
3, 9 to 14, and 16.

If two AP’s fell victim to the newly arrived Wi-Fi channel, say one AP on channel
7 and one on channel 5, they should both swap. In this case it is desired that the risk

Ragnar Stuhaug NTNU Trondheim

46 3. Implementation

of them swapping to the same channel is as small as possible, or impossible if that is
feasible. In any case there should be mechanisms that can detect such a collision and
correct it without it influencing the system much more than a normal channel swap.

3.8.2. Quality of readings
One thing having a significant influence upon how the AP’s sees the channels is the fact
that the system will be fairly spread out geographically. This means that sources causing
channels to be unusable in one area might not have any influence on AP’s covering other
areas. Thus an AP is only interested in channel information gathered within the zone
where it is the prominent one. This can be achieved by only having the nodes append the
channel information when transmitting to their preferred AP, and not on the channels
considered to be the second or third in line.

Another important factor is the nature of general radio traffic. Typically it will come
in the form of sporadic or regular bursts. This means that a node can pick up noise at
one point while at the next sampling the channel appears clean. If only the last sample is
to be relayed to the AP it will most likely indicate a clear channel in the vast majority of
the cases. This means that the node has to calculate some channel quality factor based
on a number of samples giving it some sort of memory on the matter. In this regard
it must also be remembered that the nodes will be moving, meaning that the number
of samples it evaluates to determine the quality of the channel has to be limited, lest it
becomes too inaccurate. The closer together the samples are geographically the better
the quality of the measurement will be from the AP’s point of view.

3.8.3. Access point view
When the AP receives the readings from the connected nodes it has to choose how to
interpret them, specifically it has to decide how to treat multiple, possibly very different,
readings of the same channel. One solution is to take the average; however that is not
likely to be the optimal solution given the circumstances. The AP needs to look at the
worst case scenario for each channel within its covered area. This involves that a node
reporting a channel to be virtually unusable while others reports it to be clear should
cause the AP to regard the channel to be unusable. This is to prevent spots with high
degrees of interference from being lulled down, leading to nodes being trapped inside
them, unable to reach any of the surrounding AP’s.

To accommodate this, a simple envelope tracking is chosen, this works by applying
the new reading to the stored value if it is larger, otherwise the new value is ignored.
The stored value, the envelope, is then decreased at regular intervals, meaning that it will
gradually decrease if no larger readings are received. How fast the envelope is decreased
can be a configurable parameter, however in this case it could very well be decreased
quite slowly. This because there might be a fairly long period of time when no nodes
move within a given area, meaning that a fast decrementation would cause the readings
for that area to drop out of the channel footprint prematurely. Still the decrementation
has to be fast enough to cover the possibly fluctuating nature of the radio to provide the
desired dynamism.

NTNU Trondheim Ragnar Stuhaug

3.8. Channel management 47

3.8.4. AP’s current channel assessment

The AP also has to measure the perceived quality of its current channel to determine
when it’s time to swap. This could be done using the ED measurement, but this mea-
surement prevents the transceiver from decoding the signals received for the duration of
the test, meaning that it should only be performed when no frame is expected. Since the
AP must expect to receive frames at any time during its access window this is not a vi-
able solution. Instead the RSSI register value is used directly, and a number of readings
are averaged across each period. This way the AP effectively performs a manual ED
measurement. In addition to the energy measurement the AP will listen for corrupted
frames, frames with different network ID’s, and last but not least, incoming beacon
frames.

To estimate the quality of the channel a quality indicator is needed. This estimator
needs to be able to indicate then quality of the channel during a relatively short time
span, as a sudden drop in quality should be detected as fast as possible. To accommodate
this, an inverse envelope is used where a byte is incremented towards its maximum of
255 each time a beacon is transmitted. Upon the detection of an undesired event, be it
corrupted frames, noise, or alien beacon frames, the value is decremented by a set, or
random, value. If the value falls below a set limit the channel is considered unusable
and the AP initiates a channel swap.

Simple noise should generally only cause a minor decrementation. Corrupted frames
should cause a not too large, but still significant, decrementation. Frames originating
from nodes or AP’s with a different network ID should cause a significant decremen-
tation. It is desired to make these decrementations random to prevent two competing
AP’s on the same channel from swapping at the exact same time. Randomness will
make it more likely that one AP reach the limit before the other, making it swap chan-
nels and leaving the other alone on the first channel. The remaining AP will then stop
decrementing its quality indicator and within not too long the indicator is back at its
maximum value.

3.8.5. Node view

The main task of the nodes regarding the channel measurements is to provide the AP
with an accurate measurement of the channel footprint at its current physical position. A
simple envelope is a possibility here as well, however that might not reflect the channel
quality in a good way since single spikes in energy will return the same value as a long
sequence of high samples while these two cases will have very different influence on
the channel quality.

One possible extension to the envelope, in order to make it give a better idea of the
actual channel quality, is to add a filter that will make it ignore high measurements
until they come at a rate that is considered problematic. One way to achieve this is by
adding a factor that is incremented when a reading is too low to be registered, up to a
maximum value. When a high reading is received the factor is decremented by a set
amount equal to the spacing at which we allow spikes to come. This way spikes that
come further apart than the set spacing will not be able to lower the factor to a level
where the reading is actually included in the envelope. When considering if the reading

Ragnar Stuhaug NTNU Trondheim

48 3. Implementation

1. Single noise sample
2. Sequence of 16 high samples
3. Samples increasing from 0 to 20 with 10 high samples.
4. Five high samples followed by gradual decline to 0.
5. High readings at regular intervals, more and more frequent

until they are continuous. Lasts until all test cases has
reached maximum value.

Table 3.2.: Test cases for channel energy registration.

should be applied to the envelope or not, the original reading is divided by the factor
plus a constant smoothing value. This will make the envelope gradually rise to the
actual value if a long sequence of high readings is measured. The formula can be seen
in equation 3.1. The multiplication with the smoothing factor plus one after the division
is done in order to make the resulting reading equal to the original once the factor reach
its minimum value of 1.

newReading =
Reading

Factor + Smoothing
∗ (Smoothing + 1) (3.1)

The last option is simply to average a set number of readings. This is very straight
forward but might require lower limits in order to be used effectively since a channel
should be considered noisy even if there are multiple 0 readings.

3.8.6. Node channel assessment model

In figure 3.6 the different solutions are modeled in a spreadsheet, the columns indicated
with numbers in parenthesis are envelopes with filtering using the following coding
(Spacing, Smoothing, MaxFactor).

The spreadsheet is found in the archive file supplied with the report as "Channel
Management Filter Design.xlsx".

During debugging and testing it was seen that noise from Wi-Fi generally caused
energy readings in the range of 5-20 when the source was 5-15 meters away from the
test modules. Based on this the input data is kept between 0 and 20. The input scenarios
are presented in table 3.2. The test cases are placed so far apart that all readings reach
zero before a new test is initiated, and the underlying factor of the envelope filter is reset
to its maximum value before each test case.

The graph easily shows how the simple envelope triggers on every single noise sam-
ple. The average also behaves as expected with a smooth incrementation and decremen-
tation before and after all test samples. For the filtered envelope it is clear that a lower
spacing and higher max factor will cause the envelope to stay close to zero even with
sporadic noise on the channel. The smoothing factor causes the envelope to gradually
rise instead of jumping to a high value once the factor has been decreased sufficiently.

In order to see what approach works best in practice all methods are implemented,
the functions can be seen in code 3.21. In order to make them configurable at runtime
all functionality for all the modes are included in the compiled version, this should be

NTNU Trondheim Ragnar Stuhaug

3.8. Channel management 49

D
ata

En
velo

p
e

(1
0
,5
,5
0
)

(1
0
,0
,5
0
)

(1
0
,5
,1
0
0
)

(1
0
,0
,1
0
0
)

(1
0
,5
,1
5
0
)

(1
0
,0
,1
5
0
)

(5
,5
,5
0
)

(5
,0
,5
0
)

(5
,5
,1
0
0
)

(5
,0
,1
0
0
)

(5
,5
,1
5
0
)

(5
,0
,1
5
0
)

A
vg5

A
vg1

0

A
vg2

0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 20 20 2 0 1 0 0 0 2 0 1 0 0 0 4 2 10 0 19 1 0 0 0 0 0 1 0 0 0 0 0 4 2 10 0 18 0 0 0 0 0 0 0 0 0 0 0 0 4 2 10 0 17 0 0 0 0 0 0 0 0 0 0 0 0 4 2 10 0 16 0 0 0 0 0 0 0 0 0 0 0 0 4 2 10 0 15 0 0 0 0 0 0 0 0 0 0 0 0 0 2 10 0 14 0 0 0 0 0 0 0 0 0 0 0 0 0 2 10 0 13 0 0 0 0 0 0 0 0 0 0 0 0 0 2 10 0 12 0 0 0 0 0 0 0 0 0 0 0 0 0 2 10 0 11 0 0 0 0 0 0 0 0 0 0 0 0 0 2 10 0 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10 0 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10 0 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10 0 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10 0 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 01 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 20 20 2 0 1 0 0 0 2 0 1 0 0 0 4 2 10 20 19 2 0 1 0 0 0 2 0 1 0 0 0 8 4 20 20 20 3 0 1 0 0 0 2 0 1 0 0 0 12 6 30 20 19 4 1 1 0 0 0 3 0 1 0 0 0 16 8 40 20 20 8 2 1 0 1 0 3 0 1 0 0 0 20 10 50 20 19 20 20 2 0 1 0 4 0 1 0 0 0 20 12 60 20 20 19 19 2 0 1 0 4 1 1 0 0 0 20 14 70 20 19 18 18 3 0 1 0 6 1 1 0 1 0 20 16 80 20 20 20 20 4 1 1 0 8 2 1 0 1 0 20 18 90 20 19 19 19 8 2 1 0 12 4 2 0 1 0 20 20 100 20 20 18 18 20 20 2 0 20 20 2 0 1 0 20 20 110 20 19 20 20 19 19 2 0 19 19 2 0 1 0 20 20 120 20 20 19 19 18 18 3 0 18 18 2 0 1 0 20 20 130 20 19 18 18 20 20 4 1 20 20 3 0 1 0 20 20 140 20 20 20 20 19 19 8 2 19 19 3 0 1 0 20 20 150 20 19 19 19 18 18 20 20 18 18 4 0 1 0 20 20 160 0 18 18 18 17 17 19 19 17 17 3 0 0 0 16 18 160 0 17 17 17 16 16 18 18 16 16 2 0 0 0 12 16 160 0 16 16 16 15 15 17 17 15 15 1 0 0 0 8 14 160 0 15 15 15 14 14 16 16 14 14 0 0 0 0 4 12 160 0 14 14 14 13 13 15 15 13 13 0 0 0 0 0 10 150 0 13 13 13 12 12 14 14 12 12 0 0 0 0 0 8 140 0 12 12 12 11 11 13 13 11 11 0 0 0 0 0 6 130 0 11 11 11 10 10 12 12 10 10 0 0 0 0 0 4 120 0 10 10 10 9 9 11 11 9 9 0 0 0 0 0 2 110 0 9 9 9 8 8 10 10 8 8 0 0 0 0 0 0 100 0 8 8 8 7 7 9 9 7 7 0 0 0 0 0 0 90 0 7 7 7 6 6 8 8 6 6 0 0 0 0 0 0 80 0 6 6 6 5 5 7 7 5 5 0 0 0 0 0 0 70 0 5 5 5 4 4 6 6 4 4 0 0 0 0 0 0 60 0 4 4 4 3 3 5 5 3 3 0 0 0 0 0 0 50 0 3 3 3 2 2 4 4 2 2 0 0 0 0 0 0 40 0 2 2 2 1 1 3 3 1 1 0 0 0 0 0 0 30 0 1 1 1 0 0 2 2 0 0 0 0 0 0 0 0 21 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 4 4 0 0 0 0 0 0 0 0 0 0 0 0 1 1 00 6 6 1 0 0 0 0 0 0 0 0 0 0 0 2 1 10 8 8 1 0 0 0 0 0 1 0 0 0 0 0 4 2 10 10 10 4 1 0 0 0 0 1 0 0 0 0 0 6 3 20 12 12 12 12 1 0 0 0 2 0 0 0 0 0 8 4 20 14 14 14 14 1 0 0 0 3 0 1 0 0 0 10 6 30 16 16 16 16 2 0 1 0 4 1 1 0 0 0 12 7 40 18 18 18 18 4 0 1 0 7 1 1 0 0 0 14 9 50 20 20 20 20 8 2 1 0 12 4 2 0 1 0 16 11 60 20 19 19 19 20 20 2 0 20 20 2 0 1 0 18 13 70 20 20 18 18 19 19 2 0 19 19 2 0 1 0 19 14 80 20 19 20 20 18 18 3 0 18 18 2 0 1 0 20 16 90 20 20 19 19 20 20 4 1 20 20 3 0 1 0 20 17 100 20 19 18 18 19 19 8 2 19 19 3 0 1 0 20 18 110 20 20 20 20 18 18 20 20 18 18 4 0 1 0 20 19 120 20 19 19 19 20 20 19 19 20 20 4 1 1 0 20 19 130 20 20 18 18 19 19 18 18 19 19 6 1 1 0 20 20 140 20 19 20 20 18 18 20 20 18 18 8 2 1 0 20 20 150 0 18 19 19 17 17 19 19 17 17 7 1 0 0 16 18 150 0 17 18 18 16 16 18 18 16 16 6 0 0 0 12 16 140 0 16 17 17 15 15 17 17 15 15 5 0 0 0 8 14 140 0 15 16 16 14 14 16 16 14 14 4 0 0 0 4 12 140 0 14 15 15 13 13 15 15 13 13 3 0 0 0 0 10 140 0 13 14 14 12 12 14 14 12 12 2 0 0 0 0 8 130 0 12 13 13 11 11 13 13 11 11 1 0 0 0 0 6 120 0 11 12 12 10 10 12 12 10 10 0 0 0 0 0 4 120 0 10 11 11 9 9 11 11 9 9 0 0 0 0 0 2 110 0 9 10 10 8 8 10 10 8 8 0 0 0 0 0 0 100 0 8 9 9 7 7 9 9 7 7 0 0 0 0 0 0 90 0 7 8 8 6 6 8 8 6 6 0 0 0 0 0 0 80 0 6 7 7 5 5 7 7 5 5 0 0 0 0 0 0 70 0 5 6 6 4 4 6 6 4 4 0 0 0 0 0 0 60 0 4 5 5 3 3 5 5 3 3 0 0 0 0 0 0 50 0 3 4 4 2 2 4 4 2 2 0 0 0 0 0 0 40 0 2 3 3 1 1 3 3 1 1 0 0 0 0 0 0 30 0 1 2 2 0 0 2 2 0 0 0 0 0 0 0 0 21 0 0 1 1 0 0 1 1 0 0 0 0 0 0 0 0 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 20 20 2 0 1 0 0 0 2 0 1 0 0 0 4 2 10 20 19 2 0 1 0 0 0 2 0 1 0 0 0 8 4 20 20 20 3 0 1 0 0 0 2 0 1 0 0 0 12 6 30 20 19 4 1 1 0 0 0 3 0 1 0 0 0 16 8 40 20 20 8 2 1 0 1 0 3 0 1 0 0 0 20 10 50 18 19 18 18 1 0 1 0 3 0 1 0 0 0 20 12 60 16 18 17 17 2 0 1 0 3 0 1 0 0 0 19 13 70 14 17 16 16 2 0 0 0 4 0 1 0 0 0 18 15 70 12 16 15 15 2 0 0 0 4 1 1 0 0 0 16 16 80 10 15 14 14 4 1 0 0 6 2 0 0 0 0 14 17 90 8 14 13 13 8 8 0 0 8 8 0 0 0 0 12 16 90 6 13 12 12 7 7 0 0 7 7 0 0 0 0 10 14 90 4 12 11 11 6 6 0 0 6 6 0 0 0 0 8 13 90 2 11 10 10 5 5 0 0 5 5 0 0 0 0 6 11 100 0 10 9 9 4 4 0 0 4 4 0 0 0 0 4 9 100 0 9 8 8 3 3 0 0 3 3 0 0 0 0 2 7 100 0 8 7 7 2 2 0 0 2 2 0 0 0 0 1 6 100 0 7 6 6 1 1 0 0 1 1 0 0 0 0 0 4 100 0 6 5 5 0 0 0 0 0 0 0 0 0 0 0 3 100 0 5 4 4 0 0 0 0 0 0 0 0 0 0 0 2 100 0 4 3 3 0 0 0 0 0 0 0 0 0 0 0 1 90 0 3 2 2 0 0 0 0 0 0 0 0 0 0 0 1 80 0 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 71 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 60 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 50 20 20 2 0 1 0 0 0 2 0 1 0 0 0 4 2 50 0 19 1 0 0 0 0 0 1 0 0 0 0 0 4 2 40 0 18 0 0 0 0 0 0 0 0 0 0 0 0 4 2 30 0 17 0 0 0 0 0 0 0 0 0 0 0 0 4 2 30 0 16 0 0 0 0 0 0 0 0 0 0 0 0 4 2 20 0 15 0 0 0 0 0 0 0 0 0 0 0 0 0 2 20 0 14 0 0 0 0 0 0 0 0 0 0 0 0 0 2 10 0 13 0 0 0 0 0 0 0 0 0 0 0 0 0 2 10 0 12 0 0 0 0 0 0 0 0 0 0 0 0 0 2 10 0 11 0 0 0 0 0 0 0 0 0 0 0 0 0 2 10 20 20 2 0 1 0 0 0 2 0 1 0 0 0 4 2 20 0 19 1 0 0 0 0 0 1 0 0 0 0 0 4 2 20 0 18 0 0 0 0 0 0 0 0 0 0 0 0 4 2 20 0 17 0 0 0 0 0 0 0 0 0 0 0 0 4 2 20 0 16 0 0 0 0 0 0 0 0 0 0 0 0 4 2 20 0 15 0 0 0 0 0 0 0 0 0 0 0 0 0 2 20 0 14 0 0 0 0 0 0 0 0 0 0 0 0 0 2 20 0 13 0 0 0 0 0 0 0 0 0 0 0 0 0 2 20 0 12 0 0 0 0 0 0 0 0 0 0 0 0 0 2 20 0 11 0 0 0 0 0 0 0 0 0 0 0 0 0 2 20 20 20 2 0 1 0 0 0 2 0 1 0 0 0 4 2 20 0 19 1 0 0 0 0 0 1 0 0 0 0 0 4 2 20 0 18 0 0 0 0 0 0 0 0 0 0 0 0 4 2 20 0 17 0 0 0 0 0 0 0 0 0 0 0 0 4 2 20 0 16 0 0 0 0 0 0 0 0 0 0 0 0 4 2 20 0 15 0 0 0 0 0 0 0 0 0 0 0 0 0 2 20 0 14 0 0 0 0 0 0 0 0 0 0 0 0 0 2 20 0 13 0 0 0 0 0 0 0 0 0 0 0 0 0 2 20 0 12 0 0 0 0 0 0 0 0 0 0 0 0 0 2 20 20 20 2 0 1 0 0 0 2 0 1 0 0 0 4 4 30 0 19 1 0 0 0 0 0 1 0 0 0 0 0 4 2 20 0 18 0 0 0 0 0 0 0 0 0 0 0 0 4 2 20 0 17 0 0 0 0 0 0 0 0 0 0 0 0 4 2 20 0 16 0 0 0 0 0 0 0 0 0 0 0 0 4 2 20 0 15 0 0 0 0 0 0 0 0 0 0 0 0 0 2 20 0 14 0 0 0 0 0 0 0 0 0 0 0 0 0 2 20 0 13 0 0 0 0 0 0 0 0 0 0 0 0 0 2 20 0 12 0 0 0 0 0 0 0 0 0 0 0 0 0 2 20 20 20 2 0 1 0 0 0 2 0 1 0 0 0 4 4 30 0 19 1 0 0 0 0 0 1 0 0 0 0 0 4 2 30 0 18 0 0 0 0 0 0 0 0 0 0 0 0 4 2 20 0 17 0 0 0 0 0 0 0 0 0 0 0 0 4 2 20 0 16 0 0 0 0 0 0 0 0 0 0 0 0 4 2 20 0 15 0 0 0 0 0 0 0 0 0 0 0 0 0 2 20 0 14 0 0 0 0 0 0 0 0 0 0 0 0 0 2 20 0 13 0 0 0 0 0 0 0 0 0 0 0 0 0 2 20 20 20 2 0 1 0 0 0 2 0 1 0 0 0 4 4 30 0 19 1 0 0 0 0 0 1 0 0 0 0 0 4 4 30 0 18 0 0 0 0 0 0 0 0 0 0 0 0 4 2 30 0 17 0 0 0 0 0 0 0 0 0 0 0 0 4 2 20 0 16 0 0 0 0 0 0 0 0 0 0 0 0 4 2 20 0 15 0 0 0 0 0 0 0 0 0 0 0 0 0 2 20 0 14 0 0 0 0 0 0 0 0 0 0 0 0 0 2 20 0 13 0 0 0 0 0 0 0 0 0 0 0 0 0 2 20 20 20 2 0 1 0 0 0 2 0 1 0 0 0 4 4 30 0 19 1 0 0 0 0 0 1 0 0 0 0 0 4 4 30 0 18 0 0 0 0 0 0 0 0 0 0 0 0 4 2 30 0 17 0 0 0 0 0 0 0 0 0 0 0 0 4 2 30 0 16 0 0 0 0 0 0 0 0 0 0 0 0 4 2 20 0 15 0 0 0 0 0 0 0 0 0 0 0 0 0 2 20 0 14 0 0 0 0 0 0 0 0 0 0 0 0 0 2 20 20 20 3 0 1 0 0 0 2 0 1 0 0 0 4 4 30 0 19 2 0 0 0 0 0 1 0 0 0 0 0 4 4 30 0 18 1 0 0 0 0 0 0 0 0 0 0 0 4 4 30 0 17 0 0 0 0 0 0 0 0 0 0 0 0 4 2 30 0 16 0 0 0 0 0 0 0 0 0 0 0 0 4 2 30 0 15 0 0 0 0 0 0 0 0 0 0 0 0 0 2 20 0 14 0 0 0 0 0 0 0 0 0 0 0 0 0 2 20 20 20 3 0 1 0 0 0 2 0 1 0 0 0 4 4 30 0 19 2 0 0 0 0 0 1 0 0 0 0 0 4 4 30 0 18 1 0 0 0 0 0 0 0 0 0 0 0 4 4 30 0 17 0 0 0 0 0 0 0 0 0 0 0 0 4 2 30 0 16 0 0 0 0 0 0 0 0 0 0 0 0 4 2 30 0 15 0 0 0 0 0 0 0 0 0 0 0 0 0 2 30 20 20 4 0 1 0 0 0 2 0 1 0 0 0 4 4 30 0 19 3 0 0 0 0 0 1 0 0 0 0 0 4 4 30 0 18 2 0 0 0 0 0 0 0 0 0 0 0 4 4 30 0 17 1 0 0 0 0 0 0 0 0 0 0 0 4 4 30 0 16 0 0 0 0 0 0 0 0 0 0 0 0 4 2 30 0 15 0 0 0 0 0 0 0 0 0 0 0 0 0 2 30 20 20 4 1 1 0 0 0 2 0 1 0 0 0 4 4 40 0 19 3 0 0 0 0 0 1 0 0 0 0 0 4 4 30 0 18 2 0 0 0 0 0 0 0 0 0 0 0 4 4 30 0 17 1 0 0 0 0 0 0 0 0 0 0 0 4 4 30 0 16 0 0 0 0 0 0 0 0 0 0 0 0 4 2 30 20 20 6 1 1 0 1 0 2 0 1 0 0 0 4 4 40 0 19 5 0 0 0 0 0 1 0 0 0 0 0 4 4 40 0 18 4 0 0 0 0 0 0 0 0 0 0 0 4 4 40 0 17 3 0 0 0 0 0 0 0 0 0 0 0 4 4 30 0 16 2 0 0 0 0 0 0 0 0 0 0 0 4 4 30 20 20 9 2 1 0 1 0 2 0 1 0 0 0 4 4 40 0 19 8 1 0 0 0 0 1 0 0 0 0 0 4 4 40 0 18 7 0 0 0 0 0 0 0 0 0 0 0 4 4 40 0 17 6 0 0 0 0 0 0 0 0 0 0 0 4 4 40 20 20 13 5 2 0 1 0 2 0 1 0 0 0 8 6 40 0 19 12 4 1 0 0 0 1 0 0 0 0 0 4 4 40 0 18 11 3 0 0 0 0 0 0 0 0 0 0 4 4 40 0 17 10 2 0 0 0 0 0 0 0 0 0 0 4 4 40 20 20 13 5 2 0 1 0 2 0 1 0 0 0 8 6 50 0 19 12 4 1 0 0 0 1 0 0 0 0 0 4 6 50 0 18 11 3 0 0 0 0 0 0 0 0 0 0 4 4 40 20 20 15 6 2 0 1 0 2 0 1 0 0 0 8 6 50 0 19 14 5 1 0 0 0 1 0 0 0 0 0 8 6 50 0 18 13 4 0 0 0 0 0 0 0 0 0 0 4 6 50 20 20 15 6 3 0 1 0 2 0 1 0 0 0 8 6 60 0 19 14 5 2 0 0 0 1 0 0 0 0 0 8 6 50 20 20 17 10 5 1 1 0 3 0 1 0 0 0 8 8 60 0 19 16 9 4 0 0 0 2 0 0 0 0 0 8 8 60 20 20 17 10 8 2 1 0 3 0 1 0 0 0 12 8 70 20 19 20 20 20 20 2 0 4 0 1 0 0 0 12 10 80 20 20 19 19 19 19 2 0 4 1 1 0 0 0 16 12 80 20 19 18 18 18 18 3 0 6 1 1 0 1 0 16 12 90 20 20 20 20 20 20 4 1 8 2 1 0 1 0 20 14 100 20 19 19 19 19 19 8 2 12 4 2 0 1 0 20 16 110 20 20 18 18 18 18 20 20 20 20 2 0 1 0 20 16 110 20 19 20 20 20 20 19 19 19 19 2 0 1 0 20 18 120 20 20 19 19 19 19 18 18 18 18 2 0 1 0 20 18 130 20 19 18 18 18 18 20 20 20 20 3 0 1 0 20 20 140 20 20 20 20 20 20 19 19 19 19 3 0 1 0 20 20 140 20 19 19 19 19 19 18 18 18 18 4 0 1 0 20 20 150 20 20 18 18 18 18 20 20 20 20 4 1 1 0 20 20 160 20 19 20 20 20 20 19 19 19 19 6 1 1 0 20 20 160 20 20 19 19 19 19 18 18 18 18 8 2 1 0 20 20 170 20 19 18 18 18 18 20 20 20 20 12 4 2 0 20 20 180 20 20 20 20 20 20 19 19 19 19 20 20 2 0 20 20 180 20 19 19 19 19 19 18 18 18 18 19 19 2 0 20 20 190 20 20 18 18 18 18 20 20 20 20 18 18 2 0 20 20 190 20 19 20 20 20 20 19 19 19 19 20 20 3 0 20 20 200 20 20 19 19 19 19 18 18 18 18 19 19 3 0 20 20 200 20 19 18 18 18 18 20 20 20 20 18 18 4 0 20 20 200 20 20 20 20 20 20 19 19 19 19 20 20 4 1 20 20 200 20 19 19 19 19 19 18 18 18 18 19 19 6 1 20 20 200 20 20 18 18 18 18 20 20 20 20 18 18 8 2 20 20 200 20 19 20 20 20 20 19 19 19 19 20 20 12 4 20 20 200 20 20 19 19 19 19 18 18 18 18 19 19 20 20 20 20 200 20 19 18 18 18 18 20 20 20 20 18 18 19 19 20 20 200 0 18 17 17 17 17 19 19 19 19 17 17 18 18 16 18 190 0 17 16 16 16 16 18 18 18 18 16 16 17 17 12 16 180 0 16 15 15 15 15 17 17 17 17 15 15 16 16 8 14 170 0 15 14 14 14 14 16 16 16 16 14 14 15 15 4 12 160 0 14 13 13 13 13 15 15 15 15 13 13 14 14 0 10 150 0 13 12 12 12 12 14 14 14 14 12 12 13 13 0 8 140 0 12 11 11 11 11 13 13 13 13 11 11 12 12 0 6 130 0 11 10 10 10 10 12 12 12 12 10 10 11 11 0 4 120 0 10 9 9 9 9 11 11 11 11 9 9 10 10 0 2 110 0 9 8 8 8 8 10 10 10 10 8 8 9 9 0 0 100 0 8 7 7 7 7 9 9 9 9 7 7 8 8 0 0 90 0 7 6 6 6 6 8 8 8 8 6 6 7 7 0 0 80 0 6 5 5 5 5 7 7 7 7 5 5 6 6 0 0 70 0 5 4 4 4 4 6 6 6 6 4 4 5 5 0 0 60 0 4 3 3 3 3 5 5 5 5 3 3 4 4 0 0 50 0 3 2 2 2 2 4 4 4 4 2 2 3 3 0 0 40 2 1 1 1 1 3 3 3 3 1 1 2 2 0 0 30 1 0 0 0 0 2 2 2 2 0 0 1 1 0 0 20 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 3.6.: Models of different energy level filters.

Ragnar Stuhaug NTNU Trondheim

50 3. Implementation

changed once a decision has been made on what method to use, to limit the memory
usage and program size.

