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ABSTRACT 

Background: Children with cerebral palsy (CP) experience motor disabilities which can lead 

to difficulties when walking. This is apparent in lower walking speed and higher energy 

expenditure (EE) when walking compared to typically developing (TD) peers, in addition to 

more sedentary time and lower participation. EE estimations are often done in this group to 

investigate the effect of treatments. EE indicates the amount of energy used to perform a task 

and is commonly estimated from oxygen consumption (VO2) measurements using indirect 

calorimetry. A less invasive method is desirable, and activity monitors are now being used for 

this purpose. They measure acceleration during movement and relate the output to EE.  

Aim: To investigate if raw acceleration data can be used to estimate EE in children with CP 

and TD children during walking.  

Methods: Fifteen typically developing (TD) children (mean age 10.0 yrs ± 1.7) and six 

children with CP (mean age 12.4 yrs ± 3.9, GMFCS level I-III) performed a five-minute 

walking test at preferred walking speed while wearing two Axivity AX3 activity monitors 

(lower back and mid-thigh) and portable indirect calorimetry equipment (Metamax II). 

Distance walked was recorded with a measuring wheel. EE and relative VO2 was estimated 

from indirect spirometry and equations developed by Brandes et al. and Hildebrand et al, 

using vector magnitude (VM) from the acceleration signal as input. 

Results: EE and relative EE values from indirect calorimetry and acceleration data were 

almost identical, overestimating with 0.1% and 4.5% for the TD children and 4.8 % and 2.3% 

for the children with CP. Both equations estimating relative VO2 gave accurate estimations 

for the children with CP (1.2% and 3.4% overestimation), but a significant difference was 

seen between the relative VO2 from acceleration data and the values obtained by indirect 

calorimetry for the TD children (12.9% and 14.1%). A large variation was found in the 

accuracy of the estimations for each participant, with wide limits of agreement in a Bland-

Altman analysis. There was not found a statistical difference in VM for the groups. The VM 

showed little variation in the acceleration signal during the test period (mean range 0.06 g for 

the TD children and 0.082 g for the children with CP). 

Conclusion: Accurate estimations of EE and relative VO2 during walking can be made on 

group level for TD children and children with CP, using raw acceleration data, but not on 

individual level. 

 

 



4 

 

  



5 

 

ABSTRAKT 

Bakgrunn: Barn med cerebral parese (CP) opplever nevrologiske forstyrrelser, noe som ofte 

fører til problemer med gangfunksjonen. Dette er gjerne tydelig gjennom lavere hastighet og 

høyere energiforbruk under gange i forhold til funksjonsfriske jevnaldrende. I tillegg er barn 

med CP mer stillesittende i hverdagen enn de funksjonsfriske og deltar på færre 

fritidsaktiviteter. Estimering av energiforbruk brukes ofte for å undersøke effekten av 

behandling på denne gruppen. Energiforbruk indikerer mengden energi som brukes til å utføre 

en oppgave og estimeres vanligvis ut ifra målinger av oksygenopptak (VO2) ved bruk av 

indirekte kalorimetri. Det er ønskelig å kunne bruke en mindre omfattende metode å estimere 

energiforbruk på og aktivitetsmonitorer brukes nå med dette formålet. De måler 

akselerasjonen under en bevegelse og relaterer signalet til energiforbruk.  

Mål: Undersøke om råsignal fra akselerometer kan brukes til å estimere energiforbruk hos 

barn med CP og funksjonsfriske barn.  

Metode: Femten funksjonsfriske barn (gjennomsnittsalder 10.0 år ± 1.7) og seks barn med CP 

(gjennomsnittsalder 12.4 ± 3.9 år, GMFCS nivå I-III) gjennomførte en fem minutter lang 

gangtest i normal, selvvalgt hastighet mens de hadde på seg to Axivty AX3 

aktivitetsmonitorer (korsryggen og midt på lår) i tillegg til bærbart indirekte kalorimetriutstyr 

(Metamax II). Ganglengde ble målt med håndholdt målehjul. Energiforbruk og relativ VO2 

ble estimert ved bruk av indirekte kalorimetri og fra likninger utviklet av Brandes et al. og 

Hildebrand et al. med vektor magnitude (VM) som input fra akselerasjonssignalet.   

Resultat: Energiforbruk og relativt energiforbruk fra indirekte kalorimetri og 

akselerasjonsdata var nærmest identiske og overestimerte kun med 0.1% og 4.5% for de 

funksjonsfriske og med 4.8% og 2.3% for barna med CP. Begge likningene som estimerte 

relativ VO2 ga nøyaktige estimat for barna med CP (1.2% og 3.4% overestimering), men en 

signifikant forskjell ble funnet mellom relativ VO2 estimert fra akselerasjonsdata og verdiene 

fra indirekte kalorimetri for de funksjonsfriske (12.9% og 14.1% overestimering). Store 

variasjoner fantes estimatene for hvor hver deltaker, med vide grenser for enighet (limits of 

agreement) i en Bland-Altman analyse. Det var ingen statistisk forskjell i VM mellom 

gruppene. VM viste til liten variasjon i akselerasjonssignalet under testperioden 

(gjennomsnittsrekkevidde 0.06 g for funksjonsfriske og 0.082 g for barna med CP). 

