
Identifying context to display correct data
for the "interactive document"

Osmund Chandra
Maheswaran

Master of Science in Engineering and ICT

Supervisor: Ole Ivar Sivertsen, IPM

Department of Engineering Design and Materials

Submission date: June 2013

Norwegian University of Science and Technology

Identifying context to display correct data for the

”Interactive Document”

Osmund Chandra Maheswaran

June 12th, 2013

2

Acknowledgements

While writing this thesis, I have had a lot of help, and I would not have been
able to write it without assistance of some key people.

I would like to extend a big ”Thank you!” to:

Geir Iversen, my contact person at Aker Solutions for helping define the
goals of my thesis, and for being very helpful and forthcoming regarding any
questions I have had.

Mozhgan Tavakolifard, my contact person at NTNU, for providing me with
tons of information on context-aware computing, introducing me to Case-Based
Reasoning and helping me structure my thesis.

Mahsa Mehrpour for the free Visual Studio/C#-consultations. I am sure
my work is in good hands if you continue it!

Ole Ivar Sivertsen, my supervisor, for being available whenever I have
needed it and for providing me with good and fair feedback while always point-
ing me in the right direction.

i

ii ACKNOWLEDGEMENTS

Abstract

English Abstract

In this master thesis report I have explored the topics of context-aware com-
puting, ontologies, semantic reasoning and case-based reasoning, and how we
can apply (and possibly combine) these technologies in an engineering context.
I have taken a look at two different formats for visualizing and representing
knowledge: Interactive Documents and Knowledge Briefs (K-Briefs). I have
investigated how we can combine the aforementioned technologies with these
knowledge representation formats. I have also developed a simple application,
the K-Brief Recommender, which is meant as a proof-of-concept application.
The goal was to prove that we can use Lucene, an open-source search engine,
to search in Knowledge Briefs that are stored in rich document formats. This
application has been successful, and we can now use this search engine as a base-
line for a potential case-based reasoning application, which might be combined
with context-aware applications in the future.

Norsk Sammendrag

I denne masteroppgaven har jeg i hovudsak utforsket noen utvalgte fagfelt, og
undersøkt hvordan disse fagfeltene kan bli brukt i en ingeniør+sammenheng.
Jeg har ogs̊a sett p̊a om disse teknologiene lar seg kombinere. Fagfeltene det er
snakk om er kontekst-sensitive applikasjoner, ontologier, semantisk resonnering
og ”case-based reasoning” (CBR). Jeg har ogs̊a sett p̊a hvordan vi kan kombinere
de nevnte teknologiene med to forskjellige format for å visualisere/presentere

iii

iv ABSTRACT

kunnskap: Interaktive Dokumenter og Knowledge Briefs (K-Briefs). I tillegg
har jeg utviklet en simpel applikasjon, kalt ”K-Brief Recommender”, som har
som form̊al å bevise at der er mulig å bruke open-source (fritt tilgjengelige,
gratis) teknologier til å søke i ofte brukte dokumentformater. Behovet for å
bevise dette kommer av at K-Briefs er basert p̊a slike dokumentformater, og
det er nødvendig å kunne søke i disse. Hvis vi i tillegg kan oppn̊a dette ved
bruk av open-source teknologier, åpner det for mange spennende muligheter.
Applikasjonen har fungert som ønsket, noe som betyr at vi kan bruke den som
en basis for en potensiell CBR-implementasjon. Denne CBR-implementasjonen
kan potensielt bli videreutviklet slik at den lar seg kombinere med kontest-
sensitiv programvare.

Contents

Acknowledgements i

Abstract iii

1 Introduction 1
1.1 Reader’s Guide . 1
1.2 Knowledge Based Engineering . 2
1.3 AkerSolutions . 3
1.4 KBeDesign . 3
1.5 AML - Adaptive Modeling Language 3
1.6 Applications of Knowledge Based Engineering 4
1.7 LinkedDesign . 4

2 Problem Description 7
2.1 Knowledge Visualization in Aker Solutions 7
2.2 Context-sensitive help . 8

3 Context-Aware Computing 9
3.1 Introduction . 9
3.2 Definition of ”Context” in Computer Science 11

3.2.1 Definition . 11
3.2.2 Context Categories . 12

3.3 Shared Contexts . 14
3.4 Example: Applying the Definition 15
3.5 A comment on the Definition of Context from [3] 17
3.6 State of the art . 18

3.6.1 Context Models . 18

v

vi CONTENTS

3.6.2 Existing Applications of Context-Aware Computing . . . 19
3.6.3 Discussion . 21

4 How can we visualize knowledge? 23
4.1 The Interactive Document (Node Example) 23

4.1.1 Implementation . 27
4.1.2 Prototype . 27
4.1.3 Alternative interpretation of the Interactive Document . . 27

4.2 Knowledge Briefs . 28
4.2.1 Process Template . 29
4.2.2 Technical Knowledge Template 31
4.2.3 Example K-Brief . 34
4.2.4 Implementation . 35

4.3 Addition of Context-Aware Elements 35
4.3.1 Interactive Documents . 36
4.3.2 K-Briefs . 40

5 Comparison: Interactive Documents and K-briefs 41
5.1 Value Added from the Interactive Document 41
5.2 Value Added from K-Briefs . 42
5.3 User-friendliness . 43
5.4 Implementation . 43
5.5 Conclusion . 44

6 Context Structuring and Modeling 47
6.1 Ontology Crash Course . 47

6.1.1 The Basics . 47
6.1.2 Web Ontology Language (OWL) 49

6.2 Ontology Models . 50
6.2.1 Example Ontology-based Context Models 53
6.2.2 Context-Driven Information Access in

Aker Solutions . 56
6.3 Identifying Context . 58

7 Information Location and Mapping 59
7.1 Semantic Reasoning . 59

7.1.1 What is semantic reasoning? 59
7.1.2 Example Application: CONON 61
7.1.3 Performance (CONON) 64

CONTENTS vii

7.2 Aker Solutions Use Case . 66
7.2.1 Architecture . 66
7.2.2 LEAP Architecture . 67

7.3 Interactive Document Data Sources 68
7.3.1 Node Classification . 68
7.3.2 Calculations . 69
7.3.3 Node- and beam attributes 69
7.3.4 Rules . 69
7.3.5 Source Code . 70
7.3.6 AML vs PDMS . 70

8 Case-Based Reasoning 71
8.1 Introduction . 71
8.2 The CBR-Cycle . 73
8.3 Case Representation . 76
8.4 Similarity Measures (Retrieval Phase) 77

8.4.1 Nearest Neighbor Retrieval 78
8.4.2 Inductive Approaches . 78
8.4.3 Knowledge Guided Approaches 79
8.4.4 Validated Retrieval . 79

8.5 When should CBR be used? . 80
8.6 Why use CBR? . 81
8.7 State of the Art . 83

8.7.1 Existing CBR-applications 83
8.8 How does CBR apply to Aker Solutions and

KBeDesign? . 83
8.9 Case Representation Using K-Briefs 84

9 Related Work 87

10 Prototypes 89
10.1 Interactive Document UI Prototype 89
10.2 K-Brief Retriever . 89

10.2.1 Lucene.Net . 90
10.2.2 Tika . 90
10.2.3 IKVM . 90
10.2.4 How the application works 91
10.2.5 Alternative technologies for future research 92
10.2.6 Comparison Between Baseline and existing CBR systems 93

viii CONTENTS

10.2.7 How does this relate to context-aware computing and/or
CBR? . 93

11 Discussion 95
11.1 KBE and Context-Aware Computing 95
11.2 Knowledge Visualization and Representation 96
11.3 CBR . 97
11.4 K-Brief Recommender . 98

12 Results and Conclusion 99

A The Interactive Document 103
A.1 Tab 1 - General . 104
A.2 Tab 2 - Calculations . 106
A.3 Tab 3 - Node Class . 112
A.4 Tab 4 - Source Code . 114
A.5 Tab 5 - Members . 116
A.6 Tab 6 - Dimensions . 118
A.7 Project Documentation . 123

B Example K-Briefs 125

Chapter 1

Introduction

1.1 Reader’s Guide

In this master thesis report, I have originally been given the task of investigat-
ing how one can adapt a concept called the Interactive Document to the LEAP
architecture, a software architecture important to LinkedDesign, an ongoing EU
research project that Aker Solutions is involved in. However, while writing this
thesis, research on the Interactive Document concept has ceased in Aker Solu-
tions and the focus shifted towards another method of displaying knowledge,
namely Knowledge Briefs. See chapter 4.1 in LinkedDesign D9.2 for more infor-
mation about this [10]. There has also been very little documentation available
to me regarding the LEAP-architecture. Simple, high-level software architec-
ture figures are available, but there are little details to be found. This is in large
part due to the fact that many elements of the LEAP architecture, at least the
parts relevant to me do not exist yet. At the moment, key parts of the LEAP-
architecture only exists in theory. It is therefore very difficult for me to write a
complete thesis on something that, presently, only is a principal sketch. Due to
these circumstances, I have changed the scope of this report under the guidance
of my supervisors and contact persons. Although I will touch upon the subjects
of the Interactive Document and the LEAP-architecture, this topic will not be
the main focus of this report. In stead, I have focused on other technologies
that may be relevant for both Aker Solutions and my immediate academic cir-

1

2 CHAPTER 1. INTRODUCTION

cles: context-aware computing, ontologies, semantic reasoning and case-based
reasoning, and how we can potentially apply these technologies. I have pur-
posely taken a rather high-level approach when describing these technologies,
focusing mostly on the principles, ideas and methodologies behind them, rather
than going into a detailed description of how they can be implemented.

The chapters are ordered in the following way: In chapter one, I will describe
important topics and stakeholders. In chapter two, I describe the problem that
sets the stage for everything I am discussing in this thesis. Chapter three deals
with the domain of context-aware computing, which will be important in most of
the later chapters. In chapter four, I discuss two ways of visualizing engineering
knowledge. This is a part of the solution to the problem discussed in chapter two.
In chapter five, I compare these two knowledge visualization methods to each
other and discuss pros and cons. Chapter six deals with how we can structure
and model context information. In chapter seven, I discuss how the information
that is used by the knowledge visualization methods in chapter four is stored.
In chapter eight, I discuss a completely new topic, case-based reasoning, and
how we can use this technology. In chapter nine I explain prototypes that I
have developed to test out certain technologies or principles. Finally, I discuss
my findings.

1.2 Knowledge Based Engineering

When reading this report, it is important to know about a methodology called
Knowledge Based Engineering, or just KBE for short. The main point of this
methodology is to reuse knowledge that already exists when engineering new
instances of common engineering products, effectively reducing the amount of
routine calculations an engineer has to perform by a significant amount. This
method can be implemented into computer software, greatly increasing the effi-
ciency of CAD-applications and similar pieces of software that are designed to
make an engineer’s day-to-day life a little easier. The application of KBE in
CAD software simply reduces the amount of models that the user of a given CAD
program has to draw, since the software can draw them for him/her. With the
help of KBE, the software knows how certain models fit together by referencing
a set of rules, and it can figure out how complicated models are put together.
These rules are made by gathering knowledge from experienced engineers, who
have performed the same designs many times before, before being implemented

1.3. AKERSOLUTIONS 3

into the software. This means that, given a certain minimum of user input,
KBE software can create relatively complex models in a short amount of time,
instead of the user having to model everything manually.

1.3 AkerSolutions

Aker Solutions is a leading global oil services company that provides engineering
services, technologies, product solutions and field-life solutions for the oil and
gas industry world-wide. The company’s knowledge and technologies span from
reservoir engineering to production and is applicable throughout the life of an
oil field.

1.4 KBeDesign

KBeDesign is a department in Aker Solutions’ Engineering business area that de-
livers automated solutions for engineering and reuse of proven product designs.
The KBeDesign team creates software to automate routine design activities that
can be programmed in a KBE (knowledge-based engineering) system based on
the governing standards, best practices and design rules for the designed prod-
uct.

1.5 AML - Adaptive Modeling Language

AML is an acronym for “Adaptive Modeling Language”, and is the programming
language that KBeDesign has used to write its software. It is an object oriented
language based on LISP that also includes features for drawing 3D-models. Sim-
ply explained, AML has several already defined classes that represent geometric
shapes, which the user can call upon or extend at will. With AML, a user can
relatively quickly create 3D-models just by writing a piece of code and running
it.

4 CHAPTER 1. INTRODUCTION

1.6 Applications of Knowledge Based Engineer-
ing

Aker Solutions engineers a range of products related to oil and gas production.
There are several stages to engineering such products; the usual starting point is
to conduct some kind of study, followed by a process called front-end engineering
and design (FEED). FEED is usually understood as the conceptual planning,
programming/schematic design and early project planning that is done in the
early stages of projects. It is the process of conceptual development of projects
in processing industries such as the oil and gas industry. In practical terms, this
often means creating a CAD model of an oil platform (or a module belonging
to an oil platform). KBE is especially effective in this phase of a project, since
engineers can produce drawings, CAD-models and figures, based on different
concepts and ideas, in a relatively short amount of time. Of course, the available
applications of knowledge based engineering aren’t just FEEDs for the oil and
gas industry. KBE can in theory be used in any context where knowledge reuse
is helpful, so that engineers don’t have to reinvent the wheel for every product
they make, or perform the same routine calculations over and over again.

1.7 LinkedDesign

LinkedDesign is an EU research project aimed at boosting the European pro-
duction capabilities. One of the main tools for accomplishing this is developing
new collaboration tools for European industries.

From the LinkedDesign website:

LinkedDesign will boost the productivity of today‘s engineers by providing an
integrated, holistic view on data, persons and processes across the full product
lifecycle as a vital resource for the outstanding competitive design of novel prod-
ucts and manufacturing processes.

This report is somewhat related to LinkedDesign Work Package 9, Deliver-
able 9.1, which has to do with transparency and traceability in design automa-
tion. Here is an excerpt from the report describing LinkedDesign Deliverable
9.1:

1.7. LINKEDDESIGN 5

The use of Knowledge Based Engineering in Aker Solutions requires close col-
laboration between engineers in different domains, handling data in various data
formats and a well-structured knowledge acquisition technique followed by trans-
parency and traceability in design automation. The KBeDesign software is used
by engineers with different roles in a product’s lifecycle. KBeDesign’s goal is
to visualize product knowledge and lifecycle information in an easily accessible
way, enhance data integration and improve collaboration between the engineers
involved.

The key phrase here is “transparency and traceability in design automation”.
Here, transparency refers to the ability to see how something is made. It refers
to what happens in a process. Traceability refers to the ability to see where
something comes from. It refers to why something is what it is. Why we want
to improve traceability and transparency is explained in the next chapter.

