
MGiNX - Creating a modern platform for
managing email delivery

Author(s)
Tobias Lønnerød Madsen

Ernst Thomas Kvadsheim Sem-Jacobsen

Bachelor of Science in Engineering - Computer Science
20 ECTS

Department of Computer Science and Media Technology
Norwegian University of Science and Technology,

18.05.2016

Supervisor(s) Frode Haug

MGiNX - Creating a modern platform for managing email delivery

Sammendrag av Bacheloroppgaven

Tittel: MGiNX - Creating a modern platform for managing email
delivery

Dato: 18.05.2016

Deltakere: Tobias Lønnerød Madsen
Ernst Thomas Kvadsheim Sem-Jacobsen

Veiledere: Frode Haug

Oppdragsgiver: Norwegian University of Science and Technology

Kontaktperson: Consignor AS v/ Øystein Ranvik & Bjørn E. Pedersen

Nøkkelord: ASP.NET, Postgres, Epost, Tilbakemelding, IMT
Antall sider: 127
Antall vedlegg: 16
Tilgjengelighet: Åpen

Sammendrag: Denne oppgaven omhandler utviklingen av en epost-
motor, som har ansvaret for å informere mottakere av
pakker om oppdateringer, samt å hente inn tilbakemeld-
ing fra mottakere. Disse epostene og tilbakemeldings-
skjemaene kan enkelt justeres av aktøren, som også har
muliughet til å endre grafisk profil, bruke flere språk basert
på pakke mottaker med mer. Oppgaven dekker alle as-
pekter fra design og implementasjon, til distribusjon og
testing.

i

MGiNX - Creating a modern platform for managing email delivery

Summary of Graduate Project

Title: MGiNX - Creating a modern platform for managing email
delivery

Date: 18.05.2016

Authors: Tobias Lønnerød Madsen
Ernst Thomas Kvadsheim Sem-Jacobsen

Supervisor: Frode Haug

Employer: Norwegian University of Science and Technology

Contact Person: Consignor AS v/ Øystein Ranvik & Bjørn E. Pedersen

Keywords: ASP.NET, Postgres, Email, Survey, IMT
Pages: 127
Attachments: 16
Availability: Open

Abstract: This thesis is about creating an email engine for sending
shipment updates to receivers using a user-defined email
configuration with optional survey delivery. The email
configuration should be easily adjusted by the actor, and
provide tools for managing languages and branding op-
tions. The thesis will describe all parts of the system, from
design to implementation to deployment and testing.

ii

MGiNX - Creating a modern platform for managing email delivery

Preface

First of we would like to give a big thanks to Consignor for providing us with the op-
portunity to work on this project. In addition we thank Bjørn E. Pedersen and Øystein
Ranvik who represented Consignor during the project, and have been very forthcoming
with us.

We would also like to thank our supervisor Frode Haug who have been with us on this
journey from start to finish. With weekly meetings Frode has always been available if we
had any problems, and even if we had nothing important to say it was still nice to take
a break from work and have a chat.

Finally I, Thomas, want to give a special thanks to Tobias for allowing me to be a part of
this project and sticking with me to the very end. This has been an amazing experience,
and Tobias has been an awesome partner who I’ve learned a lot from over the last few
months we’ve spent together.

iii

MGiNX - Creating a modern platform for managing email delivery

Contents

Preface . iii
Contents . iv
List of Figures . vii
1 Introduction . 1

1.1 Introduction . 1
1.1.1 Field of study . 1
1.1.2 Technical Scope . 1
1.1.3 Project Description . 2

1.2 Project Restrictions . 3
1.3 Target Audience . 4

1.3.1 Application Audience . 4
1.3.2 Report Audience . 5

1.4 Purpose . 5
1.4.1 Why this assignment . 5
1.4.2 Learning Objectives . 5
1.4.3 Impact Objectives . 6
1.4.4 Performance Objectives . 6

1.5 Academic Background . 6
1.6 Roles . 6
1.7 Report Structure . 7

2 Requirements . 9
2.1 Functional Requirements . 9

2.1.1 Use Cases . 9
2.2 Interface With Consignor . 13
2.3 Supplementary Requirements . 15

2.3.1 Deployment Platform . 15
2.3.2 Usability . 15
2.3.3 Compatibility . 15
2.3.4 Language support . 16
2.3.5 Security & Authentication . 16
2.3.6 Documentation and testing . 16
2.3.7 Logging . 17

2.4 Product Backlog . 17
3 Design . 18

3.1 System Architecture . 18

iv

MGiNX - Creating a modern platform for managing email delivery

3.2 Sending Trustworthy Emails . 19
3.2.1 Reverse DNS . 20
3.2.2 SPF . 20
3.2.3 DKIM . 20
3.2.4 Encryption . 21

3.3 Wireframes and frontend planning . 21
3.3.1 Wireframes . 22
3.3.2 Graphical style . 24

3.4 File structure . 25
3.4.1 Application Organization . 25
3.4.2 User Data . 26

4 Implementation . 27
4.1 Tools & Codebase . 27
4.2 ASP.Net Core . 27

4.2.1 Entity 7 ORM . 28
4.2.2 Release Candidate troubles . 28

4.3 Database . 29
4.4 Frontend . 30

4.4.1 Intro . 30
4.4.2 Dashboard . 31
4.4.3 Reports . 32
4.4.4 Email Editor . 32
4.4.5 Survey Editor . 37
4.4.6 Branding . 38
4.4.7 Settings . 39
4.4.8 Survey . 39

4.5 Backend . 40
4.5.1 API Endpoints . 40
4.5.2 Email Engine . 41

5 Testing and Quality Assurance . 44
5.1 Unit Testing . 44

5.1.1 Unit test example . 45
5.2 Component & System Testing . 46
5.3 Acceptance Testing . 47

5.3.1 Compliance Testing . 48
5.4 Swagger . 48

6 Deployment . 50
6.1 Docker . 50

6.1.1 Postgres . 50
6.1.2 nginx Proxy . 51

v

MGiNX - Creating a modern platform for managing email delivery

6.1.3 nginx Let’s Encrypt Companion 51
6.1.4 MGiNX . 51
6.1.5 Swagger UI . 53

6.2 Encryption . 53
6.3 Postfix . 53

7 Conclusion . 55
7.1 Results . 55
7.2 What would we do differently today? . 55
7.3 Further Development . 56
7.4 Group Evaluation . 56
7.5 Conclusion . 57

Bibliography . 58
A Terminology . 61
B Project Description . 63
C Project Agreement . 66
D Group Rules . 69
E Hour Log . 71
F Project Plan . 75
G Meeting Summaries . 91
H Status Reports . 95
I Email Reader Compatability Tests . 100
J NuGet Configuration . 104
K Bower Configuration . 107
L UserController.cs . 109
M UserRepository.cs . 113
N Sprint Log . 117
O Swagger UI . 124
P Project Poster . 126

vi

MGiNX - Creating a modern platform for managing email delivery

List of Figures

1 Scrum Roles. 7

2 Use Case Diagram. 10
3 Sequence Diagram. 14

4 Diagram of system architecture. 18
5 Domain model diagram. 19
6 Wireframe of the landing page. 22
7 Wireframe of the dashboard. 22
8 Wireframe of the email editor. 23
9 Wireframe of the survey editor. 24
10 Wireframe of the survey page. 24
11 Font and color representation. 25
12 Diagram showing file structure of application. 25

13 .Net Architecture Diagram. 28
14 Screenshot of application dashboard. 31
15 Screenshot of report. 32
16 Screenshot of email editor. 33
17 Screenshot of email editor with toolbar and content. 34
18 Screenshots of email editor with and without expanders. 35
19 Screenshot of variable dialog. 37
20 Screenshot of the survey editor. 37
21 Screenshot of branding options. 38
22 Screenshot of application desttings. 39
23 Screenshot of survey page. 40

24 Screenshot of testing tool for emulating shipments. 47
25 Swagger UI Documentation. 49

26 Diagram of host topology. 50

vii

MGiNX - Creating a modern platform for managing email delivery

1 Introduction

1.1 Introduction
Consignor (previously EDI-Soft) is an IT-company headquartered in Oslo who offer so-
lutions that aim to support large and small companies in their delivery management
making it easier, less time consuming and cheaper for them to deliver packages to their
customers. This solution integrates with the client’s existing online ordering system and
assist in printing crucial shipment documents, providing customers a vast carrier library
containing both national and international carriers, calculating and comparing shipment
costs for chosen carriers, alerting customers and carriers of on-going and completed ship-
ment events as well as tracking the status of shipments.

1.1.1 Field of study
Due to the ease of online shopping many people choose to go online to satisfy their
consumer needs, as anything can be bought and delivered straight to your home with
just the press of a button. Retailers have acknowledged that the user experience is a
crucial part of the transaction, hence a lot of resources have been spent to improve the
online shopping experience, and there exists a lot of good solutions here today. However,
during the transaction there is a disconnect between retailer and customer. For retailers
the transaction is completed once the carrier collects the package, but for the customer
the shipment phase takes up the majority of the transaction. During this phase there are
a lot of factors that impact the overall customer satisfaction that the retailer has little
to no control over once the package has been dispatched, and some they might even be
unaware of. This link between the retailer and customer is one of the challenges we will
attempt to provide a solution for with this project.

1.1.2 Technical Scope
As previously mentioned Consignor specializes in developing delivery management soft-
ware, with one of the components, the email editor, being somewhat underdeveloped. The
email editor is used to define the contents of emails sent to package receivers through
simple text boxes, and optional checkboxes which adds additional shipment specific data.
This solution is easy to use, but suffers from limited functionality. It currently doesn’t
offer any capabilities in terms of altering the layout or design of generated emails, re-
sulting in purely text based emails. This means users are unable to customize the service
to suit their setting, and as a consequence of this the customer experience appears im-
personal. Their current solution also lacks any sort of sender receiver communication
channel, therefore offering very little insight into how their delivery management deci-
sions impact their customers.

Over the course of this project we will develop an email editor that builds on the ideas
of their existing editor, as well as expanding on it to reflect the current market needs.
This will be implemented as a web application using modern web development practices.

1

MGiNX - Creating a modern platform for managing email delivery

A back-end Web API using RESTful practices will also be developed to handle commu-
nication with the web application, storing user data in addition to handling the creation
and relaying of emails.

1.1.3 Project Description
The application we have been tasked by Consignor to develop will consist of four main
components.

1. Email Editor: Used to easily customize email content and layout
2. Email Engine: Used to inflate email configurations with relevant information
3. Survey Editor: Used to configure surveys to be sent to receivers
4. Report: Used to display statistics and survey results

The following section will go into more detail on each of these components.

Email Editor

The email editor will provide users with predefined templates which all offer a unique
layout and design which can be used as is, or modified to better suit the individual cus-
tomers needs. Users with a more technical background will also be able to create these
templates from scratch by feeding the engine premade HTML configurations, as well as
tweaking the HTML of existing templates. Using a non-technical interface the editor
should be easy to use, and allow users to customize templates by adding or removing
text fields, images, links, attachments and tokens. Tokens are placeholder elements that
represent variables specific to each shipment, and can therefore not be added as static
elements. Instead, these will be populated with appropriate data by the email engine,
some examples of tokens are estimated arrival date, receiver name and receiver address.
Finally, the user can change the color palette for each template to better blend with the
companies branding.

Emails will be sent on a per event basis. The editor is therefore split into a set of shipment
events. The events available to the sender will be defined by Consignor at a later stage,
but for the purpose of this project we have been given three examples we can work with:
shipment sent, arrived and picked up. Receivers require different information at each
event, so an email configuration will be saved for each event. The system will also keep
track of several languages, with one configuration per language. When adding a new
language you should at all times be able to copy the text, images and layout from a
different language and event configuration.

Email Engine

The email engine should be implemented as a webservice, and is notified by Consignors
system when a shipment has reached certain events. Based on the event an email will
be generated using a customized configuration based on the actor, event and language.
The engine will take care of all details in creating the email, including adding static or
dynamic attachments, inflating tokens with data, and logging system data. The email
engine should send emails on behalf of the user, and as such the system will need to get
the required configuration from Consignor. To prevent the server in question from being
blacklisted as spam, the system will occasionally have to check DNS records, to see if the

2

MGiNX - Creating a modern platform for managing email delivery

required SPF (Sender Policy Framework) records are up to date and allows the system
to send emails on behalf of the user. If the SPF records are not found, an error message
should appear. We may also have to fall back to using an in-house sender email to ensure
service availability.

Survey Editor

The editor will allow users to add up to 10 questions for each configuration, this limit
is added to ensure that surveys do not appear overwhelming. Furthermore, questions
will primarily be using a rating system from 1 to 5, however a text option should also
be available for users who believe a more detailed answer is fitting. Similar to emails,
surveys will also keep track of configurations on a per language basis.

Consignor takes the approach that receivers are generally not very fond of taking part
in surveys, and therefore wants surveys to be quick and easy to complete. To accomplish
this surveys should be made using responsive web design, with a simplistic layout.

Report

The report will provide users with statistics over the average survey rating and total
surveys answered each month. There should also be a list of all survey answers, which
users can order by location, carrier, language and so on, making it considerably easier
to identify outliers in their delivery management. Ultimately this should function as a
continuous feedback loop for users, alerting them of what they can improve on in the
future, in addition to knowing which carriers perform better in what area.

1.2 Project Restrictions
Project restrictions manifested themselves primarily in two ways, through project man-
agement as well as design and implementation decisions made during development. In the
next section we will discuss our project management process and some of the restrictions
that stem from our choices, as well as technical restrictions.

Project Management

When looking at what development methodology to follow it was quickly revealed that
an agile approach was more suitable than a plan driven one. This was due to time restric-
tions, the need for a working prototype at the end of the semester and most importantly
the agile willingness, and ability, to accommodate for changing requirements. This was
important, as even though the core functionality of our project is set, uncertainty lies in
how these are developed in addition to requirements beyond Consignor’s initial vision.

Scrum was chosen due to its focus on a structured work-flow, as well as Consignor’s previ-
ous experience with Scrum in the workplace, a process Tobias has previously been a part
of. By following the Scrum methodology every sprint will result in a working increment of
the final product which will be used during meetings with both supervisor and Consignor
to provide a status report. This will benefit the team greatly as it gives a more accurate
representation of how the team is performing. This, however, caused problems when we
started writing the bachelor report. The report is structured with a plan-driven process
in mind, forcing us to adapt our experience with Scrum to suit the given report structure.

3

MGiNX - Creating a modern platform for managing email delivery

For our configuration of Scrum we will be following a two week sprint cycle. Workdays
will be from Monday to Friday at NTNU in Gjøvik from 10:00 to 17:00, the exception
being Fridays when the workday will start at 12:00 due to additional classes.

Every sprint will end in a meeting with Consignor, combining both the sprint planning
and sprint review meeting. During these meetings we will provide Consignor with a short
demo of the current iteration of the project. This gives them a clear understanding of
the current status of the project, as well as an opportunity to give continuous feedback
on the direction they want to go moving forward. The rest of the meeting is used to plan
what should be included in the next iteration, and hence what should be developed over
the course of the next sprint.

From Consignor we were given our own room, including the option to work at their head-
quarters in Oslo for the duration of the bachelor project. Even though this would give us
a permanent workplace we decided to decline the offer, as the time lost from the daily
commute would outweigh the benefits.

We planned to meet with the supervisor every week on Tuesdays at 13:30 to review the
project status and make sure the team is working at a steady pace so as to not fall behind.
As we get further into development meetings with the supervisor became less frequent
as the team got more organized, and the need for weekly status reports was reduced.

Technical Restrictions

1. Our system is unaware of any data related to package transactions, and will there-
fore rely on Consignor’s existing system to provide updates to a package shipment
status.

2. Our system is to provide a webpage in which receivers can provide feedback on
their experience with the sender and transactions between them. This feedback
page will be provided through e-mail, and as per Consignor’s request, this webpage
is required to be responsive as to accommodate both desktop and mobile devices.

3. We will not be doing any work to integrate with Consignors existing software.
However, we will be using sample data and examples of configurations provided by
Consignor for testing purposes to make the system as compliant as possible, for an
easier integration at a later point.

4. The front-end will be developed using HTML5 and Twitter Bootstrap, and will
therefore aim at supporting newer versions of Chrome, Firefox, Internet Explorer,
Safari and Microsoft Edge.

1.3 Target Audience
1.3.1 Application Audience
The application has two separate audiences, one for the receiver-oriented email and sur-
vey components, and another for the dashboard, email and survey editor components.
Consignor is not limited to Norwegian customers, making the product aimed at an in-
ternational audience.

4

MGiNX - Creating a modern platform for managing email delivery

Email & Survey

The consumers for these components are shipment receivers. They are non-technical
end-users, and often on small mobile devices. As such, the UI needs to be intuitive and
responsive.

Dashboard, Email Editor & Survey editor

The consumers for these components are shipment senders and are bound to desktop
computers. They range from light users with a non-technical skillset, to power users with
a background in computers who can fully utilize the more complex features of the editors.

1.3.2 Report Audience
The report primarily targets the examiner and our supervisor, but also fellow students
and developers who can use this report as a learning tool for their own bachelor project,
as well as personal projects. The report will give readers insight into how we developed
the final product, detailing our work process, design choices as well as implementation
and deployment of the finished product. The report assumes the reader has at least a
basic understanding of computer science, and is written with this in mind. The report
is written in English, this felt the most natural to the team due to the fact that a lot of
technical words do not have a Norwegian counterpart, and the ones that do, often sound
bizarre. This should help the report appear more fluid, as well as making it available to
a broader audience.

1.4 Purpose
1.4.1 Why this assignment
With Tobias already having done an internship-like summer with Consignor, Tobias ar-
ranged for Consignor to write this project proposal so that he would get relevant experi-
ence in the development environment of choice at Consignor. The project proposal is very
interesting in the rapidly expanding field of informatics in logistics, so getting Thomas
on board was no problem. The project also lets us make a lot of our own choices for im-
plementing and fulfilling the requirements, and involves on a lot of different technologies,
allowing us to involve ourselves in the entire stack. The reasoning behind developing
from scratch instead of adapting existing products was because Consignor required a
great deal of flexibility and customization for actors in the software, as well as being able
to accept Consignor-generated shipment data. If we were to adapt existing products, the
end result would be messy and too loosely coupled.

Prior to development we were given the task by Consignor to name the software we were
going to develop. The name we ultimately stuck with was MGiNX, short for Mail engine
X, which sadly got slightly confusing later in development once we started using nginx [1]
in our project.

1.4.2 Learning Objectives
For this project, we aim to gain knowledge in a number of fields and technologies. Some
of them being:

1. ASP.Net Core Technologies using WebAPI

5

MGiNX - Creating a modern platform for managing email delivery

2. Web technologies for creating responsive applications
3. Scrum Software Methodology
4. System Architecture using RESTful practices and API driven web architecture
5. Project planning and execution

1.4.3 Impact Objectives
Provide Consignor with a proof of concept software that can be easily integrated with
their existing system, and is designed to provide clients of Consignor with a system in
which they can customize their user experience to suit their needs.

1.4.4 Performance Objectives
Considering the growing market of logistics software and a need for adaptability for users,
we aim to fulfill the following performance objectives:

1. Create a easily extensible and maintainable system
2. Create a scalable and robust system
3. Give more control to senders surrounding branding and communications with re-

ceivers of shipments
4. Collect and display relevant statistics regarding communications with receivers and

receiver happiness and satisfaction

1.5 Academic Background
Over the last three years both team members have studied a bachelor in computer science
at NTNU in Gjøvik. This has given us a breath of knowledge within a multitude of
languages and technologies, such as C++, Java, SQL databases, scripting as well as
plan-based and agile methodologies and practices. Through optional courses we each
have our unique and valuable experiences and ideas. From courses like Object-Oriented
Software Development, Thomas has gotten a more thorough understanding of how and
when architecture and design patterns should be used. In addition, the course provided an
in-depth view and analysis of available development tools and their uses, providing a great
toolbox for the bachelor project. Especially useful for Tobias was a Human Computer
Interaction course, which focused on creating user friendly experiences throughout entire
applications. Both team members have experience making websites and web applications,
using a plethora of frameworks and libraries such as knockout.js, JQuery, Foundation 5
and Bootstrap just to mention a few.

1.6 Roles
Early in the planning phase we divided roles and responsibilities into two separate cat-
egories, the once covered by Scrum and those specific to us as bachelor students. The
following graphic shows how these roles were delegated.

6

MGiNX - Creating a modern platform for managing email delivery

Figure 1: Scrum Roles.

