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Abstract

In this thesis we study implied and realized volatility in the Nordic
power forward market. We first create an implied volatility index with
a fixed time to maturity. We then specify several forecasting models
in order to test the information content in implied volatility for fore-
casting. Our results show that the implied volatility index improves
the daily, weekly and monthly forecasts. These results are consistent
with previous research in other markets, notably WTI futures and
S&P futures.
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1 Introduction

Understanding and managing risk is crucial for all participants involved in
financial transactions. In order to price assets, hedge production or hedge
financial positions, the risk characteristics need to be understood. The risk
dynamics for electricity markets are different from other commodities. This is
because there is yet to exist a technology that lets us economically store elec-
tricity. Therefore, mismatches in electricity demand and generation must be
covered immediately, resulting in short spikes or troughs in prices and tran-
sient periods of high volatility. This non-storability makes understanding risk
more important, but also increases complexity. Financially settled forwards
and options on these forwards help market participants manage risk. They
also create the opportunity of making models that describe and predict the
market’s expectation of future volatility.

Volatility, as implied from option prices, is a commonly used measure
of the market’s expectation of future risk and has been extensively stud-
ied, particularly for equities. Previous research shows that implied volatility
(IV) indices provide better forecasts for volatility than traditional time se-
ries methods such as GARCH (Martens and Zein, 2004). Christensen and
Prabhala (1998) show this for the VIX index for S&P500 volatility and Mol-
nar et al. (2013) for WTI futures. However, Agnolucci (2009) found that a
Component-GARCH model performs slightly better than IV in forecasting
volatility for crude oil futures. This indicates that implied volatility for the
power market could hold important information.

Since the liberalization of the Nordic power market, several studies have
investigated volatility in the Nordic power forward market. Haugom et al.
(2011b) compared forecasts of day-ahead volatility obtained from GARCH
models with forecasts obtained with traditional time series models of real-
ized volatility (RV). They found that the latter approach outperforms the
GARCH framework. Haugom et al. (2011a) was the first paper to utilize
high-frequency data to analyze the Nord Pool forward market and to apply
known market measures to forecast future volatility. They created a simple
Heterogeneous Autoregressive (HAR) model to forecast volatility and found
that the inclusion of exogenous variables improved the forecast performance.

These papers are concerned with realized volatility only, and do not make
any use of implied volatility. In fact, implied volatility from options on power
forwards in the Nordic market has not yet been studied, but there is some
indication that it is used by practitioners. In this paper a unique dataset
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on bid and ask prices of options from market makers allow us to calculate
the implied volatility from options on forwards in the Nordic power forward
market. Our goal is to create a risk measure from implied volatilities that
captures information previously not available in the Nordic power forward
market. Furthermore, by using well-known models such as the Black-Scholes
option pricing formula, we put emphasis on practicality and applicability over
methodological complexity to ensure this thesis’ relevance for practitioners.

We create an implied volatility time series with a constant time to matu-
rity constructed from the 1pos and the 2pos contracts. To test this ex ante
risk measure we calculate realized volatility. Furthermore, we vary the way
by which we calculate realized volatility to find the best sampling method.
We find that the implied volatility on average is greater than realized volatil-
ity, and hence that there is evidence of a volatility risk premium in the Nordic
power market.

This is, to the best of our knowledge, the first academically created IV-
index for the Nordic power market. To test the proposition that IV contains
information that can improve the predictive power of forecasting models we
specify several Heterogeneous Autoregressive models (Corsi, 2009). The com-
parison of these models reveal that the inclusion of IV improves the forecasts.

The rest of this thesis is organized as follows. Section 2 describes deriva-
tives trading in the Nordic power market and in section 3 we concentrate
on general theory and methodology. Section 4 describes all information per-
taining to data sampling and selection and section 5 describes the results.
Finally, in section 6 we conclude.

2 The Nordic Power Market

Many countries have liberalized their power markets in the past 30 years
and the Nordic countries are no exception. The deregulation of the power
market resulted in competitive markets and sometimes large movements in
spot prices. With prices fluctuating, a healthy and increasingly liquid deriva-
tives market sprung from the need to control risk. Consequently, academic
research studying the pricing of electricity derivatives also emerged, inter
alia Vehvilainen (2002), Benth et al. (2007), Weron (2008) and Kiesel et al.
(2009).

Norway and Sweden established the Nord Pool electricity and power mar-
ket exchange in 1996, as the world’s first multinational exchange for trading
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and clearing of financial power contracts. Clearing of standardized finan-
cially settled contracts was introduced in 1997, and standardized options on
forward and futures contracts were introduced in 1999. Nord Pool Clearing
was in 2008 acquired by Nasdaq OMX, and the exchange changed name to
Nasdaq OMX Commodities Europe in 2010. Nord Pool remains in existence
today as an independent exchange for spot electricity.

