
High-Level Synthesis for
Application-Specific Integrated Circuit
Implementation using LegUp

Jørgen F Holmefjord

Master of Science in Electronics

Supervisor: Kjetil Svarstad, IET

Department of Electronics and Telecommunications

Submission date: June 2016

Norwegian University of Science and Technology



 



Title: High-Level Synthesis for
Application-Specific Integrated Circuit
Implementation using LegUp

Student: Jørgen Frydenlund Holmefjord

Problem description:

Architectural exploration is a long and complex process where a number of hardware
architectures are built and evaluated based on minimum performance requirements
and worst-case operational scenarios. With this method, satisfactory results can
be achieved if a diverse number of candidates are produced. However, the number
of architectures to be evaluated is limited by time and engineering resources. In
this context, High Level Synthesis (HLS) is a compelling alternative to shorten the
development time, and consequently, increasing the number of architectures that
can be evaluated during the exploration. Furthermore, by automating the entire
architecture exploration process, the optimization engine can take advantage of the
higher level of abstraction and generate far more and diverse architectures than it
would be possible by parametrized RTL.

During the autumn of 2015, a project was conducted to evaluate the open-source
HLS tool LegUp [13], and whether it can be used in a framework for architectural
exploration of digital hardware. During the work with the project some fundamental
issues were exposed, limiting the tool’s usefulness for our initial intentions. The main
issues are related to input and output of the generated modules, structure of memory
management, and size of signals.

The goal of this master thesis is to resolve the encountered issues, and if time allows
it, start building an initial framework for architectural exploration.

Possible sub-tasks and goals of this thesis are:

– Explore the two approaches proposed in the project for resolving the encountered
issues.

– Determine if LegUp’s C-like memory-bound architecture can be eliminated by
de-referencing pointers or turn memory elements into generic signals.

– Re-evaluate if LegUp is capable of generating synthesizable Verilog HDL for
ASIC implementation and if it can be used in a framework for automatic
architectural exploration.



– Set an initial HLS framework for architectural exploration of digital hardware.

– Create scripts to automate simulation, synthesis, and power dissipation extrac-
tion.

– Integrate Nordic Semiconductor’s coding style and practices into LegUp Verilog
libraries, i.e. interfaces, parameters, naming conventions, power/clock domains,
etc.

Responsible professor: Kjetil Svarstad, IET
Supervisor: Isael Diaz, Nordic Semiconductor



Abstract

Low power and small area are becoming increasingly important and
highly demanded in large System-on-Chip (SoC) designs, incorporating
billions of transistors. This entails that the typical design methodology
is no longer sufficient, if hardware manufacturers want to supply the best
product on the market. Architectural exploration is an important part
of the design process, where multiple designs are built and evaluated in
terms of area, performance, and power consumption. High-level synthesis
(HLS) is a compelling alternative to reduce the effort put into architectural
exploration. By using HLS in a framework for architectural exploration
of digital hardware, the number and diversity of architectural variations
that can be generated and evaluated is far greater than what could have
been done manually.

During a previous project, the HLS-tool LegUp was explored. The
goal was to see if the tool could be used the described framework. The
conclusions from the project was that LegUp had some issues, limiting
its ability to generate Register-Transfer Level (RTL)-code suitable for
Application-Specific Integrated Circuit (ASIC) implementation.

This thesis presents a solution for an architectural exploration frame-
work built on an adapted version of LegUp. The framework can generate
a large amount of architectural variations of a design written in C, and
run simulation, synthesis, layout and power analysis on each design. Ran-
domized constraints are used in the framework to vary the output from
the HLS-tool. The framework generate reports of area usage, maximum
performance, and estimated power consumption for each of the generated
designs, for the designer to be able to choose the best design based on
trade-offs from the design specifications.

A proof of concept was conducted, running a FIR-filter design through
the created framework. The result showed that a decrease in area of
13.28% and a decrease in power consumption of 9.52% could be achieved
by selecting the best-case design over the worst-case design. These
results indicate that the concept works. The overhead of the generated
designs vary between 30-200%, making it impractical for hardware design.
However, it looks like the fidelity of the results are high, making it
possible to use the framework-results for selecting the best architecture.
During the process of adapting LegUp to work with a tool-flow for ASIC
implementations, some of the functionality of the tool have been lost.
Some bugs has also been introduced and discovered. Before using the



created framework for any commercial purpose, these problems must be
eliminated.



Sammendrag

Lavt effektforbruk og lite areal er stadig mer etterspurt i store design av
enbrikkesystemer, bestående av milliarder av transistorer. Dette fører til at
den typiske design-metoden ikke lenger er brukende, dersom maskinvare-
produsentene ønsker å tilby det beste produktet på markedet.

Arkitektur-utforsking er en viktig del av designprosessen, hvor flere
design skapes og blir evaluert i form av areal, ytelse, og effektforbruk. Høy-
nivå syntese (HLS) er et attraktivt konsept for å redusere den samlede
innsatsen designeren må legge ned i arkitektur-utforskingen. Ved å benytte
HLS i et rammeverk for arkitektur-utforsking av digital maskinvare kan
langt flere og mer varierte arkitekturelle variasjoner genereres og evalueres,
sammenlignet med å utføre arbeidet manuelt.

I et tidligere prosjekt ble HLS-verktøyet LegUp utforsket. Målet var
å undersøke om verktøyet kunne brukes i det beskrevne rammeverket.
Konklusjonen fra prosjektet var at noen problemer med LegUp begrenser
muligheten til å generere Register-Transfer Level (RTL)-kode egnet til
implementering på applikasjonsspesifikk integrert krets (ASIC) arkitektu-
rer.

Denne avhandlingen presenterer en løsning for et rammeverk for
arkitek-tur-utforskring bygget på en tilpasset versjon av LegUp. Ramme-
verket kan generere et stort antall arkitekturelle variasjoner av et design
skrevet i C, og kjøre simulering, syntese, layout, og effekt-analyse på hvert
design. Randomiserte føringer benyttes i rammeverket for å generere
varierte design fra HLS-verktøyet. Rammeverket genererer rapporter som
beskriver arealbruk, maksimal ytelse, og beregnet effektforbruk for hvert
design, slik at designeren kan velge det designet som passer best, basert
på avveininger mellom viktige parametre fra designspesifikasjonen.

Et konseptbevis ble utført ved å kjøre et FIR-filter design gjennom
rammeverket. Resultatet viste at en besparelse i areal på 13.28% og en
besparelse i effektforbruk på 9.52% kan oppnås ved å velge det designet
med best resultater over designet med dårligst resultater. Disse resultatene
viser at konseptet fungerer. HLS-verktøyet genererer en økning i areal
og effektforbruk sammenlignet med et tilsvarende design skrevet direkte
i RTL-kode på mellom 30-200%, noe som gjør det lite økonomisk å
benytte verktøyet til design av maskinvare. Forholdet mellom de genererte
resultatene ser likevel ut til å stemme (høy fidelity), noe som gjør at
rammeverk-resultatene kan benyttes til å velge arkitektur for designet.



Gjennom prosessen med å tilpasse LegUp til å generer kode som støttes
av verktøyene i rammeverket har noe av den originale funksjonaliteten
gått tapt. Noen feil har også oppstått og blitt oppdaget. Før rammeverket
brukes til noen form for kommersielle formål må alle problemer som er
beskrevet i denne rapporten elimineres.



Preface

This report is the result of the Master’s thesis conducted during the
spring of 2016, concluding a Master of Science degree in Electronics,
Design of Digital Systems. The report is submitted to the Department
of Electronics and Telecommunications at the Norwegian University of
Science and Technology.

This work is a continuation of a specialization project conducted during
the autumn of 2015. The project was proposed by Nordic Semiconductor
in August 2015, and the continuation into a Master’s thesis was a natural
choice in January 2016. During the work with this thesis, I have learned
a lot about the concept of high-level synthesis and how to implement
integrated circuits, all the way from the planning stage until final layout.

I would like to thank my supervisors Isael Diaz at Nordic Semiconductor
and professor Kjetil Svarstad from NTNU, for their guidance, support
and feedback through this project. Finally, I want to thank my family
and friends for their support, encouragement and inspirational discussions
during this work and through the whole degree.

Trondheim, 2016-06-10

Jørgen Frydenlund Holmefjord





Contents

List of Figures xi

List of Tables xiii

List of Algorithms xv

Acronyms xvii

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Previous work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Project objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.4 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.5 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.6 Overview of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Theory and background 7
2.1 High-Level Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 LegUp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2.1 Producing Verilog Output . . . . . . . . . . . . . . . . . . . . 11
2.2.2 Classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2.3 Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3 LLVM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3.1 Intermediate Representation . . . . . . . . . . . . . . . . . . . 15

2.4 Alternative hardware design methods . . . . . . . . . . . . . . . . . . 17
2.4.1 Chisel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.4.2 Functional programming . . . . . . . . . . . . . . . . . . . . . 17

2.5 Power dissipation in CMOS circuits . . . . . . . . . . . . . . . . . . 18
2.5.1 Switching power . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.5.2 Internal power . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.5.3 Leakage power . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.6 Tool-flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.6.1 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

vii



2.6.2 Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.6.3 Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.6.4 Power analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.7 Reference design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.7.1 FIR-filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3 Adapting LegUp 23
3.1 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.1.1 Post-processing . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.1.2 Pre-processing . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.1.3 The used approach . . . . . . . . . . . . . . . . . . . . . . . . 24

3.2 TCL commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.3 Removing top-level and FPGA-specific modules . . . . . . . . . . . . 27
3.4 Removing memory controller . . . . . . . . . . . . . . . . . . . . . . 27
3.5 Declaring inputs and outputs . . . . . . . . . . . . . . . . . . . . . . 28

3.5.1 Name prefix . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.5.2 TCL-command . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.6 Assigning values to outputs . . . . . . . . . . . . . . . . . . . . . . . 29
3.6.1 LLVM IR assignment parser program . . . . . . . . . . . . . 31
3.6.2 Assigning output signals . . . . . . . . . . . . . . . . . . . . . 33
3.6.3 Removing local RAMs . . . . . . . . . . . . . . . . . . . . . . 35

3.7 Streaming inputs/outputs . . . . . . . . . . . . . . . . . . . . . . . . 35
3.8 Signal sizes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.9 Testbench generation . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.10 Coding constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.10.1 Structs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.10.2 Pointers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.10.3 Arrays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.10.4 Inputs and outputs . . . . . . . . . . . . . . . . . . . . . . . . 41

4 Tool-flow example 43
4.1 HLS with LegUp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.1.1 Constraint files . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.1.2 Makefile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.1.3 Compilation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.1.4 Link-time optimizations . . . . . . . . . . . . . . . . . . . . . 45
4.1.5 Verilog generation . . . . . . . . . . . . . . . . . . . . . . . . 46

4.2 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.2.1 Simulation libraries . . . . . . . . . . . . . . . . . . . . . . . . 50
4.2.2 Running simulation . . . . . . . . . . . . . . . . . . . . . . . 50

4.3 Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.4 Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53



4.5 Power analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5 Creating the framework 57
5.1 Create new project . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
5.2 Framework-script . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.2.1 Constraint generating . . . . . . . . . . . . . . . . . . . . . . 60
5.2.2 Report generating . . . . . . . . . . . . . . . . . . . . . . . . 62

5.3 Running the framework . . . . . . . . . . . . . . . . . . . . . . . . . 62

6 Framework results 65
6.1 First test-run . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

6.1.1 Handling unexpected results . . . . . . . . . . . . . . . . . . . 68
6.2 Full tool-flow framework run . . . . . . . . . . . . . . . . . . . . . . 70
6.3 Bugs in the generated design . . . . . . . . . . . . . . . . . . . . . . 74
6.4 Path and hold violations . . . . . . . . . . . . . . . . . . . . . . . . . 75
6.5 LegUp specific code optimization . . . . . . . . . . . . . . . . . . . . 76

7 Discussion 79

8 Conclusion 83
8.1 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

8.1.1 Abstraction level . . . . . . . . . . . . . . . . . . . . . . . . . 84
8.1.2 Resolving bugs . . . . . . . . . . . . . . . . . . . . . . . . . . 84
8.1.3 Eliminating RAM states . . . . . . . . . . . . . . . . . . . . . 84
8.1.4 Advances in LegUp since last release . . . . . . . . . . . . . . 85
8.1.5 Automatic code-optimization . . . . . . . . . . . . . . . . . . 85
8.1.6 Incorporating Nordic Semiconductors DDVC . . . . . . . . . 85

References 87

Appendices

A Source code listings 91
A.1 FIR-filter reference design . . . . . . . . . . . . . . . . . . . . . . . 91

A.1.1 C source code . . . . . . . . . . . . . . . . . . . . . . . . . . 91
A.1.2 Optimized C source code . . . . . . . . . . . . . . . . . . . 92
A.1.3 Verilog source code . . . . . . . . . . . . . . . . . . . . . . . 93
A.1.4 Testbench for FIR-filter . . . . . . . . . . . . . . . . . . . . 94

A.2 LLVM IR Parser program . . . . . . . . . . . . . . . . . . . . . . . 96
A.3 Generating valid signals . . . . . . . . . . . . . . . . . . . . . . . . 99
A.4 Adding iterationFinish flag . . . . . . . . . . . . . . . . . . . . . . 100
A.5 Testbench generator source code . . . . . . . . . . . . . . . . . . . 100
A.6 Script for creating new framework-project . . . . . . . . . . . . . . 101
A.7 Script for running framework . . . . . . . . . . . . . . . . . . . . . 102



A.8 Constraint-generator program . . . . . . . . . . . . . . . . . . . . . 106



List of Figures

1.1 Typical DSP design process compared to HLS-framework. . . . . . . . . 2
1.2 Proposed framework-solution [13]. . . . . . . . . . . . . . . . . . . . . . 3

2.1 Information flow in a typical HLS-tool [8]. . . . . . . . . . . . . . . . . . 8
2.2 Typical division of control and data-path in the generated RTL from HLS. 9
2.3 Information flow in LegUp [19]. . . . . . . . . . . . . . . . . . . . . . . . 11
2.4 LLVM’s three-phase compiler structure [15]. . . . . . . . . . . . . . . . . 17
2.5 Power dissipation components distribution [26]. . . . . . . . . . . . . . . 18
2.6 Direct form representation of a N-order FIR-filter. . . . . . . . . . . . . 22

3.1 Problem with assigning values to output . . . . . . . . . . . . . . . . . . 34
3.2 Top-level concept for streaming inputs and outputs . . . . . . . . . . . . 36
3.3 Generating not-valid signal. . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.1 State diagram of generated FSM . . . . . . . . . . . . . . . . . . . . . . 49
4.2 Simulation waveform of example design . . . . . . . . . . . . . . . . . . 52
4.3 Top-level module generated by synthesis . . . . . . . . . . . . . . . . . . 53
4.4 Chip-layout of example design . . . . . . . . . . . . . . . . . . . . . . . 54

5.1 Directory and file-tree of the framework . . . . . . . . . . . . . . . . . . 58
5.2 Setup of constraint file generation in Excel spreadsheet . . . . . . . . . . 61

6.1 Results from 1. framework-run . . . . . . . . . . . . . . . . . . . . . . . 67
6.2 Comparison of Verilog-design towards best HLS-design from 1. framework-

run . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
6.3 Results from 2. framework-run . . . . . . . . . . . . . . . . . . . . . . . 69
6.4 Comparison of Verilog-design towards best HLS-design from 2. framework-

run . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
6.5 Results from framework with full tool-flow . . . . . . . . . . . . . . . . . 72
6.6 Comparison of Verilog-design towards best HLS-design from full tool-flow

framework-run . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
6.7 Area distribution of results from framework with full tool-flow . . . . . 73
6.8 Power distribution of results from framework with full tool-flow . . . . . 73

xi





List of Tables

2.1 HLS-flows supported by LegUp and partitioning between SW and HW . 11
2.2 Description of constraints used in this project . . . . . . . . . . . . . . . 16

3.1 Vector values after parser run . . . . . . . . . . . . . . . . . . . . . . . . 32

4.1 Tool-flow example synthesis results . . . . . . . . . . . . . . . . . . . . . 52
4.2 Tool-flow example layout results . . . . . . . . . . . . . . . . . . . . . . 55
4.3 Tool-flow example power analysis results . . . . . . . . . . . . . . . . . . 55

6.1 Constraints and values for first run . . . . . . . . . . . . . . . . . . . . . 65
6.2 Results from 1. framework-run . . . . . . . . . . . . . . . . . . . . . . . 66
6.3 Decimal to binary conversion of design numbers . . . . . . . . . . . . . . 67
6.4 Results from 2. framework-run . . . . . . . . . . . . . . . . . . . . . . . 69
6.5 Area results from full tool-flow framework-run . . . . . . . . . . . . . . . 71
6.6 Power estimation results from full tool-flow framework-run . . . . . . . 71
6.7 Number of used registers from full framework run . . . . . . . . . . . . . 74
6.8 Critical path length and maximum frequency results from full framework

run . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
6.9 Results of best design from framework run with optimized C-code. . . . 77
6.10 Overhead from results of optimized C-code. . . . . . . . . . . . . . . . . 77

xiii





List of Algorithms

3.1 Adding parameters to a module . . . . . . . . . . . . . . . . . . . . . 28
3.2 Input file handling in LLVM IR parser program . . . . . . . . . . . 32
3.3 Output file handling in LLVM IR parser program . . . . . . . . . . 33
3.4 Assigning values to outputs . . . . . . . . . . . . . . . . . . . . . . . 35

xv





Acronyms

ANSI American National Standards Institute.

ASIC Application-Specific Integrated Circuit.

CPU Central Processing Unit.

CSV Comma-Separated Values.

DDVC Digital Design and Verification Conventions.

DFG Data-Flow Graph.

DSL Domain Specific Language.

DSP Digital Signal Processing.

FIR Finite Impulse Response.

FPGA Field-Programmable Gate Array.

FSM Finite State Machine.

GCC GNU Compiler Collection.

HCL Hardware Construction Language.

HDL Hardware Description Language.

HLL High-Level Language.

HLS High-Level Synthesis.

HW Hardware.

IDE Integrated Development Environment.

IIR Infinite Impulse Response.

xvii



IR Intermediate Representation.

LTO Link-Time-Optimization.

RAM Random Access Memory.

RTL Register-Transfer Level.

SoC System-on-Chip.

SW Software.

VCD Value Change Dump.



Chapter1Introduction

1.1 Motivation

With the increasing focus on power consumption and small design-size, hardware
manufacturer are forced to develop their products with these parameters in mind.
Architectural exploration of hardware plays a vital role in the process of creating inte-
grated circuits with the best trade-offs between speed, area, and power consumption
for a given specification. The process of architectural exploration is a tedious and
time-consuming process, involving many steps. During the exploration, a number
of hardware architectures are built and evaluated based on minimum performance
requirements and worst-case operational scenarios. By generating a large number
of designs with great diversity, a satisfactory result can be achieved. The number
of architectures that can be evaluated is limited by available time and resources.
High-Level Synthesis (HLS) is a compelling alternative to shorten this process. By
reducing the time for creating each design, the number of evaluated designs can be
increased, with the potential of generating far more diversity between the architec-
tures than what would ever have been possible by parametrized Register-Transfer
Level (RTL).

On the left side of figure 1.1 a typical design process for a Digital Signal Processing
(DSP) application is shown. On the right side, the same design process is shown,
using a HLS-based framework. It can easily be seen that the effort the designer has
to put into the process is reduced with the second alternative.

The thesis will look at the implementation of a framework for architectural exploration
of digital hardware, targeted for Application-Specific Integrated Circuit (ASIC)
implementation. The ultimate goal is to create a framework that automatically
explores a wide variety of architectural variations and presents the best alternatives
with regards to a given design goal or constraints.

1



2 1. INTRODUCTION

Figure 1.1: Typical DSP design process compared to HLS-framework.

1.2 Previous work

In my specialization project [13], conducted during the autumn of 2015, I explored the
academic open source HLS-tool LegUp. This tool has a maturity not before seen in
an academic HLS-tool, and that it is open-source makes it appealing for the concept
of a framework for architectural exploration of hardware. LegUp provides ANSI-C to
Verilog high-level synthesis, but their focus is targeted towards implementation on
Field-Programmable Gate Array (FPGA) architectures. The official target support of
the output is limited to a few boards from the FPGA manufacturer Altera, and beta-
support for a single board from Xilinx. This thesis will target ASIC implementations.
The findings from [13] was that there are some issues with the original version of
LegUp, limiting its usability for the desired framework. The issues are mainly related
to input and output of the generated modules, structure of memory management,
and size of signals. A framework for architectural exploration of hardware, using
HLS, was proposed in [13]. An illustration showing the tool- and information-flow of
the framework is shown in figure 1.2.

1.3 Project objectives

The initial goals of the specialization project were found to be a bit exaggerated. For
this Master’s thesis it was decided to focus on a smaller part of the ultimate goal, to
get the necessary basics of the HLS-tool working well, before proceeding with the
framework. The main goal of this thesis is therefore to resolve the issues encountered



1.3. PROJECT OBJECTIVES 3

Figure 1.2: Proposed framework-solution [13].

during the specialization project. It is not know if all issues can be resolved, or how
time consuming it will be. Other objectives are therefore added in a prioritized order:

1. Explore approaches
Two possible approaches towards resolving the issued, were described in [13].
The first step of this thesis will be to explore both these alternatives and look
at positive and negative sides of each method. The outcome of this objective
will affect the rest of the work with this thesis, making it an important decision.
All aspects of the two approaches must therefore be taken into consideration
before making a choice.

2. Resolve issues
For LegUp to be usable in a framework for architectural exploration, it is vital
that the tool is adapted to generated Verilog suitable for ASIC implementation.
This objective is thought to be the most time-consuming, and its outcome is
very uncertain. However, if completed successfully, the use-space of LegUp
can be extended to other concepts. LegUp’s architecture is, like the input
language C, quite memory-bound. Random Access Memory (RAM) modules,
memory controllers, and pointers are used for many things where a simple



4 1. INTRODUCTION

signal could have given the same result. It should be looked into if this memory-
architecture can be changed by de-referencing pointers or turn memory elements
into generic signals. A proper way of handling inputs and outputs should also
be implemented, to avoid being limited to a certain amount of ports on the
generated designs.

3. Create framework
When the issues have been resolved, the work with creating a framework for
architectural exploration can be started. The framework will be based on the
flow shown in figure 1.2, using various scripts and programs to run the tool-flow,
generating constraints, and creating scorefiles. The framework should be easy
to use and ideally be able to run without any interactions with the user.

4. Proof of concept
To verify and illustrate the concept in action, a proof of concept will be created.
By creating one or more reference designs which will be run through the
framework, it is expected to get a wide variety of generated designs with varying
results in terms of area, power consumption, and performance. The reference
design will also be implemented directly in Verilog Hardware Description
Language (HDL), to compare and calculate the overhead of the HLS-generated
designs.