The role of team leader and Scrum master was given to Tobias, since he had worked
at Consignor over the course of the previous summer. This opportunity gave him in-
sight into Consignors work-flow, and more specifically how their configuration of Scrum
worked. Tobias’ weekly responsibilities involved scheduling meetings with Consignor,
writing meeting summaries and managing the weekly docker builds. As Scrum Master
he also took on some of the responsibilities of the product owner, such as managing the
product backlog. This was done due to our desire to be more self organizing, and not
rely too heavily on Consignor during the individual sprints.

Thomas acted as a standard team member, with a few additional administrative tasks.
This included booking weekly rooms at NTNU in Gjøvik to ensure the team always had
a private workplace so as to not be disturbed during work hours, managing the weekly
hour log in addition to setting up and maintaining the back-end and the testing frame-
work.

Bjørn E. Pedersen and Øystein Ranvik will be representing Consignor over the course
of this project, expressing their needs and wishes for the final product. As such they
will act as product owners for the duration of this project, and as per our contract are
obligated to be available for consultancy on a bi-weekly basis. They have, however, gone
far beyond their contractual obligation, offering to pay for any licenses as well as travels
costs that we deemed necessary for the completion of the project.

The responsibilities of our supervisor, Frode Haug, fall somewhat outside of the tradi-
tional roles of Scrum, his role was more of a supportive one. He was there to ensure the
team maintained a realistic vision for the final product, in addition to not deviating from
their sprint goals through weekly meetings.

1.7 Report Structure
Introduction Provides the reader with an overview over the project and the team mem-

bers, as well as what our purpose is with this assignment.

Requirements This chapter lists both the functional and supplementary requirements
present in this project. The relation between our system and Consignors exisitng
system is also explained.

Design Describes the early design stage of the process, with visual and technical ideas
and plans.

Implementation Highlights some of the technology we used, and showcases many of the

7

MGiNX - Creating a modern platform for managing email delivery

components of the application.

Testing & Quality Assurance This chapter goes through the different testing methods
used throughout development, as well as other methods used to assure a certain
level of quality.

Deployment Gives a brief overview of what is necessary for server deployment of the
application.

Conclusion Summarizes the report and project, along with some discussion about the
results.

8

MGiNX - Creating a modern platform for managing email delivery

2 Requirements

2.1 Functional Requirements
From the project description provided by Consignor (see appendix B) we made a use case
diagram to clarify and illustrate the activities and actors present in our project. With
the use case diagram as a basis we created a set of use cases, each detailing the func-
tionality within an element of the diagram. These were presented to Consignor and used
to establish the initial functional requirements of the system, later refined and added to
the first iteration of the product backlog.

Through the use of scrum the list of requirements expanded with every sprint, adding
new requirements as well as fleshing out old ones. This process meant that the complete
set of requirements agreed upon towards the end of the final sprint was different from the
initial scope. This was natural as Scrum allows for many small iterations ultimately cul-
minating in a final product, as apposed to a plan-based approach where all requirements
are established during the planning phase. The following chapter is an accumulation of
all requirements established throughout the course of this project. A visualization of the
use cases can be seen in diagram 2.

2.1.1 Use Cases
Even though we are using an agile approach with the Scrum framework, we feel it’s more
fitting for this kind of project to use a more use-case oriented structure rather than user
stories. Our use cases do however resemble the user story format, with a short descrip-
tion and minimal other requirements. This creates a more thorough and richer use case,
describing both the needs of the participating actor, in addition to detailing the steps
needed to complete it.

9

MGiNX - Creating a modern platform for managing email delivery

Figure 2: Use Case Diagram of MGiNX.

Use case [RUC1]: Answer survey
Description: As a receiver I want a web interface in which I can give feedback and rate
the service provided to me by the sender, accessible through both desktop and mobile
devices.
Priority: 8
Pre Conditions:

• A survey must have been configured by sender
• The receiver must have received the package

Standard flow:

1. Receiver receives a link to the survey through email or SMS
2. Receiver clicks the link and is redirected to the survey website
3. Receiver fills out the survey and clicks send

10

MGiNX - Creating a modern platform for managing email delivery

Use case [SUC1]: Generate email
Description: As a sender I want the system to automatically generate emails to receivers
at certain events.
Priority: 10
Pre Conditions:

• A configuration for the specific email event must have been defined

Standard flow:

1. The system receives a notification signaling that a specific shipment has reached
an event

2. The system generates an email based on the configuration and branding of the
specific actor

3. The email is sent to the receiver

Use case [SUC2-1]: Configure email
Description: As a Sender I would like to change the content of a email configuration for
a given event in a given language.
Priority: 10
Pre Conditions:

• SUC7-1 must have been done

Standard flow:

1. User clicks ’Configure Email’ from dashboard
2. User selects event
3. User selects language OR remains on default language configuration
4. User edits email configuration with editor

• User can edit or add text and hyperlinks
• User can format text
• User can insert variables
• User can insert or edit images

5. User clicks save

11

MGiNX - Creating a modern platform for managing email delivery

Use case [SUC2-2]: Use pre-made Configuration
Description: As a Sender I would like to have the system use a pre-made email configu-
ration.
Priority: 6
Pre Conditions:

• SUC7-1 must have been done

Standard flow:

1. User clicks ’Configure Email’ from dashboard
2. User selects event
3. User selects language OR remains on default language configuration
4. User click ’Switch to HTML view’
5. User inserts pre-made configuration
6. User clicks save

Use case [SUC2-3]: Revert Configuration
Description: As a Sender I would like to revert to a previous email configuration.
Priority: 5
Pre Conditions:

• SUC7-1 must have been done

Standard flow:

1. User clicks ’Configure Email’ from dashboard
2. User selects event
3. User selects language OR remains on default language configuration
4. User picks iteration for the ’Previous Iterations’ column
5. User clicks save

Use case [SUC3-1]: Configure survey
Description: As a Sender I would like to create and edit surveys that is to be sent to
users based on language.
Priority: 10
Pre Conditions:

• SUC7-1 must have been done

Standard flow:

1. User clicks ’Configure Survey’ from dashboard
2. User selects language OR remains on default language configuration
3. User deletes or add questions to survey
4. User edits question title and rating method
5. User clicks save

12

MGiNX - Creating a modern platform for managing email delivery

Use case [SUC5-1]: View Survey reports
Description: As a Sender I would like to view reports describing survey results
Priority: 9
Pre Conditions:

• SUC7-1 must have been done

Use case [SUC6-1]: Configure branding
Description: As a Sender I want to be able to add my companies branding, so that it can
be used in emails to the receiver as well as the survey.
Priority: 4 Standard flow:

1. User clicks configure branding
2. user adds a primary and secondary color scheme
3. User adds the company logo
4. User clicks save

Use case [SUC7-1]: System settings
Description: As a Sender I would like to be able to set the sender email address of
outgoing email, as well as be able to set the default email language for all events.
Priority: 10
Pre Conditions:

• DNS have to be configured correctly

Standard flow:

1. User clicks ’Configure System’ from dashboard OR during first-time setup
2. User changes default language from a drop-down list of all registered languages
3. User changes sender email address in the appropriate field
4. System checks DNS records
5. User clicks save

2.2 Interface With Consignor
The final product should be able to function both as part of Consignors environment, as
well as a stand-alone system. This meant that having a clear view of how these systems
were separated in addition to where they intertwined was crucial to success. To achieve
this we made a sequence diagram illustrating the operations required to create and send
an email. When a shipment event occurs our system is notified of this through a JSON
package sent by Consignor, containing all shipment data needed to send an email to the
correct receiver. When MGiNX receives the shipment data, our system will generate an
email, as illustrated in the diagram below.

13

MGiNX - Creating a modern platform for managing email delivery

Figure 3: Sequence Diagram illustrating sending of an email.

In this diagram, ”External System” refers to the part of Consignors system that will
interact with our application. For testing purpose we made a mock up of the external
system to be able to send these packages to our system our self. How this was done will
be discussed in detail in chapter 5: Testing and QA on page 44.

During a planning meeting with Consignor, we were given an example JSON payload,
to get a general idea of what data are available, and how the format of the payloads are
structured. A simplified version of the payload looked like this:

1 {
2 "InstallationID": "000",
3 "ShpNo": "000",
4 "OrderNo": "000",
5 "Addresses": [{
6 "Kind": 1,
7 "Name": "...",
8 "Street": "...",
9 "PostCode": "0000",

10 "City": "...",
11 "Email": "..@..",
12 "CountryCode": "no",
13 }]
14 }

Based on this, our email compiler will parse and navigate the payload based on what
is needed from the email configuration defined for the specific actor, event and ’Coun-
tryCode’. Some of the attribute keys will be simplified in the editor, and we will im-
plement a mapping from easy token names to JSON paths. As an example of this, on
of the editor tokens might be named ”ReceiverName” and mapped to the JSON path
"Addresses[0].Name" when navigating the JSON payload.

14

MGiNX - Creating a modern platform for managing email delivery

2.3 Supplementary Requirements
2.3.1 Deployment Platform
A philosophy we followed closely over the course of this project was that the final prod-
uct should have as few limitations as possible. This included only using freely licensed
libraries, such as MIT and Apache allowing commercial use, an ORM for database op-
erations and finally not being restricted to a single deployment platform. Historically
ASP.Net has been limited to running solely on Windows servers, but with the release of
ASP.Net Core RC1 came the promise of multi-platform support, allowing application to
run on Windows, Linux and OSX servers [2].

2.3.2 Usability
Having been tasked with developing an application partially inspired by Consignors ex-
isting system in which usability was largely lacking made this an important aspect if
we were to provide any value to Consignor. Software developers used to primarily focus
on the functionality offered by the application, with design and usability being more
of an afterthought, if even considered at all. Nowadays, however, the longevity of any
application is heavily rooted in its ease of use, in conjunction with the functionality that
is offered. IBM even as early as in 1981 were aware of this fact, and to this day view
usability with equal importance to functionality [3]. Firstly though we need to define
the term usability, as it can be somewhat vague, and by itself does not offer a lot of
value. Jakob Nielsen divides the term into five components, three of which we will be
looking at: learnability, efficiency and errors. [4]. Learnability refers to how easy it is for
users to accomplish basic tasks the first time they encounter the design. Efficiency refers
to once users have learned the design how quickly can they perform more complicated
tasks. Errors refer to how many errors do users make, how severe are these errors, and
how easily can they recover from user errors?

To address these requirements we used a two part design philosophy. Firstly we wanted
the base functionality to be simplistic and easy to grasp, and secondly offer more complex
tools that if used efficiently provide much greater control over the end result. How we
accomplished this is covered in more detail on chapter 4: Implementation on page 27.
To ensure no data is lost through user error, any changes made to emails and surveys
can be reverted at any time granted the user hasn’t saved changes made to the original
configuration. However, even if the user does end up saving a malformed configuration,
we will be keeping a list of the previous four iterations, allowing users to load these into
the editor as the current configuration.

2.3.3 Compatibility
Compatibility is a major factor when you want your application to be available to as
many people as possible, and our application is no exception. For our project there are
two compatibility issues we will have to address, email readers and browsers.

Browser Compatibility

We were given few requirements when it came to browser compatibility, as long as it
works with most modern browsers. Based on statistical data [5] and software availability,
we set a requirement to support at least the following browsers:

15

MGiNX - Creating a modern platform for managing email delivery

• Chrome
• Internet Explorer 10+
• Firefox

Email Reader Compatibility

As the most important compatibility target, email reader compatibility is a crucial re-
quirement for the project. This way we can ensure the templates we make will work no
matter what. The target clients for testing is primarily the most popular desktop and
web email readers [6], with older Microsoft Outlook clients being one of the toughest
targets to comply with. We ended up thoroughly testing the following clients:

• Microsoft Outlook 2013
• Microsoft Outlook 2003
• Google Gmail
• Yahoo! Mail
• Mozilla Thunderbird

2.3.4 Language support
Consignor operates in Norway, Sweden, Denmark, Finland, China and the United King-
dom, providing Consignor with an international audience. As the target audience is split
into two groups, sender and receiver, there’s an important distinction to make in terms
of what part of the software should be localized for each region.

For this project we will assume that the senders are well versed in English, and will there-
fore not spend any resources towards internationalization of the final product. With the
receivers, however, we can not make such an assumption. Instead, we will leave the
translation up to the individual sender, by providing them with the option to add new
email and survey configurations based on language. Consignor has previously received
complaints about emails using static text elements, resulting in non-English speaking
customers receiving emails partially containing a language they don’t speak. It was
therefore important to not use any static text in neither emails nor surveys, allowing
full customization of all text elements through the editors.

2.3.5 Security & Authentication
Once integrated with Consignors system all authentication will be done through them.
Because of this we chose to not spend a lot of time creating a secure solution, as for the
final product our efforts would be largely wasted and we would like to spend our limited
time elsewhere. We will instead be utilizing cookies for simple authentication purposes.
Through a log in screen users will be able to provide a username, and by doing so will
be given a session id which will be used for all calls to the API to identify the user. As
mentioned this system is in no way secure, however, if Consignor wishes to expand on
this authentication process it should be easy to do so as the entire system is built to
support it.

2.3.6 Documentation and testing
Due to Consignors expressed interest in further developing the software beyond the ini-
tial bachelor period, we decided early on that thorough documentation and broad test

16

MGiNX - Creating a modern platform for managing email delivery

coverage was of high priority. This creates a steady framework for anyone maintaining
or continuing development of the project. To document our code we will be using the
standard for C#, XML documentation [7]. This is created using simple and readable syn-
tax, which the Visual Studio IDE uses to generate documentation with an xml structure.
Below is an example of how one of our controller methods was documented.

1 <summary>
2 Receives a BrandingItem from the body of the request and passes

↪→ it to the repository class, which attempts to add it to
↪→ the database.

3 </summary>
4 <param name="item"> A BrandingItem object converted from Json.
5 </param>
6 <returns>
7 HttpUnauthorized if the given cookie is invalid.
8 HttpNotFound if the item is not found by the repository.
9 CreatedAtRoute if the item was added to the database.

10 </returns>

Documentation in this format alone is not very helpful, but with tools such as Sandcas-
tle [8], recommended by Microsoft [7], this can be compiled into structured documenta-
tion. We will be working towards a 100% documentation coverage of the back-end, as
well as a 100% test coverage of all controller methods.

2.3.7 Logging
In her book Dustin mentions that ”One of the most common ways to increase testability
of an application is to implement a logging mechanism” [9]. Logging provides detailed
descriptions of the processing flow during execution, because of this logging is a great
tool for testers and developers as it heavily reduces time spent on identifying problem
areas.

Using Serilog [10] we will generate daily logs containing messages and exceptions pro-
duced by the runtime, as well as hard coded entries. These entries will be used to detail
which function is currently being executed, the next step to be executed in addition to
the state of any objects used within the function.

2.4 Product Backlog
The product backlog was hosted on Teamwork [11] which we integrated with our version
control system on GitHub [12] such that all elements added to Teamwork also showed up
in our GitHub issue tracker. Consignor was given access to the backlog on Teamwork, so
that they always had full control over what was being developed each sprint. Teamwork
allowed us to easily assign tasks to team members, providing time estimations, short
descriptions of the task as well as the ability to record time spent on each sprint element.
The final version of the product backlog can be viewed in appendix N.

17

MGiNX - Creating a modern platform for managing email delivery

3 Design

3.1 System Architecture
One of the goals of this project was to create a modern and scalable solution. Because of
this we chose to go for completely separated frontend and backend solutions, communi-
cating only via RESTful APIs. This would let a production environment scale different
parts of the application differently based on the needs. Need faster API responses? Add
more application servers. Need faster page loading? Add more web servers.
We initially made this sketch of the system architecture:

Figure 4: Diagram of system architecture.

We followed the design closely during development. For more information on the appli-
cation stack see chapter 4 on page 27, or see chapter 6 on page 50 for more information
on the server stack.

An important part of our design is the segmentation of frontend and backend, and by
following industry standards like RESTful services we can ensure reliability and scalabil-
ity. On of the bigger deviations in our application from a completely RESTful service is
object naming. We have a service endpoint for each interface instead of for each object
(except user).

After careful consideration and several iterations we came up with the following domain
model to suit our needs best:

18

MGiNX - Creating a modern platform for managing email delivery

Figure 5: Domain model diagram.

Using this model has been very helpful during development to solve some of the more
complex data interaction, particularly the functionality around Survey handling. Our
implementation for the survey handling is based on the idea that history should never
be lost, and thus question objects should never be deleted. Because of this, questions
have a GUID based on the question text, and surveys will reference which questions it
includes. Answers then reference a particular question, which always retains the original
text, in addition to an owner. This means even if a user alters a survey, the questions
and answers stay intact.

3.2 Sending Trustworthy Emails
The core of this application is creating and sending emails, however, sending emails that
don’t get caught by a spam filter is non trivial. A number of steps needs to be taken to
ensure the most trustworthy email transmission possible, as described throughout this
chapter.

19

MGiNX - Creating a modern platform for managing email delivery

We have considered two approaches for solving this problem:

Scenario 1: Local MTA Our server acts as MTA and is the origin of sent emails

Scenario 2: Actor MTA The actor sets up his own MTA, on his own server, and grants
the application a login for the MTA.

This chapter is mainly describing scenario #1, as most of the issues described only
matter for the first scenario. The application was designed to support both scenarios,
more details on this in chapter 4.5.2.

3.2.1 Reverse DNS
The server sending the email needs to have a reverse DNS pointer set up to the domain
sending the email. In our case we were planning on creating an application that could
use multiple domains based on the actor, which doesn’t really work with reverse DNS as
it can only point to one domain. However, as long as the domain pointed to is trusted
by the provider it is considered a safe origin for the email.

The reverse DNS is set by the ISP for the server, and in our case it was a matter of
using the server hosts admin panel to set a pointer form the IP address of the server to
’mginx.tobbentm.com’, our test-domain.

3.2.2 SPF
SPF, or Sender Policy Framework, is a DNS pointer defining which origins are allowed
to send emails on behalf of the domain. As defined by RFC7208 [13], the SPF record is
implemented using a specially formatted TXT record. This pointer can set an origin IP
address directly, like we have on our test-domain:

mginx . tobbentm . com TXT ”v=sp f1 ip4 : 1 9 8 . 2 1 1 . 1 1 8 . 1 6 7 ~ a l l ”

Domains can also be set up to allow all the same origins as another domain, and as such
add our test-domain to allow origins for sent emails:

a c to r . example . com TXT ”v=sp f1 inc lude : mginx . tobbentm . com ~ a l l ”

This evaluates to adding all origins allowed by the included domains, to being allowed by
’actor.example.com’. If the actor is using a custom domain in our application, we need
to ensure that the proper SPF records are in place. If the records are not in place, we
may get caught in spam filters or potentially get flagged as a malicious origin and get
placed in blacklists.

3.2.3 DKIM
DKIM, or DomainKeys Identified Mail, is a method of signing emails sent, to ensure no
tampering has been performed on the email. Like with SPF, this is implemented by a spe-
cially formatted TXT entry [14] on a special subdomain called ’{selector}._domainkey’.
The selector can be anything that is a valid domain name, and is used when signing the

20

MGiNX - Creating a modern platform for managing email delivery

email, as a domain may have multiple keys for signing emails. The TXT entry needs to
contain information about the key type, and the public key of the key pair. For example:

s e l e c t o r . _domainkey . mginx . tobbentm . com TXT ”v=DKIM1; k=rsa ;
↪→ p={pub l i c key}”

Then when sending the email we can choose which headers to sign in addition to the
body of the email, and then add the signature as a separate header. We will be signing
the following headers, in addition to the body:

• From
• To
• Subject
• Date

Using the example above, a DKIM signature in our case will look like this:

DKIM−Signature : v=1; a=rsa−sha256 ; d=mginx . tobbentm . com ;
↪→ s=s e l e c t o r ;

c=re l axed / s imple ; t =1460461161; h=from : to : sub j e c t : date ;
bh={s i gna tu r e }

In our testing environment we are using selector ’mginx’.

DKIM is not strictly necessary for passing spam filters, but it is definitively an added
layer of proof, and many services like Googles Gmail, will acknowledge and verify DKIM
signatures in order to further increase trustworthyness.

3.2.4 Encryption
Following standard industry practices [15] we will also encrypt all outgoing email from
the application. We’ll be using standard STARTTLS [16] encryption, using certificates
from Let’s Encrypt [17]. For more information about certificates and encryption, see
chapter 6.2 on page 53.

3.3 Wireframes and frontend planning
At the start of the project we made a set of wireframes to represent the basic functionality
and layout of the application, and came up with the following graphical style.