Konklusjon: Nøyaktige estimeringer av energiforbruk og relativ VO2 kan gjøres på et 

gruppenivå for funksjonsfriske og barn med CP, men å få nøyaktige estimeringen på 

individnivå er mer utfordrende. 
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CP: Cerebral palsy 

EC: Energy cost (J/kg/m) 

EE: Energy expenditure (kJ/min or J/kg/min) 
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INTRODUCTION 

 

Cerebral palsy (CP) is the most common cause of motor disabilities among children and is 

caused by a lesion in the brain before, during or shortly after birth.
1
 It is described as a group 

of permanent disorders of the development of movement and posture causing activity 

limitations.
1
 These motor problems can lead to difficulties when walking, which is apparent in 

lower walking speed and higher energy expenditure (EE) when walking compared to typically 

developing (TD) children.
2,3

 The EE of a task indicates the amount of energy (in joule) used 

to perform the task.
4
 Children with CP can expend up to three times the energy required for 

walking, and as a consequence of this, they tire easily and walk less.
4-6

 This results in more 

sedentary time and lower participation in school and leisure activities compared to their TD 

peers.
7,8

 The goal of many treatments for children with CP is on improving EE during walking 

and decrease the feeling of fatigue to increase their overall physical activity level.
6,9

 To 

examine the effect of the treatments it is common to compare pre- and post-measurements of 

EE. The most common way to estimate EE is from oxygen consumption (VO2) measurements 

using indirect calorimetry.
10

 By combining it with information about distance walked, energy 

cost (EC) can be estimated.
11

 EC is the amount of energy consumed per meter and is well 

accepted as an accurate indicator of walking efficiency.
11,12

 Although widely used, VO2 

measurements have some challenges and limitations. One important note is that only during 

steady state and low to moderate intensities there is a direct and predictable relationship 

between VO2 and energy expenditure.
13

 For this reason, it is important that measurements 

take place after this state is reached. The duration of the test should therefore be longer than 2 

minutes to ensure this.
14

 The equipment used is expensive and time consuming to calibrate 

and prepare, in addition the measurements are limited to laboratory settings. More 

importantly, young children can experience fear or anxiety for wearing a mask, which can 

complicate or prevent correctly performed measures. For these reasons, a less extensive 

method to find EE is useful. 

 

Accelerometers are monitors that measure the acceleration (in gravitational acceleration units 

g) they are exposed to and are thus mechanical measurements.
15

 Because of this, they do not 

need to consider physiological factors such as reaching steady state during testing, which can 

reduce the test period. Depending on the type, accelerometers measure acceleration in one 

(vertical) to three orthogonal planes (vertical, mediolateral and anteroposterior).
16

 When the 
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monitor is exposed to acceleration caused by a movement, it creates an electrical charge 

which generate a variable output voltage signal proportional to the applied acceleration.
15,16

 

Acceleration is defined as the change in velocity over time, and in this way quantifies the 

volume and intensity of movement.
17

 Since the acceleration signal is related to the movement 

made, it also has a potential to be used to describe the amount of energy used to perform it. 

To do this, the relation between acceleration signal and EE must be determined. Previous 

studies have developed different estimation methods from the acceleration signal.
18

 The 

majority of these focus on the use of activity counts. Activity counts are unit-less numerical 

values that are created by inbuilt software developed by the manufactores.
15,19

 The software 

filters the acceleration signal and uses algorithms to sum up the output over a specified time 

period (normally ranging from 1 to 60 seconds).
15,19

 Activity, age and gender specific cut-off 

values or thresholds are developed to relate the amount of activity counts to different 

intensities of physical activity and categories of energy expenditure.
16,19

 The counts can also 

be used in regression models to estimate EE values.
20

 

 

Previous validation studies have found a moderate to high correlation between EE estimated 

using activity counts and values measured by indirect calorimetry.
21-25

 O’Neil et al. have 

studied the use of different types of accelerometers among children with CP, and have found a 

fair to good validity between activity counts and VO2 measurements (r = 0.67, p = <0.001).
21

 

This finding was repeated in a later study where they also found that VO2 and activity counts 

have a dose-response relationship.
22

 The counts increased significantly as the intensity of the 

trials increased. Puyau et al. studied 32 children between 7-18 that performed a wide range of 

structured activities while wearing two types of activity monitors (Actiwatch and Actical).
25

 

They found that the activity counts accounted for the majority of the variability (about 80%) 

seen in physical activity specific EE. Although activity counts can be used to estimate EE, the 

method have clear weaknesses and limitations. Since the transformation of raw acceleration 

signal to activity counts is carried out in brand specific software, exactly how the signal is 

processed and analyzed to get the counts is unknown. In addition, many different cut-off 

values exist to classify intensity and EE. Overall, the use of activity counts in EE limits the 

utilization of the acceleration signal and reduces the comparability of studies on the field.  

 

To avoid the mentioned disadvantages that follow from using activity counts, an approach is 

to base the analysis on raw acceleration data with clarification on how the signal is processed, 
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to enable reproduction of the method. This is also suggested by studies that investigate or 

review the use of accelerometers as focus areas for future research.
15,17,20

 The procedure is 

currently little used. Reasons for this is that few of the accelerometers available give the user 

access to the raw, unfiltered, data. In addition, other methods to analyze the signal must be 

used, and less work exists on this area. As previously mentioned, some studies use regression 

models to estimate EE from activity counts. Similar methods can be used on raw acceleration 

data. One study that investigated this was Brandes et al.
26

 They developed regression 

coefficients and prediction equations from acceleration data from 186 participants that wore a 

monitor (DynaPort) on their lower back while completing a physical activity course. This 

included walking at three different speeds (slow, normal and fast) for eight minutes each, in 

addition to stair walking and cycling. Hildebrand et al. also developed similar regression 

equations for relative VO2 .
27

 The equations were based on acceleration data from two 

monitors (ActiGraph and GENEActiv) placed on the hip. Thirty children were tested, 

performing eight structured activities, including walking at two different speeds and running.  