The Nasdaq OMX Commodities Europe exchange is open for trading on
power derivatives between 08:00 and 15:30 (CET) and both the underlying
forward and the option contracts are cleared within this time span. Options
on forwards are mostly traded over-the-counter (OTC) at various brokerage
firms, such as ICAP Energy, and trades are cleared the same day as long as
they are submitted before the deadline of 15:30. Trading after the deadline
is cleared the next day. Closing prices are fixed at a random time between
15:25 and 15:30. Forwards are available for daily, weekly, monthly, quarterly
and yearly contracts.

A forward at the exchange is an obligation to buy or sell a predetermined
amount of power at a given price with delivery each hour for the time covered
by the forward. The minimum size of the contract is 1 MW and the minimum
ticker is 0.01 EUR. In other words, the forward price in the Nordic power
market represents the market’s expectation for the average price over the
delivery period plus a premium. The contracts are settled financially.

An option on a forward is the purchase or sale of the right to buy or sell
a forward contract at a fixed put/call price, at some time in the future. The
maturity of the power option is the Wednesday before delivery, 10 working
days before the maturity of the underlying forward. The payoff is a function
of the forward price only (Vehvilainen, 2002). Forwards and options on those
forwards are standardized agreements, making comparisons possible without
introducing unnecessary variables.

3 Literature and Methodology

This study is to the best of our knowledge the first academic investigation
of implied volatility and its use in forecasting in the Nordic power forward
market. However, many studies on other markets examine implied volatility.

Taylor and Xu (1997) find that there is significant incremental informa-
tion in implied volatility when compared to ARCH forecasts on the DM/$
exchange rate. The results are confirmed out-of-sample.
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Using a long time series and nonoverlapping, monthly data on the S&P100,
Christensen and Prabhala (1998) find that implied volatility predicts future
realized volatility better than past realized volatility. They use Black-Scholes
implied volatilities and test the predictive power by running a regression of
IV on RV. The results are robust to the addition of lagged implied volatili-
ties as well as lagged realized volatilities. Christensen and Prabhala (1998)
conclude that implied volatility subsumes the information in past RV.

Ederington and Guan (2002) studied a 10-year period of the S&P500 in-
dex futures comparing a large variety of differently weighted implied volatility
measures to realized volatility using the same linear regression as Christensen
and Prabhala (1998). They find a positive bias in implied volatility compared
to realized volatility and suggest correcting for this by using an adjusted im-
plied volatility measure in forecasts.

Martens and Zein (2004) use high-frequency data on the S&P500, YEN/USD
and Light, Sweet Crude oil to test the forecasting ability of implied volatil-
ity compared to the time-series forecasts of ARFIMA and GARCH. In the
latter test, implied volatility subsumes most of the forecasting information
for all cases and a positive bias is found. The results obtained with the
long-memory ARFIMA model show forecasts performing better than implied
volatility forecasts, particularly on S&P500 and Crude Oil.

Lastly, for WTI futures, Molnar et al. (2013) used implied volatility with
a HAR-RV model and found that daily and weekly forecasts were improved
with the inclusion of implied volatility. For the same market, Agnolucci
(2009) found that a Component-GARCH model performs slightly better than
implied volatilities in forecasts, but he ultimately suggests incorporating IV-
measures into forecasts. He does not find a significant bias in implied volatil-
ity measures.

These studies show the prevalence of implied volatility as an important
and often used measure and input to forecasting models. It therefore mo-
tivates our choice of studying and explaining the dynamics of implied and
realized volatility for electricity.1

1A comprehensive review of volatility modelling and forecasting is found in Taylor
(2005).
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3.1 Realized Volatility

For our study we create three measures of realized volatility. Firstly, we use
the daily observed returns and the volatility of returns is denoted RVDaily.
Secondly, we use intradaily observations of frequencyN to createRVIntra, and
lastly we include the overnight return to find a measure of realized volatility
for the whole day, RV24h. In section 5 we chose the method that best captures
the volatility dynamics.

The theoretical foundation for using realized volatility is strong. Fol-
lowing the standard assumptions in financial theory, returns are assumed
to be i.i.d2 normally distributed with mean µ, variance σ2, and following a
brownian motion (Alexander, 2008a). Mean daily and intradaily returns are
assumed to be zero. We assume returns to follow brownian motion, with
sample path σt. The theory of quadratic variation (Karatzas and Shreve,
1991) then gives us the following:

ρ lim
N→∞

 1∫
0

σ2
t+τdτ −

N∑
j=1

r2t,j

→ 0, (1)

where rt,j is the intradaily return, measured at an intradaily frequency of
N. Volatility is unobservable in the market, but the last term in equation
1 is understood to be the realized variance. We denote intradaily realized
variance in the following way:

RV art =
N∑
j=1

r2t,j, t = 1, . . . , T. (2)

Anderesen and Bollerslev (1998) showed that a well behaving estimator
of volatility is realized volatility as measured by the square root of realized
variance,

RVIntra =
√
RV art (3)

3.1.1 A 24-hour measure of volatility

In order to obtain an estimate of the volatility over the whole day, we use the
method developed by Hansen and Lunde (2005) and used by Haugom et al.