3.8.7. Active channel ranking
In addition to the quality estimation of the unused channels the nodes need to keep track
of all the active channels at any given point. Both to prevent the AP from swapping to
an occupied channel, and in order to accommodate the custom CSMA/CA algorithm
described in section 3.7.8. When reporting to the AP all active channels will simply
be encoded with the "CH_USED" status, regardless of their quality and signal strength.
Internally however the node will store the signal strength of the channels and rank them
accordingly.

The node implements a channel information structure containing a large amount of
information. The full structure can be seen in code 3.22, note that a large part of this
information is redundant or meant for debugging and statistical purposes and can thus
be removed once the protocol behaves as intended. The upper variables are the ones
concerning the active channels and are the fields that are actively in use by the protocol
during normal operation, in addition to the "ed" field that indicate the energy level of
the channel in question. The flags and the different fields are explained in table 3.3.

In addition to the channel statistics structure the node has a separate array with the
indexes of the currently best channels. This array indicates the channel that currently has
the strongest signal in cell one, the second best in cell two and the third best in cell 3. An
index indicates what position in the array that is currently being evaluated and ensures
that each call to NCM_setNextTransmitChannel(uint8_tmsgLength) returns a
new channel until all the enlisted are evaluated. The details of how this incorporates
with the CSMA/CA algorithm is described in section 3.7.7.

NTNU Trondheim Ragnar Stuhaug

3.8. Channel management 51

Code 3.21: ED registration and filtering [ASRadioNode/node_channel_management.c].
99 inline void NCM_clearChannelUpdate(uint8_t ed){

100 uint16_t tmpEd;
101 if(Channels[BeaconChannel].active){
102 if(Channels[BeaconChannel].timer >= ACTIVE_TIMEOUT){
103 Channels[BeaconChannel].active = 0;
104 Channels[BeaconChannel].ed = 0;
105 ActiveChannels--;
106 }else{
107 Channels[BeaconChannel].unstable = 1;
108 CM_ChSet(BeaconChannel, CH_OK);
109 }
110 }else{
111 tmpEd = (ed << 8);
112 if(Ch_Mgmt_Mode == 0){ //Default envelope tracking
113 if(tmpEd > Channels[BeaconChannel].ed)
114 Channels[BeaconChannel].ed = tmpEd;
115
116 }else if(Ch_Mgmt_Mode == 1){ //Envelope filtering
117 if(tmpEd > Channels[BeaconChannel].ed)
118 Channels[BeaconChannel].edFactor -= EdFacDec;
119 if(Channels[BeaconChannel].edFactor > 200)
120 Channels[BeaconChannel].edFactor = 1;
121 tmpEd = (tmpEd / (Channels[BeaconChannel].edFactor + EdFacAdj)) * (EdFacAdj + 1);
122
123 if(tmpEd > Channels[BeaconChannel].ed)
124 Channels[BeaconChannel].ed = ((uint16_t)ed << 8);
125
126 }else if(Ch_Mgmt_Mode == 2){ //Average values
127 Channels[BeaconChannel].avgEdSum -=
128 Channels[BeaconChannel].avgEd[Channels[BeaconChannel].avgPointer];
129 Channels[BeaconChannel].avgEd[Channels[BeaconChannel].avgPointer] = ed;
130 Channels[BeaconChannel].avgEdSum += ed;
131 Channels[BeaconChannel].avgPointer =
132 (Channels[BeaconChannel].avgPointer+1) % AvgNumber;
133 tmpEd = ((Channels[BeaconChannel].avgEdSum << 4) / AvgNumber) << 4;
134
135 Channels[BeaconChannel].ed = tmpEd;
136 }
137 if(Channels[BeaconChannel].ed > (HIGH_LIMIT << 8))
138 CM_ChSet(BeaconChannel, CH_BAD);
139 else if(Channels[BeaconChannel].ed > (MEDIUM_LIMIT << 8))
140 CM_ChSet(BeaconChannel, CH_OK);
141 else
142 CM_ChSet(BeaconChannel, CH_GOOD);
143 }
144 }

Ragnar Stuhaug NTNU Trondheim

52 3. Implementation

Code 3.22: Channel information type [ASRadioNode/node_channel_management.h].
15 //------ Channel data ---
16 typedef struct __CH_STATS_EXTENDED{
17 unsigned int active : 1;
18 unsigned int unstable : 1;
19 unsigned int inBestList : 1;
20 unsigned int netID : 4;
21 unsigned int : 1;
22 uint8_t timer;
23 //--- CH ranking, configurable ----
24 uint16_t ed; //ED mode 0
25 uint8_t edFactor; //ED mode 1
26 uint8_t avgEd[ED_AVG_PERIOD]; //ED mode 2
27 uint16_t avgEdSum;
28 uint8_t avgPointer;
29 //--- Statistical data ----
30 uint8_t DataPointer;
31 uint8_t sent[DATA_GATHERING_PERIOD];
32 uint8_t ackMiss[DATA_GATHERING_PERIOD];
33 uint8_t csmaMiss[DATA_GATHERING_PERIOD];
34 uint8_t crcFailure[DATA_GATHERING_PERIOD];
35 uint8_t bcnMiss[DATA_GATHERING_PERIOD];
36 }__CH_STATS_EXTENDED_t;

Field Data Use
active Bit Indicates that beacons have been received on the channel

during the last X periods.
unstable Bit Set once an expected beacon does not appear or if a beacon

shows up unexpected. Excludes the channel from transmis-
sion while still keeping it in active status. This status is
cleared once two concecutive beacons has been received on
the channel.

inBestList Bit Set if the channel is one of the channels currently included
in the transmission procedure. The maximum number of
channels to include can be configured through defines with
the default value being three.

netID 4 bits The netID of an active channel. Used to distinguish between
active channels that might be included in the transmission
procedure, and channels that are occupied by other separate
networks.

timer Byte Incremented each period, set to zero once a beacon is re-
ceived. Used to determine if a channel should be considered
to have gone inactive after a configurable amount of periods
without beacons.

ed 2 bytes The energy level of the channel, reflects the signal strength
of the beacon on active channels, and the estimated quality
of an idle channel. Scaled up to two bytes to allow better
resolution for the idle channel quality estimations.

Table 3.3.: The actively used fields of the channel statistics structure.

NTNU Trondheim Ragnar Stuhaug

3.8. Channel management 53

3.8.8. Channel info decoding
In order to optimize the transmission of channel information between the nodes and the
AP’s the information should be as compact as possible. Initially we must have at least
three levels, indicating if a channel is in use as an AutoStore channel, if the channel
is seen to be completely clear and lastly if the channel appears noisy. Any more states
would slide in between idle and noisy to allow the AP to rank the channels better if no
truly idle channels are available. Given these requirements the preferred choice is to
use two bits per channel, this allows for the complete collection of channel info for 16
channels to fit in four bytes. This also gives one extra state that can indicate medium
noise.

Based on the experienced noise levels of 5-20 as stated in section 3.8.6 the limits for
channel classification are initially set to an energy level of 3 for medium classification,
and 10 for high. In figure 3.7 the modeling done in section 3.8.6 is repeated, but with
the resulting values filtered into these three categories, Low noise, medium noise, and
high noise.

Ragnar Stuhaug NTNU Trondheim

54 3. Implementation

D
ata

En
velo

p
e

(1
0
,5
,5
0
)

(1
0
,0
,5
0
)

(1
0
,5
,1
0
0
)

(1
0
,0
,1
0
0
)

(1
0
,5
,1
5
0
)

(1
0
,0
,1
5
0
)

(5
,5
,5
0
)

(5
,0
,5
0
)

(5
,5
,1
0
0
)

(5
,0
,1
0
0
)

(5
,5
,1
5
0
)

(5
,0
,1
5
0
)

A
vg5

A
vg1

0

A
vg2

0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 20 20 2 0 1 0 0 0 2 0 1 0 0 0 4 2 10 0 19 1 0 0 0 0 0 1 0 0 0 0 0 4 2 10 0 18 0 0 0 0 0 0 0 0 0 0 0 0 4 2 10 0 17 0 0 0 0 0 0 0 0 0 0 0 0 4 2 10 0 16 0 0 0 0 0 0 0 0 0 0 0 0 4 2 10 0 15 0 0 0 0 0 0 0 0 0 0 0 0 0 2 10 0 14 0 0 0 0 0 0 0 0 0 0 0 0 0 2 10 0 13 0 0 0 0 0 0 0 0 0 0 0 0 0 2 10 0 12 0 0 0 0 0 0 0 0 0 0 0 0 0 2 10 0 11 0 0 0 0 0 0 0 0 0 0 0 0 0 2 10 0 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10 0 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10 0 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10 0 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10 0 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 01 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 20 20 2 0 1 0 0 0 2 0 1 0 0 0 4 2 10 20 19 2 0 1 0 0 0 2 0 1 0 0 0 8 4 20 20 20 3 0 1 0 0 0 2 0 1 0 0 0 12 6 30 20 19 4 1 1 0 0 0 3 0 1 0 0 0 16 8 40 20 20 8 2 1 0 1 0 3 0 1 0 0 0 20 10 50 20 19 20 20 2 0 1 0 4 0 1 0 0 0 20 12 60 20 20 19 19 2 0 1 0 4 1 1 0 0 0 20 14 70 20 19 18 18 3 0 1 0 6 1 1 0 1 0 20 16 80 20 20 20 20 4 1 1 0 8 2 1 0 1 0 20 18 90 20 19 19 19 8 2 1 0 12 4 2 0 1 0 20 20 100 20 20 18 18 20 20 2 0 20 20 2 0 1 0 20 20 110 20 19 20 20 19 19 2 0 19 19 2 0 1 0 20 20 120 20 20 19 19 18 18 3 0 18 18 2 0 1 0 20 20 130 20 19 18 18 20 20 4 1 20 20 3 0 1 0 20 20 140 20 20 20 20 19 19 8 2 19 19 3 0 1 0 20 20 150 20 19 19 19 18 18 20 20 18 18 4 0 1 0 20 20 160 0 18 18 18 17 17 19 19 17 17 3 0 0 0 16 18 160 0 17 17 17 16 16 18 18 16 16 2 0 0 0 12 16 160 0 16 16 16 15 15 17 17 15 15 1 0 0 0 8 14 160 0 15 15 15 14 14 16 16 14 14 0 0 0 0 4 12 160 0 14 14 14 13 13 15 15 13 13 0 0 0 0 0 10 150 0 13 13 13 12 12 14 14 12 12 0 0 0 0 0 8 140 0 12 12 12 11 11 13 13 11 11 0 0 0 0 0 6 130 0 11 11 11 10 10 12 12 10 10 0 0 0 0 0 4 120 0 10 10 10 9 9 11 11 9 9 0 0 0 0 0 2 110 0 9 9 9 8 8 10 10 8 8 0 0 0 0 0 0 100 0 8 8 8 7 7 9 9 7 7 0 0 0 0 0 0 90 0 7 7 7 6 6 8 8 6 6 0 0 0 0 0 0 80 0 6 6 6 5 5 7 7 5 5 0 0 0 0 0 0 70 0 5 5 5 4 4 6 6 4 4 0 0 0 0 0 0 60 0 4 4 4 3 3 5 5 3 3 0 0 0 0 0 0 50 0 3 3 3 2 2 4 4 2 2 0 0 0 0 0 0 40 0 2 2 2 1 1 3 3 1 1 0 0 0 0 0 0 30 0 1 1 1 0 0 2 2 0 0 0 0 0 0 0 0 21 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 4 4 0 0 0 0 0 0 0 0 0 0 0 0 1 1 00 6 6 1 0 0 0 0 0 0 0 0 0 0 0 2 1 10 8 8 1 0 0 0 0 0 1 0 0 0 0 0 4 2 10 10 10 4 1 0 0 0 0 1 0 0 0 0 0 6 3 20 12 12 12 12 1 0 0 0 2 0 0 0 0 0 8 4 20 14 14 14 14 1 0 0 0 3 0 1 0 0 0 10 6 30 16 16 16 16 2 0 1 0 4 1 1 0 0 0 12 7 40 18 18 18 18 4 0 1 0 7 1 1 0 0 0 14 9 50 20 20 20 20 8 2 1 0 12 4 2 0 1 0 16 11 60 20 19 19 19 20 20 2 0 20 20 2 0 1 0 18 13 70 20 20 18 18 19 19 2 0 19 19 2 0 1 0 19 14 80 20 19 20 20 18 18 3 0 18 18 2 0 1 0 20 16 90 20 20 19 19 20 20 4 1 20 20 3 0 1 0 20 17 100 20 19 18 18 19 19 8 2 19 19 3 0 1 0 20 18 110 20 20 20 20 18 18 20 20 18 18 4 0 1 0 20 19 120 20 19 19 19 20 20 19 19 20 20 4 1 1 0 20 19 130 20 20 18 18 19 19 18 18 19 19 6 1 1 0 20 20 140 20 19 20 20 18 18 20 20 18 18 8 2 1 0 20 20 150 0 18 19 19 17 17 19 19 17 17 7 1 0 0 16 18 150 0 17 18 18 16 16 18 18 16 16 6 0 0 0 12 16 140 0 16 17 17 15 15 17 17 15 15 5 0 0 0 8 14 140 0 15 16 16 14 14 16 16 14 14 4 0 0 0 4 12 140 0 14 15 15 13 13 15 15 13 13 3 0 0 0 0 10 140 0 13 14 14 12 12 14 14 12 12 2 0 0 0 0 8 130 0 12 13 13 11 11 13 13 11 11 1 0 0 0 0 6 120 0 11 12 12 10 10 12 12 10 10 0 0 0 0 0 4 120 0 10 11 11 9 9 11 11 9 9 0 0 0 0 0 2 110 0 9 10 10 8 8 10 10 8 8 0 0 0 0 0 0 100 0 8 9 9 7 7 9 9 7 7 0 0 0 0 0 0 90 0 7 8 8 6 6 8 8 6 6 0 0 0 0 0 0 80 0 6 7 7 5 5 7 7 5 5 0 0 0 0 0 0 70 0 5 6 6 4 4 6 6 4 4 0 0 0 0 0 0 60 0 4 5 5 3 3 5 5 3 3 0 0 0 0 0 0 50 0 3 4 4 2 2 4 4 2 2 0 0 0 0 0 0 40 0 2 3 3 1 1 3 3 1 1 0 0 0 0 0 0 30 0 1 2 2 0 0 2 2 0 0 0 0 0 0 0 0 21 0 0 1 1 0 0 1 1 0 0 0 0 0 0 0 0 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 20 20 2 0 1 0 0 0 2 0 1 0 0 0 4 2 10 20 19 2 0 1 0 0 0 2 0 1 0 0 0 8 4 20 20 20 3 0 1 0 0 0 2 0 1 0 0 0 12 6 30 20 19 4 1 1 0 0 0 3 0 1 0 0 0 16 8 40 20 20 8 2 1 0 1 0 3 0 1 0 0 0 20 10 50 18 19 18 18 1 0 1 0 3 0 1 0 0 0 20 12 60 16 18 17 17 2 0 1 0 3 0 1 0 0 0 19 13 70 14 17 16 16 2 0 0 0 4 0 1 0 0 0 18 15 70 12 16 15 15 2 0 0 0 4 1 1 0 0 0 16 16 80 10 15 14 14 4 1 0 0 6 2 0 0 0 0 14 17 90 8 14 13 13 8 8 0 0 8 8 0 0 0 0 12 16 90 6 13 12 12 7 7 0 0 7 7 0 0 0 0 10 14 90 4 12 11 11 6 6 0 0 6 6 0 0 0 0 8 13 90 2 11 10 10 5 5 0 0 5 5 0 0 0 0 6 11 100 0 10 9 9 4 4 0 0 4 4 0 0 0 0 4 9 100 0 9 8 8 3 3 0 0 3 3 0 0 0 0 2 7 100 0 8 7 7 2 2 0 0 2 2 0 0 0 0 1 6 100 0 7 6 6 1 1 0 0 1 1 0 0 0 0 0 4 100 0 6 5 5 0 0 0 0 0 0 0 0 0 0 0 3 100 0 5 4 4 0 0 0 0 0 0 0 0 0 0 0 2 100 0 4 3 3 0 0 0 0 0 0 0 0 0 0 0 1 90 0 3 2 2 0 0 0 0 0 0 0 0 0 0 0 1 80 0 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 71 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 60 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 50 20 20 2 0 1 0 0 0 2 0 1 0 0 0 4 2 50 0 19 1 0 0 0 0 0 1 0 0 0 0 0 4 2 40 0 18 0 0 0 0 0 0 0 0 0 0 0 0 4 2 30 0 17 0 0 0 0 0 0 0 0 0 0 0 0 4 2 30 0 16 0 0 0 0 0 0 0 0 0 0 0 0 4 2 20 0 15 0 0 0 0 0 0 0 0 0 0 0 0 0 2 20 0 14 0 0 0 0 0 0 0 0 0 0 0 0 0 2 10 0 13 0 0 0 0 0 0 0 0 0 0 0 0 0 2 10 0 12 0 0 0 0 0 0 0 0 0 0 0 0 0 2 10 0 11 0 0 0 0 0 0 0 0 0 0 0 0 0 2 10 20 20 2 0 1 0 0 0 2 0 1 0 0 0 4 2 20 0 19 1 0 0 0 0 0 1 0 0 0 0 0 4 2 20 0 18 0 0 0 0 0 0 0 0 0 0 0 0 4 2 20 0 17 0 0 0 0 0 0 0 0 0 0 0 0 4 2 20 0 16 0 0 0 0 0 0 0 0 0 0 0 0 4 2 20 0 15 0 0 0 0 0 0 0 0 0 0 0 0 0 2 20 0 14 0 0 0 0 0 0 0 0 0 0 0 0 0 2 20 0 13 0 0 0 0 0 0 0 0 0 0 0 0 0 2 20 0 12 0 0 0 0 0 0 0 0 0 0 0 0 0 2 20 0 11 0 0 0 0 0 0 0 0 0 0 0 0 0 2 20 20 20 2 0 1 0 0 0 2 0 1 0 0 0 4 2 20 0 19 1 0 0 0 0 0 1 0 0 0 0 0 4 2 20 0 18 0 0 0 0 0 0 0 0 0 0 0 0 4 2 20 0 17 0 0 0 0 0 0 0 0 0 0 0 0 4 2 20 0 16 0 0 0 0 0 0 0 0 0 0 0 0 4 2 20 0 15 0 0 0 0 0 0 0 0 0 0 0 0 0 2 20 0 14 0 0 0 0 0 0 0 0 0 0 0 0 0 2 20 0 13 0 0 0 0 0 0 0 0 0 0 0 0 0 2 20 0 12 0 0 0 0 0 0 0 0 0 0 0 0 0 2 20 20 20 2 0 1 0 0 0 2 0 1 0 0 0 4 4 30 0 19 1 0 0 0 0 0 1 0 0 0 0 0 4 2 20 0 18 0 0 0 0 0 0 0 0 0 0 0 0 4 2 20 0 17 0 0 0 0 0 0 0 0 0 0 0 0 4 2 20 0 16 0 0 0 0 0 0 0 0 0 0 0 0 4 2 20 0 15 0 0 0 0 0 0 0 0 0 0 0 0 0 2 20 0 14 0 0 0 0 0 0 0 0 0 0 0 0 0 2 20 0 13 0 0 0 0 0 0 0 0 0 0 0 0 0 2 20 0 12 0 0 0 0 0 0 0 0 0 0 0 0 0 2 20 20 20 2 0 1 0 0 0 2 0 1 0 0 0 4 4 30 0 19 1 0 0 0 0 0 1 0 0 0 0 0 4 2 30 0 18 0 0 0 0 0 0 0 0 0 0 0 0 4 2 20 0 17 0 0 0 0 0 0 0 0 0 0 0 0 4 2 20 0 16 0 0 0 0 0 0 0 0 0 0 0 0 4 2 20 0 15 0 0 0 0 0 0 0 0 0 0 0 0 0 2 20 0 14 0 0 0 0 0 0 0 0 0 0 0 0 0 2 20 0 13 0 0 0 0 0 0 0 0 0 0 0 0 0 2 20 20 20 2 0 1 0 0 0 2 0 1 0 0 0 4 4 30 0 19 1 0 0 0 0 0 1 0 0 0 0 0 4 4 30 0 18 0 0 0 0 0 0 0 0 0 0 0 0 4 2 30 0 17 0 0 0 0 0 0 0 0 0 0 0 0 4 2 20 0 16 0 0 0 0 0 0 0 0 0 0 0 0 4 2 20 0 15 0 0 0 0 0 0 0 0 0 0 0 0 0 2 20 0 14 0 0 0 0 0 0 0 0 0 0 0 0 0 2 20 0 13 0 0 0 0 0 0 0 0 0 0 0 0 0 2 20 20 20 2 0 1 0 0 0 2 0 1 0 0 0 4 4 30 0 19 1 0 0 0 0 0 1 0 0 0 0 0 4 4 30 0 18 0 0 0 0 0 0 0 0 0 0 0 0 4 2 30 0 17 0 0 0 0 0 0 0 0 0 0 0 0 4 2 30 0 16 0 0 0 0 0 0 0 0 0 0 0 0 4 2 20 0 15 0 0 0 0 0 0 0 0 0 0 0 0 0 2 20 0 14 0 0 0 0 0 0 0 0 0 0 0 0 0 2 20 20 20 3 0 1 0 0 0 2 0 1 0 0 0 4 4 30 0 19 2 0 0 0 0 0 1 0 0 0 0 0 4 4 30 0 18 1 0 0 0 0 0 0 0 0 0 0 0 4 4 30 0 17 0 0 0 0 0 0 0 0 0 0 0 0 4 2 30 0 16 0 0 0 0 0 0 0 0 0 0 0 0 4 2 30 0 15 0 0 0 0 0 0 0 0 0 0 0 0 0 2 20 0 14 0 0 0 0 0 0 0 0 0 0 0 0 0 2 20 20 20 3 0 1 0 0 0 2 0 1 0 0 0 4 4 30 0 19 2 0 0 0 0 0 1 0 0 0 0 0 4 4 30 0 18 1 0 0 0 0 0 0 0 0 0 0 0 4 4 30 0 17 0 0 0 0 0 0 0 0 0 0 0 0 4 2 30 0 16 0 0 0 0 0 0 0 0 0 0 0 0 4 2 30 0 15 0 0 0 0 0 0 0 0 0 0 0 0 0 2 30 20 20 4 0 1 0 0 0 2 0 1 0 0 0 4 4 30 0 19 3 0 0 0 0 0 1 0 0 0 0 0 4 4 30 0 18 2 0 0 0 0 0 0 0 0 0 0 0 4 4 30 0 17 1 0 0 0 0 0 0 0 0 0 0 0 4 4 30 0 16 0 0 0 0 0 0 0 0 0 0 0 0 4 2 30 0 15 0 0 0 0 0 0 0 0 0 0 0 0 0 2 30 20 20 4 1 1 0 0 0 2 0 1 0 0 0 4 4 40 0 19 3 0 0 0 0 0 1 0 0 0 0 0 4 4 30 0 18 2 0 0 0 0 0 0 0 0 0 0 0 4 4 30 0 17 1 0 0 0 0 0 0 0 0 0 0 0 4 4 30 0 16 0 0 0 0 0 0 0 0 0 0 0 0 4 2 30 20 20 6 1 1 0 1 0 2 0 1 0 0 0 4 4 40 0 19 5 0 0 0 0 0 1 0 0 0 0 0 4 4 40 0 18 4 0 0 0 0 0 0 0 0 0 0 0 4 4 40 0 17 3 0 0 0 0 0 0 0 0 0 0 0 4 4 30 0 16 2 0 0 0 0 0 0 0 0 0 0 0 4 4 30 20 20 9 2 1 0 1 0 2 0 1 0 0 0 4 4 40 0 19 8 1 0 0 0 0 1 0 0 0 0 0 4 4 40 0 18 7 0 0 0 0 0 0 0 0 0 0 0 4 4 40 0 17 6 0 0 0 0 0 0 0 0 0 0 0 4 4 40 20 20 13 5 2 0 1 0 2 0 1 0 0 0 8 6 40 0 19 12 4 1 0 0 0 1 0 0 0 0 0 4 4 40 0 18 11 3 0 0 0 0 0 0 0 0 0 0 4 4 40 0 17 10 2 0 0 0 0 0 0 0 0 0 0 4 4 40 20 20 13 5 2 0 1 0 2 0 1 0 0 0 8 6 50 0 19 12 4 1 0 0 0 1 0 0 0 0 0 4 6 50 0 18 11 3 0 0 0 0 0 0 0 0 0 0 4 4 40 20 20 15 6 2 0 1 0 2 0 1 0 0 0 8 6 50 0 19 14 5 1 0 0 0 1 0 0 0 0 0 8 6 50 0 18 13 4 0 0 0 0 0 0 0 0 0 0 4 6 50 20 20 15 6 3 0 1 0 2 0 1 0 0 0 8 6 60 0 19 14 5 2 0 0 0 1 0 0 0 0 0 8 6 50 20 20 17 10 5 1 1 0 3 0 1 0 0 0 8 8 60 0 19 16 9 4 0 0 0 2 0 0 0 0 0 8 8 60 20 20 17 10 8 2 1 0 3 0 1 0 0 0 12 8 70 20 19 20 20 20 20 2 0 4 0 1 0 0 0 12 10 80 20 20 19 19 19 19 2 0 4 1 1 0 0 0 16 12 80 20 19 18 18 18 18 3 0 6 1 1 0 1 0 16 12 90 20 20 20 20 20 20 4 1 8 2 1 0 1 0 20 14 100 20 19 19 19 19 19 8 2 12 4 2 0 1 0 20 16 110 20 20 18 18 18 18 20 20 20 20 2 0 1 0 20 16 110 20 19 20 20 20 20 19 19 19 19 2 0 1 0 20 18 120 20 20 19 19 19 19 18 18 18 18 2 0 1 0 20 18 130 20 19 18 18 18 18 20 20 20 20 3 0 1 0 20 20 140 20 20 20 20 20 20 19 19 19 19 3 0 1 0 20 20 140 20 19 19 19 19 19 18 18 18 18 4 0 1 0 20 20 150 20 20 18 18 18 18 20 20 20 20 4 1 1 0 20 20 160 20 19 20 20 20 20 19 19 19 19 6 1 1 0 20 20 160 20 20 19 19 19 19 18 18 18 18 8 2 1 0 20 20 170 20 19 18 18 18 18 20 20 20 20 12 4 2 0 20 20 180 20 20 20 20 20 20 19 19 19 19 20 20 2 0 20 20 180 20 19 19 19 19 19 18 18 18 18 19 19 2 0 20 20 190 20 20 18 18 18 18 20 20 20 20 18 18 2 0 20 20 190 20 19 20 20 20 20 19 19 19 19 20 20 3 0 20 20 200 20 20 19 19 19 19 18 18 18 18 19 19 3 0 20 20 200 20 19 18 18 18 18 20 20 20 20 18 18 4 0 20 20 200 20 20 20 20 20 20 19 19 19 19 20 20 4 1 20 20 200 20 19 19 19 19 19 18 18 18 18 19 19 6 1 20 20 200 20 20 18 18 18 18 20 20 20 20 18 18 8 2 20 20 200 20 19 20 20 20 20 19 19 19 19 20 20 12 4 20 20 200 20 20 19 19 19 19 18 18 18 18 19 19 20 20 20 20 200 20 19 18 18 18 18 20 20 20 20 18 18 19 19 20 20 200 0 18 17 17 17 17 19 19 19 19 17 17 18 18 16 18 190 0 17 16 16 16 16 18 18 18 18 16 16 17 17 12 16 180 0 16 15 15 15 15 17 17 17 17 15 15 16 16 8 14 170 0 15 14 14 14 14 16 16 16 16 14 14 15 15 4 12 160 0 14 13 13 13 13 15 15 15 15 13 13 14 14 0 10 150 0 13 12 12 12 12 14 14 14 14 12 12 13 13 0 8 140 0 12 11 11 11 11 13 13 13 13 11 11 12 12 0 6 130 0 11 10 10 10 10 12 12 12 12 10 10 11 11 0 4 120 0 10 9 9 9 9 11 11 11 11 9 9 10 10 0 2 110 0 9 8 8 8 8 10 10 10 10 8 8 9 9 0 0 100 0 8 7 7 7 7 9 9 9 9 7 7 8 8 0 0 90 0 7 6 6 6 6 8 8 8 8 6 6 7 7 0 0 80 0 6 5 5 5 5 7 7 7 7 5 5 6 6 0 0 70 0 5 4 4 4 4 6 6 6 6 4 4 5 5 0 0 60 0 4 3 3 3 3 5 5 5 5 3 3 4 4 0 0 50 0 3 2 2 2 2 4 4 4 4 2 2 3 3 0 0 40 2 1 1 1 1 3 3 3 3 1 1 2 2 0 0 30 1 0 0 0 0 2 2 2 2 0 0 1 1 0 0 20 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 3.7.: Models of different energy level filters. With values decoded into high, medium,
and low.

NTNU Trondheim Ragnar Stuhaug

3.9. Timing and parameter calculations 55

3.9. Timing and parameter calculations

3.9.1. Core timing
In order for the protocol to work correctly it needs a number of global configurations. At
the very core of the system is the major timing constant defining the size of the period,
the time between two beacons on a single channel. This number is equal to 62500 1

divided by the beacon frequency, and rounded down to the closest symbol. However the
resulting number also has to be divisible by 16, thus it has to be rounded down to the
closest number containing this property.

Next is the subperiod, being the window each channel has for beacon transmission
within each beacon period. This number is equal to the period divided by the number of
channels, in most parts of the world 16, with some exceptions for local regulations. In
practice the protocol will always use 16 channels as the basis for the timing calculations,
and in case there are local regulations they will be fulfilled by implementing special
blacklists of channels internally in the AP’s. Since this is not of any interest for the core
functionality however, it is not further elaborated in the work with this thesis.

