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Abstract

This thesis deals with an emerging area of signal processing, called Compressive Sensing (CS),

that allows the reconstruction of sparse or compressible signals from fewer measurements than

are used in traditional schemes. Like traditional signal representation schemes, CS follows a sim-

ilar framework: encoding, transmission/storing, and decoding. The encoding part is done using

random projection (RP) or random sensing, and the decoding is done via nonlinear reconstruc-

tion algorithms from a reduced amount of measurements. The performance of the reconstruction

schemes used and the application of such paradigm are the two main focuses of the thesis. It

has three parts: the introduction, performance analysis of recovery algorithms in CS and some

applications of CS.

The introductory part provides the background for the following four chapters. It begins by defin-

ing the basic concepts used in CS theory and presents the Bayesian framework. Further, an ana-

lytical tool from statistical mechanics for performance analysis of physical systems is introduced

applied on a non-noisy CS problem. The Bayesian framework is given ample emphasis in the

thesis for two reasons. First, it serves as a bridge between the recovery algorithms used in CS

and a tool from the statistical mechanics, called the replica method. Second, it is used as main

framework to incorporate different prior signal information, like sparsity and clusteredness. Fur-

thermore, a short description of CS applications is given before the introduction concludes by

presenting the scope and the contribution of the thesis.

The second part of the thesis deals with the study of the performance of recovery methods in CS

systems using the Replica Method. At the beginning, the study of the performance of the recov-

ery algorithms in CS was focused on the ratio of the amount of measurement used, the sparsity

level, and how accurate the recovered information is. However, there was a luck of universal

performance analysis. The Replica method provides this by considering large size systems. This

thesis contributes to such analysis via the Bayesian framework. In this work noisy CS systems

are considered and the recovering algorithms are reinterpreted as a maximum a posteriori (MAP)

estimator. It, therefore, provides replica analysis including one step replica breaking ansatz for

CS systems as an extension of similar analysis done for other systems like multiple input/multiple

output (MIMO).

The CS application is the third part of the thesis. The theory of CS has been applied in many

signal processing fields such as image processing, communication, networks and so on. There

are hundreds, if not thousands of articles on this subject at present. In this thesis, there are novel

results that contribute to the application of CS theory. The theory is applied to limited feedback in

temporally correlated MIMO channels, where the sparsity property was used to reduce feedback

overhead significantly while delivering the same performance. Further, including another assump-

tion, i.e., more structure among the sparse entries, to the sparsity of signals, and modeling it as

a modified Laplacian prior in Bayesian setting, a novel way of compressive sensing is presented

in this thesis. It can have potential impact on medical imaging processing, especially to magnetic

resonance imaging (MRI).
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Organization of the Thesis

This thesis has three main parts:

Part I is the introduction to the thesis and it contains only one chapter (Chapter 1).

Part II deals with performance analysis of large size CS system using Statistical Mechanics tools.

It consists of one journal paper included as chapter 2.

Part III is about CS application. It contains adapted versions of three conference papers (chapter

3, 4 and 5) included as three chapters in the thesis.

In addition, appendices is included as part IV, providing proofs, mainly for chapter 1 and 2, and

abstracts of secondary papers.
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Chapter 1

Introduction

This thesis deals with Compressive Sensing (CS), a new methodology to capture signals at a lower

rate than the Nyquist sampling rate when the signals are sparse or sparse in some domains [1, 2, 3].

CS has recently gained a lot of attention due to its exploitation of signal sparsity. Sparsity, an

inherent characteristic of many natural signals, enables the signal to be stored in a few samples

and subsequently be recovered accurately [4]. In CS, encoding is done via random projection

(RP), while at the decoding part nonlinear reconstruction algorithms are used to reconstruct the

original signal from a reduced number of measurements. i.e., if the length of the original signal is

N and one tries to recover it from M measurements, the traditional wisdom suggests that M ≥ N .

This principle is the basis for most devices used in current technology, such as analog-to-digital

conversion, medical imaging, radar, and mobile communication [5].

However, if M � N , then classical linear algebra indicates that there are infinitely many solu-

tions. It is impossible to recover the original signal (i.e., uniquely) from the reduced amount of

information without additional information. This problem of a limited number of measurements

can occur in multiple scenarios, e.g. when we have limitations on the number of data capturing

devices, measurements are very expensive or slow to capture such as magnetic resonance imaging

(MRI). Therefore, the study on the performance of the reconstruction schemes and on the possible

application of CS is a hot topic. This chapter introduces the main concepts, theoretical frame-

works and tools used in the thesis. In addition, the background, the scope and the contribution of

the thesis are provided [4], [5].

In Section 1.1 CS is introduced. This section begins by defining the basic concepts and terms used

in CS theory. It focuses on the reconstruction algorithms used and their performance due to the

emphasis given to it later in this thesis. In Section 1.2, the Bayesian framework is introduced. This

framework helps to connect CS and a tool from statistical physics, called the replica method (RM),

presented in Section 1.3. This provides an elegant tool to analyze the performance analysis of large

size physical systems. Specifically, a non-noisy CS problem is considered and its performance is

provided analytically using the replica method. The Bayesian framework also serves as a basis for

the later chapters, where the special structure found in sparse entries is included into the inference

as additional prior information. In Section 1.4, a short description of CS applications is given.

Finally, in Section 1.5, the scope and the contribution of the thesis are provided.

3



1.1 Compressed Sensing

In traditional signal processing, it is customary to represent a signal after sampling it at the Nyquist

rate so that information can be recovered exactly. The process of sampling, which is the process of

converting a continuous signal into a numeric sequence, is most demanding and can be expensive

at times. Think about taking pictures or images using a high megapixel camera, which take so

many samples of the object. According to the present signal-processing paradigm, the sampled

data are compressed and stored on a storage device (sent through a medium) and later the data

are decompressed and processed further, see Figure 1.1. During compression most of the data are

then discarded and only some are stored (or transmitted).

Figure 1.1: Traditional Signal Processing Paradigm.

However, recently questions such as why go to so much effort to acquire all the data when most
of what we get will be thrown away? Can we just directly measure the part that will not end up
being thrown away? that were posed by Donoho and others, triggered a new way of sampling

(sensing) called compact ("compressed") sampling (sensing) (CS) [1, 2, 3]. CS combines the

sampling and compression into one step, as depicted in Figure 1.2, by measuring few samples that

contain maximum information about the signal: this eliminates the need to acquire and store a

large number of samples [4].

Actually, CS has been used by Claerbout and Muir in Seismology [6], Rudin et al. in denoising [7]

and many others before 2004, during which a revival of CS is witnessed. Since then there are many

hundreds of papers produced in a short period of time (see http://www.compressedsensing.com or

http://dsp.rice.edu/cs).

Figure 1.2: Compressed Sensing Paradigm.

CS builds upon the fundamental fact that we can represent many signals using only a few non-

zero coefficients in a suitable basis or dictionary [8]. It assumes that the dimension of signals that

are known to be sparse in some domain/basis can be reduced and that it is possible to accurately

recover the original signal from the compressed data with high probability and efficient algorithms
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[9]. Image and sound signals are some of the natural signals that can be well approximated using

a sparse representation in some domain.

In order to elaborate on this, let us take a known example, Lena’s image, an image typically used

in image analysis, a two-dimensional signal. We first transform the image using discrete cosine

transform (DCT) and Fast Fourier transform (FFT). Then by using only some percentages (P ) of

coefficients in the new basis, we reconstruct back the original image and the result is shown in

Figure 1.3 for different P . Thus, most of the coefficients of a typical image can be thrown away

without a significant loss in the quality of the image. In other words, the image is nearly sparse in

these domains.

Original DCT with P =30 DCT with P =20 DCT with P =10

Original FFT with P =30 FFT with P =20 FFT with P =10

Figure 1.3: Transforming Lena’s Image using DCT and FFT and approximating the image

obtained by keeping only the largest P=30%, P=20%, and P=10% of the DCT and Fourier

transform coefficients.

1.1.1 Fundamental Concepts in CS

In a CS framework signals are acquired or measured (sensed) using linear functionals. Consider a

natural signal f(t). We can obtain information about this signal using inner products of functions

yi =

∫
f(t)ψi(t)dt, i = 1, · · · ,M, (1.1.1)

where ψi(t) are the basis functions or sensing waveforms which are usually suitable to a particular

application and yi are called measurements. It is customary in modern signal processing to model

signals as vectors living in an appropriate vector space. If for example f(t) is a band limited

signal with period T , then we describe it as a discrete-time signal f = [f1, f2, · · · , fN ]T , where

fn ≡ f(nT ). Hence, f ∈ R
N represents discrete-time signals. In this thesis we consider signals

5



as vectors and focus on under-sampled situations in which the number of measurements, M, is

smaller than the dimension of the signal f , M � N . In such cases, different questions can arise

[10]:

• Is it possible to reconstruct the signal f accurately from M � N measurements?

• Is it possible to design M � N sensing waveforms to capture almost all the information
about f?

• And how can one approximate f from this information?

These questions will be addressed partly in this subsection. Note that this is a brief introduction

and if one needs more information, then reference [8] can be a good start.

Some signals can be sparse in nature, while others can have sparse representation where most of

their energy is concentrated in only a small number of significant coefficients. Let Φ ∈ R
M×N

be a sensing matrix such that y = Φf and further let Ψ ∈ R
N×N be a sparse representation

matrix/basis such that f = Ψx, where x is a sparse vector of coefficients. Putting these together

we get y = Φf = ΦΨx.

Denoting the product of the sensing and the representation matrix by A = ΦΨ, we call it a

measurement matrix. Then the measurement equation is given by

y = Ax, (1.1.2)

where the matrix A ∈ R
M×N is a rank deficient with M � N which may cause loss of informa-

tion in such frameworks. Note that, the three variables are central in CS: the sparse vector x, the

measurement matrix A, and the measurement vector y.

There are two fundamental concepts underlying the CS paradigm. The first is sparsity. If x is a

sparse vector, i.e. if only k � N of its entries are non-zero, then we call such vectors as a k-sparse

vector. Its zero norm is defined as follows.

Definition 1. (Zero Norm )

‖x‖0= k ≡ #{i ∈ {1, 2, · · · , N}|xi �= 0}. (1.1.3)

Basically, (1.1.3) is not a true norm since it does not satisfy triangle inequality.

The second is inchoherence. Consider the two matrices above Φ, and Ψ. Φ is used as sensing the

object f and Ψ is used to represent f [1], [10]. Then the coherence of the two matrices is defined

as follows.

Definition 2. (Coherence)
The coherence between the sensing matrix Φ and the representation matrix Ψ is

μ(Φ,Ψ) =
√
N · max

1≤j,k≤N
|〈Φj ,Ψk〉|, (1.1.4)

where Φj and Ψk are the jth and kth columns of the sensing and the representation matrices,
respectively.
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Coherence is therefore a measure of the largest correlation between any two vectors of the matri-

ces. And low coherence pairs are suitable for CS. One particular example for such pairs is if Φ is

fixed and Ψ is a random matrix, like independent identically distributed (i.i.d) ( example Gaussian,

binary) entries exhibit a very low coherence with high probability with any fixed representation

Ψ. The reader is encouraged to refer to [11] for more examples of such pairs of bases. With this

concepts at hand, let us define the CS problem formally as follows:

Definition 3. (The standard CS problem)
Find the k-sparse signal vector x ∈ R

N provided the measurement vector y ∈ R
M , the measure-

ment matrix A ∈ R
M×N and the under-determined set of linear equations as

y = Ax+w, (1.1.5)

where w ∈ R
M represents some measurement noise and generally, k � M � N .

One can ask again two of the questions raised, on page 4, in relation to the standard CS problem.

First, how should we design the matrix A to ensure that it preserves the information in the signal

x? Second, how can we recover the original signal x from measurements y [8]? To address

the first question, the solution for the CS problem presented here is dependent on the design of

A. This matrix can be considered as a transformation of the signal from the signal space to the

measurement space, Figure 1.4 [9]. In the seminal paper [12], the authors defined the sufficient

condition that matrix A should satisfy for the reconstruction of the signal x. It is called the

Restricted Isometric Property (RIP) and it is defined next.

Figure 1.4: Transformation from the signal-space to the measurement-space.

Definition 4. (Restricted Isometry Property)
For all x ∈ R

N so that ‖x‖0≤ k, if there exists 0 ≤ δk < 1 such that

(1− δk)‖x‖22 ≤ ‖Ax‖22≤ (1 + δk)‖x‖22 (1.1.6)

is satisfied, then A fulfills RIP of order k with radius δk.

An equivalent description of the RIP is to say that all subsets of k columns taken from A are

nearly orthogonal (the columns of A cannot be exactly orthogonal since we have more columns

than rows) [11]. For example, if a matrix A satisfies the RIP of order 2k, then we can interpret

(1.1.6) as saying that A approximately preserves the distance between any pair of k-sparse vectors.
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For random matrix A the following theorem is one of the results in relation to RIP for the noise-

less CS problem given by the researchers who revived the CS paradigm, provided that the entries

of the random matrix A are drawn from some distributions which are given later in this subsection.

Theorem 1. (Perfect Recovery Condition, Candes and Tao [2])
If A satisfies the RIP of order 2k with radius δ2k, then for any k-sparse signal x sensed by
y = Ax, x is with high probability perfectly recovered by the ideal program

x̂ = arg min
x

‖x‖0 (1.1.7)

subject to y = Ax

and it is unique.