21

MGiNX - Creating a modern platform for managing email delivery

3.3.1 Wireframes
Landing Page

Figure 6: Wireframe of the landing page.

The landing page is just a simple page with information for receivers who manage to
access the site directly, and a login for existing users. This was made before we came up
with the name for the application.

Dashboard

Figure 7: Wireframe of the dashboard.

The dashboard is a way to show brief statistics about the system and user responses,
and a gateway to the rest of the functionality. This also defines the general layout of the

22

MGiNX - Creating a modern platform for managing email delivery

application, with a SPA-esque navigation pattern and main content in the right panel.
The bottom main panel of the wireframe ended up being a notification tray to give a
general system status. More details on this in chapter 4, section 4.4.2. The real estate
for branding was originally thought to be the actors branding, but was cut to save space
and to enforce a simple design for the application.

Email Configurator (Editor)

Figure 8: Wireframe of the email editor.

This is one of the first email editor concepts we came up with. It includes an easy way to
change language, insert variables, edit the configuration and more. The general principles
behind it made it through development, but was for the most part heavily re-designed.
A lot of the controls were moved to toolbars or moved to a dialog toggled by buttons or
actions. The iterations column was moved to the left hand side, so that the editor itself
would be the centre of attention. Empty states were also added to give context when the
actor did not have a configuration saved. We also added a lot of new functionality like
previewing emails, more complex layout editing and more. For more details, see chap-
ter 4, section 4.4.4.

23

MGiNX - Creating a modern platform for managing email delivery

Survey Configurator (Editor)

Figure 9: Wireframe of the survey editor.

As with the email editor, most of the principles depicted in the wireframe made it through
development, with the notable exception of iterations.

Survey Page

Figure 10: Wireframe of the survey page.

The survey page is a relatively simple page, with injected branding from the actor that
owns the survey, and questions loaded from the most relevant language.

3.3.2 Graphical style
During the first planning meetings with Consignor we were encouraged to follow the
existing styles and patterns of Consignor products. This is part of the reason we planned

24

MGiNX - Creating a modern platform for managing email delivery

on using Bootstrap for layout, with the font Maven Pro and main color #166dbe.

Figure 11: Font and color representation.

During the design phase we got a lot of inspiration from the Consignor Portal product,
in regards to layout, navigation and more.

3.4 File structure
3.4.1 Application Organization
The application itself is organized based on feature, with a couple of root folders for
general features, and a folder for the API with each endpoint in its own folder within.
The endpoint folders have 2 folders each, one for the controllers, and one for all DAL
classes, as illustrated in the following diagram:

Figure 12: Diagram showing file structure of application.

Based on wireframes and requirements, we came up with the following 7 endpoints needed
for the API:

25

MGiNX - Creating a modern platform for managing email delivery

• Branding
• Dashboard
• EmailLayout
• Reports
• Setting
• Survey
• User

There are also some endpoints exposed for testing purposes like creating new shipments.
These are exposed in separate controllers in root folders.

3.4.2 User Data
While most of the user data is stored in the database, there are some files stored on disk
directly. The root of these files are located in ’/app/userdata’. For more details on this
see chapter 6.1.4.

Attachments

Each user will have it’s own folder under the root attachment folder which contains fold-
ers for all events. Each of these folders contains the languages used for the specific event
and user. The language folder is what contains the actual attachments for the given lan-
guage, event and user.

An example of this would look like this:

/app/ userdata / attachments /{ user−id }/{ event−id }/{ language }/ f i l e . ext

Static Resources

Separate from attachments are static resources. This is different from attachments in
that they are linked to the email without being attached. These resources are quasi-
independant from users, events and languages, and are mapped using GUIDs. The path
to these files will be something like this:

/app/ userdata / r e s o u r c e s /{GUID}/ f i l e . ext

26

MGiNX - Creating a modern platform for managing email delivery

4 Implementation

4.1 Tools & Codebase
For developing the application we used the Visual Studio 2015 IDE, the recommended
and most common IDE for .Net projects. This version of Visual Studio support the new
.Net runtime, as well as with packet managers, making project management and build
automation easier.

For backend packet management we used NuGet [18], which ties nicely in to Visual
Studio, and also our server build process. Our complete configuration can be seen in
appendix J. For frontend packet management we used Bower [19]. Our complete config-
uration can be seen in appendix K.

For working together as a team, we used Git [20] as our version control system, with
GitHub [12] as the repository host. As discussed in chapter 2.4, the GitHub repository
got integrated with the Teamwork project to automatically generate issues based on the
backlog.

In terms of size, the codebase ended up being relatively compact:

Backend 68 C# Classes
4703 Lines of code
1027 Lines of comments
64 Unit tests

Frontend 3313 Lines of JavaScript code
2529 Lines of HTML markup
784 Lines of CSS markup

Which goes to show the power of the framework we are using, as discussed in the next
chapter.

4.2 ASP.Net Core
While planning the project we communicated closely with Consignor to determine our
software stack. Consignor is largely a .Net based company, which resonated with us as we
wanted to learn .Net as well. With the new version of ASP.Net just being launched, we
decided to use ASP.Net Core RC1 for this project. Compared to the ’old’ ASP.Net 4.6,
Core is faster and leaner, with support for self hosting on Linux and in Docker contain-
ers. We did hit a few bumps in the road however, as is often the case with early version
release candidates, discussed more in chapter 4.2.2.

The way ASP.Net is structured is illustrated in figure 13, and it is the way we are doing
it as well, with a clear separation of responsibility between controller, repository and

27

MGiNX - Creating a modern platform for managing email delivery

databasecontext. The structure is based on principles from other software patterns like
MVC, where separation of concerns plays a major role in improving code readability and
maintainability.

Figure 13: .Net Architecture Diagram.

An example of our typical controller can be seen in appenix L, and the repository it uses
in appendinx M.

4.2.1 Entity 7 ORM
With a new version of ASP.Net comes a new version of Entity Framework as a ORM.
As with ASP.Net, this is also in a pre-release stage of development. One of the bigger
limitations posed on us is the availability of database connectors. When we started the
project, only two database connectors was officially supported: Microsoft SQL Server
and SQLite. Since we were running our test environment on a Linux host, Microsoft SQL
Server was not relevant. And SQLite by nature is not optimal for our scenario. Luckily,
a third party connector was also in progress, called Npgsql [21]. This connector allows
connections to PostgreSQL [22] databases, which is the best solution at the moment.
PostgreSQL is a highly performant and standards compliant SQL database. It is also
cross platform, running on our chosen operating system, Linux.

The ORM itself supports both code-first and database-first approaches, and we chose
code-first. This means we made all the models for the application, and then created a
custom context class describing the models with keys, relations and values. Then using
Entity Framework, we compiled migrations and ran them on our database to create the
schema.

4.2.2 Release Candidate troubles
When we started the project, RC1 was the newest version of ASP.Net, with RC2 originally
slated for release in mid-march. Most of the issues described here has been solved in RC2,
but unfortunately we are still waiting for the RC2 release with the completion of this
thesis.

Linux Socket Bugs

When using the Core Runtime (CLR), the native socket implementation would sometimes
time out [23], causing particular problems for our Postgres database connector [21]. The
solution to this was manually adding some linux-specific libraries

28

MGiNX - Creating a modern platform for managing email delivery

1 {
2 ...
3 "dependencies": {
4 ...
5 "runtime.linux.System.Net.NetworkInformation":

↪→ "4.1.0-beta-23516",
6 "runtime.unix.System.Net.Security": "4.0.0-beta-23516"
7 }
8 }

As well as replacing the compiled system library ’System.Native.so’ when building our
Docker container (see chapter 6.1.4). The newly compiled version can be found in the
Github issue [23], and has reportedly been fixed in RC2 of .Net Core (still in progress/un-
released).

Kestrel HTTPS Issues

Since we wanted to encrypt the application endpoints we needed HTTPS support in the
web-server. Unfortunately, the built in Kestrel web server in ASP.Net does not support
HTTPS encryption. However, we can get around this by setting up a proxy to encrypt the
backend, and that’s what we did. Using an nginx web server as a proxy with certificates
(see chapter 6.1.2) we successfully encrypted all static content. The API however, was
not working correctly. We would get the content from the controller, but the request
is never closed, and thus times out in our javascript code. This is also reportedly fixed
with RC2, and still a problem for us. As a temporary workaround, we are overriding the
proxy. This issue has been reported on Github [24].

4.3 Database
Since we were able to start this project on a clean slate, we decided to build our database
using a code-first approach. This means we define models and relations using POCOs
(Plain Old C# Object) for models and defining relations using Entity Frameworks Fluent
API [25]. Using the Entity Frameworks tooling, we can then compile a migration to run
on the database to create the schema based on the models and relations we have defined.
The following is an example of one model, in this case for the user:

namespace MGiNX. API . User . Models
{

pub l i c c l a s s UserItem
{

pub l i c i n t Id { get ; s e t ; }
pub l i c Set t ingI tem S e t t i n g s { get ; s e t ; }
pub l i c BrandingItem Branding { get ; s e t ; }

}
}

This item needs three things defined: Primary key, relation for SettingItem and relation
for BrandingItem. We could do this by using C# attributes, or by using the Fluent API.
We settled on using the Fluent API for the project, in order to have all definitions in one

29

MGiNX - Creating a modern platform for managing email delivery

place. The definitions for this item would look like this:

p ro tec t ed ov e r r i d e void OnModelCreating (ModelBuilder b u i l d e r)
{

b u i l d e r . Entity<UserItem >() . HasKey(m => m. Id) ;

b u i l d e r . Entity<UserItem >()
. HasOne(u => u . Branding)
. WithOne(b => b . Owner)
. HasForeignKey<BrandingItem >(b => b . OwnerId) ;

b u i l d e r . Entity<UserItem >()
. HasOne(u => u . S e t t i n g s)
. WithOne(s => s . Owner)
. HasForeignKey<Sett ingItem >(s => s . OwnerId) ;

base . OnModelCreating (b u i l d e r) ;
}

This example sets the Id variable to be the primary key, as well as defining one-to-one
relations between this item (UserItem) and the two related items (BrandingItem and
SettingItem). The snippet is taken from the database context, and is used when compiling
the migration. The Fluent API also lets us add other properties to objects, and we are
using this to inject shadow properties like timestamps into objects to keep track of changes
done to them:

b u i l d e r . Entity<UserItem >() . Property<DateTime>(”UpdatedTimestamp”) ;

We can then override the base SaveChanges() to update the property upon saving.

4.4 Frontend
4.4.1 Intro
The frontend is primarily built with Bootstrap [26] and jQuery [27]. As discussed in
chapter 3.3.2, we are using fonts and color schemes inspired from Consignor Portal [28].
A number of libraries make up minor functionality for the frontend, for a complete list
see appendix K on page 107.

30

MGiNX - Creating a modern platform for managing email delivery

4.4.2 Dashboard
The dashboard gives the user a brief overview of the system status, prioritizing any error
messages if the system is not configured correctly. As seen in figure 14, the layout is
rather clean and only two pieces of content.

Figure 14: Screenshot of application dashboard.

The top three boxes have the following purposes:

Surveys Taken Shows the number of surveys submitted by receivers

Emails Sent Shows the total number of emails sent for the actor by the system

Clickthrough Shows the amount of emails where the receiver has interacted with the
email (either clicked tracking button or survey button)

Unfortunately, we did not have time in this project to fully implement the backend statis-
tics for this.

The lower part of the layout lists system messages with the general system status. Red
messages are error, and effectively hindering the system from sending emails. Examples
of this is no configuration for default languages, or no branding set up. Yellow messages
are warnings, and ultimately not hindering the system from sending emails. This can be
missing configuration for secondary languages, in which case the system falls back to the
default language. Green messages indicates everything is OK with a given module.

31

MGiNX - Creating a modern platform for managing email delivery

4.4.3 Reports

Figure 15: Screenshot of report.

On the top portion of the screen there are two graphs. These display monthly average
rating received from surveys, and total amount of surveys answered. They can also be
individually adjusted to show the latest 3 or 6 months, as well as the last year and total.
When the user first loads the report page the full data set for both graphs are fetched,
and parsed by the browser when the user wants to change the range displayed.

The bottom part shows a list of all survey questions. This includes all questions that are
a part of the users current survey configuration, in addition to questions that have been
in previous iterations. This decision was made as historical data can still be valuable,
however, to keep it organized all questions are sorted from newest to oldest. There are
two types of questions, rated questions and text questions. Rated questions are simple
to load as only the average is displayed, which can be calculated on the server. However,
with many text based questions, loading all of these answers at the same time is not
going to be a sustainable solution. To solve this, text answers will only be fetched on a
per request basis. For each text based question a link will be available which will fetch
all answers for that particular question and displayed in a separate window.

4.4.4 Email Editor
The email editor is part of the core functionality of the application. The following screen-
shot illustrates what you would see the first time entering the application, and the editor.

32

MGiNX - Creating a modern platform for managing email delivery

Figure 16: Screenshot of email editor.

Since no configurations have been made, the editor is in an empty-state, hinting the user
to browse templates to get started.

In line with the requirements, the user can choose which language to edit, as well as
adding new languages under the ’More’ tab. The language area will also automatically
open the default language as well as show which it is.

In the right column of the editor we have a row of buttons:

Attachments Opens a dialog where the user can upload static attachments to be included
in every email sent in this language with this event. The dialog also allows for
previewing and deleting attachments. The files are stored according to the format
explained in chapter 3.4.2.

Browse Templates Opens a dialog displaying available templates the user can download
to quickly get started.

Save Saves the configuration.

Discard Reverts any changes made since the last saved configuration.

Delete ’Deletes’ the current configuration. No configurations are actually hard-deleted,
but the configuration will not have effect on email compilation, and the editor will
show no configuration active.

33

MGiNX - Creating a modern platform for managing email delivery

Under the buttons we have added a quick help section, highlighting some of the func-
tionality of the editor, in case the user forgets. There are also some warnings for less
experienced users, to promote lean and compatible email layouts.

Underneath the quick help is a list of previous iterations. By default, this show up to the
five last configurations made, to let the user revert to any iterations he wants.

Editor Core

The editor is mainly using the HTML Content Editable [29] feature to allow the user to
edit the HTML contents directly. To help us with this task we are using a library called
Medium.js [30]. This library wraps the contenteditable methods in a better editor object,
and has some methods for wrapping content in tags amongst others. Much of the editor
functionality is delivered through a toolbar:

Figure 17: Screenshot of email editor with toolbar and content.

With this toolbar the user has access to almost all of the tools the editor has to offer.
The buttons have the following functionality:

1. : Button to wrap the currently selected text in ’’ tags, making the text
bold.

2. : Button to wrap the currently selected text in ’’ tags, making the text
italic.

34

MGiNX - Creating a modern platform for managing email delivery

3. : Button to show expanders in the editor, explained in detail in chapter 4.4.4 on
page 35.

4. Insert Link: Opens a dialog with two fields; link text and link URL. I user has
selected text, the link text field is automatically filled out with the selected text, and
when insterting the link, it will replace the selected text, in effect making portions
of the text a hyperlink. If the user has not selected any text before clicking the
button, the link will be inserted wherever the users cursor was when clicking the
button.

5. Insert Variable: Opens a dialog containing a selection of variables. Works like
the link insertion in that the variable will be inserted wherever the user had his
cursor when clicking the button. The variables themselves are explained further in
chapter 4.4.4 on page 36.

6. Preview: Opens a new browser window and displays the email layout with the
variables replaced with static text. Useful for seeing how it will really look, without
any editor markup.

7. Edit HTML: Replaced the GUI-based editor with a text field containing the
HTML code for the layout. Any changes made in the HTML is reflected when
changing back to a GUI-based editing mode.

8. Import: Opens a dialog where the user can select to import an existing layout
from another event and/or language. Very useful when translating.

Expanders

In order to provide more customizability to the user other that formatting text, we
implemented the functionality to alter the layout by adding new paragraphs, images or
buttons. As described in chapter 2.3.3, there is a need for the markup to be compatible
with most mail readers on the market. Because of this, we needed to limit what the user
was able to do, and as such we only allow adding new paragraphs in certain places, based
on the template. When enabling the expanders template #1 looks like this:

Figure 18: Screenshots of email editor with and without expanders.

35

MGiNX - Creating a modern platform for managing email delivery

Buttons New buttons can only be added next to existing ones. This is to preserve styling
and appearance. When clicking the + popup next to existing buttons, a dialog will
appear, where the user can define the text and URL of the new button. The same
dialog appears when click existing buttons, allowing for intuitive editing of existing
buttons. The button dialog also gives the option for special URL, and we have
defined two: #tracking and #survey. These will be changed when compiling the
email to either shipment tracking, or to a generated unique survey for the shipment.

 Text paragraphs By clicking the button, the editor will copy a row and insert
wherever the separator is located. Like with the buttons, this will preserver styling
and appearance in order for it to look natural. The new paragraph is inserted
immediately, without a dialog asking for content, instead using the native editor
workflow of editing directly.

 Image Very similar to the text paragraph functionality, by clicking the button the
editor will ask the user via dialog for image details, and then insert the image into
a row with the same styling as neighbouring rows. The dialog lets the user either
define a location for the image, or upload to our application. By uploading the file
gets stored with a GUID as described in chapter 3.4.2. The user may also define a
URL for the image, effectively wrapping the image in a anchor tag and linking to
the URL.

Variables

As each email needs to have shipment-specific information in them, or just dynamic data,
the editor allows for special tokens to be inserted into the email configuration. These are
then replaced by the email engine with data from the shipment data payload. In the
editor the tokens act as single entities and can therefor not be changed, other than being
deleted completely. This is done by have the tokens not be content editable:

<td c l a s s=” content ” c o n t e n t e d i t a b l e=” true ”>
. . . <span c l a s s=”data−v a r i a b l e ”

↪→ c o n t e n t e d i t a b l e=” f a l s e ”>TokenName . . .
</td>

The tokens also get injected with a button to delete itself, though it can also be done us-
ing the editor and deleting it using backspace/delete to delete it like if it were a character.

The tokens are organized in a dialog that gets shown when clicking the Insert Variable
button. The dialog is shown in figure 19, with the currently implemented tokens. As
mentioned in chapter 2.2, we are using a reduced and modified json payload to show
proof of concept, so not all json values have been listed as tokens.

36

MGiNX - Creating a modern platform for managing email delivery

Figure 19: Screenshot of variable dialog.

In figure 19 we have sorted and categorized the available tokens. The Utility tokens are
system generated at the time of sending/compilation, while the rest are taken from the
json payload.

4.4.5 Survey Editor
The actors also need a way to easily define the surveys to be sent out, and for this we
have the survey editor:

Figure 20: Screenshot of the survey editor.

These are standard questions to assure that the user gets at least a minimum level of
feedback. Initially, the actor will only see the system required questions, but he can easily

37

MGiNX - Creating a modern platform for managing email delivery

add his own, rearrange questions or delete old custom questions. Questions can have one
of three different formats:

Happiness Rating Essentially a rating of 1-5 smiley faces

Star Rating Same as happiness rating, only with stars

Text Answer Recipient can write a custom response

As a handy way to see what the survey looks like before committing, the actor can
easily preview the current survey configuration by clicking preview. This will open a new
browser window with a survey template injected, along with the actors branding. All
other buttons should be self explanatory.

4.4.6 Branding
As a way to unify all outgoing media from the application, we have a page where actors
can define the branding they want to display for all media. This includes configuring
brand naming, color schemes and logo, as displayed in figure 21.

Figure 21: Screenshot of branding options.

The color scheme, logo and brand URL gets injected in all emails, as well as survey pages.
The brand name is user when sending emails as the email sender. All changes made on
this page are reflected live in the preview column to the right, making it easy to tune
the branding and getting immediate feedback.

38

MGiNX - Creating a modern platform for managing email delivery

4.4.7 Settings
A fairly simple settings page, in order to further customize the application to the current
actor. We had planned on exposing two major settings here: language and email setup.
From this page the actor can add languages, change default language for all emails
and survey configurations as well as delete entire languages (with every configuration
affiliated). Unfortunately we did not have time to fully implement custom email settings,
more on this in chapter 4.5.2 on page 43.

Figure 22: Screenshot of application settings.

4.4.8 Survey
As the only receiver-facing page, it’s important the the survey page looks nice, scales
nicely to different devices and represents the actor appropriately.

39

MGiNX - Creating a modern platform for managing email delivery

Figure 23: Screenshot of survey page.