2Independent and identically distributed.
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(2013) to create RV24h. The method finds the realized volatility as a weighted
sum of the intradaily and overnight return by finding weights that minimize
the squared error between the realized volatility and the true volatility.

Let ort denote the overnight return between the last price on day t-1
and first price on day t, and RV art as specified above. We then define the
following measures:

µ̂0 =
1

n

n∑
t=1

(or2t +RV art) (4)

µ̂1 =
1

n

n∑
t=1

or2t (5)

µ̂2 =
1

n

n∑
t=1

RV art (6)

η̂21 = V ar(or2t ) (7)

η̂22 = V ar(RV art) (8)

η̂212 = Cov(or2t , RV art) (9)

And a relative importance factor which is calculated the following way:

ϕ̂ =
µ̂2
2η̂

2
1 − µ̂1µ̂2η̂12

µ̂2
2η̂

2
1 + µ̂2

1η̂
2
2 − µ̂1µ̂2η̂12

(10)

The optimal weights can then be found:

ω̂∗1 = (1− ϕ̂)
µ̂0

µ̂1

and ω̂∗2 = ϕ̂
µ̂0

µ̂2

(11)

In our model, 24 hour realized volatility for day t is then calculated by
the following formula:

RV24h,t =
√
ω̂∗1or

2
t + ω̂∗2RV art (12)
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3.1.2 Sampling

Choosing the right sampling method and frequency is important for the va-
lidity of our estimates. We sample by extracting ticker prices prior to every
minute as suggested by Wasserfallen and Zimmermann (1985) and discussed
by Hansen and Lunde (2006). From equation 1 we see that to fully cap-
ture the information content in high frequency data, the sampling frequency
should be as high as possible. On the other hand, higher sampling frequen-
cies give biased measures of RV due to microstructure effects such as bid-ask
bounce (Alexander, 2008b; Taylor, 2005). Andersen et al. (2001) suggests us-
ing 5 minute intervals, a frequency that has been used by many researchers in
other markets (Molnar et al., 2013; Patton, 2011; Martens, 2002). To resolve
the tradeoff between statistically high information content and microstruc-
ture problems we use a volatility signature plot as suggested by Anderson et
al. (2000) and used by Bollerslev et al. (2008) and Haugom et al. (2013). It
shows the average realized volatility such that

RV
(N)

t0,T
=

1

T

t0+T∑
t=t0

RVt, (13)

where N is the number of samples per day from equation 2, and T is the
number of days. The plot is obtained by varying N. The highest number of
N where the plot is flat, is the point where the RV measure is approximately
free of microstructure bias (Andersen et al., 2000).

3.2 Implied Volatility

Soon after the introduction of the option pricing model of Black and Scholes
(1973), and Merton (1973)3 it was clear that the fomula could be reversed
to calculate implied volatility (Latane and Rendleman, 1976). All of the
input variables in the BSM model, except for volatility, are observable in the
market. This makes it possible to calculate the volatility based on the current
option price, current forward price, the strike price, the time to maturity and
the risk free interest rate. Such a method has been used to create several
implied volatility indices, most notably the VIX from the Chicago Board
Options Exchange (CBOE) in 1993. However, the assumptions inherent in

3Hereafter called the BSM model.
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the BSM model are dubious and lately different methods of finding implied
volatility have been presented.

In 2003 the CBOE decided to change the method for calculating the
VIX. The previous model, based on the BSM-IV, was replaced by model-free
implied volatility developed by Britten-Jones and Neuberger (2000) for the
VIX on the S&P500 stock index (CBOE, 2003).4 This method makes the
implied volatility independent of any option price model and calculates IV
from the full set of available strikes for European puts and calls (Andersen
and Bondarenko, 2007). Jiang and Tian (2005) generalized the method to
include jumps and showed that model-free implied volatility subsumes all
information contained in BSM implied volatilities and that it gives a more
efficient forecast of future realized volatilities. Zhang et al. (2013) confirmed
this with Monte Carlo simulations.

Andersen and Bondarenko (2007) provide the first comparison of model-
free implied volatility and BSM implied volatility with a corridor implied
volatility. This method benefits from not truncating the tails of the distribu-
tion as the model-free approach does when there are few far out/in-the-money
options. They show that corridor implied volatility may be the best ”market-
based implied volatility measure for volatility prediction” and argue that this
is because it has a strong link to the underlying volatility process.

In light of these recent developments, the choice of implied volatility
model for our index then becomes a tradeoff between practicality and preci-
sion. Information content is indeed key, but our goal is to create a measure
that is readily understood by practitioners and which fits their current mod-
els. Therefore, we choose to use BSM implied volatilities. This choice is
supported by the fact that brokerages report BSM implied volatilities in-
stead of more complex models that incorporate factors such as jumps or
stochastic volatility.

3.2.1 Creating the implied volatility index

Options with different moneyness,5 but with the same maturity will in prac-
tice give different implied volatilities. This runs contrary to the expectation
of volatility being independent of strike price. Without further discussion of

4The old BSM implied volatility method is still in use, but with the ticker VXO for the
S&P100 index.