The complete proof of most of the theorems in this section are given in the literature mentioned

with respect to each of them and an interested reader is referred to them. In order to ease the intro-

duction only a few proofs are considered. Noticing this, let us return to the concept at hand, RIP.

If A satisfies the RIP of order k with radius δk, then for any k′ < k, A satisfies the RIP of order

k′ with constant δk′ < δk [13]. Another important implication of RIP can be exposed considering

the concept of stability (Definition 5 and theorem 2 given below).

Definition 5. (Definition 1.4 of [8] )
Let A: R

M → R
N denote a measurement matrix and Δ : R

M → R
N denote a recovery algo-

rithm. We say that the pair (A, Δ) is a C-stable if for any k-sparse x and any error w ∈ R
M we

have that

‖Δ(Ax+w)− x‖2≤ C‖w‖2. (1.1.8)

Theorem 2. (Stability) (Theorem 1.3 of [8])
If the pair (A,Δ) is C-stable, then

1

C
‖x‖2≤ ‖Ax‖2 (1.1.9)

for all k-sparse x.

Proof. Since the role of such constants is visible in the introduction part of the thesis the proof of

this theorem is provided in Appendix A.1.

According to definition 5 if we add a small amount of noise to the measurements, then the impact

of this on the recovered signal cannot be arbitrarily large, whereas theorem 2 asserts that the

existence of a stable decoding algorithm requires that the RIP lower bound in (1.1.6) is satisfied

by A with a constant determined by C [8].

Further, one may ask how one can construct sensing matrices that satisfy the RIP property. There

are many matrices that fulfil this condition if M = O(k2 logN) number of measurements is avail-

able [10], which in a real life problem can be large and unacceptable. Fortunately random sensing

enters into the picture here. In fact, random matrices A of size M ×N whose entries are indepen-

dent and identically distributed (i.i.d) will satisfy the RIP with high probability if the entries are

chosen according to a Gaussian, Bernoulli, or more generally any sub-Gaussian distribution [8].

Let us take particular examples:
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1. If A is drawn from a Gaussian distribution with i.i.d. entries and normalized columns or

if A is formed by sampling i.i.d. entries from a symmetric Bernoulli distribution with the

number of measurements

M ≥ C1k log(
N

k
), (1.1.10)

then with high probability, A satisfies the RIP condition with radius δk[10].

2. If a matrix A is chosen according to a sub-Gaussian distribution with

M = O
(
k2 log(N/k)/δ2k

)
, (1.1.11)

then A satisfies the RIP of order 2k with probability at least 1− 2 exp(−C2δ
2
kM),

where C1 and C2 are some constants dependent only on δk.

While the RIP provides guarantee for the recovery of k-sparse signals, verifying that a matrix

A satisfies this property has a combinatorial computational complexity, since one must consider(
N
k

)
sub-matrices [8]. Instead, one can use another property of A called, coherence of a ma-

trix, the definition is below as in [14] , which has far less complexity than verifying that A fulfils

RIP and it can provides guarantee of recovery as shown below.

Definition 6. (Coherence of a matrix, Donoho and Huo [14] )
The coherence of a matrix A, μ(A), is the largest absolute inner product between any two
columns, which are assumed to be normalized, ai, aj of A:

μ(A) = max
1≤k,j≤N

|〈ai,aj〉|. (1.1.12)

In fact it is possible to relate the RIP property and the coherence by the following lemma.

Lemma 1. (Lemma 1.5 of [8] )
If A has a unit-norm columns and coherence μ = μ(A), then A satisfies the RIP of order k with
radius δk = (k − 1)μ for all k < 1/μ.

Note that, there are other properties of A that can guarantee the recovery of k-sparse signals. For

example, the spark of a matrix, the null space property of a matrix, which is discussed well in

literature [8], but not considered here for the sake of minimizing the scope of the introduction.

Instead the RIP is chosen to serve as a springboard for the next chapter in the thesis.

It should also be mentioned that building a hardware that does random sensing is an on going

research activity and so far only some results are reported, like the random demodulator [15],

random filtering [16], random convolution[17], the compressive multiplexer [18]. Therefore, the

work in this thesis is rather focused on theoretical results.

1.1.2 Signal Reconstruction

So far we have focused on the conditions that guarantee the recovery but not on the recovery it-

self which is the second question posed earlier, and one of the central concerns of the thesis. As

9



a matter of fact, it is the most difficult part of CS-based signal processing. In this pradgim one

transfers most of the complexity from encoding to the decoding part. The reason is that, in CS the

encoding part is very simple, i.e., one just multiplies the sparse vector x by random matrix A of

size M×N , where M � N and later in the process noise w is added to it. However, the decoding

part is very cumbersome but possible to deal with, with some degree of precision and complexity.

Starting with the noiseless CS problem, i.e., based on measurement matrix A ∈ R
M×N and

measurement vector y ∈ R
M with M � N , the objective is to re-construct or recover the sparse

vector x ∈ R
N , which is related through the linear transform y = Ax. This can be clarified easily

by the diagrammatic scheme as shown in Figure 1.5. If one tries to solve this problem using basic

linear algebra knowledge, then the solutions are infinitely many since matrix A is rank deficient.

However, if we assume that x is k-sparse vector with k � N and use this additional information

in solving the problem, we can get a unique solution.

Figure 1.5: Multiplication of a random ’rectangular’ matrix A with a sparse vector x
resulting a measurement vector y [19].

The best solution for this problem will be the sparsest vector that satisfies the condition y = Ax.

As defined before in (1.1.3), the mathematical representation that counts the non zero entries of

the vector x is the l0-norm,‖x‖0. The best solution can thus be found using this norm. Actually,

the solution has been mentioned in Theorem 1 before, in connection with RIP.

Recently, there has been revival in the CS literature due the emergence of two categories of al-

gorithms to approximate the solution for the CS problem. These are called the convex relax-
ation methods and greedy pursuits (GP). Among the GP are algorithms like Subspace Pursuit

(SP) [20], Orthogonal Matching Pursuit (OMP) [21], Compressive Sampling Matching Pursuit

(CoSaMP)[13], Fast Bayesian Matching Pursuit (FBMP) [22]. All GP algorithms are iterative

signal recovery methods. One calculates the support of the signal and it makes the locally optimal

choice at each time to build up an approximation. This is repeated until the criterion is fulfilled.

Another of the same kind is Iterative Hard Thresholding(IHT). IHT initializes with zero vector

and iterates a gradient descent step followed by hard thresholding until a convergence criterion is

met [23]. These algorithms are very fast but they have limitations in stability.
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In this thesis the focus is rather on the first categories or families of methods of approximating the

l0-norm based solution. Therefore, the convex relaxation method is presented starting from the

noiseless CS problem solution.

Let us first summarize this solution. The noiseless CS problem reduces to finding the solution for

the optimization problem:

min
x

‖x‖0, such that y = Ax (1.1.13)

However, minimizing l0-norm is a non-convex optimization problem which is NP-hard [24]. By

relaxing the objective function to convexity, it is possible to get good approximation. That is,

replacing the l0-norm by the l1-norm, one can find a problem which is tractable. Note that it is

also possible to use other lp-norms to relax the condition given by l0. However, keeping our focus

on l1-norm, consider the minimization problem instead of (1.1.13).

min
x

‖x‖1, such that y = Ax (1.1.14)

The solution of the relaxed problem (1.1.14) gives the same as that of (1.1.13) and this equivalence

was provided by Donoho and Huo in [14].

Theorem 3. ( l0 − l1 Equivalence )
If A satisfies the RIP of order 2k with radius δ2k <

√
2− 1, then

x̂ = argmin
x

‖x‖1 (1.1.15)

subject to y = Ax

is equivalent to (1.1.7) and will find the same unique x̂.

Justified by this theorem, (1.1.14) is an optimization problem which can be solved in polynomial

time and the fact that it gives the exact solution for the problem (1.1.13) under some circumstance

has been one of the main reasons for the recent developments in CS. There is a simple geometric

intuition on why such an approach gives good approximations. A unit ball in lp-space of dimension

N can be defined as

Bp ≡ {x ∈ R
N : ‖x‖p≤ 1}. (1.1.16)

Unit balls corresponding to p = 0, p = 1/2, p = 1, p = 2, p =∞, and N = 2, the balls are shown

in Figure 1.6. Among the lp-norms that can be used in the construction of CS related optimization

problems, only those which are convex give rise to a convex optimization problem which is more

feasible than the non-convex counter parts. That means lp-norms with only p ≥ 1 satisfy such

a condition. On the other hand, lp-norms with p > 1 do not favour sparsity, for example l2-

norm minimization tends to spread reconstruction across all coordinates even if the true solution

is sparse. But l1-norm is able to enforce sparsity. The intuition is that l1-minimization solution is

most likely to occur at corners or edges, not faces [4], [25]. That is why l1-norm became famous

for CS.

In CS literature, convex relaxation is presented as either l2-penalized l1-minimization called Basis

Pursuit De-nosing (BPDN) [26] or l1-penalized l2-minimization called LASSO (Least Absolute

Shrinkage and Selection Operator) [25], which are equivalent and effective in estimating a high-

dimensional data. The later is given more emphasis in this thesis.
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Figure 1.6: Different lp-balls in different lp-spaces for N = 2, only balls with p ≥ 1 are

convex.

Noisy Signal Recovery

So far recovery of signals from noiseless systems is discussed. It is great that these approximation

methods work well for the non-noisy system. What happens to the convex relaxation methods dis-

cussed when noise is added to the observations? Are these algorithms or solutions robust enough

to handle noise? Surprisingly, the relaxation method discussed before works well under some

conditions [2]. Usually real world systems are contaminated with noise, w, and in this thesis the

focus is on such problems as given in Definition 3. Henceforth, our focus is on signal recovery in

noisy systems. The noisy recovery problem becomes a simple extension of (1.1.14),

min
x

‖x‖1, such that ‖y −Ax‖2≤ ε (1.1.17)

where ε is a bound on ‖w‖2. The real problem for (1.1.17) is stability. Introducing small changes

in the observations should result in small changes in the recovery. We can visualize this using

the balls shown in Figure 1.7. Both the l0 and l1-norms give exact solutions for the noise-free CS

problem while giving a close solution for the noisy problem. However, the l2-norm gives worst

approximation in both cases compared to the other lp-norms with p < 2 ( see Figure 1.7). Here

we should mention one to include a result from literature that describes the noisy signal recovery

via l1 minimization in connection with RIP condition as in [8]. In fact, the theorem gives a bound

to the worst-case performance for uniformly bounded noise.

Theorem 4. (Theorem 1.9 of [8] as in [11])
Suppose that A satisfies the RIP of order 2k with δ2k <

√
2 − 1 and let y = Ax + w where

‖w‖2≤ ε. Then the solution x̂ to (1.1.17) obeys

‖x̂− x‖2≤ C0
σk(x)√

k
+ C2ε, (1.1.18)
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Figure 1.7: lp-norm approximations: The constraints for the noise-free CS problem is

given by the bold line while the shaded region is for the noisy one.

where

C0 = 2
1− (1−√

2)δ2k

1− (1 +√
2)δ2k

, C2 = 4

√
1 + δ2k

1− (1 +√
2)δ2k

(1.1.19)

Proof. Since the solution to the noisy CS problem is central in this thesis, the proof of this theorem

is provided in Appendix A.2 .

Further, (1.1.17) is equivalent to an unconstrained quadratic programming problem as

min
x

1

2
‖y −Ax‖22+γ‖x‖1, (1.1.20)

as it will be shown later as LASSO, where γ is a tuning parameter. The equivalency of (1.1.17) and

(1.1.20) is shown in [22], [27]. In this thesis, the generalized form of the minimization problem in

(1.1.20) with different lp-norm regularization is considered, that is,

min
x

1

2
‖y −Ax‖22+γ‖x‖p. (1.1.21)

How well the algorithms, specifically in this thesis the convex relaxation methods, perform to

solve the CS problem is another important investigation in CS literature. This is discussed next.

1.1.3 Performance of Recovery Algorithms

In subsection 1.1.2 we have mentioned two categories of algorithms that are used for recovery

of CS signals. The first are the convex relaxation recovery algorithms while the others are the

greedy pursuits (GP) algorithms. For an algorithm to be implemented in applications, its perfor-

mance should be known clearly. In the literature there have been some general characteristics that

describe the performance of an algorithm. Among the desired characteristics are such attributes
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as stability, efficiency, accuracy and robustness. By stability, we mean that when the observed

data are perturbed slightly by noise, recovery using the algorithm should still be approximately

accurate. Efficiency is about how much information, in CS setting how many measurements, the

algorithm needs to give a good approximation. While accuracy of a measurement system is the

degree of closeness of measurements of a quantity to that quantity’s true value. i.e., it should be

free of inherent, systematic error. The reconstruction algorithm is called robust if the noise sensi-

tivity is finite, and reconstruction is robust only when the measurement ratio (M/N ), which is the

ratio of the number of measurements to the signal length, exceeds a certain threshold.

Authors of the different algorithms proposed solutions to the CS problem argue that their algorithm

is better than the others using some of these criteria. Some used mutual coherence as a measure of

performance, others used RIP in connection to the ratio of the measurement M , and the sparsity k
to the dimension of the signal, N , being estimated. The bounds vary from algorithm to algorithm.