5. Evaluation
Based on the results from the conducted proof of concept, a re-evaluate of
LegUp’s usefulness in a framework for architectural exploration of digital
hardware, will be conducted. This evaluation will be based on the deviation of
the results among the generated designs, as well as the overhead compared to
the design written in Verilog. Other aspects can also be considered, like how
well the adaption of LegUp is performed and how well the generated Verilog
HDL synthesize for ASIC architectures.

6. Techniques for reducing overhead
The typical overhead of HLS-tools are in the range of 30-40%. One of the initial
objectives of this concept included the integration of Nordic Semiconductor’s
coding style and practices, the Digital Design and Verification Conventions
(DDVC) [29], into LegUp’s Verilog libraries. This include things like interfaces,
parameters, naming conventions, power/clock domains, etc. It is assumed that
this can give a large reduction of the overhead generated by the HLS-tool, when
integrated into Nordic Semiconductor’s existing modules.



1.4. CONTRIBUTIONS 5

1.4 Contributions

The intentions of this work have been to create an adapted version of the open source
HLS-tool LegUp, to make it more suited for generating Verilog targeted towards ASIC
architectures. It was also time to create a framework for architectural exploration of
digital hardware, and to conduct a proof of concept study.

The following list summarize the contributions made through this thesis:

– An adapted version of LegUp has been created. The adapted version support
features that is important for implementation towards ASIC architectures. This
include the possibility of having multiple inputs and outputs in the generated
modules, the inputs and outputs can be streaming, eliminating the need for
stopping and starting the module for each run, and an improved method of
generating testbenches that include all signals and desired testcases.

– A framework for architectural exploration of digital hardware has been devel-
oped. This framework can generate a large number of architectural variations
with great diversity. Area, power and performance information will automati-
cally be extracted from each design, allowing the designer to choose the best
architecture for further implementation.

– Using a FIR-filter reference design, a proof of concept study has been conducted,
showing that the framework can be used for architectural exploration of digital
hardware.

– LegUp’s usability in a framework for architectural exploration of digital hard-
ware has been evaluated, based on results from the proof of concept study and
the performance of the adapted version of LegUp.

1.5 Method

The work performed in this thesis is based on multiple research methods. Before the
problem could be solved, a study of the architecture and structure of LegUp had to
be conducted, to understand the connections and information-flow in the tool. This
study was primarily carried out during the previous project [13], but also continued
into the work with this thesis. A plan for how to resolve each of the issues at hand
was devised and discussed before being carried out, to ensure a good solution. The
problems at hand requires in-depth knowledge of the libraries in LegUp, but when
the source of the issue had been located, fixing the issue was based on trial and error.
By replacing a piece of code with some other solution, a new output can be generated
and evaluated. This process is repeated until the issue is resolved. The creation of
the framework is based on the idea proposed by Isael Diaz. A study of architectural



6 1. INTRODUCTION

exploration and HLS-concepts had to be conducted before building the framework, to
make sure the output would have the desired diversity. An experimental study of the
usefulness of the created framework was conducted as a proof of concept, to check if
the initial hypothesis holds. By running a reference design through the framework, a
large amount of data was reported. The data was analyzed to draw the conclusion
about the hypothesis.

1.6 Overview of the thesis

In general, this thesis is divided into 8 chapters, each presenting one or more of
the project objectives described above, in addition to appendix. In chapter 2, the
background and theory required to understand the rest of the thesis is described.
Point one and two from the list above is described in chapter 3. Chapter 4 uses a
design example to present a thorough description of the information-flow in LegUp
and the other tools used in the framework. In chapter 5 the third objective, the
process of creating a framework, is described. The fourth objective, to create a proof
of concept, is presented in chapter 6. The evaluation of the proof of concept results,
corresponding to the fifth objective, as well as a discussion of LegUp in general, with
focus on its usefulness in the created framework, has been presented in chapter 7.
Finally the work is summarized and concluded in chapter 8. Chapter 8 also include a
section of future works, describing aspects that will be interesting to look into more
detail at in an eventual continuation of this project. Appendix include code-listings of
designs and implementations, that are described and discussed in the main chapters.



Chapter2Theory and background

Some theory and background is needed to get a thorough understanding of the
material in the following chapters. Some parts of this background chapter were
written as part of the specialization project [13], but it is included here to allow
the report to be a freestanding document. Some sections have been extended to
add a deeper level of understanding to some of the described concepts, compared
to what was presented in the previous report. Some information from section 3.3 of
the Methodology-chapter has also been included in section 2.6 of this report, as it
describes part of the same tool-flow used here.

In the early days of digital hardware design, gate design and layout were performed
by hand. With the rapid growth in the numbers of transistors per digital chip-design,
this method quickly became too time-consuming and the need for new and more
automated design methods rose. RTL-design using HDL has long been the standard
in digital hardware design. With the increasing demand for low power and small
area in large System-on-Chip (SoC) designs with multiple billion transistors, this
methodology is no longer sufficient if hardware manufacturers want to hit the window
of opportunity with their state-of-the-art product.

2.1 High-Level Synthesis

HLS is not a new concept as it was introduced in research papers in the late 1970s
and further researched and developed in the 1980s and early 1990s [23]. The available
commercial HLS tools have not been providing the necessary performance and benefits
over HDL development for major hardware development companies to adapt this
methodology until recently. The concept of HLS starts with a functional specification
of the circuit described using a higher abstraction level, often a High-Level Language
(HLL). A tool uses target architectural model libraries and design constraints to
transform this specification into hardware, represented as a RTL or HDL-model. The
typical HLS-flow is shown in figure 2.1 and each of the transition-steps is described in

7



8 2. THEORY AND BACKGROUND

the below subsections. The input libraries contain information on available hardware
resources with power, area, and delay models for the target architecture.

Figure 2.1: Information flow in a typical HLS-tool [8].

Compilation

The first step of HLS is to compile the functional specification into a formal model.
This model can vary between different tools, and can be either a specific representation
language or a graphic representation of the flow. The formal model is decided by the
developers of the HLS tool.

Allocation

Necessary hardware resources, such as functional units, storage-, and connectivity-
components needs to be selected from a given RTL component library in order
to satisfy the specification and design constraints. Some HLS tools can also add
more resources in the scheduling and binding tasks, if this is needed to meet given
constraints.

Scheduling

Scheduling arranges all operations in an optimized sequence so that variables are read
from sources and brought to the input of the correct functional unit for execution
and to the destination afterwards. The scheduler takes all dependencies into account
when scheduling the operations, in order to get the most efficient result, as some



2.1. HIGH-LEVEL SYNTHESIS 9

operations can be executed in parallel if no dependencies exist and there is available
resources. Operations can be scheduled to finish in one, or take multiple clock-cycles,
and operations can also be chained to eliminate the need for storing the result
between operations, and to reduce the total number of cycles needed.

Binding

In the binding task, all clock-cycle-crossing variables, operations, and transfers are
bound to a free resource, in the time-frame when it is scheduled. Non-overlapping or
mutually exclusive variables can be bound to the the same storage unit, and operations
can be bound to the best optimized functional unit if multiple alternatives are
available. Each transfer from component to component, either storage or functional
unit, needs to be bound to a connection unit, such as a bus or a multiplexer.

RTL Generation

The generated RTL usually consists of two parts, a control-unit and a data-path-unit.
The control-unit is often implemented as a Finite State Machine (FSM), which set
control-signals to the data-path, and controls the current and next-state of the system.
The data-path contains storage-, functional-, and connection-units. An example of
this division is shown in figure 2.2. Depending on the intensiveness of the binding

Figure 2.2: Typical division of control and data-path in the generated RTL from
HLS.

step, the output RTL can be tightly or loosely bound to the available resources. If
an operation is not bound to a specific unit, it is up to the following logic synthesis
of the RTL to bind the operations to available resources. The different types of RTL
output are illustrated by the following example. a = b * c executing in state n:



10 2. THEORY AND BACKGROUND

Without any binding:

state (n): a = b * c;
go to state (n + 1);

With storage binding:

state (n): S(1) = S(2) * S(3);
go to state (n + 1);

With functional-unit binding:

state (n): a = MUL1 (b, c);
go to state (n + 1);

With storage and functional-unit binding:

state (n): S(1)=MUL1 (S(2), S(3));
go to state (n + 1);

With storage, functional-unit, and connectivity binding:

state (n): BUS1 = S(2); BUS2 = S(3);
BUS3 = MUL1 (BUS1, BUS2);
S(1) = BUS3;
go to state (n + 1);

A loosely bound RTL gives the synthesis-tool the flexibility to optimize the unit
binding to updated timing estimates, delays, and loads given by the layout and
floor-planning tools.

2.2 LegUp

The HLS tool used in this project is called LegUp [6]. LegUp is an open-source
academic tool developed at the University of Toronto, Canada. LegUp’s goal is
to "allow researchers to experiment with new HLS algorithms without building a
new infrastructure from scratch" and their long-term vision is to "make FPGA
programming easier for software developers" [4]. LegUp takes American National
Standards Institute (ANSI)-C as input and generates synthesizable Verilog HDL as
output. The developers of LegUp have primarily focused on support for a variety of
FPGA boards from manufacturer Altera, but in the latest version (4.0), beta support
for Xilinx devices [20] and possibility to configure the tool to generate generic Verilog
to target other FPGA vendors or even ASIC through use of generic dividers [18],
has been introduced. The big advantage of LegUp compared to similar, commercial
tools, is that it is open-source and therefore can be configured to target different



2.2. LEGUP 11

architectures. The RTL and HDL generating part of the tool can be modified or
replaced to fit the programmers needs. Since LegUp, in its unmodified form, target
FPGA devices, it supports three different synthesis flows; pure-Software (SW), hybrid,
and pure-Hardware (HW). The two first synthesis flows will implement a TigerMIPS
[24] soft processor, which will run part of the C code. The partitioning of SW and
HW in the individual modules are described in table 2.1. It is the pure-HW flow
that will be the focus of this project.

Table 2.1: HLS-flows supported by LegUp and partitioning between SW and HW

Flow Functions run in hardware Functions run in software

Pure-SW None All
Hybrid Specified hardware-accelerated

functions
All other functions

Pure-HW All None

2.2.1 Producing Verilog Output

LegUp is made up of two components; a frontend pass and a target backend pass
to the LLVM compiler infrastructure. The information flow in LegUp, shown in
figure 2.3, follows the same principle as the information flow described in section 2.1.
The LegUp LLVM frontend takes LLVM Intermediate Representation (IR) compiled

Figure 2.3: Information flow in LegUp [19].

by clang, a C frontend for LLVM, as input and links in custom written functions
like memcpy, memset and memmove, which do not exist in hardware, but that
LLVM assumes exist in the C library. The LegUp backend pass performs allocation,
scheduling and binding as described in section 2.1. In the next step, RTL-module
objects that represents the final hardware circuit are generated from each LLVM



12 2. THEORY AND BACKGROUND

instruction. Ultimately, Verilog code corresponding to each of the RTL-modules is
output to a file.

The allocation, scheduling, and binding in LegUp is performed based on information
about available resources and timing information about the specified target FPGA-
board, in addition to user-defined constraints and setting. The available information
about the FPGA-boards allows for precise scheduling and binding to the available
resources. Since the implementation of ASIC designs are quite different from the
architecture and implementation of designs on FPGAs, the resource and timing
information will not be as easily obtained for the target architecture.

2.2.2 Classes

In LegUp there are some predefined classes that is important for the understanding of
the description of adapting LegUp, presented in chapter 3. The following subsections
will describe some important information about these classes in more detail. The
full class descriptions can be found in the LegUp Namespace Reference [9].

RTLModule

The RTLModule class models a hardware RTL module. The class stores information
about all ports (inputs and outputs), signals, parameters and sub-modules. Each
function declared in the C-code transforms into a RTLModule object. Each function
that is called from the function will be added as a sub-module to the RTLModule
object, meaning a module instantiation will be added to the module. Important
member-functions of the RTLModule class are:

getName()
Returns a string containing the name of the RTLModule, i.e. "main" for the
module generated by the main-function in the C-program.

find(std::string signal)
Takes a string containing a signal name as parameter and returns a pointer to
the RTLSignal in the RTLModule with that name.

addParam(std::string name, std::string value)
Adds a parameter to the module. The function returns a pointer to the
generated RTLSignal object.

addIn(std::string name, RTLWidth width)
Adds an input-port to the module. The function returns a pointer to the
generated RTLSignal object.

addOut(std::string name, RTLWidth width)
Adds an output-port to the module. The function returns a pointer to the
generated RTLSignal object.



2.2. LEGUP 13

addRegOut(std::string name, RTLWidth width)
Adds a registered output-port to the module. The function returns a pointer
to the generated RTLSignal object.

addReg(std::string name, RTLWidth width)
Adds a register signal to the module. The function returns a pointer to the
generated RTLSignal object.

addWire(std::string name, RTLWidth width)
Adds a wire signal to the module. The function returns a pointer to the
generated RTLSignal object.

addModule(std::string name, std::string instName)
Adds an instantiation of another module to the module. The function returns
a pointer to the generated RTLModule object.

RTLSignal

The RTLSignal class represents the signals within an RTLModule. Both internal
signals, port signals and condition signals are all modelled using the RTLSignal class.
Important member-functions of the class are:

getName()
Returns a string containing the name of the RTLSignal, i.e. "clk" for the clock
signal.

getType()
Returns a string describing the signal type. The type can be reg, wire, input,
output, or output reg.

getNumDrivers()
Return the number of driving RTLSignals.

getDriver(unsigned i)
Returns a pointer to the i-th driving RTLSignal.

getCondition(unsigned i)
Returns a pointer to the condition signal of the i-th driving RTLSignal.

addCondition(RTLSignal *cond, RTLSignal *driver)
Adds a conditional driver. If the RTLSignal cond is true, the RTLSignal driver
drives the signal.

connect(RTLSignal *s)
Connect this signal unconditionally to another RTLSignal.

getWidth()
Returns a pointer to a RTLWidth object, describing the width of the RTLSignal.

isOp()
Returns true if the RTLSignal is an RTLOp object.



14 2. THEORY AND BACKGROUND

RTLOp

The RTLOp class is a subclass of the RTLSignal class, representing an operation
with one, two or three operands. Each operand is a RTLSignal. The operation can
be an arithmetic operation like addition, subtraction, multiplication, or division,
and it can also be logical operations like AND, OR, and XOR, or even comparison
operations like equal, not equal, less than, less than or equal, greater than, and
greater than or equal. The whole list can be seen in the class reference [10]. A RTLOp
object modelling an AND operation of two operands, operand1 and operand2, will
in Verilog correspond to the operation "operand1 & operand2". Some important
member-functions are:

getOperand(int i)
Returns a pointer to i-th operand of the RTLOp object.

getNumOperands()
Returns the number of operands of the RTLOp object.

setOperand(int i, RTLSignal *s)
Sets the i-th operand to the RTLSignal s.

RTLWidth

The RTLWidth class represents the bitwidth of a RTLSignal. An RTLWidth is
defined by high and low bits, for instance 31,0 for a 32 bit signal. This will transform
into "[31:0]" in Verilog.

RAM

The RAM class models RAM modules in LegUp. Whenever a variable is loaded
or stored, a RAM module is generated to handle the loads and stores. The RAM
objects can be divided into two scopes; LOCAL and GLOBAL. A local RAM object
is local to a given function and cannot be accessed by other functions. A global
RAM object will be implemented in a global memory controller. All modules that
use the variable can connect to the RAM via the memory controller. Some important
member-functions are:

getName()
Returns a string containing the name of the RAM module, i.e. "main_0_1"
for the RAM module generated for the first parameter to the main function
declared as volatile (output parameters) in the C-code.

isROM()
Returns true if the RAM is read-only.

getScope()
Returns if the RAM is in the local or global scope.



2.3. LLVM 15

2.2.3 Constraints

Constraints is an important part of LegUp, and it is also used extensively in this
project. The constraints are used for setting design goals and limitations on design,
and to specify how the HLS-flow will be executed. Constraints play an important role
in this concept, as the idea is to generate multiple designs that can be compared in
terms of area, performance, and power consumption. For the designs to be different,
varying constraints are used for generating the designs. All available constraints are
described in the constraint manual [17], but the ones used in this project are described
in table 2.2. Some constraints are considered required. These constraints must be set
for the generated design to be compatible with the tool-flow. HLS constraints are
used for getting different Verilog-outputs from LegUp. Other constraints from the
constraint manual can also be used, but these were selected for this project as their
description indicate that they can affect the architecture of the output.

2.3 LLVM

LLVM [16], formerly Low-Level Virtual Machine, is a compiler framework that was
originally developed as a research infrastructure to investigate dynamic compilation
techniques for static and dynamic programming languages, at the University of
Illinois in 2000. It is now a open-source project with many contributors from both
industry, research groups and individuals, and it is used by companies like Apple in
their Xcode Integrated Development Environment (IDE) [21] and Sony for their PS4
developer toolchain [28]. LLVM support a large number of frontends for programming
languages, including Clang [7] which support C, C++, Objective-C, and Objective-
C++, and is compatible with GNU Compiler Collection (GCC). It also supports a
large number of backend target architectures. Figure 2.4 shows how different source
languages can be input to the frontend compilers of LLVM, which translate the
source into an IR. The IR is then optimized using LLVM’s optimizer. At this stage,
different source languages can be linked together, and even object files compiled
using standard GCC can be linked at this stage. The optimized IR is then translated
into the target architecture by the backend.

2.3.1 Intermediate Representation

LLVM use a human readable, assembly-like, strongly typed RISC instruction set as
the IR, with support for an infinite number of temporary registers of the form %0,
%1, etc. LLVM can also output a dense bitcode format of the IR for serialization.
Conversion between the bitcode-format and the human-readable format, and vice
versa, can be done with the commands "llvm-dis" and "llvm-as", for dis-assembly
and assembly.



16 2. THEORY AND BACKGROUND

Required constraints

Parameter name Description Required
value

DIVIDER_MODULE Use generic divider module rather than
Altera primitive

generic

EXPLICIT_
LPM_MULTS

Use Altera primitive multiplier rather than
Verilog multiply operator (*)

0

INFERRED_RAMS Use Verilog inferred RAMs rather than
Altera altsyncram modules

1

INFERRED_
RAM_FORMAT

Select format of inferred RAMs. Altera:
multiple always blocks, Xilinx: same al-
ways block

xilinx

LOCAL_RAMS Infer all RAMs as local RAMs rather than
global RAMs. RAMs being accessed by
multiple functions will override this setting

1

VSIM_NO_ASSERT Disable triple-equality assertions. This
causes simulation to fail

1

HLS constraints

Parameter name Description

SDC_NO_CHAINING Schedule each operations into a separate clock cycle
MB_MINIMIZE_HW Run LegUp-pass that tries to minimize signal sizes
CASE_FSM Use case-statements in FSM rather than If-Else
PIPELINE_ALL Enable pipelining for all loops, regardless of loop-label
ENABLE_
PATTERN_SHARING

Turn on resource sharing for patterns in Data-Flow
Graph (DFG)

DUAL_PORT_
BINDING

Use dual-ported on-chip memories

Table 2.2: Description of constraints used in this project



2.4. ALTERNATIVE HARDWARE DESIGN METHODS 17

Figure 2.4: LLVM’s three-phase compiler structure [15].

Some parts of the LLVM IR will be described in chapter 4. The whole language is
too large to be fully explained here, but interested readers can read more about the
syntax in the LLVM Language Reference Manual [14].

2.4 Alternative hardware design methods

HLS is not the only alternative to HDL-languages, if you want to design digital
hardware at a higher level of abstraction. The following subsections will shortly
describe two alternative approaches to digital hardware design.

2.4.1 Chisel

One interesting approach to designing hardware with a higher level of abstraction, is
the Chisel Hardware Construction Language (HCL) [2], developed at UC Berkeley.
HDL languages like VHDL and Verilog, were originally designed as simulation
languages and later adopted as a basic for synthesis. Chisel, on the other hand, was
created as a HCL and is thus synthesizable by construction. This entails that no
conversion from C, or other HLL, into gates is performed, only generation of generic
low-level Verilog with no overhead. Chisel is a Domain Specific Language (DSL)
built on Scala [25] with its own syntax, but Scala syntax can also be used to get
even greater abstraction in your design. A big advantage using Chisel is its high
simulation speed, using C++-based cycle-accurate software simulators.

2.4.2 Functional programming

Functional programming is a relatively different method of hardware design, as
it consists only of mathematical functions and immutable data. Two examples of
hardware design using functional programming is CλaSH [1] and Lava [3]. Both Lava
and Cλash are compilers for the functional programming language Haskell [12], but



18 2. THEORY AND BACKGROUND

while Lava is an embedded DSL like Chisel, with its own syntax, Cλash use Haskell
syntax and semantics, and use a static analysis approach towards synthesis.

2.5 Power dissipation in CMOS circuits

The power dissipation in CMOS circuits can be divided into three categories [26],
dynamic power, short-circuit power and leakage power. This gives a total power
dissipation of:

Ptotal = Pdynamic + Pshort−circuit + Pleakage (2.1)

Figure figure 2.5 shows the distribution of the power components of the CMOS
circuit. Each component is described in more detail in the following subsections,
where switching power corresponds to Pdynamic, internal power corresponds to
Pshort−curcuit, and leakage power to Pleakage.

Figure 2.5: Power dissipation components distribution [26].

2.5.1 Switching power

Whenever a signal changes the logic state from 0 to 1, the load capacitance is
charged by the power supply. The power dissipated during this process is called
switching power. Half the energy drawn from the power supply needed to charge the
capacitance, is dissipated as heat in the process. The switching power depends on the
frequency of the switching, the switching factor of gates, and the load capacitance,
in addition to the supply voltage.



2.6. TOOL-FLOW 19

2.5.2 Internal power

The internal power is the power used to charge and discharge the internal capacitance
of the circuits, whenever a pin changes its logic state. A large part of the internal
power is the short-circuit power. In the short time when both the pMOS and nMOS
transistor of the CMOS circuit is on, a current will be drawn from the source Vdd to
Gnd, through the short-circuit that will occur.

2.5.3 Leakage power

Whenever the circuits are turned on, a small leakage current will be drawn from the
gates. The leakage power is mostly caused by sub-threshold currents and reverse
biased diodes in the circuits. The leakage current increase when the technology
shrinks, making leakage a bigger problem today than before.

2.6 Tool-flow

This section will describe all the tools that are used throughout this thesis, as well as
the connection and data-flow between the different tools. This flow is based on the
standard tool-flow used at Nordic Semiconductor, and it include some parts adapted
from the "automated area and power estimation tool-flow" created by Joar Talstad
for his Master thesis [35]. Most of the tool-flow is based on scripts and Makefiles
that can be run from a Linux shell, but there are also some GUI-tools available that
will be mentioned briefly in chapter 4. The following subsections will describe the
different sections of the tool-flow in detail. The flow in LegUp will not be described
here, as this is covered above and will be presented in more detail in chapter 4.

2.6.1 Simulation

Simulation is run to verify the correctness of a design and to help detect and eliminate
potential bugs. In this project, the simulation tool also generates a Value Change
Dump (VCD)-file, designname.vcd, showing switching activity during simulation.
This file is used in the power analysis tool later in the flow, to get a realistic input
of the amount of switching in the design. Simulation is performed using the tool
ModelSim for Questa-64, version 10.2b 2013.05 [11]. Simulation is executed by calling
the script RUN_ALL. The RTL-design filelist and a file containing a testbench
module must be specified in the filelist found in the sim/tb/ -directory. This is used
as input to the simulation tool.