6 CHAPTER 1. INTRODUCTION

Chapter 2

Problem Description

2.1 Knowledge Visualization in Aker Solutions

Picture a structural engineer, making use of KBE software in the future. He
is not an expert on the software, nor did he assist in developing it, he is just
a normal user. He does not necessarily have much insight in computer science.
He has just made some changes to a 3D model, using KBeDesign’s KBE-tool
to automatically engineer and design new beams and structural nodes. How
can he be confident that the new model of the construction is usable? Can he
be sure the numbers are accurate? Is the solution presented to him really the
best available option? What about the rules and code behind it all? And is the
software following the proper rules and procedures for this kind of work?

Today’s KBE-tools (used and developed by KBeDesign) provide the user with
a 3D model, but not enough information about the rules and standards that
determined the model’s design. If an engineer does not understand, or does
not agree on some aspects of the design, it might be a complicated and time-
consuming process to find information that justifies the design.

When an engineer is using software based on knowledge based engineering,
he/she will have drawings and models automatically generated for him/her.
However, the process behind the model generation isn’t necessarily completely
clear. The data that are used or generated in this process are not necessarily

7

8 CHAPTER 2. PROBLEM DESCRIPTION

self-explaining either.

Because of the problems mentioned above, ways to display and visualize knowl-
edge and rules used in KBE are wanted. In addition to possibly finding ways to
improve the user-friendliness of already existing KBE software, issues concern-
ing effective collaboration can also be addressed. In this thesis I will explore
ways to better communicate and visualize knowledge contained in KBE software
to the user.

To simplify things, we can break the problem down into three subproblems:

• How can we visualize knowledge?

• What knowledge should we visualize, and how do we structure the infor-
mation?

• Where do we find the information we want, and how do we map it to our
desired medium?

2.2 Context-sensitive help

Context-sensitive help is a kind of help that is obtained at a specific point in the
state of a piece of software, providing help for the situation that is associated
with the state. In other words, you get help where you are, when you are
there.

Context-sensitive help can be implemented using tooltips, links to topics in a
help file, or clicking a ”help” button in an application. Another example is to
change the pointer to a question mark, and then, after the user clicks in the
appropriate place on the screen, the help appears.

This thesis aims to explore how we can provide the best kind of context-sensitive
help to users of KBE software. I will discuss different ways to accomplish this,
as well as explore the concept of context within computer science further.

Chapter 3

Context-Aware
Computing

The first technological topic I will discuss is the field of context-aware comput-
ing. Earlier I mentioned context-sensitive help. We might have an idea of how
context-sensitive help, as most of us has experienced in while using a computer.
But what exactly is context? How can we use context to improve the user
experience?

3.1 Introduction

The field of Context Aware Computing has existed in the academic world since
around 1994, when it was introduced by Schilit [1]. In Schilit’s article ”Context-
aware Computing applications”, he gives the following definition of context-
aware systems:

Context-aware systems are able to adapt their operations to the current con-
text without explicit user intervention and thus aim at increasing usability and
effectiveness by taking environmental context into account. [1]

Note that by ”environmental context” we are not necessarily constraining our-
selves to the physical environment, but also social, business and technical envi-

9

10 CHAPTER 3. CONTEXT-AWARE COMPUTING

ronments. It is these, often more abstract environments, that will be the most
important to this thesis.

In [2], some important general applications of context-aware compiting are men-
tioned. Using context, we can:

• a) Adapt Interfaces

• b) Tailor the set of application-relevant data

• c) Increase the precision of information retrieval

• d) Discover services

• e) Make user-interaction implicit

• f) Build smart environments

Corresponding to the items above, we also have some examples to how these
principles could be implemented (also taken from [2]). Imagine that we are in
a museum setting. Visitors are given a portable device, that reacts to changes
in context by:

• a) Adapting the user interface to the different abilities of the visitor – from
low-sighted people to very young children

• b) Providing different information contents based on the different inter-
ests/profiles of the visitor (geology, paleontology, scholar, journalist etc.),
and on the room he/she is currently in

• c) Learning, from the previous choices performed by the visitor, what
information he/she is going to be interested in next

• d) Providing the visitor with appropriate services – to purchase the ticket
for a temporary exhibition, or to reserve a seat for the next in-door show
on the life of dinosaurs

• e) Deriving location information from sensors which monitor the user en-
vironment

• f) Provide active features within the various areas of the museum, which
alert visitors with hints and stimuli on what is going on in each particular
ambient.

3.2. DEFINITION OF ”CONTEXT” IN COMPUTER SCIENCE 11

Figure 3.1: A basic example of the architecture of a context-aware application
[2]

3.2 Definition of ”Context” in Computer Sci-
ence

3.2.1 Definition

In everyday speech, the word ”context” can be relatively loosely defined, and
it is usually rather intuitive to understand what the given context of a situa-
tion is. But when it comes to computer science, we need to be a little more
specific.

So what do we mean by ”context”? Ever since the term context aware computing
was coined in 1994, this has been a matter of discussion. Many attempts have
been made to define the term ”context” as precisely as possible, but in the
end, most of them fall short. Most definitions up until now have either been
incomplete or too general.

12 CHAPTER 3. CONTEXT-AWARE COMPUTING

In this paper, I will use the definition proposed in [3]: ”Context is any informa-
tion that can be used to characterize the situation of an entity. Elements for the
description of this context information fall into five categories: individuality,
activity, location, time and relations.”

Figure 3.2: Context Categories [3]

3.2.2 Context Categories

As mentioned above, context information can be divided into several categories:
Individuality, Time, Location, Activity and Relations [3] (see Figure 3.2). Using
these categories, it is easier for us to more accurately describe which information
that makes up a given context.

3.2. DEFINITION OF ”CONTEXT” IN COMPUTER SCIENCE 13

Individuality
Context information in the individuality category is information about the indi-
vidual entity (or group of entities) that we are working with. It can be virtually
any kind of entity: natural entities (entities that represent naturally occuring
phenomena), human entities (information that covers the characteristics of hu-
man beings, like user profiles), artificial entities (buildings, machines, software,
computers, documents) [3].

Time Context
Time context information is information like the current time, time zones and
dates. In this category we can also put time intervals. Time intervals are useful
for describing recurring events and user patterns. If we persistently store context
information, information in the Time category can tell us a lot about usage
habits, and we might even be able to predict future usage patterns [3].

Location Context
Location context information is composed of data that describes an entity’s
physical or virtual location. A physical location can be described using coordi-
nates, and a virtual location can be described by an IP-address, for example.
Location context data also encompasses other spatial information like speed
and orientation. Personally, unlike Zimmermann, Lorentz and Oppermann in
[3], I would have called this context category ”Space” rather than ”Location”.
This is because of these other types of spacial information (speed, orientation
etc.).

Location can be absolute or relative to something else. Models for physical
locations can be either quantitative (geometric, coordinates), qualitative (sym-
bolic, names of places, buildings or rooms) [3]. In some applications it might be
useful to combine both qualitative and quantitative location data to present a
fully detailed explanation of where an entity is. One can also use quantitative
information to determine qualitative information, and vice versa. For example,
given a set of coordinates, an application can determine that the entity in ques-
tion is inside a specific building which contains the given coordinates. And the
other way around: if we know which building we are in, and the application
knows the coordinates of this building, we can approximate our own physical
coordinates.

14 CHAPTER 3. CONTEXT-AWARE COMPUTING

Activity Context
In the Activity category of context, we can place information that is relevant
for the entity’s or entities’ tasks. We can ask ourselves: ”what does the entity
try to achieve, and how?”. Activity context information can be expressed as
explicit tasks, goals and actions [3]. In [3], we can also find a definition for the
term ”task” that can be useful: A task can be defined as a goal oriented activ-
ity expectation, expressed in a small, executable unit. Tasks include operation
sequences with a determined goal, to which a context aware system can adapt
the necessary functions or sequences of functions.

Considering how tasks can be grouped together, it is reasonable to structure
tasks into hierarchies, where high-level tasks are composed of sets of low-level
tasks. Activity context information can be represented by (domain specific)
task models that structure tasks into sub-task hierarchies, which is the most
advanced representation of user goals [3].

Relational Context
Relational context information capture the relations an entity has established
to other entities (persons, things, services, devices, information). Relations do
not need to be static - they may appear and disappear dynamically [3].

Since there are many possible types of relations between entities, it is helpful to
categorize relations by the type of entities involved. We can sort relations into
three categories: social, functional and compositional relations. Social relations
are social connections between two or more people. Functional relations mean
relations where entities make use of each other for a certain purpose. Composi-
tional relations are relations between a whole and its parts. The parts will cease
to exist if the containing object is destroyed [3].

3.3 Shared Contexts

Shared context emerge when two entities are combined and context information
overlaps. For two entities to communicate, they need to share the same time
and space. After that, actual commonalities are discovered. In [3], an example
of two people meeting on a bus is used. For the two people to actually create
any relations and discover commonalities, they have to at some time occupy the
same space (the bus) and in the same time (even though they are on the same

3.4. EXAMPLE: APPLYING THE DEFINITION 15

bus, it doesn’t help if one of the persons gets off the bus before the other person
gets on it).

Adjusting Shared Context
Two entities can adjust their shared context to achieve better understanding
and communication between each other. For example, a doctor can explain a
disease to a patient using language that is a little simpler than he would use if
talking to a colleague. If he explains the disease using reference material that
is known to both him and the patient, communication between the two will be
better. The patient will be more able to understand what is happening and
ask questions. This is all possible because the doctor adjusts his language to
facilitate better communication with his patient [3].

Exploiting Relations
It is nothing new that the more two people have in common, the more likely
they are to understand each other. This is also the case when discussing context.
The larger the shared context between two entities is, the easier it is for them
to communicate. This is called exploiting relations between entities [3].

The concept of exploiting relations is something that is inherently applicable in
computer science. The more information two communicating entities have in
common, the less effort they have to put into adjusting their context to each
other. Interoperability is an example of this. If two applications are created
using the same programming language (i.e. two java applications), it is usually
easy to integrate them with each other, because they literally speak the same
language. Here we can consider each application as an entity. If you want
to integrate some java code into your .NET application, however, you have to
make some adjustments. Here, we can also draw some immediate parallels to
ontologies and semantic web technologies: if two applications share the same
ontology, then naturally it is easier for them to work together. More on this
later.

3.4 Example: Applying the Definition

The point of defining context as precisely as possible is to break the context
down into smaller, concrete pieces of information that are far easier to handle.

16 CHAPTER 3. CONTEXT-AWARE COMPUTING

Let’s try to illustrate how we can use the definition of context from [3].

Peter is an engineer working in a big engineering company, which performs many
different projects for a range of different clients. Across the company, there is
a lot of information available, as well as a lot of competent people. But every
time Peter is assigned to work on a new project, it is not always easy to find
the information that he needs. Sometimes the information is too inaccurate or
irrelevant, and sometimes it is hard to find relevant information at all.

Lucky for Peter, this is all about to change for the better. His company has
finally finished a tune-up of the company’s CAD/CAE-systems, and added many
new context-aware features.

One day, Peter is working on a project, where his job is to help create a 3D-
model of a product. The 3D-model is made up from several parts. When Peter
has to add a certain type of part to the model, Peter becomes curious. The part
looks different from the last time he used it, when he was working on another
project. In the new system, there is a ”View Documentation”-button available
for each part Peter presses this button. Now, the new, context-aware system
is given its time to shine. The context-aware system breaks down the current
context the following way:

• Individuality: The system knows that Peter is the user, since he is logged
in with his account. From Peter’s profile, the system knows all the im-
portant work-related information about him, like which department he is
associated with, which project he is currently assigned to (and has been
assigned to in the past) and what his areas of expertise are.

• Location: The system knows which office location Peter is associated with.

• Time: The system notes the time at which Peter decides to search for
documentation.

• Activity: The system knows which software tool Peter is currently using,
which model he is working on, which project this model is associated with,
and which part he is examining.

• Relations: Here, information about who else is working on the same
project and in the same department as Peter is recorded. The part’s
place in the compositional hierarchy is also noted.

As Peter searches for documentation about the specific part, the systems utilizes
this information. Not all of it may be relevant for this particular search, but a lot

3.5. A COMMENT ON THE DEFINITION OF CONTEXT FROM [?] 17

of it is. While searching, the system notes that there is an engineer, working on
a specific project, looking into information about a specific part. Peter receives
the following result:

• Peter is shown several documents. The first is the ”core” document re-
garding the part, showing Peter the initial design of the part. The other
documents are each related to their respective projects, where alterations
to the part have been made. It turns out that in some projects, the project
engineers have decided to change the part slightly. Peter learns that this is
usually to satisfy either special engineering conditions related to the given
project, or requirements imposed by the customer.

• Although Peter is shown several results, the document which matches his
current project is ranked the highest. Peter views this document. Here
he learns that the part has been modified slightly, in a way such that
the customer can more easily manufacture it after Peter’s company has
engineered it for them.

• The engineers who made the new design are listed in the document. If
Peter wants to, he can reach them via instant messaging or audio/video
calls, or he can schedule a meeting with them, all using links in the doc-
umentation.

This example also demonstrates some of the appeal of context-aware applica-
tions. Instead of starting a lengthy search process himself, Peter can find the
information he is looking for in a single click.

3.5 A comment on the Definition of Context
from [3]

The definition found in [3], and the examples that are used to explain it in the
same article, are incredibly general, but still accurate to a satisfying degree.
The examples that are used to demonstrate how we can apply this definition,
however, are a little ambitious. It is clear that the authors of [3] are not con-
tent with only using this definition in computer science. Instead of keeping to
technical, more tangible examples where phones, computers and other devices
are communicating together (which is the actual application for this kind of
research), Zimmermann and his colleagues take a more philosophical and gen-

18 CHAPTER 3. CONTEXT-AWARE COMPUTING

eral approach. Instead of trying to come up with technical applications of the
principles they present, they are using everyday situations to describe things.
This is both good and bad. While on one hand, they prove that the definition
presented is indeed applicable to most situations. But on the other hand, they
deprive themselves of an opportunity for presenting some great examples of how
their definition of context could actually be used in any practical way.

For example: instead of explaining how shared contexts work by using an ex-
ample of two people meeting on a train, I would have liked to see an example
where two devices or pieces of software communicate. I have tried my best
to supplement with technical and practical examples if none were available in
[3].

The only constructive thing I can do with this is of course to view this as a
challenge. We have been presented with a very good definition of context. Now,
using this definition and the context categories presented, we can explore the
technical and practical possibilities ourselves.

Finally, I want to mention that, although the definition in [3] is very useful, any
optimal definition and categorization of context information ultimately depends
heavily on the application domain and use case. One should not be afraid to
make adjustments if it makes for a better result.

3.6 State of the art

In this section, I will give some insight into where the field of context-aware com-
puting is today, and what applications currently exist. Since the introduction
of the topic in around 1994, context-aware computing has become more widely
known. A lot more research papers have been written, and several applications
have been developed.

3.6.1 Context Models

There are a lot of possible ways to model context information. A context model
is needed to define and store context data in a machine processable form [4].
The different available context models are essentially different data structures,
and we can use each of these data structures as a ”skeleton” for context infor-
mation.