5Moneyness = F0

K
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Figure 1: Illustration of volatility smile and its development throughout our
sample

the sample period, figure 1 shows this for different dates in our data. Two
factors should be highlighted; the concavity and the variability over time.

Firstly, we observe how the IV varies depending on the moneyness, it is
concave and we call this concavity the smile effect (Taylor, 2005; Alexander,
2008c). The explanation for this effect varies, but some suggest transaction
costs or traders including a risk premium for in/out-of-the-money options as
possible reasons (Peña et al., 1999; Taylor, 2005). Our index should mimic
the actual volatility and we therefore want to exclude the inherent risk premia
in volatility smiles. Hence, we use at-the-money (ATM) option prices.

Many methods exist to find or use ATM option prices when an exact ATM
option is not available and Taylor (2005) suggests that the most liquid option
nearest ATM is a natural choice. As liquidity in the Nordic power option
market is limited, we must use bid prices and therefore this method is not
feasible. An alternative is to use weighting as suggested by Siriopoulos and
Fassas (2009) and Ederington and Guan (2002). The IV for each day is then
computed from bid prices of the two nearest out-of-the-money put options
and the two nearest out-of-the-money call options. More options could be
used in the weighting, but Ederington and Guan (2002) showed that this is
not necessary. Hence, equation 14 describes our model for calculating the
implied volatility for a given date.
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IV =
1

M
(maIVa +mbIVb +mcIVc +mdIVd), (14)

where mi is the moneyness of option i, with volatility IVi and M is the sum
of moneyness for all four options. Option a and b are put options with m ≤ 1
while option c and d are call options with m ≥ 1. All IV’s are calculated
on the same day with the same time to maturity. Hence this weighting is
equal to the weighting in the traditional VIX methodology as described by
Fleming et al. (1995). When the method in equation 14 is used for options
in the front forward we get the 1pos implied volatility.

The second factor to notice in figure 1 is how the smile varies with time.
This is because the risk factors in the market changes over time. To in-
clude this in a time series we propose to create an index, similar to the
VIX, the IVIndex, with a constant time to maturity. To achieve this Taylor
(2005) suggests creating term structures. Instead we follow Martens and Zein
(2004) and adjust IV to the desired time horizon by using linear interpola-
tion between options of different maturities. Therefore, for two options with
maturities at T1 and T2 on day t, and with T1 < H < T2 we create an IV
measure with time horizon H from equation 15.

IVt,H = IVt,T1 +
H − T1
T2 − T1

(IVt,T2 − IVt,T1) (15)

This method of creating an IV-index is analogous to the previously men-
tioned original method for VIX on the S&P Index (Martens and Zein, 2004).6

For our index we combine IV1pos and IV2pos, therefore T1 and T2 will be the
maturity date of the 1pos and 2pos options at day t.

3.3 Forecasting volatility

In an effort to test if the IV-index adds predictive power to models of realized
volatility, we specify a Heterogeneous Autoregressive model, the HAR-RV
(Corsi, 2009). As shown by Fradkin (2007), the addition of implied volatility
to HAR models almost always improves forecasts. Therefore, comparing
several HAR models, with and without IV, is a suitable test for information
content and the usefulness of our IV-index.

6The VIX-methodology has changed to use model free volatility. Interested readers are
referred to page 388 in Taylor (2005).
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The Heterogeneous Market Hypothesis developed by Müller et al. (1993)
describes a world where motivations, actions and time-horizons differ among
traders. The result of this is that the traders react to different components
of volatility, a fact supported by empirical observations (Corsi, 2009). The
HAR-RV model builds on this idea and creates a cascading model that in-
cludes different components of volatility.

Compared to methods like GARCH, the HAR-model is in its infancy of
application, but empirical evidence point to robust replication of the stylized
facts of volatility. In out-of-sample forecasts, Corsi (2009) showed that the
HAR model outperforms short memory models7 and performs similarly to
an ARFIRMA(5,d,0) model, on USD/CHF, S&P500, and T-Bonds. Similar
results are found on Nord Pool Forwards when HAR-RV is compared to
FIGARCH and EWMA (Haugom et al., 2011b). For these reasons we prefer
the simple HAR model over complicated fractional integration models as it
presents an acceptable tradeoff between practicality and precision.

To specify the HAR-RV model we note the daily measure of volatility,
RV

(d)
t . Weekly realized volatility is defined as the average RV over the past

five observations:

RV
(w)
t =

1

5

(
RV

(d)
t +RV

(d)
t−1d + . . .+RV

(d)
t−4d

)
, (16)

and by extension, monthly realized volatility is the average over the past
22 days. We then get the HAR-RV model, where i represents the forecast
horizon.8

RV
(i)

t+1,t+i = β
(i)
0 + β

(i)
1 RV

(d)
t + β

(i)
2 RV

(w)
t + β

(i)
3 RV

(m)
t + εt+1 i ∈ [d, w,m]

(17)
This lag structure, (1, 5, 22), is equal to the one suggested by Corsi

(2009) in his original paper and there is evidence that flexible lag lengths
do not improve the forecasting abilities of the HAR model (Craioveanu and
Hillebrand, 2010).