These equations look promising, but need to be evaluated to see if they manage to accurately 

estimate EE and relative VO2 on others. 

 

The aim of this study was to investigate if raw acceleration data from the Axivity AX3 

activity monitors could be used to estimate EE in children with CP and TD children during 

walking. Existing equations from Brandes et al. and Hildebrand et al. are used for the 

estimations and the values compared against indirect calorimetry measurements to examine 

the accuracy and agreement between the methods. 

 

METHODS 

Participants 

A total of 22 subjects were recruited to the study. Sixteen of these were TD children between 

6 and 14 years, recruited trough the employees at St. Olavs University Hospital and the 

Norwegian University of Science and Technology in Trondheim, Norway. They were 

generally healthy with no contraindications or disorders that affect EE. Six children with CP 

between the age of 6 and 16 with Gross Motor Function Classification System (GMFSC)
28

 

levels I-III were also included. Five of these through the Children’s Orthopedic at the Child 

and Youth Clinic at the hospital as they were sent to the gait laboratory for consultation, and 

one from an ongoing study on children with CP (The WE-study). They were all able to take 
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verbal instructions and to walk consistently for at least five minutes without assistant devices. 

A written consent was signed by both parents before the child was tested. They were informed 

that they at any time during the testing could withdraw from the study without giving a 

reason. The study was approved by the Regional Committee for Medical and Health Research 

Ethics. 

 

Equipment 

A stadiometer (Seca, Hamburg, Germany) was used to measure height and a digital scale 

(Seca, Hamburg, Germany) to measure weight. Distance walked during the test was measured 

using a standardized measuring wheel with 1.0 meter circumference (Blinken A/S, Gressvik, 

Norway). Heart rate was measured using Polar RS400 (Polar Electro Oy, Finland) and the 

associate chest strap with a heart rate monitor. 

 

A portable indirect calorimeter, Metamax II (Cortex Biophysik GmbH, Leipzig, Germany) 

was used to measure VO2 and calculate respiratory exchange ratio (RER). The Metamax 

measures the breathed volume through a flow turbine and contains oxygen (O2) and carbon 

dioxide (CO2) sensors that analyses the ventilated gas. Values are shown for every 10
th

 

second. A calibration of the equipment was done according to the manufactures’ instructions 

before each test. An ambulant air and a reference gas (15% O2 and 5% CO2) calibration was 

performed and the flow turbine was calibrated with a 3.00 liter syringe (Hans-Rudolph, 

Shawnee, KS).  

   

Three Axivity AX3 (Axivity, Newcastle upon Thyne, UK) activity monitors were used. They 

are small (23 x 32.5 x 7.6 mm) and light (11 gram) and contain a MEMS triaxial 

accelerometer, NAND memory (512 MB), microprocessor and a temperature sensor.
29

 Figure 

1 show the orientation of the axis of the monitor. When attached, the x-axis is equaled to the 

vertical plane, the y-axis to the mediolateral plane and the z-axis to the anteroposterior plane. 

Before testing correct measuring time was set (day:hour:minute) in the software Omgui 

(version 1.0.0.28). A measuring range of ±8 g and sampling frequency of 200 Hz was used. 

Each monitor was put in a finger cot with a piece of double-sided tape closing it.  
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Figure 1. Orientation of the axis of the Axivity AX3 activity monitor. 

 

Protocol 

Anthropometric measurements of the participant were taken first. The participants were 

barefoot and wore shorts. They were then introduced to the equipment to familiarize with it. 

This included seeing and holding the Metamax mask. Comfortable walking shoes, preferably 

training shoes were put on before continuing with monitor placement. The monitor was not 

placed directly on the skin, but on a 5 x 5 cm piece of Fixomull. The side of the monitor with 

writing was always placed facing the skin with the USB output pointing down. One monitor 

was placed on L3 on the spinal column and one on the thighs midline, in the middle of the 

anterior superior iliac spine and the proximal part of patella (Figure 2). The monitor were 

placed on the least affected leg on the children with CP and the right leg on the TD children. 

The last monitor was placed on the inside of the measuring wheel. A piece medical tape was 

put over all the monitors to make sure they did not fall off during testing. 