In that regard, there is no universal way of comparing the performance of the algorithms. In the

following example, estimation of a sparse signal using LASSO and its performance evaluation via

RIP and mutual coherence is illustrated.

Example 1. (Performance of LASSO [28] )
Consider the signal reconstruction problem presented in (1.1.17), that is the noisy CS problem as
illustrated by Figure 1.8. Let the entries of A be i.i.d. Gaussian with zero mean and variance
1/M and let the entries of w be i.i.d. Gaussian. If k = 10 and N = 10000, then how does LASSO
perform?

Figure 1.8: Noisy sparse signal estimation problem as given in the example (1) .

Solution 1. (RIP based performance analysis)
Based on the results from [12], for RIP-based analysis to hold we want δ2k <

√
2 − 1 and a

sufficient condition for this is given by

1 +
√
2k/M +

√
(2N/M)h(2k/N) < 21/4, (1.1.22)

where h(q) is the entropy function h(q) := −q log q − (1 − q) log(1 − q) defined for 0 < q < 1.
For example, for k = 10 and N = 10000 it is sufficient to have M ≥ 7595 for recovery. There
are other improvements on M , example M ≥ 1801 in [29].

Under-sampling is not justified for any k/N > 0.0010, in this particular example. Actually this

also leads us to the concept of phase transition in CS literature. It is another central aspect in the

CS paradigm [30, 31, 32].
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Solution 2. (Coherence based performance analysis)
Based on the results from [33], μ(A) concentrates to at least (2 logN)/M when k < 1/(3μ).
Then the mean square error (MSE) of the recovered sparse signal follows

MSElasso ≤ (
√
3 + 3

√
2 log(N − k))2MSEOP , (1.1.23)

where MSEOP is performance of oracle projector which is orthogonal projection to correct k-
dimensional subspace. That is, for k = 10 and N = 100, MSElasso ≤ 115 · MSEOP . This bound
does not apply for M < 277.

It is possible to find many such examples of performance analysis in the literature, this is like the

tip of an iceberg. Table 1.1 shows how performance comparison is done, using the RIP condition

and complexity of an algorithm with SNR → ∞, as N → ∞, and minimum to avarage ratio

(MAR) is defined by
min |xj |2

||x||2/k [33]. Later in this thesis, other comparisons of algorithms using

parameters like mean square error (MSE), signal to noise ratio (SNR) versus sparsity level or

amount of measurement are given (see 1.3, and 4.5).

Table 1.1: Performance comparison of Algorithms [34], [33], [12] .

Algorithm RIP condition Complexity

for reliable reconstruction

Maximum Likelihood M > k Very hard

LASSO M > 2k ln(N − k) Moderate

OMP M > 2k ln(N − k) Easy

IHT M > 8

MAR
k ln(N − k) Very easy

Such kinds of analysis are not able to give us one optimal constant factor as a benchmark for

assessing performance. Instead, as an option, a universal performance analysis for a given recovery

algorithm in CS system is given by Gua et al. [35] by considering a large size system. They

develop a single letter characterisation of the posterior of each individual entry of the sparse vector

in the large system limit. They argue that their results often offer a better approximation for the

performance of finite-size systems than the other existing bounds. This is done via tools which

analyze complex systems in physics. In Chapter 2 performance analysis of CS system estimators

using tools from statistical mechanics, specifically a tool called replica method, is presented. In

Section (1.3), a simple introduction of replica method with an example from literature for the

noiseless CS problem. Further, this method is used to analyze the performance of the estimators

for the noisy CS problem is given in Chapter 2. To facilitate the use of such tools in a CS Bayesian

framework a connector is needed between the CS estimators and the replica tools. The Bayesian

framework is presented in the next section.

1.2 Bayesian Framework

There are two schools of thought in the field of statistics, called the classical or the frequentist

and the Bayesian. The term "Bayesian" comes from the usage of Bayes’ theorem, which was

named after Reverend Thomas Bayes, an eighteenth century Presbyterian minister. The basic
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difference between these two schools of thought arises from the basic definition of probability.

Frequentists define P(A) as a long-run relative frequency with which an event A occurs in identical

repeats of an experiment. A Bayesian defines P(A|B) as a real number measure of the probability

of a proposition A, given the truth of the information represented by proposition B. So under

the Bayesian school, probability is considered as an extension of logic and it can represent the

investigator’s degree of belief. Hence it is perceived as subjective according to the frequentists

where probabilities are kept to be objective. To add on the differences, under the classical inference

parameters are not random variable, they are fixed and prior information is absent. However, under

the later parameters can be random variables, and prior information is an integral part, since for

the Bayesian, inference is impossible with out assumption [36, 37, 38, 39, 40, 41, 42, 43].

The Bayesian framework has been used in different fields, including CS systems [41, 44, 45, 46].

In this thesis the Bayesian approach is used frequently as a main statistical framework. It acts as

a bridge between CS theory and the Replica Method (the topic of the next subsection and Chapter

2), and it is also used as a main framework for analyzing CS system applications later in the thesis.

This short introduction is therefore to facilitate its use in connection to CS systems.

Suppose we are interested in estimating a sparse vector x from measured data y by using a sta-

tistical model described by a probability density function (pdf), p(y|x). Bayesian philosophy

states that x cannot be estimated exactly and for that the uncertainty about the parameter can be

expressed using probability distributions. Further, under Bayesian inference the following three

distributions are very crucial: (i) distribution of p(x), which is known as the prior distribution or

just prior. The prior expresses our beliefs about the parameter that we are going to estimate. (ii)

the probabilities of the evidence that we get from the measurement data, for the CS case given by

y can be represented by a statistical model p(y|x) to describe the distribution of y given x, also

called the likelihood function of x, and (iii) to update our beliefs about x by combining informa-

tion from the prior distribution and the data, we get a new distribution called posterior distribution,

p(x|y), using Bayes’ theorem and product rule:

p(x|y) = p(x,y)

p(y)
=

p(y|x)p(x)
p(y)

=
p(y|x)p(x)∫
p(y|x̃)p(x̃)dx̃ , (1.2.1)

where p(y) is called the normalizing constant of the posterior distribution. The posterior is directly

proportional to the product of the likelihood function and the prior distribution:

p(x|y) ∝ p(y|x)p(x). (1.2.2)

Bayes’ theorem helps to update the existing information about the variable we are interested in

and Equation (1.2.2) is called updating rule [37, 47, 48], in which the data allows us to update our

prior views about x. As a result we get the posterior which combines both the data and non-data

information of x. As an example, for binomial trials, considering a beta distribution as a prior,

gamma distribution for the data, we get posterior distribution which is also a beta distribution.

Figure 1.9 shows that the posterior density is taller and narrower than the prior density. It therefore

favours strongly a smaller range of x values, reflecting the fact that we now have less uncertainty

about x.

Theoretically, inference in the Bayesian method begins from the posterior distribution [35, 49]

which is simple, though the calculation of it may be cumbersome. However, today the computa-

tional ability has increased tremendously and there are many algorithms (one example is the use of

Markov Chain Monte Carlo (MCMC) methods) that can help to approximate it. It is thus possible
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Figure 1.9: Figure showing the updating rule: The posterior synthesizes and compromises

by favouring values between the maximum of the prior density and likelihood. The prior

distribution we had is challenged to shift by the arrival of a little amount of data.

to use the Bayesian framework to approximate or analyze signals of our interest using the posterior

distribution. Inference made using this distribution is indeed optimal [35].

In this thesis the usage of the posterior distribution has been crucial. Especially, we have used the

maximum of this distribution called maximum a posterior (MAP) as a strategy to generalize the

convex optimization-based solutions of the CS problem. Therefore, let us focus back on the CS

problem given by definition 3 and represent the CS problems solutions given by (1.1.21) as MAP

estimators [49].

Sparse Prior

We can represent our knowledge of the sparse signal x as prior knowledge [43, 48, 49]. That

is, one can use a probability distribution p(x) to model the sparsity of x. Throughout the thesis,

the prior knowledge of sparsity is modeled by pdfs that incorporate the lp-norms. We restrict our

attention where the prior pdf of a random variable x is given by

p(x) =
e−uf(x)∫

x∈RN e−uf(x)dx
(1.2.3)

where f : χ → R is some scalar-valued, non-negative function with χ ⊆ R called a regularizing

function, which can be expanded to a vector argument by
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f(x) =
N∑
i=1

f(xi), (1.2.4)

such that for sufficiently large u,
∫
x∈RN exp(−uf(x))dx is finite. Further, let the assumed vari-

ance of the noise be given by

σ2 =
λ

u
,

where λ is the system parameter. Note that the prior, (1.2.3), is defined in such a way that it can

incorporate the different estimators by assuming different penalizing terms via f(x) [49]. Further,

in (1.1.5), let us assume that the pdf of the noise w is Gaussian, such that the conditional pdf of y
given x is

py|x(y | x) = 1

(2πσ)N/2
e− 1

2σ2 ‖y−Ax‖22 . (1.2.5)

Using (1.2.1), (1.2.3) and (1.2.5), the posterior pdf becomes

px|y(x | y;A) = e−u( 1
2

‖y−Ax‖22+λf(x))

(2πσ)N/2
∫
x∈RN e−u( 1

2λ
‖y−Ax‖22+λf(x))dx

. (1.2.6)

Further, we find the maximum of the posterior distribution (MAP) which provides the most prob-

able value for the parameters, denoted as x̂MP , as

x̂MP = arg min
x∈RN

1

2
‖ y −Ax ‖22 +λf(x). (1.2.7)

(Detailed proof is given in A.3). Now, as we choose different regularizing function, we get the

various types of CS estimators defined earlier in (1.1.21) [49]. These are

1. Linear Estimators: when f(x) =‖ x ‖22, (1.2.7) reduces to

x̂Linear = AT (AAT + λI)−1y, (1.2.8)

which is known as linear minimum mean square error (LMMSE) estimator.

2. LASSO Estimator: when f(x) =‖ x ‖1 (1.2.7) reduces to

x̂LASSO = arg min
x∈RN

1

2
‖ y −Ax ‖22 +λ ‖ x ‖1, (1.2.9)

we get the LASSO estimator, which is the same as (1.1.20).

3. Zero-Norm regularization estimator: when f(x) = ‖x‖0,(1.2.7) reduces to

x̂Zero-Norm = arg min
x∈RN

1

2
‖ y −Ax ‖22 +λ ‖ x ‖0, (1.2.10)

we get the Zero-Norm regularization estimator.
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The regularizing functions used in estimators 2 and 3 above enforce sparsity into the vector x.

However, the regularizing functions in estimator 1 have a smooth nature as shown in Figure 1.6

and it is hard to find a single, best solution for the CS problem. Therefore, l2- regularization does

not provide good approximation for the CS problem. The best solution for the CS minimization

problem is given by (1.2.10), but it is NP-complete. However, it can be approximated by Equation

(1.2.9) [3, 4, 9]. The performance of these estimators for the CS problem, assuming large size

systems, N,M → ∞, can be analyzed using tools from statistical mechanics. The next section

1.3 is devoted for such purpose.

Clustered Prior

It is also possible that the entries to the sparse vector x can have some special structure (clustered-

ness) among themselves. This in turn can be included in the prior pdf. Later in the thesis another

prior distribution is given by

q(x) =
e−(λ‖x‖1+γD(x))

Δ
, (1.2.11)

where λ and γ are tuning parameters for sparsity and clusteredness, respectively given that D(x)
is a function modelling the special structure among the sparse entries of x, andΔ is a normalizing

constant for the pdf q(x).

1.3 CS Performance Analysis via Statistical Mechanics

High dimensional data can be difficult to model and process. One way to solve such problem is

to reduce the dimensions of the data. However, how can we reduce it without losing too much

important information? The recent advance in dimensionality reduction, that is, by randomly

projecting (RP) the data into a low dimensional space has provided solution [50]. If a signal

is sparse (compressible), then it is possible to RP it into lower dimensional data. The central

idea of compressed sensing, discussed in Section 1.1, is that a sparse high dimensional signal

can be recovered from a random projection down to a surprisingly low dimension by solving a

computationally tractable convex optimization problem. Nonetheless, there is a limit to such a

reduction of dimensionality. This means there will be a phase transition in the performance of

CS, i.e., for any given level of signal sparsity, there is a critical lower bound on the dimensionality

of a RP that is required to accurately recover the signal; this critical dimension decreases with

increasing sparsity [51]. In this subsection, we are going to verify it using tools from statistical

mechanics.

Statistical mechanics is a powerful field with elegant tools like replica method, cavity method,

gauge theory, to analyze large size systems. In recent times, these tools have been applied to

other fields, but only the replica method 2 is considered in this thesis. This choice was due to the

project called Statistical Physics in Advanced Multiuser Systems (SPAM), in which excellent work

[53, 54, 55] was done in analyzing large size MIMO systems using the replica method and the plan

2 The Replica Method is a powerful approach for analyzing the statistical mechanics of systems with

quenched disorder. However, some of the assumptions taken in the calculation are not yet rigorously proved

[51, 52].
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was to extend the results in that project to CS systems. The replica method is developed under the

context of the Sherrington-Kirkpatrick (SK) model to analyze the random interactions between

magnetic moments or spin glasses [36, 50, 51, 52, 56, 57]. Recently this method has been used

in error correcting codes [58, 59, 60], CDMA [61, 62], MIMO systems [60, 63], and CS systems

[35, 64, 65]. The central concepts and quantities involved in the replica method, that are relevant

in the thesis, are defined in Appendix A.4. An interested reader is referred to [53, 54, 55, 66, 67]

in addition to the references mentioned before.