Haugom et al. (2011a) show that exogenous variables can improve the
forecasting ability of the HAR-RV model on volatility of Forwards at Nord
Pool. They suggest adding time-to-maturity to account for the Samuelson

7AR(1) and AR(3).
8The betas are different for the different forecast horizons in equation 18, 19 and 20

also, but the notation is omitted for presentation purposes.

12



effect (Samuelson, 1965), a measure of volume, as evidence point to it affect-
ing volatility (e.g. Karpoff, 1987; Jones et al., 1994), and a dummy variable
(FQ) for days with return in the first quartile to account for the leverage
effect (Alexander, 2008b). Empirical studies, notably (French, 1980) and
Haugom et al. (2011a), have found volatility to be greater on Mondays than
on other weekdays. This effect is termed ’Monday effect’ and is assumed
to be caused by the fact that more information arrives over the weekend
than between two consecutive days. We therefore include the weekdays as
exogenous variables.9 This gives us the HAR-RV-EX model:10

RVt+1 = β0 + β1RV
(d)
t + β2RV

(w)
t + β3RV

(m)
t + β5Volt + β6TTMt

+β7FQt + β8MON + β9TUE + β10WED + β11THU + εt+1

(18)

Molnar et al. (2013) also apply the HAR model, but to the U.S. Oil Mar-
ket. They add both the oil volatility index as a proxy for implied volatility
and various exogenous variables and find that the HAR-RV model is signifi-
cantly improved when IV and EX-variables are included. To test if this is the
case with our IV-index we specify a HAR model with IV (HAR-RV-IV) in
equation 19 and a model with both IV and EX (HAR-RV-IV-EX) in equation
20.

RVt+1 = β0 + β1RV
(d)
t + β2RV

(w)
t + β3RV

(m)
t + β4IVt + εt+1 (19)

RVt+1 = β0 + β1RV
(d)
t + β2RV

(w)
t + β3RV

(m)
t + β4IVt + β5Volt

+β6TTMt + β7FQt + β8MON + β9TUE + β10WED + β11THU + εt+1

(20)

We deviate from Haugom et al. (2011a) in that we also include RV
(m)
t

in our forecasts, whereas they only include RV
(d)
t and RV

(w)
t in their basic

HAR-RV model. Furthermore, we model the average realized volatility over

9The weekdays variables are not included for weekly and monthly forecasts.
10Other exogenous variables were considered but found irrelevant. The slope of the

forward curve does not have any meaningful interpretation in the power market due to
non-storability. Liquidity measures were also tested. The effective tick method (Goyenko
et al., 2009) gave spurious results and the roll estimator (Roll, 1984) could not be used
since the autocorrelation in price changes during the day was positive on more than 50%
of the days.
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the next week and month by estimating separate coefficients for the weekly
and monthly models respectively. With these specifications we will be able
to gauge the benefits of adding our IV measure to forecasting models.

4 Data

Data for implied volatility is collected from ICAP Energy, a commodity bro-
kerage firm that provides OTC brokering and advisory services. It is pre-
sented to us in a refined form by Fred Espen Benth of the Center of Math-
ematics for Applications, University of Oslo. The raw data contains daily
prices of options on forwards with different strikes for quarterly and yearly
contracts. We use quarterly contracts in our study.11

The liquidity of options on forwards is low and it is possible to argue that
there are too few trades in the market to successfully study IV. However,
ICAP provides the bid and ask prices from the market makers and market
participants trust these prices not to be affected by orders below 10 MW.
Implied volatilities are calculated by ICAP from the BSM model and we use
closing bid prices in our analysis. We create IVIndex with a constant time
horizon from the 1pos and the 2pos contracts. These contracts have time to
maturity T1 and T2 respectively, and the choice of H is then naturally the
average number of working days in one quarter, 66.

Raw data containing continuously recorded ticker prices of forwards for
trades performed in the opening hours of Nasdaq OMX is obtained from
Montel. Equations 2 and 3 are used to calculate RVIntra and RVDaily,

12 and
equations 2 through 12 are used to calculate RV24h. Days where trades are
recorded outside of the opening hours are few and the return is treated as
overnight return.13

Our estimate of realized volatility is based on prices from the nearest

11Previous studies find that options with longer time horizons provide the best predictive
power for IV against RV (Taylor, 2005). However, we consider the yearly forward contracts
to have too low liquidity to be efficiently studied using realized volatility.