Thirdly the acknowledge phase has to be split into the desired number of slots. In
section 2.5.5 the number of messages per beacon was limited to three, also it was stated
that the slots had to be a minimum of 25 symbols long. Given this the slots can attain
any value between 25 and one third of the subperiod.

The maximum beacon size must be defined to let the protocol dimension the beacons
according to the current timing. This is explained thoroughly in section 2.5.6 and in
table 2.9 different values are presented for the different timings. In order to make this
parameter easily usable for the protocol it is desired to make it comparable to the index
in the frame buffer at which data is being written. This means that the overhead portion
covering the checksums, in total four bytes, should be subtracted. In addition to this
some effort was put in to minimize the interpretation overhead of the subperiod by
having the nodes interpret the beacon as it is being received, as described in section
3.7.4. Still the functionality was not fine tuned and given that optimization can be done
at a later stage the maximum beacon size was left at a surely failsafe value.

3.9.2. Beacon frequency
In code 3.23 the major configurations are presented at 31Hz. The reason for choosing
this frequency comes from the synchronization of the AP’s. Because of the rounding
necessary when calculating the period and the subperiod, not all frequencies have their
values add up to one second. Generally it can be assumed that having the sync signal
arrive up to one half subperiod too late is acceptable, any further and the nodes risk
moving on into the next channel, with disconnects as the result. In table 3.4 the period,
subperiod and symbol offset from a full second are shown. As seen here 31 is by far the
best choice in the rage from 25-35 and have thus been chosen for the time being. By
changing the synchronization frequency these calculations can be adjusted accordingly,
but given that the synchronization is considered fully external from the protocol 1Hz is
used as the basis throughout this thesis.

1The number of symbols per second according to the 802.15.4 standard.

Ragnar Stuhaug NTNU Trondheim

56 3. Implementation

Freq Subperiod Period 1 sec offset
20 195 3120 100
21 186 2976 4
22 177 2832 196
23 169 2704 308
24 162 2592 292
25 156 2496 100
26 150 2400 100
27 144 2304 292
28 139 2224 228
29 134 2144 324
30 130 2080 100
31 126 2016 4
32 122 1952 36
33 118 1888 196
34 114 1824 484
35 111 1776 340
36 108 1728 292
37 105 1680 340
38 102 1632 484
39 100 1600 100
40 97 1552 420

Table 3.4.: Protocol parameters and synchronization offsets.

Code 3.23: Definitions at 31Hz beacon frequency [ASRadioGeneral/general_radio_config.h].
41 //----- 31 BEACONS PER SECOND -----
42 #ifdef BEACONS_PER_SEC_31
43 #define BEACON_FREQ 31
44 #define PERIOD 2016 //Number of counterticks in a full superframe
45 #define SUBPERIOD 126 //Symbolcount of beacon or ack period
46 #define ACKINTERVAL 33 //Size of individual ack window (~1/3 of SUBPERIOD - ACK_DELAY -

4) (min 22)
47 #define MAX_BEACON_SIZE 40 //Max size (exluding CRC, FCF and phy-header) max 123 or (

subperiod/2 - 12).
48 #endif

NTNU Trondheim Ragnar Stuhaug

3.9. Timing and parameter calculations 57

Code 3.24: Channel constants and evaluation limits [ASRadioGeneral/general_radio_config.h].
78 //------ General Channel Constants --
79 // Channel values
80 #define CH_FIRST 1 // MUST be > 0 (adjust CH_OFFSET to comply.)
81 #define CH_LAST 16
82 #define CH_OFFSET 10 //Added to the channelno before applying to HW
83
84 #define TIMING_ERROR_BUFFER 10 // Size of timing error buffer (1=16us)
85
86 //Channel statuses
87 #define CH_GOOD 0
88 #define CH_OK 1
89 #define CH_BAD 2
90 #define CH_USED 3
91
92 //Channel evaluation limits
93 #define HIGH_LIMIT 10
94 #define MEDIUM_LIMIT 3

3.9.3. Channel data and values

In code 3.24 the channel range is specified. When setting the channel through the AT-
mega128RFA1 registers the values from 11 to 26 has to be used, thus a constant is
specified that has to be added to the channel id when applying it in hardware. This also
simplifies the task of modifying the protocol to a different hardware at a later stage if
that should ever be of any interest.

The parameter "TIMING_ERROR_BUFFER" defines the buffer period handling in-
accuracies with the synchronization signal as described in section 2.5.6. With perfect
synchronization this value can be set to zero and the maximum beacon size can be in-
creased accordingly.

Lastly the different channel statuses reported by the nodes are specified as well as the
limits used when evaluating the channels. As stated in section 3.8.8 the channel report
is compressed to two bits per channel, giving four distinct values.

3.9.4. Node specific definitions

The parameters defined in code 3.25 are only used by the node, meaning that any change
here will have no influence on the AP so long as it does not cause the node to become
unstable. The sync buffer is the offset between the beacon timestamp and the node’s
beacon timer trigger. This offset is illustrated in figure 2.3 and the value is subtracted
from the subperiod, together with the sync error buffer, before the timer is initiated with
the resulting value. The value of the offset is the sum of the time needed by the node to
swap channels, the reception of the physical header, the header information needed to
determine if the frame is indeed a beacon, and triggering the beacon timestamp. In total
this equates to a minimum of 3 + 15 symbols with the current implementation.

The acknowledge delay is added to the acknowledgement period to move the first
period slightly away from the subperiod trigger. This is to allow the node to complete the
full interrupt routine triggered by the subperiod trigger before the acknowledge trigger
hits.

The remaining configurations have to do with the channel management. The most

Ragnar Stuhaug NTNU Trondheim

58 3. Implementation

Code 3.25: Node specific definitions [ASRadioGeneral/general_radio_config.h].
97 //--
98 // Node constants, any change needs recompilation of Nodes only
99 //--

100 #define SYNC_BUFFER 20 //Overhead buffer (min 15+3us = >18)
101 #define ACK_DELAY 7 //Offset on ack timer relative period trigger
102 #define TRANSMIT_COUNTER_BUFFER 5 //CCA free buffer at each end of subperiod.
103 #define IDLE_CHANNEL_CHECK 40 //Offset from ED to period trigger (min 8+processing)
104 #define TRANSMIT_BACKOFF_FACTOR 8 //backoff = random()%factor - max 16
105
106 //---- Node Channel management ----
107 #define MAX_BEST 3 //Maximum number of channels to access for transmission
108 #define ACTIVE_TIMEOUT 5 //Number of silent periods before deactivating channel
109
110 #define EDDECAYFACTOR 6 //ED decreased by itself shifted this far right
111 #define DATA_GATHERING_PERIOD 20 //Number of seconds of history
112 #define SENT_PER_MISS_LIMIT 33 //Limit for "BAD" channel (1/x = %)
113 #define SENT_PER_CSMA_MISS_LIMIT 3 //Limit for "BAD" channel (1/x = %)
114
115 #define ED_AVG_PERIOD 20

important are the "MAX_BEST" that indicate the number of channels the node should
attempt to access through its CSMA/CA procedure. The details of this are explained in
section 3.7.7.

Secondly the parameter "ACTIVE_TIMEOUT" sets the number of subperiods a chan-
nel has to go without beacons before it is considered inactive. Ideally this value should
be one, but this would cause the channels to go inactive if a single beacon got corrupted
by outside noise. This would again lead to the nodes going into search mode if they
were only in range of that one AP. In total this would impact the traffic far more than
what one missed beacon would imply.

3.9.5. AP specific definitions
The AP mainly needs configuration of its channel management functionality and syn-
chronization. The RSSI configuration specifies the number of readings to perform and
the limit of then to consider the channel to be noisy.

The link-q parameters define the factors used when decrementing the quality indica-
tor. A random value is generated and the quality indicator is decremented by this value
modulo the configurable factors.

The configurations are shown in code 3.26. One thing to note is that the channel swap
limit is currently set to 0, this was done during testing to disable the channel swapping
mechanism as it became clear that there was a major flaw in the conceptual functionality
of the quality estimation. The details regarding this problem are discussed in section 8.3.

NTNU Trondheim Ragnar Stuhaug

3.9. Timing and parameter calculations 59

Code 3.26: AP specific definitions [ASRadioGeneral/general_radio_config.h].
118 // AP constants, any change needs recompilation of AP’s only
119 //--
120 #define BEACON_BUILD_TIME 40 //AP: Time to prepare beacon frame
121 #define SYNC_OFFSET_TO_BUILD 20 //Window from sync signal to build trigger
122 #define SYNC_PERIOD_MAX_OFFSET 3 //Max sync offset for setting timers
123
124 #define RSSI_POLLS 16 //Max 32. Should optimally be a factor of PERIOD
125 #define RSSI_AVG_LIMIT 4 //0,5 * 2^3
126
127 #define LINK_Q_COMPETE_FACTOR 64 //Competing frames
128 #define LINK_Q_FAILED_FRAME_FACTOR 8 //Corrupted frames
129 #define LINK_Q_SWAP_LIMIT 0//64 //Swap when quality < Limit

Ragnar Stuhaug NTNU Trondheim

60 4. Test preparation

4. Test preparation

4.1. Main test plan
All major testing should be conducted at Hatteland Computer’s offices in Nedre Vats.
This way the need for shipping large amounts of equipment back and forth is avoided.
The downside is that the testing period is fixed in length and the possibility of extending
it in case of problems is limited. However a number of the tests are relatively straight
forward once a higher number of radio modules are available, as they are simply expan-
sions of the tests used when debugging. Also the work with the needed framework will
be significantly simpler once all the involved parties are at the same location.

The tests that are to be conducted are the following:

• Single AP statistics with different numbers of nodes.

• Single AP statistics during channel swap.

• Multi-AP statistics with different numbers of nodes.

• Multi-AP statistics during channel swap.

• Channel footprint using the different algorithms implemented.

• Effectiveness of automatic channel swapping algorithm.

In order to find the behavior under close to optimal conditions the tests should first
be conducted with stationary nodes in a static environment. This will give the most
accurate results regarding the throughput and effectiveness of the custom CSMA/CA
algorithm. Under these circumstances the results should be directly comparable to the
theoretical calculations.

Secondly the same tests should be conducted in a more realistic environment. Hatte-
land Computer has a medium sized AutoStore installation used for testing and quality
control of equipment before shipping it to customers. By mounting "dummy" radios on
the robots it will be possible to get realistic movement while not actually using the new
protocol to manage the system. This way one can observe how the protocol behaves in
the real setting.

4.1.1. Synchronization Signal
In order to conduct tests with more than one AP the synchronization signal has to be
present. This involves scaling the current sync signal running at 130Hz down to the re-
quired 1Hz. This can either be done at the source, which would be the simplest solution

NTNU Trondheim Ragnar Stuhaug

4.1. Main test plan 61

by far, or by having the AP’s scale down the signal before relaying it to the protocol.
This last approach will require that the AP’s have a second sync signal to manage the
downscaling. One suggested solution to this is to use a broadcasted TCP/IP message to
initiate the procedure. However this will not be 100% failsafe.

One major consideration when choosing what to do is the need for backwards com-
patibility. This is why downscaling at the source might not be the preferred solution. It
is highly desired that the module providing the sync signal is directly compatible to both
new and old installations without any need for reprogramming or other configurations.

How this is best done will be discussed and decided during the first few days of the
testing period.

4.1.2. AP-PC communication

In the actual installation the communication will go over TCP/IP, with each AP having
a unique static IP address. During the work with the protocol the communication was
done using a UART interface. This was possible because not all the pins of the radio
chip was currently in use, thus soldering on a set of pins and connecting a UART to
USB bridge was a simple procedure.

When doing tests with only one AP, UART communication through a terminal will
be sufficient as there is no need to choose where to route the information. When doing
tests with multiple AP’s however a more advanced link is needed to enable dynamic
distribution of the messages.

Since TCP/IP is currently used for communication with the AP’s there exist software
libraries giving quick access to this feature on the PC side. The main work will be on the
AP itself since the TCP/IP communication is customized for the old protocol and will
most likely have to be rewritten to comply with the new system. This work has to be
done eventually if the new protocol is to be incorporated into the system, thus making a
firmware prototype for testing should be desired in any case.

With this framework in place it will be possible to make a simple script for sending
and receiving messages to and from the AP’s and dump the results to a simple text file.

Again the details will be discussed during the first days of the testing period.

4.1.3. Test setup

In order to make the tests easily repeatable a simple test interface is made. This acts
as an application on the node and the AP side, sending messages at a rate given by
its current test mode and reacting to commands when instructed. With a well made
interface it should be possible to program the nodes only once for the entire test period,
using commands to change parameters between different tests. The use of the eeprom
to store data across hard resets can also be utilized. In particular in the matter of node
id’s to ensure continuity between tests if some nodes appear to have irregular behavior.

On the AP side the design of the test program depends largely on the presence of a
working TCP/IP interface. With this in place the AP will simply relay messages, placing
the actual test program on the PC. Without such an interface the AP needs to run the test
program itself, sending results and receiving commands via the UART channel. How

Ragnar Stuhaug NTNU Trondheim

62 4. Test preparation

this is done is of no matter to the results however, as the difference has no influence on
the protocol and the traffic "on-air".

The results will be stored to a text file in the form of a comma separated list of values,
making the results easy to import into excel or any other number-crunching software.

4.1.4. Testing procedure
With the test program in place the test procedure is simply the act of initiating a preset
sequence of commands configuring the nodes to change modes and parameters as the
test progress. This makes the tests easily repeatable and easily comparable.

NTNU Trondheim Ragnar Stuhaug

4.2. Test program 63

Code 4.1: General portion of test setup definitions [ASRadioGeneral/test_setup.h].
16 #define CMD_RESET 0 //Clear all testdata and testvariables.
17
18 #define CMD_FILLERFRAME 1 //Meaningless spam frame..
19
20 #define CMD_NODENO_ASSIGNMENT 2
21 /*Sent by node to request nodeno, contains four random bytes to assure uniqueness.
22 Reply will be: CMD_NODENO_ASSIGNMENT, NODENOH, NODENOL, RANDOM1 - RANDOM4. */
23
24 #define CMD_NODE_DATA_1SEC 4
25 /* Sent by nodes, Seqno + list of values for the previous second.
26 Spamming same frame for a full second. (Check Seqno to avoid multiples.) */
27
28 #define CMD_NODE_CONFIG 5
29
30 #define CMD_AP_CONFIG 6 //Not transmitted on air, interpreted by the AP
31 #define CMD_WRAP_AROUND 7 //Not transmitted on air. Modifies the cmdPtr to enable

looping.
32 #define CMD_RESET_AP 8 //Not transmitted on air. Does a simple asm("jmp 0")

4.2. Test program

During testing the test program was expanded and adjusted several times as the need for
new functionality became apparent and other functionality turned out not to be needed,
the following description represents the final version and thus includes all functionality
used in the final tests and nothing more.

4.2.1. TCP/IP

As was said in section 4.1.2 the communication channel between the computer and the
AP’s was an item of uncertainty. The work of creating a functioning TCP/IP channel
was discussed and barely initiated, but it quickly became clear that the amount of work
needed would be larger than initially estimated. This mainly came from the fact that
the old protocol was based on polling, where each frame coming from the server to the
AP would be directly replied by the addressed node. The TCP/IP code on the primary
AP-MCU reflected this by reusing buffers and frames in a way that made it hard to
reuse the code effectively for the new approach that does not involve polling. This, in
combination with a high workload within the department, concluded the question and
caused the TCP/IP solution to be put on hold for now.

This naturally made the test procedures less simple since the simplicity of running
multiple AP’s decreased drastically. Still, given an intelligently designed test procedure
on each AP the tests can be conducted more or less as planned and the results analyzed.

4.2.2. Test setup definitions and functionality

In code 4.1 the general definitions of the test program are shown with comments. Using
these parameters it is possible for the test program to control the nodes by resetting
them, silencing them, have them request a new ID and change the channel management
parameters as well as the mode of the node. In total this provides an interface with all
the functionality needed to run the planned tests.

Ragnar Stuhaug NTNU Trondheim

64 4. Test preparation

Code 4.2: Node portion of test program [ASRadioGeneral/test_setup.h].
35 //------------- Node part: --------------------------------
36 /* Node config parameters */
37 #define NODE_CONFIG_SET_MODE 1 /* Followed by new mode. */
38 #define NODE_CONFIG_RESET_ID 2 /* Set mode = NODE_MODE_NOID */
39 #define NODE_CONFIG_SET_CH_MGMT 3 /* Followed by mode + parameters */
40 #define NODE_CONFIG_SPAMMER 4 /* Follwed by channel and number of seconds */
41 #define NODE_CONFIG_SILENCE 5 /* Followed by a number of seconds */
42 #define NODE_CONFIG_HARD_RESET 255 /* Does a simple asm("jmp 0") */
43
44 /* Node modes */
45 #define NODE_MODE_NOID 0
46 #define NODE_MODE_RESET 1
47 #define NODE_MODE_1SEC 2
48 #define NODE_MODE_1SEC_NOCH 4
49 #define NODE_MODE_1SEC_CHSTAT 5
50
51 /* Logging functions */
52 inline void TST_ResetData();
53 inline void TST_Flipp();
54 inline void TST_Beacon();
55 inline void TST_RecvDirect();
56 inline void TST_RecvBroadcast();
57 inline void TST_RecvOther();
58 inline void TST_Sent();
59 inline void TST_SentSuccess();
60 inline void TST_SentFailure();
61 inline void TST_Disconnect();
62
63 /* Frame generation functions */
64 void TST_prepare1SecDataFrame(uint8_t *ptr, uint8_t *length);
65 void TST_prepare1SecDataFrameNoChannel(uint8_t *ptr, uint8_t *length);
66 void TST_prepare1SecDataFrameChStat(uint8_t *ptr, uint8_t *length);

The AP itself can also receive commands either through the test sequence or directly
from the UART channel in the form of special command characters.

Node functionality

Code snippet 4.2 defines function headers for the nodes to count the occurrence of cer-
tain events, and functions for building the data frames that is to be transmitted. This
functionality is composed of data arrays containing two cells. Each call to a counter
function will increase the counter for the currently active cell by one. At a one second
trigger the function TST_Flipp() should be called causing the active cell pointer to flip
to the other cell and reset the values to zero. The functions building the frames will use
the values from the inactive cell meaning that the transmitted data is always the values
obtained throughout the previous second. The flip function also increases the sequence
counter of the node, enabling the AP to detect when the node has renewed its values.
The AP will only print the received values to UART when a new sequence number is
received for the given node. In addition to the values obtained through the counting
functions some internal values from the protocol can be transmitted. In table 4.1 the
data supplied by each function is presented. The variables added following the common
values comes from the channel management object of the node.

NTNU Trondheim Ragnar Stuhaug

4.2. Test program 65

Function .P1SecDF .*NoChannel .*ChStat AP
Length 27 11 14 -

Data

0 SeqNo -
1 Beacons Channel
2 Received Direct Received
3 Received Broadcast PLL offset
4 Received Other Active node num
5 Sent Sent
6 Success Success
7 Failure Failure
8 Disconnects LinkQuality
9 Channel mode TestSeq index

10 Ch1 ED Sent2 Ch1 report
11 Ch2 ED Failure2 Ch2 report
12 Ch3 ED CSMA Miss Ch3 report

13-26 Ch4-16 ED Ch4-16 report
Table 4.1.: Data transmitted with the different frame builder functions. All values except SeqNo
are printed over UART when appropriate.

Timestamp ID Data[1-X]
Table 4.2.: UART output format.

AP functionality

The AP has equal internal data structures as the nodes, arrays with two cells where only
one is active at any given time. Each second the active cell pointer will be flipped to
the other cell and the AP will print the collected values to the UART channel with ID 0.
In table 4.1 the last column shows the values printed by the AP and the corresponding
values printed from the nodes. Table 4.2 show the format of the UART output. Each
output is on a separate line making the data easily analyzable at a later stage.

4.2.3. Test command sequence

For managing the tests the AP implements an array structure that allows a simple test
programming feature. The layout of this array is seen in table 4.3. Each second a
command trigger variable is compared to the current second count, if they are equal
the pending command is executed and its delta time is added to the command trigger.
Lastly the command pointer is incremented to point to the next command in the queue.
This enables the issuing of up to one command per second, which is sufficient for all
the planned tests.

In code 4.3 an example test sequence is shown. This sequence will silence all con-
nected nodes for five seconds, two seconds later it will change the mode of the nodes
to transmit information with channel statistics before it stays idle until the nodes have
transmitted for 250 seconds. Then the AP is reset and the test will start over from
scratch.

Ragnar Stuhaug NTNU Trondheim

66 4. Test preparation

Index Meaning
0 Delta time, added to a command trigger to indicate when to

execute the next command.
1 Target node if the command is to be transmitted.

Can be node ID or 0 for broadcast.
2 Command according to the defines shown in code 4.2.
3-7 Parameters corresponding to the preceding command.

Unneeded parameters are ignored on the receiving end.
Table 4.3.: Test command array definitions.

Code 4.3: Example test command sequence.
uint8_t cmdList[][8] =
{
{2, 0, CMD_NODE_CONFIG,NODE_CONFIG_SILENCE, 5, 0, 0, 0},
{253,0, CMD_NODE_CONFIG,NODE_CONFIG_SET_MODE,NODE_MODE_1SEC_CHSTAT, 0, 0, 0},
{5, 0, CMD_NODE_CONFIG,NODE_CONFIG_SILENCE, 250, 0, 0, 0},
{5, 255,CMD_RESET_AP, 0, 0, 0, 0, 0},
{0, 255,0, 0, 0, 0, 0, 0} //TERMINATION LINE

};

4.2.4. Node ID assignment
The protocol will always initialize the node ID’s to the value 0xFFFF, and assume that
the application will set the correct ID before any traffic is initiated. Still the node will
be able to communicate as the default ID as well, but there will be a lot of address
collisions if multiple nodes are left uninitialized. In order to handle this, a specific
procedure was used where the test application on the nodes would transmit ID requests
to the AP containing a sequence of random bytes. The AP would reply with an available
ID followed by the same random sequence, meaning that even if a large amount of
nodes would receive the reply, believing it is addressed to them directly, only the one
that recognize the random sequence will actually accept the message and set its ID
accordingly.

This method proved very effective and dynamic, and was used throughout the whole
process of debugging and preparing the protocol and test procedures.

When the actual tests was to be conducted it was desired to give the nodes static ID’s
to ensure that the same ID would belong to the same physical module each test run.
Thus an assigned ID was stored in nonvolatile memory and the node would only request
a new ID if it was instructed to do so or if the memory appeared to have been corrupted.

NTNU Trondheim Ragnar Stuhaug

4.3. Test environment 67

4.3. Test environment
In order to get the best possible data the tests should first be conducted in a relatively
noise free environment. This means minimal Wi-Fi traffic and minimal other communi-
cation in the 2,4GHz ISM band. To measure this, a computer with a Wi-Fi analyzer can
be used to determine where Wi-Fi channels are located, and the channel measurements
of the nodes can be used to indicate if there are other sources, and if they are of any sig-
nificance. This way it will be possible to see the achievable throughput and the packet
loss at different traffic loads and compare this to theoretical estimations. This is mostly
interesting for the single AP tests, but also to verify that the throughput is increased as
expected when multiple AP’s are available for the nodes to access.

Secondly the tests can be conducted in a more realistic environment. This is where
tests at the actual AutoStore installation will be interesting. For the tests using a single
AP this is not of the outmost importance, but for test with multiple AP’s this is essential
to see that the traffic from the nodes migrate from one AP to another as the robot moves
away from one and closer to the other.

In order to test the channel swap algorithm tests should be conducted both with gen-
uine noise from Wi-Fi, and using a dedicated node to generate noise. Here the main
target is to see how much the channel swapping influence the overall throughput. In
connection to this the channel footprint of the nodes should also be tested to evaluate
the different filtering procedures. To get the best possible results it is necessary to have
as equal conditions as possible, making the different footprints directly comparable.

Ragnar Stuhaug NTNU Trondheim

68 5. Expected results

5. Expected results

5.1. Theoretical models

Even if theoretical estimation of system performance is not a part of the original research
question it was desired to make some simple models that the measurements can be
compared to. The models are not based on any research on this kind of estimators, and
are solely based upon the knowledge the writer has regarding statistics. As such it is
likely that there exist better, simpler and more extensive models that could have been
adjusted to fit this case.

The values that it is desired to model are listed below.

• Average number of packets transmitted by the nodes.

• Average number of packets lost due to collisions.

• Average number of CSMA/CA failures.

• Average number of packets received by the AP.

• Average number of messages transmitted by the AP.

5.2. Parameters

5.2.1. Collision window

In order to calculate the number of collisions a major factor is the collision window,
the maximum offset that two accesses can have while still both resulting in a successful
assessment.

Based on the chip specifications [3] it is stated that the CCA procedure performs its
measurements over 128µs, eight symbols, and that the result is ready after another 12µs
making the whole CCA procedure require a total of 140µs. Since the completion of
the CCA is indicated by an interrupt is must be assumed that the interrupt delay also
applies, adding another 9µs to the delay. In addition to this comes the processing delay
before the transmission is initiated within the interrupt, this mainly involves checking
a few flags and should only require a small amount of cycles, it can be estimated to
one half symbol, or 8µs. According to [3] it is then a processing delay of 16µs before
the transmission is actually active "on air". Lastly it must be assumed that the CCA
can overlap slightly with a transmission without detecting it given that the result is an
average value, this effect will get worse as the two involved nodes are further apart
and thus detects each other’s signals weaker, this overlap can be estimated to one half

NTNU Trondheim Ragnar Stuhaug

5.3. Estimators 69

Message size 0-43 44-107 107-Max
Current buffer size 2 3 4
Message size 0-14 15-77 78-Max
Correct buffer size 0 1 2

Table 5.1.: Size of timing buffers to avoid collisions with beacon.

Period length PL 126
Beacon frequency BF 31
Period count PC 16
Blocked access p/period BAP 10
Node message overhead NMO 36
CCA length CCAl 8
AP message overhead AMO 6
Blocked Periods Transmit BPT 3
Max CSMA delay MD 7
Max beacon payload MBP 37
Node message length NML X
AP message length AML Y
Access Period buffer APB Z
Collision window CW 3,3
StDeviation StD 2

Table 5.2.: Numerical parameters for the statistical model.

symbol, or 8µs. In total this equates to a total of 12 + 9 + 8 + 16 + 8 = 53µs, or 3.31
symbols.

5.2.2. Parameter collection

In table 5.2 and table 5.3 the parameters used in the models are presented. The majority
of parameters are based on the protocol definitions of the beacon frequency etc. As such
they can be considered constant. The only parameters that has to be changed from test to
test are the message sizes and the number of periods that are blocked from access by the
channel selection algorithm, section 3.7.7. This number depends on the message size of
the node, and, as described in section 7.2.3, an error was discovered in these calculations
in the code. In table 5.1 both the current and the correct values are presented.

The standard deviation parameter are used in section 5.3.5.

5.3. Estimators

5.3.1. Transactions per second

To find the average number of transactions a simple numerical method is used. First the
average delay between two CSMA/CA accesses is found. The upper limit of the average
delay does not change as it normally does with CSMA/CA, making this value constant.
Secondly the average expected wait time from an arbitrary point in time until the first

Ragnar Stuhaug NTNU Trondheim

70 5. Expected results

Access area per period AAP PL−BA
Total access area AA (PC − APB −BPT) ∗ AAP
Total transmission area TA (PC −BPT) ∗ PL
Total node frame size NFS NML ∗ 2 +NMO
Total AP message size AMS AML ∗ 2 + AMO
Average period delay APD MD/2 + (MD/2) ∗BPA/PC + 0, 5
Average CCA length ACCL APD ∗ PL+ CCAl

Table 5.3.: Parameters calculated using the numerical parameters.

CSMA/CA access is found at different numbers of competing nodes. This value can be
found by dividing the average wait time by the number of nodes plus one.

Once this is found it is possible to sum up the average wait times and the time spent
transmitting, up till the full available period is used. This way the average number of
accesses can be found.

One major flaw with this model is that it will overestimate the number of accesses
with low number of nodes. The reason for this is that it does not account for the tail in
the probability distribution that falls outside the period. This means that if the model
assumes that the wait times will allow all messages to be transmitted, then the resulting
estimate is that all nodes will be allowed to transmit. Still the model should get more
and more accurate as the number of nodes increases.

In equation 5.1 the total time before X out of N nodes has transmitted is presented.
This equation is then used in equation 5.2 to determine the maximum X that gives a
result not exceeding the full length of the transmission window. This X is then the
estimation of the average number of transmissions given the supplied number of nodes
and the specified frame size and access period size.

The solution is not statistically graceful, but it is relatively easy to set up in a spread-
sheet.

TotalT ime(N,X) =
X−1∑
n=0

(
CSMAdelayAvg

N + 1− n
+NFS) (5.1)

Transmissions(N) = MAX(TotalT ime(N,X))

where(TotalT ime(N,X) < TA) (5.2)

5.3.2. CSMA/CA misses

With a properly made CSMA/CA algorithm it can be assumed that the accesses are truly
random in time, meaning that the probability is uniformly distributed across the whole
period. Since the result of the estimation is simply whether the channel is busy or not
this means that the percentage of accesses resulting in a failure will directly correspond
to the current channel utilization.

With the size of the transmitted frames being known, as well as the total size of the
period it is possible to use the transaction estimator to estimate the channel utilization
and thus, indirectly, the number of missed CCA’s.