This page will request a survey from the server, based on the URL, and inject the quasi-
dialog with questions, as well as theming the page. If the actor has defined a different
color scheme, changed logo or name, it will be reflected in this page. The questions will
be taken from the actors current survey configuration, for the particular language the
shipment is based on.

To ensure we don’t get inflated survey results and only package receivers have access to
this page, we will generate one time access keys that are appended to the survey URL
sent to receivers. These keys are stored in the database and are used to authenticate that
the person attempting to access the website is indeed a registered receiver. If the key
is present and valid the correct survey will be displayed, if not the user will be denied
access. Once a key has been used to answer a survey that key is no longer valid and will
be removed from the database.

4.5 Backend
4.5.1 API Endpoints
In order to serve the frontend with data, we need a whole set of endpoints for the
interface between the two components. As mentioned in chapter 3.1, we have primarily
created endpoints for each frontend page, along with some general/utility endpoints. The
following list contains a brief description of each endpoint:

Branding (../api/branding) Responsible for updating the branding profile for a given
actor. Also handles image upload for storing actor logo.

Dashboard (../api/dashboard) Responsible for creating system status messages for use
in the dashboard.

EmailLayout (../api/emaillayout) Responsible for all things related to the email editor,

40

MGiNX - Creating a modern platform for managing email delivery

including:

• Email configuration retrieval, updates and deletion
• Attachment uploading, previewing and deleting
• Template listings

Report (../api/report) Responsible for generating reports and statistical data for the
reports page.

Setting (../api/setting) Responsible for updating the setting profile for a given actor.

Survey (../api/survey) Reponsible for both the survey editor functionality, and individ-
ual surveys. For the survey editor, it delivers the ability to retrieve, create, update
and delete configurations, and with individual surveys it allow the browser to get
survey questions and submit answers.

User (../api/user) Responsible for handling user (actor) profiles. General endpoint, used
by many of the pages.

EmailEngineAPI (../shipment/new) Endpoint for generating email, hooks into the email
engine, described in the next chapter, 4.5.2.

The exhaustive list of endpoints is listed in appendix O, as discussed in chapter 5.4.

4.5.2 Email Engine
The email engine of the application is responsible for inflating an email, and sending it.
It is called whenever a new shipment is received by a controller. The engine goes through
a number of steps to produce and send the email:

1. Extract meta information from json payload. (Installation ID, Event ID, Destina-
tion Country)

2. Retrieve database objects based on meta info. (User object, email configuration and
layout)

3. Optionally fall back to default language if destination country is not default, and
not configured

4. Compile the email layout:

1. Parse layout to get a representation of the nodes
2. Replace all Utility Variables with system generated values
3. Replace all other Variables with payload data (or fallback to ”?”)
4. Inject branding (Color scheme, logo, URL)
5. Inject link for tracking shipment
6. (Optional) Inject link for survey

This returns a compiled layout with images inlined and everything ready.
5. MUA Compiles the email Mime message:

1. Add all headers based on actor data (sender email address, sender name,
subject) and payload information (recipient email address)

2. Extract all images inlined in layout and move to inline resource (linked locally
in HTML)

41

MGiNX - Creating a modern platform for managing email delivery

3. Add compiled email layout as body
4. Add all static attachments as Mime attachments
5. Encode Mime message using Qouted Printable encoding
6. Sign Mime message and headers using DKIM key and add signature as header
7. Connect to email relay and transmit Mime Message

Based on this general overview of steps taken, the finished email should consist of many
Mime parts making up the body, inline resources and regular attachments. For testing
purposes the controller invoking the email engine returns the compiled email, as well
as some metadata about the email. For help making the Mime message we are using
a library called MimeKit [31]. This way we can incrementally build a Mime message
by adding HTML content, text content, inline resources and attachments. We can then
encode the message using Qouted Printable encoding. This ensures compliance as defined
by RFC2822 [32], and prevents the email from being forcefully modified by other agents
for compliance reasons. One of the main reasons for encoding is to ensure a line length
of maximum 78 characters. The library also lets us sign the message using a DKIM
key/selector pair. The following demonstrates the signing:

var headers = new [] { HeaderId . From , HeaderId . To ,
↪→ HeaderId . Subject , HeaderId . Date } ;

var s i g n e r = new DkimSigner (”/app/DKIM/mginx . p r i va t e ” ,
↪→ ”mginx . tobbentm . com” , ”mginx”) ;

// Sign body with DKIM s i g n e r
message . Sign (

s i gne r ,
headers ,
DkimCanonical izat ionAlgor ithm . Relaxed ,
DkimCanonical izat ionAlgor ithm . Simple) ;

As seen in the example, we are using the domain ”mginx.tobbentm.com” and selector
”mginx”.

For actually transmitting the Mime message, we are using MimeKits sister library,
MailKit [33]. Using this we can connect to a given host, optionally authenticate and
transmit the email.

us ing (var c l i e n t = new SmtpClient ())
{

c l i e n t . Connect (” dockerhost ” , 25 , SecureSocketOptions . None) ;
c l i e n t . AuthenticationMechanisms . Remove(”XOAUTH2”) ;
c l i e n t . Send (message) ;
c l i e n t . Disconnect (t rue) ;

}

This example illustrates connecting to the local host MTA, where we do not need to
authenticate in order to relay email. Alternatively we could connect to an actors custom
MTA, and authenticate using actor settings instead.

42

MGiNX - Creating a modern platform for managing email delivery

Custom Email

From the beginning we had planned on allowing the actor to define a custom email
to send emails from. During our research (see chapter 3.2) it was clear to us that this
needed two things from the actor: SPF and (optionally) DKIM set up for us. And we
initially developed the system to accommodate this, however we hit a challenge we did
not manage to overcome; a lack of DNS functionality. For an actor to be able to use
a custom email address, we felt the need to actually verify the setup, and use a local
email address until it is set up. With the ASP.Net Core project not being fully grown
up, there was no system library or third party libraries which delivered fully functional
DNS lookups. We considered writing our own DNS client implementation, but ended up
rather prioritizing other functionality. Later in the project we also discussed the option
of letting the actor set an email relay as an option to this, though we faced the same
issue of time prioritization. The email MUA in our system is fully capable and ready for
custom email relay or DKIM settings though, so once we have the ability to verify DNS
pointers it would not be much more work.

43

MGiNX - Creating a modern platform for managing email delivery

5 Testing and Quality Assurance

5.1 Unit Testing
In the early stages of our planning phase we recognized the importance of having full test
coverage of the API controllers as this functions as the backbone of the entire system,
and hence chose to dedicate an entire two week sprint to fully test the back-end. Over the
course of this two week period we wrote unit tests that covered all current controllers,
as well their fail states.

Xunit [34] was used to write the unit tests, however, we also needed a mocking frame-
work due to all controllers heavily interacting with the repository classes. The repository
classes were made to divide database operations from the rest of the system and primarily
consists of Entity Framework 7 code. We did not want to spend the time or resources
needed to write unit test for these repositories as we viewed this with very little impor-
tance, so instead we chose to mock them. Working with a release candidate version of
ASP.Net Core made it very difficult to find a mocking framework that had the functional-
ity we needed, as very few currently support .Net Core. In the end LightMock.vNext [35]
was chosen, even though it is a little heavy handed to use. LightMock required us to
create separate objects that implements the interface we want to mock and pass calls to
the LightMock framework.

pub l i c c l a s s MockBrandingRepository : IBrandingRepos i tory
{

p r i va t e readonly IInvocat ionContext <IBrandingRepository>
↪→ _context ;

pub l i c
↪→ MockBrandingRepository (I Invocat ionContext <IBrandingRepository>
↪→ context)

{
_context = context ;

}

pub l i c void Add(BrandingItem item)
{

_context . Invoke (m => m. Add(item)) ;
}

pub l i c BrandingItem Find (i n t Id)
{

re turn _context . Invoke (m => m. Find (Id)) ;
}

}

44

MGiNX - Creating a modern platform for managing email delivery

Finally, we needed to implement the logger in our tests. To do this we chose to simply
use a stub [36], as the logger doesn’t provide any data or processing needed for testing
purposes.

5.1.1 Unit test example
Next we’re going to do a step by step overview on how our tests work using one of our tests
as an example. For this example we will use a test method called getItemWithIdOk(),
which requests a BrandingItem object with a specific id, in our case 1, from the Brand-
ingController. The intended result of this test is to successfully retrieve a BrandingItem.

All tests are split into three parts: arrange, act and assert. Firstly the test uses a [Fact]
attribute to indicate to Xunit that the following method is a test. Next is the arrange
part of the test, here we will create any values needed throughout the test as well as
arranging the mocked repository. Here we have created a BrandingItem object we want
to attempt to fetch, with some properties we can use to identify it with later. Then we
use an arrange method on the repository which tells it to return the object we created
if it’s provided with the given itemId value. Next we need to set the Action Context of
the controller so that we are able to test the status code [37] response. Lastly we add a
cookie to the controller request which the controller extracts during execution to identify
the user.

[Fact]
pub l i c void getItemWithIdOK ()
{

// Arrange
var itemId = 1 ;
var e n t i t y = new BrandingItem
{

OwnerId = itemId ,
Logo = ”” ,
PrimaryColor = ”#3333” ,
BrandName = ” Consignor ” ,
BrandURL = ”www. Consignor . com” ,

} ;

_repos i tory . Arrange (m => m. Find (itemId)) . Returns (e n t i t y) ;

//Act : Set HttpContext and Val id Cookie
_con t r o l l e r . ActionContext = new ActionContext
{

HttpContext = new DefaultHttpContext ()
} ;

Dict ionary<s t r i ng , Str ingValues > d i c t i o n a r y = new
↪→ Dict ionary<s t r i ng , Str ingValues >() ;

s t r i n g [] a r r = { itemId . ToString () } ;
d i c t i o n a r y . Add(” i n s t a l l a t i o n I D ” , a r r) ;
_con t r o l l e r . ActionContext . HttpContext . Request . Cookies = new

↪→ Readab l eS t r ingCo l l e c t i on (d i c t i o n a r y) ;
}

45

MGiNX - Creating a modern platform for managing email delivery

}

In the act stage we simply call the method we are testing with any parameters needed. In
this specific test the data received by the controller are located in the cookie we created
during the arrange stage.

. . .
//Act :
IAct ionResu l t a c t i onResu l t = _cont r o l l e r . Get () ;
. . .

Finally, we can make asserts to ensure that the final result is as expected. First we assert
that the controller sent the appropriate status code. In this example the status code was
200, which indicates that the call was successful, and hence the response should contain
the object we attempted to retrieve. It is important we do this before we attempt to
extract the object from the response, because if the status code was not 200 the object
would not be present in the response, and we would have gotten an unwanted error.
Further, we extract the BrandingItem and make assertions on it’s properties to make
sure that it is in fact the object we wanted to get. Finally, we make an assertion on the
repository which checks if the given repository method, in this case Find(), was called
during the test.

. . .
// Assert
Assert . Equal ((i n t) HttpStatusCode .OK,

↪→ _cont r o l l e r . Response . StatusCode) ;

ObjectResult ob = (ObjectResult) a c t i onResu l t ;
BrandingItem item = (BrandingItem) ob . Value ;

// Assert
Assert . Equal (itemId , item . OwnerId) ;
Assert . Equal (”” , item . Logo) ;
Assert . Equal (”#3333” , item . PrimaryColor) ;
Assert . Equal (” Consignor ” , item . BrandName) ;
Assert . Equal (”www. Consignor . com” , item . BrandURL) ;

_repos i tory . Assert (m => m. Find (itemId)) ;

5.2 Component & System Testing
Component testing on communication between the front-end and back-end was done at
the end of every sprint to ensure new functionality worked as intended. In addition re-
gression testing on previously developed components was performed to ensure they were
unaffected by the changes made to the system. To do this Fiddler [38] was used along
with the chrome development tools [39]. Fiddler was especially helpful as it allowed us
to inspect the API calls, providing us with information such as status code result, head-

46

MGiNX - Creating a modern platform for managing email delivery

ers and the response body. This made it easy to identify on which platform any errors
occurred as we had complete track of all data sent between the two.

System testing was conducted less frequently than component testing, and was primarily
performed at milestone events at which larger parts of the system had been completed.
To conduct these test we set up a testing environment, how this was done is discussed in
chapter 6, running the latest build, and manually tested the system. Performing these test
was extremely helpful, as testing on a live environment revealed a lot of bugs that were not
previously visible. This environment was also used periodically throughout development
to test functionality that we were unable to fully test without a live environment, such
as generating and sending emails and file storage.

5.3 Acceptance Testing
To perform the acceptance tests we made a mock interface which was used to imitate calls
from Consignor to MGiNX. Through this interface we could create JSON payloads to
simpulate shipment packages, given to us by Consignor for testing purposes, to generate
and send emails. These packages were made easily modifiable with the addition of the
left side text boxes, used alter the content of the JSON package, which made for quick
and easy testing of edge cases and different language configurations. After the JSON has
been configured it is sent to the email engine by pressing the Compile button, which
generates and sends the email to the receiver provided in the JSON. How this email
should look can be previewed by clicking the Display button, which allows us to compare
the intended result to how it is ultimately rendered by the different email readers. Finally
the Open Survey button is there to generate a valid survey key and open up the survey
webpage in a separate window.

Figure 24: Screenshot of testing tool for emulating shipments.

47

MGiNX - Creating a modern platform for managing email delivery

5.3.1 Compliance Testing
We performed extensive compatibility testing of commonly used email readers and browsers.
It was most important that we supported as many email readers as possible, as we have
no control over which email readers receivers use. This was not that big of an issue with
browsers as we could enforce browser requirements for actors, this was however not some-
thing we wanted to do.

As part of the compliance testing, we also tested our email templates in different email
readers, to ensure consistent rendering and delivery. We tested everything form Microsoft
Outlook 2003 to the more modern Google Gmail and Mozilla Thunderbird. During testing
we found a small number of irregularities, and most of them were fixed by tweaking the
templates. For example, Yahoo Mail would alter the CSS tag ’height’ to ’min-height’.
This made our padding elements have height = 0, because they had no real content. The
solution was adding a non-breaking space using the HTML character ” ” to all
padding elements. A complete list of tests can be found in appendix I.

5.4 Swagger
In accordance with the documentation requirements we set in the planning phase, we
have achieved complete coverage of the back-end. However, after having worked with an
API for a few months we discovered further documentation was needed. Even though
documentation of individual endpoints help from a developer standpoint it was still quite
tricky, especially for consumers, to keep track of every endpoint.

To solve this problem we used the documentation tool Swagger UI [40]. With Swagger UI
we have created an interactive documentation experience aimed both towards developers
and consumers alike. On the surface it offers a brief overview of all endpoints with their
respective HTTP command, the full path and a short description. To gain more in-depth
information every element can be expanded which reveals all required parameters and
their location, most often either in the body or header of the request. Every endpoint
also includes a list of all intended responses. These contain an explanation of what most
likely caused that specific response, as well as a JSON schema of any complex objects
included in the response. The interactive part of the API is the final part, which allows
users to try out the endpoint by calling it with parameters filled in by the user. Below
we have picked a single controller from our Swagger UI documentation to illustrate how
this looks, for the complete version see appendix O.

48

MGiNX - Creating a modern platform for managing email delivery

Figure 25: Swagger UI Documentation.

To achieve live testing using the tool, we needed to deal with CORS to allow for requests
coming from the swagger domain (swagger.tobbentm.com) to be fulfilled by the backend.
In ASP.Net we can do this during the application startup:

app . UseCors (b u i l d e r =>
b u i l d e r . WithOrigins (” http :// swagger . tobbentm . com”)

. AllowAnyHeader ()

. A l lowCredent ia l s ()
) ;

This allows the swagger origin, along with any headers and using cookie authentication.
Any requests from other domains will not be allowed, to ensure user security and prevent
CSFR attacks.

49

MGiNX - Creating a modern platform for managing email delivery

6 Deployment

6.1 Docker
New with .NET Core is that it can be run natively on Linux without the use of runtimes
like Mono [41]. And to simplify building, deployment and devops, we chose to use Docker
to run all necessary services. The following is a short description of each service we run in
our test environment. The one service not inside a docker container is the Postfix server,
more details about this in chapter 6.3. Certain containers are linked, may share volumes
or have ports exposed.

Figure 26: Diagram of host topology.

For this project we are hosting the application on a Debian based VPS host. Our test
domain is ’mginx.tobbentm.com’.

6.1.1 Postgres
Postgres is our choice of database for the project. For details on why we chose postgres,
see chapter 4.3.

To run postgres, we have created a custom Dockerfile, which when installing runs a .sql
script to add the necessary user to the database. We also copy in other necessary scripts

50

MGiNX - Creating a modern platform for managing email delivery

for populating the database with example data for required survey questions etc.

The database creation is handled by our ORM, Entity Framework 7, by compiling migra-
tions and modifying the database. More detail about this in chapter 4.2.1. The postgres
container is directly linked to by the MGiNX container, to allow direct communication.

6.1.2 nginx Proxy
Our application uses a .NET based web server called ’Kestrel’, without support for SSL
encryption. Because we wanted encryption as well as certificates we chose to run a proxy
in front of our application, and landed on using nginx [1] as a proxy.

This also lets us easily cache static content, and force HTTPS. The Docker container we
are using [42] have built in scripts to detect containers that need to be proxied, making
the implementation very easy.
To flag a container for proxying we just have to add an environment variable:

. . −e VIRTUAL_HOST=mginx . tobbentm . com . .

Optionally we can also define a custom port if our container does not host on a ’default’
port:

. . −e VIRTUAL_PORT=5000 . .

6.1.3 nginx Let’s Encrypt Companion
As a result of wanting SSL encryption, we needed SSL certificates. To make it easy for
ourselves, we chose Let’s Encrypt [17], which delivers free and automated certificates.
nginx Let’s Encrypt Companion [43] automates this process in the same way as nginx
Proxy, making the process of getting new certs very easy.
Like with nginx Proxy, this container looks for environment variables that define host
name and contact information. In our case we are using the following flags:

. . −e LETSENCRYPT_HOST=mginx . tobbentm . com \
−e LETSENCRYPT_EMAIL=webmaster@mginx . tobbentm . com . .

Once it detects new containers running with the flags, it will request a certificate from
the CA, and store it in a folder shared with the host and the nginx Proxy container. On
our server we store all certificates in ’/var/mginx/certs’. This lets the nginx Proxy use
them, as well as the Postfix email relay server.

6.1.4 MGiNX
The docker container for the application itself is based on the official image from Mi-
crosoft: ’microsoft/aspnet:1.0.0-rc1-final-coreclr’. Our Dockerfile is relatively simple, the
steps are explained with comments:

51

MGiNX - Creating a modern platform for managing email delivery

What image should we base the conta ine r on
FROM mic ro so f t / aspnet :1 .0 .0 − rc1−f i n a l −c o r e c l r

Copy a p p l i c a t i o n source in to /app
COPY . /app

Copy patched system l i b r a r i e s in
COPY . / System . Native . so

↪→ /opt/DNX_BRANCH/ runtimes /dnx−c o r e c l r −l inux−x64 .1 .0 .0 − rc1−update1/ bin
COPY . / System . Native . so

↪→ /opt/DNX_BRANCH/ runtimes /dnx−c o r e c l r −l inux−x64 .1 .0 .0 − rc1− f i n a l / bin

Change d i r e c t o r y to /app
WORKDIR /app

Restore NuGet l i b r a r i e s
RUN [”dnu” , ” r e s t o r e ”]

Expose port 5000
EXPOSE 5000

Def ine ent rypo int to be dnx
ENTRYPOINT [”dnx” , ”−p” , ” p r o j e c t . j s on ” , ”web”]

The patched system libraries are necessary because of a bug [23] in .NET Core RC1, as
discussed in chapter 4.2.2.

The container can then be run with the following options:

a l i a s ho s t ip=” ip addr show eth0 | grep −Eo −m 1 ’ i n e t
↪→ (([0 −9] {1 , 3}\ .) {3}[0 −9]{1 ,3}) ’ | awk ’{ p r i n t \$2 } ’ ”

docker run −d \
−−name mginx \
−v / var /mginx/ l o g s : / app/ l ogg ing \
−v / var /mginx/ userdata : / app/ userdata \
−e VIRTUAL_HOST=mginx . tobbentm . com \
−e VIRTUAL_PORT=5000 \
−e LETSENCRYPT_HOST=mginx . tobbentm . com \
−e LETSENCRYPT_EMAIL=webmaster@mginx . tobbentm . com \
−−add−host=dockerhost : $ (ho s t ip) \
−− l i n k postgres−s e r v e r : po s t g r e s \
mginx

The ’-v’ options sets shared volumes, as illustrated in figure 26. The ’-e’ options sets envi-
ronment variables necessary for other containers, as explained in chapter 6.1.2 and 6.1.3.
The ’–add-host’ option will add a dns pointer in the container, in which we set the host
’dockerhost’ to be the Docker bridge gateway. This way the application will have a refer-
ence to the host machine. This is primarily used for sending emails through. The ’–link’
option will link the container to the database container, and thus also register it as the

52

MGiNX - Creating a modern platform for managing email delivery

host ’postgres’ withing the MGiNX container. During testing we also have an option to
expose port 5000 in the container to port 8080 on the host. This lets us bypass the web
proxy, as .NET Core RC1 had some bugs related to encryption of API calls. More details
on this in chapter 4.2.