2.6.2 Synthesis

Synthesis translates a RTL-design written in a HDL-language, like Verilog or VHDL,
into a netlist for a specified target library. The tool used for synthesis in this thesis is



20 2. THEORY AND BACKGROUND

Synopsys Design Compiler, version I-2013.12-SP2 [32]. A cell library describing 180nm
technology is used as the target architecture. A Makefile is used to start synthesis,
and the command make compile runs the full synthesis. The netlist generated by
synthesis is found in the file designName.mapped.v in the result-directory. This netlist
is used as input for the layout-tool. Synthesis generate reports showing area-estimates,
register count, critical path and static power estimates for the design. As the design
will be processed further through the tool-flow, these reports are not that accurate
and hence not that useful.

2.6.3 Layout

Layout translates the netlist generated during synthesis into a chip layout. The
tool used for layout in this project is Synopsys IC Compiler, version L-2016.03-
SP1 [33]. A Makefile is used to start layout, and the command make outputs_cts
runs the correct layout-script. Layout produces a new netlist-file, stored in the file
designName.output.v in the result-directory. This netlist is used in the power analysis
tool for estimating power consumption. Layout generate reports about area and
critical paths, stored in the reports-directory. These results are more accurate, as
they were gathered from the actual chip layout.

2.6.4 Power analysis

Power analysis is performed to get an early indication on how much power the final
chip will be consuming. The tool used for power analysis in this thesis is Synopsys
Primetime, version K-2015.12-SP3. To get accurate power estimates, the switching
activity file generated during simulating is used together with the netlist output from
layout. The conclusion from [35] was that this method provides accurate results
and is well suited for making RTL-design trade-offs based on power consumption in
multi-voltage designs. Power analysis is run on five different power scenarios, each
giving a separate result for each of the three power dissipation categories described
in section 2.5. The reports are stored in the reports-directory.

2.7 Reference design

This thesis will look into whether or not LegUp can be used as the HLS-tool in a
framework for architectural exploration of hardware. In order to get some output
from LegUp that can be compared towards each other, a reference design must be
created. The design will be used in the proof of concept, described in chapter 6, and
should be something that can be implemented both in C and Verilog. The design
should also be simple to implement and verify. In [13], two reference designs were
implemented; a FIR-filter and a SAP-1 architecture. The FIR-filter will be used as
the reference design in this project, as this is a regular structure that easily can be



2.7. REFERENCE DESIGN 21

implemented and verified. The SAP-1 architecture would have been a interesting
second reference design, as it consists of a FSM, just like the output from LegUp.
Unfortunately, this architecture has too many design-parts that will be incompatible
with the framework. It has therefore been decided to leave this design out of this
thesis.

2.7.1 FIR-filter

Finite Impulse Response (FIR)-filters are together with Infinite Impulse Response
(IIR)-filters, the two categories of linear time-invariant systems, used in digital signal
processing application. The impulse response of a FIR-filter is zero outside some
finite time interval. A general FIR-filter can be described by the differential equation
[27]:

y(n) =
M−1∑
k=0

bkx(n− k) (2.2)

or by the system function:

H(z) =
M−1∑
n=0

bnz
−n (2.3)

The impulse response for a FIR-filter is given by:

h(n) ,


0, n < 0
bn, 0 ≤ n ≤M − 1
0, n > M

(2.4)

From eq. (2.2) and eq. (2.4) we get the discrete convolution equation:

y(n) =
∞∑

k=−∞
h(k)x(n− k) , h(n) ∗ x(n) (2.5)

Figure 2.6 shows the direct form representation of a N-order FIR-filter with N + 1
taps. The figure shows that a FIR-filter requires N memory elements, N adders and
N + 1 multipliers.

Even though the process of designing a FIR-filter might not be a trivial task, the
implementation of an already designed filter is simple. As seen from eq. (2.5), the
filter can be described by the convolution formula, which implies that the filter can
be implemented as convolution of the input function x(n) with the impulse response
function h(n).



22 2. THEORY AND BACKGROUND

Figure 2.6: Direct form representation of a N-order FIR-filter.



Chapter3Adapting LegUp

The main focuses of this thesis has been to resolve the issues encountered in [13],
to make LegUp able to generate Verilog more suited for ASIC implementation
and synthesis. This chapter will describe the process of resolving these issues and
other alterations that have been added to simplify the creation of a framework for
architectural exploration of hardware.

3.1 Approach

In the future works section of [13], two different approaches to resolving the issues
were proposed; post-processing and pre-processing. Both approaches have been
explored, but the majority of solutions are based on the pre-processing alternative.
The two following subsection will present the two approaches and give some reasoning
to why one is preferred over the other.

3.1.1 Post-processing

With the post-processing approach, the idea is to alter the Verilog-code after it is
generated, to make it more suitable for ASIC implementations. This approach is
easy to work with, as we can concentrate on a single file, the output Verilog file. The
drawback of this approach is that you only have the information available in the
Verilog file at hand, making it hard to add functionality to the tool.

There exist multiple parser tools for Verilog, for instance Verilog-Perl from VeriPool,
a Verilog parser library for Perl [30], and pyverilog, a Hardware Design Processing
Toolkit for Python [34]. These tools can be used to parse the Verilog file, to build
module, signal, and port hierarchy, and easily add, alter, or remove objects.

23



24 3. ADAPTING LEGUP

3.1.2 Pre-processing

The pre-processing approach involves changing the libraries in LegUp that perform
HLS operations like allocation, scheduling, RTL-generation and Verilog printing.
This requires deep knowledge of the libraries and its connections, to find a good way
to change the output. The large libraries is the main drawback of this approach. As
LegUp is open-source, the possibilities of this approach are endless, but getting the
necessary knowledge of the libraries takes time.

3.1.3 The used approach

As it looked like the easiest solution, the post-processing alternative was explored
first. However, it was soon realised that the things that could be done easily with
this approach, also could be done quite easily with the pre-processing approach.
Some larger issues, for instance assigning values to outputs, were not easily solvable
using the post-processing method. The focus was therefore directed towards the
pre-processing alternative. One advantage of this approach is that the original
functionality of LegUp can be kept, while adding new functionality. The switching
between original and altered versions are done using TCL-parameters. The post-
processing method was used at a later stage, but then on the LLVM IR-code rather
than the generated Verilog.

3.2 TCL commands

LegUp uses TCL commands for setting constraints and configuring the HLS-flow.
In order to keep the original implementation of LegUp, and to provide additional
functionality, some new commands were added. New TCL-parameters can easily be
added to LegUp by adding the parameter name to the array validParameters and
increasing the parameter NUM_PARAMETERS in the file LegupConfig.cpp. The
value of the parameter can then be read using the function call:

LEGUP_CONFIG->getParameter("parameterName")

to get a string, or

LEGUP_CONFIG->getParameterInt("parameterName")

to get an integer. LegupConfig.h must be included to get access to LEGUP_CONFIG.
The most common use of TCL-parameters is to check whether a parameter is set,
and perform some action based on this. Parameters can also be used to set values of
variables. An example could be a parameter that decides if a designated top-module
will be generated or not.



3.2. TCL COMMANDS 25

The parameter is defined by adding the following code to the constraint file:

set_parameter PRINT_TOP_MODULE 1

The parameter can then be used to decide if the top-module should be printed:
1 if( LEGUP_CONFIG -> getParameterInt (" PRINT_TOP_MODULE ") {
2 printTop ();
3 } else {
4 printVerilogWithoutTop ();
5 }

Another example is to use a parameter to set the name of the top-module. This can
be used for naming the top-module, or to select top-module in the simulation-settings.

set_parameter TOP_MODULE_NAME "moduleName"

1 std :: string topModuleName = "top"; // Default name
2 if( LEGUP_CONFIG -> getParameter (" TOP_MODULE_NAME ") {
3 topModuleName = LEGUP_CONFIG -> getParameter (" TOP_MODULE_NAME ");
4 }

In the second example, the getParameter() function will return false if the parameter
is not set.

Other TCL-commands can also be defined by adding the following line to the file
LegupTcl.cpp:

1 Tcl_CreateCommand (interp ,
2 " set_custom_main_function ",
3 set_custom_main_function ,
4 legupConfig ,
5 0);

Here the second parameter is the TCL-command and the third parameter is the
handler function that will be called when the TCL-command is encountered. In
the handler function, arguments from the constraint file can be used to configure
LegUp. As multiple arguments are supported, more advanced configurations can be
performed with this alternative. The parameters that has been added to LegUp is
described below.

ASIC_IMPLEMENTATION
This parameter is used to distinguish between the original version of LegUp
and the altered version developed in this thesis. If this parameter is set, all



26 3. ADAPTING LEGUP

extra features described in the following subsections will be applied to the
generated design. If the parameter is not set, the unaltered edition of LegUp
will be used to generate the output.

set_custom_main_function
This parameter can be used to define inputs and outputs in the main-module,
as described in section 3.5.2. As this is not a simple TCL-parameter, it takes
multiple arguments. The format of the input should be:
portDirection portSize portName

An example of declaring two inputs and two outputs in the main-module could
be:

set_custom_main_function
input 7:0 inSignalA \
input 31:0 inSignalB \
output 31:0 outSignal \
output 1:0 outSignalValid

ENCLOSING_WHILE_LOOP
Indicating that the main-function has enclosing while loop (for streaming
inputs/outputs). Will generate iterationFinish-signal each time an iteration of
outer while loop is finished.

SEPARATE_TB_FILE
Parameter decides if testbench is printed in same file as design or in a separate
file. The filename of the separate testbench-file will be test_main.v, according
to Nordic Semiconductor’s naming-convention, but this can easily be changed
or made dynamic by setting the parameter SEPARATE_TB_FILENAME.

SEPARATE_TB_FILENAME
Take testbench filename as parameter and changes the default filename of
the testbench output-file to this name. Will not have any effect if SEPA-
RATE_TB_FILE is not set.

TB_TESTCASE_FILE
This parameter provides the filename of a file containing testcases for the
testbench. The testcases will be automatically included into the testbench, as
described in section 3.9. If the parameter is not set, no testcases will be added
to the testbench.

REMOVE_UNUSED_LOCAL_RAMS
By declaring input parameters as volatile, a local RAM will be generated in the
main-module for each output signal we create. These RAMs are not used for



3.3. REMOVING TOP-LEVEL AND FPGA-SPECIFIC MODULES 27

anything useful and can therefore be removed to save area. If set, local RAMs
in main are removed only if the value stored to the RAM is assigned to an
output instead.

3.3 Removing top-level and FPGA-specific modules

As described in [13], the output Verilog contains many module declarations not
required or wanted in an ASIC implementation. This include the modules top,
memory_controller, circuit_start_control, hex_digits, %board% and main_tb. The
modules memory_controller and main_tb are discussed in sections below, but it
is also desirable to remove the other modules. Excess modules could easily be
removed by parsing the generated Verilog-file, but the output can be easily controlled
with the use of TCL-parameters in the VerilogWriter-library of LegUp. When the
parameter ASIC_IMPLEMENTATION is set, none of these modules are printed to
the generated Verilog file.

3.4 Removing memory controller

One of the main issues with using LegUp for ASIC implementations, is that a
global memory-controller for passing data between modules, are added to the design.
With this architecture, values have to be added to the memory prior to the run,
or continuously during the run. This generates additional timing requirements and
adds extra logic for handling these operations. Both to decrease the overhead, and
to simplify the generated design, it is desirable to avoid this memory controller.
A simple solution to this, is to set the parameter LOCAL_RAMS to 1. This
parameter is already present in LegUp. Setting this parameter will prevent the
global memory controller to be generated, as long as there are no variables used
by multiple functions (global variables), or pointers that cannot be connected to
a single function after points-to analysis. Typically the memory controller will be
instantiated in the top-module, but as described in section 3.3 this module is removed
when the parameter ASIC_IMPLEMENTATION is set. This leads to no connections
between the main-module and the RAM-modules in the global memory controller,
resulting in a failing circuit. It is therefore important to check that the global
memory controller is not added to the design. This check has been implemented in
the framework-script, described in section 5.2. By using the tool grep to search for
the line "module memory_controller" in the generated Verilog-file, the user will be
notified if the memory controller is found in the design.



28 3. ADAPTING LEGUP

3.5 Declaring inputs and outputs

Each function declared in the input C-code will be translated into a Verilog-module
by LegUp. Since LegUp primarily is designed for implementing hardware accelerators
for FPGAs, it does not handle inputs and outputs well to and from the top-module.
In an ASIC implementation, inputs and outputs are essential to most module design
and must therefore be easy to implement. In a C-code written for execution on a
computer, the input parameters to the main-function is defined to be on the form
"int main(int argc, char *argv[])". This limits the possibility to declare inputs
to the module with any data-type. To solve this problem, the flag -ffreestanding has
to be passed to the clang compiler frontend of LLVM. The compiler will then consider
the C-code to contain a freestanding - not a hosted - environment. The types of
inputs and return-values defined in the main-function will then be of no concern to
the compiler. In LegUp, the flag can be passed to the compiler by adding it to the
variable CLANG_FLAG in the file Makefile.config. The solution that would have
been used in a hosted environment is to use pointers for input and output parameters,
but this would reintroduce the undesired memory controller in the design.

Two different solutions for declaring inputs and outputs are considered and imple-
mented. Both solutions are based on declaring both inputs and outputs as parameters
to the main-function.

3.5.1 Name prefix

The first solution is to use a prefix to distinguish between input- and output-
parameters. The prefix is set to __out_, as it is sensible to use a prefix that is
seldom used in a variable name. Previously, LegUp assumed all function parameters
were inputs, and added the signals to the RTLModule. This has been altered to
check the name of the parameter and add it as an output reg if the name starts
with __out_, otherwise add it as an input. The pseudo-code of how inputs and
outputs are handled are shown in algorithm 3.1. Here we assume that i is a function
parameter and rtl is the RTLModule generated by the main-function.

Algorithm 3.1 Adding parameters to a module

1: sigName← i.getName()
2: if sigName.startWith() = ”__out_” then
3: sigName← sigName.strip(__out_)
4: i.setName(sigName)
5: rtl.addOutReg(i)
6: else
7: rtl.addIn(i)
8: end if



3.6. ASSIGNING VALUES TO OUTPUTS 29

The advantage of this method is that it is simple to implement and easy to use, as the
user only has to remember the name prefix when writing the functional specification.
The name-prefix can also be useful in other sections of the program, as we will see
later in section 3.6. The disadvantage is that the name prefix needs to be used
throughout the program. It would however be preferable to use a temporary variable
in the program until the final value is calculated and ready to be assigned to the
output. This will reduce the amount of times the name-prefix must be used. The
name prefix will be stripped by LegUp, providing clean signal-names in the final
Verilog-module.

3.5.2 TCL-command

The other alternative is to use a TCL-command to define the parameters as input or
output. This enables the possibility to also define the size of the signal, but LegUp
does not allow setting the size of a signal to a number of bits lower than the size
of the defined type. This means that if a parameter is declared as an int in the
C-program, LegUp does not allow for setting the RTLWidth of the signal to anything
below 32 bit.

Inspiration for this method comes from the parameter set_custom_verilog_function
already present in LegUp. This is used to add custom Verilog functions to the
design. The TCL-command set_custom_main_function was added, which generates
a vector with objects of the class CustomVerilogIO, each describing one input- or
output-signal to the main-module. By looping over the vector, each parameter can
be added to the RTLModule based on this information. This part is quite similar
to the above described name-prefix method. As this method does not provide any
additional functionality, it is recommended to use the name-prefix method. The
name-prefix method is also required together with another alteration described in
section 3.6.1.

3.6 Assigning values to outputs

In section 3.5 two methods of declaring parameters as outputs in the generated
module were presented. Unfortunately, assigning values to an input-parameter is
undefined behaviour in C. In the LLVM IR output from the compiler, no assignment
to any parameter is performed. The alternative of adapting the clang-compiler to
treat name-prefixed input-parameters as outputs were considered, but it would be
time-consuming to dig into the clang-libraries as well. By disabling optimization of
the IR or declaring the output-parameter as volatile, the assignment operation is
present in the IR-code. Unfortunately, the assignment in the IR-code is not to a
variable but to a local RAM module, generated for the parameter. No assignments
to the output exists.



30 3. ADAPTING LEGUP

When disabling the optimization-passes in the compiler, some patterns were no-
ticed that could provide useful information. The idea was to look for assignment-
information in the LLVM IR-code, which could be used in LegUp to assign the correct
values to the output. To show how this information can be used to assign values to
outputs, it is best to use a simple example. In listing 3.1, a short C-code is listed.
When running the pure-HW flow of LegUp on this code, the human readable format
of the LLVM IR-code is output to a file named designName.ll.

1 void main(int inDataA , int inDataB , volatile int __out_outData ) {
2 while (1) {
3 __out_outData = inDataA * inDataB ;
4 }
5 return ;
6 }

Listing 3.1: Simple C-code example for LLVM IR parsing

1 define void @main (i32 %inDataA, i32 %inDataB, i32 %__out_outData ) #0 {
2 %1 = alloca i32, align 4
3 store volatile i32 %__out_outData, i32* %1, align 4
4 br label %2
5
6 ; <label >:2 ; preds = %2, %0
7 %3 = mul nsw i32 %inDataA, %inDataB
8 store volatile i32 %3, i32* %1, align 4
9 br label %2

10 ; No predecessors !
11 ret void
12 }

Listing 3.2: LLVM IR code for simple parsing example

Lets analyze the content of this file, shown in listing 3.2. On line 2 the tempo-
rary register %1 is created. On line 3, the input parameter declared as volatile,
__out_outData, is stored to this register. On line 7, the calculated multiplication of
the inputs inDataA and inDataB is stored to a new temporary register, %3. On line
8, the content of register %3 is stored back to register %1. This information can be
exploited to create a program that traces stores, back to the original input-parameter.
In this example it is easy to see that the storing of the calculated multiplication
can be traced back to the output __out_outData, but in more complex programs,
this tracing might not be that simple. One solution is to create a script that parses
through the IR-code and makes these connections. Notice that the parameter that
should be an output needs to be declared as volatile, if not, the first allocation and
store operations will be removed by link-time optimization passes. Optimization
cannot be disabled, as this leads to temporary registers being used for all parameters
rather than parameter-names, causing problems for streaming inputs described in
section 3.7.



3.6. ASSIGNING VALUES TO OUTPUTS 31

When LegUp generate signals, they will be named by the convention:

functionName_labelNumber_registerNumber.

The example above will then create the signals main_0_1 from line 2 and main_2_3
from line 7. As the first line describes an alloca-operation, main_0_1 will actually
be implemented as a RAM-module. RAM-modules will be generated for all input-
parameters declared as volatile. This is good news, as this is needed for the program
that trace assignments to outputs.

3.6.1 LLVM IR assignment parser program

A program have been created to parse the LLVM IR generated by the compilation.
The code for this program is written in the language C++. The reason for the
language choice is merely that this was a familiar language for the writer of this thesis.
The size of the program was not thought to be large enough for it to be beneficial to
look into another language, given the limited amount of time available. In hindsight,
a scripting language like Perl or Python could presumably be preferred for this kind
of task. This section will explain in words and pseudo-code how the program works.
The full source code of the parser program is included in appendix A.2. The program
takes two command-line arguments when called, the name of the input file and the
name of the output file. The input file should be the final LLVM IR file generated by
LegUp, named designName.ll. The output filename can be anything, but the default
filename used in LegUp for reading the output-file is LLVMParsed.log. The program
consist of two parts, the first part handles the reading and parsing of the input file,
the second part handles tracing and generating of the output file. The program is
created to only care about the main-function, as this is the module where it is vital
to have multiple output signals. The program can easily be changed by altering the
source code, if additional functionality is needed.

A pseudo-code describing the first part of the program is shown in algorithm 3.2.
The parser starts by looking for the main-function. When in the main-function, the
program looks for lines containing stores or labels. If a store is found, the source
and target register of the store, together with the current label, is stored in separate
vectors. If a new label is found, the label is set as the current label.

A pseudo-code describing the second part of the program is shown in algorithm 3.3. A
double for-loop is needed to check each target against all other target. The C-example
above will store the values shown in table 3.1 in the vectors. By comparing the first
target against the second target in the table, it can easily be seen that the second
source is stored to the same target as the first source. Notice that this program
uses the name-prefix described in section 3.5.1. This method of declaring outputs is
therefore required for the parser program to work.



32 3. ADAPTING LEGUP

Algorithm 3.2 Input file handling in LLVM IR parser program
Require: inFile and outFile should be passed as arguments

1: if inF ile.open() then
2: currentLabel← 0
3: inMain← false
4: while inF ile.getNextLine() 6= inF ile.end() do
5: if inMain then
6: if lineStartWith() = ” store” then
7: newSource← sourceRegisterFromLine
8: newTarget← targetRegisterFromLine
9: sources.insert(newSource)

10: targets.insert(newTarget)
11: labels.insert(currentLabel)
12: else if lineStartWith() = ”; < label >: ” then
13: currentLabel← labelNumberFromLine
14: else if lineStartWith() = ”}” then
15: inMain← false
16: end if
17: else if lineStartWith() = ”define %type% @main” then
18: inMain← true
19: end if
20: end while
21: end if

sources targets labels

__out_outData 1 0
3 1 2

Table 3.1: Vector values after parser run

The program will output the result of the tracing into a file with the name given as
parameter to the program. The format of the output is:

"sources[i] sources[j] labels[j] labels[i] targets[i]"

The output from the above example will then be:

"outData 3 2 0 1".

This implies that the signal main_2_3 should be assigned to the output outData.
The two last values, 0 and 1, are included as they will be used in a trick in section 3.6.2
to simplify the process of assigning signals to output ports.



3.6. ASSIGNING VALUES TO OUTPUTS 33

Algorithm 3.3 Output file handling in LLVM IR parser program
1: if outF ile.open() then
2: done← {}
3: for i← 0 to targets.size() do
4: for j ← 0 to targets.size() do
5: if targets[i] = targets[j] and i 6= j and sources[i] /∈ done then
6: newSource← sourceRegisterFromLine
7: newTarget← targetRegisterFromLine
8: done.insert(sources[j])
9: if sources[i].lineStartWith() = ”__out_” then

10: parameterName← sources[i].strip(__out_)
11: outF ile.print(parameterName)
12: outF ile.print(sources[j])
13: outF ile.print(labels[j])
14: outF ile.print(labels[i])
15: outF ile.print(targets[i])
16: outF ile.print(”\n”) . Newline
17: end if
18: end if
19: end for
20: end for
21: end if

Execution of the program is added to the Makefile, Makefile.common, just before
running the LegUp backend pass that generated Verilog output. The program is
called by the line:

$(LEVEL)/LlvmParser.run $(NAME).ll LlvmParsed.log

3.6.2 Assigning output signals

As described in section 2.2.2, any RTLSignal that exist in a RTLModule can be
found by calling the function find(), with the name of the signal passed as a string
parameter. A RTLSignal can have multiple drivers and conditions, and the i-th
driver or condition can be found by calling getDriver(i) and getCondition(i). The
initial idea when the LLVM IR parser program was created, was to find each of the
signal and connect them to the correct output.