A                              B   

 

Figure 2. Placement of the Axivity AX3 monitor on mid-thigh (A) and L3 on lower back (B). 
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The chest strap to the heart rate monitor was then attached. Correct size of the Metamax mask 

was found and attached over the nose and mouth of the participant. To ensure that no air 

leaked trough the sides of the mask, a hand was held in front of the opening. The participant 

was asked to draw their breath as hard as they could, and the mask would press in against 

their cheek if it was attached properly. The rest of the Metamax equipment was carried by the 

participant on their back (Figure 3). The participant was instructed to walk back and forth for 

five minutes, on a 46-meter long pathway, in a hallway in the basement of the hospital. They 

were told to walk at a normal speed, as they usually walked. It was emphasized that it was 

important that they did not talk during testing so the measurements would be accurate. To be 

able to synchronize the monitors, a heal drop was performed before the participant started 

walking. This was done by standing still for five seconds before going up on toe and dropping 

hard down with their heel on the floor, followed by a new five-second period standing still. If 

the child had problems with going up on toe, they held one of the testers hand or the testers 

flicked on the monitors. On the testers signal, the participant started walking. The heart rate 

and Metamax measurements were started simultaneously. One tester walked behind the 

participant with the measuring wheel and another next to them holding the recording 

equipment. At each end of the pathway, the participant was told to turn around and to 

continue walking. During testing, the participants were asked if they felt OK and were 

instructed to show a “thumb up” or a “thumb down” as a response. If they showed a “thumb 

down” the test would be stopped and the mask immediately taken off. After the test, the heel 

drop was repeated. The data was downloaded to the MetaSoft (Cortex Biophysik GmbH, 

Leipzig, Germany), Polar ProTrainer 5 (Polar Electro Oy, Finland) and Omgui software 

directly after testing.  
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Figure 3. A participant ready for testing, wearing Metamax equipment. 

 

 

Data analysis 

A graph with VO2 and RER values from the five-minute test was made in Excel (Microsoft 

Excel 2013 version). To ensure that a steady state was reached, the last two minutes of the test 

were identified. The most stable minute within this period was found, and the VO2 and RER 

values for this minute averaged. Relative VO2, oxygen cost (O2 cost), EE, relative EE and EC 

was then estimated from the measured values (Equation 1,2,3,4 and 5).
4,9

 Weight in kilogram 

(kg) was used for the estimations, in addition to walking speed in meters per minute (m/min). 

Walking speed in meters per second (m/s) and m/min were calculated per pathway length, 

using the measuring wheel and the monitor placed on it.  

 

Equation 1 

𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑉𝑂2 (𝑚𝐿 𝑘𝑔⁄ min⁄ ) = (
𝑉𝑂2

𝑤𝑒𝑖𝑔ℎ𝑡
) ∗ 1000 

With VO2 in L/min 

 

 

Equation 2 

𝑂2 𝑐𝑜𝑠𝑡(𝑚𝐿 𝑘𝑔⁄ 𝑚⁄ ) =
𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑉𝑂2

𝑊𝑎𝑙𝑘𝑖𝑛𝑔 𝑠𝑝𝑒𝑒𝑑
 

With relative VO2 in mL/kg/min and walking speed in m/min  
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Equation 3 

𝐸𝐸 (𝑘𝐽 min⁄ ) = ((4,96 ∗ 𝑅𝐸𝑅) + 16,04) ∗ 𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑉𝑂2  

With relative VO2 in mL/kg/min 

 

  

Equation 4 

𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝐸𝐸 (𝐽 kg/min⁄ ) =
𝐸𝐸

𝑤𝑒𝑖𝑔ℎ𝑡
∗ 1000  

With EE in kJ/min 

 

 

Equation 5 

𝐸𝐶 (𝐽 𝑘𝑔⁄ 𝑚⁄ ) =
𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝐸𝐸

𝑊𝑎𝑙𝑘𝑖𝑛𝑔 𝑠𝑝𝑒𝑒𝑑
 

With relative EE in J/kg/min and walking speed in m/min 

 

 

Heart rate from the concurrent one-minute period was found and averages using the Polar 

Trainer 5 software. The accelerometer data was converted in Omgui to a format (.csv file) that 

could be read in MATLAB (MATLAB R2014a, The MathWorks, Inc., Massachusetts, US) 

Rest of the data analysis was done using this software. The time of the heal strike before 

testing was used to identify the starting point of the walking test in the accelerometer data. A 

time period of six minutes (72 000 samples) after this heal strike was chosen to ensure that the 

whole five minute period was included. Example of the signal can be seen in Figure 4. The 

same one minute period as used from the Metamax data was taken out. A ten-second “buffer” 

was added because of a delay in the Metamax signal compared to the accelerometer signal.  
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Figure 4. Accelerometer signal from monitor on lower back from the five-minute walking test. The x-axis on the 

graphs show the number of samples (72 000) and y-axis is sample range in g. 

 

Estimation of energy expenditure 

Brandes et al.’s method was followed to estimate the energy expenditure.
26

 The raw 

acceleration signal was filtered using a 4
th

 order recursive butterworth band pass filter (0.1-

15Hz) to each axis. Vector magnitude (VM) is used as the input representing the acceleration 

data in the equations. It gives information about the size of the signal using all three axis 

(Figure 5). Mean VM for the one-minute period was calculated from the monitor on lower 

back (Equation 6).  

 

 

Figure 5. Vector magnitude from monitor placed on lower back during the five-minute walking test. 

The graphs x-axis show the number of samples and y-axis is sample range in g. 

 

 

Equation 6  

𝑀𝑒𝑎𝑛 𝑉𝑀 (𝑔) =  mean √𝑥2 +  𝑦2 +  𝑧2 
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Brandes et al. use physical activity related EE as outcome in their equation. This is calculated 

by subtracting resting EE from total EE. To be able to compare estimated values to indirect 

calorimetry measurements (total EE), resting EE values were added to the equation. Values 

measured by Brandes et al. was used, taking the mean of the two age groups 6-11 and 12-17 

years (=5.25) and adding it to the equation. Relative resting EE (Equation 4) was calculated 

using the average weight of the same age groups, and then added to the equation (=107). 