3.6. STATE OF THE ART 19

The basic ways to model context are ([4, 2]):

• Key-value pairs: The simplest data structure. Frequently used in var-
ious service frameworks, where the key-value pairs are used to describe
the capabilities of a service. These key-value pairs are then also used in
matching algorithms in service discovery.

• Markup Scheme Models: A hierarchical data structure consisting of
markup tags with attributes and content (for example RDF/S).

• Graphical Models: Context can be modeled using graphical models like
UML.

• Object Oriented Models: Object-oriented techniques allows develop-
ers to use principles like encapsulation, reusability, inheritance and so on.
The possibility of encapsulating details of context processing and repre-
sentation are useful elements of this model. Access to the context and its
processing logic is provided by well-defined interfaces.

• Logic Based Models: These models have a high degree of formality.
Facts, expressions and rules are used to define the context model. Infer-
ence/reasoning can be used to derive new facts based on existing rules.

• Ontology Based Models: Ontologies represent descriptions of concepts
and relationships. Ontologies are inherently well suited to model con-
textual information due to their high and formal expressiveness and the
possibilities for applying ontology reasoning techniques. Various context-
aware frameworks use ontologies as underlying context models.

3.6.2 Existing Applications of Context-Aware Comput-
ing

In this section I will provide a short overview of existing applications within the
domain of context-aware computing. It should be noted that, in general, the
applications listed are have not been developed with the definition of context
from [3] in mind, and therefore have their own way of categorizing context. This
is probably due to the fact that [3] is a relatively recent publication.

• ACTIVITY: Based on a concept called Activity Theory, which allows
description of key aspects influencing human activity. Context categories
are user, community and rules, which are used to relate a user to his/her

20 CHAPTER 3. CONTEXT-AWARE COMPUTING

community. This application/model is still in development, and is deemed
too general and holistic to be effective in practice [2].

• CASS: A centralized server-based context management framework, meant
for small portable devices, offering a high-level abstraction on context
sensed by appropriate distributed sensors. It manages both time and
space, taking into account the context history, and provides context rea-
soning; it does not contain user profiling capabilities. Context is described
using location and environment [2, 4].

• CoBrA: CoBrA is an acronym for ”Context Broker Architecture”, an apli-
cation developed mainly for event/meeting management. The main dis-
tinguishing feature of CoBrA is the presence of a central context broker (a
”server”), which maintains and manages a shared context model, which
a community of agents (”clients”) can access. Agents which access the
context can be applications in mobile devices, devices in a room or web
services. To handle large amounts of data traffic, CoBrA offers the pos-
sibility of creating broker federations. CoBrA uses an ontology model
written in OWL. The ontology contains many classes, but if we look at
the big picture, we can see that the main context categories are agent,
location, activity and time. In other words, this application uses a context
categorization that is relatively close to the one defined in ”An Operational
Definition of Context” by Zimmerman and his colleagues [2, 3, 4, 5].

• CoDAMoS: Context Driven Adaptation of Mobile Services. Aims to in-
troduce context-awareness into mobile devices to offer personal services,
based on the user’s tasks and needs. Proposes a very general ontology-
based context model. Context is categorized into personal context (user’s
wishes, profile and settings), location and device resources (resource con-
straints on the device the application is running on) [2, 6].

• SOCAM: Service-Oriented Context-Aware Middleware. An architecture
for the rapid building and prototyping of context-aware mobile devices.
Like CoDAMoS, it uses a very general ontology-based context model, writ-
ten in OWL, designed to be reused in other applications. Context is cat-
egorized into computer entity, location, person and activity [2, 4, 7].

In addition to the applications/frameworks I have listed so far, there are
plenty of other examples, which I will leave to the reader to explore further
if deemed interesting:

• COMANTO [2]

3.6. STATE OF THE ART 21

• ConceptualCM [2]

• Context-ADDICT [2]

• CSCP [2]

• EXPDOC [2]

• FAWIS [2]

• GraphicalCM [2]

• HIPS/HyperAudio [2]

• MAIS [2]

• SCOPES [2]

• U-Learn [2]

• Context Management Framework [4]

• Context Toolkit [4]

• CORTEX [4]

• Gaia [4]

• Hydrogen [4]

3.6.3 Discussion

A lot of the existing applications and research focus heavily on using physical
sensors and the data gathered from them to define context. Current research
focuses a lot on pervasive context aware applications, where devices and appli-
cations are seamlessly integrated into the user’s daily life. While this provides
for some very interesting possibilities, this might not necessarily be very relevant
for the challenges that Aker Solutions and KBeDesign are trying to address. A
lot of existing applications and research focuses on using a lot of raw physi-
cal data (GPS positioning, temperature, speed, orientation, chemical sensors).
This claim is supported in [4]: ”Although most authors refer to abstract context
sources, the currently mainly used and tested sources are physical sensors. Vir-
tual and logical sensors are capable of providing useful context data as well and
should be more incorporated in ongoing research”. I think that for Aker Solu-
tions and KBeDesign’s goals, we need to focus on more abstract, organizational

22 CHAPTER 3. CONTEXT-AWARE COMPUTING

and social data to define context. Instead of knowing exactly where someone is,
how fast they are moving and the temperature in their immediate surroundings,
we want to know which competencies a person has, what their schedule looks
like and which projects they are involved in, to name a few examples.

Chapter 4

How can we visualize
knowledge?

I have mentioned using context-aware applications and context-sensitive help
to view relevant documentation in an engineering context. But what is this
documentation going to look like? How are we going to present the information?
In this chapter, I will address these questions.

4.1 The Interactive Document (Node Example)

The Interactive Document is a format inspired by the ideas presented in Linked-
Design WP9 D9.1, chapter 6.1.2 [8]. The idea behind the interactive document
is to create a format in which we can present the necessary information and
rules behind the creation of a CAD-model. It is essentially a “help window”
with information about a selected model. By browsing through the Interactive
Document, the user should be able to find answers to all questions about why
the model looks the way it does. The interactive document is sometimes referred
to as the ”informal model” [8].

In addition to the answering the “hows” and “whys” concerning 3D CAD model
generation in KBE-tools, I have made an effort to explore further, and see what
else we can get out of the Interactive Document, since it essentially works as

23

24 CHAPTER 4. HOW CAN WE VISUALIZE KNOWLEDGE?

an information base for the given model. The most important features of the
Interactive Document are:

• The possibility to instantly look up rule explanations for the rules that
govern a model’s dimensions

• Performing calculation checks, verifying that a model is correctly designed
according to load conditions

• The ability to view documentation that is relevant to the creation of the
model and the project that it belongs to

4.1. THE INTERACTIVE DOCUMENT (NODE EXAMPLE) 25

Figure 4.1: The Interactive Document [9]

The format of the Interactive Document is a tab-form window (see Figure 4.1).
The different tabs divide the document into different areas of interest. Different
types of models will probably have different tabs available. For example, in this

26 CHAPTER 4. HOW CAN WE VISUALIZE KNOWLEDGE?

report, I will be working with models of structural nodes/joints. If we were to
view an interactive document for, say, an access platform, the Interactive Doc-
ument, at least in its current version, would look different and contain different
tabs.

Figure 4.2: Rule Explanation featured in the Interactive Document [9]

4.1. THE INTERACTIVE DOCUMENT (NODE EXAMPLE) 27

I have made some sketches that exemplify how the Interactive Document for
nodes/joints could look like. These, along with a detailed description of the
Interactive Document can be found in the appendix. I have only added a
couple of examples of interactive document features here, like showing dimen-
sions of a model (Figure 4.1) and rule explanations for these dimensions (Fig-
ure 4.2).

For more details on the Interactive Document, see the appendix.

4.1.1 Implementation

The seemingly best choice for implementing Interactive Documents is to use
Microsofts .NET framework. Using .NET, it is possible to integrate AML and
PDMS, since PDMS is based on .NET. [9]

The connection between .NET and AML is made possible by using one of KBe-
Design’s in-house .NET applications that access the AML console. The appli-
cation is able to input commands into the AML console, and read the output.
The mechanisms used for accomplishing this are mainly a couple of classes in
.NET called UserControl and CustomControl. Using this application, we can,
for example, access the dimensions of a beam. [9]

4.1.2 Prototype

As part of my project assignment in 2012, I made a simple GUI prototype in
.NET that demonstrates how the Interactive Document could work (see the
”Prototypes”-chapter).

4.1.3 Alternative interpretation of the Interactive Docu-
ment

Instead of thinking about the Interactive Document as an application/feature
within PDMS (Plant Design Modeling System, CAD-system used by Aker So-
lutions) and/or AML, one can instead think of it as a collection of features that
can be implemented into PDMS or AML where ever they might fit in. Let’s
consider an example with KBeDesign’s AML GUI. If you select a node and click
”edit node”, you can see all the editable properties of the node. An alternative

28 CHAPTER 4. HOW CAN WE VISUALIZE KNOWLEDGE?

solution to increasing the transparency and traceability of the data presented
in this screen could be to incorporate the features of the ”Dimensions” tab
in the Interactive Document into the ”edit node” screen. Similar approaches
could be taken with respect to the other tabs and features of the Interactive
Document.

To put this in another way: instead of the Interactive Document being a separate
entity, its features could be integrated into the already existing workflow.

4.2 Knowledge Briefs

Knowledge Briefs (K-Briefs) are inspired by the A3-method used in the Lean
paradigm, which was originally invented by the Toyota Motor Corporation.
The A3-method is named after the A3-size paper format. The idea is that one
should be able to present a problem and its proposed solution using only the
space availabe on a single A3 paper sheet.

Now, after the Lean paradigm has become more widely known, A3s are usually
called Knowledge Briefs, or K-Briefs for short. In Aker Solutions, the K-Brief
was originally inteded only for capturing knowledge from meetings and dis-
cussions, but further investigation has shown that it can be equally useful for
presenting information at a later time.

”Engineers like visual information. Often during meetings, ideas, geometric re-
lationships, explanations of terminology etc. are sketched on A3 sheets. The re-
sulting sketches are often understandable only to the meeting attendees. Without
adequate written documentation of the ideas or knowledge behind these sketches,
the understanding behind them, as well as their value, will decrease with time.
In order to maintain the knowledge captured during a meeting it is therefore
important to have a format for structuring knowledge in meetings.” [10]

The appeal of the K-Brief is its use of visual information. Humans are much
more successful in absorbing and retaining information if it is at least partially
visually enhanced [10].

The purpose of the K-Brief is to present knowledge in a visual manner, to
the extent that it is possible, and to structure this knowledge in a presentable
form while it is being captured. Due to the limitations of the format, it is
important that a K-brief only contains the most relevant information. If further

4.2. KNOWLEDGE BRIEFS 29

information should be necessary, the K-Brief will provide references to other
relevant sources of knowledge, like literature, people, reports or other K-Briefs
[10].

In engineering, it is useful to split between process knowledge and technical
knowledge. These two forms of knowledge have their respective K-brief tem-
plates [10].

4.2.1 Process Template

Figure 4.3: K-Brief Process Template [10]

In Figure 4.3, we can see the K-brief template used for process knowledge. It is
called the Plan-do-check-act template [10].

30 CHAPTER 4. HOW CAN WE VISUALIZE KNOWLEDGE?

The left-hand side of the K-brief presents the problem and an analysis of the
reasons that trigger the problem’s occurrence. Goals for the solution of the
problem are listed and solution ideas are provided. Through reading the left-
hand side of this K-brief, one should understand the situation as it is right now
and what the ideal situation should look like after the problem has been solved
[10].

On the right-hand side, the best solution is chosen and verification methods
of the solution are described. The method of implementing the solution is
presented together with a follow-up plan on how to make sure the solution is
the most effective [10].

4.2. KNOWLEDGE BRIEFS 31

4.2.2 Technical Knowledge Template

Figure 4.4: K-Brief Technical Knowledge Template [10]

In figure 4.4, we can see the K-Brief format for presenting technical knowledge.
This is also the same format as the one used by IPM at NTNU.

For recording technical knowledge, a less strict format is proposed. A narrow
strip on the left hand side is set aside for short introduction of the topic, theory,
observations, results and conclusion. The larger part of the sheet is devoted to
describing the technical knowledge in more detail. It is recommended to choose
and be specific on what type of data should be recorded in the K-brief. The
following list of relevant data has been proposed to have the best long-time
utility for an organization (this list is found in [10]):

32 CHAPTER 4. HOW CAN WE VISUALIZE KNOWLEDGE?

• Important design trade-offs and decisions

• Reusable design elements

• Solutions to critical-to-quality issues

• Solutions to critical-to-cost issues

• Performance curves

• Raw material/component data

• Test results for common design elements

• Reliability/environmental data

• Factory design rules/capability data

• Supplier design rules/capability data

• Frequently used parts/raw materials

Some of these data types might be more useful than others. In addition to the
types of data listed above, Knowledge Engineers at KBeDesign have suggested
to also include the following data types (this list is also found in [10]):

• Parameter constraints with background: Information about constraints to
parameters and explanations of why those constraints have been set

• FAQs to avoid repetitive support requests concerning the same problems

• Links to relevant experts that work within the area of knowledge presented
in the K-brief

• Links to further reading (including other K-briefs)

• Links to projects currently working with this knowledge

• Links to conversations started from a K-Brief

Taking all of this into consideration, Aker Soltions have arrived at a new format
for the technical K-brief template(see 4.5) :

4.2. KNOWLEDGE BRIEFS 33

Figure 4.5: K-Brief Technical Knowledge Template, current version [10]

34 CHAPTER 4. HOW CAN WE VISUALIZE KNOWLEDGE?

4.2.3 Example K-Brief

Figure 4.6: K-Brief Technical Knowledge Template, current version [10]

Figure 4.6 shows an example of how a K-brief could look like. As with the
Interactive Document example, a structural node is used as an example. The

4.3. ADDITION OF CONTEXT-AWARE ELEMENTS 35

information contained is mostly figures and explanations, with some supple-
mentary text. Note also the ”Further Reading”/”Relevant Experts” section,
which guides the reader to further sources of knowledge, should he or she wish
to know more about the given topic. For more example K-Briefs, see the ap-
pendix.

4.2.4 Implementation

Microsoft OneNote and SharePoint

Currently, K-brief prototypes are being implemented by using Microsoft OneNote,
part of Microsoft Office. OneNote can be thought of as a digital notebook for
collecting notes and information in one place. [10]

OneNote has a search engine and supports sharing of notebooks between users.
It is possible to search for words in images as well as in the text. Notebooks can
be organized into hierarchies, which is useful for making K-briefs that focus on
increasingly specific topics. [10]

OneNote also supports hyperlinks, which can point to other OneNote docu-
ments, as well as other files, documents or webpages. [10]

K-briefs can be stored on relevant SharePoint sites. For every new project that
starts, K-briefs will be read and stored on the projects SharePoint site if deemed
relevant. [10]

Alternatives

As the amount of available K-Briefs increases, other ways of storing and man-
aging them may become necessary. Some kind of web-based solution utilizing a
relational database and a fast search engine may become attractive if we want
to search and navigate in a large volume of K-Briefs.