NTNU Trondheim Ragnar Stuhaug

5.3. Estimators 71

PCSMAMiss(N) =
Transmissions(N) ∗NFS

AA
(5.3)

5.3.3. Collisions

A collision will occur if two or more nodes triggers their CCA within only a few symbols
of each other. This will cause them to gain access to the channel in parallel if it is
initially idle, with the result that they transmit on top of each other. Depending on the
signal strength, and signal quality, the receiver might be able to decode one message, or
all the colliding transmissions can be lost.

In order to estimate the number of collisions we first find the total number of ex-
pected accesses per period, this equates to the number of nodes plus the number of extra
accesses caused by CSMA misses, the total number is given in equation 5.4.

Secondly the number of possible choices has to be estimated, this is where the col-
lision window comes to play. Since an access will result in a collision if it is made
within "collision window" symbols of another access we should divide the total number
of accessible symbols by this number. Still this is not exactly correct since the window
expands in both directions. In addition the collision windows of two accesses can over-
lap without problem so long as the access itself is not within the window of the other.
As a simple approximation to this the total number of accessible symbols is divided by
one and a half collision window. This is shown in equation 5.5.

To find the expected number of collisions with N nodes we use the following rea-
soning; The probability that one access does not collide with a specific other are (1 −
1/AccessSlots). The probability that neither of the N-1 other accesses collide with
the specific one is (1 − 1/AccessSlots)N−1. This means that out of the N performed
accesses it is expected that N ∗ (1 − 1/AccessSlots)N−1 accesses are non colliding,
meaning that N − (N ∗ (1− 1/AccessSlots)N−1) accesses are expected to collide with
another access. This formula is represented in a clean form in equation 5.6.

AccessNum(N) = N +N ∗ PCSMAMiss(N) (5.4)

AccessSlots =
AccessWindow

CW ∗ 1, 5
(5.5)

Collisions(N) = N ∗ (1− (1− 1

AccessSlots
)N−1) (5.6)

5.3.4. AP reception

The number of frames received by the AP is simply the number of transmissions made
by the nodes, minus the number of messages lost due to collisions.

AvgReceivedAP (N) = Transmissions(N)− Collisions(N) (5.7)

Ragnar Stuhaug NTNU Trondheim

72 5. Expected results

5.3.5. AP transmission

In order to find the average number of transmitted messages from the AP things gets
more complicated. This value will depend on the number of acknowledges that has to
be inserted, a number that is equal to the number of messages the AP received during
the previous period. The AP can then fit anywhere from zero to three messages in the
AP depending on the amount of remaining space. Thus the question is really a question
of the probability distribution of the number of incoming frames among the estimated
average.

To begin with the remaining beacon space on average with a given amount of nodes
are calculated, this involves subtracting the space needed by the incoming acknowledge-
ments from the total amount of available space. This is seen in equation 5.8.

Two approaches are attempted. The first one simply involves dividing the remaining
beacon space, after adding the average number of acknowledges, by the space needed
per message. This should give a reasonable result when the number of nodes gets larger.
However this does not take into account that the realistic probability distribution of the
number of messages would be some sort of exponential distribution. This means that it
will most likely overestimate the number in many cases, in particular when the number
of nodes are low.

The second option is to assume that the number of messages received is normally
distributed around the average number. By assuming a standard deviation it can then
be estimated how likely the AP is to fit 1, 2 or 3 messages in the frame. This could
provide a reasonable model, but it might be very hard to find a reasonable value for the
standard deviation, making the model less reliable. When representing this estimator
the expression N (x, µ, σ2) is used to represent the normal distribution.

Since both these models are based on the estimated number of messages received by
the AP each period, given that they depend on the numbers of acknowledgements, the
expected overestimation of the node transmissions will be expected to cause an under-
estimation with both these models. Still the results should give a reasonable indication
overall.

RBS(N) =MaxBeaconPayload− AvgReceivedAP (N) ∗ 2 (5.8)

MessageE1(N) =MAX(
RBS(N)

AMS
, 3) (5.9)

MessageE2(N) =
3∑

m=1

(1−
∫ m∗AMS

0
N (x,RBS(N), StD)dx) (5.10)

After some simple trial and error the standard deviation was set to two. The same
value are used for all three message counts even if that is most likely not fully realistic.
It is most reasonable to believe that the standard deviation gets bigger as the number
of messages increase. Another factor that is not included is the fact that there is a
maximum number of incoming messages equal to the number of nodes. This means that
the probability distribution will be cut off at that number, resulting in a corresponding
increase in probability over the rest of the available possibilities.

NTNU Trondheim Ragnar Stuhaug

5.4. Calculations 73

0,00

5,00

10,00

15,00

20,00

25,00

30,00

35,00

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49

Transmissions Success Failure CSMAMiss Received-E1 Received-E2

(a) Node

0

50

100

150

200

250

300

350

400

450

500

0

10

20

30

40

50

60

70

80

90

100

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49

Transmitted-E1 Transmitted-E2 Received (Secondary)

(b) AP

Figure 5.1.: Modeled behavior at different number of nodes using 8 byte messages in both
directions. Numeric results can be seen in A.1.

All in all, the estimator is not believed to be particularly good given the high amount
of inaccuracies and possible error sources.

5.4. Calculations

As a test case the message sizes from the protocol requirements in section 1.3 are used
and the protocol configuration kept as shown in table 5.2. This means a message size of
eight bytes for both nodes and AP’s. In table 5.1 this is seen to give zero extra buffers if
the calculations are done correctly. With these parameters entered into the spreadsheet
the result is as seen in figure 5.1.

As expected the total throughput is seen to reach a maximum value before declin-
ing as the number of nodes increase further. This is due to the increasing number of
packets lost through collisions as the channel gets more and more frequently accesses.
This increase is further empowered by the fact that more nodes will result in a better
utilization of the channel, causing more failed CCA’s which in turn further increase the
total number of accesses.

According to these calculations it should be possible to reach a throughput of 440
messages per second from the nodes to the AP, with the requirements in section 1.3
stating that one node will want to send a maximum of seven messages per second this
will mean that a single channel has theoretical capacity to handle around 62 nodes at
peak traffic. How this holds in practice remains to be seen.

Ragnar Stuhaug NTNU Trondheim

74 5. Expected results

In appendix A the numerical results of the calculations are given. The spreadsheet
used when calculating is supplied in the archive file as "Theoretical performance model.xlsx".
The spreadsheet performs the calculations, a conversion to one second measures, and a
conversion to results that are easy to insert into the spreadsheets containing the actual
test results.

NTNU Trondheim Ragnar Stuhaug

6. Test phase 75

6. Test phase

As one could, and should, expect, the testing did not go quite according to plan. Still
the majority of tests were conducted in some way, and there are strong indications as to
how the last tests would behave had they been performed according to plan. Also the
problems that came to view are logical and should be correctable given certain changes
and additions to the protocol functionality.

6.1. Problems and delays

6.1.1. Discarding TCP/IP

As explained in section 4.1.2 it was decided to discard the TCP/IP link and simply use
the UART communication that had been used during debugging. The reason behind
the decision was that it would require more time to get the TCP/IP framework up and
running, then the time needed to adjust and reprogram the test procedures to use the
UART. Still the overall extra work needed was higher than expected beforehand, causing
the testing to be delayed slightly.

6.1.2. Synchronization signal

The synchronization signal had to be adjusted from 130Hz to 1Hz. As stated in section
4.1.1 the optimal way to do this was not clear, but since the actual approach is not of any
importance to the protocol it was decided to simply adjust the frequency at the source
temporarily to allow the tests to be conducted.

Unfortunately the person responsible for the module supplying the signal was away
on vacation during most of the testing period, meaning that the author had to dig into the
firmware to modify the signal himself. This made the process a bit more time consum-
ing than expected, causing the testing to be delayed further. As the testing commenced
it also became clear that the synchronization signal had some flaws, assumingly in con-
nection to the wraparound of the timer. This caused the one second period to suddenly
increase to around one and a half second for a single trigger, leading to erroneously high
data readings from the AP. Still this event is easily identified in the results and as such
is not considered critical.

6.1.3. Synchronization function

Once the synchronization signal was in place another problem became clear. The syn-
chronization function of the protocol was in no way working as intended. During de-
bugging all tests had been run with only a single AP, and the synchronization function

Ragnar Stuhaug NTNU Trondheim

76 6. Test phase

had been tested by triggering it according to a 1 second hardware timer within the mi-
crocontroller itself. Once the function was being triggered by the distributed signal it
appeared to behave quite different than expected, the errors had simply not been visible
with the setup used while debugging.

As a result of this the synchronization function had to be reworked. Instead of the
original static offset an implementation as a simple software PLL was attempted. Since
time was of the essence it was not possible to create a very advanced function and the
last version of the synchronization caused the AP to drift an estimated ±6− 7 symbols
away from the correct timing.

During the work with the synchronization signal and function the code was debugged
and tested using two AP’s and 20 nodes. All nodes were continuously in full trans-
mission mode causing them to attempt to transmit each period. The observed behavior
with the inaccurate synchronization was exactly as expected. For a period both AP’s
would receive a significant amount of traffic, at a more or less random point in time one
AP would suddenly stop receiving messages altogether while the other clearly received
more than usual. This situation would continue for a short period until the traffic sud-
denly spread across both AP’s once again. This process then repeated itself over and
over, usually by having the AP’s fall into isolation every other time.

In section 2.5.6 the reason for this behavior is described, and the addition of the timing
buffer is explained. Still it was obvious that the 10 symbols added as a buffer was not
enough with the overall synchronization system being as inaccurate as it turned out to
be. Given the assumed offset of ±6 − 7 it can be assumed that the system could have
been stabilized by increasing the buffer to more than 14 symbols, still this was not done
because of the event described in the following section. The synchronization issues are
further discussed in section 8.2.

6.1.4. Equipment breakdown

As if the added workload was not enough another catastrophe occurred during the work
with the synchronization. Following a short circuit all UART bridges got parts of their
circuitry burnt. The resulting situation was that out of the original three bridges, one
had to be discarded, one only had its TX channel operational, and one only had its RX
channel operational. In essence this meant that it was only possible to communicate
with one module at the time, making testing with multiple AP’s effectively impossible.
A set of new bridges was immediately ordered, but they did not arrive until after the test
period was complete and the author had left the test location.

6.1.5. Testing at an actual AutoStore installation

With the problems described in the above sections the test period shrunk significantly,
and several tests became impossible to execute effectively. Preparations for testing at
the actual installation was initiated, but at some point it became clear that it would be
better to perfect the tests that was executable at the time, rather than spending a lot of
time and effort on preparing tests that was known not to work as originally intended. As
such the testing on a physical installation was put on hold for the remaining duration of
the thesis work.

NTNU Trondheim Ragnar Stuhaug

6.1. Problems and delays 77

6.1.6. Channel swap oversensitivity

The very first tests that were performed used a single AP and, assumingly, a single
channel. These tests were mainly meant to see that the core functionality of the protocol
worked also after adding a much larger number of nodes than what was used during
debugging. At first the tests appeared to work as intended. However once the results
were analyzed more thoroughly it was discovered that the AP was not stationary on one
channel as intended, rather it was swapping channels increasingly often as the number
of nodes increased. Since there was no registered outside noise this indicated that the
channel swap algorithm was triggered by events that should not really cause it to trigger.

The reason for the problem quickly became clear and revealed a fundamental flaw in
the functionality. The reason for the swapping was the increased number of corrupted
frames caused by legitimate CSMA/CA collisions as the number of nodes got larger.
Since the AP assumed that all corrupted frames was caused by outside noise this lead to
it assessing the channel as increasingly noisy as the number of nodes, and thus the num-
ber of collisions, increased. This artifact essentially made the channel swap algorithm
unusable in its current state.

6.1.7. Node deadlock

During the late debug and testing stages one problem with the nodes became apparent.
After a random time they tended to go into a deadlock making them unresponsive. The
timing could be anywhere from a couple of hours, up to several days. At one point 20
nodes were left running over a weekend, after nearly four days one single node was left
operational, all others had deadlocked at some point.

Since the error generally took hours to happen it had no impact on the shorter tests,
and even on the tests lasting up to one hour, like the channel footprint tests. Because
of this the effort put into the issue was also limited, however towards the end of the test
period some spare time was found while waiting for the longer tests to complete and the
issue was investigated.

Through debugging with JTAG the error was narrowed down to the symbol counter,
more accurately one of the comparators stopped triggering even though all registers
and the system state indicated that it should, even manual manipulation of the registers
through the JTAG interface did not change the issue. The trigger in question was the
frame transmission trigger, meaning that the node got into a state where it never actually
got to perform the CCA and transmit a frame, even if it were receiving beacons normally
and even acknowledging any incoming messages.

In an attempt to narrow further in on the reason for the error, two of the symbol
counter interrupts were swapped. This change should theoretically have no impact what-
soever on the functionality, but it did in fact appear to make the nodes more stabile. The
change was made at a late stage in the test phase, meaning that there was limited time
to do thorough tests afterwards, but during the time that was left no nodes was observed
to deadlock.

The reason is still unknown, and the most likely explanation is that there are errors
in other, completely unrelated, parts of the code. This can either be pointers that are
not set correctly, or buffers that overflows, causing the program to corrupt unrelated

Ragnar Stuhaug NTNU Trondheim

78 6. Test phase

data. Because of this it would be wise to investigate the issue further at a later stage,
and maybe also do a complete review of the whole code to verify that all buffers and
pointers are used correctly.

NTNU Trondheim Ragnar Stuhaug

7. Results 79

7. Results

7.1. Test setup

In figure 7.1 an image of the test setup used throughout all the following tests is shown.
In the high center of the image is the module supplying the AP’s with power. This
module is also the one supplying the synchronization signal as all AP’s are connected
directly to this module for the emergency stop functionality. In the lower parts of the
image are all but one node, and to the left two AP’s can be seen as well as the last node
connected to the computer with JTAG for debugging.

One thing to have in mind is that the nodes are located very close together. This was
necessary to get a practical solution with the power supply, but naturally it will cause
them to receive each other’s signals very strongly. This must be seen as a possible error
source, and is seen to influence the results in the channel footprint tests in section 7.9.

In total 21 nodes and two AP’s were available for testing. After the loss of UART
bridges one AP was reprogrammed to be used as a node, giving a total of 22 nodes and
one AP.

During the whole duration of the test phase there were observed to be three Wi-Fi
AP’s supporting the same network on channel 1. In addition to this another network
occacionally showed up in channel 3, however this was so weak that it is unlikely to
have any influence. A screenshot of a network scan can be seen in figure 7.8.

Figure 7.1.: Test setup

Ragnar Stuhaug NTNU Trondheim

80 7. Results

7.2. Test result adjustments

7.2.1. Node measurements

During the writing of this report and the connected analysis of the test results one error
was detected that had been overlooked during testing. The timing of the test application
on the nodes was not correct.

The test application on both the nodes and the AP’s are controlled by a hardware timer
supplying the application with a signal each second. This then cause the data gathering
functionality to refresh the data to be transmitted, and restart the data gathering for the
next second.

While the counter on the AP triggers correctly, or at least with such a small error that
it is not effectively detectable, the counter on the nodes turned out to trigger an estimated
40ms to late each period. This cause the nodes to report data gathered throughout 1,04
seconds as if the data was actually gathered through exactly one second.

This behavior can be seen in two different ways in the test results. Firstly each node
will miss in the list of reports every 25 seconds since its 1.04 seconds then encapsulates
the true one second of the AP. This has no impact on the calculated values though since
the average values over all reporting nodes are used. Secondly the number of received
beacons reported by the nodes will average to 32.24 instead of the correct 31.

Since the error is equal for all data reported by all nodes, the reported numbers can be
compared directly, as such the graphs presented are of the correct shape, but all values
reported by the nodes should be reduced by 4% to get the numerically correct value.
Since values from the nodes and AP’s are plotted in separate graphs this only has to
be taken into account when comparing the values in the two graphs. For instance the
number of messages successfully transmitted by the nodes multiplied with the number
of nodes will give a sum that is 4% higher than the corresponding number of received
messages reported by the AP.

In order to match the theoretical values and the measurements the theoretical values
are adjusted to correspond to the actual timing used by the nodes before they are plotted
in the same graph.

7.2.2. Channel statistics

In addition to the erroneous timing, some concurrency issues occurred when reporting
the internal values of the protocol regarding channel statistics; the number of accesses,
the number of failed frames and the number of CSMA/CA misses. Due to the fact that
these numbers are modified within the interrupts of the protocol, while they are read
through a non atomic function in the test application there are some cases where the
reports are all zeros. This happens when the protocol gets to modify the index and reset
the values between when the application reads the index and when it reads the values.

To avoid these readings polluting the results by giving an unrealistically low average
they are simply masked out in the spreadsheet, removing the readings altogether. This
is simply done by replacing the value in the cell with a blank string if all three values
are zero.

NTNU Trondheim Ragnar Stuhaug

7.2. Test result adjustments 81

7.2.3. Beacon collision avoidance
As described in section 3.7.7 the nodes will be prevented from transmitting on a channel
if there is a chance that they will be unable to complete the transmission before the AP
deactivates its transceiver in preparation for the beacon transmission. The functionality
calculating the blocked subperiods based on message length was later discovered to be
quite wrong. Parameters representing bytes and symbols had been mixed, while the
resulting sum had been used as if it represented a number of bytes, this lead to the
calculated number being significantly higher than intended, causing the nodes to be
blocked from the channel too early. After reviewing the existing code and the correct
version it was found that for the tests where the nodes transmit 14 or 11 bytes of data two
extra subperiod will be blocked. In the tests where 26 bytes are transmitted, one extra
period is blocked. Mainly this means that the throughput is lower than it should have
been in the afflicted tests, and also that the theoretical estimations must be configured
accordingly to correspond to the actual behavior of the physical system.

7.2.4. Test result files
Given the size of the raw test results they are pointless to include as appendices. Still all
the presented test results are found in the supplied archive file with names corresponding
to the names used throughout this chapter. Also the corresponding excel spreadsheets
performing the calculations and graph generation are presented, these as well with the
corresponding names.

The tests presented throughout this chapter is only a collection of the total amount of
conducted tests, but the ones presented are either a random test among many equal, or
the test that best illustrates the conclusions that can be drawn from the given tests. In
the archive file all successful tests are supplied for reference. Also note that not all other
tests have a dedicated spreadsheet, as the similar results was usually imported into the
same spreadsheet when analyzing them.

Ragnar Stuhaug NTNU Trondheim

82 7. Results

7.3. Synchronization test
Description In figure 7.2 a test run using the last version of the new synchronization
algorithm is shown. The test is conducted using the test program shown in code 7.1 and
the parameters shown in table 7.1.

Synchronization issues The major points to note are the increased readings from
the AP at time 6 and 142. These come from the known artifact of the synchronization
signal and should thus be ignored. Secondly it is a significant amount of disconnects
caused by the inability of the synchronization function to keep the timing stable. The
value "SyncOffset" in figure 7.2(a) shows the dynamic factor calculated by the synchro-
nization function. This value is seen to oscillate around 3-4, with disconnects mainly
occurring when the oscillation reach a top or bottom.

For the AP disconnects are seen as a sudden decrease in received messages and a
decrease in successfully transmitted message with a corresponding increase in trans-
mission failures.

Channel swap issue Another problem clearly visible in this test is the errors with
the AP’s channel assessment algorithm. The value "ChQ" in figure 7.2(a) show the
estimated quality of the channel as a value ranging from 0 to 255. If the value drops
below 64 the channel is considered unusable and a channel swap is initiated. The graph
clearly shows how this value is very smooth to begin with, indicating a perfectly good
channel. As the number of nodes increases the value gets rougher and rougher before
it starts to decline consistently. Once the value is low enough the AP swaps channel
and resets the value, however the whole process simple repeats itself faster and faster as
more nodes are added.

Code 7.1: Test program: Testresults20Nodes10Sec3-16-05-13
uint8_t cmdList[][8] =

{{7,0,CMD_NODE_CONFIG,NODE_CONFIG_SILENCE,255,0,0,0},
{3,0,CMD_NODE_CONFIG,NODE_CONFIG_SET_MODE,NODE_MODE_1SEC,0,0,0},
{10,1,CMD_NODE_CONFIG,NODE_CONFIG_SILENCE,0,0,0,0},
{10,2,CMD_NODE_CONFIG,NODE_CONFIG_SILENCE,0,0,0,0},

//-- 3 TO 18 EDITED OUT FOR READABILITY --//
{10,19,CMD_NODE_CONFIG,NODE_CONFIG_SILENCE,0,0,0,0},
{10,20,CMD_NODE_CONFIG,NODE_CONFIG_SILENCE,0,0,0,0},
//MUST BE TERMINATED BY THE FOLLOWING ARRAY!
{0,255,0,0,0,0,0,0}};

Node message size AP message size Node count
26 byte 5 byte 1-19 (20’th node unresponsive)

Test length Channel Swapping Synchronization
230 seconds Active Active
Table 7.1.: Major test parameters: Testresults20Nodes10Sec3-16-05-13

NTNU Trondheim Ragnar Stuhaug

7.3. Synchronization test 83

0

50

100

150

200

250

300

0

2

4

6

8

10

12

14

16

18

20

1 11 21 31 41 51 61 71 81 91 101 111 121 131 141 151 161 171 181 191 201 211 221

Channel SyncOffset Nodes sFailure ChQ (Secondary)

(a) APCH

0

50

100

150

200

250

300

350

400

0

20

40

60

80

100

120

140

1 11 21 31 41 51 61 71 81 91 101 111 121 131 141 151 161 171 181 191 201 211 221

Sent sSuccess sFailure Received (Secondary)

(b) AP

0,0

5,0

10,0

15,0

20,0

25,0

30,0

35,0

1 11 21 31 41 51 61 71 81 91 101 111 121 131 141 151 161 171 181 191 201 211 221

Beacons Received Sent sSuccess sFailure DC's

(c) NODE

Figure 7.2.: Testresults20Nodes10Sec3-16-05-13

Ragnar Stuhaug NTNU Trondheim

84 7. Results

7.4. Synchronization disabled
Description Following the combination of more or less catastrophic problems, with
the last and most critical being the destruction of the UART bridges, synchronization
was simply disabled for the remaining tests. For all tests using a single AP there is
no need for synchronization anyways and had it worked as intended it would not have
influenced the results whatsoever. Thus the removal of the whole functionality can be
considered a reasonable simplification under the current circumstances. In figure 7.3
the test from section 7.3 is rerun with the synchronization disabled.

AP transmissions One interesting, and expected, phenomenon that can be ob-
served is how the number of transmissions made by the AP will have a shape that is
to some extent the inverse of the number of received messages. A very good example
of this is located at time 120 to 130, with the number of received messages dropping
slightly, giving a notable increase in the number of transmitted messages. This is ex-
actly as expected given the way the AP inserts its messages, less incoming frames leads
to fewer acknowledgements giving more room for data.

Channel swap issue With the synchronization out of the picture the results gets
significantly smoother and closer to the expected results. Still the channel assessment
is not behaving as intended and is causing a large number of unneeded channel swaps
when the number of nodes increases beyond 11-12.

Code 7.2: Test program: Testresults20Nodes10Sec4NoSync-16-05-13
uint8_t cmdList[][8] =

{{7,0,CMD_NODE_CONFIG,NODE_CONFIG_SILENCE,255,0,0,0},
{3,0,CMD_NODE_CONFIG,NODE_CONFIG_SET_MODE,NODE_MODE_1SEC,0,0,0},
{10,1,CMD_NODE_CONFIG,NODE_CONFIG_SILENCE,0,0,0,0},
{10,2,CMD_NODE_CONFIG,NODE_CONFIG_SILENCE,0,0,0,0},

//-- 3 TO 18 EDITED OUT FOR READABILITY --//
{10,19,CMD_NODE_CONFIG,NODE_CONFIG_SILENCE,0,0,0,0},
{10,20,CMD_NODE_CONFIG,NODE_CONFIG_SILENCE,0,0,0,0},
//MUST BE TERMINATED BY THE FOLLOWING ARRAY!
{0,255,0,0,0,0,0,0}};

Node message size AP message size Node count
26 byte 5 byte 1-20

Test length Channel Swapping Synchronization
210 seconds Active Disabled

Table 7.2.: Major test parameters: Testresults20Nodes10Sec4NoSync-16-05-13

NTNU Trondheim Ragnar Stuhaug

7.4. Synchronization disabled 85

0

50

100

150

200

250

300

0

5

10

15

20

25

1 11 21 31 41 51 61 71 81 91 101 111 121 131 141 151 161 171 181 191 201

Channel Nodes sFailure ChQ (Secondary)

(a) APCH

0

50

100

150

200

250

300

350

0

10

20

30

40

50

60

70

80

90

100

1 11 21 31 41 51 61 71 81 91 101 111 121 131 141 151 161 171 181 191 201

Sent sSuccess Received (Secondary) sFailure

(b) AP

0,0

5,0

10,0

15,0

20,0

25,0

30,0

35,0

1 11 21 31 41 51 61 71 81 91 101 111 121 131 141 151 161 171 181 191

Beacons Received Sent sSuccess sFailure DC's

(c) NODE

Figure 7.3.: Testresults20Nodes10Sec4NoSync-16-05-13

Ragnar Stuhaug NTNU Trondheim

86 7. Results

7.5. Synchronization and channel swap disabled
Description With the channel assessment algorithm also malfunctioning, the auto-
matic swapping of channels was simply disabled. This was done by setting the limit at
which the channel swap should trigger to zero, meaning that it would never happen. In
addition to this the nodes were reconfigured to stop adding the channel information to
their messages, this in order to make the message size smaller and closer to the 8 bytes
stated in the requirements. Lastly the messages transmitted by the AP were adjusted up
in size from 5 bytes to 8 bytes to comply with the requirements.

With the system in a stabile and good working condition it is also possible to compare
the results to the theoretical calculations. To do this the model was adjusted to use the
same parameters as was used in the test, and the calculations were formatted in a way
that made it possible to plot them side by side with the measured results.

The nodes do not report their number of CSMA/CA misses with the current configu-
ration. Still the estimated number is plotted for completeness.

Minor artifacts In figure 7.4(a) it can be seen that there are some occasional failed
frames, the source of these are unknown, and with the current test application no more
information about the matter is obtainable. Therefore it is not known if the error is
caused by nodes not receiving the beacon, nodes not transmitting acknowledge cor-
rectly, or the AP not receiving the acknowledge properly. This issue is further discussed
in section 8.5.

Code 7.3: Test program: Testresults21Nodes10sec1NoSyncAbsNoChSwap-21-05-13
uint8_t cmdList[][8] =

{{7,0,CMD_NODE_CONFIG,NODE_CONFIG_SILENCE,255,0,0,0},
{3,0,CMD_NODE_CONFIG,NODE_CONFIG_SET_MODE,NODE_MODE_1SEC_NOCH,0,0,0},
{10,1,CMD_NODE_CONFIG,NODE_CONFIG_SILENCE,0,0,0,0},
{10,2,CMD_NODE_CONFIG,NODE_CONFIG_SILENCE,0,0,0,0},

//-- 3 to 19 EDITED OUT FOR READABILITY --//
{10,20,CMD_NODE_CONFIG,NODE_CONFIG_SILENCE,0,0,0,0},
{10,21,CMD_NODE_CONFIG,NODE_CONFIG_SILENCE,0,0,0,0},
//MUST BE TERMINATED BY THE FOLLOWING ARRAY!
{0,255,0,0,0,0,0,0}};

Node message size AP message size Node count
11 byte 8 byte 1-21

Test length Channel Swapping Synchronization
210 seconds Disabled Disabled

Table 7.3.: Major test parameters: Testresults21Nodes10sec1NoSyncAbsNoChSwap-21-05-13

NTNU Trondheim Ragnar Stuhaug

7.5. Synchronization and channel swap disabled 87

0

10

20

30

40

50

60

70

80

90

100

1 11 21 31 41 51 61 71 81 91 101 111 121 131 141 151 161 171 181 191 201 211

Sent sSuccess sFailure E1-Sent E2-Sent

(a) AP Sending

0

50

100

150

200

250

300

350

400

1 11 21 31 41 51 61 71 81 91 101 111 121 131 141 151 161 171 181 191 201 211

Received E-Received

(b) AP Receiving

0,0

5,0

10,0

15,0

20,0

25,0

30,0

35,0

1 11 21 31 41 51 61 71 81 91 101 111 121 131 141 151 161 171 181 191 201

Sent sSuccess sFailure DC's E-Sent E-sSuccess E-sFailure

(c) Node Sending

0,0

5,0

10,0

15,0

20,0

25,0

30,0

35,0

1 11 21 31 41 51 61 71 81 91 101 111 121 131 141 151 161 171 181 191 201

Received Direct1 Direct2 E-CSMA Miss

(d) Node Receiving

Figure 7.4.: Testresults21Nodes10sec1NoSyncAbsNoChSwap-21-05-13

Ragnar Stuhaug NTNU Trondheim

88 7. Results

7.6. Multi-AP test (model)
Description As the UART bridges needed to perform the testing got destroyed dur-
ing the debugging of the synchronization, described in section 6.1.4, no results were
registered for this case. However the behavior that was observed during debugging is
illustrated in figure 7.5 to give a general idea of how the system behaved. The traffic
shifted from both AP’s, to only one, and back to both. This went on and on as the AP’s
drifted back and forth in time relative to each other.