Weight and VM was then used to estimate EE (Equation 7) and relative EE (Equation 8).                                      

 

Equation 7 

𝐸𝐸 (𝑘𝐽 𝑚𝑖𝑛⁄ ) = (−18,61 + (0,24 ∗ 𝑤𝑒𝑖𝑔ℎ𝑡) + (53,97 ∗ 𝑉𝑀)) + 5.25 

 

Equation 8 

𝐸𝐸 𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 (𝐽 𝑚𝑖𝑛⁄ 𝑘𝑔⁄ ) = (−40,19 + (0,24 ∗ 𝑤𝑒𝑖𝑔ℎ𝑡) + (816,11 ∗ 𝑉𝑀)) + 107 

 

Estimation of relative VO2 

Using Hildebrand et al.’s  method, VM was calculated from the raw acceleration signal from 

the monitor on lower back.
27

 The value of gravity was subtracted from the VM before the 

negative values were rounded up to zero. (Equation 9). 

  

Equation 9 

𝑉𝑀 (𝑔) = (𝑥2 + 𝑦2 + 𝑧2)½ − 1 

 

Further reductions in the data was done by calculating the average values per 1-sec epochs.  

The one-minute period that have been used so far in the analysis was chosen and used to 

estimate relative VO2 (Equation 10 and 11).  

 

 

Equation 10 

𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑉𝑂2(𝑚𝐿 𝑘𝑔⁄ min⁄ ) = 0,0498 ∗ (𝑉𝑀 ∗ 1000) + 10,39 

 

Equation 11 

𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑉𝑂2(𝑚𝐿 𝑘𝑔⁄ min⁄ ) = 0,0559 ∗ (𝑉𝑀 ∗ 1000) + 10,03 
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Variation in the acceleration signal 

To look at the variation in the signal during the whole test, VM for the five-minute period was 

calculated using Brandes et al.’s method. Mean, maximum and minimum VM values for the 

period was then found.  

 

Statistical analysis 

All statistical analysis was conducted in IBM SPSS statistics version 22 (SPSS, Inc., Chicago, 

IL). Normal distribution of the data was examined using Shapiro-Wilk test and visual 

assessment of histograms and Normal Q-Q plots. Group differences between TD and CP 

children were tested for all variables with an independent samples t-test. Paired sampled t-test 

was used to test for differences between indirect calorimetry measured and accelerometer 

estimated EE. Bland-Altman analysis was used to evaluate the agreement between the two 

methods. The relationship between the acceleration signal and EE was examined using 

Spearman correlation. All results are presented in mean ± standard deviation (SD). 

Significance level was set at p < 0.05 for all statistical analysis 
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RESULTS 

From the 22 participants, one TD child was excluded after the data analysis due to suspicion 

of incorrectly measured VO2 values. This results in 21 participants. Characteristics of the TD 

and CP participants can be found in Table 1. Of the six children with CP, two were classified 

with GMFCS level I, three with level II and one with level III. 

 

Table 1. Participant characteristics for the two groups, with CI and p-value of group differences. 

 TD CP Group difference 

N (girls/boys) 15 (8/7) 6 (2/4)  

Age (years) 10.0 ± 1.7 12.4 ± 3.9 p = 0.067 

CI -4.910 - 0.186 

Height (cm) 141.7 ± 12.1 145.3 ±13.8 p = 0.559 

CI -16.301 - 0.988 

Weight (kg) 35.9 ± 9.6 44.1 ± 21.6 p = 0.236 

CI -22.107 - 5.800 

 

During the five-minute walking test, the participants had a walking speed of about 1 m/s, 

where the TD children walked significantly faster than the children with CP (Table 2). Mean 

HR, VO2, EE and VM values were slightly higher for the children with CP, but the difference 

was not significantly different from the TD children. There was a significant difference 

between the groups in RER, O2 cost and EC, with higher mean values measured for the 

participants with CP. 
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Table 2. Measured test values from the five minute walking test for the two groups with CI and p-value of group 

differences. 

 TD CP Group difference 

Walking speed (m/s) 1.1 ± 0.1 0.9 ± 0.3 p = 0.032* 

CI 0.019 – 0.390 

HR (bpm) 105.2 ± 10.8 119.8 ± 31.5 p = 0.120 

CI -33.48 – 4.21 

VO2 (L/min) 0.52 ± 0.12 0.73 ± 0.40 p = 0.080 

CI -0.44 – 0.03 

VO2 (mL/kg/min) 14.6 ± 2.1 16.6 ± 3.3 p = 0.123 

CI -4.50 – 0.58 

O2 cost (mL/kg/m) 0.22 ± 0.04 0.34 ± 0.13 p = 0.002* 

CI -0.20 – -0,05 

RER 0.83 ± 0.06 0.92 ± 0.11 p = 0.040* 

CI -0.16 – -0.004 

EE (kJ/min) 10.4 ± 2.3 14.9 ± 8.7 p = 0.071 

CI -9.46 – 0.43 

EE (J/kg/min) 295.4 ± 41.7 341.2 ± 67.2 p = 0.071 

CI -95.98 – 4.40 

EC (J/kg/m) 4.35 ± 0.75  7.06 ± 2.72 p = 0.002* 

CI -4.27 – -1.16 

VM back
1
 (g) 0.29 ± 0.05 0.34 ± 0.19 p = 0.240 

CI -0.17 – 0.04 

VM thigh
1
 (g) 0.70 ± 0.13 0.63 ± 0.22 p = 0.354 

CI -0.09 – 0.23 

HR=heart rate; RER=respiratory exchange ratio; EE=energy expenditure; EC=energy cost; VM=mean vector 

magnitude  

*Significant differences at p < 0.05 
1 
Estimated using Brandes et al.’s method 

 