6.1.5 Swagger UI
As described in chapter 5.4, we are using Swagger to document our API interface, and
Swagger UI to display it. This is easily done by using the official swagger distribution [44],
and hosting it using a apache container. Following the patterns for our other containers,
we can easily hook this into the web proxy, to be able to route it. We have set up a
subdomain for the documentation: ”swagger.tobbentm.com”. To run the container, we
have a handy one-liner:

docker run − i t −−rm −−name swagger−ui −e
↪→ VIRTUAL_HOST=swagger . tobbentm . com −v
↪→ swagger−ui / d i s t / : / usr / l o c a l /apache2/ htdocs / httpd : 2 . 4

6.2 Encryption
As explained in chapter 6.1.3, the nginx Let’s Encrypt Companion container will auto-
mate the process of renewing SSL certificates, and will place them in the shared volume
’/var/mginx/certs’. This is used by both the web proxy, to deliver an encrypted version
of the application, and in our case also forces HTTPS over HTTP. The Postfix server
will also use these certificates to encrypt all outgoing email with STARTTLS.

6.3 Postfix
To encrypt outgoing emails we opted to set up an email relay. This also lets us receive
emails and manage everything email related more effectively, and improves the overall
scalability of the system, as this can be offloaded to another server. We ended up choos-
ing Postfix as the solution to this since Postfix is a relatively easy service to set up and
configure. In our case it could be configured to relay email from Docker containers as
local mail, and encrypt to remote recipients.

The way we have configured Postfix is by defining the following in the Postfix config file
’main.cf’:

. . .

MGiNX S e t t i n g s
mydomain = tobbentm . com
myhostname = mginx . tobbentm . com
mydest inat ion = $myhostname , l o c a l h o s t . $mydomain , l o c a l h o s t ,

↪→ $mydomain
mynetworks = 1 2 7 . 0 . 0 . 1 / 8 [: : 1] / 1 2 8 1 72 . 16 . 0 . 0 /12
vi r tua l_al ias_domains = mginx . tobbentm . com
virtual_al ias_maps = hash : / e t c / p o s t f i x / v i r t u a l

smtpd_use_tls = yes
smtpd_tls_secur i ty_leve l = may

53

MGiNX - Creating a modern platform for managing email delivery

smtpd_rec ip i en t_re s t r i c t i on s = permit_mynetworks
↪→ re j ect_unauth_dest inat ion

smtpd_tls_key_fi le = / var /mginx/ c e r t s /mginx . tobbentm . com/key . pem
smtpd_t l s_cert_f i l e =

↪→ / var /mginx/ c e r t s /mginx . tobbentm . com/ f u l l c h a i n . pem
smtpd_tl s_log leve l = 1

smtp_t l s_secur i ty_leve l = may
smtp_t l s_log leve l = 1

The ’mynetworks’ option defines which networks should be considered as local. By adding
the 172.16.0.0/12 subnet, we are defining our Docker bridge subnet as being a local net-
work. This effectively means any mail coming from an address within the subnet does
not need to authenticate with the relay, and Postfix will simply relay the email to the
recipient.

By setting ’smtpd_tls’ and ’smtp_tls’ options, we are merely enabling STARTTLS en-
cryption, and using the certificates shared amongst the containers mentioned in chap-
ter 6.2.

For testing purposes we have set the virtual mapping of postboxes to send all mail to
the root unix mailbox using the follow virtual map:

@mginx . tobbentm . com root

54

MGiNX - Creating a modern platform for managing email delivery

7 Conclusion

7.1 Results
Of the requirements made during project planning we were able to complete most of
them. Overall we are very pleased with the result, and so was the product owner dur-
ing the last demo and sprint meeting. We have managed to create an easily extensible
platform for managing email configuration and delivery. It lets the actors easily modify
email appearance and content, send out surveys to receivers and get real feedback in
the form of reports. All while delivering the email in the most trustworthy way possible
using SPF, DKIM, encryption and more, with almost guaranteed compatibility with the
most popular email clients. And by using ASP.Net Core, we have a solid foundation for
integrating with other Consignor systems and to push the limits of what is possible in
terms of performance and scalability.

The functionality we did not get to implement, was largely due to technical issues (see
chapter 4.5.2). The challenges of working with prototype software became very apparent
as we needed more and more from the ASP.Net framework further into the project. In
the end though, we have learned a lot about potential issues, workarounds and how to
trace and fix these kinds of issues.

Due to time constraints we were unable to implement certain features. Sending surveys
through SMS, allowing actors to use their own email server and the ability to order sur-
vey answers by a multitude of shipment specific variables such as carrier, location and
date are all examples of this. In addition, due to the fact that we were using Scrum it
meant that some features were introduced late into development, and as such we did
not have sufficient time to develop them. One such feature was providing context to sur-
vey answers through shipment data. Consignor identified that this could be very valuable
information to the end-users, however it was simply introduced too late into development.

Having bi-weekly sprint meetings with the product owner has also been very helpful
for both parties. Consignor in general have been very supportive, and have sponsored
trips to their headquarters in Oslo for more important meetings and project demonstra-
tions. They were always very open to new ideas, allowing us to implement much of the
functionality we wanted as well.

7.2 What would we do differently today?
When we first started planning the implementation we were thinking that the editor was
going to be a large part of the project. We expected that most of our client-side code
would probably be vanilla JavaScript, hence we didn’t need a front-end framework. As
the project went on the amount of pages, dialogs and navigation options grew, and we
would probably have been better off learning and using a front-end framework.

55

MGiNX - Creating a modern platform for managing email delivery

We should have started writing the report at a much earlier stage. From the beginning we
planed to start writing the report mid-way through development, in addition to dedicat-
ing the final 4 weeks to finish the report. However, as development went on adding new
functionality got prioritized over writing the report, ultimately delaying report writing
completely to the final 4 weeks. We realized this error too late, and a lot of extra time
has been spent the last few weeks to compensate for that.

7.3 Further Development
There is almost infinite possibility with this project, and most importantly; it’s built
to be extended and improved. The following list highlights some of our most wanted
functionality:

• Reports

◦ Ability to filter data based on shipment data (geographically, carrier based,
etc).

• Email Editor

◦ Better handling of iterations, ability to browse older iterations than the ones
displayed in the editor.

◦ Indicator for whether or not you have unsaved changes to keep user from
accidentally undoing changes.

◦ Refactor out editor specific javascript to a separate object for better clarity
and handling.

• Settings

◦ Allow user to define custom email relay or custom sender email address (tech-
nical limitation at the moment).

• Branding

◦ More helpful text for the user as to how the data is actually used when sending
emails.

• Email Engine

◦ Implement a queue to ensure deliverability to all shipments. Important if there
is a lot of incoming shipments at the same time.

◦ Solve the problem of custom email as described in chapter 4.5.2.

• General/Misc

◦ Better handling of Docker container building and running (installation).

While none of this is strictly necessary for a bare-bones instance, it would certainly
improve the user experience and versatility of the application.

7.4 Group Evaluation
We had not worked together prior to this projects and we had barely spoken to each
other, so we both started this semester with light skepticism, not fully knowing what to
expect of the other. Ultimately, however, we were both pleasantly surprised by the others

56

MGiNX - Creating a modern platform for managing email delivery

determination and commitment to the project.

The teamwork in the group has been amazing, we have both been involved in almost
every part of the application, yet maintained a clear focus on our own tasks. We both
contributed differently in regards to project management which we think have worked
out pretty well. The amount of hours we put into this project was pretty close to the
plan, with both of us spending roughly 30 hours per week on research, development or
testing. Each sprint was fairly on schedule and tasks got done in time, which made things
easier to estimate as the project progressed.

As mentioned in chapter 1 we divided the administrative tasks evenly, as well as hav-
ing each team member specialize in different fields during development. By doing so no
member got overwhelmed with responsibilities which allowed us to focus on researching
and learning our respective fields. Due to us working together most of the day this meant
that as our work intertwined the other would always be available to answer any question,
which resulted in a more efficient work-flow. To begin with we didn’t take advantage of
this as we didn’t know each other that well. However, after having worked together all
day for a couple of weeks that quickly passed. Working with an API made it a lot easier
to distribute our work in this manner, as using the API endpoints didn’t require detailed
knowledge of the codebase behind the controllers, just its inputs and outputs.

There have been no major conflicts or disagreements within the group, and having such
different backgrounds, each with his own experience, we have been able to share and help
each other throughout the project.

7.5 Conclusion
In conclusion, MGiNX provides a prototype platform for managing email delivery in a
very versatile way. With a powerful editor, both for non-technical users as well as technical
users, and a solid email generation process, the platform delivers industry grade email
delivery and customization options. While we have some minor regrets and ran into some
unnecessary bumps in the road, we are very pleased with the project as a whole, both
in terms of functionality implemented and teamwork/management. We have hopes that
this will be put into production some time in the future, and that our work actually sees
real world use.

57

MGiNX - Creating a modern platform for managing email delivery

Bibliography

[1] nginx. 2016. nginx, about. http://nginx.org/en/. (Visited Apr. 2016).

[2] Microsoft. 2015. Introducing .net core. http://docs.asp.net/en/latest/
conceptual-overview/dotnetcore.html. (Visited May. 2016).

[3] Shackel§, B. 1986. Ibm makes usability as important as functionality. The Computer
Journal, 29(5), 475–476.

[4] Nielsen, J. 2002. Usability 101: Introduction to usability. https://www.
nngroup.com/articles/usability-101-introduction-to-usability/. (Visited
May. 2016).

[5] W3Schools. 2016. Browser statistics. http://www.w3schools.com/browsers/
browsers_stats.asp. (Visited May. 2016).

[6] litmus. 2015. 53 https://litmus.com/blog/
53-of-emails-opened-on-mobile-outlook-opens-decrease-33. (Visited
May. 2016).

[7] Microsoft. 2015. Xml documentation comments (c# programming guide). https:
//msdn.microsoft.com/en-us/library/b2s063f7.aspx. (Visited May. 2016).

[8] Microsoft. 2015. Sandcastle - documentation compiler for managed class libraries.
https://sandcastle.codeplex.com/. (Visited May. 2016).

[9] Dustin, E. 2002. Effective Software Testing: 50 Specific Ways to Improve Your
Testing. Addison-Wesley Professional.

[10] Serilog. 2015. Flexible, structured events — log file convenience. http://serilog.
net/. (Visited May. 2016).

[11] Teamwork.com. 2016. High performance teams run on teamwork. https://www.
teamwork.com/. (Visited May. 2016).

[12] GitHub. 2016. How people build software. https://github.com/. (Visited May.
2016).

[13] IETF. 2014. Sender policy framework (spf) for authorizing use of domains in email,
version 1. https://tools.ietf.org/html/rfc7208. (Visited Apr. 2016).

[14] IETF. 2011. Domainkeys identified mail (dkim) signatures. https://tools.ietf.
org/html/rfc6376. (Visited Apr. 2016).

[15] Google. 2016. Email encryption in transit. https://www.google.com/
transparencyreport/saferemail/. (Visited May. 2016).

58

http://nginx.org/en/
http://docs.asp.net/en/latest/conceptual-overview/dotnetcore.html
http://docs.asp.net/en/latest/conceptual-overview/dotnetcore.html
https://www.nngroup.com/articles/usability-101-introduction-to-usability/
https://www.nngroup.com/articles/usability-101-introduction-to-usability/
http://www.w3schools.com/browsers/browsers_stats.asp
http://www.w3schools.com/browsers/browsers_stats.asp
https://litmus.com/blog/53-of-emails-opened-on-mobile-outlook-opens-decrease-33
https://litmus.com/blog/53-of-emails-opened-on-mobile-outlook-opens-decrease-33
https://msdn.microsoft.com/en-us/library/b2s063f7.aspx
https://msdn.microsoft.com/en-us/library/b2s063f7.aspx
https://sandcastle.codeplex.com/
http://serilog.net/
http://serilog.net/
https://www.teamwork.com/
https://www.teamwork.com/
https://github.com/
https://tools.ietf.org/html/rfc7208
https://tools.ietf.org/html/rfc6376
https://tools.ietf.org/html/rfc6376
https://www.google.com/transparencyreport/saferemail/
https://www.google.com/transparencyreport/saferemail/

MGiNX - Creating a modern platform for managing email delivery

[16] IETF. 2002. Smtp service extension for secure smtp over transport layer security.
https://tools.ietf.org/html/rfc3207. (Visited Apr. 2016).

[17] (ISRG), I. S. R. G. 2016. Let’s encrypt. https://letsencrypt.org/. (Visited Apr.
2016).

[18] Foundation, N. 2016. Nuget. https://www.nuget.org/. (Visited May. 2016).

[19] Bower. 2016. Bower, a package manager for the web. http://bower.io/. (Visited
May. 2016).

[20] Git. 2016. Git. https://git-scm.com/. (Visited May. 2016).

[21] Npgsql. 2015. .net data provider for postgresql. http://www.npgsql.org/. (Visited
Apr. 2016).

[22] PostgreSQL. 2016. The world’s most advanced open source database. http://www.
postgresql.org/. (Visited Apr. 2016).

[23] Network, M. D. 2015. Socket.select() method doesn’t work correctly in linux. https:
//github.com/dotnet/corefx/issues/4631. (Visited Apr. 2016).

[24] halter73. 2015. Don’t wait to consume the entire request body for connection: close
requests. https://github.com/aspnet/KestrelHttpServer/issues/406. (Vis-
ited Apr. 2016).

[25] Microsoft. 2016. Fluent api. http://ef.readthedocs.io/en/latest/modeling/
keys.html#fluent-api. (Visited May. 2016).

[26] Twitter. 2016. Get bootstrap. http://getbootstrap.com/. (Visited May. 2016).

[27] jQuery Foundation, T. 2016. jquery. https://jquery.com/. (Visited May. 2016).

[28] Consignor. 2016. Consignor portal. http://www.consignorportal.com/. (Visited
Apr. 2016).

[29] Network, M. D. 2015. Content editable. https://developer.mozilla.org/en-US/
docs/Web/Guide/HTML/Content_Editable. (Visited May. 2016).

[30] jakiestfu. 2016. Medium.js. https://github.com/jakiestfu/Medium.js/. (Vis-
ited May. 2016).

[31] Stedfast, J. 2015. Mimekit. http://www.mimekit.net/. (Visited May. 2016).

[32] IETF. 2001. Internet message format. https://tools.ietf.org/html/rfc2822.
(Visited Apr. 2016).

[33] Stedfast, J. 2016. Mailkit. https://github.com/jstedfast/MailKit. (Visited
May. 2016).

[34] Foundation, O. 2015. About xunit.net. https://xunit.github.io/. (Visited May.
2016).

[35] Richter, B. 2015. Lightmock. https://github.com/seesharper/LightMock. (Vis-
ited May. 2016).

59

https://tools.ietf.org/html/rfc3207
https://letsencrypt.org/
https://www.nuget.org/
http://bower.io/
https://git-scm.com/
http://www.npgsql.org/
http://www.postgresql.org/
http://www.postgresql.org/
https://github.com/dotnet/corefx/issues/4631
https://github.com/dotnet/corefx/issues/4631
https://github.com/aspnet/KestrelHttpServer/issues/406
http://ef.readthedocs.io/en/latest/modeling/keys.html#fluent-api
http://ef.readthedocs.io/en/latest/modeling/keys.html#fluent-api
http://getbootstrap.com/
https://jquery.com/
http://www.consignorportal.com/
https://developer.mozilla.org/en-US/docs/Web/Guide/HTML/Content_Editable
https://developer.mozilla.org/en-US/docs/Web/Guide/HTML/Content_Editable
https://github.com/jakiestfu/Medium.js/
http://www.mimekit.net/
https://tools.ietf.org/html/rfc2822
https://github.com/jstedfast/MailKit
https://xunit.github.io/
https://github.com/seesharper/LightMock

MGiNX - Creating a modern platform for managing email delivery

[36] Wikipedia. 2016. Test stub. https://en.wikipedia.org/w/index.php?title=
Test_stub&oldid=671253434. (Visited May. 2016).

[37] Wikipedia. 2016. List of http status codes. https://en.wikipedia.org/w/index.
php?title=List_of_HTTP_status_codes&oldid=719266042. (Visited May. 2016).

[38] Telerik. 2016. Fiddler the free web debugging proxy for any browser, system or
platform. http://www.telerik.com/fiddler. (Visited May. 2016).

[39] Google. 2016. Chrome devtools overview. https://developers.google.com/web/
tools/chrome-devtools/. (Visited May. 2016).

[40] SmartBear. 2016. Swagger the world’s most popular framework for apis. http:
//swagger.io/swagger-ui/. (Visited May. 2016).

[41] Project, M. 2016. Mono project. http://www.mono-project.com/. (Visited Apr.
2016).

[42] jwilder. 2016. Automated nginx proxy for docker containers using docker-gen.
https://github.com/jwilder/nginx-proxy. (Visited Apr. 2016).

[43] JrCs. 2016. Letsencrypt companion container for nginx-proxy. https://github.
com/JrCs/docker-letsencrypt-nginx-proxy-companion. (Visited Apr. 2016).

[44] SmartBear. 2016. Swagger ui. https://github.com/swagger-api/swagger-ui.
(Visited May. 2016).

60

https://en.wikipedia.org/w/index.php?title=Test_stub&oldid=671253434
https://en.wikipedia.org/w/index.php?title=Test_stub&oldid=671253434
https://en.wikipedia.org/w/index.php?title=List_of_HTTP_status_codes&oldid=719266042
https://en.wikipedia.org/w/index.php?title=List_of_HTTP_status_codes&oldid=719266042
http://www.telerik.com/fiddler
https://developers.google.com/web/tools/chrome-devtools/
https://developers.google.com/web/tools/chrome-devtools/
http://swagger.io/swagger-ui/
http://swagger.io/swagger-ui/
http://www.mono-project.com/
https://github.com/jwilder/nginx-proxy
https://github.com/JrCs/docker-letsencrypt-nginx-proxy-companion
https://github.com/JrCs/docker-letsencrypt-nginx-proxy-companion
https://github.com/swagger-api/swagger-ui

MGiNX - Creating a modern platform for managing email delivery

Appendix

F A f

Terminology

61

MGiNX - Creating a modern platform for managing email delivery

Actor and Sender Refers to end-users of the final product. These are clients of Consignor
who are using their software. The use of actor or sender depends on the context.
Actor refers to a user in context to using the software, whereas sender is in context
to a user during a transaction.

Customer and Receiver Both Receiver and Customer refer to the same people, but in
different context. Customer refers to people who are using the actors online shop-
ping system, whereas receivers are currently part of a transaction with the actor.

Shipment Refers to the physical delivery of a package currently being sent to a customer.

Shipment Data A JSON object used in MGiNX that contains all data relevant to a
package and its receiver.

Carrier Companies used to transport packages from sender to receiver.

CORS Cross-origin resource sharing

CSFR Cross-site request forgery

DAL Data Access Layer (models/repository)

RC(#) Release Candidate; early/unrelease version of software

MTA Mail Transfer Agent; used to relay email

MUA Mail User Agent; used to send and receive email

SPF Sender Policy Framework; see page 20

DKIM DomainKeys Identified Mail; see page 20

Postgres Database software; see page 29

62

MGiNX - Creating a modern platform for managing email delivery

Appendix

F B f

Project Description

63

Oppdragsgiver: EDI-SOFT AS

Kontaktpersoner: Øystein Ranvik / Bjørn Pedersen

Adresse: Rådhusgata 4, 0151 Oslo

Telefon: +47 93 49 60 75

 +47 91 71 54 52

Epost: or@edi-soft.no

 bjorn@edi-soft.no

Om EDI-Soft
EDI-Soft leverer løsninger for å administrere forsendelser fra bedrifter. Løsningen er ofte integrert med

avsenders økonomi-/ordre system og hjelper avsender med å skrive ut nødvendige fraktdokumenter,

beregne fraktpris, informere transportør, håndtere sporing osv.