Given that there are no results stored, the numerical traffic values are not known,
however given the design of the protocol the traffic should spit fairly evenly among the
two available AP’s, meaning that they should each observe the same traffic as if they
had been alone with half the total amount of nodes. Based on this it is assumed that
the traffic per AP during the common periods is equal to the traffic experienced in other
tests with ten nodes on one AP. The periods with only one AP in sync should naturally
have the same throughput as other tests with 20 nodes and one AP.

The proper execution of these tests is among the top priorities for future work, to-
gether with the implementation of a more accurate synchronization function.

NTNU Trondheim Ragnar Stuhaug

7.6. Multi-AP test (model) 89

0

50

100

150

200

250

300

350

400

450

500

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91

ReceivedA ReceivedB ReceivedTot

Figure 7.5.: Model of the behavior with two AP’s, numerical values are assumptions based on
other test results while the oscillating distribution of traffic is observed during debugging and
testing.

Ragnar Stuhaug NTNU Trondheim

90 7. Results

7.7. Channel swap throughput tests
Description In order to determine the effect a channel swap has on the throughput a
new test is conducted forcing the AP to swap channel at varying intervals. The internal
channel swapping is disabled and all nodes are active throughout the whole test to give
a continuous and constant traffic load.

The test program utilizes the channel swap function in the interface to initiate the
transitions. This function allows the application to command the protocol to swap chan-
nel, but does not provide any influence on how the procedure is executed or to what
channel the AP moves. The results are shown in figure 7.6.

Channel swap issue As it turned out the interface function did not work as in-
tended, causing a vast amount of disconnects and timing issues. This turned out to be
due to concurrency issues as the interface function itself performed most of the analysis
involved in the channel change without being atomic. Thus it would get interrupted by
the protocol causing corrupted data and inconsistencies. As such this first test must be
classified as a complete failure, but it revealed a serious issue that had to be taken care
of.

Code 7.4: Test program: TestresultsChSwap21NodesNoSync1-21-05-13
uint8_t cmdList[][8] = {

{2,0,CMD_NODE_CONFIG,NODE_CONFIG_SILENCE,5,0,0,0},
{3,0,CMD_NODE_CONFIG,NODE_CONFIG_SET_MODE,NODE_MODE_1SEC_NOCH,0,0,0},
{5,0,CMD_AP_CONFIG,’-’,0,0,0,0}, //-- x10 - EDITED OUT FOR READABILITY --//
{4,0,CMD_AP_CONFIG,’-’,0,0,0,0}, //-- x10 - EDITED OUT FOR READABILITY --//
{3,0,CMD_AP_CONFIG,’-’,0,0,0,0}, //-- x10 - EDITED OUT FOR READABILITY --//
{2,0,CMD_AP_CONFIG,’-’,0,0,0,0}, //-- x10 - EDITED OUT FOR READABILITY --//
{1,0,CMD_AP_CONFIG,’-’,0,0,0,0}, //-- x20 - EDITED OUT FOR READABILITY --//
{2,0,CMD_AP_CONFIG,’-’,0,0,0,0}, //-- x10 - EDITED OUT FOR READABILITY --//
{3,0,CMD_AP_CONFIG,’-’,0,0,0,0}, //-- x10 - EDITED OUT FOR READABILITY --//
{4,0,CMD_AP_CONFIG,’-’,0,0,0,0}, //-- x10 - EDITED OUT FOR READABILITY --//
{10,0,CMD_NODE_CONFIG,NODE_CONFIG_SILENCE,255,0,0,0},
{5,255,CMD_RESET_AP,0,0,0,0,0},
//MUST BE TERMINATED BY THE FOLLOWING ARRAY!
{0,255,0,0,0,0,0,0}};

Node message size AP message size Node count
11 byte 8 byte 21

Test length Channel Swapping Synchronization
220 seconds Manual Disabled

Table 7.4.: Major test parameters: TestresultsChSwap21NodesNoSync1-21-05-13

NTNU Trondheim Ragnar Stuhaug

7.7. Channel swap throughput tests 91

0

10

20

30

40

50

60

1 11 21 31 41 51 61 71 81 91 101 111 121 131 141 151 161 171 181 191 201 211

Channel Nodes sFailure

(a) APCH

0

50

100

150

200

250

300

350

400

0

10

20

30

40

50

60

70

80

1 11 21 31 41 51 61 71 81 91 101 111 121 131 141 151 161 171 181 191 201 211

Sent sSuccess sFailure Received (Secondary)

(b) AP

0,0

5,0

10,0

15,0

20,0

25,0

30,0

35,0

1 11 21 31 41 51 61 71 81 91 101 111 121 131 141 151 161 171 181 191 201 211

Beacons Received Sent sSuccess sFailure DC's

(c) NODE

Figure 7.6.: TestresultsChSwap21NodesNoSync1-21-05-13

Ragnar Stuhaug NTNU Trondheim

92 7. Results

7.8. Channel swap throughput tests, after bug fix
Description After having the first channel swap test fail miserably the interface func-
tion was remade. In short the interface function itself was changed to only set a flag
indicating to the protocol that it should initiate channel swapping. This flag is checked
by the protocol the same place as it is checking the current channel quality estimation,
reusing the triggered channel swap procedure. In total this means that a large code
block, not doing what it was supposed to, was replaced with only a few lines of code
doing exactly what it should. The test results can be seen in figure 7.7.

Minor artifacts In figure 7.7(b) the same tendency to an occasional failed transmis-
sion as in section 7.5 can be seen. According to the raw data the failures do not happen
at the same time as the channel swaps, indicating that they are not connected. This is
also backed up by the fact that the total amount of failed transmissions is approximately
equal in the test without channel swapping as it is in this test.

The phenomenon is further discussed in section 8.5.

Channel swap penalty The results from this test, and an analysis of the perfor-
mance penalty for swapping channels, are further discussed in section 8.4.

Code 7.5: Test program: TestresultsChSwap21Nodes3APChSwapChange-21-05-13
uint8_t cmdList[][8] = {

{2,0,CMD_NODE_CONFIG,NODE_CONFIG_SILENCE,5,0,0,0},
{3,0,CMD_NODE_CONFIG,NODE_CONFIG_SET_MODE,NODE_MODE_1SEC_NOCH,0,0,0},
{5,0,CMD_AP_CONFIG,’-’,0,0,0,0}, //-- x10 - EDITED OUT FOR READABILITY --//
{4,0,CMD_AP_CONFIG,’-’,0,0,0,0}, //-- x10 - EDITED OUT FOR READABILITY --//
{3,0,CMD_AP_CONFIG,’-’,0,0,0,0}, //-- x10 - EDITED OUT FOR READABILITY --//
{2,0,CMD_AP_CONFIG,’-’,0,0,0,0}, //-- x10 - EDITED OUT FOR READABILITY --//
{1,0,CMD_AP_CONFIG,’-’,0,0,0,0}, //-- x20 - EDITED OUT FOR READABILITY --//
{2,0,CMD_AP_CONFIG,’-’,0,0,0,0}, //-- x10 - EDITED OUT FOR READABILITY --//
{3,0,CMD_AP_CONFIG,’-’,0,0,0,0}, //-- x10 - EDITED OUT FOR READABILITY --//
{4,0,CMD_AP_CONFIG,’-’,0,0,0,0}, //-- x10 - EDITED OUT FOR READABILITY --//
{10,0,CMD_NODE_CONFIG,NODE_CONFIG_SILENCE,255,0,0,0},
{5,255,CMD_RESET_AP,0,0,0,0,0},
//MUST BE TERMINATED BY THE FOLLOWING ARRAY!
{0,255,0,0,0,0,0,0}};

Node message size AP message size Node count
11 byte 8 byte 21

Test length Channel Swapping Synchronization
220 seconds Manual Disabled

Table 7.5.: Major test parameters: TestresultsChSwap21Nodes3APChSwapChange-21-05-13

NTNU Trondheim Ragnar Stuhaug

7.8. Channel swap throughput tests, after bug fix 93

0

5

10

15

20

25

1 11 21 31 41 51 61 71 81 91 101 111 121 131 141 151 161 171 181 191 201 211

Channel Nodes sFailure

(a) APCH

0

50

100

150

200

250

300

350

400

0

5

10

15

20

25

30

35

40

1 11 21 31 41 51 61 71 81 91 101 111 121 131 141 151 161 171 181 191 201 211

Sent sSuccess sFailure Received (Secondary)

(b) AP

0,0

5,0

10,0

15,0

20,0

25,0

30,0

35,0

1 11 21 31 41 51 61 71 81 91 101 111 121 131 141 151 161 171 181 191 201 211

Beacons Received Sent sSuccess sFailure DC's

(c) NODE

Figure 7.7.: TestresultsChSwap21Nodes3APChSwapChange-21-05-13

Ragnar Stuhaug NTNU Trondheim

94 7. Results

7.9. Channel footprint tests

Description With the core functionality proven to work nicely the channel footprint
reported by the nodes has to be assessed. Given that the automatic channel quality
assessment on the AP does not work as intended, as seen in section 7.4, the channel
footprint is currently of limited use, but it will form the basis of any channel swaps
initiated by the application.

The purpose of the tests is to see how the different filtering options appear, both on
the nodes and on the AP. Generally the optimal solution is a filtering that gives the least
changes in perceived quality over time, given that the environment does not change
significantly. A good filtering will report channels with rare or sporadic noise as good
choices for the AP, as a completely noise free channel is not particularly realistic.

Discarded setting The last setting in the test procedure turned out to be outside the
parameters accepted by the nodes, thus the results from this particular run is discarded.
In detail the nodes would only handle a "maximum factor" setting of 200, thus the at-
tempt to apply the value 250 caused the filter to malfunction giving more or less random
results.

Environment The environment during testing is considered very stable as the tests
are conducted in a sparsely populated office environment. Two Wi-Fi channels are
present, one with reasonable signal strength (-50dBm) in channel one, and another very
weak (-87dBm) in channel three, a screenshot of the Wi-Fi measurements are shown in
figure 7.8. There are also unidentified consistent noise on channel 13 and 16. This noise
has been observed to be present during all tests and can as such be considered a constant
interference. The measured noise in channel 16 is further discussed in section 8.6.

Multirun In order to give an as good as possible basis for deciding the optimal so-
lution the tests are run two times one day apart. The AP is also located on different
channels during the two runs to give a rough estimate of how big part of the signal
footprint that is caused by crosstalk from the protocol itself.

Crosstalk In the first test the AP operates on channel four. In the second run it
has been moved to channel 10. What can be observed in both tests is that the channel
immediately following the active channel tends to have low energy readings on the
nodes. This comes from the fact that with the given traffic load the AP will very rarely
fit three messages in one beacon, meaning that the third acknowledge slot is generally
not used. This means that there is effectively no crosstalk for the nodes to register
through their energy detection procedure on this channel. The second following channel
however, generally has consistent medium level readings. This makes perfect sense
since one or more nodes are very likely to have gained access to the active channel at
this point and are transmitting their data frames. This problem would to a large degree
disappear when the nodes are moved further apart, making these readings somewhat
artificial.

NTNU Trondheim Ragnar Stuhaug

7.9. Channel footprint tests 95

The crosstalk also comes to view when looking at AP’s channel footprint. The chan-
nel immediately following the active channel can be seen to regularly turn deep red,
indicating that the AP receives reports that the channel is actively used by another AP.
Naturally this is not correct, but as described in section 7.1 this is caused by the nodes
picking up and decoding the acknowledge frames transmitted on the active channel, thus
interpreting the neighboring channel to be in active use.

A reasonable question to ask in connection to this is why there are little to no such
crosstalk on the channels preceding the active one. Firstly the reason for this should
be the nature of the protocol, as the nodes will make sure not to transmit so late that
they run the risk of not completing in time. The energy measurement made by the
nodes is performed during the last third of the subperiod, meaning that all nodes should
effectively be blocked from transmitting during the energy detection phase on the last
preceding channel. However, as described in section 7.2.3, there was also a bug in the
protocol causing the nodes to be locked out of the channel several subperiods too early,
with the test setup used here this would equate to one subperiod too many, meaning that
the latest point at which a node could possibly be transmitting is around the middle of
the second last subperiod before the beacon.

Result quality Generally it seems clear that these tests did not give a high quality
result, mainly caused by the nodes being placed so close together that crosstalk had
a large influence on the data. In fact, when looking at the raw data, this is very well
illustrated by the one node that was connected to the computer, and thus located apart
from the others. This node generally has lower energy readings and the readings on the
crosstalk channels are virtually nonexistent. This aspect of the test is further discussed
in section 8.7.

Figure 7.8.: Wifi channels at the execution of TestresultsChMgmt21Nodes15x200Sec2-21-05-
13.

Ragnar Stuhaug NTNU Trondheim

96 7. Results

Code 7.6: Test program: TestresultsChMgmt21Nodes15x200Sec(1 / 2)-(20-05-13 / 21-05-13)
uint8_t cmdList[][8] = {

{3,0,CMD_NODE_CONFIG,NODE_CONFIG_SILENCE,10,0,0,0},
{2,0,CMD_NODE_CONFIG,NODE_CONFIG_SET_MODE,NODE_MODE_1SEC,0,0,0},

/*Envelope*/ {185,0,CMD_NODE_CONFIG,NODE_CONFIG_SET_CH_MGMT,0,0,0,0},
{5,0,CMD_NODE_CONFIG,NODE_CONFIG_SILENCE,10,0,0,0},

/*Avg5*/ {195,0,CMD_NODE_CONFIG,NODE_CONFIG_SET_CH_MGMT,2,5,0,0},
{5,0,CMD_NODE_CONFIG,NODE_CONFIG_SILENCE,10,0,0,0},

/*Avg10*/ {195,0,CMD_NODE_CONFIG,NODE_CONFIG_SET_CH_MGMT,2,10,0,0},
{5,0,CMD_NODE_CONFIG,NODE_CONFIG_SILENCE,10,0,0,0},

/*Avg20*/ {195,0,CMD_NODE_CONFIG,NODE_CONFIG_SET_CH_MGMT,2,20,0,0},
{5,0,CMD_NODE_CONFIG,NODE_CONFIG_SILENCE,10,0,0,0},

/*(10,0,50)*/ {195,0,CMD_NODE_CONFIG,NODE_CONFIG_SET_CH_MGMT,1,10,0,50},
{5,0,CMD_NODE_CONFIG,NODE_CONFIG_SILENCE,10,0,0,0},

/*(5,0,50)*/ {195,0,CMD_NODE_CONFIG,NODE_CONFIG_SET_CH_MGMT,1,5,0,50},
{5,0,CMD_NODE_CONFIG,NODE_CONFIG_SILENCE,10,0,0,0},

/*(10,0,100)*/ {195,0,CMD_NODE_CONFIG,NODE_CONFIG_SET_CH_MGMT,1,10,0,100},
{5,0,CMD_NODE_CONFIG,NODE_CONFIG_SILENCE,10,0,0,0},

/*(5,0,100)*/ {195,0,CMD_NODE_CONFIG,NODE_CONFIG_SET_CH_MGMT,1,5,0,100},
{5,0,CMD_NODE_CONFIG,NODE_CONFIG_SILENCE,10,0,0,0},

/*(10,5,50)*/ {195,0,CMD_NODE_CONFIG,NODE_CONFIG_SET_CH_MGMT,1,10,5,50},
{5,0,CMD_NODE_CONFIG,NODE_CONFIG_SILENCE,10,0,0,0},

/*(5,5,50)*/ {195,0,CMD_NODE_CONFIG,NODE_CONFIG_SET_CH_MGMT,1,5,5,50},
{5,0,CMD_NODE_CONFIG,NODE_CONFIG_SILENCE,10,0,0,0},

/*(10,10,100)*/ {195,0,CMD_NODE_CONFIG,NODE_CONFIG_SET_CH_MGMT,1,10,10,100},
{5,0,CMD_NODE_CONFIG,NODE_CONFIG_SILENCE,10,0,0,0},

/*(5,10,100)*/ {195,0,CMD_NODE_CONFIG,NODE_CONFIG_SET_CH_MGMT,1,5,10,100},
{5,0,CMD_NODE_CONFIG,NODE_CONFIG_SILENCE,10,0,0,0},

/*(10,0,150)*/ {195,0,CMD_NODE_CONFIG,NODE_CONFIG_SET_CH_MGMT,1,10,0,150},
{5,0,CMD_NODE_CONFIG,NODE_CONFIG_SILENCE,10,0,0,0},

/*(10,0,200)*/ {195,0,CMD_NODE_CONFIG,NODE_CONFIG_SET_CH_MGMT,1,10,0,200},
{5,0,CMD_NODE_CONFIG,NODE_CONFIG_SILENCE,10,0,0,0},

/*(10,0,250)*/ {195,0,CMD_NODE_CONFIG,NODE_CONFIG_SET_CH_MGMT,1,10,0,250},
{10,0,CMD_NODE_CONFIG,NODE_CONFIG_SILENCE,255,0,0,0},
//MUST BE TERMINATED BY THE FOLLOWING ARRAY!
{0,255,0,0,0,0,0,0}};

Node message size AP message size Node count
26 byte 8 byte 21

Test length Channel Swapping Synchronization
15 x 200 seconds Disabled Disabled

Table 7.6.: Test parameters: TestresultsChMgmt21Nodes15x200Sec(1 / 2)-(20-05-13 / 21-05-
13)

NTNU Trondheim Ragnar Stuhaug

7.9. Channel footprint tests 97

000192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212

(a) 1.1

000192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212

(b) 2.1 (c) 1.2 (d) 2.2

(e) 1.3 (f) 2.3 (g) 1.4 (h) 2.4

Figure 7.9.: Test 1 to 4, Envelope, Avg5, Avg10, Avg20.

Ragnar Stuhaug NTNU Trondheim

98 7. Results

(a) 1.5 (b) 2.5 (c) 1.6 (d) 2.6

(e) 1.7 (f) 2.7 (g) 1.8 (h) 2.8

Figure 7.10.: Test 5 to 8, (10,0,50), (5,0,50), (10,0,100), (5,0,100).

NTNU Trondheim Ragnar Stuhaug

7.9. Channel footprint tests 99

(a) 1.9 (b) 2.9 (c) 1.10 (d) 2.10

(e) 1.11 (f) 2.11 (g) 1.12 (h) 2.12

Figure 7.11.: Test 9 to 12, (10,5,50), (5,5,50), (10,10,100), (5,10,100).

Ragnar Stuhaug NTNU Trondheim

100 7. Results

(a) 1.13 (b) 2.13 (c) 1.14 (d) 2.14

Figure 7.12.: Test 13 and 14, (10,0,150), (10,0,200).

NTNU Trondheim Ragnar Stuhaug

7.10. Single AP statistics tests 101

7.10. Single AP statistics tests
Description As a final test of the throughput and general performance of the protocol
the maximum number of available nodes was used. This included using one of the AP’s
as the 22’nd node. With this setup the same test was run over and over a total of eight
times. The results from all the tests were then averaged meaning that the resulting values
will suppress most random or fluctuating factors.

The resulting values are plotted together with the theoretical values for the given
scenario in figure 7.13.

Throughput dip One thing to note is the reported sudden decrease in transmissions
to and from the nodes every ten seconds. The explanation for this is simply that once
a new node is activated the first report from that node will contain measurements for
anywhere between 0 and one second depending on the internal timer of the node. This
means that these values are artificially low and should be ignored when analyzing the
results.

Extended measurement representations In order to compare the results to the
specifications and ease the comparison with other protocols the results are also aver-
aged and reformatted to represent packet loss percentage and throughput in bytes per
second. Also a measure of the latency has been calculated, however since no dedicated
measurement of latency has been made this number is calculated by averaging the time
between two messages from a node. Still this gives a very good indication since the
node will attempt to send the next message immediately after completing the previous
transmission. These measures are presented in figure 7.14.

Code 7.7: Test program: Testresults22Nodes10secChStats(Multirun)-23.05.13
uint8_t cmdList[][8] =

{{7,0,CMD_NODE_CONFIG,NODE_CONFIG_SILENCE,255,0,0,0},
{3,0,CMD_NODE_CONFIG,NODE_CONFIG_SET_MODE,NODE_MODE_1SEC_CHSTAT,0,0,0},
{10,1,CMD_NODE_CONFIG,NODE_CONFIG_SILENCE,0,0,0,0},
{10,2,CMD_NODE_CONFIG,NODE_CONFIG_SILENCE,0,0,0,0},
/* EDITED FOR READABILITY */
{10,20,CMD_NODE_CONFIG,NODE_CONFIG_SILENCE,0,0,0,0},
{10,21,CMD_NODE_CONFIG,NODE_CONFIG_SILENCE,0,0,0,0},
{10,22,CMD_NODE_CONFIG,NODE_CONFIG_SILENCE,0,0,0,0},
{10,0,CMD_NODE_CONFIG,NODE_CONFIG_SILENCE,255,0,0,0},

{5,255,CMD_RESET_AP,0,0,0,0,0},
//MUST BE TERMINATED BY THE FOLLOWING ARRAY!
{0,255,0,0,0,0,0,0}};

Node message size AP message size Node count
14 byte 8 byte 1-22

Test length Channel Swapping Synchronization
8 x 230 seconds Disabled Disabled

Table 7.7.: Major test parameters: Testresults22Nodes10secChStats(Multirun)-23.05.13

Ragnar Stuhaug NTNU Trondheim

102 7. Results

0,0

10,0

20,0

30,0

40,0

50,0

60,0

70,0

80,0

90,0

100,0

1 11 21 31 41 51 61 71 81 91 101 111 121 131 141 151 161 171 181 191 201 211 221

Sent sSuccess sFailure E1-Sent E2-Sent

(a) AP Sending

0,0

50,0

100,0

150,0

200,0

250,0

300,0

350,0

400,0

1 11 21 31 41 51 61 71 81 91 101 111 121 131 141 151 161 171 181 191 201 211 221

Received E-Received

(b) AP Receiving

0,0

5,0

10,0

15,0

20,0

25,0

30,0

35,0

1 11 21 31 41 51 61 71 81 91 101 111 121 131 141 151 161 171 181 191 201 211

Sent sSuccess sFailure DC's E-Sent E-sSuccess E-sFailure

(c) Node Sending

0,0

5,0

10,0

15,0

20,0

25,0

30,0

35,0

1 11 21 31 41 51 61 71 81 91 101 111 121 131 141 151 161 171 181 191 201 211

Received CSMA Miss E1-Received E2-Received E-CSMA Miss

(d) Node Receiving

Figure 7.13.: Testresults22Nodes10secChStats(Multirun)-23.05.13

NTNU Trondheim Ragnar Stuhaug

7.10. Single AP statistics tests 103

0

100

200

300

400

500

600

0

1000

2000

3000

4000

5000

6000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

Bps In Total throughput Bps Out (Secondary)

(a) Throughput in bytes per second.

0 %

5 %

10 %

15 %

20 %

25 %

0

10

20

30

40

50

60

70

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

Avg Latency Packetloss % (Secondary)

(b) Latency and packet loss percentage.

Figure 7.14.: Test results converted to Bps throughput, packet loss percentage and latency in
milliseconds.

Ragnar Stuhaug NTNU Trondheim

104 8. Discussion

8. Discussion

8.1. General results

Given the results in section 7.10 it is clear that the protocol does function according
to the specifications when looking at one channel in isolation. The performance is as
expected compared to the theoretical values and there are no glitches or errors causing
instability.

The same is the case when performing channel swaps in section 7.8, though this test
reveals a very small amount of transmission errors that should, theoretically, not have
been present.

Still the successful results are mainly achieved once a lot of the critical functionality
has been removed. In order for the protocol to be used in the target application it is an
absolute must that the parts that currently do not work are corrected and tested properly.

8.2. Synchronization problems

The test in section 7.3 reveals the need for a more accurate synchronization function,
and possibly other hidden errors connected to the synchronization. Given the inability to
debug this part during implementation it was to some extent expected that there would
appear some issues, but the severity of the problems was far worse than expected.

Still there is light at the end of the tunnel, namely the observed behavior when test-
ing with two AP’s during debugging prior to the hardware breakdown. This behavior
is exactly as expected under the circumstances, and gives a strong indication that the
fundamental concept is reasonable and that a well working system is achievable if only
the accuracy are improved to a proper level.

Problem analysis The synchronization function has been the object of considerable
rethinking following the test period. First of all, up till now, the timers were only set
when the error between the expected timing and the received timing was sufficiently low.
This was done to avoid setting the timings if the sync signal was delayed significantly
by ongoing interrupts. However this approach is most likely the main reason why there
are so many disconnects during the tests in section 7.3.

In figure 7.2(a) the dynamic offset of the PLL is seen to oscillate around 3-4 indicating
that the sync signal has around 3,5 symbols error compared to the correct 1Hz. Given
16µs per symbol this means a frequency of approximately 0,999944Hz. Given the
general accuracy of microcontroller crystals this has to be an acceptable error, and this
error should be handled by the PLL. In addition to this comes the 4 symbols offset
due to rounding errors when calculating the period and subperiod timings as explained

NTNU Trondheim Ragnar Stuhaug

8.2. Synchronization problems 105

in section 3.9.2. In total this means that the timers should be delayed 7-8 symbols
once each second. This is no problem for the nodes as they will adjust their timings
accordingly, so long as all AP’s perform approximately the same delay and stay within
a distance from each other no bigger than what is handled by the timing buffer described
in section 2.5.6.

In the implementation however, this failed. When an AP had its sync signal delayed
by an ongoing interrupt it would not adjust its timers at all that second. This caused
the timers to be 7-8 symbols in front of the correct, global timing. This error would
then accumulate each time the AP had its signal delayed, and each time the offset of the
PLL oscillated too far away from the correct value. If this happened for five consecutive
seconds the error would become almost 40 symbols, if it went on for ten seconds the
error would build up to almost 80 symbols. With a subperiod timing of 126 symbols, as
stated in section 3.9.2, the accumulated error would equate to a full subperiod after only
15 seconds. When the AP then finally adjusts the timers, the beacon will suddenly move
out of its subperiod, making the nodes unable to receive it, thus they all disconnects.

Immediate solution The first and most obvious solution to this is to set the timers
each second regardless of any delays, but instead of setting them with static values as is
done now, the value is calculated dynamically based on the estimated delay of the sync
signal. This way, if the sync signal is delayed some 20 symbols by an ongoing interrupt
all timers will be set with their static value minus 20. This should then completely
remove the error accumulation described above.

Given the analysis of the problems it is believed that this should stabilize the sys-
tem with a single AP. Since the beacon will never suddenly jump, as it did with the
current implementation. This should lead to the tests in section 7.3 giving stable and
uninterrupted results.

Further improvements Still some issues remain for the sync between multiple
AP’s. Namely the fact that the PLL will drift and oscillate around the desired value,
and this could very well lead to the AP’s drifting further apart than the accepted timing
buffer on the nodes.

To minimize this error one possible solution would be to increase the synchronization
frequency. This will give the PLL more samples meaning that it would be able to correct
the erroneous drifting faster. Theoretically this should make the oscillations smaller but
more frequent. Since only the amplitude matters in this case this is likely to improve the
result significantly.

In connection to this some adjustments could also be made to the PLL itself. Firstly it
could be made very slow, effectively making it into a low pass filter for the sync signal.
This way it should be able to correctly adjust to the close to constant error caused by
an inaccurate sync frequency, while the fluctuating errors from interrupt delays would
to some extent be ignored. Secondly it would be possible to exploit the fact that all
non-constant errors will only cause the sync signal to be delayed, never to trigger pre-
maturely. This means that the PLL could treat the signal different if it arrives too late
or too early. If the sync signal arrives before it was expected it has to mean that the
expected value is too large, indicating a too large factor, thus the PLL could adjust the

Ragnar Stuhaug NTNU Trondheim

106 8. Discussion

Code 8.1: Pseudo code for a new and improved synchronization function.
sync(received){
offset = expected - received;
if(offset < 0){ //Delayed

factor += SmallValue;
}else if(offset > 0){ //Premature

factor -= offset;
}
SetTimers(Const + offset);
expected += SyncPeriod + factor;

}

factor quite abruptly without any risk. If the signal is delayed however, it is most likely
caused by interrupts, meaning that the PLL should only perform a minor adjustment of
the factor.

In code 8.1 a simple pseudo code for a new sync function is presented. Here it is
shown how the factor is adjusted significantly if the sync signal arrives prematurely.
When the signal is delayed however the factor is only adjusted slightly. Also the timers
are always set, but the offset between the expected sync and the received sync is added to
compensate. This improved function, in combination with an increased sync frequency,
should provide a far better theoretical solution than what is currently in place.

8.3. AP Channel assessment errors

The tests in section 7.4 reveals that the AP incorrectly assess the channel to be noisy
as the number of nodes increase. The reason for it is described in section 6.1.6 as the
detection of corrupted frames.

The way the channel assessment works is by subtracting a set, or random, value from
the quality indicator each time an undesired event happens. Each beacon trigger the
quality indicator is incremented, meaning that if no undesired events occur the indicator
will stay at its maximum value. Different events cause different subtractions, with the
most noticeable event being the reception of a valid frame with a different network ID.
This means that two AP’s are competing on the same channel, and it is desired that one
of them swaps as soon as possible. The reception of a corrupted frame is interpreted as
the channel being noisy, and causes a minor decrementation. Lastly the detection of a
higher than desired energy level will cause the smallest subtraction.

Problem analysis The reason for the channel assessment failing as it did is due to
the collisions caused by the CSMA/CA procedure. As the number of nodes increase the
number of collisions will also increase, and this is very well reflected in the test results
in section 7.4, as the channel quality indicator is clearly decremented faster and faster
as the number of nodes increases.