Figure 6 presents the results of measured EE and the EE estimations from the acceleration 

signal, using data from the monitor placed on lower back. EE estimated from the equation 

developed by Brandes et al. are in general close to the values obtained from indirect 

calorimetry (Figure 1A). For the TD children the EE is on average underestimated with 0.1% 

± 25.9 SD and overestimated with 4.8% ± 46.3 SD for the children with CP. The relative EE 

values are overestimated in the two groups (Figure 1B). On average, it overestimates with 

4.5% ± 17.4 SD for the TD children and 2.3% ± 40.0 SD for the children with CP. Relative 

VO2 estimated using Hildebrand et al’s equations also generally overestimate the values for 

the participants (Figure 1C). The first equation overestimate with 12.0% ± 25.5 SD for the TD 

children, which is statistically different from the measured value (p = 0.016). For the children 

with CP it overestimates with 1.2% ± 29.1 SD. The second equation on average overestimates 

with 14.1% ± 16.7 SD and 3.4% ± 32.1 SD for the TD children and children with CP. The 

difference between the measured and estimated values are significantly different for the TD 

children (p = 0.006).  
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Figure 6 Energy expenditure and relative VO2 values measured by indirect calorimetry compared to values 

estimated using Brandes et al (A and B) and Hildebrand et al’s (C) equations. Error bars = ± 1 SD.  

 

The accuracy of the estimations on an individual level, and the agreement between indirect 

calorimetry and the equations used can be seen in Figure 7. The mean differences and limits 

of agreement in EE is 0.04 kJ/min (-5.1 to 5.2 kJ/min) for TD children and -0.3 kJ/min (-14.9 

to 14.3 kJ/min) for the children with CP, -8.9 J/kg/min (-104.4 to 86.7 J/kg/min) in relative 

EE for TD children and -9.0 J/kg/min (-300.0 to 282.0 J/kg/min) for the children with CP. In 

EC for TD children it is -0.09 J/kg/m (-1.5 to 1.3 J/kg/m) and 0.4 J/kg/m (-4.8 to 5.5 J/kg/m) 

for the children with CP.  Relative VO2 for TD children are not included as the two methods 

gave significantly different values. For the children with CP, mean difference and limit of 

agreement is 0.06 mL/kg/min (-4.8 to 5.5 mL/kg/min) for relative VO2. 

A lack of agreement between the methods exist if the measurement is outside of the 95% CI. 

This can be seen in EE (Figure 7A), and EC (Figure 7E) for the TD children. A linear 

regression analysis found proportional bias among the TD children in EC (p = 0.023) and the 

children with CP in EE (p = 0.037) (data not shown). 
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TD CP 

                      

                     

                       

                                                                                   
 

Figure 7 Bland-Altman plots for EE and VO2 estimations using Brandes et al.’s (A-F) and Hildebrand et al.’s 

equations (G). Figure G represent both equations from Hildebrand et al. The solid line represent the mean 

difference between the methods. Broken lines represent 95% limits of agreement (±1.96 SD).  

IC=indirect calorimetry 
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Looking at the relationship between EE values and the acceleration signal, measured EE is 

not found to correlate with the VM (r = -0.171, p = 0.457). The use of Brandes et al’s 

equation on the acceleration signal does not improve the relationship to the measured EE (r = 

0.269, p = 0.239). This is also the case for the rest of the measured values. There is not found 

to be a significant correlation between measured and estimated relative EE (r = 0.335, p = 

0.138) or between the measured relative EE and VM (r = 0.356, p = 0.113). EC does not 

correlate with VM (r = -0.217, p = 0.345) but has a moderate correlation with the estimated 

EC (r = 0.492, p = 0.023). The measured relative VO2 does not correlate wither either of the 

relative VO2 estimations or the VM from Hildebrand et al. (r = 0.356, p = 0.113 for all). 

Although not statistically significant, the spearman correlation coefficient is higher between 

measured relative VO2 and VM calculated using Brandes et al’s method (r= 0.413, p = 0.063). 

 

To examine if the VM (estimated using Brandes et al.’s method) is stable during the whole 

test period, and if the value from the one minute is representative, the VM from the five 

minutes was viewed (Figure 8). A mean value of  0.28 g  ± 0.376 SD is found for the TD 

children. They have a mean range of 0.064 g ± 0.036 SD which show little variation during 

the test period for most of the cases. The children with CP have a mean VM of 0.33 g ± 0.192 

for the whole test, with a mean range of 0.082 g ± 0.038 SD. These VM are close to identical 

to the mean values from the one-minute period represented in Table 1.  

 

 
Figure 8 Mean VM (horizontal line) for the acceleration signal (g) with a range of maximum and minimum 

values. The value represents the whole five minute walking test with TD children presented to the left and 

children with CP to the right. VM estimated using Brandes et al.’s equation from monitor on lower back. 
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DISCUSSION 

The aim of this study was to use the Axivity AX3 activity monitor to investigate EE in 

children with CP and TD children during walking, and see if raw acceleration data could be 

used to estimate EE. The main findings show that by using existing equations
26,27

, it is 

possible to make accurate estimations of EE for the two groups. Relative VO2 was accurately 

estimated for the children with CP, but the estimations did not seem to be equivalent to 

indirect calorimetry for the TD children. The equations does not seem to be suitable for 

individual estimations, as there is a large variation in the accuracy of the estimations for the 

participants.  