For every parameter to the function, the compiler will allocate a register and store
the parameter value to this register. Whenever a store to a parameter is performed,
this value will be stored to the first allocated register. In LegUp, the allocated
register will be implemented as a RAM module and all stores to the parameter will



34 3. ADAPTING LEGUP

be stored to this ram. This information can be exploited to re-assign values stored
to this RAM, to the output port instead.

Figure 3.1 tries to illustrate the problem with assigning outputs. In figure 3.1a, the
module we would expect from the C-code in listing 3.1 is shown. The two inputs are
multiplied together and output to outData. In reality, what happens in the generated
Verilog is shown in figure 3.1b. In figure 3.1c, the example is extended with an extra
ADD module that stores to outData. Instead of assigning the calculated values to the
output, they are stored in a RAM module. In figure 3.1c, the current state is used
to decide which signal is input to the RAM. The solution to this problem is shown
in figure 3.1d. By "hijacking" the input signal to the RAM module and assigning it
to the output, outData, we get the expected functionality.

(a) What we want to achieve (b) What the compiler/Legup thinks we
want to achieve

(c) An example with multiple stores to
outData (d) The solution

Figure 3.1: Problem with assigning values to output

The RAM module will be named by the same convention as signals, naming the
RAM from the example main_0_1. The data input-signal of the RAM module is
named ramName_in_a. This is the signal we want to "hijack". The "hijacking" is
performed as described in algorithm 3.4. The name of the output ports are read
from the file output from the LLVM IR parser program, together with the name of
the corresponding RAM modules. Each driver-condition pair in the input-signal of



3.7. STREAMING INPUTS/OUTPUTS 35

the RAM module, is added as a conditional driver to the output port.

Algorithm 3.4 Assigning values to outputs
1: for i← 0 to outputPorts.size() do
2: outputPort← find(output signal name)
3: ramSignal← find(RAM module inData signal)
4: for j ← 0 to ramSignal.getNumDrivers() do
5: outputPort.addCondition(ramSignal.getDriver(j),

ramSignal.getCondition(j))
6: end for
7: end for

3.6.3 Removing local RAMs

As described in section 3.6, each parameter declared as volatile will generate a
RAM module. After reassigning the stores to the output port, the generated RAM
modules are no longer needed. These RAM modules can be removed to save area and
reduce power consumption. To make this operation optional, the TCL-parameter
REMOVE_UNUSED_LOCAL_RAMS was added. By setting this parameter, the
local RAM modules will be removed. All local RAMs are stored together with its
corresponding function (from the C-code) in a variable, isLocalFunctionRam. If the
RAM is removed from this variable, it is also remove the generated Verilog. In
addition to removing the RAM module, all signals to and from the RAM must be
removed as well. Notice that only the RAMs generated by output parameters are
removed from the main-module. RAM modules can also be generated by arrays and
other large data structures, but these will not be removed. This method of removing
the RAMs does not remove the states for allocation and stores to the RAMs present
in the FSM generated by LegUp.

3.7 Streaming inputs/outputs

For most module designs to be useful and fast, it must be able to continuously take
new inputs and generate outputs, without having to start and stop the entire module
each time, with all the overhead in time this would require. The way LegUp is
designed, functions are used as hardware accelerators, meaning it gets some input,
performs some calculations and then outputs the result. The module is then finished
and will not run again until next time the accelerated function is called. For this
approach to work for an ASIC implementation, a top module would need to be
created to assign new inputs and start the module again once it is finished with the
last iteration. If the output-value is used in the next run, a feedback loop needs to be
added to pass the result back to the new inputs. The concept is shown in figure 3.2.



36 3. ADAPTING LEGUP

This solution would be hard to implement and would create extra overhead, both
in terms of speed and area of the design. Another solution is to add a while loop
inside the main-function of the C-code to make the program run continuously. The
initial problem with this approach is that to output a value from the function, the
return-statement is used. Calling return will cause the program to terminate, which is
not desirable. With the method implemented in section 3.6, it is no longer necessary
to call return to output a value. This while-loop method can therefore be used with
this altered version of LegUp.

Figure 3.2: Top-level concept for streaming inputs and outputs

With this solution, some new issues arise. First we need a way to stop the module if
all calculations are finished. This can easily be handled by adding a input parameter
to the main-function in the C-program, lets call it done, which is used as condition
for running the while-loop. This parameter will then correspond to a signal in the
Verilog-module that can be used to terminate the module. No alterations to LegUp
is performed to resolve this issue, as it can be resolved manually by the user. This
signal could potentially be integrated to the Verilog-generation in LegUp, but this
would require major alterations to the libraries and the generated data-flow.

Secondly, we need a way to know when an output has valid data. A simple solution
here is to generate a valid-flag for each output signal. These flags are created
simultaneously with the outputs being connected to the driving signals, as described
in 3.6. The signals shall be valid only in the first clock cycle after the output signal
has changed. To achieve this, two condition signals have to be created, one when the
output is valid, and one when the output is not valid. The valid condition shall be
set in any state where the output signal is assigned. This means that the conditions
used to set the RAM-module’s data input-signal can be used. The not-valid signal
should be set in all other states. To generate the valid-signal is straightforward, as
the condition-signals for storing values to the RAM is already generated by LegUp.
These conditions can be copied from the RAM-signal and added to the output-valid
signal as conditional drivers. The not-valid signal is a bit more tricky to generate.



3.7. STREAMING INPUTS/OUTPUTS 37

By creating an RTLOp-signal that ANDs together all the valid states, and creating
a second RTLOp-signal that NOTs this signal, the desired not-valid signal is created.
Figure 3.3 illustrates how the signal is generated. The tricky part arises from the
AND-operation only being able to take two operands, making it hard to create code
handling special cases of few and odd number of valid states. The source code of
how this is handled is included in appendix A.3.

Figure 3.3: Generating not-valid signal.

As each output can be valid at different times, and also multiple times during a
loop, a third issue needs to be handled. A way to know when an iteration of the
loop is finished must be added. A flag, iterationFinish, can be added by setting the
parameter ENCLOSING_LOOP in the constraint file. The flag will be set each
time the loop condition-check is performed (except the first time). If the code is
divided into three parts, pre-loop, loop, and post-loop, the implementation of this
solution can be simplified a bit. By not allowing any operations, except return, to be
executed in the post-loop part, as shown in listing 3.3, the flag only needs to be set
in the state preceding the final state of the FSM.

1 void main( int done ) {
2 //Pre -loop: Variable setup etc. can be done here.
3 while (done == 0) {
4 // Loop: Functional operations are performed here
5 }
6 // Post -loop: No operations can be done here.
7 return ;
8 }

Listing 3.3: Sectioning of a program with enclosing while-loop

The iterationFinish-flag is set to zero in all other states. This is done by adding an
RTLOp-signal that NOTs the condition for setting the flag high. This RTLOp-signal
is added as a condition for driving the flag low. The source code of this is listed in
appendix A.4.



38 3. ADAPTING LEGUP

3.8 Signal sizes

A problem with writing the functional specification in C is that C have no built-in
support for bit-sizes. Data types of sizes 1, 8, 16, 32 and 64 bits are defined, but if
you want to declare a signal of any other bit-width, like you often do in hardware
design, this is not possible. The problem with over-sized signal sizes is that larger
circuits will be generated in order to handle the calculation of the expected extra
bits. Two solutions were looked upon for solving this issue; bit-packed structs and
bit-width attributes. In C it is supported to define a variable in a struct to be any
given number of bits. The thought behind this feature is to allow storing multiple
small variables in the memory space occupied by the entire struct. In the example
shown in listing 3.4 the struct s will occupy 12 bytes, as one int equals 4 bytes, while
the struct t will occupy 3 bytes, as the total defined bit-width is 23 bits.

1 struct s {
2 int a;
3 int b;
4 int c;
5 } __attribute__ (( packed ));
6
7 struct t {
8 int a:1;
9 int b:15;

10 int c:7;
11 } __attribute__ (( packed ));

Listing 3.4: Struct bit-packing example

There are two issues with this solution; assigning values to a variable in a struct
takes much more typing than other variables, even if the struct only contains a single
variable, and structs are not supported by the inferred RAMs generated by LegUp.
This means that if structs are used in the design, altsyncram-modules are generated
in place of inferred RAMs.

The other alternative that has been explored is to use a attribute that sets the
bit-width of a variable. By adding __attribute__((bitwidth(N))) to the end of
the variable declaration, where N is the number of bits in the signal, the compiler
can define the signal size based on this attribute. Implementation of this attribute
was suggested as an addition to l lvm-gcc, the GCC frontend compiler for LLVM, in
2007 [31], but unfortunately it was discarded in 2010. This attribute would allow for
defining new data types for each size, and using them as standard data types:

1 typedef int __attribute__ (( bitwidth (2))) int2;
2 typedef int __attribute__ (( bitwidth (4))) int4;
3 typedef int __attribute__ (( bitwidth (25))) int25 ;
4
5 int2 a = 3;
6 int4 b = 8;
7 int25 c = 2502;



3.9. TESTBENCH GENERATION 39

which could be translated into the following in the LLVM IR:
1 @a = global i2 3, align 4
2 @b = global i4 8, align 4
3 @c = global i25 2502 , align 4

The align value could be lower, depending on the number of bits/bytes allocated
to each temporary register. This solution is possible to implement in theory, but it
would require changing both the clang compiler frontend for LLVM and the LegUp
backend pass. Due to the estimated amount of time these alterations would require,
this issue has not been resolved. For this thesis it is not vital that exact signal sizes
can be set, as long as the same sizes are used in both C and Verilog code to get a
fair comparison.

3.9 Testbench generation

The original version of LegUp generate a basic testbench shell, but this is very static.
It is also incorporated into the same file as the RTL-design, making it impractical to
use in the desired framework. The generated testbench consists of a testbench module,
main_tb, which instantiate the top-module and sets reset, start and waitrequest flags.
The input and output signals in the top-module does not contain custom signals
from the main-module, and in an ASIC implementation we are not interested in
the memory controller and additional modules instantiated in the top-module. The
implemented solution is to instantiate the main-module in the testbench-module
and add each input or output by iterating over the ports in the main-module. By
setting the TCL-parameter SEPARATE_TB_FILE, the testbench will be output to
a separate file from the RTL-design. The source code of how the testbench-generation
is performed is listed in appendix A.5.

As the testbench does not come with any form of testcases or applied signals, the
testbench generator is extended to input Verilog code from a file specified by the
TCL-parameter TB_TESTCASE_FILE. This allows the user to specify testcases in
this file, that will be automatically inserted into the testbench file. The code will
be placed inside the testbench-module, but not inside any procedural blocks. This
allows the user to add the preferred procedural block in the specified testcase file.



40 3. ADAPTING LEGUP

An example testcase file can then be:
1 always @( iterationFinish ) begin
2 if ( iterationFinish == 1) begin
3 $display ("At t=%t, Loop iteration finished ", $time );
4 end
5 end

or
1 initial begin
2 inData <= 100;
3 @( posedge clk)
4 inData <= 0;
5 @( posedge clk);
6 $display ("At t=%t, outData =%d", $time , outData );
7 end

This insertion of testcases, enables the script to automatically run HLS and thereafter
run simulation, using the generated design and testbench.

3.10 Coding constraints

Due to the described alterations to the LegUp libraries, some guidelines need to be
followed when writing the functional specification, to ensure correct output. The
following subsections will describe these guidelines.

3.10.1 Structs

To support structs, byte-enable must be supported by the RAM or ROM module used
to store the data. The RAM and ROM modules inferred by LegUp does not support
byte-enable, resulting in struct support not being present when writing the functional
specification. If structs are used in the code, LegUp will use altsyncram-modules
instead of inferring RAMs. The altsyncram-module is not supported by the tool-flow
used at Nordic Semiconductor, and inferred RAM-modules must therefore be used.

3.10.2 Pointers

Pointers are used to reference an object in memory, opposed to passing a copy of
the actual object between function. This reduces both Central Processing Unit
(CPU)-time and memory-space, as objects does not need to be copied every time it
is used, and makes it possible to alter a memory object directly without implicit load
and store operations. As the memory controller used to pass data between different
modules are unwanted in an ASIC implementation, support for pointers are limited
to use inside the function where the pointer is declared. This limitation is a big
drawback with this altered version of LegUp.



3.10. CODING CONSTRAINTS 41

3.10.3 Arrays

Arrays can be used in the programs to some extent, but if the arrays get too large,
or too many arrays are instantiated, LegUp will implement these as RAMs inside
the global memory controller. The reason for this is that arrays in C basically is a
pointer to the array type. When the point-to analysis cannot determine that a single
function uses the array, it is automatically implemented as a global RAM.

3.10.4 Inputs and outputs

The implemented method of adding inputs and outputs to the module is not ideal.
The need for using name-prefixes when writing the C-code puts more of the work
on the coder, and draws the input further away from the standard ANSI-C that
was intended as the input language. If using a while loop for supporting streaming
inputs and outputs, it is not possible to do calculations after the loop, as this will
break generation of the iterationFinish-flag. Not being able to specify signal sizes
also limits what designs can be created using the tool. All these limitations has to
be taken into consideration when writing the functional specification, to make sure
the design is supported by the tool-flow and framework.





Chapter4Tool-flow example

This chapter will give a detailed description of the information- and tool-flow, using
the adapted version of LegUp and the other tools used in the creation of a framework.
A simple C-code example will be used, and the flow and generated information
will be described all the way through HLS, simulation, synthesis, layout and power
analysis. Listing 4.1 shows a simple C-code with two functions, main and squared.
The main-function will be the top-level function, taking three input parameters;
done, inData and __out_outData. The main-function contains a while loop, which
will run as long as the input parameter done is set to zero. Inside the loop the
function squared is called with the argument from inData and the return value from
squared is assigned to the input argument __out_outData. Readers familiar with
C programming might think that it is a weird thing to be assigning values to a
non-pointer parameter, but as described in section 3.6, this is implemented as a way
to get multiple outputs to the generated module. Notice also the volatile keyword
in the declaration of the __out_outData parameter, as this is a necessary part of
generating outputs.

1 int squared (int base) {
2 return base * base;
3 }
4
5 int main (int done , int inData , volatile int __out_outData ) {
6 while (done == 0) {
7 __out_outData = squared ( inData );
8 }
9 return 0;

10 }

Listing 4.1: Simple C-code example

4.1 HLS with LegUp

The HLS-tool is the only part of the tool-flow located on another computer than the
rest. This is not an issue when running a single design through the tool-flow, as the

43



44 4. TOOL-FLOW EXAMPLE

code can simply be copy-pasted to the destination. As suggested in [13], SSH and
SCP can also be used for copying files and executing commands on remote machines.

4.1.1 Constraint files

LegUp use constraint files to set constraints and settings for the HLS. The de-
fault values for necessary constraints is set in the default constraint-file located in
~/legup4-0/example/legup.tcl. The default constraints can be overridden by adding
a local constraint file. The filename of the local constraint file must be specified
in the Makefile for the constraints to take effect. This is done by adding the line
"LOCAL_CONFIG = -legup-config=config.tcl" to the Makefile, where config.tcl is
the filename of the local constraint file. The example code is run with the constraints
listed as required in section 2.2.3. All other constraints are left to default values.

4.1.2 Makefile

A local Makefile is required to compile the project. The minimal local Makefile of
LegUp contains the following three lines:

NAME=name
LEVEL = ..
include $(LEVEL)/Makefile.common

The Variable NAME is the name of the design. This variable will be used to name the
output-files of the design. The Variable LEVEL indicates the number of directory-
levels down to the design from the directory where the common Makefile is located.
1 level equals "..", 2 levels equal "../.." and so on, just like in a standard Linux
shell. Other parameters and flags like NO_OPT and NO_INLINE, can be added to
the Makefile to disable optimization and avoid inlining of functions in the compiler.
In some cases, especially with simple test-programs, these two flags are necessary to
prevent the compiler from optimizing away the whole program.

4.1.3 Compilation

The C-code is compiled into LLVM IR using the clang frontend for the LLVM
compilation framework. The initial result before any Link-Time-Optimization (LTO)
is performed, is shown in listing 4.2. Readers familiar with assembly code might
recognize some of the operations, like alloca, load, store, mul and icmp. Each
define-block corresponds to one function from the C-code. The main-function, which
contains a while-loop, is split into multiple labels. The first section refers to memory-
allocation and storing of the input-parameters. Temporary registers, declared on the
form %1, %2 .. %N, are inserted where needed.



4.1. HLS WITH LEGUP 45

The section from the line "; <label>:4 " is the checking of the condition of the while
loop. Further, label 7 is operations inside the while loop, and label 10 is operations
after the loop has exited.

1 define i32 @squared (i32 %base ) #0 {
2 %1 = alloca i32, align 4
3 store i32 %base, i32* %1, align 4
4 %2 = load i32* %1, align 4
5 %3 = load i32* %1, align 4
6 %4 = mul nsw i32 %2, %3
7 ret i32 %4
8 }
9

10 ; Function Attrs : noinline nounwind
11 define i32 @main (i32 %done, i32 %inData, i32 %__out_outData ) #0 {
12 %1 = alloca i32, align 4
13 %2 = alloca i32, align 4
14 %3 = alloca i32, align 4
15 store i32 %done, i32* %1, align 4
16 store i32 %inData, i32* %2, align 4
17 store volatile i32 %__out_outData, i32* %3, align 4
18 br label %4
19
20 ; <label >:4 ; preds = %7, %0
21 %5 = load i32* %1, align 4
22 %6 = icmp eq i32 %5, 0
23 br i1 %6, label %7, label %10
24
25 ; <label >:7 ; preds = %4
26 %8 = load i32* %2, align 4
27 %9 = call i32 @squared (i32 %8) #1
28 store volatile i32 %9, i32* %3, align 4
29 br label %4
30
31 ; <label >:10 ; preds = %4
32 ret i32 0
33 }

Listing 4.2: LLVM IR before LTO

4.1.4 Link-time optimizations

By default, some optimization passes are run on the IR to remove unnecessary
operations and reduce the number of registers needed. All available passes are
described in [22], but the ones that is run by default is mem2reg, instcombine,
loops, loop-simplify, basicaa, indvars, loop-pipeline, internalize, and globaldce. These
passes analyses, simplifies, and removes operations. The post-LTO-code is listed
in listing 4.3. Notice that the only stores left in the code is the ones connected to
the input parameter declared as volatile. The keyword volatile, which is defined as
likely to change suddenly and unexpectedly, tells the compiler to avoid performing
optimizations on this object, as it might change in an unexpected way. To avoid
the undefined behavior of assigning values to an input-parameter to be removed by
optimization passes, this keyword is necessary.



46 4. TOOL-FLOW EXAMPLE

1 define internal i32 @squared (i32 %base ) #0 {
2 %1 = mul nsw i32 %base, %base
3 ret i32 %1
4 }
5
6 ; Function Attrs : noinline nounwind
7 define i32 @main (i32 %done, i32 %inData, i32 %__out_outData ) #0 {
8 %1 = alloca i32, align 4
9 store volatile i32 %__out_outData, i32* %1, align 4

10 br label %2
11
12 ; <label >:2 ; preds = %4, %0
13 %3 = icmp eq i32 %done, 0
14 br i1 %3, label %4, label %6
15
16 ; <label >:4 ; preds = %2
17 %5 = call i32 @squared (i32 %inData ) #1
18 store volatile i32 %5, i32* %1, align 4
19 br label %2
20
21 ; <label >:6 ; preds = %2
22 ret i32 0
23 }

Listing 4.3: LLVM IR after LTO

Also notice that the storing and loading of the other input parameters have been
swapped by referencing the input parameter name directly. For instance the four
lines:

1 %2 = alloca i32, align 4
2 store i32 %inData, i32* %2, align 4
3 %8 = load i32* %2, align 4
4 %9 = call i32 @squared (i32 %8) #1

has been transformed into the single line:
1 %5 = call i32 @squared (i32 %inData ) #1

4.1.5 Verilog generation

The LegUp backend pass for LLVM is run on the IR to generate Verilog. LegUp
performs allocation, scheduling and build RTL-models of the functionality, based on
given constraints. These RTL-models are printed to a file as Verilog HDL. Listing 4.4
shows the declaration of the main-module, parameters representing states, port- and
internal signal-declarations, and instantiation of submodules from the output Verilog.



4.1. HLS WITH LEGUP 47

1 module main (
2 clk ,
3 clk2x ,
4 clk1x_follower ,
5 reset ,
6 start ,
7 finish ,
8 memory_controller_waitrequest ,
9 return_val ,

10 arg_done ,
11 arg_inData ,
12 arg_outData ,
13 arg_outData_valid ,
14 iterationFinish
15 );
16
17 parameter [3:0] LEGUP_0 = 4'd0;
18 parameter [3:0] LEGUP_F_main_BB__0_1 = 4'd1;
19 parameter [3:0] LEGUP_F_main_BB__0_2 = 4'd2;
20 parameter [3:0] LEGUP_F_main_BB__2_3 = 4'd3;
21 parameter [3:0] LEGUP_F_main_BB__4_4 = 4'd4;
22 parameter [3:0] LEGUP_F_main_BB__4_6 = 4'd6;
23 parameter [3:0] LEGUP_F_main_BB__4_7 = 4'd7;
24 parameter [3:0] LEGUP_F_main_BB__6_8 = 4'd8;
25 parameter [3:0] LEGUP_function_call_5 = 4'd5;
26
27 input clk;
28 input reset ;
29 input start ;
30 output reg finish ;
31 input memory_controller_waitrequest ;
32 output reg [31:0] return_val ;
33 input [31:0] arg_done ;
34 input [31:0] arg_inData ;
35 output reg [31:0] arg_outData ;
36 output reg arg_outData_valid ;
37 output reg iterationFinish ;
38 reg [3:0] cur_state ;
39 reg [3:0] next_state ;
40
41 squared squared (
42 . memory_controller_waitrequest ( memory_controller_waitrequest ),
43 .clk (clk),
44 . clk2x ( clk2x ),
45 . clk1x_follower ( clk1x_follower ),
46 . reset ( reset ),
47 . start ( squared_start ),
48 . finish ( squared_finish ),
49 . return_val ( squared_return_val ),
50 . arg_base ( squared_arg_base )
51 );

Listing 4.4: Verilog module, port, signal and parameter declaration, and
sub-module instantiation

LegUp generates a FSM that perform calculations and generate outputs. The
generated FSM-controller for the example C-code is listed in listing 4.5, and the state
diagram of the FSM is shown in figure 4.1.