Possible solution An immediate solution could be to simply disable the decremen-
tation caused by the corrupted frames, and that could be a reasonable temporary fix.
Still a better and more permanent solution is for the AP to measure the channel through-

NTNU Trondheim Ragnar Stuhaug

8.4. Channel swap penalty 107

put and modify the impact a corrupted frame has on the quality estimator based on this.
This can be achieved by having the AP count the number of frames received over one
subperiod and use the resulting number as a basis for the channel quality decrementa-
tion, through some conversion method. The simplest solution would be to hardcode an
array saying that when receiving X messages per period the first Y corrupted messages
shall be ignored. The X-Y conversions can be derived directly from the theoretical
calculations in chapter 5, or the practical results obtained in section 7.10. Given the
random nature of CSMA/CA the number of legitimate collisions has to be overesti-
mated slightly, or the AP could average the numbers over several periods if the memory
footprint and overhead connected to that functionality is acceptable.

Further improvements Another situation that is not currently very well covered
by the channel assessment is if two AP’s operate on the same channel and in synchro-
nization. This will cause them both to transmit in parallel, meaning that neither will
detect the other’s beacon. A way of detecting this event is to evaluate the acknowl-
edgements received. Generally the acknowledgements should be very stable and rarely
get corrupted or in other ways go missing. The things an AP should listen for are the
following; firstly the reception of an acknowledge frame without sending any messages
is a clear indicator of an AP collision. Secondly comes the reception of too many ac-
knowledgements, and thirdly the reception of valid acknowledgements from node ID’s
that should not have received a message in the preceding beacon. All these artifacts
can happen if two AP’s transmit their beacons on top of each other, but it all depends
on whether the nodes are able to decode the beacons or not. A just as likely outcome
is that neither AP receives any acknowledgements at all, since the nodes were not able
to correctly decode the frames. This case gives a slightly less clear indicator since ac-
knowledgements can go missing if the nodes have moved out of range, or if the node is
currently transmitting on a different channel, as shown in figure 2.4(d). This means that
the AP cannot immediately assume a collision if a single acknowledge goes missing,
if two or more acknowledgements disappears however, the probability of a collision is
greatly increased and the impact on the quality estimator should be significant. A rea-
sonable solution would be to set three limits, one for each missing acknowledgement,
and generate a random number modulo each limit when the first, second and third ac-
knowledge goes missing. The limits could very well be something like 2, 16 and 64,
meaning that three missing acknowledgements will have the same impact on the esti-
mator as the reception of a frame with a different network ID.

8.4. Channel swap penalty

As stated in section 3.5.6 the AP will move to a new channel immediately after the
acknowledge phase, leading to all incoming data frames in the following access window
being lost, as they are transmitted on the wrong channel. In addition to this it is stated
in section 3.7.7 and table 3.3 that a channel will be marked as unstable by the nodes
until two consecutive beacons has been received. This means that the new channel that
the AP has moved to will not be used for transmission by the nodes for one additional
subperiod. In total this results in the loss of two subperiods of transmissions. With

Ragnar Stuhaug NTNU Trondheim

108 8. Discussion

300

310

320

330

340

350

360

370

380

1 11 21 31 41 51 61 71 81 91 101 111 121 131 141 151 161 171 181 191 201 211

Received Change Received NoChange Linear (Received NoChange) Linear (Received Change)

Figure 8.1.: Estimation of channel swap penalty based on test results.

31 beacons per second this equates to 6, 45% of the total throughput capacity over one
second.

In section 7.8 a test is conducted where the AP is forced to swap channels very fre-
quently. In order to measure the impact a channel swap has on the throughput, the results
have been filtered into two separate graphs. The "Received Change" graph contains the
values reported during the seconds where the AP has performed a channel swap. The
"Received NoChange" line represents the reports from seconds where the system were
stationary on one channel. In order to make the graphs continuous the value from the
previous cell is simply repeated in cells where the specific graph should filter out the
reported value. In the resulting plot the linear trend line for each graph is added. The
final plot is seen in figure 8.1.

When averaging the filtered values, excluding the repeated cells, the average number
of frames during "channel swap seconds" are 331, 6, while the average during "station-
ary seconds" are 353, 4. The difference is 331, 6/353, 4 = 0, 938, meaning that the
experienced penalty during this particular test is 6, 2%. Given that these numbers are
based on a single test it is reasonable to assume that there will be some random factors
influencing the results. This can also be seen in figure 8.1, as the two filtered plots
are fairly volatile. Still the results are so clear that it is reasonable to conclude that the
behavior is exactly as expected.

8.5. Failed AP-transmissions

In the tests in section 7.5 and 7.8 it can be observed that the AP occasionally experiences
a failed transmission. The reason for this is not known exactly, and the output from the
test application does not give any further indications as to where the error is located.
Still one interesting thing can be seen if the test results in section 7.10 are analyzed in
detail. In this test there are virtually no failed transmissions at all. During the full eight
test runs there are only a total of five failed AP-transmissions.

In between these tests one seemingly insignificant change was made to the node pro-
tocol code in an attempt to repair the error described in section 6.1.7. Namely to swap
the interrupt routines connected to the symbol counter comparator two and three, these
two routines are the acknowledge transmission trigger and the data frame transmission

NTNU Trondheim Ragnar Stuhaug

8.6. Channel 16 noise 109

trigger. Logically speaking this change should not matter whatsoever, but it appears as
if the modification did cause a change in behavior that had an impact on the occasional
failed transmissions. This naturally also indicates that the original error was connected
to the node not transmitting the acknowledgement correctly, rather than the AP not be-
ing able to receive it or the node not receiving the beacon.

Given that the problem seems to have been largely removed, the few failures during
the test in section 7.10 could very well be caused by a noise spike or other random
events, the conclusion is that no further actions are needed on this matter.

8.6. Channel 16 noise

During all tests, including the channel footprint tests in section 7.9, there has been
detected a significant energy level on channel 16. The source has been unknown, but
assumed to be a separate network of some kind. However during the analysis of the
results something came to view. During the channel footprint tests one node was located
slightly apart from the others. Node 21 was connected to the computer with JTAG to
enable debugging, and was thus located both closer to the AP, and apart from the other
nodes. The setup is shown in figure 7.1.

Problem analysis When looking at the measurements reported by the different
nodes node 21 has quite different readings from the others. In figure 8.2 some sam-
ples are show, for node 21 and a small collection of other nodes to illustrate the issues.

Node 21 consistently reports zero energy on channel 16, while the rest of the nodes
report readings ranging from 1 to 24. This could indicate that the source might not be
an external network after all. The noise might be some sort of interference generated by
the nodes themselves or by the power supply.

During the testing the nodes has been located very close together, and in many cases
the antenna plug of one module are located only centimeters from either the micro-
controller or the antenna plug of another module. It must be assumed that this can
make them interfere in unpredictable ways, and thus that this might be the source of the
strange readings.

The data currently available are too scarce to draw any conclusions, but the fact that
the measurements are very consistent for each separate node, while the difference be-
tween the nodes are significant, indicates that the source is something static, and the fact
that the noise has been observed also when debugging the protocol at a different geo-
graphical location, while still having the available nodes placed in immediate proximity
of each other, supports this theory.

Possible further actions One interesting test in order to investigate this issue
would be to repeat the exact same test with the exact same physical layout, and then
try to move some nodes slightly to see if this changes the energy measurements. Also
more nodes should be moved away from the current node-cluster to verify that the zero
measurement given by node 21 is not simply an error.

Ragnar Stuhaug NTNU Trondheim

110 8. Discussion

Tim
e

N
o
d
e

C
h
1

C
h
2

C
h
3

C
h
4

C
h
5

C
h
6

C
h
7

C
h
8

C
h
9

C
h
1
0

C
h
1
1

C
h
1
2

C
h
1
3

C
h
1
4

C
h
1
5

C
h
1
6

00021 5 0 12 16 0 0 0 0 0 0 26 0 0 13 0 0 14

00021 15 0 1 5 0 0 0 0 0 0 42 0 0 9 0 0 9

00021 3 0 1 0 0 0 0 0 0 0 31 0 0 0 0 0 2

00021 13 0 0 5 0 0 0 0 0 0 27 0 0 8 0 0 7

00021 1 0 0 21 0 0 2 0 0 0 47 0 1 13 0 0 24

00021 21 0 0 0 0 0 0 0 0 0 51 0 0 5 0 0 0

00021 11 0 1 12 0 0 0 3 0 0 39 0 7 9 0 0 12

00022 5 2 7 13 0 0 0 1 0 0 27 2 5 13 0 0 14

00022 15 0 1 6 0 0 0 0 0 0 42 0 0 11 0 0 11

00022 13 0 2 4 0 0 0 0 0 0 27 0 0 8 0 0 8

00022 3 0 1 1 0 0 0 0 0 0 30 0 0 1 0 0 2

00022 1 0 3 20 0 0 2 0 0 0 48 1 1 13 0 0 23

00022 21 0 2 6 0 0 0 0 0 0 51 1 0 5 0 0 0

00023 11 0 1 12 0 0 0 2 0 0 39 0 6 13 0 0 13

00023 5 1 4 12 0 0 0 0 0 0 27 1 5 17 0 0 15

00023 15 0 0 5 0 0 0 0 0 0 42 0 0 9 0 0 11

00023 13 0 1 3 1 0 0 0 0 0 30 0 0 8 0 0 6

00023 1 3 2 20 1 0 2 0 0 0 46 0 0 13 0 0 23

00023 3 0 0 0 0 0 0 0 0 0 31 0 0 1 0 0 2

00023 21 0 1 3 0 0 0 0 0 0 51 0 0 6 0 0 0

00023 11 0 0 13 0 0 0 1 0 0 39 0 7 10 0 0 14

00024 5 1 2 12 0 0 0 0 0 0 24 1 3 11 0 0 14

00024 15 0 0 5 0 0 0 0 0 0 43 0 0 10 0 0 8

00024 13 5 0 4 1 0 0 0 0 0 30 0 0 8 0 0 8

00024 1 5 1 20 0 0 2 2 0 0 48 0 1 14 0 0 23

00024 21 0 0 2 0 0 0 0 0 0 51 0 0 5 0 0 0

00024 3 0 0 0 0 0 0 0 0 0 32 0 0 1 0 0 2

00025 11 0 3 12 0 0 0 2 0 0 39 0 6 9 0 0 13

00025 5 0 1 13 0 0 0 0 0 0 27 1 5 16 0 0 15

00025 15 0 0 6 0 0 0 0 0 0 42 0 0 10 0 0 9

00025 3 0 0 0 0 0 0 0 0 0 32 0 0 0 0 0 2

00025 13 3 0 4 0 0 0 0 0 0 27 0 0 8 0 0 8

00025 1 3 0 19 0 0 2 1 0 1 48 0 1 14 0 0 24

00026 21 0 0 1 0 0 0 0 0 0 51 0 0 6 0 0 0

00026 11 0 2 11 0 0 0 1 0 0 39 0 4 11 0 0 15

00026 5 0 1 16 0 0 0 0 0 0 24 1 4 11 0 0 13

00026 15 0 0 5 0 0 0 0 0 0 42 0 0 9 0 0 9

00026 3 0 0 0 0 0 0 0 0 0 31 0 0 1 0 0 2

00026 13 2 5 3 0 0 0 0 0 0 27 0 0 10 0 0 7

00026 1 1 4 22 0 0 3 1 0 0 47 0 1 14 0 0 23

Figure 8.2.: Collection of individual samples from channel footprint test. Included maximum,
node 1, minimum, node 3, separate node, node 21, and other nodes with similar last digit. As
well as node 5 and 15 for more samples in-between.

NTNU Trondheim Ragnar Stuhaug

8.7. Channel Footprint test 111

8.7. Channel Footprint test

Problem analysis As stated in section 8.6 the noise registered in channel 16 ap-
pears to be some sort of local interference rather than an actual competing network. In
addition to this the readings shown in figure 8.2 indicates that the crosstalk portion of
the energy readings are significant for the nodes located closely together. While node
21, located close to a meter away from the other nodes, have very clean an consistent
measurements, the nodes located in the cluster have multiple small readings in channels
that should presumably be clear.

This is also reflected in figure 8.3 where the measurements for the full duration of the
test are averaged, this means all values collected across all different channel assessment
algorithms, close to one hour of testing. This figure is made to compare the values
between the nodes over a period where they have been subject to the same test procedure
and the same environment. Given the very long duration of the channel footprint tests,
around 50 minutes, it can be assumed that any random differences have evened out
leaving only the hardware differences and the local signal maxima and minima.

Figure 8.3 show that there are large individual differences between the modules.
Some nodes appear to be extremely sensitive while others appear to experience sig-
nal losses. The most noticeable are node 1 and 3, where node 1 has by far the highest
detected energy level on inactive channels while node 3 hardly picks up any energy at
all. Interestingly however, neither have the most extreme readings on the active channel,
though they both rank in the top/bottom 5.

In order to save some time and unpacking no nodes had their antennas mounted during
any of the performed tests, meaning that they all operate solely with their antenna plug
as an antenna. Given that the distance from the nodes to the AP is very short this should
have no influence on the protocol functionality, since the signals are easily transmittable
over this short distance anyways. But it is obvious that this was not a good choice for the
tests involving features of the physical layer, like the energy measurements. It must be
assumed that the antenna plugs have been subject to limited tuning and customization
to make them good transmitters/receivers, resulting in widely different transmission
properties.

Another thing to note in figure 8.3 is how the average energy level in total is higher
in test two than in test one. This is well illustrated by looking at the color shade of the
whole figure, where test two have a generally more yellow shade than test one, meaning
the majority of the values are higher.

The exact source of this noise is unknown, but given that the tests were performed
in an office environment it can simply be that there were more staff present during test
two than test one, meaning more Wi-Fi traffic and generally more noise from electrical
office equipment.

Possible further actions The different assessment algorithms can to some extent
be compared using the data gathered, as the source of the registered noise is of no
interest to the algorithm, and in the realistic scenario the nodes will be expected to

Ragnar Stuhaug NTNU Trondheim

112 8. Discussion

observe different levels of noise depending on their physical location. Thus the tests are
usable for determining what algorithms to further evaluate, but they do not represent the
energy footprint an individual node will experience once properly assembled.

In order to get a better test on this matter the nodes should be assembled fully and
installed in an active installation. This will remove most of the issues presumably expe-
rienced in this test, the nodes will be far apart, they will all have the same antenna gain,
at least closer than what was the case in these tests, and they will be moving, meaning
that local maxima and minima of interference will even out over the duration of the
tests.

NTNU Trondheim Ragnar Stuhaug

8.7. Channel Footprint test 113

N
o
d
e

C
h
1

C
h
2

C
h
3

C
h
5

C
h
6

C
h
7

C
h
8

C
h
9

C
h
1
0

C
h
1
1

C
h
1
2

C
h
1
3

C
h
1
4

C
h
1
5

C
h
1
6

Su
m

C
h
4

1 0,3 1,4 20,2 1,2 2,6 2,4 0,0 0,1 0,2 0,0 0,0 13,7 0,0 0,0 22,0 64,1 47,0

2 0,0 0,1 10,7 0,2 0,0 0,1 0,0 0,0 0,0 0,0 0,0 5,7 0,0 0,0 10,0 26,8 31,9

3 0,0 0,3 0,4 1,9 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,1 0,0 0,0 1,1 3,8 33,0

4 0,1 1,3 6,9 0,1 0,0 0,5 0,0 0,0 0,0 0,0 0,0 6,6 0,0 0,0 7,4 22,9 45,1

5 0,4 1,4 12,8 0,3 1,0 2,4 0,0 0,0 0,0 0,0 0,0 11,6 0,0 0,0 13,2 43,3 25,2

6 0,6 1,6 12,6 1,4 1,3 2,4 0,0 0,0 0,0 0,0 0,0 9,6 0,0 0,0 14,3 43,9 45,0

7 0,0 0,3 8,6 2,0 0,0 0,1 0,0 0,0 0,0 0,0 0,0 5,9 0,0 0,0 10,4 27,4 48,0

8 0,1 1,3 8,9 0,5 0,2 0,5 0,0 0,0 0,2 0,0 0,0 6,6 0,0 0,0 11,1 29,3 34,9

9 0,1 0,6 6,5 0,6 0,3 0,6 0,0 0,0 0,1 0,0 0,0 12,1 0,0 0,0 8,7 29,4 48,0

10 0,1 0,4 3,5 1,0 0,0 0,8 0,0 0,0 0,1 0,0 0,0 7,7 0,0 0,0 5,7 19,3 40,6

11 0,2 0,6 11,5 0,5 1,2 1,7 0,0 0,0 0,0 0,0 0,0 6,9 0,0 0,0 13,0 35,7 42,5

12 0,2 0,5 7,6 0,5 1,0 1,6 0,0 0,0 0,0 0,0 0,0 3,4 0,0 0,0 10,6 25,5 40,9

13 0,0 0,4 2,7 0,7 0,1 0,6 0,0 0,0 0,0 0,0 0,0 8,5 0,0 0,0 6,7 19,9 26,2

14 0,2 0,5 4,8 0,6 0,6 1,6 0,0 0,0 0,0 0,0 0,0 6,7 0,0 0,0 8,4 23,4 45,0

15 0,0 0,3 5,5 1,0 0,0 0,3 0,0 0,0 0,0 0,0 0,0 8,0 0,0 0,0 9,9 25,1 42,0

16 0,1 0,9 2,7 0,4 0,0 0,4 0,0 0,0 0,0 0,0 0,0 8,0 0,0 0,0 7,4 20,1 47,9

17 0,1 1,0 6,2 1,0 0,0 0,6 0,0 0,1 0,2 0,2 0,0 9,2 0,0 0,0 7,2 25,9 36,9

18 0,1 0,6 2,2 0,3 0,0 0,6 0,0 0,0 0,2 0,1 0,0 8,8 0,0 0,0 3,8 16,6 27,0

19 0,1 0,7 6,6 0,7 0,4 0,9 0,0 0,1 0,1 0,0 0,0 10,0 0,0 0,0 5,4 25,1 35,1

20 0,2 1,0 5,4 1,5 0,4 1,3 0,0 0,0 0,0 0,0 0,0 8,9 0,0 0,0 10,6 29,3 38,5

21 0,0 0,2 0,2 0,9 0,0 0,0 0,0 0,0 0,0 0,0 0,0 4,9 0,0 0,0 0,0 6,3 49,4

(a) Test1

N
o
d
e

C
h
1

C
h
2

C
h
3

C
h
4

C
h
5

C
h
6

C
h
7

C
h
8

C
h
9

C
h
1
1

C
h
1
2

C
h
1
3

C
h
1
4

C
h
1
5

C
h
1
6

Su
m

C
h
1
0

1 1,0 2,1 20,3 0,8 0,4 2,4 0,7 0,4 0,5 1,9 0,7 13,2 0,1 0,0 22,7 67,2 46,8

2 0,4 0,4 10,7 0,2 0,1 0,1 0,1 0,1 0,1 0,5 0,2 6,7 0,0 0,0 11,2 30,9 36,0

3 0,5 0,8 1,0 0,4 0,1 0,1 0,1 0,2 0,2 1,9 0,3 0,3 0,0 0,0 1,4 7,5 31,9

4 0,6 1,4 6,9 0,4 0,3 0,2 0,3 0,2 0,2 1,1 0,5 7,5 0,0 0,0 7,8 27,6 44,1

5 0,7 1,5 13,0 0,6 0,4 0,2 0,5 0,3 0,3 0,8 1,1 12,2 0,1 0,0 13,8 45,5 24,7

6 1,1 1,7 13,0 1,0 0,5 0,4 0,6 0,4 0,4 2,0 1,3 10,7 0,1 0,0 14,7 47,8 45,0

7 0,7 1,2 9,1 0,7 0,3 0,2 0,2 0,3 0,3 1,9 0,4 6,9 0,0 0,0 10,9 33,2 45,6

8 0,8 1,7 9,3 0,6 0,4 0,2 0,3 0,3 0,2 1,0 0,7 7,4 0,1 0,0 11,9 34,8 25,9

9 0,5 1,0 6,7 0,4 0,2 0,1 0,3 0,3 0,3 1,1 0,5 12,1 0,1 0,0 9,1 32,7 47,7

10 0,7 1,3 4,0 0,5 0,3 0,1 0,3 0,3 0,3 1,2 0,6 9,2 0,1 0,0 6,2 25,0 41,9

11 0,6 1,0 11,4 0,5 0,3 0,1 0,3 0,2 0,2 1,2 1,3 8,1 0,1 0,0 13,3 38,8 39,4

12 0,6 1,0 7,9 0,4 0,2 0,2 0,4 0,3 0,1 0,8 1,1 5,1 0,0 0,0 11,2 29,4 40,9

13 0,5 1,0 3,3 0,7 0,4 0,3 0,3 0,3 0,2 1,7 0,5 8,8 0,1 0,0 7,1 25,3 27,2

14 0,6 1,0 4,5 0,6 0,2 0,2 0,4 0,3 0,2 1,2 0,6 8,1 0,0 0,0 8,3 26,3 45,0

15 0,5 1,0 4,7 0,5 0,3 0,2 0,2 0,2 0,2 1,0 0,5 8,8 0,0 0,0 9,4 27,5 42,2

16 0,6 1,5 2,7 0,5 0,3 0,1 0,3 0,3 0,3 1,0 0,3 8,6 0,1 0,0 6,6 23,0 47,9

17 0,8 1,6 6,7 0,6 0,3 0,3 0,3 0,4 0,3 1,7 0,6 9,6 0,1 0,0 7,8 31,0 38,9

18 0,5 1,0 2,3 0,5 0,2 0,1 0,1 0,1 0,2 0,7 0,4 9,6 0,0 0,0 4,6 20,5 30,4

19 0,8 1,6 6,8 0,9 0,3 0,2 0,3 0,2 0,4 1,0 0,8 10,6 0,1 0,0 6,7 30,8 30,7

20 1,0 1,6 5,8 0,7 0,2 0,2 0,4 0,3 0,3 1,4 0,6 9,8 0,0 0,0 11,0 33,6 37,2

21 0,6 1,0 1,4 0,6 0,2 0,1 0,2 0,3 0,2 1,3 0,5 5,4 0,1 0,0 0,0 12,0 51,0

(b) Test2

Figure 8.3.: Average channel readings throughout the whole duration of the tests.

Ragnar Stuhaug NTNU Trondheim

114 8. Discussion

8.8. Channel assessment algorithms

In section 8.7 it was reasoned that the channel footprint tests in section 7.9 had limited
quality because of various error sources. Still the different measurements does give an
impression of how the different algorithms behave compared to each other, even if the
test conditions are not as realistic as they should have been, enabling some discussion
regarding the different options.

8.8.1. Envelope

In test 1, figure 7.9, a pure envelope is used to capture the detected signals. This solution
seems to present a viable ranking of the channels, with both tests resulting in at least
one fully green channel from the AP’s point of view, the rest of the channels are all
colored in fairly different shades, with the channels where the nodes register more or
less continuous noise colored with the darker shades of orange. This does give the AP a
very good foundation for choosing a new channel should the need arise, and as such the
envelope might not be a bad choice.

8.8.2. Average

Test 2, 3 and 4 in figure 7.9 uses the average over 5, 10 and 20 measurements. The first
obvious thing to note here is that the channel footprint generally is very clean and a lot of
channels are listed to be completely clean throughout the whole test. This is as expected,
as was noted in section 3.8.5, since the average value will spread any occasional noise
over a number of samples, making the numerical value significantly lower unless it
registers a continuous stream of high readings. Thus this approach is likely to require
lower limits than the others in order to provide the same channel ranking.

Generally it is not desired to use an approach that gives as many completely green
channels as is the case with the average tests, but the second test run of test two shows
that it could work very well under the right conditions. It seems likely that with some
tuning of the limits and possibly also the averaging period this solution could work very
well.

8.8.3. Envelope with filter

The tests using a factor on the envelope have varying results. Firstly it seems clear that
the smoothing factor only makes things worse. The tests where this factor was not zero
are test 9 to 12 in figure 7.11. The footprints gathered here tends to give a high number
of channels that are estimated to be very noisy, making them hard to rank effectively as
they all appear to be very bad choices. Thus it can be reasoned that if the envelope with
filtering is to be used the smoothing factor can be removed altogether.

Test 5 to 8 in figure 7.10 have reasonable results overall, but it is clear that a maximum
factor of 50 is too low when there is a lot of noise, the footprints from the first test run
does rank the channels fairly well, but in test run two it is quite clear that the ranking
gets better when the limit is increased to 100.

NTNU Trondheim Ragnar Stuhaug

8.8. Channel assessment algorithms 115

Test 13 and 14 in figure 7.12 has the maximum factor increased to 150 and lastly
200. This seems to give even more completely green channels during test run one, but
in test run two these two tests seems to report even worse channel estimates to the AP
than test 7 and 8. This makes no sense however and it has to be assumed that the cause
of this discrepancy is an increase in outside noise rather than the actual behavior of the
algorithm. Once again the poor quality of the tests comes to view and it is clear that
more tests should be conducted before any final decisions are made.

8.8.4. Conclusion

After this quick analysis the only certain conclusion is that the smoothing factor has
little to no positive effect and can be skipped. Other than that the choice of formula is
still an open question and all options do appear to present viable solutions.

There is no question that the simplest choice is the pure envelope, as this requires only
a single value to be stored for each channel, and also requires hardly any calculations
when storing the measurements.

Averaging will clearly need other limits than what was used in these tests, but test
two in the second test run clearly shows that the channel ranking for the AP can become
very good with this approach when the conditions are right.

All in all, the main thing to take from the tests is that the configuration of the algo-
rithms should preferably be changed based on the total level of noise in order for the
assessment to be the most effective.

8.8.5. Channel ranking on nodes

The suggested dynamic configuration rise the question if another approach should be
used instead of what is the case now. Instead of having the nodes report the energy
readings directly to the AP, decoded to a compact format, the nodes could perform the
ranking locally. Then the channels could be categorizing into groups indicating what
channels the node would prefer that the AP moved to if a channel swap was to be made.

This way the channels that are the noisiest from the node’s point of view will be
in group three regardless of their actual numerical energy level. The channels with
the lowest noise level will be in group zero. This will rank the channels compared to
each other instead of the way it effectively works now, where the channels are ranked
individually compared to a static noise limit.

It might still be sensible to keep the static noise limits in mind when populating the
groups. One possibility is to define a minimum and maximum size for the groups,
where the noise limits can be used to determine what group to put the channel in if the
minimum size limits of the groups are already met.

One can imagine that each group should have a minimum of two and a maximum of
six channels in it. The two channels with the lowest energy reading will automatically
be placed in group zero no matter what the actual energy reading is. Likewise for the
two channels with the highest readings, that will be placed in group two. After this
the third lowest channel could be placed in group zero if it has energy below X, or in
group one if it has energy above X, this goes on with the next channel in line until group

Ragnar Stuhaug NTNU Trondheim

116 8. Discussion

one has two channels in it, at which point the next channel is placed in group one with
energy below Y or in group two with energy above Y.

Group three is still limited to active channels only, as it is vital that the AP’s has a
proper knowledge about this at all times. Also it is obvious that the minimum limits for
the groups have to be surpassed if a sufficiently high number of channels belong in the
active group.

With the transition to this approach the need for dynamic configuration of the algo-
rithms should not be needed, as the ranking will be self regulating and to some extent
independent of the actual noise levels. Still the nodes has to base the ranking on energy
measurements, meaning that the question of what approach to use still remains. This
should be further evaluated at a later stage after running a new set of tests where the
major drawbacks of the currently executed ones are improved and corrected.

8.9. Protocol parameters

During the implementation process limited effort has been put into fine tuning of the
protocol parameters, other than the ones that are critical to the functionality. Also the
configuration of hardware functions like the CCA has been largely ignored, with the
default settings being used in most cases. This means that there might be room for im-
provement by adjusting particular settings to be better suited for this particular scenario.

8.9.1. CSMA/CA behavior

In figure 8.4 the average traffic measurements for the nodes during test one in section
7.9 are shown, sorted by the number of initiated transmissions. As seen there is a fairly
large spread in the number of transmissions among the nodes, but it is also clear that
the nodes getting the highest numbers are getting a significant amount of false positives,
causing a very high amount of lost packets due to collisions.

The exception is node 21 that has the overall highest number of successful transmis-
sions, but this is expected given that it is located around one third of the distance from
the AP compared to the other nodes.

More than half the nodes report a number of accesses in the range of 17.3 to 17.8, then
follows the rest of the nodes with increasingly higher numbers up to a maximum of more
than 22. The reported number of failures follows more or less the same sorting as the
number of accesses. However there is an obvious link between the number of failures
and the signal strength the node registers on the active channel. This indicates that part
of the reason for the transmission failures is likely to be the transmission characteristics
of the antennas, or rather, the lack of proper antennas.