Bakgrunn
En stadig større andel av varehandel skjer via netthandel. Bedriftene (avsender) bruker store ressurser

på å gjøre handleopplevelsen i nettbutikken best mulig (fylle handlekurven + betaling). Her finnes det

mange gode løsninger i dag.

Selve leveransen håndteres gjerne av eksterne transportører (majoritet), utlevering på pickup points

eller i egne butikker. Når transportøren henter pakkene hos avsender er salget ferdig for avsender, men

for mottaker er selve leveransen en betydelig del av handleopplevelsen.

Eksempel: Kjøp av Apple TV. Produktet er likt, prisen er lik, nettbutikken er like god. Årsaken til at

Komplett velges fremfor Elkjøp, kan i mange tilfeller skyldes selve leveranseprosessen.

Avsender har i dag svært liten kontroll på leveranseopplevelsen til mottaker.

Oppgaven
Utvikle et system for kommunikasjon fra avsender til mottager og tilbakemeldinger fra mottager til

avsender.

Oppgaven er firedelt hvor følgene ting skal designes og utvikles.

1. En editor hvor brukeren kan definere hvordan eposter som blir sendt til kunder skal se ut og

hvilke informasjon den skal inneholde. Dette må lagres på et valgt format slik at det kan leses

inn i editoren for videre redigering. Web GUI, mulig å legge til vedlegg, bruk av tokens eller fast

tekstog grafikk.

2. En motor som generer en epost fra data om sendingen og det som brukeren har definert i

editoren. Når spesielle hendelser inntreffer vil denne modulen bli kalt. Her vil det være med

data for å finne frem til riktig konfigurering. Dataene for feltene som var tilgjengelig i editoren vil

bli sendt inn som xml/json. Dette bør implementeres som en webservice.

3. Lage en løsning (konfigurator og landingsside) hvor mottagere av sendinger kan gå inn og gi

tilbakemelding på kvaliteten på leveransen eller andre ting som avsender ønsker. Dette skal

være konfigurerbart for den enkelte avsender. Link til denne side blir sendt i epost/sms. Det er

viktig at denne er mobiltilpasset. Det må også være mulig å bruke templates (EDI-Soft default)

4. Dashboard, som viser utvalgte data

Lage rapporter på tilbakemeldinger fra kunder, her skal det være mulig å se både statistikk og de

enkelte tilbakemeldingene. Filtrering på transportør, geografi ++

Oppgave vil passe for 2 personer.

MGiNX - Creating a modern platform for managing email delivery

Appendix

F C f

Project Agreement

66

MGiNX - Creating a modern platform for managing email delivery

Appendix

F D f

Group Rules

69

Group Rules
• Hvis gruppen er uenige har gruppe leder siste ordet, med mindre de andre

gruppe medlemene mener det er en sak viktig nok for at veileder skal tas
inn. I et slikt tilfelle skal veileder veilede diskusjonen i gruppen, og hvis
gruppen ikke kan komme til enighet har gruppeleder fremdeles siste ordet.

• Hvis et gruppemedlem ved gjentatte ganger ikke leverer tildelt arbeid, og
ikke selv har tatt opp saken med gruppen, skal dette meldes til veileder
og en advarsel skal gis til gruppemedlemet. Ved tredje varsel har veileder
med samtykke av resten av gruppen fullmakt til å splitte gruppen.

• Hvis gruppen splittes skal alle ferdige sprint elementer for n̊aværende
sprint pushes til git repository.

• Ved fravær fra faste møtetider og avtalte møter med veileder eller Con-
signor skal dette meldes fra minst 2 dager p̊a forh̊and.

• Kostnader knyttet til prosjektet som Consignor selv ikke velger å ta p̊a
seg, skal deles likt mellom gruppemedlemene.

• Retningslinjer for kode standard, dokumentasjon og testing skal følges,
hvis dette ikke er gjenomført ses sprint elementet som ikke gjenomført.

——————————————————-

——————————————————-

1

MGiNX - Creating a modern platform for managing email delivery

Appendix

F E f

Hour Log

71

MGiNX - Creating a modern platform for managing email delivery

Date Team member Hours Activity
12.01 Tobias 5 Project Planning
12.01 Tobias 2 Project Website
12.01 Thomas 6 Project Planning
12.01 Thomas 2 Learning Technologies
13.01 Tobias 2 Project Website
13.01 Tobias 2 Wireframe Mockup
13.01 Tobias 1 Project Planning
13.01 All Members 2 Research
13.01 Thomas 7 Project Planning
14.01 All Members 9 Meeting in Oslo with Consignor/Product

Owner
15.01 Tobias 1 Meeting Summary
15.01 Tobias 1 Project Website
15.01 Tobias 3 Project Planning
15.01 Thomas 5 Project Planning
16.01 Thomas 5 Research
18.01 Tobias 7 Project Planning
18.01 Thomas 5 Project Planning
18.01 Thomas 2 Research
19.01 All Members 1 Meeting with supervisor
19.01 Thomas 2 Project Planning
19.01 Thomas 3 Learning Technologies
19.01 Tobias 5 Project Planning
20.01 All Members 7 Project Planning (SRS)
21.01 All Members 2 Research
21.01 All Members 4 Project Planning (SRS)
22.01 All Members 1 Sprint Planning
22.01 All Members 2 Research
23.01 Thomas 2 Learning Technologies
24.01 Thomas 2 Research
24.01 Thomas 1 Setting up the project
25.01 All Members 7 Developing
26.01 All Members .5 Meeting with supervisor
26.01 All Members .5 Meeting with Consignor
26.01 All Members 6 Development
27.01 Tobias 7 Development
27.01 Thomas 4 Development
27.01 Thomas 4 Research
28.01 All Members 7 Development
29.01 All Members 3 Development
01.02 Tobias 7 Development
01.02 Thomas 5 Development
01.02 Thomas 2 Research

72

MGiNX - Creating a modern platform for managing email delivery

02.02 All Members 7 Development
02.01 All Members .2 Meeting with supervisor
03.02 All Members 6 Development
04.02 All Members 6 Development
05.02 All Members 5 Development
08.02 All Members .5 Sprint review and planning meeting
08.02 Tobias 6 Development
08.02 Thomas 2 Development
09.02 All Members 6 Development
09.02 All Members .1 Meeting with supervisor
10.02 All Members 7 Development
11.02 All Members 7 Development
12.02 All Members 5 Development
15.02 All Members 7 Development
16.02 All Members 6 Development
16.02 All Members .2 Meeting with supervisor
17.02 All Members 6 Development
18.02 All Members 7 Development
19.02 All Members 5 Development
22.02 All Members 7 Development
23.02 All Members 7 Development
23.02 Tobias .2 Meeting with supervisor
24.02 All Members 7 Development
25.02 Tobias 7 Development
25.02 Thomas 5 Development
26.02 All Members 5 Development
29.02 Thomas 5 Development
01.03 All Members 6 Development
02.03 All Members 6 Development
03.03 All Members 6 Development
04.03 All Members 4 Development
07.03 All Members 5 Development
07.03 All Members .5 Sprint review and planning meeting
08.03 All Members 6 Development
08.03 All Members .2 Meeting with supervisor
09.03 All Members 5 Development
09.03 All Members 1 Bachelor lynkurs
10.03 All Members 6 Development
11.03 All Members 5 Development
14.03 All Members 7 Development
15.03 All Members 7 Development
16.03 All Members 6 Development
17.03 All Members 7 Development
18.03 All Members .5 Sprint planning and review meeting with Con-

signor
18.03 All Members 4 Development
21.03 Tobias 7 Development
22.03 All Members 6 Development
23.03 All Members 5 Development
29.03 All Members .3 Meeting with supervisor
29.03 All Members 6 Development

73

MGiNX - Creating a modern platform for managing email delivery

30.03 All Members 6 Development
31.03 All Members 7 Development
01.04 All Members 5 Development
04.04 All Members 7 Development
05.04 All Members 7 Development
05.04 All Members 0.2 Meeting with supervisor
06.04 All Members 6 Development
07.04 All Members 11 Development and demo preparation
08.04 All Members 6 Demo of software for product owner
11.04 All Members 6 Development
12.04 All Members 7 Development
13.04 All Members 7 Development
14.04 All Members 6 Development
15.04 All Members 4 Development
18.04 All Members 6 Development
19.04 Tobias 6 Development
19.04 Tobias 0.2 Meeting with supervisor
19.04 Thomas 5 Report Structure
20.04 Tobias 6 Development
20.04 Thomas 5 Report Structure
21.04 Tobias 6 Development
21.04 Thomas 5 Report Structure
22.04 Tobias 4 Development
22.04 Thomas 4 Report Structure
25.04 Tobias 3 Development
25.04 Tobias 3 Report
25.04 Thomas 6 Report
25.04 All Members 0.5 Meeting with Consignor
26.04 Tobias 7 Report
26.04 Thomas 9 Report
27.04 All Members 6 Report
28.04 All Members 7 Report
29.04 All Members 5 Report
02.05 All Members 7 Report
03.05 All Members 7 Report
04.05 All Members 6 Report
04.05 All Members 0.5 Meeting with supervsior
05.05 All Members 6 Report
06.05 All Members 5 Report
09.05 All Members 7 Report
10.05 All Members 7 Report
11.05 All Members 9 Report
12.05 All Members 0.5 Meeting with supervisor
12.05 All Members 6 Report
13.05 All Members 6 Report
14.05 All Members 6 Report
15.05 All Members 7 Report
16.05 All Members 7 Report
17.05 All Members 5 Report

74

MGiNX - Creating a modern platform for managing email delivery

Appendix

F F f

Project Plan

75

Consignor MGiNX
Bsc. Project Plan - 2016

Tobias Lnnerd Madsen
Thomas Sem-Jacobsen

Project plan

1 Introduction

1.1 Background

Consignor (previously EDI-Soft) is a technology company headquarted in Oslo,
who offer solutions to online retailers which store and manage shipment and
package data. This solution integrates with the client’s existing online ordering
system, and assist in printing crucial shipment documents, calculating shipment
costs for carriers in their area, alerting carriers of shipment events and tracking
package shipment status. This gives retailers a greater control of the shipping
companies available in their region and their relations with them. However,
they still lack the ability to influence the user experience during the shipment
stage.

1.2 Objectives

1.2.1 Learning Objectives

For this project, we aim to gain knowledge in a number of fields and technologies.
Some of them being:

• ASP.net Technologies with WebAPI and more

• Web technologies for creating responsive applications

• Scrum Software Methodology

• System Architecture using API driven web architecture

• Project planning and execution

1.2.2 Impact Objectives

Provide Consignor with a complete piece of software that can be easily inte-
grated with their existing system, and is designed to provide clients of Consignor
with a system in which they can customize their user experience to suit their
needs.

1.2.3 Performance Objectives

Considering the growing market of logistics software and a need for customiz-
ability for users, we aim to fulfill the following performance objectives:

• Create a easily extensible and maintainable system

• Create a scalable and robust system

1

• Give more control to senders surrounding branding and communications
with receivers of shipments

• Collect and display relevant statistics regarding communications with re-
ceivers and receiver happiness and satisfaction

1.3 Limitations

• Our system is unaware of any data related to package transactions, and
will therefore rely on Consignor’s existing system to provide updates to a
package shipment status.

• Our system is to provide a webpage in which the recipient can provide
feedback on their experience with the sender and transactions between
them. This feedback page will be provided through both e-mail and sms,
and as per Consignor’s request, this webpage is required to be responsive
as to accommodate both stationary and mobile devices.

• We will not be doing any work to integrate with Consignors existing soft-
ware. However, we will be using sample data and examples of configura-
tions provided by Consignor to make the system as compliant as possible,
for an easier integration at a later point.

• During development there will be no authentication needed to access the
sender-side of the website. At a potential integration stage our system
would have to authenticate with Consignors system.

1.4 Target Audience

We have two separate audiences, one for the receiver-oriented email and survey
components, and another for the dashboard, email editor and survey configu-
rator components. The receiver is further split into two categories, businesses
and the general public. Consignor is not limited to Norwegian customers, and
we must therefore support internationalization in our project.

1.4.1 Email & Survey

The consumers for these components are shipment receivers. They are non-
technical end-users, and often on small mobile devices. As such, the UI needs
to be intuitive and responsive.

1.4.2 Dashboard, Email Editor & Survey Configurator

The consumers for these components are shipment senders, and are bound to
desktop computers. They range from light users of the service, to power-users.
The interface for these services therefore needs to be intuitive, as well as offering
enough complex tools to allow for the desired configuration.

2

2 Scope

2.1 Field of Study

The majority of all transactions occur online, and so the shipment stage takes up
the majority of the transaction. Retailers acknowledges that the user experience
is a crucial part of the transaction, and hence a lot of resources have been used to
improve the online shopping experience, and there exist a lot of good solutions
here today. However, during the transaction there is a split between retailer
and customer. For the retailer the transaction is finished once the transporter
collects the package, but for the customer this is a vital part of the transaction,
and this experience can be the deciding factor on the customers view of the
retailer.

2.2 Technical Scope

This is where Consignor see an opportunity to expand their current solution, by
including a system which assist in maintaining the relationship between retailer
and customer, even during shipment. This is achieved by allowing retailers to
define the layout, content and design of emails sent to customers at specific ship-
ment events. In addition, the system should offer customers a web interface in
which they may provide feedback to retailers surrounding the shipment process,
and any other questions specified by the retailer.

Combined this should give retailers a greater control of the user experience
during shipment, and help narrow the split between retailer and customer.

2.3 Project Description

The application will consist of 4 main components:

1. An email editor to easily customize email configurations

2. En email engine to inflate email configurations with relevant information

3. A survey editor to configure surveys to be sent to receivers

4. A dashboard to generate statistics and reports from surveys and historical
data

Our suggested system architecture looks like this:

3

Figure 1: System Architecture

2.3.1 Email Editor

The email editor should be a easy way for users to either adapt preconfigured
templates to their use cases, or to feed the engine premade HTML configura-
tions.

The system should be able to keep track of several languages, with one
configuration per language. When adding a new language, you should at all
times be able to copy the text, images and layout from a different language
configuration.

In addition to language, there may also be multiple events to respond to.
The same requirements apply here.

When writing the email, the user should have easy access to variables. These
variables will be injected with data when the email is sent. The variables avail-
able is based on the Consignor configuration. The configuration containing
available variables will be received from Consignor during setup.

The following wireframe is our initial concept for the solution. The dif-
ference in implementing would mainly be a relocated and redesigned variable
management, as well as relocating the ’iterations’ column.

4

Figure 2: Wireframe for the email editor

2.3.2 Email Engine

The email engine is a webservice that will get notified by the Consignor system
when a shipment has reached certain events. Based on the event, an email may
be generated, using a customized configuration based on the actor, event and
choosing the correct language based on destination country. The engine will
take care of all details in create the email, including adding static or dynamic
attachments, inflating variables with data and logging data.

The email engine should send emails on behalf of the user, and as such
the system will need to get the required configuration from Consignor. To
prevent the server in question from being blacklisted as spam, the system will
occasionally have to check DNS records, to see if the required SPF records are
up to date and allows the system to send emails on behalf of the user. If the
SPF records are not found, an error message should appear. We may also have
to fall back to using an in-house sender email to ensure service availability.

5

2.3.3 Survey Editor

Similarly to the email editor, this component lets senders define a survey to
send to receivers after certain shipment events. The editor will let senders ask
questions with a question text, and select a type of rating or answer.

The initial types of responses to questions is the following:

1. Star rating (1-5)

2. Happiness rating (1-5)

3. Text Answer

4. Custom Answer List

The list may be extended or altered during the project.
Our initial idea for the GUI is the following:

Figure 3: Wireframe for the survey configurator

We would also need to create a frontend for the surveys and tie it into the
email engine. We created a wirefram proposal for the frontend:

6

Figure 4: Wireframe for the survey front end

2.3.4 Dashboard

The system dashboard is meant to give users insight into statistics surrounding
email usage, survey feedback, etc.

3 Project Organization

3.1 Responsibility

During development all group members are responsible for their own work, in-
cluding reporting any difficulties they are facing to the group during the daily
scrum, in addition to keeping occupied if the sprint backlog empties before the
end of a sprint.

The following parties are involved in this project:

Product Owner :
Consignor Group AS, Bjrn E Pedersen

Mentor :
Frode Haug, NTNU

Group Leader :
Tobias Lnnerd Madsen

7

CTO :
Thomas Sem-Jacobsen

3.2 Routines & Rules

See appendix A for group rules.

As for routines, we will stick to the following set of practices:

• All commits to repository should contain working and tested code only

• All code should be commented

• API Endpoints should be documented

• All team members meet at 10 am on weekdays

• As group leader and scrum master Tobias will be organizing all meetings
with Consignor

• All team members are to log time spent on the project at the end of the
day

• Thomas is responsible for booking a room for the team to work in

• Thomas is responsible for merging the work log of all team members

4 Planning, Monitoring & Reporting

4.1 Timeline & Development Model

When looking at what development methodology to follow, it was quickly re-
vealed that following an agile approach was more suitable than a plan driven
one. This is due to time constrictions, the need for a working prototype at the
end of the semester and most importantly the agile willingness, and ability, to
accommodate for changing requirements. This is important as even though the
core functionality of our project is set, uncertainty lies in how these are devel-
oped, in addition to requirements beyond Consignor’s initial vision.

There were two agile models that seemed especially attractive, Scrum and
Kanban. On the surface the two look very similar, but in reality they have very
differing philosophies.

Kanban offers a lot more freedom of choice during development than Scrum.
Like Scrum, Kanban also utilize a product backlog, it does however not use a
sprint backlog. Instead Kanban use a to do list, and unlike the sprint backlog
this list is not static during development. Kanban offers users the ability to
restructure the to do list by moving items between it and the backlog. This is
because Kanban is not timeboxed, but instead a gradual process. Even though

8

this is a development principle the team would like to follow, ultimately we
believe that our inexperience with Kanban could be detrimental to the project.

Scrum on the other hand is a lot more structured, and enforces certain rules
and time constraints. Once a sprint is planned both the workload and the sprint
duration is unchangeable. This allows the team to focus on the task at hand, in-
stead of worrying about the larger picture. In addition, preventing the product
owner from presenting new requirements during development, and disrupting
the workflow of the team.

In the end scrum was chosen due to it’s greater focus on a structured work-
flow, as well as Consignor’s previous experience with scrum. By following the
scrum methodology every sprint will result in a working increment of the final
product which will be used during meetings with both supervisor and Consignor
to provide a status report. This will benefit the team greatly, as it gives a more
accurate representation of how the team is performing.

For our configuration of scrum Bjrn E Pedersen and ystein Ranvik, repre-
sentatives from Consignor, will take on the role of product owners. The Scrum
Master will take on some of the responsibilities of the product owner, such as
managing the product backlogs. This due to our desire to be self organizing,
and not rely too heavily on Consignor. The role of Scrum Master was given to
Tobias, as he is the only one in the group with experience using scrum in a work
setting. Tobias also has previous work experience with Consignor, and such as
Scrum Master facilitates communication between the scrum team and product
owner.

When development starts we will be following a 2 week sprint cycle, but
as we get further into development the Scrum Master has the authority to
lengthen or shorten the sprint duration to suit the needs of the team. Due to
time constraints and the likelihood of failed estimations, we will allow the team
to continue working from the product backlog if the sprint backlog is emptied
prior to the end of the current sprint. Which elements will be included in this
way will be discussed by the team.

4.2 Meeting Schedule

Daily scrum meetings are held at 10 am on every weekday, except for Fridays
when it’s held at 12 pm due to additional classes, at NTNU and lasts 15 min.
During these meetings we will be using the standup principle as this is to be a
short meeting, and exists to inform the other members of their current status,
and any obstructions they are currently facing.

Meetings with Consignor marks the end of the current sprint, and will be
done mainly through Skype. These meetings will combine both the sprint plan-
ning meeting and sprint review meeting.

Every week on Tuesdays at 13:30 the group will be meeting with the su-
pervisor to review the project status, and make sure the group is working at
a steady pace so as to not fall behind. As we get further into development,

9

meetings with the supervisor may be less frequent as the group becomes more
self organizing, and the need for weekly status reports is reduced.

10

5 Quality Assurance

5.1 Documentation, Standardization & Source Code

All C# code will be documented using Visual studios own documentation stan-
dards. This is done by using XML, and XML like tags to generate full source
code documentation in XML files. In addition to being easy to use, the gener-
ated documentation is very easy to understand, due to the hierarchical structure
of XML.