4.3 Addition of Context-Aware Elements

Now we have seen to available ways of visualizing information that is impor-
tant in a project/engineering context. Now, let’s see some examples of how

36 CHAPTER 4. HOW CAN WE VISUALIZE KNOWLEDGE?

this context can be further utilized to improve these information visualization
methods.

4.3.1 Interactive Documents

Interactive documents are inherently context-aware to a certain degree, as they
use data from a model’s current situation. They keep a log of changes in the
current model, and they keep a record of the model’s current dimensions, to
name a couple of examples. This is a very simple interpretation of context-
awareness though. If we want to define interactive documents as what we now
think of as a context-aware application, we should include some more features.
Note that here, I will reference elements of the Interactive Documents explained
in the appendix.

General Tab

In the general tab (see appendix and Figure 4.7), we can include additional
information of the people who have been involved in creating or editing the
model. Aker Solutions use Microsoft Lync for instant messaging, audio and
video conversations. If we include the current Lync-status of the people involved
with the model, as well as a super user, this allows people to contact each
other and ask questions regarding decisions taken when creating/editing the
model.

4.3. ADDITION OF CONTEXT-AWARE ELEMENTS 37

Figure 4.7: Modified ”General” Tab [9, 10]

Calculations Tab

Like in the general tab, we can add information regarding which user has defined
important input for the calculations (Figure 4.8).

38 CHAPTER 4. HOW CAN WE VISUALIZE KNOWLEDGE?

Figure 4.8: Modified ”Calculations” Tab [9, 10]

Rules

Another aspect of interactive documents where we can improve context-awareness
is the rule explanation feature. Here we can include data regarding who has
added or edited the rule, and their status (Figure 4.9).

4.3. ADDITION OF CONTEXT-AWARE ELEMENTS 39

Figure 4.9: Modified Rule Explanation [9, 10]

Support Requests

If someone has questions or concerns regarding a node, a super user can be con-
tacted for support by clicking the ”?”-sign that can be found in the appropriate

40 CHAPTER 4. HOW CAN WE VISUALIZE KNOWLEDGE?

tabs. The support request is automatically filled out with the model name and
additional context information. The user can also attach a screenshot and select
the importance level of the support request (Figure 4.10) [9, 10].

Figure 4.10: Support Request [9, 10]

4.3.2 K-Briefs

I will discuss how K-Briefs and context-aware applications can be combined
later in this report. See the ”Discussion” chapter.

Chapter 5

Comparison: Interactive
Documents and K-briefs

In the last chapter we looked at two different ways of presenting knowledge. In
this chapter I will compare these two formats, and discuss their advantages and
disadvantages.

5.1 Value Added from the Interactive Document

The Interactive Document is mostly useful in the execution phase of a project.
One of the greatest strengths of the Interactive Document is that it is quick, easy
to access and it isin context. It is able to address specific questions that the user
might have about a given model. In other words: the Interactive Documents
is meant to be applied to specific instances of models used in AML or PDMS.
When an engineer is looking at a specific model instance, he/she can find pretty
much anything he/she is looking for.

While working with a model, users can easily keep track of the development
of the model through the modification history. This enables users working on
the same models to be aware of and understand changes that other users might
have made.It is also possible to contact other users who have been involved in
the work on the model.

41

42CHAPTER 5. COMPARISON: INTERACTIVE DOCUMENTS ANDK-BRIEFS

An important part of engineering is to verify that your product will work under
the specified load conditions. The Interactive Document can perform such verifi-
cation checks via integration with either MathCAD or KBeJOINT (an in-house
calculation application used and developed by Aker Solutions).

If the user is curious about the dimensions of the model, he/she can get an
explanation with a single click of a button in the ”Dimensions” tab. There’s
no need to search for information or documentation regarding the given model
type. In addition to having the rule explained, you also by default get a working
example of the rule demonstrated for you - it is easy to check if the dimensions
of the model adhere to the rules shown in the explanation (see the appendix for
more information).

5.2 Value Added from K-Briefs

K-Briefs can be relatively easily integrated into existing workflows, instead of
the other way around. They are intended to work as ”carriers” of knowledge
from development to delivery of a product, and can be used as reference material
later, for example when recording lessons learned from a problem or project. In
addition to showing knowledge, the K-Brief can be used as a format to record
knowledge captured in meetings between knowledge engineers and domain ex-
perts [10].

Another useful feature for knowledge capture is that a knowledge engineer can
prepare K-briefs in advance (preferably printouts), and bring them to the meet-
ings. During the meeting, the data in the K-Briefs can be discussed with domain
experts. A knowledge engineer can even bring blank or semi-complete K-briefs,
and fill out the missing pieces with the help of the domain experts. After the
meeting, the knowledge engineer can create a complete, electronic version of the
K-brief [10].

After knowledge has been captured, it has to be correctly implemented in KBE
software. The software construction phase consists of detailed design, coding
and testing iterations, and culminates in a releasable product. K-Briefs can be
a great source of reference material in this phase [10].

Even though software development has begun, the knowledge that is to be
implemented may not be completely clear. Therefore, in addition to be good
base referance material for programmers, K-briefs can also be a useful reference

5.3. USER-FRIENDLINESS 43

tool when it is necessary to discuss knowledge details with customers or other
developers [10].

5.3 User-friendliness

If the user has questions about a certain dimension in a model, K-briefs can be
considered too general, since they currently only describe types of models, not
specific instances. Currently, a K-brief can’t directly explain and demonstrate
to a user why a specific dimension of a specific model has a given value. The user
would have to cross-reference the dimension values with the principles explained
in the K-brief and check the calculations manually. If interactive documents are
available, however, checking the validity of a model’s dimensions only takes a
few clicks.

5.4 Implementation

One of the disadvantages of the Interactive Document is that it, at least in its
current form, requires a lot of ”tailoring”. For nodes, an interactive document
might contain certain tabs, each with a certain type of content, but if we were
to make interactive documents for access platforms, the layout and design of the
interactive document might be different from the layout used for constructional
nodes. Implementing interactive documents currently requires development of
a new layout for each type of model, unless we can come up with a ”one size fits
all” interactive document layout which is more general and suits most model
types.

Another factor to consider when implementing the Interactive Document is data
sources. Interactive documents need to get their data from somewhere. This
requires databases that contain rules, documents, figures and images to be made.
One can argue whether this is just a necessary evil to accomplish a greater cause,
or just a disadvantege, but it is definitely something that requires a lot of time
and resources to accomplish.

K-briefs, on the other hand, are very simple to implement. Remember, they are
basically A3-sheets. In their digital form, they can contain hyperlinks to other

44CHAPTER 5. COMPARISON: INTERACTIVE DOCUMENTS ANDK-BRIEFS

relevant K-Briefs. Hyperlinks are simple to implement in OneNote and other
rich document formats.

5.5 Conclusion

After comparing these two methods of visualizing knowledge, because of their
differing advantages and disadvantages, I am left with the impression that they
are not really competing with each other. The goals of each knowledge vi-
sualization method are certainly overlapping to some degree, but each of the
methods/formats has useful elements that the other lacks. In an ideal world,
where time and resources are infinite, I would suggest to implement both the
Interactive Document and the K-brief simultaneously. This is propably unreal-
istic, though. It is more likely that Aker Solutions will have to prioritize.

A possible solution is to take one of the formats, and make it more like the
other. For example: interactive documents need tailoring for each model type.
A solution to this would be to design a new, more general layout for interactive
documents, that can be used for multiple (or all) types of models. A ”one size
fits all” template for interactive documents, as mentioned earlier. Conversely,
K-briefs can be considered too general, since they only contain information
about model classes, not instances. A partial solution to this problem could be
to allow some interactivity in K-briefs, where the user could supply some input
data into formulas and see the output. This would allow users to experiment
with rules and dimensions.

The solution that I would personally recommend, is some combination of the
alternative interpretation of the interactive document (mentioned in an earlier
section), where interactive document elements are being added to the existing
user interfaces in AML and/or PDMS, in addition to implementing K-briefs.
This allows for incremental improvements in AML and PDMS features, as well
as having K-briefs available. This way we get quick and context-aware help
from the interactive document, as well as being able to use K-briefs in more
collaborative settings like knowledge aquisition.

For the rest of this thesis, I will keep the main focus K-Briefs. This is due to
several reasons, the most important one being that Aker Solutions are toning
down research on interactive documents. Since we already know that the K-
Brief is going to be used, any results we can find that are relevant for the K-Brief

5.5. CONCLUSION 45

can be immediately useful.

46CHAPTER 5. COMPARISON: INTERACTIVE DOCUMENTS ANDK-BRIEFS

Chapter 6

Context Structuring and
Modeling

Now that we have some idea of what kind of information we are interested
in displaying, how do we structure this information? In this section I will
focus on how to model and structure the information behind the two different
visualization methods, rather than the presentation of the information itself. As
we shall see in this section, using ontologies to model context seems to be the
best choice, and we will explore how this can be done.

6.1 Ontology Crash Course

6.1.1 The Basics

While writing this thesis, I have assumed that the reader possesses a fair under-
standing of ontologies and semantic web technologies. However, should that not
be the case, I have tried to create a simple introduction to the topic here.

Originally, ”ontology” refers to a major branch of philosophy or metaphysics.
It is the philosophical study of being, becoming, existence or reality. Ontology
deals with questions concerning what entities exist or can be said to exist,

47

48 CHAPTER 6. CONTEXT STRUCTURING AND MODELING

how such entities can be grouped, related within a hierarchy, and subdivided
according to similarities and differences [11]. In computer science and knowledge
management, ontology is usually defined as ”the shared understanding of a
domain, which is often described as a set of entities, relations, functions, axioms
and instances”.

Since the mid-1970s, researchers in the field of artificial intelligence (AI) have
recognized that capturing knowledge is the key to building large and powerful AI
systems. AI researchers argued that they could create new ontologies as compu-
tational models that enable certain kinds of automated reasoning. In the 1980s,
the AI community began to use the term ontology to refer to both a theory of a
modeled world and a component of knowledge systems. Some researchers, draw-
ing inspiration from philosophical ontologies, viewed computational ontology as
a kind of applied philosophy [12].

Common components of ontologies include (list found in [12]):

• Individuals (instances or objects)

• Classes

• Attributes of classes or instances

• Relations

• Function terms (complex structures formed from certain relations that can
be used in place of an individual term in a statement

• Restrictions (formally stated descriptions of what must be true in order
for some assertion to be accepted as input)

• Rules (statements in the form of ”if A, then B” that describe logical in-
ferences that can be drawn

• Axioms (assertions, including rules, in a logical form that together com-
prise the overall theory that the ontology describes in its domain of appli-
cations)

• Events (the changing of attributes or relations)

6.1. ONTOLOGY CRASH COURSE 49

Figure 6.1: A simple ontology example [13].

6.1.2 Web Ontology Language (OWL)

There are many available ways to express ontologies. The most commonly used
method is the Web Ontology Language, or just ”OWL”. ”OWL” is a so-called
recursive acronym, which stands for ”OWL: Web ontology Language”. OWL is
a family of knowledge representation languages used for authoring ontologies.
OWL is endorsed by the World Wide Web Consorium (W3C) and has attracted
academic, medical and commercial interest [14].

OWL is characterised by formal semantics and RDF/XML-based serializations
for the semantic web. So when you get to the bottom of it, OWL is basically
expressed in XML. This is one of the main reasons for why ontologies written in
OWL readily support interoperability and knowledge sharing, since XML is one

50 CHAPTER 6. CONTEXT STRUCTURING AND MODELING

of the most widely used methods for representing data structures today.

6.2 Ontology Models

Of all these different ways to model context, Ontology Models are generally
considered to be the best choice [2, 4, 10]. There are several reasons for this,
including:

• Knowledge Sharing: Using ontologies enables computational entities to
have a common set of concepts, a ”common language”, while interacting
with each other [15].

• Logic Inference (Semantic Reasoning): By using the relations between
entities in an ontology, context-aware applications can exploit various rea-
soning mechanisms to deduce high-level, conceptual context from low-
level, raw context. Context-aware applications can also check and resolve
inconsistent context information [15]

• Knowledge Reuse Once an ontology has been defined, it can be reused by
other applications. By allowing our context-aware applications to reuse
well-defined ontologies from different domains, we can compose large-scale
ontologies without having to start from scratch [15].

When designing ontologies, it is useful to have some guidelines to go after. In
[4], we are presented with some requirements and goals that we should seek to
satisfy when designing a context ontology:

• Simplicity: The used expressions and relations should be as simple as
possible to simplify the work of application developers.

• Flexibility and extensibility: The ontology should support the simple ad-
dition of new context elements and relations.

• Genericity: The context should not be limited to special kinds of context
atoms, but should rather support different types of context.

• Expressiveness: The ontology should allow for describing as many context
states as possible in arbitrary detail.

When using ontologies to model context, these requirements should be satis-
fied.

6.2. ONTOLOGY MODELS 51

One final note: though ontologies are widely considered to be the best context
modeling technique, one should always take the requirements of the given ap-
plication into consideration, and consider all suitable options before choosing a
context model [2].

52 CHAPTER 6. CONTEXT STRUCTURING AND MODELING

Figure 6.2: A rich ontology [16]

6.2. ONTOLOGY MODELS 53

6.2.1 Example Ontology-based Context Models

CONON

CONON simply stands for Context Ontology. It is presented in [15], where the
goal is to address critical issues including formal context representation, knowl-
edge sharing and logic based context reasoning (semantic reasoning).

In [15], before going on to describe CONON, a few other context modeling ex-
amples are given. Attribute-value tuples, web-based models, relational database
models and first-order predicate models written in DAML+OIL are mentioned,
but they are all considered inferior to ontology models, in spite of supporting
formal context modeling and some degree of reasoning. What they lack is sup-
port for formal knowledge sharing and proof of efficient reasoning capabilities
when applied to resource-constrained devices or applications [15].

CONON is intended to model context in pervasive (norwegian: ”gjennomtren-
gende”) computing environments. In other words, it is not a context model tai-
lored for a specific work environment. The term pervasive refers to CONON’s
goal of expressing context in many types of situations encountered in our daily
lives, both work-related and otherwise.

In CONON, context information is grouped into the categories location, user,
activity and computational entity. These entities help form the upper ontology,
which can be extended into domain-specific ontologies. The upper ontology is
a high-level ontology which captures general features of basic contextual enti-
ties(see Figure 6.3). Domain-specific ontology is a collection of ontology sets
which define the details of general concepts and their features in each domain
[15]. A domain ontology is depicted in Figure 6.4.

54 CHAPTER 6. CONTEXT STRUCTURING AND MODELING

Figure 6.3: Partial definition of the CONON upper ontology [15]

6.2. ONTOLOGY MODELS 55

Figure 6.4: Partial definition of a specific ontology for a home domain [15]

The context model is implemented in OWL. The context ”categories” are rep-
resented by the abstract OWL-entities Person, Activity, CompEntity and Lo-
cation as well as a set of abstract sub-classes. Attributes are represented using
owl:DatatypeProperty, and relations are represented using owl:ObjectProperty.
The built-in OWL property owl:subClassOf are used to hierarchically structure
sub-class entities, and to enable extensions. Figure 6.5 shows how these context
categories are represented in OWL.