Let us briefly discuss some results from the literature [51, 68, 69] on CS performance analysis

based on statistical mechanics approach for large size(scale) systems, i.e., when N,M → ∞
while keeping the measurement ratio M/N fixed. Consider the lp-reconstruction schemes for the

noiseless CS problem (deferring the noisy one for Chapter 2),

min
x
‖x‖p, such that y = Ax, (1.3.1)

for p = 0, 1 and 2. In order to give asymptotic analysis of the performance of such schemes, let us

proceed with probabilistic approach to the CS problem, as was introduced in Section 1.2. Given

a measurement vector y and a random measurement matrix A arising from a linear observation

process expressed as y = Ax0, the task in CS is to get approximations to the original sparse

vector x0. Inferring probabilistically, it is equivalent to finding the estimation of p(x|y) given

probabilistic information about y and A. Further, if there is prior information about the original

sparse vector, say p(x), it is possible to use Bayes’ theorem to estimate p(x|y) via p(x|y) =
(p(y|x)p(x))/Z , where Z is the normalizing constant. As an example, let us assume that the

prior distribution of the entries of the sparse vector follow a distribution,

P (x) = (1− ρ)δ(x) + ρξ(x), (1.3.2)

where ρ is the sparsity ratio and ξ(x) is the distribution of x. The posterior, p(x|y), becomes

p(x|y) = 1

Z p(x)p(y|x)

=
1

Z
N∏
i=1

p(xi)

M∏
ν=1

δ(yν −
N∑
i=1

Aνixi)

=
1

Z e
−∑N

i=1 log p(xi)−log

(
δ(yν−∑N

i=1 Aνixi)
)
, (1.3.3)

where xi, yν , and Aνi are entries of x, y and A, respectively. Equation (1.3.3) can be inter-

preted as a mean-field disordered statistical mechanics problem, where the entries of A, Aνi,

give the disordered interactions (the connectivity) in the system, Z is the partition function, and

the argument of the exponential term is the energy function or the Hamiltonian of the system

[36, 51, 52, 56, 64, 68]. When ξ(x) ∼ N (0, 1) and the lp-reconstruction is considered the Hamil-

tonian, H(x), becomes

H(x) = − log(δ(y −Ax)) + ‖x‖p. (1.3.4)

The Boltzman-Gibbs distribution of such a system with Hamiltonian, H(x), is given by

Pβ(x|y) = 1

Z e−βH(x), (1.3.5)

where β is the inverse of the temperature of a physical system and it reflects sources of noise. For

the CS system with the Hamiltonian given in (1.3.4), Equation (1.3.5) becomes
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Pβ(x|y) = e−β‖x‖pδ(y −Ax)

Z(β;y) , (1.3.6)

where the partition function, Z(β;y), is given by

Z(β;y) =
∫

e−β‖x‖pδ(y −Ax)dx. (1.3.7)

As β → ∞, i.e., in the low-temperature limit of a physical system, Boltzman-Gibbs distribution

converges to a uniform distribution of the ground states of such systems [68, 69]. That is,

lim
β→∞

Pβ(x|y)→
{

1
|S| , if x ∈ S
0, otherwise,

(1.3.8)

where S denotes the set of ground states such as the solutions of the optimization problem given

in (1.3.1).

The statistical structure of high probability (low energy) is the main interest here. And it is done by

understanding the statistical properties of the Boltzman-Gibbs distribution at a low temperature.

Further, in order to understand the statistical mechanics terms which are used in the remaining

parts of this section, the reader is encouraged to refer to Appendix A.4 and the literature mentioned

therein. Some of these terminologies are self averaing, free energy, replica method, and replica
symmetry. But, first let us introduce the performance metrics that will be calculated using these

statistical mechanics tools.

Reconstruction Limit
Let x̂ be the recovered vector using the lp-recovery schemes for the problem given in (1.3.1). Let

the Mean Squared Error (MSE) per element defined by

MSE(x0,A) =
1

N

∑
x∈S

1

|S| |x− x0|2. (1.3.9)

In turn, this MSE expression can be re-written as

MSE(x0,A) =
1

N
〈|x̂− x0|2〉

=
1

N
〈|x̂|2〉 − 2

N
〈x̂ · x0〉+ 1

N
〈|x0|2〉, (1.3.10)

where 〈·〉 is averaging with respect to the Boltzmann-Gibbs distribution (1.3.5). That means there

are three order parameters that determine the MSE. As N → ∞, in the third term we have the

sparsity ratio, ρ = 1
N |x0|2. Denoting the remaining two as

Q =
1

N
|x̂|2, and m =

1

N
x̂ · x0, (1.3.11)

the MSE is given in short as

MSE(x0,A) = Q− 2m+ ρ. (1.3.12)

Note that if x̂ = x0 1 , then Q = m = ρ and MSE(x0,A) = 0.

1Note also our notation: x0 is the original sparse signal, x is its statistical realization, and x̂ is the

recovered signal.
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In this subsection since we do asymptotic performance analysis, it is assumed that α = M/N is

fixed though N,M → ∞. Now, let us define the performance metric based on the measurement

ratio α and the sparsity ratio ρ called reconstruction limit [68, 70, 71].

Definition 7. (Reconstruction limit)
For a given ρ, a reconstruction limit αc(ρ) is defined as

• If α ≥ αc(ρ),
E(MSE(x0,A))A,x0 = 0 ⇔ Q = m = ρ; (1.3.13)

• If α < αc(ρ),
E(MSE(x0,A))A,x0 = Constant ⇔ Q �= m �= ρ, (1.3.14)

where E(·)X denotes averaging over the distributions of X .

This critical compression rate, αc(ρ), which will be calculated via tools from statistical mechanics

soon, will help to find the phase transition for each lp-reconstruction scheme. Hence, in the rest

part of this subsection follows the replica analysis, where details are provided in Appendix A.4

including definitions of terminologies and relevant assumptions.

Replica Method
The Boltzman-Gibbs distribution Pβ(x|y), and therefore its free energy −β−1 logZ and the aver-

age error (MSE) are all dependent on the measurement matrix A and the sparse signal x0. Since

both A and x0 are random variables, calculating these quantities is a difficult task. However, many

interesting quantities (such as the free energy, MSE), which involve averages over all interacting

entries, are self averaging. Hence, their fluctuations across different realizations vanish in the

large system (N → ∞, M → ∞ and α = M/N ). In this thesis, we consider the entries of A,

Aij ∼ N (0, 1) and the entries of x0 as given by (1.3.2) and take their realization. Thus, A and x0

play the role of quenched disorder for the CS system at hand which is described by the distribution

Pβ(x|y).
Now, since the free energy is a self averaging quantity, it is given by

F = −β−1
E(logZ), (1.3.15)

where the E(·) operator is done over A and x0. However, calculating the expectation or average of

the logarithm function is a difficult task and this lead us to the next important concept, the replica

method. In order to ease the calculation we take n replicas of the partition function and apply an

identity. That is

E(logZ) = lim
n→0

∂

∂n
logE(Zn). (1.3.16)

After applying Equation (1.3.16) the avarage free energy is given by

F̄ = − lim
n→0

∂

∂n
lim

N→∞
1

Nβ
logE(Zn). (1.3.17)

For the lp-reconstruction schemes of the noiseless CS problem, the key quantity that plays the role

of a free energy in statistical mechanics and which represents the typical value (per element) of

the minimized cost function (1.3.1) can be defined by

Cp = − lim
β→∞

1

βN
E(logZ(β;y)), (1.3.18)
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as in [68, 70, 71]. Substituting (1.3.16) into (1.3.18) and interchanging the limits we get

Cp = − lim
β→∞

lim
n→0

∂

∂n
lim

N→∞
1

βN
logE(Zn(β;y)). (1.3.19)

In (1.3.19), we are taking the expectation of the product of n identical replicas of Z(β;y), i.e.,

E(Zn(β;y)) = E

( n∏
a=1

Za(β;y)
)
. (1.3.20)

and inserting it in (1.3.19), we get

Cp = − lim
β→∞

lim
n→0

∂

∂n
lim

N→∞
1

βN
logE

( n∏
a=1

Za(β;y)
)
, (1.3.21)

where Za(β;y) refers to the calculation of Z(β;y) using the replicated sparse vector xa. Further,

to simplify (1.3.21) another assumption is needed, replica symmetry.

Replica Symmetry
The replica ansatz are arbitrary and often assumed to be independent random variables. This

makes calculating the expectation of the right-hand side of (1.3.21) hard. However, it is possible

to assume symmetry among the replica ansatz, called replica symmetry (RS) ansatz here. The

RS assumption on the ansatz has been shown to be sufficient if the optimization problem under

consideration is convex [36, 52, 53, 54, 55, 66, 67]. And the CS minimization problems, given by

(1.3.1) for p = 2 and p = 1, is a convex optimization problem.

For any fixed realization of the quenched disordered A, the replicated sparse vector xa is indepen-

dent and marginalizing (integrating) it over the disorder introduces attractive interactions between

replicas [51]. The interactions between replicas depends only on the overlap matrix Q, with entries

given by

Qab =
1

N
xa · xb, (1.3.22)

where a, b = 0, 1, 2, · · · , n. The landscape described by the overlap matrix Q is very complicated.

It can however be simplified by assuming RS ansatz. One possible assumption can be Q00 = ρ,

Q0b = x0 · xa = Nm, Qab = xa · xb = Nq for a �= b, and Qaa = xa · xa = NQ. These replica

symmetry assumption together with their conjugate variables further simplify the calculation of

Cp, (1.3.21), and we get

Cp = extrΘ

{
α(Q− 2m+ ρ)

2χ
+mm̂− Q̂Q

2
+

χ̂χ

2
+ Ψ(Q,χ,m, Q̂, χ̂, m̂)

}
, (1.3.23)

where extrΘ{G(X)} denotes the extremization of a function G(X) with respect to X , Θ =
{Q,χ,m, Q̂, χ̂, m̂}. For the detailed derivation of these quantities the reader is referred to Ap-

pendix A.4 and references [68] and [70]. The macroscopic quantities, Q,χ,m, Q̂, χ̂, m̂, are all

calculated with the saddle point integration.

The comparison of the reconstruction of the different lp-norms is shown in Figure 1.10 using the

critical compression rate αc(ρ), definition (7), versus the signal density ρ.

Phase transition behaviour is exhibited as shown in Figure 1.10: the lp -reconstruction schemes

behave differently above and below the respective curves. In the region between the green and the
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Figure 1.10: Performance of the lp reconstruction schemes for p = 0, 1 and 2 using critical

compression rate αc(ρ) versus the signal density ρ [68, 70] .

red lines, it is possible to use the l1 -reconstruction schemes. However in the region below the red

line this scheme fails to provide good recovery, whereas in the region between the red and the blue

line the l0-reconstruction scheme provides the best solution. The region below the blue line is the

region where reconstruction of the sparse signal is completely impossible. For further discussion

on phase transition, [30] and [72] can be referred to.

Replica Symmetry Breaking

The assumption of replica symmetry ansatz is a very simplified model for some problems. If

the local stability of the RS saddle point is lost against the perturbations that break it, then the

solution fails to realize. The local instability of the RS solution is verified by the de Almeida-

Thouless (AT) condition [52]. Therefore, replica symmetry breaking ansatz has to be used. This

corresponds to the physical picture in which there are many free energy landscapes with many

valleys. A good figurative explanation is provided in [51] (see Figure 1.11). For example, if we

consider the CS minimization problem given by (1.3.1) for p = 0, it is a non-convex optimization

problem, and the expression for the minimized lp-norm per element, Cp, cannot be calculated

using the replica symmetry ansatz. In such cases the symmetry breaks. Therefore one has to use

the replica symmetry breaking ansatz.

In chapter 2, we have used a one step replica symmetry breaking (1RSB) to analyze the perfor-

mance of the lp-norm reconstructing schemes for the noisy CS problem, which is different from

the example we described above. This is done by transforming these schemes as MAP estimators

using Bayesian framework. In general, the performance of MAP estimators in large systems can

be analyzed well using 1RSB ansatz [55, 73, 74]. This was the main motivation to do the analytical

work using 1RSB in Chapter 2 [65].

24



Figure 1.11: Probability lumps in free energy valleys. The larger circles represent the

space of all possible sparse vectors. The shaded regions represent the space of config-

urations (free energy valleys) with non-negligible probability under the Boltzman-Gibbs

distribution. (A) At high temperature all configurations are explored by this distribution.

(B) The replica symmetric ansatz for a low temperture phase. The interaction between

replicas freeze into small set of configurations. (C) One possible ansatz for replica sym-

metry breaking (RSB) in which the replica overlap matrix Q is characterized by two order

parameters. (D) There exists a series of k-step RSB schemes describing scenarios in

which the distribution decomposes into a nested hierarchy of lumps of depth k. Here k=2.

( Provided by Advani et al. [50] )

1.4 Compressive Sensing Applications

Compressive sensing is an exciting, rapidly growing field which has attracted considerable atten-

tion in electrical engineering, applied mathematics, statistics, and computer science [75]. This

paradigm has been applied to many signal processing areas such as image processing, communi-

cation and networks. The signals of interest in these application areas have sparse representation

in some signal representation. However, at this time building the hardware that can translate the

CS theory into practical use is very limited. Nonetheless, the demand for cheaper, faster and ef-

ficient devices will motivate the use of the CS paradigm in real-time systems in the near future.