48 4. TOOL-FLOW EXAMPLE

1 always @( posedge clk) begin
2 if ( reset == 1'b1)
3 cur_state <= LEGUP_0 ;
4 else if ( memory_controller_waitrequest == 1'd1)
5 cur_state <= cur_state ;
6 else
7 cur_state <= next_state ;
8 end
9

10 always @(*)
11 begin
12 next_state = cur_state ;
13 case( cur_state ) // synthesis parallel_case
14 LEGUP_0 :
15 if (( start == 1'd1))
16 next_state = LEGUP_F_main_BB__0_1 ;
17 LEGUP_F_main_BB__0_1 :
18 next_state = LEGUP_F_main_BB__0_2 ;
19 LEGUP_F_main_BB__0_2 :
20 next_state = LEGUP_F_main_BB__2_3 ;
21 LEGUP_F_main_BB__2_3 :
22 if (( main_2_3 == 1'd1))
23 next_state = LEGUP_F_main_BB__4_4 ;
24 else if (( main_2_3 == 1'd0))
25 next_state = LEGUP_F_main_BB__6_8 ;
26 LEGUP_F_main_BB__4_4 :
27 next_state = LEGUP_function_call_5 ;
28 LEGUP_F_main_BB__4_6 :
29 next_state = LEGUP_F_main_BB__4_7 ;
30 LEGUP_F_main_BB__4_7 :
31 next_state = LEGUP_F_main_BB__2_3 ;
32 LEGUP_F_main_BB__6_8 :
33 next_state = LEGUP_0 ;
34 LEGUP_function_call_5 :
35 if (( squared_finish_final == 1'd1))
36 next_state = LEGUP_F_main_BB__4_6 ;
37 default :
38 next_state = cur_state ;
39 endcase
40 end
41 %

Listing 4.5: Verilog FSM

By looking at the state diagram, some parts from the C-code can be recognized.
0 is the initial state and the two following states is allocating and storing of the
volatile input parameter. 3 is where the condition checking for the while loop is
performed. The states 4 -7 are the states inside the while loop, while 8 is the
exit-state, signalizing the completion of the program.

Some signal assignments are shown in listing 4.6. Each assignment is printed with
the corresponding LLVM operation commented above, to increase readability of the
code. The later assignment of output signals are not generated directly from an
LLVM operation and does thus not have this operation printed along the assignment.
These signals are generated by the alterations made to LegUp, described in chapter 3.



4.1. HLS WITH LEGUP 49

0

1

23

7

6

5 4 8

Figure 4.1: State diagram of generated FSM



50 4. TOOL-FLOW EXAMPLE

1 always @(*) begin
2 /* main: %2 */
3 /* %3 = icmp eq i32 %done , 0*/
4 main_2_3 = ( arg_done == 32'd0);
5 end
6 always @( posedge clk) begin
7 /* main: %4 */
8 /* %5 = call i32 @squared (i32 % inData ) #1 */
9 if (( cur_state == LEGUP_F_main_BB__4_4 )) begin

10 squared_arg_base <= arg_inData ;
11 end
12 end
13 always @( posedge clk) begin
14 if (( cur_state == LEGUP_F_main_BB__4_6 )) begin
15 arg_outData <= main_4_5_reg ;
16 end
17 end
18 always @( posedge clk) begin
19 if (( cur_state == LEGUP_F_main_BB__4_6 )) begin
20 arg_outData_valid <= 1'd1;
21 end
22 if (~(( cur_state == LEGUP_F_main_BB__4_6 ))) begin
23 arg_outData_valid <= 1'd0;
24 end
25 end
26 always @( posedge clk) begin
27 if (( cur_state == LEGUP_F_main_BB__4_7 )) begin
28 iterationFinish <= 1'd1;
29 end
30 if (~(( cur_state == LEGUP_F_main_BB__4_7 ))) begin
31 iterationFinish <= 1'd0;
32 end
33 end

Listing 4.6: Verilog FSM

4.2 Simulation

4.2.1 Simulation libraries

LegUp generate a local RAM-module for each output-parameter to the main-module,
as these parameters needs to be declared as volatile. In the declaration of the modules
ram_dual_port and rom_dual_port, a conversion function from an Altera library is
used to convert .mif files to a format readable by Modelsim. Initially this library-file
needed to be included in the design-filelist for the simulation to run successfully.
However, a patch fixing a Xilinx related bug in LegUp [20] resolved this issue, as
Xilinx devices support raw memory instantiation files.

4.2.2 Running simulation

The simulation is executed by running the script RUN_ALL located in the sim/run-
directory. The GUI of ModelSim for Questa can be brought up by passing the



4.2. SIMULATION 51

argument -g to the script, otherwise the simulation will be run in batch mode in the
terminal.

To simulate the design, a suitable testbench must be provided. Since LegUp generate
a testbench shell, it is only required to add the desired testcases that will be applied
to the circuit. Since this is a simple example, only a few testcases are provided to
ensure the design works as expected.

1 initial begin
2 arg_done <= 32'd0;
3 arg_inData <= 32' d20;
4
5 @( negedge reset );
6 start <= 1;
7 @( negedge clk);
8 start <= 0;
9

10 @( posedge iterationFinish );
11 arg_inData <= 32' d100;
12
13 @( posedge iterationFinish );
14 arg_done <= 32'd1;
15 end

Listing 4.7: Testcases for the example testbench

Listing 4.7 shows the testcases applied to the circuit. Initial values of the inputs done
and inData is set, and the testbench waits for a falling edge of the reset signal, set
by the automatic generated testbench shell, before setting the start-flag high for one
clock cycle. At the following rising edge of the iterationFinished-flag, a new value is
assigned to the input inData. At the second rising edge of the iterationFinished-flag,
the input done is set to one, indicating the end of this run. A waveform from the
simulation is shown in figure 4.2. The signals between the blue lines are from the
main-module, while the signals between the red lines are from the squared sub-
module. From the waveform the expected behavior of the circuit is observed. When
the start-flag is set, the FSM starts and the sub-module squared starts to calculate
the output value. When cur_state of the main-module equals 7, the calculated value
is assigned to the output outData, and the valid-flag for this output is set. The
value on the output is correctly calculated for the given testcases. When cur_state
equals 3, the iterationFinish-flag is set, as this is the state where the condition for
the while loop is evaluated, i.e. one iteration of the loop is complete. Notice that the
iteartionFinish-flag is not set in the first occurrence of cur_state = 3, as this is the
first encounter of the loop and not a finished iteration. When the input done is set
to 1 after the second iterationFinish-flag, we observe that the loop terminates and
the finish-flag is set, indicating the end of the run.



52 4. TOOL-FLOW EXAMPLE

Figure 4.2: Simulation waveform of example design

4.3 Synthesis

The design is synthesized using a 180nm library. After synthesis, the circuitry of the
design can be viewed in a GUI tool by running the command "make open_mapped"
and consecutively calling "start_gui" in the dc_schell that is opened. The output
from LegUp is usually too large to understand, reducing the usefulness of this
GUI-tool. In figure 4.3 the top-module view from the tool is shown. The area and
frequency reports from the synthesis is presented in table 4.1.

Parameter Value
Combinational Area 1.453853.614678
Noncombinational Area 21015.456253
Buf/Inv Area 1766.318423
Total Buffer Area 39.92
Total Inverter Area 1726.40
Macro/Black Box area 0.000000
Net Interconnect area 42732.128702

Total cell area 44869.070931
Total area 87601.199633

Critical Path Length 27.43 ns
Maximum Frequency 36.46 MHz

Table 4.1: Tool-flow example synthesis results



4.4. LAYOUT 53

Figure 4.3: Top-level module generated by synthesis

To put the area of the synthesized design in perspective, the library defines a two-port
NAND gate to be 9.9792 area units. The number of NAND2-equivalent gates for
the design is then 8757 gates. This is a large amount for such a simple design, but
the area overhead percentage of the design will shrink with larger designs. The area
reported by synthesis is just an estimate, as layout can add optimizations to the
design.

4.4 Layout

Layout is performed using the netlist from synthesis. After layout, it is possible
to view the layout of the chip in a GUI-tool by opening the icc_shell and calling
"start_gui". The image in figure 4.4 shows the actual layout of the chip. This image
is included only for illustration, details are not important. The vertical yellow lines
is power distribution to the teal horizontal lines, each purple box is a library cell,
and the teal squares along the edges, marked I or O, are input and output ports of
the chip. Layout generates the final reports of area and critical path length. The
reported values are listed in table 4.2. Notice that the total area is reduced compared
to the synthesis reports, while the critical path has increased a bit, leading to a
decreased maximum frequency. The parameters Net XLength and Net YLength is
the physical dimensions of the chip, given in nm. This corresponds to a physical
area of 1102 µm2.



54 4. TOOL-FLOW EXAMPLE

Figure 4.4: Chip-layout of example design

4.5 Power analysis

Power analysis use switching data from the VCD-file generated under simulation to
estimate the power consumption. There are five different power scenarios defined in
the tool-flow, each generating a result for each power-parameter. The reporting from
power analysis is shown in table 4.3. In this simple example, all power scenarios
report the same power consumption. In a larger design, these values will vary. With
a total estimated power consumption of 179.6µW, not much power is consumed in
this chip, but again it is a small design.



4.5. POWER ANALYSIS 55

Parameter Value

Combinational Area 24698.520289
Noncombinational Area 18075.657349
Buf/Inv Area 2577.960037
Total Buffer Area 844.91
Total Inverter Area 1733.05
Macro/Black Box Area 0.000000
Net Area 0.000000
Net XLength 32867.52
Net YLength 33528.53

Total cell area 42774.177638
Total area 42774.177638
Net Length 66396.05

Critical Path Length 28.51 ns
Maximum Frequency 35.08 MHz

Table 4.2: Tool-flow example layout results

Power scenario
Parameter ctrl0 ctrl1 ctrl2 ctrl3 inactive

Net Switching [µW] 27,33 27,33 27,33 27,33 27,33
Cell Internal [µW] 152,2 152,2 152,2 152,2 152,2
Cell Leakage [nW] 31,58 31,58 31,58 31,58 31,58
Total [µW] 179,6 179,6 179,6 179,6 179,6

Table 4.3: Tool-flow example power analysis results





Chapter5Creating the framework

This chapter will describe the process of creating a framework for architectural
exploration of digital hardware. A few tools that have been implemented to generalize
the framework, and allow easy usage for other projects, will also be presented.

5.1 Create new project

To create a new project, the directory hierarchy needs to be copied from a source to
the destination, and directories and filenames need to be altered to match the design
name. Filelist and setting files also needs to be altered to include the correct design
file names. This process is automated into a bash script, CreateNewProject.sh. To
run the script, the directory _source, containing the source project, must be present
in the directory where the script is run. The full source code of the script is listed in
appendix A.6.

The directory- and file-tree of the framework is shown in figure 5.1. Directories
are colored cyan, executables and scripts are colored teal, and other design and
constraint files are colored violet. File comment or description are in black. Each
file is described in the comment on the right side. The script manages the whole
process of copying and renaming files, and replacing the correct strings in the setting
files and scripts. When run, the script asks for the name of the new project, and
replaces any occurrences of the word designname in the _source-directory with the
given name. The user does not need to change any of the scripts or Makefiles, only
update design specific files as described in section 5.3.

5.2 Framework-script

To automate the process of generating multiple design in LegUp and running of
the tool-flow on the generated designs, a script is created. LegUp is running on a
VirtualBox image and not on the same servers where the rest of the tool-flow are

57



58 5. CREATING THE FRAMEWORK

/

_source

ip

designname

hls

constraintsGenerator.run . . . . . . . . . . . . . . . . . . Program to generate constraint and Makefiles

constraints.xlsx . . . . . . . . . . . . . . . . . . . . . . . . . . . Setup-file for constraint-generator

lay

Makefile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Makefile for running layout

pow

Makefile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Makefile for running power analysis

power_analysis.tcl . . . . . . . . . . . . . . . . . . . . . . . . Settings file for power analysis

rtl

designname.fl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Filelist specifying files in the design

designname.v . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Verilog designfile generated by LegUp

sim

run

designname.args . . . . . . . . . . . . . . . . . . . . . Argument simulation tool

designname.comp . . . . . . . . . . . . . . . . . . . . Compilation parameter file for simulation. Specifies filelist
for design and testbench.

designname.sim . . . . . . . . . . . . . . . . . . . . . . Simulation parameter file for simulation. Specifies top-
level testbench module and simulation options.

modelsim.ini . . . . . . . . . . . . . . . . . . . . . . . . . Settings-file for simulation tool

RUN_ALL . . . . . . . . . . . . . . . . . . . . . . . . . . Script to run simulation

tb

test_designname.fl . . . . . . . . . . . . . . . . . . . Filelist specifying files in testbench

test_designname.v . . . . . . . . . . . . . . . . . . . Verilog testbench file generated by LegUp

test_designname_testcases.v . . . . . . . . . File containing testcases to be included in testbench gen-
eration in LegUp

syn

dc_scripts

designname.constraints.tcl . . . . . . . . . . . . Synthesis constraint file. Clocks are specified here.

common_setup.tcl . . . . . . . . . . . . . . . . . . . . . . . . Setup file for synthesis

Makefile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Makefile for running synthesis

designname.c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C file for functions design specification

FrameworkScript.sh . . . . . . . . . . . . . . . . . . . . . . . . . . . . Script for running framework

Makefile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Makefile for running tool-flow without framework/HLS

results.xlsx . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . File to visualize and compare framework results

methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Scripts and utilities for toolchain

CreateNewProject.sh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Script for creating new project

Figure 5.1: Directory and file-tree of the framework



5.2. FRAMEWORK-SCRIPT 59

located. This means that some files and commands must be transferred between
different machines. In [13], a possible solution using SSH and SCP was proposed.
The script is built on this method, but first some additional preparations needs
to be made. Since the VirtualBox guest is running on a local computer, a port
forwarding rule has to be added to allow connections to port 22 of the guest from
the Linux servers of Nordic Semiconductor. The connection has to go through the
host computer, as the VirtualBox guest does not have any direct connection to the
network. The setting can either be set using the GUI of VirtualBox, or by running
the following command from a command line:

VBoxManage modifyvm myserver --natpf1 "ssh,tcp,,3022,,22"

Here myserver is the name of the VirtualBox VM and should be replaced with the
name used when the LegUp image was added in VirtualBox. When this setting is
added, it is possible to establish a connection over SSH from the Linux server directly
to LegUp by connecting to the port 3022 and the local IP-address of the computer
running VirtualBox.

The standard SSH and SCP packages on Linux systems does not support passing the
password as an argument to the command. To avoid the need to enter username and
password each time a file is transferred using SCP, or a command is executed using
SSH, it is necessary to setup key-based authentication. This can be done manually,
but the framework-script can also do this setup automatically if you pass the flag
-s. What the script does, is to generate a RSA key-file for the current user with
ssh-keygen and copy the generated file to LegUp using ssh-copy-id. The password is
passed to ssh-copy-id using spawn, expect and send commands.

The script has seven main tasks:

1. Generate constraint and Makefiles

2. Run HLS-tool to generate Verilog design and testbench files

3. Run simulation

4. Run synthesis

5. Run layout

6. Run power analysis

7. Collect relevant parameters from reports and generate readable result files.



60 5. CREATING THE FRAMEWORK

The five tasks in the middle are mostly transferring of files to and from LegUp, and
running make-commands. These steps use the tool-flow described in section 2.6. The
first and last task are a bit more comprehensive, and is described in the following
two subsections. When the script is finished generating and running the tool-flow
on one design, the directories rtl, sim, syn, lay, and pow is copied into a directory
named with the designnumber under the hls-directory. The script is written for the
bash-shell, and the full code of the script is listed in appendix A.7.

5.2.1 Constraint generating

In order to run HLS with a variety of different constraints and settings, one constraint
and one Makefile need to be generated for each run. To automate this process, an
Excel document, constraints.xlsx, has been created. Sheet 2 of this document, shown
in figure 5.2, contains the setup of the constraints. Here the user can select which
constraints should be randomized and also set if the constraint should have a specific
value. Some values are required, and must have the value specified. If a parameter is
not needed, the user can specify that the default value of the parameter should be
kept. Sheet 1 of the Excel file contains a Comma-Separated Values (CSV) format of
the constraint settings. The format of one CSV-string is:

parameterName,value,required,random,parameter,makefile,keepDefault

Only the fields relevant for the parameter will be printed to the CSV, for instance the
parameter CASE_FSM will print the line "CASE_FSM,random,parameter", as this
is the relevant fields for this parameter given the setup of the spreadsheet. Similar,
the parameter NO_OPT will print the line "NO_OPT,1,makefile", since this is a
Makefile-parameter defined to have the value 1. The CSV format is copied from the
Excel-file to a CSV file by using the headless tool convert-to in libreoffice, with the
command "libreoffice --headless --convert-to csv". The CSV-file can then
be read by the program generating constraint- and Makefiles.

The program constraintGenerator.run takes the filename of the CSV-file, the level
parameter for the Makefile, and the designname as inputs, and returns the number
of generated constraint files. This number is used in the framework-script to run
the framework the correct number of times. This program is also written in the
language C++, with reasoning similar to the one explained in section 3.6.1. By
parsing through the above described CSV-file, the program generate one constraint
file and accompanying Makefile for each variation of the randomized constraint-
parameters. Currently only parameters taking a 1-bit binary value is supported by
the constraint generator program. This gives a total of 2N designs, where N is the
number of randomized parameters. The constraints is set using a binary counter,
meaning that for 3 randomized parameters, the first constraint file will have the



5.2. FRAMEWORK-SCRIPT 61

Figure 5.2: Setup of constraint file generation in Excel spreadsheet



62 5. CREATING THE FRAMEWORK

values 0,0,0, the second file 0,0,1, the third file 0,1,0, and so on. The generated
constraint and Makefiles are output to the directories constraintfiles and makefiles
under the hls-directory. The full code of the program generating constraint and
Makefiles are listed in appendix A.8.

5.2.2 Report generating

As the framework-script can be used to generate a large amount of designs, it is
important to easily be able to collect the relevant data from all the generated reports.
To ease the process of data collecting, the script collects the data from all designs
and stores it in separate files. The data is collected using grep commands, and the
data is stripped of unnecessary text, using bash’s substring replacement function,
before output to files. The collected data is stored under the reports-directory, with
the filenames:

From synthesis:
register_count.rpt

From Layout:
combinational_area.rpt
noncombinational_area.rpt
design_area.rpt

From power analysis:
net_switching_power.rpt
cell_internal_power.rpt
cell_leakage_power.rpt
total_power.rpt

Combined:
all_results.rpt

Each file contains the information specified by the filename. The corresponding design
number is not included in the files, but the first line of each file contain results from
design 0, the second line contain results from design 1, and so on. In the reports from
power analysis, five values are stored at each line of the file, separated by commas.
This is because the power analysis run five different power scenarios, each generating
one result. The other files only contain a single value at each line. To simplify the
process of importing the data into spreadsheets or other visualization-tools all files
are joined horizontally into a single file, all_results.rpt. This means that each line
will contain all values for a single design. The values in this file will be separated by
tabs. This tidy file can be imported in Excel or other tools for generating graphs
or compare data. Comparison could be made automatic if desired, but this is not
implemented at this stage.

5.3 Running the framework

Before running the framework, some files need to be changed. The functional specifi-
cation needs to be added to the file designname.c and testcases for the simulation
can be added to the file test_designname_testcases.v under the directory sim/tb/.



5.3. RUNNING THE FRAMEWORK 63

In addition, the desired constraints need to be selected or filled out in the file con-
straints.xlsx in the hls-directory. To run the framework, the file FrameworkScript.sh is
executed from a shell. Depending on the design size, available licences, and number of
randomized constraints, the run-time of the framework can be long. If the framework
seems stuck on one of the tasks, check the log file, FrameworkScript.log, for errors.





Chapter6Framework results

The framework is tested using the reference design of a FIR-filter, described in
section 2.7.1. The source code of the filter, written in C, is listed in appendix A.1.1.
The implemented FIR-filter has a 32-bit input, 16 taps and 64-bit output. The
filter-coefficients are for simplicity defined to be the integers 1-16. By running this
design through the framework, multiple results will be generated. These results will
be compared towards each other, but also towards the same FIR-filter implemented
directly in Verilog. The source code of the Verilog implementation is listed in
appendix A.1.3. This testing will serve as a proof of concept, verifying the feasibility
of the concept.

6.1 First test-run

The first test-run was performed with 6 randomized constraints input to LegUp. Each
of the constraints could take values 1 and 0, giving a total of 26 = 64 combinations.
The randomized constraints and the pattern of how the values are set is shown in
table 6.1.

MB ENABLE DUAL
SDC NO PIPELINE MINIMIZE PATTERN PORT CASE

Constraint CHAINING ALL HW SHARING BINDING FSM

0 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 1 0
0 0 0 0 1 1

Value
...

...
...

...
...

...

1 1 1 1 1 0
1 1 1 1 1 1

Table 6.1: Constraints and values for first run

65



66 6. FRAMEWORK RESULTS

This framework-run only include HLS, simulation, and synthesis, as the layout
and power analysis tools have not yet been incorporated into the framework flow.
Synthesis is run using a 32 MHz clock and a 180 nm cell library. A simple testbench
generated by LegUp, with testcases similar to the ones listed in listing 4.7, were used
for this run.

The presented results are gathered from the synthesis reports. The generated Verilog-
code for many of the constraint files synthesize into the exact same area and estimated
power consumption. This indicates that some of the combinations are redundant. The
results are shown in table 6.2. As there are only 8 different results, only log2(8) = 3
constraint parameters affect the design, the other will be don’t-care constraints. By
converting the design number to binary, a pattern can be seen. Table 6.3 shows the
binary conversion of the design numbers at the second row of table 6.2. Here it can
be seen that the parameters PIPELINE_ALL, ENABLE_PATTERN_SHARING
and DUAL_PORT_BINDING are don’t care for this design, since these parameters
are not constant.

The area results are given in cell units, dynamic and total power are given in
milliWatts (mW), and leakage power is given in nanoWatts (nW).

Power
Design # Area Dynamic Leakage Total

Verilog 175517.771501 2.9522 13.2559 2.9522
9,11,13,15,25,27,29,31 542636.067533 1.1933 445.5482 1.1937
8,10,12,14,24,26,28,30 543715.713936 1.1909 442.7919 1.1913
41,43,45,47,57,59,61,63 570759.857112 1.3097 474.8710 1.3102
1,3,5,7,17,19,21,23 571069.521032 1.2792 467.3262 1.2797
0,2,4,6,16,18,20,22 574368.902419 1.2745 467.3031 1.2750

40,42,44,46,56,58,60,62 574468.505099 1.3100 475.3570 1.3105
33,35,37,39,49,51,53,55 598731.305489 1.3951 498.4164 1.3956
32,34,36,38,48,50,52,54 599552.442242 1.3949 500.0916 1.3954

Table 6.2: Results from 1. framework-run

The best result with regards to area is the ones with the parameters SDC_NO_
CHAINING set to 0, MB_MINIMIZE_HW set to 1 and CASE_FSM set to 1. The
best result with regards to total power consumption is the same as for area, but with
CASE_FSM set to 0.