56 CHAPTER 6. CONTEXT STRUCTURING AND MODELING

Figure 6.5: Partial OWL-serialization of the upper CONON-ontology [15]

6.2.2 Context-Driven Information Access in
Aker Solutions

Aker Solution’s Context Ontology

A problem for many engineers and other workers in large, knowledge-intensive
companies is information overlaoad. In [10], the proposed solution for this prob-
lem is employ context-driven information access through the use of ontologies.

6.2. ONTOLOGY MODELS 57

The idea is to let each user be automatically equipped with all the information
required for his/her specific role and task. One approach to accomplishing this
is to filter the available information by the user’s role and context, in addi-
tion to providing different means of access such as contextualized direct search,
information spaces, and information analysis means [10].

Important sub-goals to accomplish this are also listed in [10]. I have included a
few of them here, since they appear relevant to how we can structure and use
context information:

• Integration of informal models (K-Briefs and/or interactive documents)
into user contexts

• Definition of relevant contexts for user interaction with the informal model

• Context-based data access

• Role definition and management

How we can solve these subtasks depend heavily on how we choose structure
information and model context. Assuming that these tasks are accomplished,
what we will be rewarded with is context-specific support for specific tasks in
terms of information, reports, tools and easy localization of relevant documents
without being forced to initiate a typical search process, which in many compa-
nies can be unnecessarily difficult [10, 17].

Aker Solutions has chosen to use an ontology-based context model, written in
OWL. As stated earlier, this way of modeling context has many advantages:
great expressiveness, support for semantic interoperability so that knowledge
can be exchanged and understood across multiple systems and domains, and
semantic reasoning to be used by automated processes [10].

In [18], some requirements for a context ontology are stated: exploitation of
ontology has to result in an efficient and convenient context-aware source of
information regarding the entire business process behind CAD modeling. All
the activities, actors and documentation behind a project has to be mapped to
the ontology. On the other hand, all rules, sources and constraints employed
in automatic CAD modeling have to be transparent and available for interested
users.

As we can see from their context ontology, Aker Solutions have used the defini-
tion of context from [3]. Context is divided into the categories activity, location,
time and individuality. The relations category has been omitted though.

58 CHAPTER 6. CONTEXT STRUCTURING AND MODELING

Figure 6.6: Aker Solutions’ Context Ontology [10]

The ontology needs to include all entities required to define a given KBE so-
lution and thus to provide the background knowledge to mechanical engineers.
Important elements of this knowledge are mentioned in [18]:

• The product structure and a geometrical description

• KBE entities like rules, constraints, formulas etc.

• Knowledge Entities: description, author, attributes, status flag, descrip-
tive figures etc.

6.3 Identifying Context

Chapter 7

Information Location and
Mapping

We now have some suggestions for how to display relevant information in engi-
neering contexts. We also know how we can structure this information. Now
we need to figure out how to get our information from our data sources and to
the user. Where can we find the information we want, and how do we map the
correct information to our applications? For example: how do we know which
information to populate our interactive documents with, or which K-Brief to
display?

7.1 Semantic Reasoning

7.1.1 What is semantic reasoning?

A great deal of the answers that we seek in this chapter lie within semantic
reasoning. Semantic reasoning is also a great part of what makes ontology-
based context models so appealing. Semantic reasoning and ontologies are so
tightly interconnected that one can hardly have one without the other - together
they make up a great combination of expressing logical connections and then

59

60 CHAPTER 7. INFORMATION LOCATION AND MAPPING

utilizing these connections. Using semantic reasoning, we are able to infer log-
ical consequences from a set of asserted facts or axioms. This set of asserted
facts/axioms can come from an ontology. If we combine this ontology with a se-
mantic reasoner (also known as an inference engine) we can accomplish a couple
of important things: checking the consistency of context, and deducing high-
level, implicit context from low-level, explicit context [15]. Especially the latter
will be important to us. This is what allows us to put together every little piece
of context information that we can find about a situation, and put it together
into a clear image of what a user is doing or trying to do in a given situation,
and how the application can accomodate the user in this situation.

Let’s use a smart phone scenario to explain the role of semantic reasoning in
context-aware computing. We have a smart phone that can adapt to a user’s
current situation. By defining preference profiles, users can define customized
behavior patterns for the phone. For example, when the user is sleeping in his
bedroom, incoming calls are forwarded to voicemail. When the user is cooking in
the kitchen or watching TV in the living room, the ringing volume is turned up.
When the user is having dinner with his family in the dining room, the phone
is set to vibrate mode. What we see here are examples of high-level context.
This level of context can not be directly aquired from the phone’s physical
sensors. It has to be logically inferred from low-level data. The phone’s sensors
provide low-level context data such as physical location, time and environmental
information (temperature, ambient noise level) [15]. This logical inference is
semantic reasoning.

There are plenty of available semantic reasoners, many of whom support several
types of languages and rules. It is common for semantic reasoners to support
reasoning with ontologies written in OWL.

Some ontology languages are more suitable for reasoning applications than oth-
ers. Usually there is a trade-off between expressiveness and reasoning capabil-
ities when choosing an ontology language. Let’s consider the OWL-family of
languages, for instance: OWL Lite is the simplest language in the OWL-family,
but it is also the easiest one to reason with. OWL DL is more expressive, while
still retaining the availability to apply practical reasoning algorithms. Lastly, we
have OWL Full, which is so expressive that it is undecidable, and no reasoning
software is able to perform complete reasoning for it [14].

7.1. SEMANTIC REASONING 61

7.1.2 Example Application: CONON

Again, let’s look at the CONON-framework to find some examples of how se-
mantic reasoning can be used in a context-aware application. The reasoning
tasks in CONON can be grouped into two categories: ontology reasoning using
description logic, and user-defined reasoning using first-order logic [15].

A first-order predicate has three fields: a subject, a verb and an object. For
example, let’s express the physical location context ”Wang is located in the
bedroom”. Expressed as a first-order predicate this becomes ”(Wang, locatedIn,
Bedroom)” [15].

Description logic (DL) allows specification of a terminological hierarchy using a
restricted set of first-order formulas. The equivalence of OWL and description
logic allows OWL to exploit the considerable existing body of DL-reasoning to
fulfill important logical requirements. These requirements include concept satis-
fiability, class subsumption, class consistency and instance checking [15].

Figure 7.1: OWL ontology property types and how they affect reasoning [15]

62 CHAPTER 7. INFORMATION LOCATION AND MAPPING

A simple example of ontology reasoning is reasoning with physical location. If
Wang is currently located in his bedroom, for example, which is in turn part
of his home building description logic can be used to conclude that Wang (or
at least his phone) is located in his home building. This is possible since the
locatedIn property is a transitive property(see Figures 7.1 and 7.2 [15].

Figure 7.2: Using ontology to reason about location.

7.1. SEMANTIC REASONING 63

In addition to ontology reasoning, we can also implement user-defined reasoning.
We can create user-defined reasoning rules using first-order logic, which can help
the application deduce high-level context such as what the user is doing [15].
See Figure 7.4 for some examples.

Figure 7.3: User-defined context reasoning rules [15].

64 CHAPTER 7. INFORMATION LOCATION AND MAPPING

7.1.3 Performance (CONON)

Something else that can be worth mentioning regarding semantic reasoning is
performance. In [15], we can see some results from a performance experiment
(see Figure 7.4). Key takeaways from these experiments are:

• Run-time performance of logic-based reasoning, not surprisingly, depends
on three factors: size of the context data set, complexity of the reasoning
rules and CPU speed.

• A large difference in performance between tests using different-sized data
sets shows that context reasoning is a computationally intensive task

• As long as reasoning tasks are not time-critical, semantic reasoning is
feasible with existing CPUs (the reasoning tasks in the experiments took
between 0 and 22 seconds). From this result we can also assume that
reasoning tasks will become less time consuming in the future, when faster
CPUs are available.

• Rule complexity is an important factor. The user-defined reasoner featur-
ing a small rule set greatly outperforms the OWL reasoner with a large
Description Logic rule set when applied to the same set of context data.

• For time-critical applications, such as security and navigating systems,
the context dataset size and the complexity of the rule set needs to be
controlled to ensure that reasoning tasks can finish in an acceptable time.

• To increase performance, we can de-couple context processing and context
usage. This way, context reasoning and processing can be handled by a
resource-rich, centralized server, which other applications (clients) can
aquire high-level context from.

7.1. SEMANTIC REASONING 65

Figure 7.4: CONON Semantic Reasoning Performance. ”Number of RDF
Triplets” refers to the number of ”subject, verb, object” sets [15].

66 CHAPTER 7. INFORMATION LOCATION AND MAPPING

7.2 Aker Solutions Use Case

7.2.1 Architecture

If we have a look at the Aker Solutions Use Case in [18], we can see a model of
how the architecture of a context-aware application would look like.

Figure 7.5: Aker Solution’s architecture for a context-aware application [10]

As one can see from the figure, the details of the business layer of the architecture
has yet to be worked out. Currently, it is only a black box which is assumed to
handle business logic correctly. I have interpreted the architecture to work in
the following way: depending on what the user is doing, it will correspond to
a given context. The user may have a certain role, work on a certain project,
and may be trying to accomplish a certain task. The black box collects this
information and cross-references it with the ontology. This cross-referencing

7.2. AKER SOLUTIONS USE CASE 67

allows the black box to determine the context the user is in. Having the context
available, the black box queries the appropriate databases and repositories for
information that is relevant to the given context. This data is then presented
to the user in a suitable format.

7.2.2 LEAP Architecture

Figure 7.6: The LEAP-arhitecture [10]

In the previous subsection, we saw a general architecture for a system that
utilizes context and semantic reasoning. Let’s take a look at a more concrete
example: LEAP.

LEAP (Linked Engineering And manufacturing Platform) is meant to be one
of the main outputs of the LinkedDesign project. LEAP is meant to be a new
IT-platform for engineers which facilitates automated engineering and design,

68 CHAPTER 7. INFORMATION LOCATION AND MAPPING

as well as collaboration across both disciplines and geographical distances. Fig-
ure 7.6 shows the LEAP architecture, and how different services and systems
are connected in it.

Let’s go through how I have interpreted this architecture. What we are going
to focus on here are the services marked with blue. Let’s start at the top left in
the figure, where the user accesses the system. The user is using an application
called MyObeya, which is sort of a virtual meeting room and collaboration
application (i will not go into further detail regarding MyObeya/Virtual Obeya
here). A context service registers the context of the user’s interaction with the
system. This context service is connected to a semantic reasoner service, which
communicates with the LinkedDesign Ontology. Using the context together with
the LinkedDesign ontology, the Semantic Reasoner Service is able to determine
which data may be relevant to the user.

7.3 Interactive Document Data Sources

Implementing interactive documents is going to require some more infrastruc-
ture than what exists today. New databases containing all the data referenced
in interactive documents will have to be created and maintained.

7.3.1 Node Classification

Interactive documents will need to correctly identify the topology of a node to
determine exactly which data should be displayed. For example, it is important
to know how many braces/columns a node has, and their cross-section, to know
exactly which class of node we are talking about, and thereby determine what
information should go into an interactive document.

Consider images, for example. Interactive documents use a lot of images and
figures, for example when showing principal sketches of the different node types.
To display the correct principal sketch, we need to have a database containing
data sorted by node classes, each with their respective principal sketches.

One way of classifying nodes is to use data from actual AML models. In AML,
each node contains data that tell us which braces/columns are present, out of an
available list. Using this list of available braces/columns/beams, and making
note of which columns/beams/braces are there or not, we can determine the

7.3. INTERACTIVE DOCUMENT DATA SOURCES 69

node configuration. From here, we can move on to checking the cross-section of
each beam/brace/column that is connected to the node. Cross-referencing all
of this information will give us the node class.

7.3.2 Calculations

Another type of data that is dependent on node classification is data regarding
calculations. To display the correct calculations, we need to know the exact
topology and geometric dimensions of the node. The former is related to the
node class, while the latter is decided by the dimensions of the node and its mem-
bers (dimension data will be discussed in the next paragraph/subsubsection).
For verification calculations on nodes, it is likely that Aker Solutions will use
KBeJOINT in the future. If we want calculations available for each node class,
we would have to first define and implement these calculations in KBeJOINT,
then create a link between interactive documents and KBeJOINT.

7.3.3 Node- and beam attributes

In the ”Dimensions” and ”Members” tabs, various model-specific data is shown.
To a large degree, this data can be found in the AML models themselves. When
opening an interactive document for a node, this data can be found in the models
and the interactive document can be populated upon start-up. This is possible
both when accessing the Interactive Document from AML and PDMS (more on
this later in this section).

7.3.4 Rules

One of the main features of the ”Dimensions”-tab, and interactive documents as
a whole, is the ability to show explanations of rules behind the dimensions of a
model. This would require a database containing these rules and explanations.
For each rule, this database would have to contain:

• A Rule ID

• An image that helps explain the rule

• Mathematical expressions

70 CHAPTER 7. INFORMATION LOCATION AND MAPPING

• Supplementary text that aids the explanation

7.3.5 Source Code

This can be found in AML, by using the ”Inspect”-function that is native to
AML.

7.3.6 AML vs PDMS

We can access interactive documents both from AML, even though we might
have to access data from AML to show the correct data in interactive documents.
PDMS is coded in .NET. By using UserControls and CustomCotrols (classes in
.NET), custom interfaces can be implemented in PDMS. To complete the line of
communication, engineers at KBeDesign have found a way to communicate with
AML from .NET by developing an .NET-application that can input commmands
into the AML-console and read the resulting output. This should allow retrieval
of data from AML-models, even when the user is currently in PDMS. In other
words, we can access AML models from PDMS.

Chapter 8

Case-Based Reasoning

8.1 Introduction

A concept that has similarities with Knowledge Based Engineering is Case-Based
Reasoning (CBR). Like Knowledge Based Engineering, Case-Based Reasoning
is about reusing knowledge from previous problems to create new solutions or
products.

Case-Based Reasoning is actually based on the human mind [20]. Human cog-
nition deals with knowledge in the form of concrete examples. CBR has arisen
out of research in the area of Cognitive Science, and is based on work regard-
ing dynamic memory and the role that memories of earlier situations play in
problem solving and learning. There are plenty of examples of how humans
use past experiences to solve new problems. Doctors recognize symptoms in
their patients and are able to make diagnoses based on experiences from other
patients. Judges in legal courts use precedents from past trials. Engineers can
reuse certain elements in their calculations when parts of a new system is simi-
lar to something they have worked with in the past. Figure 8.1 shows the basic
principle how CBR works.