So far we have few examples like the single-pixel cameras built from Rice University shown in

Figure 1.12 [76], in magnetic resonance imaging (MRI) [77], and in few other applications.

Even though the hardware to apply the CS theory is in its early stage, the theory has been used in

several fields in signal processing and a few of them are summarized here.

1.4.1 Compressive Imaging

In imaging, CS theory has a remarkable impact than other application areas in signal processing. It

reduces the number of measurements, which in turn can reduce power consumption, computational

complexity and storage without significant degradation in the spatial resolution. For example the

single-pixel camera mentioned above [76], is comprised of optical computer, with a single photon

detector, that computes random linear measurements. The camera design reduces the required

size, complexity, and cost of the photon detector array down to a single unit, which enables the

use of exotic detectors that would be impossible in a conventional digital camera. The random

CS measurements also enable a tradeoff between space and time during image acquisition. In
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Figure 1.12: Rice Single-Pixel Camera Project, http://dsp.rice.edu/cscamera.

addition, since the camera compresses as it images, it has the capability to efficiently and scalably

handle high-dimensional data sets from applications like video and hyperspectral imaging [78].

1.4.2 CS and Medical Imaging

CS has received a great deal of attention in medical imaging, especially in Magnetic Resonance

Imaging (MRI), which is a costly and time consuming process because of its data collection pro-

cess. However, the introduction of CS based techniques has improved the image quality through

reduction in the number of collected measurements and by taking advantage of their implicit spar-

sity [4],[77]. Magnetic Resonance (MR) images, like angiograms, have sparsity properties, in

domains such as Fourier or wavelet basis. The transform sparsity of MR images and the coded

nature of MR acquisition are two key properties enabling CS in MRI. Figure 1.13 illustrates these

elements, making MRI a natural CS system [4]. MRI is still a hot research area for CS theory [77],

[79].

1.4.3 Compressive Radar

Radar imaging seems to be a very promising application of CS techniques for simplifying hard-

ware design and to obtain a high resolution image [80, 81]. Standard methods for radar imaging

actually also use the sparsity assumption, but only at the very end of the signal processing proce-

dure in order to clean up the noise in the resulting image. Using sparsity systematically from the

very beginning by exploiting compressive sensing methods is therefore a natural approach [75],

[80].
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Figure 1.13: MRI as a compressed sensing system. The user controls the gradient and

RF waveforms that, in turn, control the phase of the pixels/voxels in the image. An RF

coil receives the signal in an encoded form samples in k-space. Careful crafting of the

gradient waveforms allows for incoherent measurements of k-space. With an appropriate

nonlinear reconstruction enforcing sparsity, an image can be reconstructed [77].

1.4.4 CS in Communication

In the communications community the application of compressive sensing has been mainly on

sparse channel estimation for various types of channels, with extensions to multiuser and cogni-

tive radio systems [82], [83]. A new channel estimation technique based on CS was also proposed

to exploit the "delay-Doppler sparsity" of wireless channels for a reduction of the number of pilots

required for channel estimation within multi-carrier systems [84]. CS-based sparse channel esti-

mation has also been shown to achieve much less reconstruction error while utilizing significantly

less energy and, in some cases, less latency and bandwidth as well [85]. The estimation of under-

water acoustic channels, which are inherently sparse, through CS technique yields better results

than the conventional ’Least Square Estimator’ [86, 87].

1.4.5 CS in Wireless Sensor Networks

Wireless sensor networks (WSNs) are resources constrained by limited power supply, memory,

processing performance and communication bandwidth. Due to their limited power supply, energy

consumption is a key issue in the design of protocols and algorithms for WSNs. Compressed

sensing and distributed compressed sensing have been adopted as potential approaches to provide

energy efficient sensing in wireless sensor networks [75]. In another study, CS theory to sensor

data gathering for large scale wireless sensor networks (WSNs) was first developed by considering

the scenario in which a large number of sensor nodes are densely deployed and sensor readings are

spatially correlated. This CS data gathering is able to reduce the global scale communication cost

without introducing intensive computation or complicated transmission control [88]. By using
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distributed compressed sensing for compression of the data in the network, the communication

cost (bandwidth usage) to the sink was shown to decreased at the expense of delay induced by the

local communication [89]. One can mention other applications of CS in WSNs like [90], [91],

[92].

A good CS application literature review is provided in [4], which basically is the summary of the

bulk of literature given at http://dsp.rice.edu/cs. The list of application areas include: analog-to-

information conversion, computational biology, geophysical data analysis, hyperspectral imaging,

astronomy, remote sensing, and computer engineering. It does not stop here, however note that,

so far the clear progress in applying CS theory is in imaging, specifically in MRI imaging. This

thesis also contributes to the list in the areas of imaging and communication [48, 93, 94, 95].

1.5 Scope and Contribution of the Thesis

This research work is about a new paradigm in signal processing called compressive sensing (CS)

using the Bayesian framework. It consists of two main categories: performance analysis and

application, where one paper, given in Chapter 2, in addition to Section 1.1.3, is dedicated to

analytical performance analysis to CS recovery schemes and the other three chapters, 3, 4, and 5

provide applications of the CS theory in imaging (Chapter 3 and Chapter 4) and in communication

(Chapter 5). Figure 1.14 shows the overview of the thesis.

Figure 1.14: The thesis overview.

To deal with performance analysis of CS recovery algorithms, the key idea applied in this thesis

can be described by the Venn diagram given in Figure 1.15. As discussed in Section 1.1.3 (also
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in Chapter 2), performance analysis of the CS recovery schemes is done by applying tools from

statistical mechanics by using the posterior distribution, which lies at the intersection of the three

circles in the Venn diagram.

As presented in [35], the posterior distribution of each element of the sparse vector conditioned on

the measurements is a sufficient statistic to infer about an individual element of the sparse signal

based on measurements. Hence, due to its advantages more emphasis is given to the posterior

distribution in this thesis. As presented in Section 1.2, the minimization problem of CS was

equivalently represented using the maximum of a posterior distribution (MAP). In addition, the

replica analysis of statistical mechanics begins at the Boltzman-Gibbs distribution in (1.3.6), which

is also shown to be the posterior distribution. This triplet face of the posterior enables us to use

the methods from one field to another, in our case tools developed from statistical mechanics to

the asymptotic analysis of the CS reconstruction schemes. One finds several such works if the CS

circle is replaced by neural systems [51], CDMA [61], MIMO [96] and so on.

Figure 1.15: A Venn diagram that illustrates how statistical mechanics, Bayesian statis-

tics and compressed sensing systems are connected, via the posterior and/or the partition

function (evidence or normalizing factor).

The performance analysis part of the thesis (Section 1.1.3 and Chapter 2) lies at the center while

the application Chapters (3,4 and 5) totally reside in the region of the intersection of CS and

Bayesian Statistics circles of the venn diagram. The four papers that are published in different

conference proceedings and journals are taken as separate chapters. Next, a short summary of the

contribution of each paper is given as follows:

Chapter 2
Solomon A. Tesfamicael "Compressed Sensing Performance Analysis via Replica Method Us-

ing Bayesian Framework," International Journal of Simulation Systems, Science & Technology
(IJSSST), vol. 16, no. 3, 2016. An earlier version is also in the Proceedings of IEEE UKSIM2015-

AMSS 17th International Conference on Modelling and Simulation, and the analytical framework

was presented at the 2012 IEEE European School of Information Theory in Antalya, Turkey be-

tween the 16 and 20 April.
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In this chapter, the performance of CS estimators is analyzed using a tool from statisti-

cal mechanics, especially the replica method. It is an efficient tool to analyze large size

systems in general. By considering the dimension of the signal N and the amount of mea-

surements M to be large, i.e., N , M → ∞, N/M < ∞, the performance of estimators

used in CS like LASSO (the Least Absolute Shrinkage and Selection Operator) estimator

and Zero-Norm regularizing estimator are analyzed, as a special case of maximum a pos-

teriori (MAP) estimator by using a Bayesian framework. We use both replica symmetric

(RS) ansatz and one step replica symmetry breaking (1RSB) ansatz, clamming the latter

is efficient when the problem is not convex. This work is more analytical in its form. It

is deferred for the next step to focus on the numerical results. A similar work has been

done to analyze communication systems like Code Division Multiple Access (CDMA)

and Multiple Input Multiple Output (MIMO) with large size. Actually, this work can be

considered as an extension to CS systems.

Chapter 3
Solomon A. Tesfamicael, Faraz Barzideh, Lars Lundheim, "Improved Reconstruction in

Compressive Sensing of Clustered Signals," in the proceedings of IEEE AFRICON 2015,

vol., no., pp.1-7, 14-17 Sept. 2015.

In this chapter, a new method of compressive sensing reconstruction is presented by con-

sidering the signal to be estimated as both sparse and clustered. These two properties

are modelled as a modified Laplacian prior in a Bayesian setting, resulting in two pe-

nalizing terms in the corresponding unconstrained minimization problem. Applying the

algorithm on images with noisy observations show a significant gain when including the

clustered assumption compared to the traditional Least Absolute Shrinkage and Selection

Operator (LASSO) approach only penalizing for sparsity. The method was compared to

other methods, which consider the two properties, and our approach is particularly well

suited to clustered signals with little or no variation within the clustered regions, such as

two-level images or other binary signals. However, there is a limitation to the result when

there is variation, indicating that one has to use a more informed clustering function for

better recovery.

Chapter 4
Solomon A. Tesfamicael and Faraz Barzideh, "Clustered Compressed Sensing via Bayesian

Framework," in the proceedings of IEEE UKSIM2015 17th International Conference on
Modelling and Simulation. Selected as best paper for further journal publication.

The results are also partially published in the International Journal of Information and
Electronics Engineering vol. 4, no. 2, pp. 74-80, 2014, and presented at ICCEI 2014

held in Melbourne, Australia Jan .2-3, 2014 and awarded as the best oral presentation. In

addition some parts were presented at the 2014 Joint National PhD Conference in Medical

Imaging and MedViz Conference held in Bergen, Norway, on 17-18 June 2014.

This chapter provides clustered compressive sensing (CCS) based signal processing using
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the Bayesian framework. By incorporating the different prior information such as spar-

sity and the special structures that are found among the sparse entries of different types of

signals. The method is applied on synthetic and medical images like angiogram image,

phantom and functional MRI (fMRI) images. The results show that applying the clus-

tered compressive sensing out performs the non-clustered but only sparse counter parts

when it comes to Mean Square Error (MSE), pick signal to noise ratio (PSNR) and other

performance metrics.

Chapter 5
Solomon A. Tesfamicael and Lars Lundheim, "Compressed Sensing Based Rotative

Quantization in Temporally Correlated MIMO Channels," in the proceedings of Recent
Developments on Signal Processing (RDSP 2013), September 2013. Also it can be found

at http://dsp.rice.edu/cs.

In this chapter, CS methods together with rotative quantization are used to compress and

feedback channel state information for multiple input multiple output (MIMO) systems

so that it reduces feedback overhead and improve performance. Using simulation, it is

shown that the CS-based method reduces feedback overhead while delivering the same

performance as the direct quantization scheme.
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Part II

Performance Analysis
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Chapter 2

Compressive Sensing Performance
Analysis via Replica Method using the
Bayesian Framework

Solomon A. Tesfamicael

Adapted from the International Journal of Simulation Systems, Science &
Technology (IJSSST), vol. 16, no. 3, 2016.

2.1 Abstract

Compressive sensing (CS) is a new methodology to capture signals at lower rate than the

Nyquist sampling rate when the signals are sparse or sparse in some domain. Studying

the performance of such novel paradigms is an interesting subject. In this paper, the per-

formance of CS estimators is analyzed using tools from statistical mechanics, especially

the replica method via the Bayesian framework. This method has been used to analyze

communication systems like Code Division Multiple Access (CDMA) and multiple input

multiple output (MIMO) systems with large size. Replica analysis, partially proved to be

rigorous, is an efficient tool to analyze large systems in general. Specifically, we analyze

the performance of some of the estimators used in CS like LASSO (the Least Absolute

Shrinkage and Selection Operator) estimator and Zero-Norm regularizing estimator as a

special case of maximum a posteriori (MAP) estimator by using the Bayesian framework

to connect the CS estimators and replica method. We use both replica symmetric (RS)

ansatz and one-step replica symmetry breaking (1RSB) ansatz, claiming the latter is effi-

cient when the problem is not convex. This work is analytical. It is deferred for next step

to focus on the numerical results.
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2.2 Introduction

Recently questions like, why go to so much effort to acquire all the data when most of
what we get will be thrown away?Can we just directly measure the part that will not end
up being thrown away? that were paused by Donoho and others [1, 2, 3, 12] triggered a

new way of sampling or sensing called compact ("compressed") sensing (CS).

The CS paradigm in signal processing requires three important ingredients [4]. First, the

desired signal should have a sparse representation in a known transform domain, i.e., it

should be compressible. If the signal is sparse spatially, for example consider an image

which is sparse in the pixels, then the transform domain can be the identity. Second, the

aliasing artefacts due to undersampling should be incoherent in the transform domain.