The results are visualized in figure 6.1. It is clear from the graph that varying results
are achieved from the different constraints. In figure 6.2, the best area-result from
the framework is compared towards the results from the same design written in



6.1. FIRST TEST-RUN 67

Decimal Binary

9 001001
11 001011
13 001101
15 001111
25 011001
27 011011
29 011101
31 011111

Table 6.3: Decimal to binary conversion of design numbers

Figure 6.1: Results from 1. framework-run



68 6. FRAMEWORK RESULTS

Verilog directly. The design written directly in Verilog is better in terms of area, but
it does not make sense that the estimated power consumption of the design written
in Verilog is much higher than the HLS-generated design.

Figure 6.2: Comparison of Verilog-design towards best HLS-design from 1.
framework-run

6.1.1 Handling unexpected results

It seems strange that the area consumption of the design written in Verilog is just
32.3% of the best result from LegUp, while the power consumption of the design
written in Verilog is 247.4% of the best result from LegUp. Typically a larger design
will consume more power, as each of the components has leakage and static operation
consumption. Notice that these results were obtained using a static power analysis
tool. The amount of switching in gates and registers have not been taken into account.
However, this unexpected result needed to be investigated further. The following
steps were taken to ensure the quality of the results to be acceptable:

– Check generated reports for misinterpreted data

– Look at schematic view of synthesized design to find errors

– Run HLS and synthesis once more to see if results deviates

None of the two first steps showed any errors. The designs are however too large to
make any sense of the schematics, and due to to the limitation in setting signal sizes
in the C-code, the HLS-generated designs scale down very poorly. The third step
was performed on the same design, but with the clock relaxed from 32 MHz to 16



6.1. FIRST TEST-RUN 69

MHz. Changing the clock should not affect the design that much, but the synthesis
will try to optimize the circuit to use the least amount of area, but still meet timing
requirements. This time, only the constraints that had an impact on the design were
included, generating 8 different designs. The result of the second run is shown in
table 6.4 and in figure 6.3.

Power
Design # Area Dynamic Leakage Total

Verilog 175531.077145 1.0961 291.4545 1.0964
3 736221.630958 3.0417 600.7903 3.0423
2 738362.360388 3.0424 603.0359 3.0430
0 766630.553023 3.1736 627.3008 3.1742
1 783120.518084 3.2230 641.3857 3.2236
7 796905.744222 3.0702 634.3779 3.0708
6 798087.595262 3.0693 635.5286 3.0699
4 830305.921961 3.2036 660.1381 3.2043
5 853504.409992 3.2898 681.0897 3.2905

Table 6.4: Results from 2. framework-run

Figure 6.3: Results from 2. framework-run

These results are a better match with our expectations. Both area and power has
increased a bit for all HLS-generated designs. The reason for this is not known
for sure, but it is possible that synthesis use larger library-cells to meet timing
requirements. All timing requirements were not met in the first run, as described
in section 6.4, which could lead to synthesis giving up and reporting a smaller area.
It could also have been a bug in the design or a wrong setting in the first run that



70 6. FRAMEWORK RESULTS

generated odd results. When comparing the best HLS-result towards the design
written in Verilog, as shown in figure 6.4, we see that the Verilog design has both
lower area and power consumption, which is what would be expected.

Figure 6.4: Comparison of Verilog-design towards best HLS-design from 2.
framework-run

6.2 Full tool-flow framework run

The full tool-flow was incorporated into the framework, to see if the more accurate
power analysis tool shows a different result. With the full tool-flow, the area reports
are gathered from layout instead of synthesis and the power estimates are gathered
from the power analysis. The full tool-flow is run using the same design as in
section 6.1, with only the three constraints that affected the output, again a total
of 8 designs. Since the full tool-flow use switching data from simulation to perform
power analysis, the testbench used for simulation had to be changed to get more
switching values. The new testbench applies 1000 random inputs to the input inData.
It waits for the flag iterationFinished to be set before applying a new input. The
full source code of this testbench is listed in appendix A.1.4. The testbench for the
design written in Verilog is almost exacly the same, just adapted to the correct signal
names and instead of waiting for a flag, inData is assigned a new value after 17
clock-cycles. The area results are shown in table 6.5 and the power estimates are
shown in table 6.6.

In figure 6.5 the final area and power estimation results are visualized together. It
is clear from the graphs that the concept works, as we get different results from
the designs. These results are considered more accurate, as they use the reports
from the chip layout for area, and power estimation using switching activity from



6.2. FULL TOOL-FLOW FRAMEWORK RUN 71

Area
Design # Combinational Non-combinational Total

Verilog 72818.22296 44647.6792 117465.9022
3 130953.7155 201114.5108 332068.2263
2 131389.4738 201114.5108 332503.9847
0 136182.8164 210973.9603 347156.7766
1 139276.3681 213895.2786 353171.6467
7 136262.6501 220468.2449 356730.8950
6 137237.2853 220468.2449 357705.5302
4 141315.4518 230327.6944 371643.1462
5 146770.7475 236170.3311 382941.0786

Table 6.5: Area results from full tool-flow framework-run

Power
Design # Net switching Internal Leakage Total

Verilog 0.365 1.760 100.340 2.125
2 1.214 5.157 281.820 6.371
3 1.236 5.270 273.940 6.507
6 1.184 5.484 293.960 6.669
0 1.273 5.518 292.400 6.792
1 1.279 5.517 307.760 6.797
7 1.255 5.567 267.960 6.822
4 1.238 5.696 308.180 6.934
5 1.269 5.771 327.280 7.041

Table 6.6: Power estimation results from full tool-flow framework-run

simulation. Notice that compared to the results from synthesis, the area is actually
cut by half, but the estimated power consumption has nearly doubled. This is because
the layout tool can run optimizations on the design, decreasing the area, while the
power estimates takes the dynamic switching activity into account, increasing the
total power consumption. In figure 6.6, the area and power estimates from the full
tool-flow framework-run is compared against the same design written directly in
Verilog. Here we see the same trend as shown in the synthesis results above, but the
relationship between area and power consumption shows more resemblance.

Figure 6.7 and 6.8 shows the distribution of area and power consumption within
the designs. In the power graphs, leakage power is not shown as this is negligible



72 6. FRAMEWORK RESULTS

Figure 6.5: Results from framework with full tool-flow

Figure 6.6: Comparison of Verilog-design towards best HLS-design from full
tool-flow framework-run

compared to the other factors. The trend is the same in all the HLS generated
designs, the larger portion of the area is consumed by non-combinational area. In the
Verilog designs, the area distribution is inverted. This difference is what is expected
from a FSM vs not-FSM design. In the power distribution graph we see that most of
the power is consumed internally in the cells both in HLS generated designs and the
Verilog design.

Two other interesting parameters to compare, is the number of generated registers,
and the critical path and corresponding maximum frequency. For the implemented
design, a minimum of 480 1-bit registers (INPUTSIZE*(TAPS-1)) is needed for the
shift register, the sr-array. The number of registers, gathered from the synthesis
reports, is shown in table 6.7.



6.2. FULL TOOL-FLOW FRAMEWORK RUN 73

Figure 6.7: Area distribution of results from framework with full tool-flow

Figure 6.8: Power distribution of results from framework with full tool-flow



74 6. FRAMEWORK RESULTS

Design # Registers

Verilog 480
0 2311
1 2343
2 2203
3 2203
4 2523
5 2587
6 2415
7 2415

Table 6.7: Number of used registers from full framework run

The maximum speed of the designs can be calculated from the critical path length,
reported in both synthesis and layout. The critical path is the longest path through
the circuit, calculated as the summation of the delay of each logical cell. The
maximum frequency of the design is given as:

FMAX = 1
tcriticalP ath

(6.1)

The critical path results and corresponding FMAX is shown in table 6.8. The results
for the HLS-generated designs are quite similar, but notice the large gap down to
the design written directly in Verilog. Here the overhead of the FSM generated by
LegUp is revealed. The synthesis and layout are setup to perform optimization of
the area, while making sure the timing requirements of the target clock-period is met.
This optimization goal can explain why the results are so similar for all designs.

6.3 Bugs in the generated design

To avoid the generation of a global memory controller, the flag NO_INLINE had to be
set to 0 in the Makefile. This introduces two bugs in the generated Verilog; firstly, the
signal generated from the parameter done is not sampled after the first time, making
the program run forever, secondly the statement products[0] = inData * 1 is only
evaluated on the first iteration of the loop, meaning all outputs from the FIR-filter
(except the first one) will have a deviation from the correct result, corresponding
to correctResult - inData + firstInData. From the generated LLVM IR-code
it looks like the first bug occurs because the comparison of the input done being
performed under another label than where it is used as exit-condition for the while-
loop. Under the same label, inData is sign-extended, as it is a 32-bit variable being
assigned to a 64-bit variable. Both these results are stored to temporary registers



6.4. PATH AND HOLD VIOLATIONS 75

Critical Path Length [nS] FMAX [MHz]
Design # Synthesis Layout Synthesis Layout

Verilog 2.33 3.07 429.2 325.7
0 47.14 50.80 21.21 19.69
1 47.28 52.33 21.15 19.11
2 47.14 51.11 21.21 19.57
3 47.22 51.77 21.18 19.32
4 47.75 54.53 20.94 18.34
5 49.23 54.66 20.31 18.30
6 50.79 56.16 19.69 17.81
7 50.11 53.70 19.96 18.62

Table 6.8: Critical path length and maximum frequency results from full
framework run

for use later, as shown below. From the simulation, it can be seen that the states
generated by these operations are not visited again when the loop has been entered.
It looks to be the implemented method for supporting streaming inputs and outputs
that is the source of these bugs. When calling a function in C, it is not expected that
the input-parameters shall change during run-time. It is therefore reasonable that
the compiler schedule these operations before entering the while-loop, to prevent
doing the same work multiple times.

1 %6 = icmp eq i32 %done, 0
2 %7 = sext i32 %inData to i64

These bugs are not critical to this proof of concept, as both bugs will be identical to
every design. As these results are only supposed to show that the concept works, it
is not critical that the generated results are accurate, as long as the fidelity of the
results is high.

6.4 Path and hold violations

Some of the designs report violating path-length and hold-times in synthesis during
1. framework-run. For a real circuit this would be a problem. To get rid of these
violations, the target clock speed during synthesis could be decreased to something
below the maximum frequency of the design. However, the clock speed is most of the
time the only thing you cannot change in your design, and the synthesis tool will try
to create the circuit that meets timing. If timing is not met, the circuit description
should be changed. This means that from our methodology, we will generate many
circuits and only the ones that meet timing will be presented as an accepted solution.



76 6. FRAMEWORK RESULTS

Ideally, the framework would implement a feedback loop, but for the sake of this
proof of concept, a long list of solutions are produced and only the best ones are
selected. No violations were reported during 2. or 3. framework-run.

6.5 LegUp specific code optimization

When going trough the register-count from synthesis, it was noticed that the HLS-
generated designs implemented both the array sr and products as RAM modules
using registers. In the design written directly in Verilog, the sr-array is the only
consumer of registers. When looking at the following snippet from the FIR-filter
source code, listed in appendix A.1.1:

1 for (int k = 1; k < TAPS ; k++){
2 products [k] = sr[k -1] * (k+1);
3 }
4 sum = sum + products [i];

it can easily be seen that this is functionally equivalent to:
1 sum = sum + (sr[i -1] * (i+1));

It can be argued that the second listing is better C-code, but it would be natural
to assume modern compilers could handle such optimizations automatically. This
optimization should be done in the compiler or in LegUp, but it was not done either
places.

If we also substitute the code:
1 products [0] = inData * 1;
2 sum = products [0];

with:
1 sum = inData * 1;

the whole products-array can be removed. When running this optimized code through
the framework, the result is much better than without these optimizations. Table 6.9
shows the results from the framework run of design 2, the best design with regards
to power consumption from the full tool-flow framework-run.

The results from the optimized code gives the overhead shown in table 6.10. These
overhead percentages corresponds more with the typical overhead of 30-40% in
HLS-tools.



6.5. LEGUP SPECIFIC CODE OPTIMIZATION 77

Synthesis

Total Area 358587.628093
Net Switching Power 0.1340 mW
Internal Power 1.3203 mW
Leakage Power 283.1053 nW
Total Power 1.4546 mW
Register count 899

Layout

Combinational Area 72482.256207
Non-combinational Area 82070.787659
Total Area 154553.043866

Power analysis

Avg. Net Switching Power 0.604 mW
Avg. Internal Power 2.413 mW
Avg. Leakage Power 105.500 nW
Avg. Total Power 3.018 mW

Table 6.9: Results of best design from framework run with optimized C-code.

Overhead

Layout area 37087.141666 (31.57%)
Average power 0.893mW (42.02%)
Register count 419 (87.29%)

Table 6.10: Overhead from results of optimized C-code.





Chapter7Discussion

The framework has been created to be easily configurable if it is desirable to add
other functionality. For this proof of concept, only constraints set on the HLS process
in LegUp has been used. It could also be useful to add other parameters to the
framework, to control other parts of the tool-flow. Examples could be to run synthesis
using different clock-speeds, or to specify optimization goals, like minimum area or
maximum speed, for synthesis and layout. This would generate an even wider pool
of designs to choose from, increasing the chance of getting the very best design. The
downside of including more parameters into the framework is the exponential increase
in the number of designs and accompanying tool-flow run-time. If all possibilities
of 50 different constraints, each having two possible values, should be explored, a
total of 250 = 1 125 899 906 842 624 (over 1 quadrillion) designs would have to be
run through the tool-flow. If the tool-flow used 1 minute to process each design, the
run-time for the framework would end up at 2.142 billion years. In practice, the
designer is therefore required to select a few parameters that is assumed to have a
large impact on the designs architecture, to get the best possible results from the
framework.

From the results given in section 6.2, the best-case and worst-case design can be
compared. A potential area saving of 50872.8523 and power saving of 0.670 mW can
be achieved, by selecting the best architecture over the worst. This corresponds to a
saving in area of 13.28% and a saving in power consumption of 9.52%. Compared
to the design written directly in Verilog, the best-case area is 282.69% and power
consumption is 299.81% of the results achieved in the Verilog design. An overhead
of 182.69% and 199.81% are not great results, but the idea here is not to get a
comparable result, rather to show that the concept works and can be used for a
framework for architectural exploration. This goal has been achieved, as we get
varied outputs depending on the given HLS constraints. As seen in section 6.5, the
overhead generated by LegUp can be decreased greatly by optimizing the functional
specification code. This gives an overhead of 31.57% in terms of area and 42.02% in
terms of average power consumption. These numbers are much more in sync with

79



80 7. DISCUSSION

the expected overhead of HLS-tools of 30-40%. However, it would not always be
this easy to see the potential optimizations that can be performed on the code. The
same code was used in the design written directly in Verilog, but here the excessive
registers were marked as redundant by synthesis and thus optimized away. The same
optimization could not be performed on the HLS-generated designs, as synthesis
could not draw the same conclusion through the FSM created by LegUp.

When looking at the speed of the generated designs compared to the design written
in Verilog, there is a huge gap in the theoretical maximum frequency. This is a major
drawback for the use of LegUp to produce hardware. There is also a second factor
to the actual speed of the design. While the design written in Verilog primarily
uses combinational logic to generate the output, the HLS-generated design use a
FSM. In the combinational circuit, the same operation is performed each clock-cycle,
leading to the finished calculation of the FIR-filter being available at the output-port
16 clock cycles after the input was set. In the HLS-generated design, a total time
of 47840ns is required after the input is applied before the output is ready. This
corresponds to 2392 clock-cycles with the clock-period of 20ns used under simulation.
The actual time needed for calculation is then:

V erilog : 3.07 ns

cycle
∗ 16 cycles = 49.12ns

HLS : 50.80 ns

cycle
∗ 2392 cycles = 121513.6ns

This means that the design written in Verilog is 2473.81 times as fast as the HLS-
generated design when it comes to producing a valid output, if both are run at
their maximum frequency. If both designs were run at the 16 MHz clock-frequency
target of synthesis, the Verilog-design would still be 149.5 times as fast as the HLS-
generated design. Using the optimized code described in section 6.5, a total of 1235
clock-cycles is required to produce the output. The Verilog-design would then still be
1277.24 times as fast as the HLS-generated design. If both were run at the synthesis
clock-frequency, the Verilog-design would be 77.19 times as fast as the HLS-generated
design.

Even though the intended proof of concept has been shown, the alterations done to
LegUp to get Verilog-output suitable for ASIC implementation has put constraints on
how the functional specification can be written and limited the use of many features
of the higher level of abstraction in C. Originally, the input was ANSI-C, supporting
functions, arrays, structs, global variables, floating point, and pointers [18]. When
using this adapted version of LegUp for generating ASIC-compliant Verilog, only
functions and partially arrays seem to work correctly. Especially the pointer-, and
related array-support, should be working correctly for the tool to be useful. Most of



81

these limitations can probably be overcome by altering the libraries further, but this
will be time-consuming. One possible solution to bring some of these features back
would be to re-introduce the top-module that instantiates the main-module and the
memory_controller-module and connect all inputs and outputs directly to the ports
of the main-module in top. This would work with the implementation of outputs
from parameters and the streaming port feature. The downside of this approach is
that the memory controller will bring back some extra overhead to the design. An
alternative solution would be to further alter the libraries of LegUp, to make sure all
RAMs are implemented as local RAMs.

There are still some bugs originating from the implemented alterations to LegUp
present in the designs. These bugs were not focused on during the work with this
thesis, but is something that must be resolved if the framework should be able to
generate functional results. It is also an element of concern that the way you write
your functional specification can affect the generated designs greatly. The compiler
or LegUp should be able to optimize away any parts of excess code.





Chapter8Conclusion

This thesis has presented a solution for adapting the HLS-tool LegUp, to make
the tool produce Verilog-output suitable for synthesis towards ASIC architectures.
In addition to this, a framework for architectural exploration of digital hardware
has been developed, using LegUp to increase the abstraction-level of a functional
description. The framework is capable of generating a wide variety of architectural
implementations of the given functional specification, using randomized constraints
in the HLS-flow to get varying output. Each of the designs generated by HLS will
automatically be simulated and synthesized, before layout and power analysis is
performed on the design. The framework will generate reports containing relevant
parameters, like area, power estimates, performance, and register count, for each
design. The reports allow for the designer to easily compare the designs and select
the one best suited based on the specification.

To ensure the functionality of the framework, a proof of concept has been conducted,
using a FIR-filter as the reference design. The results from the framework shows
that three of the six randomized constraint used, had an impact on the generated
design. This gave a total of 8 architectural variations. By comparing the best and
worst of the generated architectural variations, a decrease in area of 13.28% and a
decrease in power consumption of 9.52% could be achieved. These results indicate
that the proof of concept works.

When running the framework, some problems and bugs in the generated design were
observed. Some of these were related to how the adaption of LegUp is performed,
while some could be bugs in LegUp or the tool-flow. It is also an element of concern
that the way you write your functional specification can affect the generated designs
greatly. The compiler or LegUp should be able to optimize away any parts of the
code that is obsolete. If this concept is to be used at a professional level, it is vital
that all parts of the framework generate error-free results.

The overhead in area and power estimates are still high, with a best observed result

83



84 8. CONCLUSION

of 31.57% in terms of area and 42.02% in terms of average power consumption. The
overhead is especially high in the non-optimized functional specification used in most
of chapter 6, where the generated overhead in area and power consumption is close to
200%. This overhead needs to be reduced, or at least ensured to stay at a constant
percentage, if the HLS-tool is to be used in the framework.

The final conclusion is that the concept have been shown and is generating varying
results in the proof of concept. As only one design was used during the proof
of concept, it cannot be concluded that the concept will work for every design
until further testing has been conducted. More designs should be run through the
framework to ensure the consistency of the results. It is also shown that LegUp, in the
adapted version described in this thesis, can be used in a framework for architectural
exploration. However, much more effort should be put into verification and testing
of all parts of the tool-flow, to ensure all bugs and potential errors are eliminated
before using it for any commercial purpose.

8.1 Future work

The following subsections will describe some areas of interest that is suggested to
looked into in more detail if this thesis should be continued into a project or thesis
at a later point.

8.1.1 Abstraction level

During the process of adapting LegUp, to make the generated Verilog more suitable
for ASIC implementation, much of the higher level of abstraction originally supported
by LegUp, have been lost. The limitation on how the code can be written, reduces
the usefulness of the framework. It would increase the value of the framework greatly
if a better solution to the resolved issues can be found, or another method can be
used to bring back the desired functionality from ANSI-C.

8.1.2 Resolving bugs

In section 6.3, two bugs that were noticed during simulation have been described.
For the framework to be useful, the generated designs should be bug-free, given that
no bugs are present in the functional description. It should be put some effort into
figuring out what is creating these bugs, and find a solution to avoid that these, or
other, bugs are generated in future designs.

8.1.3 Eliminating RAM states

In section 3.6.3, a method of removing local RAMs generated by using the keyword
volatile for input-parameters was described. This method of removing the RAMs



8.1. FUTURE WORK 85

does not seem to remove the states designated to the allocation and storing to the
generated RAMs. An example of this can be seen by looking at the generated state
machine in figure 4.1. Here the states 1 and 2 does not perform any operations, as
they were dedicated to allocation of, and storing to, the generated RAM. A method
of removing these states should be added to the altered version of LegUp. Having
states in the FSM that do not perform any operation, only leads to extra clock-cycles
being used to produce the desired output, decreasing the overall speed of the circuit.

8.1.4 Advances in LegUp since last release

For this thesis, the current release version (4.0) of LegUp, released in August 2015,
was used. LegUp’s normal release cycle is roughly once a year [18]. From the GIT
repository of LegUp [5], it can be seen that many new features have been, and still
are being, implemented for the next release version of LegUp. One of the more
interesting features from the views of this thesis is the implementation of streaming
inputs and outputs. Even though this has been implemented in this thesis as well, a
native implementation from the developers can be more thoroughly tested and have
more functionality than the one implemented here. However, it is still uncertain if a
good way of producing multiple output-signals have been implemented. In another
commit it is mentioned that it will be possible to mark a RAM as external, making it
possible to pass pointers as arguments into the top-level function. These features are
exciting news from the perspective of this thesis, as it can look like the developers
implements more things useful for ASIC hardware development. The upcoming
release of LegUp, should be explored to see if any of the new features is useful for
the concept described in this thesis.

8.1.5 Automatic code-optimization

The overhead in both area and power consumption could be reduced greatly by
manually optimizing the code input to the framework, as described in section 6.5.
This is a huge drawback of the framework, as it forces the designer to keep focus
on writing the code in the most correct way, instead of focusing on writing the
correct functional specification. The task of optimizing the input should be left to
the compiler or HLS-tool. It would be strongly beneficial if a solution could be
implemented to ensure that the code is optimized correctly.

8.1.6 Incorporating Nordic Semiconductors DDVC

The last objective described in section 1.3 have not been considered in this thesis, as
the work with providing a functional framework and creating the proof of concept
took all of the available time. It would still be interesting to see if the incorporation
of Nordic Semiconductors DDVC into the Verilog-generating libraries of LegUp will
reduce the overhead of the tool.





References

[1] Christiaan Baaij. Clash: From haskell to hardware. Master’s thesis, University of
Twente, 2009.