To document the endpoints of the Web API we will be using ApiExplorer,
a ASP.NET Web API library which automatically generates help pages. These
pages include detailed information on controllers with example requests and
responses.

Further, the backend code in C# will follow Microsofts own C# coding
conventions, while the frontend will follow Google’s Style guide for HTML, CSS
and JavaScript.

5.2 Tools & Strategy

5.2.1 Microsoft Visual Studio 2015

Visual Studio is developed by Microsoft, and is the industry standard for de-
veloping windows based applications, and web development with the ASP.net
framework. Visual studio will be the IDE used by all team members during
development.

5.2.2 Git and GitHub

Git is a version control system which manages and stores revisions of projects
in an online repository. GitHub is an online repository meant to be used in
conjunction with Git. During the project Git and GitHub will be used to store
any documents related to the bachelor project such as code and the final report.

5.2.3 Teamwork.com

Teamwork.com is a project management tool, best suited for small teams. It
does lack some of the enterprise features of JIRA, but does everything else easier
and smoother. We are using its ’milestone’ feature to represent the sprints, and
have integration with GitHub to create GitHub issues for each task due in
Teamwork.com.

5.2.4 Bower and NuGet

Bower and NuGet are package managers for web development and the Microsoft
development platform respectively.

11

5.2.5 LaTeX

LaTeX is designed to write technical and scientific documents, and uses syntax
based language to specify the layout of the final document. LaTeX will be used
during the course of this project to write any official documents relating to the
final report.

5.2.6 Draw.io

Free, lightweight and easy to use online diagram software for making flow charts,
process diagrams, UML, ER and network diagrams.

5.3 Risk Analysis

Issue Probability Impact
1 A group member gets sick Medium Medium
2 The project is not completed in time Medium Low
3 The sprint backlog is empty before the sprint

is completed
Medium Low

4 Uncompleted sprint elements at the end of a
sprint

Medium High

5 Teamwork.com server is down Low Medium
6 GitHub server is down Low Medium
7 Loss of uncommitted work Low High

Issue 1:
Sickness is bound to happen, and there is little we can do to prevent this. In-
stead, the use of a well defined sprint backlog means any sick members is aware
of both their own work, as well as the work of other team members. Further,
the daily scrum meeting will be held through Skype as to include all members.

Issue 2:
The project will be used as a proof of concept instead of a final solution. Due
to our use of scrum, every sprint should conclude in a working increment of the
final product, thus resulting in a working prototype by the deadline.

Issue 3:
Due to both our inexperience working on larger projects, and the technologies
we will be using, wrong estimations are bound to happen. To reduce the margin
of error, estimations will be done by the whole group and reviewed by product
owner. If the issue is still present, we will allow the team member to add an
item from the product backlog, as time constraints do not allow downtime.

Issue 4:
The same prevention technique will be done as for issue 4. If this happens, the
remaining items will be returned to the product backlog. During the sprint re-
view meeting the previous sprint will be discussed, with a focus on which items

12

took longer than estimated.

Issue 7:
We will be using the development practice of continuous integration with the use
of Jenkins. This will ensure at most only a days work will be lost, in addition
to removing a lot of overhead such as compiling, deployment and running tests.

6 Schedule

6.1 Gantt Scheme

The project schedule is currently planned as the following:

Figure 5: Gantt scheme with the projects phases

The development phase is in reality split into Scrum sprints, where each
sprint lasts 2 weeks. This allows for a total of 6 sprints, with regular milestones.
Development may start earlier than planned if the project plan gets finished
and approved ahead of schedule.

6.2 Milestones

Since we have 6 Scrum sprints, it’s also natural to define 6 major milestones as
our goals. The milestones should represent major progress with the system.

1. Basic system structure, API routing and initial GUI

2. Database structure, complete GUI, basic email editor

13

3. API complete, email editor complete, branding complete

4. Email engine complete, survey editor and frontend complete

5. Statistics and report functionality

6. System testing complete, Product complete

14

MGiNX - Creating a modern platform for managing email delivery

Appendix

F G f

Meeting Summaries

Any meeting we had with Consignor in Oslo has been included in this appendix. Sprint
meetings have not been included.

91

Meeting Summary - 14/01-2016
Consignor MGiNX - Bsc. Project 2016

Attending:

• Bjørn E Pedersen

• Øystein Ranvik

• Tobias Lønnerød Madsen

• Thomas Sem-Jacobsen

Duration: 3.5 hours

Summary

Introduction

Got an introduction to the Consignor system, with an overview of the whole family of products.

Project

Discussed what Consignor had in mind, then what we had in mind. Got the requirements and
priorities confirmed. Also got the project agreement signed by both parties.

Shipment status

We had envisioned receivers being sent to a shipment status page in our system, but this is not
required, as the Portal product have this functionality. Idea scrapped for now.

Email Editor & Engine

Added requirements for language support, variables based on actor configuration, DNS validation
and more. Also clarified concepts and vocabulary surrounding the systems.

Survey Configuration & Implementation

Needs a number of choices for response types, in a way that is intuitive for the sender to add to
a survey. The surveys should have some permanent standard questions defined by us to measure
general satisfaction etc. As with email components, survey components also needs to be able to
adjust to local language. Bjørn and Øystein mentioned that they may be able to get some ideas
and requirements from existing customers for this solution.

Integration with Consignor

For this Bsc. project, we are to develop an independent module, without ties to Consignor. We
will however receive sample data and examples of configurations to make our system as compliant
as possible, for an easier integration at a later point.

Architecture, Tools & Methods

As initially planned, we have settled on using Scrum with 2 week sprints. Regular sprint status
meetings will be held with Bjørn and Øystein. Schedule is yet to be set. Git and Github for
collaboration, and Visual Studio as our editor. The architecture has a frontend made with standard
web technologies, and no javascript frameworks except for jQuery. The backend will be using
ASP.net WebAPI as the framework and MariaDB with Entity Framework as datastoring.

1

MGiNX - Creating a modern platform for managing email delivery

92

Testing & Quality Assurance

As initially planned, Bjørn also requested us to implement unit testing across the whole system.
We have added this to the requirements.

Design

Since this module likely will be integrated with the rest of the Consignor system, the design and
aesthetics should be coherent with pre-existing design patterns used in the Consignor system.

Naming

Consignor gave us the freedom to name it. We are currently naming it MGiNX (Mail Engine X).

2

MGiNX - Creating a modern platform for managing email delivery

93

Meeting Summary - 07/04-2016
Consignor MGiNX - Bsc. Project 2016

Attending:

• Bjørn E Pedersen

• Øystein Ranvik

• Lars Erik Fjørtoft

• Tellef Ormstad

• Peter T. Thomsen

• Tobias Lønnerød Madsen

• Thomas Sem-Jacobsen

Duration: 1.5 hours

Summary

This meeting was used to demo the product for Consignor, and to gather feedback on usability
and functionality for the final sprint.

Demo

Got to demo all of the features of the system to date, and got the following feedback:

Dashboard

Felt overwhelming, may need to reduce footprint of alerts.

Reports

May need a way to highlight unsatisfied responses to let the actor analyze individual answers. May
need a way to filter answers based on shipment indicators like geography etc.

Email Editor

Still need to implement button and text row functionality. There was some bugs with the to-
ken/variable functionality we need to resolve.

Survey Editor

When creating a new language, the questions from the default language should be copied over to
let the user translate immediately.

Settings

Our approach to facilitate sending email on behalf of the actor is depending on DNS entries for
SPF and DKIM in the actors DNS. This might not be optimal for all actors and an alternative
to the solution using the actors email relay instead of our own was suggested as a solution. A
intermediate solution will be implemented in the last sprint.

Branding

Seems to work OK.

1

MGiNX - Creating a modern platform for managing email delivery

94

MGiNX - Creating a modern platform for managing email delivery

Appendix

F H f

Status Reports

(In Norwegian) Three status reports detailing the progress along the project timeline.

95

Statusrapport nr. 1
1. Plannlegging

Fremdriftsplanen og forprosjektsplanen er fredig en uke før frist, og dermed
har utviklingen startet en uke før planlagt oppstart. I tillegg er kravspe-
sifikasjonen er fullført og godtatt av oppdragsgiver.

2. Klargjøring av problemstilling

Ved utforming av kravspesifikasjon har vi f̊att god kontroll p̊a oppdragets
m̊al.

3. Løsningsmetode

Utviklingsmiljø er satt opp b̊ade for utviklere og p̊a server-side. Server
er testbar og online. Teknologistacken er bestemt og fungerende, og virker
som vil la oss oppfylle alle satte m̊al.

4. Totalstatus

Vi har f̊att en god start p̊a utviklingen, og ligger en uke før skjema med
bi-ukentlige møter med oppdragsgiver.

5. Muligheter/Trusler/Problemer

Vi tar i bruk ASP.NET 5 som nylig ga ut release candiate, og det er av
den grunn manglende dokumentasjon. Dette er en kilde til utfordringer
n̊ar vi kommer dypere inn i backenden.

6. Hva er avsluttet

Vi er per i dag ferdig med andre sprint. Første sprint fullførte vi grunnle-
gende design og struktur p̊a web applikasjonen, og test server har blitt
satt opp. Andre sprint fikk vi satt opp mye av kommunikasjonen mellom
frontend og backend, med mulighet for å sette ting som branding p̊a emails
og surveys, samt en tidlig versjon av email og surveyeditor.

7. Hva er under arbeid

Sprint 3 vil i hovedsak bets̊a av å koble resten av funksjonaliteten av
frontend og backend sammen, samt resterende funksjonalitet i emailedi-
tor. I forhold til milepælene satt for prosjektplanen ligger vi akkurat i
rute.

8. Motivasjon

STRÅLENDE!!!

1

MGiNX - Creating a modern platform for managing email delivery

96

9. Veilederkontakt

Spesielt hjelpsomt i forprosjektsplanen.

2

MGiNX - Creating a modern platform for managing email delivery

97

Statusrapport nr. 2
1. Fremdriftsplan

Sprint 5 begynner 21 mars, og avsluttes med en live demo for Consignor 7
april. Innen denne datoen bør all funksjonalitet være avlsuttet slik at siste
sprint kan brukes til generel oppussing og testing av systemet, i tillegg til
endringer som Consignor ønsker.

2. Rapportskriving

Grunnleggende struktur for rapporten er satt opp, og rapportskriving beg-
ynner med sprint 5. Sprint 6 avluttes 22 april, som markerer slutten for
utviklingsprosessen, hvor rapportskriving vil være hovedfokuset frem til
18 mai som er endelig innleveringsdato.

3. Totalstatus

Veldig mye av planlagt funksjonalitet er fullført, men mye er fremdeles
løst tilkoblet og krever bedre intergrasjon. Etter planen ligger vi godt
ann, utenom systemet for utsending av eposter som skal forsikre at eposter
åptrer som troverdige. Her har det oppst̊att en del komplikasjoner grun-
net bugs i RC1 av .Net Core, som har ført til at dette har tatt betydelig
lenger tid en planlagt

4. Muligheter/Trusler/Problemer

Litt mangler og buggs med RC1 av .Net Core. Vi har laget løsninger
for det midlertidig, men mye av disse problemene er fikset med RC2. RC2
var planlagt for midten av februar, men har blitt utsatt til ukjent tid.

5. Hva er avsluttet

Grunnleggende epost h̊andtering, spr̊ak støtte, logging av tilbakemeldinger
og statistik for tilbakemeldinger.

6. Hva er under arbeid

Sprint 5 har nylig begynt, og brukes hovedsakelig til å fullføre troverdig
epost h̊andtering, samt survey og epost editor funksonalitet, og lett rap-
portskriving.

7. Motivasjon

Motivasjonen er fremdeles p̊a topp, men vi merker at tiden begynner å
bli knapp, og med dette øker stressniv̊aet.

1

MGiNX - Creating a modern platform for managing email delivery

98

Statusrapport nr. 3
1. Totalstatus

MGiNX systemet er n̊a fullført litt etter skjema, og vi rakk ikke like
mye systemtesting som vi ville. Sprint 6 er n̊a avsluttet, og dermed ogs̊a
utviklingsprosessen. All plannlagt funksjonalitet har blitt implementert
utenom mulighet til å legge til egen avsender epost grunnet mangler i RC
1, men alt rundt er satt opp for å støtte det ved utgivelse av RC 2.

2. Fremdriftsplan

Fra den 25 april til innleveringsfristen den 18 mai vil all tid brukes til
rapportskriving.

3. Rapportskriving

Endelig rapportstruktur er satt opp og sendes til veileder for kontroll. Den
25 april starter rapportskrivingen for fullt, og rapportens arbeidsoppgaver
har blitt inndelt og tildelt med ukentlige tidsfrister til gruppemedlemene
slik at alle vet hva de skal jobbe med.

4. Motivasjon

Som alltid er motivasjonen til gruppen p̊a topp, og med kun 3 uker igjen
kan vi endelig begynne å skimte lyset i enden av tunnelen.

1

MGiNX - Creating a modern platform for managing email delivery

99

MGiNX - Creating a modern platform for managing email delivery

Appendix

F I f

Email Reader Compatability Tests

As part of testing and QA for the project, we tested our email templates in a multitude
of email readers. The results are listed in this appendix, with a general overview first,
and then screenshots of each email reader with the template as displayed.

100

MGiNX - Creating a modern platform for managing email delivery

Email Reader Transmission Formatting Notes
Microsoft Outlook 2013 OK OK Padding on some elements

missing (button)
Microsoft Outlook 2003 OK OK Padding on some elements

missing (button), back-
ground color on some ele-
ments missing (separator)

Google Gmail OK OK
Yahoo Mail OK OK (fixed) Aters CSS attribute

’height’ to ’min-height’,
fixed

Mozilla Thunderbird OK OK

Figure 27: Screenshot of Microsoft Outlook 2013 displaying email.

101

MGiNX - Creating a modern platform for managing email delivery

Figure 28: Screenshot of Microsoft Outlook 2003 displaying email.

Figure 29: Screenshot of Yahoo Mail displaying email.

102

MGiNX - Creating a modern platform for managing email delivery

Figure 30: Screenshot of Google Gmail displaying email.

Figure 31: Screenshot of Mozilla Thunderbird displaying email.

103

MGiNX - Creating a modern platform for managing email delivery

Appendix

F J f

NuGet Configuration

The following is the entirety of our project.json, showing project configuration and listing
all libraries we use.

104

MGiNX - Creating a modern platform for managing email delivery

1 {
2 "version": "1.0.0-*",
3

4 "webroot": "wwwroot",
5

6 "compilationOptions": {
7 "emitEntryPoint": true
8 },
9

10 "dependencies": {
11 "Microsoft.ApplicationInsights.AspNet": "1.0.0-rc1",
12 "Microsoft.AspNet.IISPlatformHandler":

↪→ "1.0.0-rc1-final",
13 "Microsoft.AspNet.Mvc": "6.0.0-rc1-final",
14 "Microsoft.AspNet.Server.Kestrel": "1.0.0-rc1-final",
15 "Microsoft.AspNet.StaticFiles": "1.0.0-rc1-final",
16 "Microsoft.AspNet.Mvc.WebApiCompatShim":

↪→ "6.0.0-rc1-final",
17 "Microsoft.Extensions.Configuration.FileProviderExtensions":

↪→ "1.0.0-rc1-final",
18 "Microsoft.Extensions.Configuration.Json":

↪→ "1.0.0-rc1-final",
19 "Microsoft.Extensions.Logging": "1.0.0-rc1-final",
20 "Microsoft.Extensions.Logging.Console":

↪→ "1.0.0-rc1-final",
21 "Microsoft.Extensions.Logging.Debug": "1.0.0-rc1-final",
22 "Microsoft.AspNet.Diagnostics.Entity":

↪→ "7.0.0-rc1-final",
23 "Microsoft.AspNet.Identity.EntityFramework":

↪→ "3.0.0-rc1-final",
24 "Microsoft.Extensions.Configuration.Abstractions":

↪→ "1.0.0-rc1-final",
25 "Microsoft.Extensions.Configuration.EnvironmentVariables":

↪→ "1.0.0-rc1-final",
26 "EntityFramework.Commands": "7.0.0-rc1-final",
27 "EntityFramework7.Npgsql": "3.1.0-rc1-3",
28 "runtime.unix.System.Net.Security": "4.0.0-beta-23516",
29 "runtime.linux.System.Net.NetworkInformation":

↪→ "4.1.0-beta-*",
30 "xunit": "2.1.0",
31 "xunit.runner.dnx": "2.1.0-rc1-build204",
32 "LightMock.vNext": "1.0.1",
33 "MimeKit": "1.3.0-beta7",
34 "MailKit": "1.3.0-beta7",
35 "Portable.BouncyCastle": "1.8.1",
36 "Serilog.Framework.Logging": "1.0.0-rc1-final-10078",
37 "AngleSharp": "0.9.5"
38 },
39

40 "commands": {
41 "web": "Microsoft.AspNet.Server.Kestrel --server.urls

↪→ http://*:5000",
42 "ef": "EntityFramework.Commands",

105

MGiNX - Creating a modern platform for managing email delivery

43 "test": "xunit.runner.dnx"
44 },
45

46 "frameworks": {
47 "dnxcore50": {
48 "dependencies": {
49 "PreMailer.Net.Core": "1.0.0-*"
50 }
51 }
52 },
53

54 "exclude": [
55 "wwwroot",
56 "node_modules"
57],
58 "publishExclude": [
59 "**.user",
60 "**.vspscc"
61]
62 }

106

MGiNX - Creating a modern platform for managing email delivery

Appendix

F K f

Bower Configuration

The following is the entirety of our Bower configuration, listing all libraries we use.

107

MGiNX - Creating a modern platform for managing email delivery

1 {
2 "name": "MGiNX",
3 "private": true,
4 "dependencies": {
5 "bootstrap": "~3.3.6",
6 "startbootstrap -sb-admin-2": "~1.0.8",
7 "mjolnic-bootstrap -colorpicker": "~2.3.0",
8 "Sortable": "~1.4.2",
9 "html2canvas": "~0.4.1",

10 "es6-promise": "~3.0.2",
11 "bootstrap -star-rating": "~3.5.7",
12 "js-cookie": "~2.1.0",
13 "Medium.js": "medium.js#^1.0.1",
14 "bootstrap -validator": "0.9.0",
15 "chosen": "^1.5.1",
16 "jquery": "2.1.4",
17 "opentip": "^2.4.6"
18 },
19 "resolutions": {
20 "jquery": "2.1.4",
21 "font-awesome": "~4.2"
22 }
23 }

108

MGiNX - Creating a modern platform for managing email delivery

Appendix

F L f

UserController.cs

The following is an example of the controllers we use in the application, in this case
serving user objects.

109

MGiNX - Creating a modern platform for managing email delivery

us ing System . C o l l e c t i o n s . Generic ;
us ing System . Net ;

us ing Microso f t . AspNet .Mvc ;
us ing Microso f t . Extens ions . Logging ;
us ing Newtonsoft . Json . Linq ;

us ing MGiNX. API . User . Models ;
us ing MGiNX. API . Authent icat ion ;

namespace MGiNX. API . User . C o n t r o l l e r s
{

[Route (” api / [c o n t r o l l e r] ”)]
pub l i c c l a s s Use rCont ro l l e r : C o n t r o l l e r
{

/// <summary>
/// IEmailLayoutRepository i s an i n t e r f a c e used to

↪→ s epara te database ope ra t i on s from c o n t r o l l e r and
↪→ model l o g i c .