This creates a noise-like structure. This measurement noise then can be modelled using

white Gaussian noise. Third, a nonlinear reconstruction scheme should be used to enforce

sparsity and consistency with the data [77]. Recently, this recovery using CS has been

shown to be mathematically exact [1, 2, 3, 12]. As a signal processing scheme, CS follows

a similar framework: encoding, transmission/storing, and decoding. A block diagram is

given in Figure 2.1 focusing on the encoding and decoding of such a system for noisy

measurement.

Figure 2.1: Blockdiagram for CS-based reconstruction.

In CS the task is to estimate or recover a sparse or compressible vector x0 ∈ R
N from a

measurement vector y ∈ R
M . These are related through the linear transform y = Ax0.

Here, x0 is a sparse vector and M � N . In the seminal papers [1, 2, 3], x0 is estimated

from y, by solving a convex optimization problem [26, 97]. Others have used greedy

algorithms, like subspace pursuit (SP)[20], orthogonal matching pursuit (OMP) [21] to

solve the problem. In this chapter, the focus is rather on the convex optimization methods.

We consider the noisy measurement system and the linear relation becomes

y = Ax0 + σ0w, (2.2.1)

where y and x0 are as above where as the noise term, w ∼ N (0, I). There exists a

large body of work on how to efficiently obtain an estimate for x0. The performance

of such estimators are measured using metrics like Restricted Isometric Property (RIP)

[12], Mutual Coherence (MC) [14], yet there is apparently no consensus on the bound

determining how many measurements M are needed to approximate the sparse signal
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with length N and sparsity k by using such metrics. The tool used in this chapter gives

performance bounds of large size CS systems [67] using these system parameters.

Generally the linear model (2.2.1) is used to describe a multitude of linear systems like

code division multiple access (CDMA) and multiple antenna systems like MIMO, to men-

tion just a few. Tools from statistical mechanics have been employed to analyze large

CDMA [61] and MIMO systems [53, 63], and in this work the same wisdom is applied

to analyze the performance of estimators used in CS. Guo et al. in [67] used a Bayesian

framework for statistical inference with noisy measurements and characterize the poste-

rior distribution of individual elements of the sparse signal by describing the mean square

erorr (MSE) exactly. To do so, they consider (2.2.1) in a large system and applied the

decoupling principle using tools from statistical mechanics.

One can also find work that has used the tools from statistical mechanics to analyze CS

system performance. To mention some, in [67] as stated above, Guo et al. used the tools

to describe the minimum mean square error (MMSE) estimator, in [49] Rangan et al. used

the maximum a posterior(MAP) estimator of CS systems. These are referred as Replica

MMSE claim and Replica MAP claim in [49]. In [32, 98, 99] and [100] authors have used

Belief propagation and message passing algorithms for probabilistic reconstruction in CS

using replica methods including RS. Especially, in [101] one finds excellent work about

phase diagrams in CS systems while [102] generalizes replica analysis using free random

matrices. Recently, authors in [103] have proposed a turbo compressed sensing algorithm

with partial discrete Fourier transform (DFT) sensing matrices. They claim that algorithm

outperforms the well-known approximate message passing (AMP) algorithm when a par-

tial DFT sensing matrix is involved. Kabashima et. al in [68], Ganguli and Sompolinsky

in [104] and Takeda and Kabashima [70, 105, 106] have shown statistical mechanical

analysis of the CS by considering the noiseless recovery problem and they indicated that

RSB analysis is needed in the phase regimes where the RS solution is not stable. In this

work, the performance of these CS estimators, considered as MAP estimator, is shown for

the noisy problem by using the replica method including RS and RSB as in [54, 55, 96],

where the RSB ansatz gives a better solution when the replica symmetry (RS) solution is

unstable. This work is a kind of extension of [55], from MIMO systems to the CS systems.

The chapter is organized as follows. In Section 2.3, the estimator in the CS system is

presented and redefined using the Bayesian framework, and based on that we present our

basis of analysis in Section 2.4 which is the replica method from the statistical physics and

apply it on the different CS estimators which are presented generally as a MAP estimator.

In Section 2.5, we show our analysis using a particular example, and Section 2.6 presents

conclusion and of future work.
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2.3 Bayesian Framework for Sparse Estimation

Beginning with a given vector of measurements y ∈ R
M and measurement matrix A ∈

R
M×N , we assume noisy measurement with w ∈ R

M being i.i.d. Gaussian random

variables with zero mean and covariance matrix I, estimating the sparse vector x0 ∈ R
N

is the problem that we are considering where these variables are related by the linear

model (2.2.1).

2.3.1 Sparse Signal Estimation

Various methods for estimating x0 may be used. The classical approach to solving inverse

problems of such type is by the least squares (LS) estimator in which no prior information

is used and its closed form is

x̂0 = (ATA)−1ATy, (2.3.1)

which performs very badly for the CS estimation problem we are considering since it

does not find the sparse solution. Another approach to estimate x0 is via the solution of

the unconstrained optimization problem

x̂0 = min
x∈RN

[
1

2
‖ y −Ax ‖22 +uf(x)

]
, (2.3.2)

where uf(x) is a regularizing term, for some non-negative u. By taking f(x) =‖ x ‖p,

emphasis is made on a solution with lp-norm, and ‖ x ‖p is defined as a penalizing norm.

When p = 2, we get

x̂0 = min
x∈RN

[
1

2
‖ y −Ax ‖22 +u ‖ x ‖2

]
, (2.3.3)

This is penalizing the least square error by the l2-norm and this performs badly as well,

since it does not introduce sparsity into the problem. When p = 0, we get the l0-norm,

which is defined as

‖x‖0= k ≡ #{i ∈ {1, 2, · · · , N}|xi �= 0},

the number of the non-zero entries of x, which actually is a partial norm since it does not

satisfy the triangle inequality property, but can be treated as norm by defining it as in [49],

and get the l0-norm regularizing estimator

x̂0 = min
x∈RN

[
1

2
‖ y −Ax ‖22 +u ‖ x ‖0

]
, (2.3.4)
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which gives the best solution for the problem at hand since it favors sparsity in x. Nonethe-

less, it is an NP- hard combinatorial problem. Instead, it has been a practice to approxi-

mate it using the l1- penalizing norm to get the estimator

x̂0 = min
x∈RN

[
1

2
‖ y −Ax ‖22 +u ‖ x ‖1

]
, (2.3.5)

which is a convex approximation to the l0-penalizing solution 2.3.4. The best solution for

estimating the sparse vector x is given by the Zero-Norm regularized estimator which is a

hard combinatorial problem. These estimators, (2.3.3) - (2.3.5), can equivalently be pre-

sented as solutions to the constrained optimization problem [1, 2, 3]. This constrained op-

timization version of (2.3.5) is known as the l1-penalized l2-minimization called LASSO

(Least Absolute Shrinkage and Selection Operator) or BPDN(Basis Persuit Denoising),

which can be set as Quadratic Programming (QP) and Quadratic Constrained Linear Pro-

gramming (QCPL) optimization problems. 1 In the following subsection the above esti-

mators are presented as a MAP estimator in a Bayesian framework.

2.3.2 Bayesian Framework for Sparse Signals

Equivalently, the estimator of x0 in (2.3.2) can generally be presented as MAP estimator

under the Bayesian framework. Assume a prior probability distribution for x to be

pu(x) =
e−uf(x)∫

x∈χN e−uf(x)dx
, (2.3.6)

where the cost function f : χ → R is some scalar-valued, non-negative function with

χ ⊆ R and

f(x) =
N∑
i=1

f(xi). (2.3.7)

such that for sufficiently large u,
∫
x∈χN exp(−uf(x))dx is finite as in [49]. Let the

assumed variance of the noise be given by

σ2
u =

γ

u

where γ is system parameter which can be taken as γ = σ2
uu where σ2

u is the assumed

variance for each component of w. Note that we incorporate the sparsity in the prior pdf

via f(x). By (2.2.1) the probability density function of y given x is given by

py|x(y | x;A) =
1

(2πσ2
u)

N/2
e

− 1

2σ2
u

‖y−Ax‖22 , (2.3.8)

and prior distribution of x by (4.3.5), the posterior distribution for the measurement chan-

nel (2.2.1) according to Bayes’ law is

px|y(x | y;A) =
e−u( 1

2γ
‖y−Ax‖22+f(x))∫

x∈χN e−u( 1
2γ

‖y−Ax‖22+f(x))dx
. (2.3.9)

1In this chapter, we consider the former and leave the later as they are equivalent algorithms.
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Then the MAP estimator can be shown to be

x̂MAP = arg min
x∈χN

[
1

2γ
‖ y −Ax ‖22 +f(x)

]
. (2.3.10)

Now, as we choose a different penalizing function in (2.3.10) we get the different esti-

mators defined above in Equations (2.3.3), (2.3.4), and (2.3.5) but this time under the

framework of Bayesian framework as a MAP estimator [49].

1. Linear Estimators : when f(x) =‖ x ‖22 (2.3.10) reduces to

x̂MAP
Linear = AT (AAT + γI)−1y, (2.3.11)

which is the LMMSE estimator.

2. LASSO Estimator: when f(x) =‖ x ‖1 we get the LASSO estimator and (2.3.10)

becomes

x̂MAP
Lasso = arg min

x∈χN

[
1

2γ
‖ y −Ax ‖22 + ‖ x ‖1

]
. (2.3.12)

3. Zero-Norm regularization estimator: when f(x) = ‖x‖0 , we get the Zero-Norm

regularization estimator and (2.3.10) becomes

x̂MAP
Zero = arg min

x∈χN

[
1

2γ
‖ y −Ax ‖22 + ‖ x ‖0

]
. (2.3.13)

Whether these minimization problems are solvable or not, the replica analysis results can

provide the asymptotic performances of all the above estimators via the replica method

as given in [35, 49, 68, 70, 104]. We apply RS ansatz as used by Müller et al. in [35]

and RSB ansatz as used by Zaidel et al. [55] on vector precoding for MIMO. Actually,

this work is an extension of the RSB analysis to MIMO systems done in [55] to the CS

system.

2.4 Statistical Analysis

The performance of the Bayesian estimators like MMSE and MAP can be done by deter-

mining the pdf of the error vector. The error is random and it should be centered about

zero for the estimator to perform well. Kay showed in that way (see Section 11.6 in [107])

the performance analysis of MMSE estimator. We believe in general that inference for the

asymptotic performance of MAP estimators is best done with statistical mechanical tools

including RSB assumption. The outline of the replica analysis is done in this section. The

reader is referred to [35, 108] and [55], for deeper understanding of replica method which

is a central idea in this section.

We begin our analysis from the posterior distribution (2.3.9), which is sufficient statis-

tics to estimate x0 [35] and the denominator is called the normalizing factor or evidence
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in Bayesian inference according to [47] and Partition function in statistical mechanics

[108]. Actually, it is this connection which provides the ground to apply the tools which

are used in statistical mechanics. So the task of evaluating the above estimators for the

sparse vector x0 can be translated to that of statistical physics task. Let us justify first how

the analysis using statistical mechanical tool is able to do it.

The Boltzmann-Gibbs distribution is defined as

px(x) =
1

Z e−βH(x) (2.4.1)

where β is a constant known as the inverse temperature in the terminology of physical

systems. For small β, the prior probability becomes flat, and for large β, the prior prob-

ability has sharp modes. H, which is an expression of the total energy of the system, is

called the Hamiltonian in physics literature and Z is the partition function given by

Z =

∫
χN

e−βH(x)dx. (2.4.2)

Often the Hamiltonian can be given by a quadratic form like

H(x) = xTJx, (2.4.3)

with J being a random matrix of dimension N ×N . The energy of the system is given by

E =

∫
x∈χN

px(x)H(x)dx, (2.4.4)

and the entropy(disorder) of the system is defined as

S = −
∫
x∈χN

px(x) log px(x)dx. (2.4.5)

The free energy can be calculated using

F ≡ E − S
β
. (2.4.6)

At thermal equilibrium, the energy of the system being preserved, according to the second

law of thermodynamics the entropy of the system is maximized when the free energy is

minimized, where β, the inverse temperature, is the Lagrange multiplier in the maximiza-

tion of (2.4.5), subject to the mean energy constraint. Therefore, at equilibrium, the free

energy can be expressed as

F = − 1

β
logZ. (2.4.7)

The minimum average energy per component of x can be given by

E =
1

N
min
x∈χN

H(x) (2.4.8)
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For our system that we address, which is given by (2.3.10) or equivalently by (2.3.2), the

Hamiltonian becomes

H(x) =
1

2σ2
u

(y −Ax)T (y −Ax) + uf(x). (2.4.9)

Compared to (2.4.3), the Hamiltonian in (2.4.9) has regularizing term in addition to the

quadratic form in which the regularizing term f(x) contributes to the additional terms in-

volved in CS. After inserting (2.4.2) and (2.4.9) in (2.4.1) this gives information about the

solution to (2.3.10) or to (2.3.2) in general, since they are equivalent problems. Therefore,

one can use tools from statistical mechanics which helps to analyze the performance of

such estimators. For example in this chapter, we infer about the minimum energy of each

component of x using these tools.

Let x0 and x being drawn from the same set. The partition function of the posterior

distribution given in (2.4.1) becomes

Z =

∫
x∈χN

e
−β[ 1

2σ2
u

‖y−Ax‖22+uf(x)]
dx, (2.4.10)

by using (2.4.2) and (2.4.9). The posterior distribution (2.3.9) depends on the predeter-

mined random variables y and A called quenched states in physics literature [105, 106].