[2] Jonathan Bachrach, Huy Vo, Brian Richards, Yunsup Lee, Andrew Waterman,
Rimas Avižienis, John Wawrzynek, and Krste Asanović. Chisel: constructing
hardware in a scala embedded language. In Proceedings of the 49th Annual Design
Automation Conference, pages 1216–1225. ACM, 2012.

[3] Per Bjesse, Koen Claessen, Mary Sheeran, and Satnam Singh. Lava: Hardware
design in haskell. SIGPLAN Not., 34(1):174–184, September 1998. ISSN 0362-
1340.

[4] Andrew Canis. High-Level Synthesis with LegUp. http://legup.eecg.utoronto.ca/,
2015. [Online; Accessed: 2016-06-09].

[5] Andrew Canis. LegUp GIT repository. http://legup.eecg.utoronto.ca/git?p=
legup.git, 2016. [Online; Accessed: 2016-05-29].

[6] Andrew Canis, Jongsok Choi, Mark Aldham, Victor Zhang, Ahmed Kammoona,
Jason H Anderson, Stephen Brown, and Tomasz Czajkowski. LegUp: high-level
synthesis for FPGA-based processor/accelerator systems. In Proceedings of the
19th ACM/SIGDA international symposium on Field programmable gate arrays,
pages 33–36. ACM, 2011.

[7] clang. clang: a C language family frontend for LLVM. http://clang.llvm.org/,
2007. [Online; Accessed: 2016-06-05].

[8] Philippe Coussy, Daniel D Gajski, Michael Meredith, and Andres Takach. An
introduction to high-level synthesis. IEEE Design & Test of Computers, 26(4):
8–17, 2009.

[9] Doxygen. LLVM API documentation: legup namespace reference.
http://legup.eecg.utoronto.ca/doxygen/namespacelegup.html, 2011. [Online; Ac-
cessed: 2016-05-30].

[10] Doxygen. legup::rtlop class reference. http://legup.eecg.utoronto.ca/doxygen/
classlegup_1_1RTLOp.html, 2011. [Online; Accessed: 2016-05-16].

87



88 REFERENCES

[11] Mentor Graphics. Questa® advanced simulator.
https://www.mentor.com/products/fv/questa/, 2015. [Online; Accessed:
2016-06-04].

[12] Haskell. Haskell: An advanced purely-functional programming language.
https://www.haskell.org/, 2015. [Online; Accessed: 2016-06-05].

[13] Jørgen Frydenlund Holmefjord. High-level synthesis for hardware architectural
exploration. In Specialization project report. Norwegian University of Science and
Technology, December 2015.

[14] Chris Lattner. LLVM language reference manual.
http://llvm.org/releases/2.7/docs/LangRef.html, 2010. [Online; Accessed:
2016-05-28].

[15] Chris Lattner. The architecture of open source applications: LLVM.
http://www.aosabook.org/en/llvm.html, 2012. [Online; Accessed: 2016-06-05].

[16] Chris Lattner and Vikram Adve. LLVM: A Compilation Framework for Lifelong
Program Analysis & Transformation. In Proceedings of the 2004 International
Symposium on Code Generation and Optimization (CGO’04), Palo Alto, Califor-
nia, Mar 2004.

[17] LegUp. Constraints manual. http://legup.eecg.utoronto.ca/docs/4.0/constraints-
manual.html, 2015. [Online; Accessed: 2016-06-05].

[18] LegUp. Frequently asked questions - LegUp 4.0 documentation.
http://legup.eecg.utoronto.ca/docs/4.0/faq.html, 2015. [Online; Accessed:
2016-06-09].

[19] LegUp. Programmer’s manual. http://legup.eecg.utoronto.ca/docs/4.0/programm-
ermanual.html, 2015. [Online; Accessed: 2016-06-05].

[20] LegUp. LegUp on Xilinx FPGAs. http://legup.eecg.utoronto.ca/docs/4.0/xil-
inx.html, 2015. [Online; Accessed: 2016-06-04].

[21] Mac Developer Library. LLVM compiler overview. https://developer.apple.com/
library/mac/documentation/CompilerTools/Conceptual/LLVMCom-
pilerOverview/, 2012. [Online; Accessed: 2016-06-05].

[22] LLVM. LLVM’s analysis and transform passes. http://llvm.org/docs/Passes.html,
2016. [Online; Accessed: 2016-05-31].

[23] Grant Martin and Gary Smith. High-level synthesis: Past, present, and future.
IEEE Design & Test of Computers, 26(4):18–25, 2009.

[24] Simon Moore and Gregory Chadwick. The tiger "MIPS" processor.
http://www.cl.cam.ac.uk/teaching/0910/ECAD+Arch/mips.html, 2010. [On-
line; Accessed: 2016-06-05].



REFERENCES 89

[25] Martin Odersky, Philippe Altherr, Vincent Cremet, Burak Emir, Sebastian
Maneth, Stéphane Micheloud, Nikolay Mihaylov, Michel Schinz, Erik Stenman,
and Matthias Zenger. An overview of the Scala programming language. Technical
report, École Polytechnique Fédérale de Lausanne, 2004.

[26] Preeti Ranjan Panda, B. V. N. Silpa, Aviral Shrivastava, and Krishnaiah Gum-
midipudi. Power-efficient System Design. Springer Publishing Company, Incor-
porated, 1st edition, 2010. ISBN 9781441963871.

[27] John G. Proakis and Dimitris K. Manolakis. Digital Signal Processing: Principles,
Algorithms, and Applications, 4th Edition. Pearson Prentice Hall, 2007. ISBN
978-0-13-228731-9.

[28] Paul T. Robinson. Developer toolchain for PS4. http://llvm.org/devmtg/2013-
11/slides/Robinson-PS4Toolchain.pdf, 2012. [Online slides; Accessed: 2016-06-05].

[29] Per-Carsten Skoglund and Christoffer Amlo. Digital design and verification
conventions (DDVC). [NORDIC INTERNAL; Confidential; Accessed: 2016-06-
05], 2011.

[30] Wilson Snyder. Verilog-perl overview. http://www.veripool.org/projects/verilog-
perl/, 2016. [Online; Accessed: 2016-05-31].

[31] Reid Spencer. Bug 1284 - support bitwidth attribute in llvm-gcc.
https://llvm.org/bugs/show_bug.cgi?id=1284, 2007. [Online; Accessed: 2016-05-
27].

[32] Synopsys. Design compiler 2010. http://www.synopsys.com/Tools/Implementa-
tion/RTLSynthesis/DesignCompiler/Pages/default.aspx, 2016. [Online; Accessed:
2016-06-04].

[33] Synopsys. IC compiler. http://www.synopsys.com/Tools/Implementa-
tion/PhysicalImplementation/Pages/ICCompiler.aspx, 2016. [Online; Accessed:
2016-06-04].

[34] Shinya Takamaeda-Yamazaki. Pyverilog: A python-based hardware design pro-
cessing toolkit for verilog HDL. In Applied Reconfigurable Computing, volume
9040 of Lecture Notes in Computer Science, pages 451–460. Springer International
Publishing, Apr 2015.

[35] Joar Nikolai Talstad. Channel filter cross-layer optimization. Master’s thesis,
Norwegian University of Science and Technology, 6 2015.





AppendixASource code listings

A.1 FIR-filter reference design

A.1.1 C source code
1 # include <stdint .h>
2
3 # define INPUTSIZE 32
4 # define TAPS 16
5
6 int main(int done , int inData , volatile long long int __out_outData ) {
7
8 int sr[TAPS -1] = {0};
9 long long int products [TAPS] = {0};

10 long long int sum = 0;
11 while (done == 0){
12 products [0] = inData * 1;
13 sum = products [0];
14 for (int i = 1; i < TAPS ; i++){
15 for(int j = TAPS -1; j > 0; j--){
16 sr[j] = sr[j -1];
17 }
18 sr [0] = inData ;
19 for (int k = 1; k < TAPS ; k++){
20 products [k] = sr[k -1] * (k+1);
21 }
22 sum = sum + products [i];
23 }
24 __out_outData = sum;
25 }
26 return 0;
27 }

91



92 A. SOURCE CODE LISTINGS

A.1.2 Optimized C source code
1 # include <stdint .h>
2
3 # define INPUTSIZE 32
4 # define TAPS 16
5
6 int main(int done , int inData , volatile long long int __out_outData ) {
7 int sr[TAPS -1] = {0};
8 long long int sum = 0;
9 while (done == 0){

10 sum = inData ;
11 for (int i = 1; i < TAPS ; i++){
12 for(int j = TAPS -1; j > 0; j--){
13 sr[j] = sr[j -1];
14 }
15 sr [0] = inData ;
16 sum = sum + sr[i -1] * (i+1);
17 }
18 __out_outData = sum;
19 }
20 return 0;
21 }



A.1. FIR-FILTER REFERENCE DESIGN 93

A.1.3 Verilog source code
1 module fir (
2 clk ,
3 reset ,
4 dataIn ,
5 dataOut
6 );
7 parameter WIDTH = 32;
8 parameter DEPTH = 16;
9

10
11 input clk , reset ;
12 input signed [WIDTH -1:0] dataIn ;
13 output wire signed [2* WIDTH -1:0] dataOut ;
14 integer i, j, k;
15 reg signed [WIDTH -1:0] sr [DEPTH -2:0];
16 reg signed [2* WIDTH -1:0] products [DEPTH -1:0];
17 reg signed [2* WIDTH -1:0] sum;
18
19 always @( posedge clk or posedge reset ) begin
20 if( reset == 1) begin
21 sum = 0;
22 end
23 else begin
24 for(i = DEPTH -2; i > 0; i=i -1) begin
25 sr[i] <= sr[i -1];
26 end
27 sr [0] <= dataIn ;
28 end
29 end
30
31 always @(*) begin
32 products [0] = dataIn * 1;
33 for (j = 1; j < DEPTH ; j=j+1) begin
34 products [j] = sr[j -1] * (j+1);
35 end
36 end
37
38 always @(*) begin
39 sum = products [0];
40 for (k = 1; k < DEPTH ; k=k+1) begin
41 sum = sum + products [k];
42 end
43 end
44
45 assign dataOut = sum;
46
47 endmodule



94 A. SOURCE CODE LISTINGS

A.1.4 Testbench for FIR-filter
1 `timescale 1 ns / 1 ns
2 module test_fir
3 (
4 );
5
6 reg clk;
7 reg reset ;
8 reg start ;
9 wire [63:0] return_val ;

10 wire finish ;
11 reg memory_controller_waitrequest ;
12 reg [31:0] arg_done ;
13 reg [31:0] arg_inData ;
14 wire [63:0] arg_outData ;
15 wire arg_outData_valid ;
16 wire iterationFinish ;
17
18
19 fir u_fir (
20 .clk (clk),
21 . reset ( reset ),
22 . start ( start ),
23 . finish ( finish ),
24 . memory_controller_waitrequest ( memory_controller_waitrequest ),
25 . return_val ( return_val ),
26 . arg_done ( arg_done ),
27 . arg_inData ( arg_inData ),
28 . arg_outData ( arg_outData ),
29 . arg_outData_valid ( arg_outData_valid ),
30 . iterationFinish ( iterationFinish )
31 );
32
33 // Clock generation
34 initial
35 clk = 0;
36 always @(clk)
37 clk <= #10 ~clk;
38
39 initial begin
40 @( negedge clk);
41 reset <= 1;
42 @( negedge clk);
43 reset <= 0;
44 start <= 1;
45 @( negedge clk);
46 start <= 0;
47 end
48
49 always@ ( finish ) begin
50 if ( finish == 1) begin
51 $display ("At t=%t simulation finished ", $time );
52 $display (" Cycles : %d", ($time -50) /20);
53 $finish ;
54 end
55 end
56
57 initial begin
58 memory_controller_waitrequest <= 1;
59 @( negedge clk);
60 @( negedge clk);
61 memory_controller_waitrequest <= 0;



A.1. FIR-FILTER REFERENCE DESIGN 95

62 end
63
64 // Custom testcases :
65 initial begin
66 arg_inData = 32'b0;
67 arg_done = 32'b0;
68 end
69
70 initial
71 begin : TEST_CASE
72 @( posedge reset )
73 repeat (1000) begin
74 @( negedge clk);
75 arg_inData = $random ;
76 @( posedge iterationFinish );
77 end
78 $display (" Finished applying inData \n");
79 arg_done = 32'b1;
80 #100 ns
81 $finish ;
82 end
83
84 endmodule



96 A. SOURCE CODE LISTINGS

A.2 LLVM IR Parser program

1 # include <iostream >
2 # include <fstream >
3 # include <string >
4 # include <algorithm >
5 # include <vector >
6 # include <set >
7 using namespace std;
8
9 int main(int argc , char *argv []) {

10
11 // Check for correct amount of arguments
12 if (argc < 3) {
13 cout << " Missing output file argument \n";
14 if (argc < 2) {
15 cout << " Missing input file argument \n";
16 }
17 cout << " Arguments should be at the form: inputfile outputfile \n";
18 return 1;
19 }
20
21 vector <string > sources ;
22 vector <string > targets ;
23 vector <int > labels ;
24
25 ifstream inFile (argv [1]);
26 ofstream outFile (argv [2]);
27
28 if ( inFile . is_open ()) {
29 cout << " inFile opened successfully \n";
30 string line;
31 string searchStringStores = " store ";
32 string searchStringMain = " define ";
33 string labelString = "; <label >:";
34 string whitespace = " ";
35 int inMain = false ;
36 int currLabel = 0;
37 bool isTarget = false ;
38 // Read file line by line
39 while ( getline (inFile , line)) {
40 // Only consider lines staring with " store "
41 if (line. compare (0, searchStringMain . length () , searchStringMain ) ==
42 0 &&
43 ! inMain ) {
44
45 size_t found = 0;
46 do {
47 found = line.find( whitespace , found + 1);
48 } while (line. compare ( found + 1, 1, "@") != 0);
49 if (line. compare ( found + 1, 6, " @main (") == 0) {
50 inMain = true;
51 currLabel = 0;
52 }
53 } else if (line. compare (0, labelString . length () , labelString ) ==
54 0) {
55 currLabel = atoi(line. substr (10 , 3). c_str ());
56 } else if (line. compare (0, searchStringStores . length () ,
57 searchStringStores ) == 0 &&
58 inMain ) {
59
60 // Remove commas from line



A.2. LLVM IR PARSER PROGRAM 97

61 line. erase (std :: remove (line. begin () , line.end () , ','),
62 line.end ());
63
64 // Remove leading and trailing whitespaces
65 line. erase (
66 line. begin () ,
67 std :: find_if (line. begin () , line.end () ,
68 bind1st (std :: not_equal_to <char >() , ' ')));
69
70 // Split line at whitespace
71
72 size_t found = line.find( whitespace );
73 while ( found != string :: npos) {
74 size_t foundNext = line.find( whitespace , found + 1);
75
76 // Only store words staring with a % sign
77 if (line. compare ( found + 1, 1, "%") == 0) {
78 string substring =
79 line. substr ( found + 2, foundNext - found - 2);
80 if ( isTarget == true) {
81 targets . push_back ( substring );
82 labels . push_back ( currLabel );
83 isTarget = false ;
84 } else {
85 sources . push_back ( substring );
86 isTarget = true;
87 }
88 }
89 found = foundNext ;
90 }
91 if ( sources .size () > targets .size ()) {
92 sources . pop_back ();
93 isTarget = false ;
94 }
95 if (line. compare (0, 1, "}") == 0) {
96 inMain = false ;
97 }
98 }
99 }

100 inFile . close ();
101 }
102
103 else
104 cout << " Unable to open input file\n";
105
106 if ( outFile . is_open ()) {
107 cout << " outFile opened successfully \n";
108 set <string > done;
109
110 // Iterate through all found stores and check for assignment ←↩

connections
111 for (int i = 0; i < targets .size (); ++i) {
112 for (int j = 0; j < targets .size (); ++j) {
113 if ( targets [i] == targets [j] && i != j &&
114 done.find( sources [i]) == done.end () &&
115 sources [i]. find(" __out_ ") == 0) {
116 done. insert ( sources [j]);
117 string sigName = sources [i];
118 // Only print parameters defined as outputs
119 if ( sigName .find(" __out_ ") == 0) {
120 sigName = sigName . substr (6, std :: string :: npos);
121 outFile << sigName << " " << sources [j] << " "



98 A. SOURCE CODE LISTINGS

122 << labels [j] << " " << labels [i] << " "
123 << targets [i] << "\n";
124 }
125 }
126 }
127 }
128 outFile . close ();
129 }
130
131 else
132 cout << " Unable to open output file\n";
133
134 return 0;
135 }



A.3. GENERATING VALID SIGNALS 99

A.3 Generating valid signals
1 // Add each driving signal from source as a driver of the target
2 // signal .
3 // Also generate conditions for valid signals and drive these .
4 for (uint j = 1; j < sourceSig -> getNumDrivers (); j += 2) {
5 if (sourceSig -> getDriver (j)->getName (). compare (
6 targetSig -> getName ()) != 0) {
7 targetSig -> addCondition (sourceSig -> getCondition (j),
8 sourceSig -> getDriver (j));
9 if (j + 1 < sourceSig -> getNumDrivers ()) {

10 targetSig -> addCondition (sourceSig -> getCondition (j + 1) ,
11 sourceSig -> getDriver (j + 1));
12 }
13 if (sourceSig -> getCondition (j)->isOp ()) {
14 validSig -> addCondition (sourceSig -> getCondition (j), ONE);
15 if (j + 1 < sourceSig -> getNumDrivers ()) {
16 validSig -> addCondition (
17 sourceSig -> getCondition (j + 1) , ONE);
18 }
19 if (sourceSig -> getNumDrivers () - 1 < 2) {
20 // Adds deassertion of validSig if only single
21 // conditions are present .
22 validSig -> addCondition (
23 rtl -> addOp ( RTLOp :: Not)
24 ->setOperands (sourceSig -> getCondition (j)),
25 ZERO);
26 } else if (sourceSig -> getNumDrivers () - 1 < 3 ||
27 j == 1) {
28 notValid -> setOperands (
29 rtl -> addOp ( RTLOp :: Not)
30 ->setOperands (sourceSig -> getCondition (j)),
31 rtl -> addOp ( RTLOp :: Not)->setOperands (
32 sourceSig -> getCondition (j + 1)));
33 } else if (sourceSig -> getNumDrivers () - j > 1) {
34 RTLSignal * notValid1 =
35 rtl -> addOp ( RTLOp :: And)->setOperands (
36 rtl -> addOp ( RTLOp :: Not)->setOperands (
37 sourceSig -> getCondition (j)),
38 rtl -> addOp ( RTLOp :: Not)->setOperands (
39 sourceSig -> getCondition (j + 1)));
40 RTLSignal * notValid2 =
41 rtl -> addOp ( RTLOp :: And)
42 ->setOperands (notValid -> getOperand (0) ,
43 notValid -> getOperand (1));
44 notValid -> setOperands (notValid1 , notValid2 );
45 } else {
46 RTLSignal * notValid1 =
47 rtl -> addOp ( RTLOp :: And)
48 ->setOperands (notValid -> getOperand (0) ,
49 notValid -> getOperand (1));
50 notValid -> setOperands (
51 notValid1 , rtl -> addOp ( RTLOp :: Not)->setOperands (
52 sourceSig -> getCondition (j)));
53 }
54 }
55 }
56 }
57 // Adds deassertion of validSig if multiple conditions are present .
58 if (notValid -> getNumOperands () > 1) {
59 validSig -> addCondition (notValid , ZERO);
60 }



100 A. SOURCE CODE LISTINGS

A.4 Adding iterationFinish flag
1 RTLSignal * interationFinish = rtl -> addOutReg (" interationFinish ");
2
3 connectSignalToDriverInState ( interationFinish , ONE , (--fsm ->end ())->getPrevNode←↩

());
4 interationFinish -> addCondition (rtl -> addOp ( RTLOp :: Not)->setOperands (←↩

interationFinish -> getCondition (0)), ZERO);

A.5 Testbench generator source code
1 RTLModule *t = m-> addModule ("main", " main_inst ");
2 if ( LEGUP_CONFIG -> getParameterInt (" ASIC_IMPLEMENTATION ")) {
3 RTLModule *rtl = alloc -> getModuleForFunction (alloc -> getModule () ->getFunction (←↩

"main"));
4 if (rtl -> getName (). compare ("main") == 0) {
5 for ( RTLModule :: const_signal_iterator i = rtl -> port_begin () , e = rtl ->←↩

port_end (); i != e; ++i) {
6 const RTLSignal *s = *i;
7 RTLSignal *d;
8 string type = s-> getType ();
9 if (! type. empty ()) {

10 if (type. compare (0, 6, " output ") == 0) {
11 d = m-> addWire (s-> getName () , s-> getWidth ());
12 t-> addOut (s-> getName () , s-> getWidth ())->connect (d);
13 } else {
14 d = m-> addReg (s-> getName () , s-> getWidth ());
15 t-> addIn (s-> getName () , s-> getWidth ())->connect (d);
16 }
17 }
18 }
19 }
20 }



A.6. SCRIPT FOR CREATING NEW FRAMEWORK-PROJECT 101

A.6 Script for creating new framework-project
1 #!/ bin/bash
2
3 echo "Type the name of the new design , followed by [ ENTER ]:"
4 read DESIGNNAME
5
6 LEVEL =$(pwd)
7 mkdir $DESIGNNAME
8 mkdir $DESIGNNAME /ip
9 mkdir $DESIGNNAME /ip/ $DESIGNNAME

10 cp -r _source / methodology $DESIGNNAME
11 cp -r _source /ip/libs $DESIGNNAME /ip
12 cp -r _source /ip/ designname /* $DESIGNNAME /ip/ $DESIGNNAME
13 cd $DESIGNNAME /ip/ $DESIGNNAME
14 mv designname .c $DESIGNNAME .c
15 mv rtl/ designname .fl rtl/ $DESIGNNAME .fl
16 mv rtl/ designname_sim .fl rtl/ $DESIGNNAME \_sim.fl
17 mv sim/tb/ test_designname .fl sim/tb/ test_$DESIGNNAME .fl
18 mv sim/tb/ test_designname_testcases .v sim/tb/ test_$DESIGNNAME \ _testcases .v
19 mv sim/tb/ test_designname .v sim/tb/ test_$DESIGNNAME .v
20 mv sim/run/ designname .args sim/run/ $DESIGNNAME .args
21 mv sim/run/ designname .comp sim/run/ $DESIGNNAME .comp
22 mv sim/run/ designname .sim sim/run/ $DESIGNNAME .sim
23 mv syn/ dc_scripts / designname . constraints .tcl syn/ dc_scripts / $DESIGNNAME .←↩

constraints .tcl
24
25 find FrameworkScript .sh -type f -exec sed -i "s/ DESIGNNAME = designname /←↩

DESIGNNAME = $DESIGNNAME /g" {} \;
26 find FrameworkScript .sh -type f -exec sed -i "s? basedir ? $LEVEL ?g" {} \;
27 find Makefile -type f -exec sed -i "s? basedir ? $LEVEL ?g" {} \;
28 find Makefile -type f -exec sed -i "s/ designname / $DESIGNNAME /g" {} \;
29
30 find rtl/ $DESIGNNAME .fl -type f -exec sed -i "s/ designname / $DESIGNNAME /g" {} \;
31 find rtl/ $DESIGNNAME \_sim.fl -type f -exec sed -i "s/ designname / $DESIGNNAME /g" ←↩