In section 5.2.1 the collision window was described and estimated, here it was said
that the CCA of one node can overlap slightly with the transmission of another while
still returning a success, since the result is the average over eight symbols. This possible
overlap will become bigger and bigger as the detected signal decreases, meaning that
nodes with poor reception characteristics will end up with a bigger collision window
and subsequently a higher number of collisions. This exact same effect will also come

NTNU Trondheim Ragnar Stuhaug

8.9. Protocol parameters 117

N
o
d
e

Sen
t

sSu
cce

ss

sFailu
re

C
h
4

1 17,3 15,4 2,0 47,0

7 17,4 15,6 1,8 48,0

5 17,4 12,9 4,4 25,2

6 17,4 14,9 2,5 45,0

9 17,4 15,6 1,8 48,0

11 17,5 14,6 2,9 42,5

8 17,5 13,1 4,4 34,9

4 17,5 15,5 2,0 45,1

16 17,5 15,6 1,9 47,9

14 17,6 15,2 2,4 45,0

10 17,6 14,3 3,3 40,6

15 17,7 14,6 3,0 42,0

13 17,8 12,1 5,6 26,2

20 18,4 13,7 4,7 38,5

3 18,7 12,1 6,6 33,0

12 19,0 14,4 4,6 40,9

19 19,3 12,1 7,2 35,1

17 19,6 12,8 6,8 36,9

18 19,6 10,9 8,7 27,0

21 21,0 16,1 4,9 49,4

2 22,1 9,3 12,8 31,9

Figure 8.4.: Average traffic throughout TestresultsChMgmt21Nodes15x200Sec-20-05-13.

into play when the node in question gains genuine access to the channel. Its poor trans-
mission characteristics will make the overlap portion of the collision window of other
nodes larger, making them more likely to interrupt the transmission. Two nodes with
poor transmission and reception characteristics will thus have an even larger collision
window between them. This effect does to some extent explain the behavior seen in
figure 8.4. In order to further investigate this, new tests should be conducted using the
exact same setup, but with proper antennas mounted on all nodes to see if that evens out
the statistics between them.

In addition to the proper assembly of the nodes different hardware settings can be
attempted. The CCA can be configured to trigger on decodable signals, any energy
above a given threshold, or a combination of the two. Here the default settings have
been used for all parameters, with the default being the combination. This means that
there is a possibility that other settings can be better suited for this particular usage, in
particular the energy thresholds can be investigated further.

Ragnar Stuhaug NTNU Trondheim

118 8. Discussion

Random delay

Currently the protocol use the same maximum value for the random delay in the CS-
MA/CA algorithm each time, no matter how many times the node has already attempted
to access the channel. In a regular CSMA/CA procedure this limit will increase each
time, making the sender back off for longer periods as the number of failed accesses
increase. The benefit of increasing the limit is that the nodes will automatically access
the channel more seldom when the traffic is at a peak. This will decrease the risk for
collisions as it will decrease the number of simultaneous CCA’s on average.

Because of this it could be a good idea to change the behavior of the protocol to use
increasing limits, as it is clear from the measured results that the number of packets lost
due to collisions is significant. It is possible to perform tests using a higher random
delay limit first, as that is a very simple modification to do. Based on the results in these
tests it is then possible to further evaluate the need for progressively increasing limits.
Generally it is reasonable to believe that this change will be well worth the effort and
should be attempted.

8.9.2. Beacon size

In order to improve the traffic capacity from the server to the nodes the one major
parameter is the beacon size. This parameter has been estimated fairly roughly during
implementation, and can as such be maximized further. In order to achieve the best
performance here the two things to improve are the processing time required by the
nodes after the last beacon byte has been transmitted, and the portion of the subperiod
needed for the timing buffer.

The link between the timing buffer and the beacon size is very simple, as the beacon
size can be incremented by one byte for each two symbols the timing buffer is decre-
mented.

The processing time however can either be measured through analysis of the assembly
code, or through trial and error. The simplest way to do this would be to gradually
increment the size limit by one and perform a stress test for each step. When the beacon
gets too large the result will be that the nodes are unable to complete the processing
before the next beacon trigger, making then unable to transmit the acknowledge within
the acknowledge window. This will lead to the AP experiencing failed transmissions.
This way the tipping point can be found and the limit can be set accordingly. It would
still be recommended to include a small buffer of at least 2-4 symbols to take into
account that the protocol might be compiled using different optimization flags at a later
stage, causing the processing time to change.

Message limit Another aspect of the beacons is the number of messages available.
As of now the limit is set to three, but the beacon header does have one more bit avail-
able, meaning that, unless this bit is needed for something else at a later stage, the
message counter can be expanded to three bits.

If this is done the limiting factor would be the number of acknowledgements that can
fit in the acknowledge window rather than the counter. Given the current configuration
the acknowledge window is 126 symbols as stated in section 3.9.2. In section 2.5.5 the

NTNU Trondheim Ragnar Stuhaug

8.9. Protocol parameters 119

size of a single acknowledgement is set to 25 symbols, this includes the 20 "on-air"
symbols of the frame plus 5 symbols to make sure there is no overlapping even if the
nodes are not perfectly synchronized. This would mean that it should be possible to fit
5 acknowledge frames into the full acknowledge window.

How many messages the AP’s are actually able to insert into the beacon would still
depend directly on the size of the messages and the number of outgoing acknowledge-
ments, but by increasing the limit to five we at least make sure that the protocol does
not limit the traffic more than the physical limits in any case.

Ragnar Stuhaug NTNU Trondheim

120 9. Conclusion

9. Conclusion
Throughout the work with this thesis a custom specialized protocol has been designed,
implemented and tested with actual hardware. The protocol layout has been defined
with specialized frames, timings and communication sequences.

The main abilities of the protocol are the following:

• One to many communication through any number of access points.

• Outgoing messages packed into beacons transmitted regularly by the access points.

• Incoming messages transmitted using CSMA/CA within the access window on
any active channel.

• Nodes continuously scanning all channels, enabling communication with all ac-
cess points within range.

• Nodes automatically detecting when one, or all, access points goes out of range
or offline.

• Access points able to seamlessly swap channels when needed.

Protocol core The resulting implementation serves as a usable proof of concept
for the protocol layout. The protocol core with transmissions on a single channel has
been verified to work perfectly, giving single channel results that are very close to the
expected theoretical values.

There has been identified multiple issues both regarding the test setup and the protocol
that is likely to penalize the throughput, also the parameters of the protocol has seen
limited tuning and all in all this points towards the throughput possibly being increased
further if the development is continued.

In figure 9.1 the average measured traffic statistics with one channel and different
numbers of nodes are presented, the test in question is described in section 7.10.

Channel dynamism The procedure of swapping channels has proven to work per-
fectly, and the reported energy footprints from the nodes allows the AP to avoid Wi-Fi
channels and other compeeting radio signals.

The automatic assessment of channel quality however, is not fully operational in its
current state and will need significant improvement before it can be used in practice. A
number of possible extensions and adjustments has been proposed, and is likely to re-
move the current malfunctions. This will enable it to better cover all possible scenarios.

Still the protocol is perfectly usable even without this feature, as it has no effect on
the system in a stable and static environment. Also it is possible for the application to
initiate a channel swap manually if it detects a drop in throughput or an increase in the
number of dropped packets. The AP is currently able to avoid the most noisy channels
when such a swap is initiated by using the energy reports from the nodes.

NTNU Trondheim Ragnar Stuhaug

9. Conclusion 121

0

100

200

300

400

500

600

0

1000

2000

3000

4000

5000

6000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

Bps In Total throughput Bps Out (Secondary)

(a) Throughput in bytes per second.

0 %

5 %

10 %

15 %

20 %

25 %

0

10

20

30

40

50

60

70

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

Avg Latency Packetloss % (Secondary)

(b) Latency and packet loss percentage.

Figure 9.1.: Resulting traffic parameters with 1 to 22 nodes. 14 byte messages from nodes, 8
byte messages from AP’s. Each node is atempting to transmit messages continously.

Access point synchronization In order to enable the use of multiple AP’s a global
synchronization is essential. This functionality has proven to require more advanced
procedures than what was initially developed and as such this is not currently at the
level of accuracy required for the system to work flawlessly.

Some obvious flaws has come to light after analyzing the tests, and other adjustments
and changes has been discussed that is likely to result in a significantly better solution.

The currently observed behavior of the system, with the existing flaws and malfunc-
tions, combined with the proposed changes, makes it reasonable to assume that a work-
ing solution is well within reach given some more development, tuning, and new rounds
of testing.

Final conclusion The results gained through the work with the thesis is considered
a success, and the fundamental concept of the protocol has been proven to work in a
practical case. The aspects of the system that is not in working condition have been
analyzed and discussed, and the errors most likely causing the experienced issues have
been located and corrected theoretically. Given some more work with implementation,
debugging and testing it is considered very likely that the protocol will provide a very
good solution for the target application.

Ragnar Stuhaug NTNU Trondheim

122 10. Future work

10. Future work

With the current state of the system there is a significant list of possible future work.
Some parts are needed to get the system fully operational as intended, others are non-
critical but will significantly increase the flexibility and stability of the protocol once in
place. Lastly the overall performance can be improved and adjusted to push the system
to its limits both in terms of throughput, and in terms of processing and memory us-
age on the microcontroller. Also there are several other services that the protocol could
provide that have not been implemented by now since it does not influence the normal
operation of the system. This includes a specialized broadcast mode and functionality
for transmitting larger portions of data from a single, or a small number of nodes to
the server. Below the different tasks are summarized and ranked, with features that are
needed to put the system in use are considered most critical.

1. Complete the synchronization functionality.

• Remake the synchronization function.

• Consider increasing the synchronization frequency.

• Better match the beacon frequency and the sync frequency.

• Test and verify synchronization with multiple access points.

2. Implement the remaining portions of the interface.

• Implement the network ID blacklist and the "don’t care" network ID.

• Adjust buffers to use byte array pointers instead of static arrays.

3. Fully define and implement broadcast mode.

• Enable broadcast of larger files from the server to all nodes.

• Consider the possibility of a dedicated data transmission mode for the nodes
to transmit larger files to the server when needed.

4. Improve the automatic channel assessment.

• Register the throughput to better determine if a corrupted frame is truly
caused by noise and outside interference.

• Add detection of missing/erroneous/corrupted acknowledgements to detect
competing access points.

• Test channel swap functionality and channel energy footprint in a realistic
environment and with moving nodes.

5. Evaluate the effect of increased backoff periods for the CSMA/CA algorithm.

NTNU Trondheim Ragnar Stuhaug

10. Future work 123

• Test the system with higher, static, limits on the random backoff period.

• Implement progressively increasing limits and test the performance.

6. Change channel reporting approach.

• Have the nodes rank the channels based on energy readings and sorted in
groups before relaying information to AP.

• AP tracks incoming data with a slow envelope.

• Grouping based partly on group size limits and partly on fixed energy limits.

7. Further investigate the node deadlock issue to locate the actual reason for the
error.

• Undo the interrupt routine swap that removed the issue to verify that it is
still present.

• Review all buffers and pointer to assure correct usage.

• Improve test application to supply more and better debug information.

8. Improve and test timings and parameters to enhance capacity and decrease over-
head.

• Measure computational overhead on the nodes when receiving a beacon and
increase maximum beacon size accordingly.

• Measure maximum synchronization offset and adjust timing buffer and max-
imum beacon size accordingly.

• Evaluate the possibility of increasing the maximum number of messages per
beacon, depending largely on the maximum beacon size and the maximum
number of acknowledgements possible within the acknowledge phase.

• Evaluate the channel assessment limits on the nodes to best suit a realistic
environment.

• Consider the possibility of using an increased bit rate supported by the hard-
ware to further enhance the capacity of the protocol.

9. Rewrite protocol procedures to minimize memory usage and computational over-
head.

Ragnar Stuhaug NTNU Trondheim

124 10. Future work

Abbreviations

802.15.4 IEEE standard for low rate PAN’s and sensor networks.

Access Window The portion of the beacon period where anyone can transmit data
frames using CSMA/CA.

AP Access Point

Beacon Specialized frame transmitted regularly by the access point.

Beacon Period Protocol definition giving the time between two beacons on the same
channel, consists of 16 subperiods.

CCA Clear Channel Assesment

CSMA/CA Carrier Sense Multiple Access / Collision Avoidance

ED Energy Detection

FCS Frame Check Sequence

GTS Guaranteed Time Slot

MAC Media Access Control. The second lowest level of the OSI network model.

PAN Personal Area Network

PHR PHY header

PHY PHYsical layer. Lowest level of the OSI network model.

POE Power Over Ethernet

PSDU Physical Layer Service Data Unit

RSSI Received Signal Strength Indication

SFD Start of Frame Delimiter

SoC System On Chip

Subperiod Protocol definition giving the fundamental timing unit.

UART Universal Asynchronous Received/Transmitter

NTNU Trondheim Ragnar Stuhaug

Bibliography 125

Bibliography

[1] Ragnar Stuhaug,
Evaluation of protocols for Real-time radio systems running on 2.4GHz,
NTNU, 2012.

[2] AutoStore System Official website,
http://www.autostoresystem.com/, 2012.

[3] ATMEL Corporation,
ATmega128RFA1 datasheet - 8266D-MCU Wireless-06/12, 06-2012.

[4] Dresden Elektronik - www.dresden-elektronik.de,
User Manual Radio Modules - deRFmega128-22C02,
Document Version V1.4 2011-08-19.

[5] Institute of Electrical and Electronics Engineers, Inc.,
IEEE Std. 802.15.4-2006,
IEEE Standard for Information Technology - Telecommunications and
Information Exchange between Systems - Local and Metropolitan Area
Networks - Specific Requirements - Part 15.4: Wireless Medium Access
Control (MAC) and Physical Layer (PHY) Specifications for Low Rate
Wireless Personal Area Networks (WPANs). New York: IEEE Press.
2006.

[6] HP InfoTech - CodeVisionAVR,
http://hpinfotech.ro/index.html,
Version: 2.60 Standard, 2012

[7] Atmel Corporation - AtmelStudio6,
http://www.atmel.com/microsite/atmel_studio6/,
Version: 6.1.2562, 2013

Ragnar Stuhaug NTNU Trondheim

126 List of Figures

List of Figures

1.1. AutoStore [2] . 1

2.1. Basic beacon sequence example. (Not to scale) 5
2.2. Simple example of the time offset between channels. (Not to scale) . . . 12
2.3. Sketch showing the different phases of a beacon transmission. 17
2.4. Illustrations of transmission and reception for a node. 20

3.1. Simple state machines for the access point module. 29
3.2. Expanded state machine for the access point module. 29
3.3. AP state machine with the addition of the beacon build 32
3.4. Simple state machine for the node modules. 38
3.5. Expanded state machine for the node modules. 38
3.6. Models of different energy level filters. 49
3.7. Models of different energy level filters, with decoded values. 54

5.1. Modeled behavior at different number of nodes. 73

7.1. Test setup . 79
7.2. Testresults20Nodes10Sec3-16-05-13 83
7.3. Testresults20Nodes10Sec4NoSync-16-05-13 85
7.4. Testresults21Nodes10sec1NoSyncAbsNoChSwap-21-05-13 87
7.5. Model of the current behavior with two AP’s. 89
7.6. TestresultsChSwap21NodesNoSync1-21-05-13 91
7.7. TestresultsChSwap21Nodes3APChSwapChange-21-05-13 93
7.8. Wifi channels during testing. 95
7.9. Test 1 to 4, Envelope, Avg5, Avg10, Avg20. 97
7.10. Test 5 to 8, (10,0,50), (5,0,50), (10,0,100), (5,0,100). 98
7.11. Test 9 to 12, (10,5,50), (5,5,50), (10,10,100), (5,10,100). 99
7.12. Test 13 and 14, (10,0,150), (10,0,200). 100
7.13. Testresults22Nodes10secChStats(Multirun)-23.05.13 102
7.14. Test results converted to Bps, latency and percentage packet loss. 103

8.1. Estimation of channel swap penalty based on test results. 108
8.2. Collection of individual samples from channel footprint test. 110
8.3. Average channel readings throughout the whole duration of the tests. . . 113
8.4. Average traffic throughout TestresultsChMgmt21Nodes15x200Sec-20-

05-13. 117

9.1. Resulting traffic parameters with 1 to 22 nodes. 121

NTNU Trondheim Ragnar Stuhaug

List of Tables 127

List of Tables

1.1. Numerical system requirements, as stated in [1] 3

2.1. Frame descriptions. 13
2.2. Frame header definition. 13
2.3. Full frame layout. 14
2.4. Full data frame layout. 14
2.5. Full ack frame layout. 14
2.6. Beacon header definition. 16
2.7. Full beacon frame layout. 16
2.8. Total timing overhead to be subtracted from beacon period. 18
2.9. Timing and beacon calculations at different beacon frequencies. 18

3.1. Improvement when changing to parallel beacon interpretation. 41
3.2. Test cases for channel energy registration. 48
3.3. The actively used fields of the channel statistics structure. 52
3.4. Protocol parameters and synchronization offsets. 56

4.1. Test data output with different modes. 65
4.2. UART output format. 65
4.3. Test command array definitions. 66

5.1. Size of timing buffers to avoid collisions with beacon. 69
5.2. Numerical parameters for the statistical model. 69
5.3. Parameters calculated using the numerical parameters. 70

7.1. Parameters: Testresults20Nodes10Sec3-16-05-13 82
7.2. Parameters: Testresults20Nodes10Sec4NoSync-16-05-13 84
7.3. Parameters: Testresults21Nodes10sec1NoSyncAbsNoChSwap-21-05-13 86
7.4. Parameters: TestresultsChSwap21NodesNoSync1-21-05-13 90
7.5. Parameters: TestresultsChSwap21Nodes3APChSwapChange-21-05-13 . 92
7.6. Parameters: Channel footprint tests . 96
7.7. Parameters: Testresults22Nodes10secChStats(Multirun)-23.05.13 . . . 101

A.1. Theoretical results for requirement scenario. 131
A.2. Theoretical results with 11 byte node data. 132
A.3. Theoretical results with 14 byte node data. 133
A.4. Theoretical results with 26 byte node data. 134

B.1. Archived codefiles. 135
B.2. Archived test results. 136

Ragnar Stuhaug NTNU Trondheim

128 List of Tables

B.3. Archived test analysis spreadsheets. 137
B.4. Other archived files and documents. 137

NTNU Trondheim Ragnar Stuhaug

Appendices

130 A. Theoretical results

A. Theoretical results

The full spreadsheet for the theoretical calculations can be seen in the supplied archive
file. In table A.1, A.2, A.3, and A.4 the results calculated for the four different test
scenarios are presented.

The parameters for the models are as given in chapter 5 with the exception of message
sizes and access buffer that vary from test to test.

Note that the values presented here are the calculations for a full second, meaning
that the formulas in chapter 5 are multiplied by the beacon frequency.

Note also that due to the error in the test application on the nodes they report values
from the previous 1.04 second instead of the last one second. This means that the
theoretical values must be increased by 4% to be directly comparable to the node reports.
This is done in the afflicted plots throughout chapter 7.

NTNU Trondheim Ragnar Stuhaug

A. Theoretical results 131

Node sum per sec Per node per sec AP per sec

N
od

es

Tr
an

sm
is

si
on

s

Su
cc

es
s

Fa
ile

d

C
SM

A
M

is
s

Tr
an

sm
is

si
on

s

Su
cc

es
s

Fa
ilu

re

C
SM

A
M

is
s

R
ec

ei
ve

d-
E

1

R
ec

ei
ve

d-
E

2

Tr
an

sm
itt

ed
-E

1

Tr
an

sm
itt

ed
-E

2

R
ec

ei
ve

d

1 31 31 0,0 0 % 31,0 31,0 0,0 0,0 31,0 31,0 31,0 31,0 31
2 62 62 0,1 3 % 31,0 30,9 0,1 1,0 31,0 31,0 62,0 62,0 62
3 93 93 0,4 6 % 31,0 30,9 0,1 2,1 29,1 22,3 87,4 67,0 93
4 124 123 0,8 10 % 31,0 30,8 0,2 3,3 20,5 15,7 81,9 62,7 123
5 155 153 2,0 13 % 31,0 30,6 0,4 4,5 15,3 12,4 76,5 61,9 153
6 186 183 2,8 16 % 31,0 30,5 0,5 5,8 11,8 10,0 71,0 60,3 183
7 217 213 3,8 19 % 31,0 30,5 0,5 7,3 9,4 7,7 65,5 53,7 213
8 248 242 6,1 22 % 31,0 30,2 0,8 8,9 7,5 5,3 60,3 42,8 242
9 275 267 7,4 25 % 30,5 29,7 0,8 10,2 6,2 3,9 55,7 35,0 267
10 296 285 10,5 27 % 29,6 28,5 1,0 11,0 5,2 3,2 52,4 32,4 285
11 317 305 12,2 29 % 28,8 27,7 1,1 12,0 4,4 2,8 48,8 31,3 305
12 338 322 16,0 31 % 28,2 26,9 1,3 13,0 3,8 2,6 45,6 30,9 322
13 357 339 18,2 33 % 27,5 26,1 1,4 13,8 3,3 2,3 42,6 30,4 339
14 376 353 22,8 35 % 26,9 25,2 1,6 14,7 2,9 2,1 40,0 29,3 353
15 394 366 27,9 37 % 26,3 24,4 1,9 15,5 2,5 1,8 37,8 27,4 366
16 411 380 30,7 39 % 25,7 23,7 1,9 16,3 2,2 1,5 35,2 23,9 380
17 427 390 36,6 41 % 25,1 23,0 2,2 17,1 2,0 1,2 33,3 20,5 390
18 442 399 43,0 42 % 24,6 22,2 2,4 17,8 1,8 0,9 31,7 17,1 399
19 456 410 46,3 44 % 24,0 21,6 2,4 18,6 1,6 0,7 29,7 12,7 410
20 470 417 53,5 45 % 23,5 20,8 2,7 19,2 1,4 0,5 28,5 10,2 417
21 483 422 61,1 46 % 23,0 20,1 2,9 19,8 1,3 0,4 27,5 8,3 422
22 496 431 65,1 48 % 22,5 19,6 3,0 20,5 1,2 0,3 26,0 5,8 431
23 507 434 73,5 49 % 22,1 18,9 3,2 21,0 1,1 0,2 25,4 5,0 434
24 518 436 82,4 50 % 21,6 18,2 3,4 21,5 1,0 0,2 25,0 4,4 436
25 529 437 91,7 51 % 21,2 17,5 3,7 22,0 1,0 0,2 24,8 4,2 437
26 539 437 102 52 % 20,7 16,8 3,9 22,5 1,0 0,2 24,8 4,2 437
27 548 442 107 53 % 20,3 16,4 3,9 22,9 0,9 0,1 24,0 3,3 442
28 557 440 117 54 % 19,9 15,7 4,2 23,3 0,9 0,1 24,2 3,6 440
29 566 438 128 55 % 19,5 15,1 4,4 23,6 0,9 0,1 24,7 4,1 438
30 574 434 140 56 % 19,1 14,5 4,7 24,0 0,8 0,2 25,3 4,9 434
31 582 436 146 56 % 18,8 14,1 4,7 24,3 0,8 0,1 25,0 4,4 436
32 589 431 158 57 % 18,4 13,5 4,9 24,5 0,8 0,2 25,9 5,6 431
33 596 426 170 58 % 18,1 12,9 5,2 24,8 0,8 0,2 26,9 7,2 426
34 603 419 184 59 % 17,7 12,3 5,4 25,0 0,8 0,3 28,1 9,4 419
35 609 412 197 59 % 17,4 11,8 5,6 25,2 0,8 0,3 29,4 12,0 412
36 615 404 211 60 % 17,1 11,2 5,9 25,4 0,9 0,4 30,8 15,1 404
37 621 403 218 60 % 16,8 10,9 5,9 25,6 0,8 0,4 31,1 15,7 403
38 626 393 233 61 % 16,5 10,3 6,1 25,7 0,9 0,5 32,8 19,3 393
39 631 383 248 61 % 16,2 9,8 6,4 25,9 0,9 0,6 34,6 22,8 383
40 636 373 264 62 % 15,9 9,3 6,6 26,0 0,9 0,6 36,5 25,9 373
41 641 362 280 62 % 15,6 8,8 6,8 26,1 0,9 0,7 38,5 28,2 362
42 646 358 288 63 % 15,4 8,5 6,9 26,2 0,9 0,7 39,2 28,7 358
43 650 346 304 63 % 15,1 8,0 7,1 26,2 1,0 0,7 41,4 30,0 346
44 655 333 322 64 % 14,9 7,6 7,3 26,3 1,0 0,7 43,7 30,6 333
45 659 320 339 64 % 14,6 7,1 7,5 26,3 1,0 0,7 46,2 31,0 320
46 663 306 357 65 % 14,4 6,6 7,8 26,4 1,1 0,7 48,7 31,3 306
47 666 291 375 65 % 14,2 6,2 8,0 26,4 1,1 0,7 51,4 31,9 291
48 670 285 385 65 % 14,0 5,9 8,0 26,4 1,1 0,7 52,4 32,4 285
49 673 270 404 66 % 13,7 5,5 8,2 26,4 1,1 0,7 55,2 34,5 270
50 677 254 423 66 % 13,5 5,1 8,5 26,4 1,2 0,8 58,1 38,6 254
51 680 237 443 66 % 13,3 4,7 8,7 26,4 1,2 0,9 61,2 44,6 237
52 683 220 463 67 % 13,1 4,2 8,9 26,4 1,2 1,0 64,3 51,3 220
53 686 202 484 67 % 12,9 3,8 9,1 26,4 1,3 1,1 67,5 56,9 202
54 689 195 494 67 % 12,8 3,6 9,2 26,4 1,3 1,1 68,8 58,5 195
55 692 176 515 68 % 12,6 3,2 9,4 26,3 1,3 1,1 72,2 60,9 176
56 695 157 537 68 % 12,4 2,8 9,6 26,3 1,4 1,1 75,6 61,8 157
57 697 138 559 68 % 12,2 2,4 9,8 26,3 1,4 1,1 79,2 62,2 138
58 700 118 582 68 % 12,1 2,0 10,0 26,2 1,4 1,1 82,8 63,1 118
59 702 98 604 69 % 11,9 1,7 10,2 26,2 1,5 1,1 86,5 65,9 98
60 705 89 616 69 % 11,7 1,5 10,3 26,1 1,5 1,1 88,2 68,1 89

Table A.1.: Theoretical results with 8 byte messages in both directions and correct access
buffer.

Ragnar Stuhaug NTNU Trondheim

132 A. Theoretical results

Node sum per sec Per node per sec AP per sec

N
od

es

Tr
an

sm
is

si
on

s

Su
cc

es
s

Fa
ile

d

C
SM

A
M

is
s

Tr
an

sm
is

si
on

s

Su
cc

es
s

Fa
ilu

re

C
SM

A
M

is
s

R
ec

ei
ve

d-
E

1

R
ec

ei
ve

d-
E

2

Tr
an

sm
itt

ed
-E

1

Tr
an

sm
itt

ed
-E

2

R
ec

ei
ve

d

1 31 31 0,0 0 % 31,0 31,0 0,0 0,0 31,0 31,0 31,0 31,0 31
2 62 62 0,2 4 % 31,0 30,9 0,1 1,1 31,0 31,0 62,0 62,0 62
3 93 93 0,5 7 % 31,0 30,8 0,2 2,4 29,2 22,3 87,5 67,0 93
4 124 123 1,0 11 % 31,0 30,8 0,2 3,7 20,5 15,7 81,9 62,8 123
5 155 153 2,4 14 % 31,0 30,5 0,5 5,1 15,3 12,4 76,5 61,9 153
6 186 183 3,3 18 % 31,0 30,4 0,6 6,7 11,8 10,1 71,1 60,3 183
7 217 213 4,5 21 % 31,0 30,4 0,6 8,4 9,4 7,7 65,6 53,9 213
8 242 235 7,1 24 % 30,2 29,3 0,9 9,6 7,7 5,7 61,6 45,6 235
9 262 254 8,7 26 % 29,2 28,2 1,0 10,5 6,5 4,3 58,2 38,7 254
10 283 271 12,3 29 % 28,3 27,1 1,2 11,5 5,5 3,4 55,0 34,3 271
11 303 289 14,4 31 % 27,5 26,2 1,3 12,4 4,7 2,9 51,8 32,1 289
12 321 302 18,9 33 % 26,8 25,2 1,6 13,3 4,1 2,6 49,3 31,4 302
13 340 316 24,0 35 % 26,1 24,3 1,8 14,2 3,6 2,4 46,9 31,0 316
14 356 329 26,8 37 % 25,4 23,5 1,9 15,0 3,2 2,2 44,4 30,8 329
15 372 340 32,9 39 % 24,8 22,6 2,2 15,9 2,8 2,0 42,5 30,4 340
16 387 347 39,5 41 % 24,2 21,7 2,5 16,6 2,6 1,9 41,1 29,9 347
17 402 359 43,0 42 % 23,6 21,1 2,5 17,4 2,3 1,7 39,1 28,6 359
18 415 364 50,5 44 % 23,0 20,2 2,8 18,0 2,1 1,5 38,0 27,7 364
19 428 369 58,6 45 % 22,5 19,4 3,1 18,7 2,0 1,4 37,2 26,7 369
20 440 377 62,9 47 % 22,0 18,8 3,1 19,3 1,8 1,2 35,7 24,8 377
21 451 379 71,8 48 % 21,5 18,1 3,4 19,8 1,7 1,1 35,3 24,1 379
22 462 381 81,4 49 % 21,0 17,3 3,7 20,4 1,6 1,1 35,0 23,6 381
23 472 381 91,4 50 % 20,5 16,6 4,0 20,9 1,5 1,0 35,0 23,6 381
24 482 385 96,7 52 % 20,1 16,1 4,0 21,3 1,4 0,9 34,2 22,2 385
25 491 384 107,6 53 % 19,6 15,3 4,3 21,8 1,4 0,9 34,5 22,8 384
26 500 381 119 54 % 19,2 14,6 4,6 22,2 1,3 0,9 35,0 23,7 381
27 508 377 131 54 % 18,8 14,0 4,9 22,5 1,3 0,9 35,8 24,8 377
28 516 372 144 55 % 18,4 13,3 5,1 22,9 1,3 0,9 36,6 26,1 372
29 523 373 150 56 % 18,0 12,9 5,2 23,2 1,3 0,9 36,4 25,8 373
30 530 367 164 57 % 17,7 12,2 5,5 23,5 1,3 0,9 37,6 27,3 367
31 537 359 178 58 % 17,3 11,6 5,7 23,7 1,3 0,9 38,9 28,5 359
32 543 351 192 59 % 17,0 11,0 6,0 23,9 1,3 0,9 40,4 29,5 351
33 549 342 207 59 % 16,6 10,4 6,3 24,2 1,3 0,9 42,0 30,2 342
34 555 340 215 60 % 16,3 10,0 6,3 24,4 1,2 0,9 42,4 30,3 340
35 561 330 230 60 % 16,0 9,4 6,6 24,5 1,3 0,9 44,2 30,7 330
36 566 319 247 61 % 15,7 8,9 6,9 24,7 1,3 0,9 46,3 31,0 319
37 571 307 264 62 % 15,4 8,3 7,1 24,8 1,3 0,8 48,4 31,2 307
38 576 295 281 62 % 15,1 7,8 7,4 24,9 1,3 0,8 50,7 31,7 295
39 580 290 290 63 % 14,9 7,4 7,4 25,0 1,3 0,8 51,5 32,0 290
40 584 277 308 63 % 14,6 6,9 7,7 25,1 1,3 0,8 54,0 33,4 277
41 589 262 326 64 % 14,4 6,4 8,0 25,2 1,4 0,9 56,6 36,2 262
42 593 247 345 64 % 14,1 5,9 8,2 25,3 1,4 1,0 59,3 40,8 247
43 596 232 365 65 % 13,9 5,4 8,5 25,3 1,4 1,1 62,2 46,9 232
44 600 215 385 65 % 13,6 4,9 8,7 25,3 1,5 1,2 65,1 53,1 215
45 604 209 395 65 % 13,4 4,6 8,8 25,4 1,5 1,2 66,4 55,2 209
46 607 191 416 66 % 13,2 4,2 9,0 25,4 1,5 1,3 69,5 59,2 191
47 610 173 437 66 % 13,0 3,7 9,3 25,4 1,5 1,3 72,8 61,1 173
48 614 155 459 67 % 12,8 3,2 9,6 25,4 1,6 1,3 76,1 61,9 155
49 617 136 481 67 % 12,6 2,8 9,8 25,4 1,6 1,3 79,6 62,2 136
50 619 116 504 67 % 12,4 2,3 10,1 25,4 1,7 1,3 83,2 63,3 116
51 622 107 515 68 % 12,2 2,1 10,1 25,4 1,7 1,3 84,8 64,2 107
52 625 87 538 68 % 12,0 1,7 10,4 25,4 1,7 1,3 88,5 68,6 87
53 628 65 562 68 % 11,8 1,2 10,6 25,3 1,7 1,4 92,4 76,2 65
54 630 44 586 68 % 11,7 0,8 10,9 25,3 1,7 1,6 93,0 84,4 44
55 633 21 611 69 % 11,5 0,4 11,1 25,3 1,7 1,6 93,0 90,0 21
56 635 -1 636 69 % 11,3 0,0 11,4 25,2 1,7 1,6 93,0 92,4 -1
57 637 -12 649 69 % 11,2 -0,2 11,4 25,2 1,6 1,6 93,0 92,7 -12
58 639 -35 675 69 % 11,0 -0,6 11,6 25,1 1,6 1,6 93,0 93,0 -35
59 642 -59 701 70 % 10,9 -1,0 11,9 25,1 1,6 1,6 93,0 93,0 -59
60 644 -84 728 70 % 10,7 -1,4 12,1 25,0 1,6 1,5 93,0 93,0 -84

Table A.2.: Theoretical results with 11 byte messages from node and 8 byte messages from
AP. Access buffer size is according to the incorrect calculation used in the protocol code.