That is, we use fixed states y = Ax0 + w instead of y for the large system limit, as

N,M → ∞, while maintaining N/M fixed. We then calculate the nth moment of the

partition function Z with respect to the predetermined variables, n replicas, hence this is

where the name replica method came from. The replicated partition function is then given

by

Zn =

∫
{xa}

e
−β

[
1

2σ2
u

n∑
a=1

(‖y−Axa‖22)+
γ
σ2
u

n∑
a=1

f(xa)

]
n∏

a=1

dxa, (2.4.11)

where
∫

{xa} =
∫
x1∈χN ...

∫
xn∈χN . And after substituting y, it becomes

Zn =

∫
{xa}

e
−β

[
1

2σ2
u

n∑
a=1

(‖A(x0−xa)+w‖22)+ γ

σ2
u

n∑
a=1

f(xa)

]
n∏

a=1

dxa. (2.4.12)

Averaging (2.4.12) over the noise w, we get

∫
RM

dw

πM
e

− 1
2σ0

(wTw)Zn = αN/2

∫
{xa}

e
−β

[
1
2
TrJL(n)+ γ

σ2
u

n∑
a=1

f(xa)

]
n∏

a=1

dxa, (2.4.13)

where α = σ2
u

σ2
u+nσ2

0
, J = ATA which is assumed to decompose into

J = ODO−1, (2.4.14)
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where D is a diagonal matrix while O is N ×N orthogonal matrix assumed to be drawn

randomly from the uniform distribution defined by the Haar measure on the orthogonal

group. For more clarity on this one can refer to in [105, 109]. L(n) is given by

L(n)=− 1

σ2
u

n∑
a=1

(x0−xa)(x0−xa)T+
σ4
0

σ2
u(σ2

u+nσ2
0)

⎛
⎜⎜⎝ n∑

a=1
(x0−xa)

⎞
⎟⎟⎠
⎛
⎜⎜⎝ n∑

b=1
(x0−xb)

⎞
⎟⎟⎠

T

. (2.4.15)

Further averaging what we get on the right hand side of (2.4.13) over the cross correlation

matrix J, by assuming the eigenvalue spectrum of J to be self-averaging, we get

E
w,J

{Zn} = E
J

(
αN/2

∫
{xa}

e
−β

[
1
2
TrJL(n)+ γ

σ2
u

n∑
a=1

f(xa)

]
n∏

a=1

dxa

)

= αN/2

∫
{xa}

e
−βγ

σ2
u

n∑
a=1

f(xa)
E
J

(
e

−β

[
1
2
TrJL(n)

])
n∏

a=1

dxa, (2.4.16)

The inner expectation in (2.4.16) is the Harish -Chandra -Itzykoson-Zuber integeral (again

see in [55, 96] and the references therein). The plan here is to evaluate the fixed-rank

matrices L(n) as N → ∞. Further following the explanation in [55] (2.4.16) becomes

E
w,J

{Zn} = αN/2

∫
{xa}

e
−βγ

σ2
u

n∑
a=1

f(xa)
e

−N
n∑

a=1

∫ λa
0 R(−v)dv+o(N)

n∏
a=1

dxa (2.4.17)

where R(v) is the R-transform of the limiting eigenvalue distribution of the matrix J( see,

definition 1 in [96] of R-transform or in [53] for better understanding of R-transform) and

{λa} denote the eigenvalues of L(n) as explained in [55, 96, 109].

After applying the replica trick, the average free energy is given by

βF̄ = − lim
N→∞

1

N
E
w,J

{log Z}

= − lim
N→∞

1

N
lim
n→0

∂

∂n
log E

w,J
{(Z)n}. (2.4.18)

and then we calculate the cost function of the Lp-norm reconstruction using the quenched

average of the free energy [69, 70] as

Ē = lim
β→∞

1

β
F̄

= − lim
β→∞

1

β
lim

N→∞
1
N
E
w,J

{log Z}

= − lim
β→∞

1

β
lim
n→0

∂

∂n
lim

N→∞
1
N
log E

w,J
{(Z)n}︸ ︷︷ ︸

Ξn

. (2.4.19)
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where we get (2.4.19) by using one of the assumptions used in replica calculations, after

interchanging the order of the limits we assumed we get the same result. Further, for Ξn

we have

Ξn = lim
N→∞

1
N
log

(
αN/2

∫
{xa}

e
−βγ

σ2
u

n∑
a=1

f(xa)
e

n∑
a=1

∫ λa
0 R(−v)dv

n∏
a=1

dxa

)
. (2.4.20)

Since the additive exponential terms of order ◦(N) have no effect on the results when tak-

ing saddle point integration in the limiting regime as N → ∞ due to the factor 1
N

outside

the logarithm in (2.4.20) any such terms are dropped further for notational simplicity as

in [55].

In order to find the summation in (2.4.20) we employed the procedure in [55] and the nN
dimensional space spanned by the replicas is split into subshells, defined through n × n
matrix Q

S(Q) = {x1, ...,xn | (x0 − xa)T (x0 − xb) = NQab}. (2.4.21)

The limit N → ∞ enables us to use saddle point integration. Hence we can have the

following general result as similar to [55] but extended in this work with the term which

pertains to CS.

Proposition 1. The energy E from (2.4.8), for any inverse temperature β, any structure
of Q consistent with (2.4.21), and R-transform R(·), such that R(Q) is well-defined, is
given by

Ē = lim
n→0

1

n
Tr[QR(−βQ)], (2.4.22)

where Q is the solution to the saddle point equation

Q =

∫ ∫
{x̃∈χn} ψ2(x̃)e

ψ1(x̃)+
1
2
lnα− βγ

σ2
u
f(x̃)

dx̃∫
{x̃∈χn} e

ψ1(x̃)+
1
2
lnα− βγ

σ2
u
f(x̃)

dx̃
dFX0(x0), (2.4.23)

where dFX0(x0) is a probablity measure of x0, ψ1(x̃) = (x01− x̃)T Q̃(x01− x̃), ψ2(x̃) =
(x01− x̃)(x01− x̃)T , and x̃ is vector of dimension n .

Proof. See Appendix B.2.

Further, to simplify the result in (2.4.22), we assume a simple structure on to the n × n
cross correlation matrix Q at the Saddel point. So we assume two different assumptions

for the entries of Q called ansatz: Replica Symmetry(RS) and one step Replica Sym-

metric Breaking (1RSB) ansatz. For example given the convexity of the energy function

(2.3.12), the replica symmetric ansatz for the saddle point is reasonable. Whereas the

energy function in (2.3.13) is not convex and assuming 1RSB assumption can suffice.

Since the CS recovery estimators applied in this work are redefined as MAP estimators

and generally it is believed that using 1RSB ansatz is enough to analyse such estimators

if the local stability of the RS saddle point is lost against the perturbations [55], [74].
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Showing the derivation of (2.4.22) analytically and further simplifying it using additional

assumptions given under, is the central purpose of this pchapter as it was done in [96] and

[55] for MIMO systems, but for a different purposes.

As in [96] and [55] we assume that the ansatz are given by:

1. replica symmetry ansatz:

Q = q01n×n +
b0
β
In×n (2.4.24)

2. one replica symmetry breaking ansatz:

Q = q11n×n + p1Inβ
μ1

×nβ
μ1

⊗ 1μ1
β

×μ1
β
+

b1
β
In×n (2.4.25)

Applying these ansatzs we found the results given in the following subsections. In the

first subsection the RS ansatz and in the second subsection the RSB ansatz results are

presented.

2.4.1 LASSO Estimator with RS Ansatz

Consider the LASSO estimator given in (2.3.12), which is equivalent to the solution of the

main unconstrained optimization problem (2.3.2) in l1-penalized sense. Its performance

is calculated via energy per component, Ē , using two macroscopic variables q0 and b0
given by

q0 =

∫
R

∫
C

∣∣∣x0 −Ψ1(x)
∣∣∣2DzdFX0(x0), (2.4.26)

b0 =
1

f0

∫
R

∫
C

�
{
x0 −Ψ1(x)z

∗
}
DzdFX0(x0), (2.4.27)

where

Ψ1(x) = argmin
x∈χ

[∣∣∣−zf0 + 2e0(x
0 − x)− γ

σ2
u

∣∣∣
]
, (2.4.28)

e0 =
1

σ2
u

R
(−b0
σ2
u

)
, (2.4.29)

f0 =

√
2
q0
σ4
u

R′
(−b0
σ2
u

)
, (2.4.30)

where dFX0(x0) is a probability measure of x0 where as Dz refers to integration over

Gaussian measure. R(·) and R′(·) are the R-transform and its derivative, respectively (See

Appendix B.1.2). Under RS ansatz assumptions we then get the following statement.
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Proposition 2. Given the LASSO estimator in (2.3.12) and the macroscopic variables q0
and b0, in addition given the conditions in proposition 1, the typical value (per element)
of the minimized cost function (2.4.22) simplifies to

Ē lasso
rs =

q0
σ2
u

R
(−b0
σ2
u

)
− b0q0

σ4
u

R′
(−b0
σ2
u

)
(2.4.31)

Proof. See Appendix B.3.

2.4.2 LASSO Estimator with 1RSB Ansatz

Moving further to the RSB ansatz instead of assuming RS ansatz, we get more macro-

scopic parameters involved in the calculation of the quantity given by (2.4.22): b1, p1, q1,

and μ1. These are given by the following fixed point equations as n → 0 and β → ∞,

and using the compact notation as in [55]. Let

Δ(y, z) ≡ e
−μ1 minx∈χ −2
{(x0−x)(f1z∗+g1y∗)}+e1(x0−x)2− γ

σ2
u

|x|
, (y, z) ∈ �2 (2.4.32)

and its normalized version

Δ̃(y, z) =
Δ(y, z)∫

C
Δ(ỹ, z)dỹ

(2.4.33)

b1 + p1μ1 =
1

f1

∫
R

∫
C2

�
{(

x0 −Ψ2

)
z∗
}
Δ̃(y, z)DyDzdFX0(x0) (2.4.34)

b1 + (q1 + p1)μ1 =
1

g1

∫
R

∫
C2

�
{(

x0 −Ψ2

)
y∗
}
Δ̃(y, z)DyDzdFX0(x0) (2.4.35)

q1 + p1 =
1

g1

∫
R

∫
C2

|Ψ2|2Δ̃(y, z)DyDzdFX0(x0) (2.4.36)

and

∫ b1+μ1p1
σ2
u

b1
σ2
u

R(−v)dv = −R(−b1 + μ1p1
σ2
u

)− μ2
1

(
(q1 + p1)g

2
1 + p1f

2
1

)

+

∫
R

∫
C

log
(∫

C

Δ(y, z)Dy
)
DzdFX0(x0), (2.4.37)

where

Ψ2 = argmin
x∈χ

∣∣∣2�{(x0 − x)(f1z
∗ + g1y

∗)} − e1|(x0 − x)|2− γ

σ2
u

|x|
∣∣∣
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and the other variables e1, f1, and g1, are given by

e1 =
1

σ2
u

R(
−b1
σ2
u

), (2.4.38)

g1 =

√√√√ 1

μ1σ2
u

[
R(

−b1
σ2
u

)−R(
−b1 − μ1p1

σ2
u

)

]
, (2.4.39)

f1
n→0
−→

1

σ2
u

√
q1R′(

−b1 − μ1p1
σ2
u

) (2.4.40)

and where dFX0(x0) is a probability measure of x0 where as Dy and Dz refers to in-

tegration over Gaussian measure. All these equations are shown in Appendix B.4. The

use of RSB ansatz for a convex optimization problem like LASSO can be unnecessary if

the RS ansatz provide the global minimum solution. However, the use of the RSB ansatz

becomes crucial for the CS problem, since the best solution is provided by the Zero-Norm

regularizing estimator, which is a non-convex problem. The next two proposition are pro-

vided as an extension of the proposition in [55] to CS problems.

Proposition 3. Given the LASSO estimator in (2.3.12) and suppose the random matrix J
satisfies the decomposability property (2.4.14). Then under some technical assumptions,
including one-step replica symmetry breaking, and the macroscopic variables given by
the above fixed point equations, the effective typical value of the minimized cost function
per component converges in probability as N , M → ∞, N/M < ∞ , to

ĒLASSO
1RSB =

1

σ2
u

(q1 + p1 +
b1
μ1

)R(
−b1 − μ1p1

σ2
u

)− b1
μ1σ2

u

R(− b1
σ2
u

)

− q1(
b1 + μ1p1

σ4
u

)R′(
−b1 − μ1p1

σ2
u

) (2.4.41)

Proof. See Appendix B.4.

If we only have the RS-ansatz instead of the RSB-ansatz, that is, with p1 = 0, μ1 = 1,

b1 = b0, and q1 = q0, then

Ē LASSO
1RSB → ĒLASSO

RS . (2.4.42)

2.4.3 Zero-Norm Regularizing Estimator with 1RSB Ansatz

The LASSO estimation is considered as the convex relaxation of the the Zero-Norm reg-

ularizing estimation. Since the latter is a non-convex problem its performance is better

evaluated when we use RSB ansatz. So extending proposition (3) to this estimator we get

the following statement.
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Proposition 4. Given the Zero-Norm regularizing estimator in (2.3.13) and suppose the
random matrix J satisfies the decomposability property (2.4.14). Then under some tech-
nical assumptions, including one-step replica symmetry breaking, the effective energy
penalty per component converges in probability as N , M → ∞, N/M < ∞ , to

ĒZero-Norm
1RSB =

1

σ2
u

(q1 + p1 +
b1
μ1

)R(
−b1 − μ1p1

σ2
u

)− b1
μ1σ2

u

R(− b1
σ2
u

)

− q1(
b1 + μ1p1

σ4
u

)R′(
−b1 − μ1p1

σ2
u

) (2.4.43)

Proof. The proof is similar to that of Proposition 3 given in Appendix B.4. The ad-

justment needed is to change the regularizing term from L1 to L0, that is, ‖ x ‖1 to

‖ x ‖0.