 

The children with CP were slightly older, higher and heavier than the TD children, but the 

difference between the groups in these variables were not statistically significant. They also 

had higher HR, VO2, EE and VM values from the walking test. Although not statistical 

different, this difference might be of physiological and clinical importance. According to 

existing knowledge about children with CP, it was expected to find a significant difference 

between the groups in EE, with higher values for the children with CP. A possible reason for 

why this was not found, can be that the children walked at preferred walking speed, which 

was significantly lower among the children with CP. If they had held the same speed as the 

TD children, this most likely would have increased their VO2, and thereby the EE. This is 

supported by the statistical difference between the groups in EC and O2 cost, with higher 

measured values for the children with CP. This indicates that walking speed has an effect on 

EE. 

EE and relative VO2 estimated by indirect calorimetry measurements (equation 1-5 in 

methods), will be referred to as measurements to avoid confusion with the EE and VO2 

estimated from the equations by Brandes et al. and Hildebrand et al.  

The equations developed by Brandes et al. gave accurate estimations of EE for both groups 

compared to measurements using indirect calorimetry (underestimation 0.1% for TD and 

overestimating 4.8% for children with CP). Estimations of relative EE were also relatively 

accurate (4.5% overestimation for TD and 2.3% for children with CP). A contributing factor 

for this accuracy is that similar monitor placement on lower back was used by Brandes et al. 

and in this study. This ensures that the acceleration signal is close in size and shape to the 

signal used to developed the equation. This should have a positive effect on the accuracy of 
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the estimations, assuming that the monitor is correctly placed. In their study, Brandes et al.  

found that the acceleration signal and weight explained 95% of the variation in EE. Those 

were the only variables used for individual input in the equations.
26

 Weight affects the 

acceleration signal, as larger weight creates a larger acceleration signal. Especially when 

estimating relative EE, using weight as input is important, since EE is normalized to it. If the 

participants weight is not used, then this will in most cases decrease the accuracy of the 

estimation. It is unlikely that the coefficients accounting for weight are a better variable than 

the actual weight.  

 

Hildebrand et al.’ developed equations specific for children, in contrast to Brandes et al. who 

used data from participants at all ages (8-81). The children with CP and the TD children have 

similar VO2, age, height and weight as the children the equation is based on, which should 

make them suitable. The estimations for the children with CP were on average accurate (1.2% 

and 3.4% overestimation), but the estimations on TD children were significantly different 

from the measured values (12.0% and 14.1% overestimation). Although estimating relative 

VO2, the equations does not use information about the participants weight. As mentioned 

above, this can decrease the accuracy of the estimations. Another important point is that the 

placement of the monitor is different between the testing in this study (lower back) and in 

Hildebrand et al.’s (hip). Accurately estimations can therefore not be expected. There is more 

movement in the hip than lower back when walking, which cause a larger VM. This can 

contribute to explain why the estimations are more accurate for the children with CP. 

Although not statistically significant, the group have a slightly higher mean VM than TD 

children (0.34 g vs 0.29 g). Being the only input in the equations (equation 10 and 11), the 

difference in VM is what causes the difference in relative VO2.  

 

Bland-Altman plots were used to evaluate the agreement between indirect calorimetry and the 

use of acceleration data as methods to measure EE and relative VO2. For the methods to have 

a high agreement, the data points should lie between the 95% limits of agreement.
30

 For the 

TD children the points are outside of this limit for EE and EC, and for relative EE the points 

appear to be on the line. All the points meet the requirement of being between the limits of 

agreement for the children with CP. However, it is important to note that the size of the 

groups affect the 95% limit. Both the groups are small, but the group of children with CP is 

especially small, causing the limits to be extremely wide. Outliers in the data are visible, also 

contributing to the wide range. Being inside the limit of agreement does not mean the 
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agreement is high enough so that acceleration data can be used to accurately estimate EE, EC 

and VO2. For this, limits based on physiological and clinical relevance should be set in 

advance.
31

 With this not being done, a final conclusion cannot be drawn.  What can be said, is 

that the range is too wide to give accurate estimations on an individual level. The closer the 

points are to 0, the more accurate the estimation is, as the 0 value on the y-axis represent 

complete agreement between the two measurements. Viewing the plots, it is apparent that the 

points seem to either over- or underestimate a great deal for most of the participants. 

Proportional bias was found for TD children in EC and the children with CP in EE, which 

indicate that the two methods do not agree equally through the range of measures. 

 

A possible reason for the varying accuracy of the estimations on an individual level, is that 

variables not taken into account in the equations affect the signal. If these were found and 

implemented, or used to make new models, it could improve the quality of the estimations. 

Due to little variation in the data in this study, it was not possible to run regression analysis to 

investigate this further. In addition to finding new variables, the existing correlation 

coefficients found and used by Brandes et al. and Hildebrand et al. in their equations might 

need to be adjusted. Brandes et al. estimated physical activity related EE from their equation 

and not total EE as measured by indirect calorimetry. Resting EE from their study was used to 

estimate total EE. Even though the groups were similar (weight and height), they were not 

identical, so it is likely that it affected the estimations. The value added was identical for all, 

so the distribution of the points relative to each other would remain the same.  