In ”A tutorial on Case-Based Reasoning”, Main et al. define CBR in the fol-
lowing way:

”A short definition of case-based reasoning is that it is a methodology for solv-

71

72 CHAPTER 8. CASE-BASED REASONING

ing problems by utilizing previous experiences. It involves retaining a memory
of previous problems and their solutions and, by referencing these, solve new
problems. Generally, a case-based reasoner will be presented with a problem. It
may be presented by either a user or another program or system. The case-based
reasoner then searches its memory of past cases (the case base) and attempts to
find a case that has the same problem specification as the current case. If the
reasoner cannot find an identical case in its case base, it will attempt to find the
case or cases in the case base that most closely match the current query case.”
[19]

As mentioned above, cases are organized and stored in a case base. In addition
to the case base itself, a CBR-system may include other kinds of data, like
models, rules or constraints [20].

Figure 8.1: Case-Based Reasoning Illustration [20]

The key difference between CBR and KBE lies in the mechanics of how the two
methodologies are implemented. In KBE applications, ”knowledge” is usually
stored as computational models in the form of code used to calculate geometric
dimensions of structures and/or other industry products. CBR, however, takes

8.2. THE CBR-CYCLE 73

on a more abstract or general approach. What KBE does is to automatically
reuse a predetermined previous solution, given a certain problem. CBR works a
little differently. The goal is not necessarily to reuse previous solutions directly,
but to compare a new problem, or ”case”, to previous cases. Similarities between
the new and old cases are discovered, and these similarities can be used to
construct a new solution. If the new case actually happens to be identical to
one or more previous cases, the exact same solution can of course be reused.
One of the advantages of a CBR-system is that even though a new case does
not have an existing solution, previous cases might be similar enough to help
guide the user in the right direction. This is called an adaptation phase. When
adapting a solution, differences between the current and a previous case are
identified, and then solution associated with the previous case is modified to
take these differences into account. If the new solution that has been created
is acceptable, it is retained and stored in the case base along with all the other
previous cases.

CBR can be a very helpful, effective and time-saving tool for solving knowledge-
intensive tasks. Due to the general nature of the CBR paradigm, possible ap-
plications are virtually limitless. Applications have already been developed in
medicine, law, engineering, tech-support, communication networks, manufac-
turing design, finance, scheduling, language, food and many other fields, even
poker [19, 21].

8.2 The CBR-Cycle

Case-Based Reasoning can be described as a cyclical process. The process is
composed of four stages: retrieve, reuse, revise and retain. In retrieve stage, past
cases are retrieved and compared to the current problem. In the reuse stage,
a previous solution is adapted and reused. In the revise stage, the solution is
tested in the real world (or simulated). Unforeseen problems with the new solu-
tion can be discovered, and the new solution is adapted to cope with these new
problems. In the retain stage, the resulting experience from the new problem
and its solution is stored in the case base for future reference [22].

74 CHAPTER 8. CASE-BASED REASONING

Figure 8.2: Illustration of the CBR cycle [20]

Let’s use an example to illustrate this cycle with a cooking example from [23].
Fred wants to make blueberry pancakes but he has never done this before. He
has, however, made plain pancakes in the past. Let’s compare this process to
the CBR-cycle:

8.2. THE CBR-CYCLE 75

• Retrieve: Fred retrieves his old recipe for plain pancakes. This serves as
a relevant case from the past, which he can reuse.

• Reuse: Fred reuses the old recipe. The only change he has to make is to
add blueberries.

• Revise: An unexpected result from the new recipe is that the pancake
batter has turned blue. Fred solves this problem by making a revision to
his solution: he delays the addition of the blueberries until the pancake
batter has been ladled into the frying pan.

• Retain: After successfully making a fresh batch of blueberry pancakes,
Fred writes down the new recipe in his cookbook for future reference.

We can also break each stage of the CBR-cycle down into a few key subtasks,
shown in Figure 8.3.

76 CHAPTER 8. CASE-BASED REASONING

Figure 8.3: Illustration of the CBR cycle [22]

8.3 Case Representation

Instead of just storing knowledge as algorithms and computational rules, like
in KBE, CBR store knowledge as ”cases”. How one chooses to define a case is
entirely up to the developer. How a case is represented will vary greatly with in
form and size, as it is completely dependent on the application domain. Litera-
ture on Case-Based Reasoning provide us with some guidelines for representing
cases, but there is no strict system that we have to follow.

Cases representation can range from extremely simple case models like vectors,

8.4. SIMILARITY MEASURES (RETRIEVAL PHASE) 77

or more composite and rich models which include several data types. Any
format can work, as long as there exists a reasonable way to compare cases
and determine the similarity between them. A common approach is to use a
set of attributes/values for the case’s problem description, and another set of
attributes/values for the case’s solution.

A case should represent a situation or problem, along with relevant information
about the situation. However, the only required information in a case is a
description of the situation/problem and the solution. Using only this, we can
create a simple CBR-system which compares problems and proposes a fitting
solution based on past experiences.

However, the more information you have about a problem and its solution, the
better. Relevant information about a case can be, but is not necessarily limited
to:

• A clear and concrete description of the situation

• Background information that explains the cause of the problem

• Which solution was selected (if any)

• A rationale for selecting the proposed solution

• Alternative solutions (if any), and why these were not selected

• An objective description of the result after applying the proposed solution

• A qualitative description of the result, to evaluate whether the result was
a success or a failure

Note that it can be just as valuable to keep record of unsuccessful solutions as
well as successful ones. Sometimes it may be just as valuable to know what not
to do (and why).

8.4 Similarity Measures (Retrieval Phase)

In the retrieval phase, we need to determine which cases in the case base are
most similar to the new case. In addition, we need criteria that determine if
a case should be retrieved and a mechanism for how the case base is searched
[15].

78 CHAPTER 8. CASE-BASED REASONING

The actual case retrieval process varies greatly from system to system. It de-
pends heavily on the memory model and indexing procedures used in a given
case base. Retrieval methods implemented by researchers and implementers
of CBR-systems are extremely diverse, ranging from a simple nearest neighbor
search to the use of intelligent agents [19]. In this report, I will mention some
of the most common methods.

8.4.1 Nearest Neighbor Retrieval

In this method, each case is given a weighted score when compared to the new
case. Each case has a set of attributes. A case is chosen if it scores higher
than most of the other cases in the case base. Cases are scored on their num-
ber of matching attributes. For example: if case A matches the new case on
5 attributes, and case B matches the new case on 6 attributes, case B will be
considered the most relevant. Attributes may also be weighted according to
their relevance. For example, attributes like ”author” and ”project” may have
a weight of 0.25, while attributes like ”part name” may be have a weight of 1
if we are working with a new case regarding a specific part. Weighting of each
attribute may be defined by the system, but it can also be user defined, vary-
ing with each new case. We can express similarity scoring in nearest-neighbor
retrieval the following way:

S(C1, C2) =

n∑
i=1

wi · si(C1, C2) (8.1)

Here, S(C1, C2) is the total similarity score between the two cases C1 and C2,
n is the number of attributes, wi is the weight of attribute i and si(C1, C2) is
the local similarity score of attribute i [20].

8.4.2 Inductive Approaches

In Inductive approaches we aim to determine the relative importance of features
for discriminating between similar cases, such that we can structure the case base
into a hierarchical structure. In other words, we determine which key attributes
we can rely on to ”filter” the cases in the case base. The resulting hierarchical
structure may result in reduced search time [19].

8.4. SIMILARITY MEASURES (RETRIEVAL PHASE) 79

8.4.3 Knowledge Guided Approaches

Knowledge guided approaches to case retrieval use domain knowledge to deter-
mine which features/attributes of a case will be relevant for future retrieval. In
some situations, different attributes/features of a case may be important in the
future. As with inductive approaches, knowledge guided indexing may result in
a hierarchical case structure which is effective for searching [19].

8.4.4 Validated Retrieval

Validated retrieval consists of two phases. First, all cases that satisfy minimum
similarity requirement are retrieved. This can be done using simple, cheap
similarity measures. In the second phase, the similarity measure is refined,
and more expensive similarity measures are applied to determine which of the
initially retrieved cases are the most relevant for the new case [19]. Figure 8.4
shows the process of validated retrieval.

80 CHAPTER 8. CASE-BASED REASONING

Figure 8.4: Validated Retrieval [19]

8.5 When should CBR be used?

CBR is a useful methodology for many types of problems and in different do-
mains, but that doesn’t mean it should always be used. In [19], we can find
some criteria that should help us decide if using CBR is a good idea:

• The domain has an underlying model.
If a domain does not have an underlying model, or the processes occuring
in the domain are random, one cannot capture the factors leading up to
success or failure in a case description, and reasoning from past cases is a
futile effort.

• There are exeptional or novel cases.

8.6. WHY USE CBR? 81

If there are no exeptional or novel cases, little reasoning is required, and
we can rather model the domain with simple rules.

• Cases recur.
If similar cases are unlikely to recur in the future, there is little value in
storing cases.

• There is significant benefit in adapting past solutions
Reusing solutions should provide a significant difference in resources ex-
pended when compared to creating new solutions from scratch every time.

• Relevant previous cases must be obtainable.
It must be possible to obtain relevant data that records the characteristics
of past cases. It is important that the cases contain enough to explain the
problem, its solution and in which context the problem occurred.

If the majority of these criteria are satisfied, it is likely that CBR is applicable
and relevant.

The last criterium should be given some extra attention. Even if this criterium is
not satisfied, it could be a reason to start using the CBR-approach. If cases are
not presently being stored and kept for future reference, there is no reason not
to start doing this if the rest of the criteria imply that using CBR could be use-
ful. Satisfying the last criterium could be a good first step when implementing
CBR.

8.6 Why use CBR?

When used in the appropriate settings, there are many advantages to be gained
from utilizing CBR. Some of these advantages are mentioned in [19]:

• CBR reduces the Knowledge Aquisition task.
Knowledge Aquisition usually includes the extraction of a model or a set
of rules, which is necessary in model/rule-based systems. In CBR, the
Knowledge Aquisition-task consists mainly of collecting, representing and
storing cases.

• Past mistakes can be avoided.
CBR systems should record failures as well as successes. Preferably, the

82 CHAPTER 8. CASE-BASED REASONING

reason for these mistakes should be recorded as well. When using CBR,
the chance of repeating past mistakes is reduced.

• Graceful degradation of performance
Some model based systems run into real trouble when attempting to solve
problems that are on the boundaries of their respective knowledge domains
or scopes. CBR, on the other hand, can often have reasonably successful
attempts at solving these kinds of problems.

• CBR-applications are able to reason in domains that have not yet been
fully understood, defined or modeled.
While insufficient knowledge may exist about a domain to build a satisfac-
tory model or derive rules from it, a case-based reasoner may still function
with only a few cases from the given domain. The underlying theory does
not need to be quantified.

• CBR systems may be able to predict a proffered solution’s probability of
success
If information about previous solutions’ success or failure rates are stored,
this can be used in future cases to predict the chance of success.

• CBR systems learn over time
As more and more cases accumulate in the case base over time, a CBR
system will be reasoning within a wider variety of situations, with an
increasingly higher degree of refinement and success.

• Reasoning with incomplete or imprecise data.
Even though a new problem doesn’t correspond completely to previous
cases, we can still reuse parts of old cases where there is a certain degree
of similarity.

• Providing explanation and justification
Previous cases and their (successful) solutions can be used to explain and
justify a proposed solution to the user. In most domains, it is important
for the user to be assured that he/she can trust the solution proposed to
him/her.

8.7. STATE OF THE ART 83

8.7 State of the Art

8.7.1 Existing CBR-applications

CBR has been implemented in a variety of ways.

8.8 How does CBR apply to Aker Solutions and
KBeDesign?

The rationale/justification for including CBR in this report is primarily because
of its similarities with KBE. You could say that CBR and KBE are two sides of
the same coin. They are two different methods of solving what is essentially the
same problem. This fits well into the domain of KBeDesign, who are all about
reusing past solutions to recurring problems.

The observant reader will without a doubt have seen the similarities between
case representations and K-Briefs. And herein lies an important point: K-Briefs
can be used as cases in a CBR process. This CBR-process does not even have to
be fully automated - as long as we are able to retrieve K-Briefs that are relevant
to a situation that we are currently working with, a lot the work might already
be done. After discussing a problem and comparing it to previous, similar cases,
people can come up with a solution for the new problem more easily. This is
not to say that a proper, mostly automated CBR application isn’t desirable
either.

While KBeDesign’s AML-applications automate the engineering and design in
many ”low level”, routine tasks, combining K-Briefs and CBR could boost effec-
tiveness and efficiency in more high-level problem solving and decision making,
for example during the start of a new project. These high-level decisions could
be problems like which materials or engineering solutions to use in certain en-
vironments or when working with certain customers.

Assuming that K-Briefs become a success within Aker Solutions, then taking
the next step and using them as a basis for cases in a CBR-system could be a
worthwhile effort.

84 CHAPTER 8. CASE-BASED REASONING

8.9 Case Representation Using K-Briefs

An important factor in a CBR-system is case representation. The first thing
we need to decide is what a case is. In general, cases can be people, objects,
situation, diagnoses, designs, plans or legal rulings. In Aker Solutions, a case
should correspond to a K-Brief.

While K-Briefs in Aker Solutions often are about a specific part or assembly,
they can also represent other kinds of problems or situations. We need to figure
out some key criteria that characterize a specific case/K-Brief (information that
identifies the specific case). During one of my discussions with Geir Iversen, my
contact person at Aker Solutions, we identified some key data that help identify
a K-Brief. These data are:

• Project Number

• Regulations (NORSOK, AISC etc.)

• Customer ID

• People Involved: authors and contributors of a K-Brief and their roles
(project leader, engineer, links to their profiles in Knowledge Arena (in-
ternal social network in Aker Solutions) and their competencies

• Key competencies that were used in the authoring of the K-Brief

• PEM (Project Execution Model) phase: which phase in the PEM the
project is in (concept, FEED or detailing, for example)

In addition to this ”identity”-information, we also need some information that
describes the actual situation related to the case. If we were to only use the data
in the list above when searching for similar cases, we would only find cases that
are related to the same project, customer, people etc., without the cases actually
being related to the same type of situation. Each case needs data that focuses
on the problem, not metadata. If we are using K-Briefs as cases, this information
will likely have to be textual information, where we will have to use full-text
search to compare the similarity between cases. This textual information will
be what separates cases that are connected to the same project, customer etc.
(which is also represented as textual information in K-Briefs).

So, the initial idea was to represent a case as a K-Brief, which is essentially a
rich text document, which in the simplest possible implementation corresponds

8.9. CASE REPRESENTATION USING K-BRIEFS 85

to a single text field (in addition to metadata related to the document). We
determine similarity between cases by determining similarities between these
text fields. Of course, we are not limited to representing the case description as
a single text field. We can categorize this information as we please. The only
downside is that this adds complexity to the case representation, and thereby
makes the CBR-system slightly more complicated.