{} \;
32 find sim/tb/ test_$DESIGNNAME .fl -type f -exec sed -i "s/ designname / $DESIGNNAME /←↩

g" {} \;
33
34 find sim/run/ $DESIGNNAME .args -type f -exec sed -i "s/ designname / $DESIGNNAME /g"←↩

{} \;
35 find sim/run/ $DESIGNNAME .comp -type f -exec sed -i "s/ designname / $DESIGNNAME /g"←↩

{} \;
36 find sim/run/ $DESIGNNAME .sim -type f -exec sed -i "s/ designname / $DESIGNNAME /g" ←↩

{} \;
37 find sim/run/ $DESIGNNAME .sim -type f -exec sed -i "s? basedir ? $LEVEL ?g" {} \;
38 find sim/run/ RUN_ALL -type f -exec sed -i "s/ designname / $DESIGNNAME /g" {} \;
39
40 find syn/ common_setup .tcl -type f -exec sed -i "s/ designname / $DESIGNNAME /g" {} ←↩

\;
41 find syn/ dc_scripts / dc_compile .tcl -type f -exec sed -i "s? basedir ? $LEVEL ?g" {}←↩

\;



102 A. SOURCE CODE LISTINGS

A.7 Script for running framework

1 #!/ bin/bash
2 rm -f FrameworkScript .log
3 LOG_FILE = FrameworkScript .log
4 exec 3 >&1 1>>${ LOG_FILE } 2 >&1 # Print log to file , print specified echos to ←↩

terminal
5
6 DESIGNNAME = designname
7 REMOTEIP =192.168.12.33 # IP of the computer running the LegUp VirtualBox guest
8 REMOTEPORT =3022 # Port that is forwarded to port 22 on VirtualBox guest
9 REMOTEDIR =/ home/ legup /legup -4.0/ examples

10 LEGUPUSER = legup # Username of LegUp image
11 LEGUPPASS = letmein # Password of LegUp image
12 BASE_DIR = basedir
13 LOCALDIR = $BASE_DIR / $DESIGNNAME /ip/ $DESIGNNAME # Location of source files on ←↩

Linux server .
14
15 export DESIGN_NAME = $DESIGNNAME
16 export FILE_LIST = $DESIGNNAME
17 export BASE_DIR = $BASE_DIR
18 export VC_WORKSPACE = $BASE_DIR / $DESIGNNAME
19
20 module load icc # Load IC compiler module
21 module load primetime # Load PrimeTime module
22
23 SSHCOMMANDS2 =" mkdir $REMOTEDIR / $DESIGNNAME ; cd $REMOTEDIR / $DESIGNNAME /; ←↩

libreoffice --headless --convert -to csv constraints .xlsx --outdir .; exit" ←↩

# ssh commands for converting excel file to csv
24
25 if [$1 = "-s"]; then
26 echo Setup started
27 ssh - keygen -f id_rsa -t rsa -N ''
28 spawn ssh -copy -id " $LEGUPUSER@$REMOTEIP -p $REMOTEPORT "
29 expect " password :"
30 send " $LEGUPPASS \n"
31 expect eof
32 echo Setup finished
33 fi
34
35 mkdir -p $LOCALDIR /hls/
36 ssh $LEGUPUSER@$REMOTEIP -p $REMOTEPORT " mkdir -p $REMOTEDIR / $DESIGNNAME "
37 scp -P $REMOTEPORT $LOCALDIR / $DESIGNNAME .c $LEGUPUSER@$REMOTEIP : $REMOTEDIR /←↩

$DESIGNNAME #Copy design file to LegUp image
38 scp -P $REMOTEPORT $LOCALDIR /sim/tb/ test_$DESIGNNAME \ _testcases .v ←↩

$LEGUPUSER@$REMOTEIP : $REMOTEDIR / $DESIGNNAME #Copy testcases file to LegUp
39
40 scp -P $REMOTEPORT $LOCALDIR /hls/ constraints .xlsx $LEGUPUSER@$REMOTEIP :←↩

$REMOTEDIR / $DESIGNNAME / #Copy design constraint definitions to LegUp image
41 ssh $LEGUPUSER@$REMOTEIP -p $REMOTEPORT $SSHCOMMANDS2 #Run commands and script ←↩

for generating constraint and Makefiles
42 scp -P $REMOTEPORT $LEGUPUSER@$REMOTEIP : $REMOTEDIR / $DESIGNNAME / constraints .csv ←↩

$LOCALDIR /hls/ #Copy CSV file from LegUp image
43 sed 's/\ ' '//g' -i $LOCALDIR /hls/ constraints .csv # Remove excess quotes
44 rm -r $LOCALDIR /hls/ makefiles $LOCALDIR /hls/ constraintfiles
45 mkdir $LOCALDIR /hls/ makefiles $LOCALDIR /hls/ constraintfiles
46 mkdir $LOCALDIR / reports
47 rm $LOCALDIR / reports /*. rpt
48 cd $LOCALDIR /hls/
49
50 $LOCALDIR /hls/ constraintsGenerator .run $LOCALDIR /hls/ constraints .csv .. ←↩

$DESIGNNAME



A.7. SCRIPT FOR RUNNING FRAMEWORK 103

51 NUMRUNS =$?
52 echo " Generated $NUMRUNS constraint and Makefiles " | tee /dev/fd /3
53 COUNTER =0
54 while [ $COUNTER -lt $NUMRUNS ]; do
55 echo " Framework loop # $COUNTER " 1 >&3
56 rm $LOCALDIR /rtl /{*. tcl ,*.v ,*. mif}
57 SSHCOMMANDS =" export PATH =/ home/ legup / clang +llvm -3.5.0 - x86_64 -linux -gnu/bin:←↩

$PATH ; cd $REMOTEDIR / $DESIGNNAME /; make clean ; make; exit" # Commands to ←↩

run on SSH session . Need to add clang to PATH as this is not present in SSH←↩

session .
58 scp -P $REMOTEPORT $LOCALDIR /hls/ constraintfiles / config$COUNTER .tcl ←↩

$LEGUPUSER@$REMOTEIP : $REMOTEDIR / $DESIGNNAME / #Copy design constraint file ←↩

to LegUp image
59 scp -P $REMOTEPORT $LOCALDIR /hls/ makefiles / Makefile$COUNTER ←↩

$LEGUPUSER@$REMOTEIP : $REMOTEDIR / $DESIGNNAME / Makefile #Copy design Makefile ←↩

to LegUp image
60 echo " Running HLS" 1 >&3
61 ssh $LEGUPUSER@$REMOTEIP -p $REMOTEPORT $SSHCOMMANDS #Run LegUp
62
63 scp -P $REMOTEPORT $LEGUPUSER@$REMOTEIP : $REMOTEDIR / $DESIGNNAME / $DESIGNNAME .v ←↩

$LOCALDIR /rtl/ #Copy Verilog file from LegUp image
64 scp -P $REMOTEPORT $LEGUPUSER@$REMOTEIP : $REMOTEDIR / $DESIGNNAME / test_main .v ←↩

$LOCALDIR /sim/tb/ test_$DESIGNNAME .v #Copy Verilog testbench file from LegUp←↩

image
65
66 MEM_CRTL_EXIST =$(grep -c " module memory_controller " $LOCALDIR /rtl/ $DESIGNNAME←↩

.v)
67 if [ $MEM_CRTL_EXIST -gt 0 ]; then
68 echo " memory_controller module exist in design . Please check your design " ←↩

1 >&3
69 fi
70
71 find $LOCALDIR /rtl/ $DESIGNNAME .v -type f -exec sed -i "s/ module main/ module ←↩

$DESIGNNAME /g" {} \; # Replace top modulename main with designname
72
73 find $LOCALDIR /sim/tb/ test_$DESIGNNAME .v -type f -exec sed -i "s/ module ←↩

main_tb / module test_$DESIGNNAME /g" {} \; # Replace tb declaration with ←↩

correct designname
74 find $LOCALDIR /sim/tb/ test_$DESIGNNAME .v -type f -exec sed -i "s/main ←↩

main_inst / $DESIGNNAME u_$DESIGNNAME /g" {} \; # Replace top module ←↩

instantiation in tb with correct designname
75
76 echo " Running simulation " 1 >&3
77 #Run simulation
78 (cd $LOCALDIR /sim/run/ && ( RUN_ALL --clean ) && ( vcd2saif -input $LOCALDIR /sim←↩

/run/ $DESIGNNAME .vcd -output $LOCALDIR /sim/run/ $DESIGNNAME .saif))
79
80 echo " Running synthesis " 1 >&3
81 #Run synthesis
82 (cd $LOCALDIR /syn/ && (make clean ) && (make compile )) #Run synthesis clean ←↩

removes old data
83
84 echo " Running layout " 1 >&3
85 #Run layout
86 (cd $LOCALDIR /lay/ && (make clean ) && (make outputs_cts ))
87
88 echo " Running power analysis " 1 >&3
89 #Run power estimation
90 (cd $LOCALDIR /pow/ && (make clean ) && (make power_analysis ))
91
92 # Store synthesis results to common file
93



104 A. SOURCE CODE LISTINGS

94 echo " Gathering layout results " 1 >&3
95 var1=$(grep " Combinational Area:" $LOCALDIR /lay/ reports / clock_opt_cts_icc .qor←↩

)
96 var1=${var1 // Combinational Area :/}
97 var1=${var1 // /}
98 var1=${var1 //./ ,}
99 echo $var1 >> $LOCALDIR / reports / noncombinational_area .rpt

100 var2=$(grep " Noncombinational Area:" $LOCALDIR /lay/ reports / clock_opt_cts_icc .←↩

qor)
101 var2=${var2 // Noncombinational Area :/}
102 var2=${var2 // /}
103 var2=${var2 //./ ,}
104 echo $var2 >> $LOCALDIR / reports / combinational_area .rpt
105 var3=$(grep " Design Area:" $LOCALDIR /lay/ reports / clock_opt_cts_icc .qor)
106 var3=${var3 // Design Area: /}
107 var3=${var3 // /}
108 var3=${var3 //./ ,}
109 echo $var3 >> $LOCALDIR / reports / design_area .rpt
110 var4=$(grep " Total number of registers " $LOCALDIR /syn/ reports / $DESIGNNAME .←↩

mapped . clock_gating .rpt)
111 var4=${var4 // | Total number of registers |/}
112 var4=${var4 // /}
113 var4=${var4 //|/}
114 echo $var4 >> $LOCALDIR / reports / register_count .rpt
115
116 echo " Gathering power analysis results " 1 >&3
117
118 COUNT =0
119 while [ $COUNT -lt 4 ]; do
120 swpow =$(grep 'Net Switching Power ' $LOCALDIR /pow/ reports /←↩

power_analysis_$DESIGNNAME \ _ctrl$COUNT / power_summary .rpt)
121 swpow =${ swpow //([^) ]*) /}
122 swpow =${ swpow // Net Switching Power = /}
123 echo -n " $swpow \t">>$LOCALDIR / reports / net_switching_power .rpt
124 intpow =$(grep 'Cell Internal Power ' $LOCALDIR /pow/ reports /←↩

power_analysis_$DESIGNNAME \ _ctrl$COUNT / power_summary .rpt)
125 intpow =${ intpow //([^) ]*) /}
126 intpow =${ intpow // Cell Internal Power = /}
127 echo -n " $intpow \t">>$LOCALDIR / reports / cell_internal_power .rpt
128 leakpow =$(grep 'Cell Leakage Power ' $LOCALDIR /pow/ reports /←↩

power_analysis_$DESIGNNAME \ _ctrl$COUNT / power_summary .rpt)
129 leakpow =${ leakpow //([^) ]*) /}
130 leakpow =${ leakpow // Cell Leakage Power = /}
131 echo -n " $leakpow \t">>$LOCALDIR / reports / cell_leakage_power .rpt
132 totpow =$(grep 'Total Power ' $LOCALDIR /pow/ reports /←↩

power_analysis_$DESIGNNAME \ _ctrl$COUNT / power_summary .rpt)
133 totpow =${ totpow //([^) ]*) /}
134 totpow =${ totpow // Total Power = /}
135 echo -n " $totpow \t">>$LOCALDIR / reports / total_power .rpt
136 let COUNT = COUNT +1
137 done
138
139 swpow =$(grep 'Net Switching Power ' $LOCALDIR /pow/ reports /←↩

power_analysis_$DESIGNNAME \ _inactive / power_summary .rpt)
140 swpow =${ swpow //([^) ]*) /}
141 swpow =${ swpow // Net Switching Power = /}
142 echo $swpow >> $LOCALDIR / reports / net_switching_power .rpt
143 intpow =$(grep 'Cell Internal Power ' $LOCALDIR /pow/ reports /←↩

power_analysis_$DESIGNNAME \ _inactive / power_summary .rpt)
144 intpow =${ intpow //([^) ]*) /}
145 intpow =${ intpow // Cell Internal Power = /}
146 echo $intpow >> $LOCALDIR / reports / cell_internal_power .rpt



A.7. SCRIPT FOR RUNNING FRAMEWORK 105

147 leakpow =$(grep 'Cell Leakage Power ' $LOCALDIR /pow/ reports /←↩

power_analysis_$DESIGNNAME \ _inactive / power_summary .rpt)
148 leakpow =${ leakpow //([^) ]*) /}
149 leakpow =${ leakpow // Cell Leakage Power = /}
150 echo $leakpow >> $LOCALDIR / reports / cell_leakage_power .rpt
151 totpow =$(grep 'Total Power ' $LOCALDIR /pow/ reports / power_analysis_$DESIGNNAME \←↩

_inactive / power_summary .rpt)
152 totpow =${ totpow //([^) ]*) /}
153 totpow =${ totpow // Total Power = /}
154 echo $totpow >> $LOCALDIR / reports / total_power .rpt
155
156 echo " Register count \ tCombinational Area\tNon - combinational Area\ tDesign Area←↩

\ tSwitching Power \ tInternal Power \ tLeakage Power \ tTotal Power " > ←↩

all_results .rpt
157 paste register_count .rpt combinational_area .rpt noncombinational_area .rpt ←↩

design_area .rpt net_switching_power .rpt cell_internal_power .rpt ←↩

cell_leakage_power .rpt total_power .rpt >> all_results .rpt
158
159 # Store results in dedicated folder
160 rm -f $LOCALDIR /sim/run/ $DESIGNNAME .vcd #VCD file can get large . Remove ←↩

before storing framework run data.
161 mkdir -p $LOCALDIR /hls/ rtl$COUNTER /
162 cp $LOCALDIR /hls/ constraintfiles / config$COUNTER .tcl $LOCALDIR /rtl/ #Copy ←↩

design constraint file to current rtl folder
163 cp $LOCALDIR /hls/ makefiles / Makefile$COUNTER $LOCALDIR /rtl/ Makefile
164 cp -r $LOCALDIR /{ rtl/,sim/,syn/,lay/,pow/, score /} $LOCALDIR /hls/ rtl$COUNTER /
165
166 let COUNTER = COUNTER +1
167 done
168 echo HLS finished
169 exit $?



106 A. SOURCE CODE LISTINGS

A.8 Constraint-generator program

1 # include <stdio .h>
2 # include <stdlib .h>
3 # include <iostream >
4 # include <fstream >
5 # include <math.h>
6 # include <sstream >
7 # include <map >
8 # include <vector >
9

10 using namespace std;
11
12 map <string , string > requiredConstraints ;
13 vector <string > randomConstraints ;
14 map <string , string > staticConstraints ;
15 map <string , string > makefileConstraints ;
16 map <string , string > nonParameterConstraints ;
17
18 int main(int argc , char *argv []) {
19
20 // Check for correct amount of arguments
21 if (argc < 4) {
22 cout << " Missing design -name argument \n";
23 if (argc < 3) {
24 cout << " Missing Makefile LEVEL argument \n";
25 if (argc < 1) {
26 cout << " Missing constraints csv - fileName argument \n";
27 }
28 }
29 cout << " Arguments should be at the form: csv - fileName LEVEL "
30 "design -name\n";
31 return 0;
32 }
33
34 // Read constraints from .csv file
35 ifstream csvFile ;
36 csvFile .open(argv [1]);
37
38 while ( csvFile ) {
39 string s;
40 if (! getline (csvFile , s))
41 break ;
42
43 istringstream ss(s);
44 vector <string > record ;
45
46 while (ss) {
47 string s;
48 if (! getline (ss , s, ','))
49 break ;
50 record . push_back (s);
51 }
52 bool required = false ;
53 bool isParameter = false ;
54 bool isMakefile = false ;
55 string value = record .back ();
56 record . pop_back ();
57 if ( value == " discard ") {
58 continue ;
59 }
60 if ( value == " makefile ") {



A.8. CONSTRAINT-GENERATOR PROGRAM 107

61 isMakefile = true;
62 value = record .back ();
63 record . pop_back ();
64 }
65 if ( value == " parameter ") {
66 isParameter = true;
67 value = record .back ();
68 record . pop_back ();
69 }
70 if ( value == " required ") {
71 required = true;
72 value = record .back ();
73 record . pop_back ();
74 }
75 string parameter = record .back ();
76 record . pop_back ();
77
78 if ( value == " random ") {
79 randomConstraints . push_back ( parameter );
80 } else if ( required == true) {
81 requiredConstraints . insert (
82 std :: pair <string , string >( parameter , value ));
83 } else {
84 if ( isMakefile == true) {
85 makefileConstraints . insert (
86 std :: pair <string , string >( parameter , value ));
87 } else if ( isParameter == true) {
88 staticConstraints . insert (
89 std :: pair <string , string >( parameter , value ));
90 } else {
91 nonParameterConstraints . insert (
92 std :: pair <string , string >( parameter , value ));
93 }
94 }
95 }
96
97 csvFile . close ();
98
99 // Generate constraint - files

100
101 ofstream constraintFile ;
102 ofstream makeFile ;
103 char buffer [100];
104 int n = sprintf (buffer , "%d", (int)pow (2, randomConstraints .size ()));
105 for (int count = 0; count < pow (2, randomConstraints .size ()); count ++) {
106 sprintf (buffer , "%d", count ); // sprintf (buffer , "%.*d", n, count );
107 string cFileName = " config " + string ( buffer ) + ".tcl";
108 string fileLocation = "./ constraintfiles /" + cFileName ;
109 constraintFile .open( fileLocation . c_str ());
110 constraintFile << " source " << argv [2] << "/ legup .tcl\n\n"
111 << " ################################################### "
112 " #################\ n"
113 << "## Required Constraints :\n";
114 for (std ::map <string , string >:: iterator it =
115 requiredConstraints . begin ();
116 it != requiredConstraints .end (); ++ it) {
117 constraintFile << " set_parameter " << it -> first << " " << it ->←↩

second
118 << "\n";
119 }
120 constraintFile << "\n\n ############################################### "
121 " #####################\ n"



108 A. SOURCE CODE LISTINGS

122 << "## Random Constraints :\n";
123
124 for (int offset = randomConstraints .size () - 1; offset >= 0; offset --) ←↩

{
125 constraintFile << " set_parameter " << randomConstraints [ offset ]
126 << " " << (( count & (1 << offset )) >> offset )
127 << "\n";
128 }
129 constraintFile << "\n\n ############################################### "
130 " #####################\ n"
131 << "## Static Parameter Constraints :\n";
132 for (std ::map <string , string >:: iterator it = staticConstraints . begin ();
133 it != staticConstraints .end (); ++ it) {
134 constraintFile << " set_parameter " << it -> first << " " << it ->←↩

second
135 << "\n";
136 }
137 constraintFile << "\n\n ############################################### "
138 " #####################\ n"
139 << "## Static Non - parameter Constraints :\n";
140 for (std ::map <string , string >:: iterator it =
141 nonParameterConstraints . begin ();
142 it != nonParameterConstraints .end (); ++ it) {
143 constraintFile << it -> first << " " << it -> second << "\n";
144 }
145 constraintFile . close ();
146
147 // Generate Makefile for each constraint
148 string mFileName = "./ makefiles / Makefile " + string ( buffer );
149 makeFile .open( mFileName . c_str ());
150
151 makeFile << " ######################################################### "
152 " ###########\ n"
153 << "## Generated makefile :\n"
154 << "NAME=" << argv [3] << "\n"
155 << " LEVEL = " << argv [2] << "\n";
156 for (std ::map <string , string >:: iterator it =
157 makefileConstraints . begin ();
158 it != makefileConstraints .end (); ++ it) {
159 makeFile << it -> first << "=" << it -> second << "\n";
160 }
161 makeFile << " LOCAL_CONFIG = -legup - config =" << cFileName << "\n"
162 << " include $( LEVEL )/ Makefile . common \n";
163 makeFile . close ();
164 }
165 return (int) pow (2, randomConstraints .size ());
166 }


	List of Figures
	List of Tables
	List of Algorithms
	Acronyms
	Introduction
	Motivation
	Previous work
	Project objectives
	Contributions
	Method
	Overview of the thesis

	Theory and background
	High-Level Synthesis
	LegUp
	Producing Verilog Output
	Classes
	Constraints

	LLVM
	Intermediate Representation

	Alternative hardware design methods
	Chisel
	Functional programming

	Power dissipation in CMOS circuits
	Switching power
	Internal power
	Leakage power

	Tool-flow
	Simulation
	Synthesis
	Layout
	Power analysis

	Reference design
	FIR-filter


	Adapting LegUp
	Approach
	Post-processing
	Pre-processing
	The used approach

	TCL commands
	Removing top-level and FPGA-specific modules
	Removing memory controller
	Declaring inputs and outputs
	Name prefix
	TCL-command

	Assigning values to outputs
	LLVM IR assignment parser program
	Assigning output signals
	Removing local RAMs

	Streaming inputs/outputs
	Signal sizes
	Testbench generation
	Coding constraints
	Structs
	Pointers
	Arrays
	Inputs and outputs


	Tool-flow example
	HLS with LegUp
	Constraint files
	Makefile
	Compilation
	Link-time optimizations
	Verilog generation

	Simulation
	Simulation libraries
	Running simulation

	Synthesis
	Layout
	Power analysis

	Creating the framework
	Create new project
	Framework-script
	Constraint generating
	Report generating

	Running the framework

	Framework results
	First test-run
	Handling unexpected results

	Full tool-flow framework run
	Bugs in the generated design
	Path and hold violations
	LegUp specific code optimization

	Discussion
	Conclusion
	Future work
	Abstraction level
	Resolving bugs
	Eliminating RAM states
	Advances in LegUp since last release
	Automatic code-optimization
	Incorporating Nordic Semiconductors DDVC


	References
	Source code listings
	FIR-filter reference design
	C source code
	Optimized C source code
	Verilog source code
	Testbench for FIR-filter

	LLVM IR Parser program
	Generating valid signals
	Adding iterationFinish flag
	Testbench generator source code
	Script for creating new framework-project
	Script for running framework
	Constraint-generator program