 

EE is activity specific, and Crouter et al. stated that no single regression equation works well 

across a wide range of activities for the prediction of EE.
32

 The equations by Brandes et al. 

and Hildebrand et al. are not specifically developed just for walking, but the majority of the 

activities in their protocol were walking at different speeds. This should make the equations 

more suitable to estimate EE during walking than other activities. However, since other 

activities also are included, such as cycling, that could decrease the accuracy for walking. 

Both Brandes et al. and Hildebrand et al. mentioned that the sample the equations are 

developed from only consisted of healthy participants, and might not be generalizable to those 

who are obese or certain patient groups. Although not directly mentioned, this could include 

the children with CP and affect the accuracy of the estimations in that group. 
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How the information from the accelerometer is processed affects the outcome of the 

estimations. In this study, VM is used so the methods by Brandes et al. and Hildebrand et al. 

can be accurately repeated. Little and no correlation was found between VM and the 

measured and estimated EE, EC and VO2 values. It is possible that other types of information 

about the acceleration signal might fit better for EE estimations, such as mean amplitude 

deviation, root mean square, standard error, peak acceleration or total power. ot In this study, 

acceleration data from all three axis are used. Some studies claim that it does not give more 

information than omnidirectional accelerometers that mostly measure in the vertical 

direction.
17

 Others mean that it is the analytic approach that is not good enough yet, but that 

more comprehensive assessment of body movement can be provided using three axis.
15,33

  

Since children with CP experience difficulties when walking, using a triaxial accelerometer 

might be more suitable as it has the possibility to detect movement in different planes. Large 

movements in other directions than the vertical when walking could indicate the use of more 

energy.  This should therefore be taken into consideration when deciding on what method to 

use, particularly if participants with CP are included. Another factor that affect the signal is 

the placement of the accelerometer. Body segments move in different ways when walking and 

placement should be carefully though trough. In this study one monitor was placed on mid-

thigh and one on lower back. As mentioned, result from the latter has been presented. Using 

the mid-thigh placement might give better individual estimations as there is more variation in 

this signal.  To examine this, the equations need to be modified, as the VM is almost twice the 

size as the VM from the monitor on lower back. This results in a large overestimation of the 

EE which is inapplicable to comparison.  That two different processing methods were used in 

thus study highlight the point that by using raw signal you can replicate and compare studies. 

However, more should be known about what the best processing method is. 

 

For the children with CP, it appears that the VM increase as they walk faster. This is not 

visible for the TD children, as they are more clustered together. This is not surprising as they 

all walk on preferred speed, and there is not much difference between the gait in TD children. 

The trend seen among the children with CP is most likely due the small size, but we also 

know that there is more variation in that group in gait. VM proved to be relatively stable 

during the whole test period, as it had a small range for most of the participants. The VM 

from the one minute period seem to be representative for the whole test period, as the mean 

values are close. This indicates that it does not matter which period of the test is used, the 

estimations will results in similar values. This emphasize the main advantage with the use of 
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accelerometer over VO2 measurements, that it is no need to consider physiological factors 

such as reaching steady state. The duration of the test is no longer as important and can be 

reduced. For children with CP that go through lot of testing, this is important as it can reduce 

the burden. It also makes it possible to include more tests, for example at more walking 

speeds, before the child is tired.  

 

Strengths and limitations 

Indirect calorimetry is considered as the gold standard for measuring VO2 and the comparison 

of the estimated values to this give precise information about their accuracy. Calibration of 

the equipment and instructions were given by the same person every time, to ensure that it 

took place the same way. Testing two groups that are known to be different from each other 

can be a strength if the methods are good enough to detect these differences. However, only 

six children with CP were tested, which makes it a small group. The variation that exist 

among the individuals in this population is most likely not represented. This must be taken 

into consideration when interpreting the results. The statistical strength is not as high and the 

findings not as generalizable for children with CP. The protocol only consisted of one 

walking speed which gave low variation in the data. For this reason it was not possible to test 

if other variables affected the acceleration signal. 

 

Relevance of findings  

The relatively accurate estimations on group level makes it possible to use raw acceleration 

data to estimate EE in larger group studies or on populations similar to the one tested here. 

 

Further research 

The focus of future studies should be to improve the individual estimations. To further 

investigate the effect walking speed has on EE, different walking speeds should be included. 

This will also cause more variation in the data, which is required for using regression analysis 

to examine if other variables should be included in the equations.  EE is activity specific and 

there is a need to look at other activities as well if we want to say something about the EE 

used there. Larger groups should be investigated, especially for children with CP, so that the 

agreement between indirect calorimetry and the use of acceleration data to estimate EE can be 

found. 
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Conclusion 

The use of raw acceleration data seem to be equivalent to indirect calorimetry when 

estimating EE on a group level, if appropriate equations are used. Accurate estimations of EE 

and relative EE can be made for TD children and children with CP during walking. Relative 

VO2 can also be accurately estimated for children with CP, but it does not seem to be 

appropriate for TD children as it overestimates. On an individual level, there is large variation 

in the accuracy of estimated EE, and the equations used do not appear to be suitable. This 

needs to be addressed in future studies, in addition to testing a larger sample of children with 

CP. 
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