86 CHAPTER 8. CASE-BASED REASONING

Chapter 9

Related Work

87

88 CHAPTER 9. RELATED WORK

Chapter 10

Prototypes

10.1 Interactive Document UI Prototype

Based on my work with the Interactive Document, i have made an application
that demonstrates how an Interactive Document could look like.

10.2 K-Brief Retriever

I have developed a simple application that searches through an set of K-Briefs
and returns a set of relevant K-Briefs if the search is successful.

The goal of this application is to provide a baseline for further research regarding
CBR. For my thesis, I have focused on the retrieve phase of the CBR-cycle.
Due to limitations in both scope and time, I have not tried to implement the
remaining phases. The idea is to leave the remaining phases for future research
by PhD-students at NTNU.

The application is coded in C#, and uses three key open-source technologies to
work: Lucene, Tika and IKVM.

89

90 CHAPTER 10. PROTOTYPES

10.2.1 Lucene.Net

Lucene is a search engine developed by the Apache foundation that does full-
text indexing and searching. The user supplies some search terms, and Lucene
returns a ranked set of documents that match the given terms. Lucene was
originally developed in java, but a .NET-version has also been made, called
Lucene.Net.

Lucene is widely considered one of the faster search engines available. It works
by indexing a set of documents, and then the index can be rapidly searched
through.

I chose Apache Lucene primarily because I was asked to use it by Mozhgan
Tavakolifard, one of my main contact persons at NTNU. She is currently doing
research on CBR and recommender systems, and was interested in seeing if
Lucene could be used for case retrieval in these kinds of applications.

10.2.2 Tika

One critical challenge that I had to address is that Lucene can only search
in simple text. In the real world, however, K-Briefs and other documents are
created and stored using rich text formats like .doc and .pdf. Tika, which like
Lucene is also developed by the Apache foundation, can solve this problem for
us. Tika is a Java-library which provides us with tools for extracting text from
files in rich document formats. This doesn’t only include .doc and .pdf-files:
many other formats are supported, including HTML, XML, all other Microsoft
Office formats (including powerpoint), Rich Text Format, Java class files and
archives, and even compressed formats like .zip. It doesn’t stop at text formats
either: Tika can also extract textual information (like metadata) from several
image, audio and video formats [24].

10.2.3 IKVM

The observant reader might have observed an apparent contradiction so far in
this section. I have written my application in C#, but I am using Tika, a source
code library written in Java. This is where IKVM comes in.

10.2. K-BRIEF RETRIEVER 91

IKVM is basically an implementation of Java for the Microsoft .NET framework
[25]. It includes the following components:

• A Java Virtual Machine implemented in .NET

• A .NET implementation of the Java class libraries

• Tools that enable Java and .NET interoperability

Although Lucene has been fully translated to .NET, the .NET-implementation
of Tika requires IKVM to function properly.

10.2.4 How the application works

This application is only inteded as a proof-of-concept of Lucene’s ability to ef-
fectively and efficiently search in large amounts of rich text documents. Because
of this, the application is a simple Windows console application, with no fancy
bells and whistles.

So how does it work? While the source code is available, I think it is worth-
wile to include a simple step-by-step explanation of the application’s mechanics
here:

• When the application is started, Lucene is used to index a the files in a
specified folder. For each file in the folder, Lucene attempts to add it to
its index.

• Lucene structures data into Documents and Fields. Each file represents a
Document, which contains Fields. For each file in the folder, a Document
is created. Then, for each Document, several Fields are added. The most
important Field is ”text”, which contains the text extracted from the file.

• To extract the text properly, we use Tika’s text extraction functionality.
The text is then stored in the Field called ”text”.

• Each file is added to the index, which is saved in a previously specified
folder.

• Now we can use Lucene’s search features to search the index.

• The application asks for our search term(s), which we supply, and then
the file names of the most relevant files are shown.

92 CHAPTER 10. PROTOTYPES

• If we choose to, we can open the highest ranking document from the
application.

We have now successfully searched for relevant (rich) documents in a folder of
our choosing.

10.2.5 Alternative technologies for future research

Lucene is not the only technology that can perform the tasks that the K-Brief-
recommender does. While Lucene works perfectly fine for a proof-of-concept
console application, researching and developing a web application that performs
the same tasks is probably going to be more practical and interesting, at least
from a user perspective.

Solr

If we want to develop an online K-Brief recommender, Apache Solr seems like
a promising piece of technology. Solr is a search server. It’s a stand-alone Java
application that uses Lucene to provide full-text indexing and searching through
an XML/HTTP-interface. This means that i can be used from any platform
or language. It can be embedded in Java applications, but this is not how it
is primarily meant to be used. Solr is considered to be easier to use than raw
Lucene, and provides features commonly used in search applications, like faceted
search and hit highlighting. It also handles caching, replication, sharding, and
has a web admin interface [26].

SolrNet

SolrNet is a library used to communicate with a Solr instance from a .Net-
application. It provides an object-oriented interface to Solr’s features. It also
works as a query-Solr-mapper: query results are mapped to PONOs (Plain Old
.Net Object), which simply explained is just a simple .Net-object, making the
data from search results easily accessible. You can access the search results just
like you would access the data in any other object [26].

10.2. K-BRIEF RETRIEVER 93

10.2.6 Comparison Between Baseline and existing CBR
systems

Now that we have a baseline, the K-Brief Recommender should be compared
to other CBR-systems to see if it is actually any better than existing applica-
tions. Keep in mind that we can only compare applications with respect to the
”retrive”-stage of the CBR-cycle. The main advantage of the K-Brief Recom-
mender is that it can work directly with rich documents, but we need to know
that it retrieves relevant documents.

We basically have two ways of comparing retrieval results: we can use some
automatic scoring system, that calculates a set of documents’ ”similarity score”
based on some pre-defined criteria. The K-Brief Recommender will retrieve one
set of relevant documents, and the other CBR systems we compare it to will
probably retrieve a slightly different set of documents. The application that
retrieves the highest scoring set of documents will be considered the most effec-
tive. It should be mentioned that both Lucene and existing CBR applications
use some kind of similarity measure to retrieve relevant cases, so what we will
really be comparing is Lucene’s document scoring mechanism versus existing
CBR systems’ similarity measures.

Another way of scoring sets of documents is to use expert opinion. This can be
used both as a replacement or a supplement to automatic scoring. If there is
little difference in the document sets, for example, an expert could be used to
determine which set is actually the most relevant.

If we compare the K-Brief Recommender with existing CBR-systems and the
results are around equal or better, we have some exiting opportunities in front
of us. That means we have foundation for a new CBR system ready, based
entirely on open-source technology.

10.2.7 How does this relate to context-aware computing
and/or CBR?

Now that we have an application that can search in rich documents, what can
we use it for? How does it relate to the rest of what I have discussed earlier in
this thesis?

The next step is to make an application that can intelligently define search

94 CHAPTER 10. PROTOTYPES

terms based on the current context. These search terms can then be used
to search in a large archive of K-Briefs, to quickly find K-Briefs and other
documents that are relevant to the current context. What I am describing here
is basically the retrieve-stage in a CBR-cycle, where we are using context to
define our current situation/case. As we saw in the section regarding CBR,
having a database of past cases to aid us when making new decisions is without
a doubt helpful. So whenever we find ourselves in a context that resembles one
or more cases from the past, we can immedeately use these past experiences to
our advantage.

Chapter 11

Discussion

This thesis discusses a lot of different technologies. Each have their own uses
and applications. The main point of this report lies with how we, can success-
fully combine these technologies/methodologies and achieve an even greater,
synergetic effect.

11.1 KBE and Context-Aware Computing

Knowledge-Based Engineering greatly increases efficiency of routine engineering
tasks. Utilizing the principles of context-aware computing and semantic reason-
ing allows us to extract the most relevant data from a user’s interaction with an
application, and tailor the interaction depending on the user’s context. One of
the great strengths of context-aware computing is the ability to logically infer
what the user really needs while he/she is attempting to perform a given task.
The application can then do its best to cater to these user needs. The immedeate
user needs in an engineering or CAD/modeling context is to have relevant in-
formation and documentation available. This is especially the case when the
user is performing some kind of KBE-powered design or modeling, where CAD
models are automatically generated from a limited set of user input. This takes
us back to the original problem or exposition: currently, engineers may experi-
ence difficulties when trying to verify that automatically generated designs are
valid. This is usually because of lacking information, or the information may be

95

96 CHAPTER 11. DISCUSSION

hard to find. If we utilize context-aware computing correctly, we can design our
software tools and applications such that the application registers what type of
model (or general problem) that the engineer is working on, and has the rele-
vant information available automatically if the need for this information should
arise.

11.2 Knowledge Visualization and Representa-
tion

Once we know how to sort out what information the user really needs (via
context-awareness), there is the question of how this information should be pre-
sented. Currently, we have two available formats: interactive documents and
K-Briefs. Although they do seem to complement each other, K-Briefs will prob-
ably have to be prioritized, due to their ease of implementation and immedeate
usefulness. Interactive documents should not be completely disregarded yet,
but it will take time and resources to properly implement them. As I have men-
tioned earlier, I would recommend a ”middle way”-approach, where we either
make the interactive document templates more general and adaptable to differ-
ent kinds of models (instead of just nodes), or implement a few of the elements
found in interactive documents into the existing KBE-applications, in addition
to using K-Briefs. In the immedeate future, however, K-Briefs will probably
be the only realistic alternative for knowledge representation. This has its pros
and cons. While K-briefs are a far easier tool to work with for most people, due
to the intuitive information structure (and the fact that it’s basically a paper
sheet), it only shows general information about model classes. If we want to
inspect the data contained in a specific model instance, K-Briefs aren’t much
help. The genericity of K-Briefs can also be one of its strengths, however. With
K-Briefs we are able to represent situations and problems that are too general or
high-level to be represented in an interactive document, like high-level decisions
that are made in the start-up stage of a project. Examples of such decisions can
be what type of node designs to rely on when working with a particular cus-
tomer or which conditions to be aware of when working in a particular region
or climate, just to name a couple of examples.

11.3. CBR 97

11.3 CBR

The next big topic we need to discuss is Case-Based Reasoning (CBR). CBR fits
neatly into everything we have so far talked about because it is relatively easy
to use K-Briefs as cases in a case base. If we define a proper case representation
such that it is easy to structure and record cases, we can create a large case base
consisting of previous situations and problems. Whether or not Aker Solutions
has need for a CBR-system can be debated, but I think it seems like a very
useful technology/methodology which has many potential applications in any
large, knowledge-intensive company where similar situations or problems recur
over time. CBR could be a great tool to have on its own, even without combining
it with the other mentioned technologies. However, there exist some interesting
possibilities if we should try to do this: it certainly seems like an exiting feature
to have a context-aware application that that uses context to automatically
suggest relevant K-Briefs from a case base.

An argument that can be made against implementing CBR is that it might
be redundant to some degree if we already have a context-aware system that
understands the user’s context and recommends K-Briefs that correspond to this
context. We can make a counter-argument to this, though: if we have a context-
aware system that recommends relevant K-Briefs, we have already implemented
the ”retrieve”-phase of the CBR cycle. It is not necessarily such a large task to
implement the rest of the CBR-cycle. And consider another scenario, where we
are starting to solve a completely new problem. We structure and formulate our
new problem such that it fits into our case-representation schema. Would it not
be great to automatically discover that there are several cases that show some
degree of similarity, and contain partial solutions that we can reuse? Depending
on the complexity of the CBR-system, the system might even suggest a solution
to our new problem by utilizing these past cases.

Throughout this report, I have made the assumption that if CBR is imple-
mented, K-Briefs should be used as cases. In retrospect, this might seem like
a slightly forced effort, just to make CBR fit into the palette of technologies
that I have discussed. We should consider the option to implement CBR as a
completely new system, where the case representation format does not depend
on any existing formats like K-Briefs. This is not to say that we cannot use K-
Briefs or A3s as an inspiration for how the knowledge contained in a case could
be presented. We should also keep the LEAP-architecture in mind. Utilizing
context-aware applications, ontologies and semantic reasoning in combination

98 CHAPTER 11. DISCUSSION

with CBR still sounds exiting. It’s just that, for CBR, we might use a better
case representation than just a K-Brief. We could define a more detailed case
representation schema, and relate each case to a K-Brief, for example. We just
have to keep in mind the added complexity of this approach.

11.4 K-Brief Recommender

Something interesting that I have been able to test out is the ability to search
directly in K-Briefs (represented in rich document formats such as pdf, doc or
other formats), without having to go the route of creating relational database
that keeps track of K-Briefs and the key content contained in them. This way,
the search is directly related to the knowledge stored in the K-Briefs. We are
therefore not dependent on storing the K-Briefs in an intermediate location,
where there is some possibility of K-Briefs/cases being stored with incorrect
or insufficient metadata because of human error. So, as long as we have a
few important key words, and we know that all K-Briefs are structured in a
similar way, containing some key identifiers like authors, project number, model
number (in KBE cases) and a description of the topic, we can easily find relevant
K-Briefs/cases. If we want to use relational databases for K-Briefs, this is of
course possible. One of the technologies that I tested (Tika) could read data
from K-Briefs and store it in an RDMS-system if that was our wish, but with
the current volume of K-Briefs, using Lucene to index and search these K-Briefs
yield both fast and relevant results.

Chapter 12

Results and Conclusion

While working on my thesis, I have explored several technological domains, and
attempted to see if they could be used in an engineering context. In this chapter,
I will list what I perceive as the main results of my research:

• Context-aware computing is an exiting field of research, with many pos-
sible applications. Most of the research in this field is done with mobile
devices and pervasive computing environments in mind, but we can also
apply some of the principles of this field into a business or engineering
environment. Using context-aware applications and semantic reasoning
for engineering tasks allows the application to understand what the user
is trying to accomplish, and the application can help make the user’s task
easier by providing information or help that is relevant to the task.

• I have discussed two different knowledge representation formats: Interac-
tive Documents and K-Briefs. While both of the formats have their ad-
vantages, the Interactive Document needs both further adaptations and
the establishment of additional infrastructure to be viable. K-Briefs are
already being implemented, and they show potential to become great in-
formation carriers within large, knowledge-intensive companies like Aker
Solutions.

• I have studied Case Based Reasoning, which seems like a very useful
methodology for large, knowledge-intensive companies. The problem-
solving capabilities of CBR also go beyond simple engineering or design

99

100 CHAPTER 12. RESULTS AND CONCLUSION

tasks. While KBE is used to successfully automate routine design oper-
ations by using simple rules, CBR can be applied to high-level problem
solving and decision making.

• I have successfully made an application, the K-Brief Recommender, that
is able to search rich documents, using only open-source technology. This
can be used as a baseline for a potential CBR-system (the application
implements the retrieve phase of the CBR cycle). The idea behind this
is that we could use K-Briefs as cases in a CBR-application, and K-Briefs
are usually created using rich document formats. This could also poten-
tially be combined with context-aware features, where the application au-
tomatically recommends K-Briefs that seem relevant to the user’s current
context.