12For RVDaily, N in equation 2 is 1 and the return is the closing price.
13Special circumstances and late clearing explain these examples. The dates include:

March 24, 2006, April 25, 2006, May 2, 2006, May 29, 2006, June 23, 2006, July 27, 2006,
August 23, 2006, October 30, 2006, December 4, 2006, January 2, 2007, June 29, 2007,
August 28, 2007, November 22, 2007, February 28, 2008, March 6, 2008, June 10, 2008,
August 28, 2008, December 3, 2008, December 5, 2008, December 10, 2008, March 6, 2009,
May 12, 2009, May 14, 2009, July 1, 2009, and December 28, 2009.
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Figure 2: Development of volume per day throughouht the sample

Figure 3: Volatility signature plot

quarter, the 1pos contract. In accordance with Martens and Zein (2004) we
roll over to the second nearest contract when the volume of the 2pos contract
surpasses that of the 1pos contract. This happens as the contract is close
to maturity, and therefore we check for occurrences 10 working days before
delivery. At contract rollover we record return as the change in price for the
new contract.

Figure 2 shows the volume per day in our sample, an exogenous variable
in equations 18 and 20. On average 823 MW is traded each day, distributed
on 204 trades per day, a trade every 2 min and 11 seconds. At this level of
liquidity the impact of microstructure noise is low. This can be observed in
the volatility signature plot in figure 3 on page 15. The expected parabolic
decrease in volatility for longer tick intervals is not observed and the plot
fails to give a clear indication of the best sampling frequency.

Lien et al. (2012) chose a 30 minute sampling interval when studying the
electricity forward market. We see from the volatility signature plot that the
volatility in our data is relatively stable at this frequency. We therefore use
a sampling frequency of 30 minutes in our study.
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Figure 4: Average number of trades per half hour

Figure 5: Days with return in the first quartile

The choice of this interval in realized volatility calculations has ramifi-
cations for what days that should be removed from our sample. With 30
minute intervals, we must sample 15 ticks per day. Figure 4 shows that the
trades are not evenly distributed during the day. Hence, to avoid imposing
a negative bias in our measurements, we remove days with fewer than 20
trades. Following these adjustments, our sample starts October 10, 2005 and
ends September 14, 2011, for a total of 1357 daily observations. Nine outliers
or days with low liquidity are removed14 which leaves us with 1348 days for
the empirical study.

Lastly we present the exogenous variable, FQ in figure 5. It shows days
with returns in the first quartile. There are clear signs of clustering, as the
bars are not evenly distributed throughout the samle. This makes it relevant
to include in the HAR model.

14The dates include: December 23, 2005, December 28-30, 2005, June 23, 2006, March
26, 2007, January 2, 2008, June 19, 2008, July 23, 2009.
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5 Results

5.1 Descriptive statistics

In figure 6 on page 18 we graph the annualized daily observations of realized
volatilities under the different sampling schemes. In general we find that
volatility varies significantly. Days with volatility of up to 200% illustrate
significant uncertainty in the market. Such extreme events are to be expected
in power markets where disruption at one large facility will induce large
uncertainties about future prices.

In order to find an appropriate measure of realized volatility, we select
the sampling scheme that best captures the underlying volatility dynamic
without introducing too much noise. Comparing figure 6a with 6b and 6c we
observe that the daily sampling frequency gives a noisy measure of volatility.
We find this to be a compelling reason not to use RVDaily in the rest of this
study. Furthermore, RV24H is on average larger compared to the intradaily
measure. We attribute this to the fact that RV24H captures the full day and
therefore contains more information than RVIntra. This becomes clear when
figures 6b and 6c are compared. These factors indicate that the full day
measure from high frequency data best captures the true volatility dynamics
in accordance with Hansen and Lunde (2005) and Anderesen and Bollerslev
(1998). Hence, whenever we refer to realized volatility, RV24H is the sampling
method we use.

Table 1 on page 19 contains descriptive statistics for our IV and RV
measures. Realized volatility is on average lower than the average implied
volatility. IVIndex is on average 42%, whereas we find an average realized
volatility of 37% for the daily values. In general this suggest that there is
a risk premium in the option contract prices and the result is similar to
Ederington and Guan’s findings for S&P 500 futures (2002).

Figure 7 reports the IV-index over the full sample. Note that it is sus-
ceptible to shocks as new information arrives in the market. This should
indicate that it contains information relevant for forecasts.

5.2 Volatility forecasts

5.2.1 In-Sample estimates

In this section we present the in-sample results of the HAR-RV model and
equation 17, 18, 19, and 20. The results are found in table 2, 3 and 4.

17



(a) Daily observations of RVDaily

(b) Daily observations of RVIntra

(c) Daily observations of RV24h

Figure 6: Daily observations for realized volatility
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Table 1: Descriptive statistics for implied and realized volatility

IV RV24H

IVIndex Daily

Mean 0.4178 0.3729
Median 0.4115 0.3187
Maximum 0.6734 2.0341
Minimum 0.2791 0.1009
Std. Dev. 0.0759 0.2016
Skewness 0.4449 2.1030
Kurtosis 2.6689 11.1835

AC(1) 0.9993 0.8929
AC(5) 0.9945 0.8562
AC(10) 0.9899 0.7878
AC(30) 0.9100 0.7457

Observations 1348 1348

Figure 7: IVIndex
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Firstly, from the results it is clear that all coefficients of past realized
volatility in the HAR-RV model are significant. This is not surprising, but
traders in the Nordic power forward market seemingly put more weight on
the previous week’s volatility than the previous day’s volatility.15 When the
forecasting horizon increases, more weight is on the past month’s volatility.
Also, across the models and for all time horizons RV