/// </summary>
/// <s e e a l s o c r e f =”IUser tRepos i to ry”/>
pub l i c IUserRepos i tory _repos i tory ;
p r i va t e readonly ILogger _logger ;

/// <summary>
/// Dependency I n j e c t i o n i s used to r e t r i e v e r e s o u r c e s

↪→ the c o n t r o l l e r w i l l u t i l i z e .
/// </summary>
/// <s e e a l s o c r e f =”Startup”/>
pub l i c Use rCont ro l l e r (IUserRepos i tory r epo s i t o ry ,

↪→ ILogger<UserContro l l e r > l o g ge r)
{

_repos i tory = r e p o s i t o r y ;
_logger = l o g ge r ;

}

/// <summary>
/// Ret r i eve s the UserItem with property Id equal to

↪→ UserId .
/// </summary>
/// <returns >
/// HttpUnauthorized i f the cook i e i s i n v a l i d .
/// HttpNotFound i f the UserItem does not e x i s t .
/// UserItem i f the UserItem e x i s t .</ returns >
[HttpGet]
pub l i c IAct ionResu l t GetUser ()
{

i n t use r Id ;
t ry
{

use r Id =
↪→ CookieAuthent icat ion . Ver i fy (HttpContext . Request . Cookies) ;

110

MGiNX - Creating a modern platform for managing email delivery

}
catch (Cook ieAuthent icat ionFai l edExcept ion)
{

Response . StatusCode =
↪→ (i n t) HttpStatusCode . Unauthorized ;

re turn HttpUnauthorized () ;
}

UserItem user = _repos i tory . FindUser (use r Id) ;
i f (user == n u l l)
{

Response . StatusCode =
↪→ (i n t) HttpStatusCode . NotFound ;

re turn HttpNotFound () ;
}

re turn new ObjectResult (user) ;
}

/// <summary>
/// Takes a Json Object conta in ing a s t r i n g o f

↪→ l anguages . These languages are then added
/// to the cur rent u s e r s Sett ingI tem .
/// </summary>
/// <param name=”payload”>Json Object conta in ing user

↪→ data</param>
/// <returns >
/// HttpUnauthorized i f the cook i e i s i n v a l i d .
/// HttpNotFound i f the UserItem does not e x i s t .
/// Set t ings I t em i f the Language was s u c c e s s f u l l y

↪→ added.</ returns >
[HttpPost (”add/ language ”)]
pub l i c IAct ionResu l t AddLanguage ([FromBody] JObject

↪→ payload)
{

i n t use r Id ;
t ry
{

use r Id =
↪→ CookieAuthent icat ion . Ver i fy (HttpContext . Request . Cookies) ;

}
catch (Cook ieAuthent icat ionFai l edExcept ion)
{

Response . StatusCode =
↪→ (i n t) HttpStatusCode . Unauthorized ;

re turn HttpUnauthorized () ;
}

UserItem user = _repos i tory . FindUser (use r Id) ;
i f (user == n u l l)
{

Response . StatusCode =
↪→ (i n t) HttpStatusCode . NotFound ;

111

MGiNX - Creating a modern platform for managing email delivery

re turn HttpNotFound () ;
}

s t r i n g i s o = payload . Value<s t r i ng >(” lang ”) ;

L i s t <s t r i ng > langs = new
↪→ List <s t r i ng >(user . S e t t i n g s . Languages) ;

l angs . Add(i s o) ;
user . S e t t i n g s . Languages = langs . ToArray () ;

_repos i tory . SaveChanges () ;

r e turn new ObjectResult (user . S e t t i n g s) ;
}

}
}

112

MGiNX - Creating a modern platform for managing email delivery

Appendix

F M f

UserRepository.cs

The following is an example of the repositories we use in the application, in this case
serving user objects.

113

MGiNX - Creating a modern platform for managing email delivery

us ing System ;
us ing System . Linq ;

us ing Microso f t . Data . Entity ;

us ing MGiNX. API . Branding . Models ;
us ing MGiNX. API . Se t t i ng . Models ;
us ing MGiNX. API . U t i l s ;
us ing MGiNX. DatabaseContext ;

namespace MGiNX. API . User . Models
{

pub l i c c l a s s UserRepos i tory : IUserRepos i tory
{

p r i va t e readonly Postgresq lContext _dbContext ;

pub l i c UserRepos i tory (Postgresq lContext dbContext)
{

_dbContext = dbContext ;
}

/// <summary>
/// Attempts to add a new UserItem to the database with

↪→ property Id equal to the use r Id parameter .
/// I f the item i s not added the changes are r eve r t ed .
/// </summary>
/// <param name=”user Id”></param>
/// <returns >
/// Null i f ther was an e r r o r adding the new user .
/// UserItem i f the user was s u c c e s s f u l l y

↪→ added.</ returns >
pr i va t e UserItem AddUser (i n t use r Id)
{

//TODO: Ensure c r e a t i o n o f new
↪→ s e t t i n g / branding / survey s t u f f

UserItem user = new UserItem { Id = userId , Events
↪→ = Constants . Events } ;

user . Branding = new BrandingItem { } ;
user . S e t t i n g s = new Sett ingI tem { DefaultLanguage =

↪→ ”en” , Languages = new s t r i n g [] { ”en” } } ;
t ry
{

_dbContext . BrandingItems . Add(user . Branding) ;
_dbContext . Se t t ing I t ems . Add(user . S e t t i n g s) ;
_dbContext . Users . Add(user) ;
_dbContext . SaveChanges () ;

} catch (Inva l idOperat ionExcept ion ex)
{

System . D iagnos t i c s . Debug . WriteLine (” Exception
↪→ occured during user c r e a t i o n : ” +
↪→ ex . Message) ;

r e turn n u l l ;
} catch (DbUpdateException ex)

114

MGiNX - Creating a modern platform for managing email delivery

{
System . D iagnos t i c s . Debug . WriteLine (” Exception

↪→ occured during user c r e a t i o n : ” +
↪→ ex . Message + ” , r e v e r t i n g changes . . . ”) ;

_dbContext . BrandingItems . Remove(user . Branding) ;
_dbContext . Se t t ing I t ems . Remove(user . S e t t i n g s) ;
_dbContext . Users . Remove(user) ;
_dbContext . SaveChanges () ;
r e turn n u l l ;

}
re turn user ;

}

/// <summary>
/// Attempts to f i n d the UserItem with property Id

↪→ equal to the use r Id parameter . I f the User does
↪→ not e x i s t

/// add the user to the database as a new user .
/// </summary>
/// <param name=”user Id”>Id equal to UserItem property

↪→ Id</param>
/// <returns >
/// UserItem i f the item e x i s t s , or was added .
/// Nul l i f the item does not e x i s t .</ returns >
pub l i c UserItem FindUser (i n t use r Id)
{

UserItem user ;
t ry
{

user = _dbContext . Users
. Inc lude (u => u . Branding)
. Inc lude (u => u . S e t t i n g s)
. F i r s t (u => u . Id == user Id) ;

}
catch (Inva l idOperat ionExcept ion ex)
{

System . D iagnos t i c s . Debug . WriteLine (” Exception
↪→ occured during user r e t r i e v a l : ” +
↪→ ex . Message) ;

user = n u l l ;
}
i f (user == n u l l)
{

user = AddUser (use r Id) ;
}
re turn user ;

}

/// <summary>
/// Implements the changes made to the database .
/// </summary>
pub l i c void SaveChanges ()
{

115

MGiNX - Creating a modern platform for managing email delivery

_dbContext . SaveChanges () ;
}

}
}

116

MGiNX - Creating a modern platform for managing email delivery

Appendix

F N f

Sprint Log

117

Project MGiNX

Sprint 1 — Task List Report

Completed Tasks

Task Start Date Date Due Responsible Assigned By Priority Progress Status

Set up test server 05 Feb (2016) Tobias Lønnerød M. Tobias Lønnerød M. 100% Completed 25 Jan (2016)
by Tobias Lønnerød M.

[Web] GUI for Dashboard
Webpage for dashboard, should serve as a foundation for all other pages

 05 Feb (2016) Tobias Lønnerød M. Tobias Lønnerød M. 100% Completed 27 Jan (2016)
by Tobias Lønnerød M.

[Web] GUI for Email Editor 05 Feb (2016) Tobias Lønnerød M. Tobias Lønnerød M. 100% Completed 04 Feb
(2016) by Tobias
Lønnerød M.

[Web] GUI for Survey Editor 05 Feb (2016) Tobias Lønnerød M. Tobias Lønnerød M. 100% Completed 01 Feb
(2016) by Tobias
Lønnerød M.

[Web] GUI for Reports 05 Feb (2016) Tobias Lønnerød M. Ernst Thomas S. 100% Completed 08 Feb
(2016) by Tobias
Lønnerød M.

[Web] GUI for Branding 05 Feb (2016) Tobias Lønnerød M. Tobias Lønnerød M. 100% Completed 29 Jan (2016)
by Tobias Lønnerød M.

[Web] GUI for Settings 05 Feb (2016) Tobias Lønnerød M. Tobias Lønnerød M. 100% Completed 27 Jan (2016)
by Tobias Lønnerød M.

[Sys] Application Structure 05 Feb (2016) Ernst Thomas S. Tobias Lønnerød M. 100% Completed 26 Jan (2016)
by Ernst Thomas S.

[API] API Routing 05 Feb (2016) Ernst Thomas S. Tobias Lønnerød M. 100% Completed 27 Jan (2016)
by Ernst Thomas S.

[API] Testing Tools 05 Feb (2016) Ernst Thomas S. Tobias Lønnerød M. 100% Completed 08 Feb
(2016) by Ernst Thomas
S.

[Sys] Database Integration
Using Entity Framework

 05 Feb (2016) Ernst Thomas S. Tobias Lønnerød M. 100% Completed 01 Feb
(2016) by Ernst Thomas
S.

Generated for Ernst Thomas Sem-Jacobsen at 15:42 14/05/2016

1 of 1

Project MGiNX

Sprint 2 — Task List Report

Completed Tasks

Task Start Date Date Due Responsible Assigned By Priority Progress Status

[GUI] Polish and Adjust 19 Feb (2016) Tobias Lønnerød M. Tobias Lønnerød M. 100% Completed 16 Feb
(2016) by Tobias
Lønnerød M.

[API] Email Editor Endpoint 19 Feb (2016) Tobias Lønnerød M. Tobias Lønnerød M. 100% Completed 19 Feb
(2016) by Tobias
Lønnerød M.

[Editor] User can add predefined tokens to emails 19 Feb (2016) Tobias Lønnerød M. Ernst Thomas S. 100% Completed 17 Feb
(2016) by Tobias
Lønnerød M.

[Editor] User can save and load email configurations 19 Feb (2016) Tobias Lønnerød M. Ernst Thomas S. 100% Completed 19 Feb
(2016) by Tobias
Lønnerød M.

[Frondend] API Hook-up Survey Editor 19 Feb (2016) Ernst Thomas S. Tobias Lønnerød M. 100% Completed 19 Feb
(2016) by Ernst Thomas
S.

[Frondend] API Hook-up Branding 19 Feb (2016) Ernst Thomas S. Tobias Lønnerød M. 100% Completed 12 Feb
(2016) by Ernst Thomas
S.

[Frondend] API Hook-up Settings 19 Feb (2016) Ernst Thomas S. Tobias Lønnerød M. 100% Completed 16 Feb
(2016) by Ernst Thomas
S.

[Editor] Create a set of predefined templates the user can use to specify layout of emails 19 Feb (2016) Tobias Lønnerød M. Ernst Thomas S. 100% Completed 17 Feb
(2016) by Tobias
Lønnerød M.

[API] Survey Editor Endpoint 19 Feb (2016) Ernst Thomas S. Tobias Lønnerød M. 100% Completed 19 Feb
(2016) by Ernst Thomas
S.

[API] Settings Endpoint 19 Feb (2016) Ernst Thomas S. Tobias Lønnerød M. 100% Completed 16 Feb
(2016) by Ernst Thomas
S.

[API] Branding Endpoint 19 Feb (2016) Ernst Thomas S. Tobias Lønnerød M. 100% Completed 12 Feb
(2016) by Ernst Thomas
S.

[Sys] Database POCOs 19 Feb (2016) Ernst Thomas S. Tobias Lønnerød M. 100% Completed 12 Feb
(2016) by Ernst Thomas
S.

Generated for Ernst Thomas Sem-Jacobsen at 15:42 14/05/2016

1 of 1

Project MGiNX

Sprint 3 — Task List Report

Completed Tasks

Task Start Date Date Due Responsible Assigned By Priority Progress Status

[API] User Endpoint (Global Settings) 04 Mar (2016) Tobias Lønnerød M. Tobias Lønnerød M. 100% Completed 25 Feb
(2016) by Tobias
Lønnerød M.

[Refactor] Cookie Authentication 04 Mar (2016) Tobias Lønnerød M. Tobias Lønnerød M. 100% Completed 22 Feb
(2016) by Tobias
Lønnerød M.

[Refactor] GUI Dialogs 04 Mar (2016) Tobias Lønnerød M. Tobias Lønnerød M. 100% Completed 22 Feb
(2016) by Tobias
Lønnerød M.

[Editor] User can choose the language for a specific email configuration 04 Mar (2016) Tobias Lønnerød M. Ernst Thomas S. 100% Completed 23 Feb
(2016) by Tobias
Lønnerød M.

[Email] Engine Mockup 04 Mar (2016) Tobias Lønnerød M. Tobias Lønnerød M. 100% Completed 04 Mar
(2016) by Tobias
Lønnerød M.

[API] Dashboard Endpoint 04 Mar (2016) Ernst Thomas S. Tobias Lønnerød M. 100% Completed 23 Feb
(2016) by Ernst Thomas
S.

[Frondend] API Hook-up Dashboard 04 Mar (2016) Ernst Thomas S. Tobias Lønnerød M. 100% Completed 23 Feb
(2016) by Ernst Thomas
S.

[Survey] Load config for user 04 Mar (2016) Ernst Thomas S. Tobias Lønnerød M. 100% Completed 24 Feb
(2016) by Ernst Thomas
S.

[Survey] Generate a unique one time access url for the survey webpage 04 Mar (2016) Ernst Thomas S. Ernst Thomas S. 100% Completed 24 Feb
(2016) by Ernst Thomas
S.

[Survey] Log survey answers 04 Mar (2016) Ernst Thomas S. Ernst Thomas S. 100% Completed 01 Mar
(2016) by Ernst Thomas
S.

Generated for Ernst Thomas Sem-Jacobsen at 15:43 14/05/2016

1 of 1

Project MGiNX

Sprint 4 — Task List Report

Completed Tasks

Task Start Date Date Due Responsible Assigned By Priority Progress Status

[Frondend] API Hook-up Reports 18 Mar (2016) Ernst Thomas S. Tobias Lønnerød M. 100% Completed 10 Mar
(2016) by Ernst Thomas
S.

[API} Survey Report Endpoint 18 Mar (2016) Ernst Thomas S. Tobias Lønnerød M. 100% Completed 10 Mar
(2016) by Ernst Thomas
S.

MTA System 18 Mar (2016) Tobias Lønnerød M. Tobias Lønnerød M. 100% Completed 18 Mar
(2016) by Tobias
Lønnerød M.

[Common] Adding language (dialog) 18 Mar (2016) Tobias Lønnerød M. Tobias Lønnerød M. 100% Completed 14 Mar
(2016) by Tobias
Lønnerød M.

[API] Implement Logging 18 Mar (2016) Ernst Thomas S. Ernst Thomas S. 100% Completed 14 Mar
(2016) by Ernst Thomas
S.

Generated for Ernst Thomas Sem-Jacobsen at 15:43 14/05/2016

1 of 1

Project MGiNX

Sprint 5 — Task List Report

Completed Tasks

Task Start Date Date Due Responsible Assigned By Priority Progress Status

[Language] Ability to delete language 08 Apr (2016) Ernst Thomas S. Tobias Lønnerød M. 100% Completed 05 Apr (2016)
by Ernst Thomas S.

[Engine] Tracking/Survey URL Generation 08 Apr (2016) Anybody Tobias Lønnerød M. 100% Completed 11 Apr (2016)
by Tobias Lønnerød M.

[Editor] Copy-From (Copy content from another event/language) 08 Apr (2016) Tobias Lønnerød M. Tobias Lønnerød M. 100% Completed 06 Apr (2016)
by Tobias Lønnerød M.

[Dashboard] Status messages 08 Apr (2016) Ernst Thomas S. Tobias Lønnerød M. 100% Completed 06 Apr (2016)
by Ernst Thomas S.

[Unit Testing] Extend and automate tests 08 Apr (2016) Ernst Thomas S. Tobias Lønnerød M. 100% Completed 27 Mar
(2016) by Ernst Thomas
S.

[Survey] User can choose the language for a specific survey configuration 08 Apr (2016) Ernst Thomas S. Ernst Thomas S. 100% Completed 29 Mar
(2016) by Ernst Thomas
S.

[Editor] User can add and remove attachements to emails 08 Apr (2016) Tobias Lønnerød M. Ernst Thomas S. 100% Completed 05 Apr (2016)
by Tobias Lønnerød M.

[Email] Finish MUA 08 Apr (2016) Tobias Lønnerød M. Tobias Lønnerød M. 100% Completed 01 Apr (2016)
by Tobias Lønnerød M.

[Email/MTA] Fix SPF errors and verify SSL 08 Apr (2016) Tobias Lønnerød M. Tobias Lønnerød M. 100% Completed 22 Mar
(2016) by Tobias
Lønnerød M.

Generated for Ernst Thomas Sem-Jacobsen at 15:44 14/05/2016

1 of 1

Project MGiNX

Sprint 6 — Task List Report

Completed Tasks

Task Start Date Date Due Responsible Assigned By Priority Progress Status

[Build] Automate build for docker and database update 22 Apr (2016) Tobias Lønnerød M. Tobias Lønnerød M. 100% Completed 25 Apr (2016)
by Tobias Lønnerød M.

[Editor] Survey Button + Text/image rows/columns 22 Apr (2016) Tobias Lønnerød M. Tobias Lønnerød M. 100% Completed 21 Apr (2016)
by Tobias Lønnerød M.

[Engine] Complete email engine 22 Apr (2016) Tobias Lønnerød M. Tobias Lønnerød M. 100% Completed 25 Apr (2016)
by Tobias Lønnerød M.

[Meta] Document undocumented code 22 Apr (2016) Ernst Thomas S. Tobias Lønnerød M. 100% Completed 12 Apr (2016)
by Ernst Thomas S.

[Meta] Document API interface 22 Apr (2016) Ernst Thomas S. Tobias Lønnerød M. 100% Completed 15 Apr (2016)
by Ernst Thomas S.

[Meta] Finish Unit Testing all modules 22 Apr (2016) Ernst Thomas S. Tobias Lønnerød M. 100% Completed 12 Apr (2016)
by Ernst Thomas S.

Generated for Ernst Thomas Sem-Jacobsen at 15:44 14/05/2016

1 of 1

MGiNX - Creating a modern platform for managing email delivery

Appendix

F O f

Swagger UI

124

MGiNX - Creating a modern platform for managing email delivery

Appendix

F P f

Project Poster

126

MGiNX
-

Creating a modern platform
for email delivery

MGiNX
-

Creating a modern platform
for email delivery

http://tobbentm.com/bsc

Thesis describing the creation of
a modern platform for managing
trustworthy email delivery, email
template editing and survey
management

TTested compatability with all
email clients, using industry
grade email verification and
encryption

Using the latest web and backend

technologies, including ASP.Net

Core, Entity Framework 7,

PostgreSQL, Docker and Postfix

13HBIDATA 13HBIDATA

	Preface
	Contents
	List of Figures
	Introduction
	Introduction
	Field of study
	Technical Scope
	Project Description

	Project Restrictions
	Target Audience
	Application Audience
	Report Audience

	Purpose
	Why this assignment
	Learning Objectives
	Impact Objectives
	Performance Objectives

	Academic Background
	Roles
	Report Structure

	Requirements
	Functional Requirements
	Use Cases

	Interface With Consignor
	Supplementary Requirements
	Deployment Platform
	Usability
	Compatibility
	Language support
	Security & Authentication
	Documentation and testing
	Logging

	Product Backlog

	Design
	System Architecture
	Sending Trustworthy Emails
	Reverse DNS
	SPF
	DKIM
	Encryption

	Wireframes and frontend planning
	Wireframes
	Graphical style

	File structure
	Application Organization
	User Data

	Implementation
	Tools & Codebase
	ASP.Net Core
	Entity 7 ORM
	Release Candidate troubles

	Database
	Frontend
	Intro
	Dashboard
	Reports
	Email Editor
	Survey Editor
	Branding
	Settings
	Survey

	Backend
	API Endpoints
	Email Engine

	Testing and Quality Assurance
	Unit Testing
	Unit test example

	Component & System Testing
	Acceptance Testing
	Compliance Testing

	Swagger

	Deployment
	Docker
	Postgres
	nginx Proxy
	nginx Let's Encrypt Companion
	MGiNX
	Swagger UI

	Encryption
	Postfix

	Conclusion
	Results
	What would we do differently today?
	Further Development
	Group Evaluation
	Conclusion

	Bibliography
	Terminology
	Project Description
	Project Agreement
	Group Rules
	Hour Log
	Project Plan
	Meeting Summaries
	Status Reports
	Email Reader Compatability Tests
	NuGet Configuration
	Bower Configuration
	UserController.cs
	UserRepository.cs
	Sprint Log
	Swagger UI
	Project Poster