Bibliography

[1] B. Schilit, N. Adams, and R. Want: Context-aware Computing applications

[2] Reto Krummenacher, Thomas Strang: Ontology-Based Context Modeling

[3] Andreas Zimmermann, Andreas Lorenz, and Reinhard Oppermann: An Op-
erational Definition of Context

[4] Matthias Baldauf, Schahram Dustdar and Florian Rosenberg: A Survey on
Context-Aware Systems

[5] Harry Chen, Tim Finin and Anupam Joshi: An Ontology for Context-Aware
Pervasive Computing Environments

[6] CoDAMoS Web Page:
https://distrinet.cs.kuleuven.be/projects/CoDAMoS/

[7] Tao Gu, Hung Keng Pung, Da Quing Zhang: A Middleware for building
Context-Aware Mobile Services

[8] Geir Iversen, Gabriela Rutkowska, Kjetil Kristensen: LinkedDesign D9.1:
Definition of Concepts and Requirements

[9] Osmund Chandra Maheswaran: Prototyping Data-, Information- and
Knowledge Visualization

[10] Geir Iversen, Gabriela Rutkowska, Oluf Tonning, Simone Parotta, Kjetil
Kristensen, Mozhgan Tavakolifard, Patrick Klein: LinkedDesign D9.2: Pro-
totypical knowledge integration between CAx and KBE systems

[11] Wikipedia article on Ontology:
http://en.wikipedia.org/wiki/Ontology

101

https://distrinet.cs.kuleuven.be/projects/CoDAMoS/
http://en.wikipedia.org/wiki/Ontology

102 BIBLIOGRAPHY

[12] Wikipedia article on ontologies in information sciences// http://en.

wikipedia.org/wiki/Ontology_(information_science)

[13] http://www.fao.org/countryprofiles/geoinfo/en/

[14] Wikipedia article on the Web Ontology Language (OWL): http://en.

wikipedia.org/wiki/Web_Ontology_Language

[15] Xiao Hang Wang, Tao Gu, Da Quing Zhang, Hung Keng Pung:
Ontology Based Context Reasoning Using OWL

[16] Michel Triana: Ontology...what?
http://micheltriana.com/2012/01/20/ontology-what/

[17] Kjetil Kristensen: Collaboration

[18] LinkedDesign Deliverable 3.2: The LinkedDesign Semantic Model

[19] Julie Main, Tharam Dillon and Simon Shiu: A Tutorial on Case-Based
Reasoning

[20] Christiane Gresse von Wangenheim: Case-Based Reasoning - A Short In-
troduction

[21] Case-Based Reasoning wiki:
http://cbrwiki.fdi.ucm.es/mediawiki/index.php/Main_Page

[22] Agnar Aamodt and Enric Plaza: Case-Based Reasoning: Foundational Is-
sues, Methodological Variations and System Approaches

[23] Wikipedia page on Case-Based Reasoning:
http://en.wikipedia.org/wiki/Case-based_reasoning

[24] Apache Tika website
https://tika.apache.org/1.3/formats.html

[25] IKVM website
http://www.ikvm.net

[26] Bug squash blog-entry by Mauricio Scheffer:
http://bugsquash.blogspot.no/2009/10/untangling-mess-solr-solrnet-nhibernate.

html

http://en.wikipedia.org/wiki/Ontology_(information_science)
http://en.wikipedia.org/wiki/Ontology_(information_science)
http://www.fao.org/countryprofiles/geoinfo/en/
http://en.wikipedia.org/wiki/Web_Ontology_Language
http://en.wikipedia.org/wiki/Web_Ontology_Language
http://micheltriana.com/2012/01/20/ontology-what/
http://cbrwiki.fdi.ucm.es/mediawiki/index.php/Main_Page
http://en.wikipedia.org/wiki/Case-based_reasoning
https://tika.apache.org/1.3/formats.html
http://www.ikvm.net
http://bugsquash.blogspot.no/2009/10/untangling-mess-solr-solrnet-nhibernate.html
http://bugsquash.blogspot.no/2009/10/untangling-mess-solr-solrnet-nhibernate.html

Appendix A

The Interactive
Document

In this section I will show an example of how an Interactive Document could
be implemented. The illustrations provided here are simple GUI mock-ups.
I will use a constructional node (or ”joint”) as a case. Simply put, a node
is where beams, columns and braces in a construction meet, and forces are
transfered.

103

104 APPENDIX A. THE INTERACTIVE DOCUMENT

A.1 Tab 1 - General

Figure A.1: Caption

A.1. TAB 1 - GENERAL 105

The general tab includes some general information about the model. The name
of the node is provided, together with the standard used to design it, the node
type, as well as the configuration. The general tab contains space for adding
notes so that the user can inform other engineers about choices that have been
made, about important decisions concerning the design or provide warnings. In
addition, links to previous versions of the interactive document are included,
so that the user can follow the model’s development. A list of changes made
is given in a table, together with the date, the name of the engineer and a
possibility to “rewind” to a previous version. By clicking on “Edit Node”, the
user can close the document and make changes to the node [9][10].

106 APPENDIX A. THE INTERACTIVE DOCUMENT

A.2 Tab 2 - Calculations

Figure A.2: The ”Dimensions” Tab

In the “calculations” tab, the user should be able to find relevant calculations
for the node. The foundations for these calculations are presently Mathcad

A.2. TAB 2 - CALCULATIONS 107

sheets where key values and geometry from the node is used as input, and an
acceptable result is achieved. These inputs and results are shown at the bottom
left of the screen. The Mathcad sheet reflects how a structural engineer would
do calculations according to a given standard (for example NORSOK). If the
user wishes to see how the calculations are done, he/she can press the “Show
Detailed Calculations” button to view the entire Mathcad sheet [9].

If an acceptable result is not achieved, the user should be notified, and informed
about what went wrong. For example, maybe one or more of the checks in the
Mathcad sheet has failed, and the user has to manually modify the geometry of
the node and/or beams to make everything work [9].

There are two other features here not yet mentioned. The first is “Show best-
practice reports”. This feature could link the user to a set of documents relevant
for the entire project, and open the document relevant for this particular type
of node (more about this later) [9].

Next is “FEM Analysis”. This feature could create, run and show a FEM-
analysis of the node. If a FEM-analysis already has been conducted for the
node, the results from this analysis can be fetched and shown to the user.
Here it is also important to keep track of whether the FEM-analysis is up to
date or not. If a previously conducted FEM-analysis does not exist, the user
will have to make a new one. This will have to be done via integrating the
Interactive Document with some kind of FEM-analysis software. This is not
entirely straight-forward, though. One way of solving this could be by using a
“wizard”-approach, where the user is guided through the necessary steps. First
you need to properly export the model of the node to a program with FEM-
analysis capabilities, like Genie, and do the analysis using this program. Results
can of course be studied in Genie, but it should also be possible to save it and
review it later without having to open Genie again. To accomplish this, the
results of the analysis will have to be saved in a format that can be viewed in
the interactive document [9].

Below are a couple of screenshots from the Mathcad sheet for a certain type of
node:

108 APPENDIX A. THE INTERACTIVE DOCUMENT

Figure A.3: MathCAD document, technical figure [9]

A.2. TAB 2 - CALCULATIONS 109

Figure A.4: Input parameters for the MathCAD sheet [9]

110 APPENDIX A. THE INTERACTIVE DOCUMENT

Figure A.5: Some of the calculations performed [9]

A.2. TAB 2 - CALCULATIONS 111

Figure A.6: Summary of key results for the MathCAD calculations [9]

Note: KbeJOINT

112 APPENDIX A. THE INTERACTIVE DOCUMENT

A.3 Tab 3 - Node Class

Figure A.7: The ”Node Class” Tab [9]

The intention for this screen was for it to display some quick facts about the node
class for the selected node, and how it is put together via a certain configuration

A.3. TAB 3 - NODE CLASS 113

(more on this later in the text). Constraints governing available node classes
are also shown. The point of all this is to have a quick and easily accessible way
of displaying why the node is of one class and not the other. What is shown
here are the qualitative properties of the node. The “More Info” and “Show
Constraint Info” buttons link to files in the documentation collection mentioned
earlier. Using these buttons the user can read more about node types, standards
used for the project, or other constraints that might be relevant [9].

114 APPENDIX A. THE INTERACTIVE DOCUMENT

A.4 Tab 4 - Source Code

Figure A.8: The ”Source Code” Tab [9]

The purpose of this screen is to show how the node is represented in AML. In
the top window, the user can see where the class belongs in the class hierarchy.

A.4. TAB 4 - SOURCE CODE 115

The user is free to navigate this hierarchy, and view the code for any class.
This allows the user to see the code in context, and understand any relevant
superclasses or subclasses. The bottom window shows the code for the class
selected. Note that what is shown in this window is the code for this particular
class, not this particular instance. Viewing the code for a particular instance of
a node is already possible in various KBeDesign applications, via the “inspect”
feature. However, I didn’t see any problems with also including this feature
here, so it could be available via the “Inspect Instance”-button, found at the
bottom left of the screen. This will point the user to the code for the particular
node he/she selected when he/she opened the interactive document. The last
thing that needs to be mentioned here is the “Run Test”-button. This allows
the user to run a test using AUnit to verify that the code presented to him/her
works as intended [9].

116 APPENDIX A. THE INTERACTIVE DOCUMENT

A.5 Tab 5 - Members

Figure A.9: The ”Members” Tab [9]

This screen shows all beams, columns and braces (in other words, all the mem-
bers) connected to the node. For each member, relevant information and speci-

A.5. TAB 5 - MEMBERS 117

fications are shown. Information about each beam could give the user an idea of
how the node will behave as a whole. It could be useful for navigating through
a construction and being able to see how everything is connected [9].

118 APPENDIX A. THE INTERACTIVE DOCUMENT

A.6 Tab 6 - Dimensions

Figure A.10: The ”Dimensions” Tab [9]

A.6. TAB 6 - DIMENSIONS 119

In the Dimensions tab, the user is able to inspect geometrical aspects of the
node and get an explanation for why each dimensional property has a certain
value. Selecting a dimension from one of the tables will highlight the dimension
in the table’s corresponding figure.

The Dimensions tab will have slightly different layouts depending on the class
of the node we are looking at. This is because the number of beams, braces and
columns may vary between various node classes, and each of these members
may have different sections. Therefore, the kind of information we wish to see
in the Dimensions tab will vary between node classes.

Notice that the Dimensions-tab has three sub-tabs. The dimensions of the node
will be divided among these sub-tabs.

The Rule ID’s are hyperlinks. When we click them, we are shown a description
of the given rule. For example, if we click the Rule ID for Member Horizontal
Clear Distance, the following window appears:

120 APPENDIX A. THE INTERACTIVE DOCUMENT

Figure A.11: Rule Explanation of ”Horizontal Clear Distance” [9]

A.6. TAB 6 - DIMENSIONS 121

Similarly, if we click the rule for “Gusset Plate Thickness”, the following window
appears:

122 APPENDIX A. THE INTERACTIVE DOCUMENT

Figure A.12: Rule explanation of ”Gusset Plate Thickness” [9]

A.7. PROJECT DOCUMENTATION 123

These windows could possibly be incorporated into the Project Documentation
mentioned in the next section.

In both of the example screens describing geometric rules used by KBeDesign,
there is a link to a “source document”. This is the documentation where these
rules are found. The example screens shown here are simplified figures showing
only one rule each, so the user doesn’t have to be confused with a huge figure
containing loads of information.

A.7 Project Documentation

I think it would be a nice feature, in any KBeDesign application, to be able to
quickly and easily view any relevant document that might answer questions or
clarify any issues that the user might be wondering about. Exploring this kind
of documentation could also have a preventive or precautionary effect for the
user, so that he/she will not make design decisions that are not proper for a
given project.

The document collection could look like this:

124 APPENDIX A. THE INTERACTIVE DOCUMENT

Figure A.13: The ”Project Documentation” Tab [9]

It very much resembles any “help”-window, for better or worse. The hierarchi-
cal layout helps separating between projects and important topics within each
project.

Appendix B

Example K-Briefs

125

126 APPENDIX B. EXAMPLE K-BRIEFS

Figure B.1: K-Brief, Node [10]

127

Figure B.2: K-Brief, Fabricated Node [10]

	Acknowledgements
	Abstract
	Introduction
	Reader's Guide
	Knowledge Based Engineering
	AkerSolutions
	KBeDesign
	AML - Adaptive Modeling Language
	Applications of Knowledge Based Engineering
	LinkedDesign

	Problem Description
	Knowledge Visualization in Aker Solutions
	Context-sensitive help

	Context-Aware Computing
	Introduction
	Definition of "Context" in Computer Science
	Definition
	Context Categories

	Shared Contexts
	Example: Applying the Definition
	A comment on the Definition of Context from contextarticle1
	State of the art
	Context Models
	Existing Applications of Context-Aware Computing
	Discussion

	How can we visualize knowledge?
	The Interactive Document (Node Example)
	Implementation
	Prototype
	Alternative interpretation of the Interactive Document

	Knowledge Briefs
	Process Template
	Technical Knowledge Template
	Example K-Brief
	Implementation

	Addition of Context-Aware Elements
	Interactive Documents
	K-Briefs

	Comparison: Interactive Documents and K-briefs
	Value Added from the Interactive Document
	Value Added from K-Briefs
	User-friendliness
	Implementation
	Conclusion

	Context Structuring and Modeling
	Ontology Crash Course
	The Basics
	Web Ontology Language (OWL)

	Ontology Models
	Example Ontology-based Context Models
	Context-Driven Information Access inAker Solutions

	Identifying Context

	Information Location and Mapping
	Semantic Reasoning
	What is semantic reasoning?
	Example Application: CONON
	Performance (CONON)

	Aker Solutions Use Case
	Architecture
	LEAP Architecture

	Interactive Document Data Sources
	Node Classification
	Calculations
	Node- and beam attributes
	Rules
	Source Code
	AML vs PDMS

	Case-Based Reasoning
	Introduction
	The CBR-Cycle
	Case Representation
	Similarity Measures (Retrieval Phase)
	Nearest Neighbor Retrieval
	Inductive Approaches
	Knowledge Guided Approaches
	Validated Retrieval

	When should CBR be used?
	Why use CBR?
	State of the Art
	Existing CBR-applications

	How does CBR apply to Aker Solutions and KBeDesign?
	Case Representation Using K-Briefs

	Related Work
	Prototypes
	Interactive Document UI Prototype
	K-Brief Retriever
	Lucene.Net
	Tika
	IKVM
	How the application works
	Alternative technologies for future research
	Comparison Between Baseline and existing CBR systems
	How does this relate to context-aware computing and/or CBR?

	Discussion
	KBE and Context-Aware Computing
	Knowledge Visualization and Representation
	CBR
	K-Brief Recommender

	Results and Conclusion
	The Interactive Document
	Tab 1 - General
	Tab 2 - Calculations
	Tab 3 - Node Class
	Tab 4 - Source Code
	Tab 5 - Members
	Tab 6 - Dimensions
	Project Documentation

	Example K-Briefs