(d)
t and RV

(w)
t remain

significant, suggesting their importance in forecasting.
Secondly we observe that the in-sample tests of the HAR models reveal

that the inclusion of IV, EX or both increases the explanatory power of the
models (adj. R2). This is true for all horizons. Furthermore, the results re-
veal that IV adds little explanatory power for the daily horizon, an increase
of 0.75 percentage points in adj. R2, but for the weekly and monthly hori-
zons it increase adj. R2 by 2.3 and 4.1 percentage points respectively. The
opposite is true for the addition of exogenous variables. We find that exoge-
nous variables increases the adj. R2 with 8.6 percentage points on the daily
horizon but only an increase of 3.5 and 2.2 percentage points for the weekly
and monthly models respectively. However, for all horizons, the HAR-RV-
IV-EX-model exhibits the best fit. In sum we find that the weekly models
have have higher adj. R2 than the daily and monthly models, supporting the
results found in (Molnar et al., 2013). The inclusion of IV is important for
longer horizons, which is expected since the IV index measures the expecta-
tion of volatility over the next quarter. The exogenous variables are more
important for the shorter horizons.

In the HAR-RV-IV and HAR-RV-IV-EX models our implied volatility
index has a significant impact on future realized volatility at either 1% or 5%
level. This is expected as implied volatility measures the markets expectation
for volatility over a given horizon. We find the estimated coefficient is larger
for longer horizons. However, the inclusion of IV seems to negate the need
for the monthly realized volatility variable, RV

(m)
t . This finding is of some

importance.16 It shows that the IVIndex does a better job of predicting the
long term component of volatility compared to the past month’s volatility.
This is true for all forecast horizons tested and with or without the exogenous

15This was also found by Haugom et al. (2011a).
16A heuristic for multicolllinearity is that if the square of the correlation between two

variables is higher than the R2 of the regression, then multicollinearity is in effect. In

our sample the average realized volatility for the past month, RV
(m)
t , and IVIndex are

correlated with ρ = 0.839, indicating multicollinearity in the regression. Our results

indicate that IV should be chosen over RV
(m)
t .
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variables.
Looking at the exogenous variables in both the HAR-RV-EX and HAR-

RV-IV-EX models we find that there is a clear and positive relationship be-
tween volume and volatility (β̂6−Volt > 0) even at 1% significance level. How-
ever, as expected, this effect decreases as the forecasting horizon increases;
it starts at 0.6531 and 0.6471 for daily horizon and is reduced to 0.2548 and
0.2475 for monthly horizon in the HAR-RV-EX and HAR-RV-IV-EX models
respectively.

Large negative returns increase the realized volatility of the following day
(β̂7−FQt > 0) in both daily and weekly forecasts. This confirms the findings
of Haugom et al. (2011a) which found a leverage effect for the Nordic power
forward market. The effect of returns in the first quartile on the following
month’s forecast is however not significant. This indicates that the leverage
effect is only observable in the short run.

No clear Samuelson effect (Samuelson, 1965) is found for any of the hori-
zons. This should not be surprising given that we cannot find a clear re-
lationship between volatility and time to maturity when they are graphed
together. Similar to Haugom et al. (2011a) we find evidence of a Monday
effect. β̂8−Mon > 0 and its effect is significant at the 1% level. We can also
observe a higher volatility on Wednesdays at 10% significance level. This is
probably due to the fact that the forward contracts are settled on Wednes-
days.

The in-sample results indicate that the inclusion of IV does indeed im-
prove the forecasting power of the HAR model, albeit to a lesser extent than
the inclusion of exogenous variables. We now move to formally test this
out-of-sample.

5.2.2 Out-of-Sample Tests

The purpose of out-of-sample testing is to compare the performance of the
models when the actual values are not known in advance. This form of
testing is more realistic than in-sample estimation, as it better captures the
information available at the time the forecast is being made. The choice of
sample size may affect the results substantially. A large sample will make
the model robust, but at the same time the model will be less sensitive to
regime changes.

In table 5 we report the mean squared error (MSE) of different sized
rolling-windows. Based on this test, the three year and four year window
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Table 5: Test of mean squared error in out-of-sample forecast of daily realized
volatility from different window sizes. * indicates the best performing model.

Window Size HAR-RV HAR-RV-IV

250 0.0200 0.0198
500 0.0194 0.0193
750* 0.0135 0.0132
1000* 0.0135 0.0132

sizes perform the best. In the choice between the two, we choose the smaller
window, the 750-day window. This preserves a higher degree of reactiveness
to regime changes and gives 250 more out-of-sample forecasts compared to
using a sample size of 1000 days. Therefore, for the out-of-sample tests we
construct daily predictions for all models at the different time horizons using
a 750-day rolling window. In table 6 we present the mean average error
(MAE), the MSE and the root mean squared error (RMSE) for the models
out-of-sample.