NTNU Trondheim Ragnar Stuhaug

A. Theoretical results 133

Node sum per sec Per node per sec AP per sec

N
od

es

Tr
an

sm
is

si
on

s

Su
cc

es
s

Fa
ile

d

C
SM

A
M

is
s

Tr
an

sm
is

si
on

s

Su
cc

es
s

Fa
ilu

re

C
SM

A
M

is
s

R
ec

ei
ve

d-
E

1

R
ec

ei
ve

d-
E

2

Tr
an

sm
itt

ed
-E

1

Tr
an

sm
itt

ed
-E

2

R
ec

ei
ve

d

1 31 31 0,0 0 % 31,0 31,0 0,0 0,0 31,0 31,0 31,0 31,0 31
2 62 62 0,2 4 % 31,0 30,9 0,1 1,3 31,0 31,0 62,0 62,0 62
3 93 93 0,5 8 % 31,0 30,8 0,2 2,6 29,2 22,3 87,5 67,0 93
4 124 123 1,0 12 % 31,0 30,8 0,2 4,1 20,5 15,7 81,9 62,8 123
5 155 153 2,4 16 % 31,0 30,5 0,5 5,7 15,3 12,4 76,5 61,9 153
6 186 183 3,3 20 % 31,0 30,4 0,6 7,5 11,8 10,1 71,1 60,3 183
7 217 211 5,7 23 % 31,0 30,2 0,8 9,5 9,4 7,8 65,9 54,3 211
8 238 231 7,1 26 % 29,8 28,9 0,9 10,5 7,8 5,9 62,3 47,1 231
9 258 248 10,4 29 % 28,7 27,6 1,2 11,5 6,6 4,5 59,2 40,6 248
10 279 267 12,3 31 % 27,9 26,7 1,2 12,7 5,6 3,5 55,8 35,2 267
11 297 280 16,6 33 % 27,0 25,5 1,5 13,6 4,8 3,0 53,3 32,9 280
12 315 296 18,9 36 % 26,2 24,6 1,6 14,6 4,2 2,6 50,5 31,6 296
13 331 307 24,0 38 % 25,5 23,6 1,8 15,5 3,7 2,4 48,5 31,2 307
14 347 317 29,8 40 % 24,8 22,6 2,1 16,4 3,3 2,2 46,6 31,0 317
15 361 329 32,9 42 % 24,1 21,9 2,2 17,2 3,0 2,1 44,5 30,8 329
16 375 336 39,5 43 % 23,5 21,0 2,5 18,0 2,7 1,9 43,2 30,5 336
17 388 342 46,7 45 % 22,8 20,1 2,7 18,7 2,5 1,8 42,2 30,3 342
18 401 350 50,5 47 % 22,3 19,5 2,8 19,4 2,3 1,6 40,6 29,6 350
19 412 354 58,6 48 % 21,7 18,6 3,1 20,1 2,1 1,5 40,0 29,3 354
20 423 356 67,3 49 % 21,2 17,8 3,4 20,7 2,0 1,5 39,6 29,0 356
21 434 357 76,5 51 % 20,6 17,0 3,6 21,3 1,9 1,4 39,4 28,9 357
22 443 362 81,4 52 % 20,1 16,4 3,7 21,7 1,8 1,3 38,5 28,2 362
23 452 361 91,4 53 % 19,7 15,7 4,0 22,2 1,7 1,2 38,7 28,3 361
24 461 359 102,1 54 % 19,2 14,9 4,3 22,7 1,6 1,2 39,1 28,6 359
25 469 355 113,3 55 % 18,7 14,2 4,5 23,1 1,6 1,2 39,7 29,1 355
26 476 351 125 56 % 18,3 13,5 4,8 23,4 1,6 1,1 40,4 29,5 351
27 483 352 131 57 % 17,9 13,0 4,9 23,8 1,5 1,1 40,2 29,4 352
28 490 347 144 58 % 17,5 12,4 5,1 24,1 1,5 1,1 41,3 29,9 347
29 497 340 157 59 % 17,1 11,7 5,4 24,4 1,5 1,0 42,5 30,4 340
30 503 332 171 59 % 16,8 11,1 5,7 24,6 1,5 1,0 43,9 30,7 332
31 509 324 185 60 % 16,4 10,4 6,0 24,8 1,5 1,0 45,4 30,9 324
32 514 322 192 61 % 16,1 10,1 6,0 25,0 1,4 1,0 45,7 30,9 322
33 519 312 207 62 % 15,7 9,5 6,3 25,2 1,4 0,9 47,5 31,1 312
34 524 302 223 62 % 15,4 8,9 6,5 25,3 1,5 0,9 49,4 31,4 302
35 529 290 239 63 % 15,1 8,3 6,8 25,5 1,5 0,9 51,5 32,0 290
36 533 278 255 63 % 14,8 7,7 7,1 25,6 1,5 0,9 53,7 33,2 278
37 538 266 272 64 % 14,5 7,2 7,4 25,7 1,5 1,0 56,0 35,4 266
38 542 261 281 64 % 14,3 6,9 7,4 25,8 1,5 1,0 56,8 36,6 261
39 546 247 299 65 % 14,0 6,3 7,7 25,8 1,5 1,0 59,4 40,9 247
40 549 232 317 65 % 13,7 5,8 7,9 25,9 1,6 1,2 62,0 46,5 232
41 553 217 336 66 % 13,5 5,3 8,2 25,9 1,6 1,3 64,8 52,4 217
42 556 201 355 66 % 13,2 4,8 8,5 26,0 1,6 1,4 67,7 57,1 201
43 560 185 375 67 % 13,0 4,3 8,7 26,0 1,6 1,4 70,7 60,1 185
44 563 178 385 67 % 12,8 4,0 8,7 26,0 1,6 1,4 71,9 60,8 178
45 566 160 405 67 % 12,6 3,6 9,0 26,0 1,7 1,4 75,1 61,7 160
46 569 142 426 68 % 12,4 3,1 9,3 26,0 1,7 1,3 78,4 62,1 142
47 571 124 448 68 % 12,2 2,6 9,5 26,0 1,7 1,3 81,8 62,7 124
48 574 104 470 68 % 12,0 2,2 9,8 26,0 1,8 1,3 85,3 64,7 104
49 577 84 492 69 % 11,8 1,7 10,0 25,9 1,8 1,4 88,9 69,3 84
50 579 64 515 69 % 11,6 1,3 10,3 25,9 1,9 1,5 92,6 76,7 64
51 582 55 527 69 % 11,4 1,1 10,3 25,8 1,8 1,6 93,0 80,3 55
52 584 34 550 70 % 11,2 0,6 10,6 25,8 1,8 1,7 93,0 87,4 34
53 586 12 574 70 % 11,1 0,2 10,8 25,8 1,8 1,7 93,0 91,4 12
54 588 -11 599 70 % 10,9 -0,2 11,1 25,7 1,7 1,7 93,0 92,7 -11
55 590 -33 624 70 % 10,7 -0,6 11,3 25,6 1,7 1,7 93,0 93,0 -33
56 592 -57 649 71 % 10,6 -1,0 11,6 25,6 1,7 1,7 93,0 93,0 -57
57 594 -68 662 71 % 10,4 -1,2 11,6 25,5 1,6 1,6 93,0 93,0 -68
58 596 -92 688 71 % 10,3 -1,6 11,9 25,4 1,6 1,6 93,0 93,0 -92
59 598 -116 714 71 % 10,1 -2,0 12,1 25,4 1,6 1,6 93,0 93,0 -116
60 600 -142 741 72 % 10,0 -2,4 12,4 25,3 1,6 1,5 93,0 93,0 -142

Table A.3.: Theoretical results with 14 byte messages from node and 8 byte messages from
AP. Access buffer size is according to the incorrect calculation used in the protocol code.

Ragnar Stuhaug NTNU Trondheim

134 A. Theoretical results

Node sum per sec Per node per sec AP per sec

N
od

es

Tr
an

sm
is

si
on

s

Su
cc

es
s

Fa
ile

d

C
SM

A
M

is
s

Tr
an

sm
is

si
on

s

Su
cc

es
s

Fa
ilu

re

C
SM

A
M

is
s

R
ec

ei
ve

d-
E

1

R
ec

ei
ve

d-
E

2

Tr
an

sm
itt

ed
-E

1

Tr
an

sm
itt

ed
-E

2

R
ec

ei
ve

d

1 31 31 0,0 0 % 31,0 31,0 0,0 0,0 31,0 31,0 31,0 31,0 31
2 62 62 0,2 5 % 31,0 30,9 0,1 1,8 31,0 31,0 62,0 62,0 62
3 93 93 0,5 11 % 31,0 30,8 0,2 3,7 29,2 22,3 87,5 67,0 93
4 124 122 1,6 16 % 31,0 30,6 0,4 6,0 20,5 15,7 82,0 62,8 122
5 155 153 2,4 21 % 31,0 30,5 0,5 8,5 15,3 12,4 76,5 61,9 153
6 186 182 4,5 27 % 31,0 30,3 0,7 11,4 11,9 10,1 71,3 60,4 182
7 206 200 5,7 30 % 29,4 28,6 0,8 12,8 9,7 8,2 67,9 57,4 200
8 225 216 8,7 34 % 28,1 27,0 1,1 14,2 8,1 6,6 65,0 52,8 216
9 242 232 10,4 37 % 26,9 25,7 1,2 15,5 6,9 5,2 62,1 46,8 232
10 258 243 14,4 39 % 25,8 24,3 1,4 16,7 6,0 4,2 60,0 42,2 243
11 273 254 18,9 42 % 24,8 23,1 1,7 17,9 5,3 3,5 58,1 38,6 254
12 286 265 21,4 44 % 23,9 22,1 1,8 18,9 4,7 3,0 56,1 35,6 265
13 299 272 26,8 46 % 23,0 20,9 2,1 19,9 4,2 2,6 54,8 34,1 272
14 311 278 32,9 48 % 22,2 19,8 2,3 20,9 3,8 2,4 53,7 33,2 278
15 321 282 39,5 50 % 21,4 18,8 2,6 21,6 3,5 2,2 53,1 32,8 282
16 331 288 43,0 52 % 20,7 18,0 2,7 22,4 3,2 2,0 51,9 32,1 288
17 340 290 50,5 54 % 20,0 17,0 3,0 23,1 3,0 1,9 51,6 32,0 290
18 348 290 58,6 55 % 19,4 16,1 3,3 23,7 2,9 1,8 51,6 32,0 290
19 356 289 67,3 56 % 18,7 15,2 3,5 24,2 2,7 1,7 51,7 32,1 289
20 363 287 76,5 58 % 18,2 14,3 3,8 24,7 2,6 1,6 52,1 32,2 287
21 370 289 81,4 59 % 17,6 13,8 3,9 25,1 2,5 1,5 51,8 32,1 289
22 376 285 91,4 60 % 17,1 13,0 4,2 25,5 2,4 1,5 52,5 32,4 285
23 382 280 102,1 61 % 16,6 12,2 4,4 25,8 2,3 1,4 53,4 32,9 280
24 387 274 113,3 62 % 16,1 11,4 4,7 26,1 2,3 1,4 54,4 33,8 274
25 393 267 125,1 63 % 15,7 10,7 5,0 26,3 2,2 1,4 55,6 35,0 267
26 397 260 137 63 % 15,3 10,0 5,3 26,6 2,2 1,4 57,0 36,8 260
27 402 258 144 64 % 14,9 9,6 5,3 26,7 2,1 1,4 57,4 37,4 258
28 406 249 157 65 % 14,5 8,9 5,6 26,9 2,1 1,4 59,0 40,2 249
29 410 239 171 66 % 14,1 8,2 5,9 27,0 2,1 1,5 60,8 43,8 239
30 413 229 185 66 % 13,8 7,6 6,2 27,1 2,1 1,6 62,7 48,0 229
31 417 217 199 67 % 13,4 7,0 6,4 27,1 2,1 1,7 64,7 52,3 217
32 420 205 215 67 % 13,1 6,4 6,7 27,2 2,1 1,8 66,9 56,1 205
33 423 201 223 68 % 12,8 6,1 6,7 27,2 2,1 1,7 67,8 57,3 201
34 426 188 239 68 % 12,5 5,5 7,0 27,2 2,1 1,8 70,2 59,7 188
35 429 174 255 69 % 12,3 5,0 7,3 27,2 2,1 1,7 72,7 61,1 174
36 432 159 272 69 % 12,0 4,4 7,6 27,2 2,1 1,7 75,3 61,7 159
37 434 144 290 70 % 11,7 3,9 7,8 27,2 2,1 1,7 78,0 62,1 144
38 436 129 308 70 % 11,5 3,4 8,1 27,1 2,1 1,6 80,9 62,5 129
39 439 112 326 71 % 11,2 2,9 8,4 27,1 2,1 1,6 83,8 63,6 112
40 441 105 336 71 % 11,0 2,6 8,4 27,0 2,1 1,6 85,2 64,5 105
41 443 88 355 71 % 10,8 2,1 8,7 27,0 2,2 1,7 88,3 68,3 88
42 445 70 375 72 % 10,6 1,7 8,9 26,9 2,2 1,8 91,5 74,3 70
43 447 52 395 72 % 10,4 1,2 9,2 26,8 2,2 1,9 93,0 81,5 52
44 449 33 416 72 % 10,2 0,7 9,5 26,7 2,1 2,0 93,0 87,7 33
45 450 13 437 73 % 10,0 0,3 9,7 26,6 2,1 2,0 93,0 91,2 13
46 452 -7 459 73 % 9,8 -0,1 10,0 26,5 2,0 2,0 93,0 92,6 -7
47 454 -16 470 73 % 9,7 -0,3 10,0 26,4 2,0 2,0 93,0 92,8 -16
48 455 -37 492 73 % 9,5 -0,8 10,3 26,3 1,9 1,9 93,0 93,0 -37
49 457 -59 515 74 % 9,3 -1,2 10,5 26,2 1,9 1,9 93,0 93,0 -59
50 458 -80 538 74 % 9,2 -1,6 10,8 26,1 1,9 1,9 93,0 93,0 -80
51 459 -103 562 74 % 9,0 -2,0 11,0 25,9 1,8 1,8 93,0 93,0 -103
52 461 -126 586 74 % 8,9 -2,4 11,3 25,8 1,8 1,8 93,0 93,0 -126
53 462 -149 611 75 % 8,7 -2,8 11,5 25,7 1,8 1,8 93,0 93,0 -149
54 463 -161 624 75 % 8,6 -3,0 11,5 25,6 1,7 1,7 93,0 93,0 -161
55 464 -185 649 75 % 8,4 -3,4 11,8 25,5 1,7 1,7 93,0 93,0 -185
56 465 -209 675 75 % 8,3 -3,7 12,1 25,3 1,7 1,7 93,0 93,0 -209
57 467 -235 701 75 % 8,2 -4,1 12,3 25,2 1,6 1,6 93,0 93,0 -235
58 468 -260 728 76 % 8,1 -4,5 12,5 25,1 1,6 1,6 93,0 93,0 -260
59 469 -286 755 76 % 7,9 -4,9 12,8 24,9 1,6 1,6 93,0 93,0 -286
60 470 -313 782 76 % 7,8 -5,2 13,0 24,8 1,6 1,6 93,0 93,0 -313

Table A.4.: Theoretical results with 26 byte messages from node and 8 byte messages from
AP. Access buffer size is according to the incorrect calculation used in the protocol code.

NTNU Trondheim Ragnar Stuhaug

B. Archive file contents 135

B. Archive file contents

Archive/Code
Archive/Code/ASRadioAP
Archive/Code/ASRadioAP/ap_channel_management.c
Archive/Code/ASRadioAP/ap_channel_management.h
Archive/Code/ASRadioAP/ap_radio.c
Archive/Code/ASRadioAP/ap_radio.h
Archive/Code/ASRadioAP/ap_radio_if.h
Archive/Code/ASRadioAP/ASRadioAP.c
Archive/Code/ASRadioAP/data_types.c
Archive/Code/ASRadioAP/data_types.h
Archive/Code/ASRadioAP/mega128RFA1.h
Archive/Code/ASRadioAP/uart.c
Archive/Code/ASRadioAP/uart.h
Archive/Code/ASRadioGeneral
Archive/Code/ASRadioGeneral/channel_management.c
Archive/Code/ASRadioGeneral/channel_management.h
Archive/Code/ASRadioGeneral/general_radio.c
Archive/Code/ASRadioGeneral/general_radio.h
Archive/Code/ASRadioGeneral/general_radio_config.h
Archive/Code/ASRadioGeneral/general_radio_if.h
Archive/Code/ASRadioGeneral/mac_symbol_counter.c
Archive/Code/ASRadioGeneral/mac_symbol_counter.h
Archive/Code/ASRadioGeneral/test_setup.c
Archive/Code/ASRadioGeneral/test_setup.h
Archive/Code/ASRadioNode
Archive/Code/ASRadioNode/ASRadioNode.c
Archive/Code/ASRadioNode/data_types.c
Archive/Code/ASRadioNode/data_types.h
Archive/Code/ASRadioNode/mega128RFA1.h
Archive/Code/ASRadioNode/node_channel_management.c
Archive/Code/ASRadioNode/node_channel_management.h
Archive/Code/ASRadioNode/node_radio.c
Archive/Code/ASRadioNode/node_radio.h
Archive/Code/ASRadioNode/node_radio_if.h
Archive/Code/ASRadioNode/uart.c
Archive/Code/ASRadioNode/uart.h

Table B.1.: Archived codefiles.

Ragnar Stuhaug NTNU Trondheim

136 B. Archive file contents

Archive/Test results
Archive/Test results/APLogCHMgmtTst21Node15x200sec1.txt
Archive/Test results/APLogCHMgmtTst21Node15x200sec2.txt
Archive/Test results/APLogCHMgmtTst21Node15x200sec3.txt
Archive/Test results/APLogCHMgmtTst21Node15x200sec4.txt
Archive/Test results/APLogChSwap21NodeNoSync1.txt
Archive/Test results/APLogChSwap21NodeNoSync2.txt
Archive/Test results/APLogChSwap21NodeNoSync3APChSwapChange.txt
Archive/Test results/APLogChSwap21NodeNoSync4APChSwapChange.txt
Archive/Test results/APLogChSwap21NodeNoSync5APChSwapChange.txt
Archive/Test results/APLogChSwap21NodeNoSync6APChSwapChange.txt
Archive/Test results/APLogNodeAddition20Node10Sec1.txt
Archive/Test results/APLogNodeAddition20Node10Sec2.txt
Archive/Test results/APLogNodeAddition20Node10Sec3.txt
Archive/Test results/APLogNodeAddition20Node10Sec4NoSync.txt
Archive/Test results/APLogNodeAddition21Node10Sec1AbsNoChSwapNoSync.txt
Archive/Test results/APLogNodeAddition21Node10Sec1NoSync.txt
Archive/Test results/APLogNodeAddition21Node10Sec2AbsNoChSwapNoSync.txt
Archive/Test results/APLogNodeAddition21Node10Sec2NoSync.txt
Archive/Test results/APLogNodeAddition21Node10Sec3AbsNoChSwapNoSync.txt
Archive/Test results/APLogNodeAddition21Node10Sec3NoSync.txt
Archive/Test results/APLogNodeAddition22Node10SecChStats(Multirun).txt
Archive/Test results/Discarded Tests
Archive/Test results/Discarded Tests/APLog21Node250Sec1AbsNoChSwapNoSync.txt
Archive/Test results/Discarded Tests/APLog21Node250Sec1NoChSwapNoSync.txt
Archive/Test results/Discarded Tests/APLog21Node250Sec2AbsNoChSwapNoSync.txt
Archive/Test results/Discarded Tests/APLog21Node250Sec2NoChSwapNoSync.txt
Archive/Test results/Discarded Tests/APLog21Node250Sec3AbsNoChSwapNoSync.txt
Archive/Test results/Discarded Tests/APLog21Node250Sec3NoChSwapNoSync.txt
Archive/Test results/Discarded Tests/APLog21Node250SecChStats(Multirun).txt
Archive/Test results/Discarded Tests/APLog22Node250SecChStats(Multirun).txt
Archive/Test results/Discarded Tests/APLog250sec21NodeMultiRun.txt
Archive/Test results/Discarded Tests/APLogNodeAddition20Node5Sec.txt
Archive/Test results/Discarded Tests/APLogNodeAddition21Node10Sec1NoChSwapNoSync.txt
Archive/Test results/Discarded Tests/APLogNodeAddition21Node10Sec2NoChSwapNoSync.txt
Archive/Test results/Discarded Tests/APLogNodeAddition21Node10Sec3NoChSwapNoSync.txt
Archive/Test results/Discarded Tests/APLogNodeAddition21Nodes10SecAbsNoChSwapNoSync(Multirun).txt

Table B.2.: Archived test results.

NTNU Trondheim Ragnar Stuhaug

B. Archive file contents 137

Archive/Test analysis
Archive/Test analysis/MultiAP-TrafficModel.xlsx
Archive/Test analysis/Testresults20Nodes10Sec1 - 16.05.13.xlsx
Archive/Test analysis/Testresults20Nodes10Sec2 - 16.05.13.xlsx
Archive/Test analysis/Testresults20Nodes10Sec3 - 16.05.13.xlsx
Archive/Test analysis/Testresults20Nodes10Sec4NoSync - 16.05.13.xlsx
Archive/Test analysis/Testresults21Nodes10Sec1NoSync - 20.05.13.xlsx
Archive/Test analysis/Testresults21Nodes10Sec1NoSyncAbsNoChSwap - 21.05.13.xlsx
Archive/Test analysis/Testresults21Nodes10Sec2NoSync - 20.05.13.xlsx
Archive/Test analysis/Testresults21Nodes10Sec3NoSync - 20.05.13.xlsx
Archive/Test analysis/Testresults22Nodes10secChStats(Multirun) - 23.05.13.xlsx
Archive/Test analysis/TestresultsChMgmt21Nodes15x200Sec1 - 20.05.13.xlsx
Archive/Test analysis/TestresultsChMgmt21Nodes15x200Sec2 - 21.05.13.xlsx
Archive/Test analysis/TestresultsChMgmt21Nodes15x200Sec3 - 21.05.13.xlsx
Archive/Test analysis/TestresultsChMgmt21Nodes15x200Sec4 - 22.05.13.xlsx
Archive/Test analysis/TestresultsChSwap21Nodes3APChSwapChange - 21.05.13.xlsx
Archive/Test analysis/TestresultsChSwap21NodesNoSync1 - 21.05.13.xlsx
Archive/Test analysis/TestresultsChSwap21NodesNoSync2 - 21.05.13.xlsx

Table B.3.: Archived test analysis spreadsheets.

Archive/2.4GHzRadioEvaluation.pdf
Archive/Calculations Period values and beacon size.xlsx
Archive/Channel Management Filter design.xlsx
Archive/Theoretical performance model.xlsx

Table B.4.: Other archived files and documents.

Ragnar Stuhaug NTNU Trondheim

	Introduction
	AutoStore - Automated storage system, ProtocolEvaluation
	Technical challenges and simplifications, ProtocolEvaluation
	Numerical requirements
	Research question

	Protocol design
	Brainstorming
	Unacknowledged frames
	Dedicated acknowledge phase
	Channel agility
	Sequence numbers
	Addressing
	Extended checksum
	Network ID
	Broadcasting

	Proprietary or according to standard
	Hardware
	Radio module
	AtMega128RFA1

	Final protocol concept
	Final protocol definition
	Frame header
	Frame layout
	Data Frame
	Acknowledge Frame
	Beacon Frame
	Beacon size
	Checksum
	Synchronization
	Functional description

	Implementation
	Implementation and debug situation
	Implementation tool
	Module independent code
	Transceiver control
	Symbol counter
	Symbol counter busy-wait function
	Protocol definitions

	Interface design
	Identification and addressing
	Buffers
	Possible race conditions

	AP protocol core
	State machine
	Timers
	Frame reception triggers
	Beacon building
	Acknowledge reception
	Changing channel

	AP synchronization
	Initial version
	Second version

	Node protocol core
	State machine
	Timers
	Searching
	Beacon reception
	Acknowledge transmission
	Active channel registration
	Channel ranking
	CSMA/CA
	Transmission

	Channel management
	Desired behavior
	Quality of readings
	Access point view
	AP's current channel assessment
	Node view
	Node channel assessment model
	Active channel ranking
	Channel info decoding

	Timing and parameter calculations
	Core timing
	Beacon frequency
	Channel data and values
	Node specific definitions
	AP specific definitions

	Test preparation
	Main test plan
	Synchronization Signal
	AP-PC communication
	Test setup
	Testing procedure

	Test program
	TCP/IP
	Test setup definitions and functionality
	Test command sequence
	Node ID assignment

	Test environment

	Expected results
	Theoretical models
	Parameters
	Collision window
	Parameter collection

	Estimators
	Transactions per second
	CSMA/CA misses
	Collisions
	AP reception
	AP transmission

	Calculations

	Test phase
	Problems and delays
	Discarding TCP/IP
	Synchronization signal
	Synchronization function
	Equipment breakdown
	Testing at an actual AutoStore installation
	Channel swap oversensitivity
	Node deadlock

	Results
	Test setup
	Test result adjustments
	Node measurements
	Channel statistics
	Beacon collision avoidance
	Test result files

	Synchronization test
	Synchronization disabled
	Synchronization and channel swap disabled
	Multi-AP test (model)
	Channel swap throughput tests
	Channel swap throughput tests, after bug fix
	Channel footprint tests
	Single AP statistics tests

	Discussion
	General results
	Synchronization problems
	AP Channel assessment errors
	Channel swap penalty
	Failed AP-transmissions
	Channel 16 noise
	Channel Footprint test
	Channel assessment algorithms
	Envelope
	Average
	Envelope with filter
	Conclusion
	Channel ranking on nodes

	Protocol parameters
	CSMA/CA behavior
	Beacon size

	Conclusion
	Future work
	Abbreviations
	Bibliography
	List of Figures
	List of Tables
	Appendices
	Theoretical results
	Archive file contents