The conclusions that can be drawn from the error measures in table 6 are
similar to our in-sample findings. For the daily time horizons the addition
of IV to the HAR-RV model does improve the out-of-sample performance,
but to a much lesser extent than for the longer forecasting horizons. Taking
MAE as an example, the HAR-RV model improves from 0.0813 to 0.0795 for
daily forecasts, a 2.2% improvement, when the HAR-RV-IV model is used.
This compares to an improvement of 6.8%, from 0.0684 to 0.0638, for the
monthly forecasts.

We find that the largest improvement in out-of-sample performance for
daily forecasts comes with the inclusion of the exogenous variables. However,
for all error measures, except MAE on daily forecasts, we find that the HAR-
RV-EX-IV model produces the best forecast. This is consistent with our
findings in-sample and it shows that the IV-index contains information that
improves forecasts of volatility.

When the out-of-sample tests are compared to a similar model on the
oil-market we find that IV from electricity options improves a HAR model
more than IV on WTI futures (Molnar et al., 2013). Comparing the out-of-
sample improvements in MAE and MSE of Molnar et al. (2013) HAR-RV
and HAR-RV-IV with our out-of-sample MSE and MAE improvements, we
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Table 7: Out-of-sample model evaluation from the Mincer and Zarnowitz
(1969) regression using a 750 day rolling window. Coefficients close to one
indicates the best performing model.

Daily Weekly Monthly

HAR-RV vs. HAR-RV-IV
β0−Intercept 0.0152 0.0206 0.0549
β1−HAR−RV −0.2044 −0.1996 −0.7655
β2−HAR−RV−IV 1.1482 1.1151 1.5403

HAR-RV-EX vs. HAR-RV-IV-EX
β0−Intercept 0.0324 0.0273 0.0536
β1−HAR−RV−EX 0.2071 0.0104 −0.4052
β2−HAR−RV−IV−EX 0.7076 0.9018 1.1961

find that IV improves the HAR model more than in the oil market. The
same effect is found in a comparison of HAR-RV-EX and HAR-RV-IV-EX.
Hence, this indicates that IV in the Nordic power market is more important
for forecasting volatility than IV on WTI futures is for forecasting volatility
in the oil market.

Lastly we evaluate the predictive performance of the different models
against each other using the regression shown in equation 21 as suggested by
Mincer and Zarnowitz (1969). The results are shown in table 7.

RVt+1 = α + β1Model1t + β2Model2t + εt+1 (21)

The Mincer-Zarnowitz regressions confirm that the models with implied
volatility perform better than the those without our IVIndex. This is true
for all forecasting horizons and it strengthens our conclusion of information
content in the IV-index.

6 Conclusion

With the deregulation of the Nordic power market, risk management became
more important. In the ensuing years, several studies have evaluated different
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forecasting methods for volatility, but none of these papers have made use
of implied volatility from options. This is the first paper to calculate an
implied volatility index for forwards on the Nordic Power Market and to test
its predictive power.

First, based on well-known theories and methods, we construct an IVIndex
from a unique dataset on option prices. This index is included in a HAR
model as described by Corsi (2009) along with other exogenous variables.

Our results show that implied volatility for all models and forecasting
horizons has a significant impact on future realized volatility. Furthermore,
we show that the IVIndex does a better job of predicting the long term com-
ponent of volatility compared to the past month’s volatility. This is true for
all forecast horizons tested and with or without the exogenous variables.

Our results confirm those of Haugom et al. (2011a) in that exogenous
variables improve the forecasting ability of the HAR model on forwards at the
Nord Pool Exchange. This effect is reduced for longer forecasting horizons.
Our inclusion of IV improves the adjusted R2 for all horizons, but this effect
is larger for longer forecasting horizons. However, for all horizons, the HAR-
RV-IV-EX-model exhibits the highest adjusted R2. This is formally tested
with a rolling window out-of-sample.

The out-of-sample tests confirm the findings in-sample. IV improves the
predictions of the HAR model, and the improvement is larger for longer fore-
casting horizons. The Mincer and Zarnowitz (1969) regressions also reveal
that HAR-RV-IV and HAR-RV-IV-EX outperform HAR-RV and HAR-RV-
EX respectively. These findings are similar to previous studies on the elec-
tricity market (Haugom et al., 2011a) and on WTI futures (Molnar et al.,
2013). However, we find indications that the IV from options at the Nordic
power market improves the volatility forecasts more than IV from options on
WTI futures.

The IV-index improves forecasts of future volatility, and could be used
as input for pricing of other derivatives. Moreover, many power companies
hedge part of their production, which provides another use for our index.
Lastly, traders in the option market can use it to benchmark option prices
in a market with low liquidity.

Further research could focus on dividing the realized volatility into a
continuous and a jump component and test the model against traditional
time series forecasts. Several modifications to the construction of the IV-
index can also be made, where using a midway range of bid and ask prices
for IV’s or to calculate IV from a different model seem the most relevant.
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