Note that even though (2.4.41) and (2.4.43) have the same expression they are different

since the macroscopic variables are calculated from different prior distributions for x and

x0.

2.5 Particular Example: Bernoulli-Gaussian Mixture Dis-
tribution

Assume the original vector x0 ∈ R
N follows a Bernoulli-Gaussian mixture distribution.

So following the Bayesian framework analysis in Section 2.4, let x be composed of ran-

dom variables with each component obeying the pdf

p(x) ∼
{ N (0, 1) with probablity ρ

0 with probablity 1− ρ,
(2.5.1)

where ρ = k/N , with k being the number of non-zero entries of x. Without loss of

generality, let ρ = 0.1, M/N vary between 0.2 and 0.6. Also let us assume that the

entries of the measurement matrix A follow i.i.d. Gaussian random variable of mean zero

and variance 1/M . In addition, w.l.o.g., let σ2
u be such that the signal to noise ratio is

10dB and 30dB.

2.5.1 Replica Symmetry Analysis

Considering the macroscopic variables given by (B.5.3) and (B.5.6) and inserting the

assumed distributions above and simplifying, the fixed point equations become

q0 =
(1− ρ)

π

∫
C

Ψ3(z)dz +
ρ√
2π3/2

∫
C

∫
R

Ψ4(z, x
0)dx0dz, (2.5.2)
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b0 =
(1− ρ)

πf0

∫
C

Ψ5(z)dz +
ρ√

2π3/2f0

∫
C

∫
R

Ψ6(z, x
0)dx0dz (2.5.3)

where e0 and f0 are given by (2.4.29) and (2.4.30), respectively, also

Ψ3(z) =
∣∣∣zf0 + γ

σ2
u

2e0

∣∣∣2e−|z|2 , Ψ4(z, x
0) =

∣∣∣zf0 + γ
σ2
u

2e0

∣∣∣2e−( (x0)2

2
+|z|2), (2.5.4)

Ψ5(z) = �
{(zf0 + γ

σ2
u

2e0

)
z∗
}
e−|z|2 , and (2.5.5)

Ψ6(z, x
0) = �

{
x0(1− z∗) +

(zf0 + γ
σ2
u

2e0

)
z∗
}
e−( (x0)2

2
+|z|2), (2.5.6)

(See Appendix B.5) . With the defined values for the parameters given in this subsection
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Figure 2.2: The macroscopic variables of the RS ansatz for LASSO versus the measurement ratio

M/N.

above we first plot these macroscopic variables and this is shown in Figure 2.2. Using

these macroscopic variables, we plot the minimized cost function per component versus

measurement ratio M/N in Figure 2.3 which is given under proposition 2 for different

sparsity ratios (ρ = 0.1, ρ = 0.3).
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Figure 2.3: The effective typical value of the minimized cost function per component against

measurement ratio M/N for different sparsity.

2.5.2 Replica Symmetry Breaking Analysis

Considering the same Bernouli-Gaussian mixture distribution (2.5.1) assumed in this sec-

tion we consider the macroscopic variables which arises from 1RSB ansatz. Then the ef-

fective typical value of the minimized cost function per component as M → ∞, N → ∞,

while M/N is finite, which are given by (2.4.41) and (2.4.43) are dependent up on four

macroscopic variables given by (2.4.34)-(2.4.37).

It is possible to simplify these equations further and give numerical results. But this is

deferred for further work. We expect that the free energy from the RSB ansatz to be

greater than the free energy from the RS ansatz for the Zero-Norm regularizing, which

can be seen from the analytical terms which have more parameters in (2.4.43). However,

for LASSO these free energies, hence the typical value of the minimized cost function,

will be quite similar since for convex minimization problems there is one global minimum

and RS ansatz is sufficient enough to produce the solution.

2.6 Conclusion

In this chapter, we have used the replica method to analyze the performance of the estima-

tors used in compressed sensing in which we generalized them as MAP estimators. The

performance of MAP estimators can be shown using the replica method. 1RSB ansatz

can be enough to analyze such estimators [55]. We have only shown here one particu-
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lar example for the CS problem, i.e. for Bernoulli-Gaussian distribution. One may be

interested to verify it using different examples. In addition we have only compared the

performance of the estimators based on the free energy, but one can also use other met-

rics such as comparing the input/output distribution using replica analysis, as it is done

in [55]. The main result of this chapter is analytical analysis for the performance of the

estimators used in CS. These issues and others, like doing the numerical analysis for the

1RSB, are left for future work.
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Chapter 3

Improved Reconstruction in
Compressive Sensing of Clustered
Signals

Solomon A. Tesfamicael, Faraz Barzideh and Lars Lundheim

Adapted from the proceedings of IEEE AFRICON 2015, vol., no., pp.1-
7, 14-17 Sept. 2015.

3.1 Abstract

A new method of compressive sensing reconstruction is presented. The method assumes

that the signal to be estimated is both sparse and clustered. These properties are modelled

as a modified Laplacian prior in a Bayesian setting, resulting in two penalizing terms in the

corresponding unconstrained minimization problem. In the implementation an equivalent

constrained minimization problem is solved using quadratic programming. Experiments

on images with noisy observations show a significant gain when including the clustered

assumption compared to the traditional Least Absolute Shrinkage and Selection Operator

(LASSO) approach only penalizing for sparsity.

Comparison with other methods highlights that our approach is particularly well suited to

clustered signals with little or no variation within the clustered regions, such as two-level

images or other binary signals.
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3.2 Introduction

Compressive Sensing denotes a method of representing a signal with far fewer samples

than what would be required by traditional Nyquist sampling [1, 4, 12]. Theoretical results

show under what conditions reconstruction from the measurements are possible [2, 3], and

an important requirement is that the signal in question is sparse in some suitable base.

Whereas existence of a solution of the reconstruction problem can be proved mathemati-

cally, actual reconstruction algorithms may be hard to find and complex to execute. Dur-

ing the last decade many reconstruction methods have been suggested using results from

optimization theory [2, 3, 12].

Useful insight in the problem has been provided when the reconstruction can be regarded

as a MAP estimator with a certain prior pdf. This was first suggested by Rangan et al. in

[49].

Reconstruction performance can be improved by assuming signal properties in addition

to sparsity. One such property is clusteredness. This has been investigated in [110, 111,

112, 113, 114, 115]. In [110], the authors extend the theory of CS to include signals

that are concisely represented in terms of a graphical model, and used Markov Random

Fields (MRFs) to represent sparse signals whose non-zero coefficients are clustered. A

structured sparsity model is also used in [111] and random projections are applied to

recover signals from fewer measurements. In [112] a robust recovery of signals from a

structured union of subspaces is applied. While in [113] and [114] a hierarchical Bayesian

generative model for sparse signals is found in which they have applied full Bayesian

analysis by assuming prior distributions to each parameter appearing in the analysis, in

[115] the authors provide an algorithm inspired by sparse subspace clustering (SSC) to

cluster noisy data, and develop a novel theory demonstrating its correctness.

After presenting the problem and the conventional LASSO approach [6], [25] in Sec-

tion 4.3, we show how both sparsity and clusteredness can be modelled by assuming a

modified Laplacian prior pdf along the lines of [113]. In Section 3.4, we present a nu-

merical method for solving the ensuing modified LASSO optimization problem. Some

experimental results follow in Section 4.5 where we see that an SNR improvement of 10

dB can be gained by the new method. Conclusions and suggestions for further research

are given in Section 3.6.

3.3 Problem formulation

3.3.1 Compressive Sensing Reconstruction

The reconstruction problem in compressive sensing can be regarded as estimating x =
[x1, x2, . . . xN ]

� ∈ R
N from observations y ∈ R

M where the two are related by

y = Ax+w. (3.3.1)
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Here A ∈ R
M×N is a measurement matrix and w ∈ R

M is a zero mean, white Gaussian

noise vector with covariance matrix σ2I.

In classical regression, it is usually assumed that M >> N. In compressed sensing,

the situation is reversed, i.e. N >> M. On the other hand, x is sparse, meaning that

‖ x ‖0= k << N where the "Zero-Norm” ‖ x ‖0= #{xi|xi �= 0} denotes the number of

non-zero elements in x.

Even without noise, solving (4.3.1) for x is an underdetermined problem, and estimates

are often sought by the minimization

x̂ = min
x∈RN

1

2
‖ y −Ax ‖22 +λf(x), (3.3.2)

where λ ≥ 0 and f(x) a regularizing function penalizing non-sparse solutions. The CS

literature contains many solutions to this problem. A large class fall under the LASSO

approach [1, 2, 3, 4, 12] using f(x) =‖ x ‖1 resulting in the estimator

x̂LASSO = min
x∈RN

1

2
‖ y −Ax ‖22 +λ ‖ x ‖1 (3.3.3)

This will also be our point of departure, but in addition we introduce an assumption of

clusteredness as described in the next paragraph.

3.3.2 Bayesian Argument for Modified LASSO

As pointed out in [49] the minimization problem (4.3.3) can be interpreted as an equiva-

lent MAP estimator

x̂MAP = argmax
x

p(y|x)p(x)

with

py|x(y | x) = 1

(2πσ)N/2
e− 1

2σ2 ‖y−Ax‖22 , (3.3.4)

and a prior pdf

p(x) =
e−λf(x)∫

x∈RN e−λf(x)dx
. (3.3.5)

Under the assumption of xi i.i.d., it is seen that f(x) =‖ x ‖22 leads to a Gaussian p(x)
whereas f(x) =‖ x ‖1 (the LASSO approach) leads to a Laplacian.

By assuming a sparse and clustered x, the xi are no longer independent. In the following

we show how assuming a local dependence between individual samples of xi leads to a

modified Laplacian prior and, in turn, a modified LASSO estimator.

Let Di denote the set of closest neighbours of xi. The contents of Di will depend on the

nature of the signal in question. For a one-dimensional time series,

Di = {xi−1, xi+1}. (3.3.6)
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If x is a vectorized two-dimensional image, Di will consist of the neighbour pixels in

horizontal and vertical directions, possibly including diagonal neighbours as well. We

now assume that xi is statistically dependent on its neighbours. We also assume that

far apart variables are only indirectly dependent as in a Markov chain, such that for an

arbitrary sample set A,

p(xi|Di ∪ A) = p(xi|Di). (3.3.7)

Now, by the chain rule, we get

p(x) = p(x1|x2, x3, · · · , xN) · p(x2|x3, x3, · · · , xN) · · ·
p(xN−1|xN) · p(xN) (3.3.8)

= p(x1|D+
i ) · p(x2|D+

2 ) · · · (xN−1|D+
N−1) · p(xN)

where we have used the notation D+
i = {xj ∈ Di|j > i}.

Local dependence can now be modelled by a modified Laplacian

p(xi|D+
i ) =

1

c
e

−(λ1|xi|+λ2
∑N

x∈D+
i

|xi−x|)
(3.3.9)

with an appropriate normalization c. This prior is seen to favour sparse signals and signals

where neighbouring elements have a small difference. Combining (3.3.8) and (3.3.9) we

finally obtain

p(x) = e−λ1‖x‖1−λ2D(x), (3.3.10)

where

D(x) =
N−1∑
i=1

|xi − xi+1|. (3.3.11)

From here it follows that the MAP estimator is given by

x̂CLASSO = arg min
x∈RN

1

2
‖ y −Ax ‖22 +λ1 ‖ x ‖1 +λ2D(x), (3.3.12)

which we now recognize as a modified LASSO estimator where an additional regularizing

term λ2D(x) has been included. By appropriate choice of the constants λ1, λ2 sparsity and

clusteredness will be properly taken into account under the minimization of the squared

error.

3.4 Implemented Algorithm

3.4.1 Reformulation for Quadratic Programming

With a traditional (3.3.3) or modified (3.3.12) LASSO approach, several numerical meth-

ods can be used in order to solve the minimization [4, 23, 116]. A common scheme is to

deal with the equivalent constrained problem, that is expressed as

x̂LASSO = arg min
x∈RN

‖Ax− y‖22 subject to ‖x‖1≤ t1
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for LASSO (3.3.3) and

x̂CLASSO = arg min
x∈RN

‖Ax− y‖22 subject to ‖x‖1≤ t1; D(x) ≤ t2 (3.4.1)

for the modified version (3.3.12), where t1 and t2 are appropriately chosen thresholds.

For this kind of constrained minimization problem, quadratic programming is a natural

choice for solution. A challenge is then to reformulate the (non linear) constraints to a set

of linear ones. For the problem at hand (4.4.2) a linear constraint can be formulated by

introducing two auxiliary variables q1 ∈ RN and q2 ∈ RN . We compose an extended

variable x̄ ∈ R3N , a matrix Ā ∈ RN×3N and constrains vector b ∈ R4N+2 by

x̄ =

⎡
⎣ x

q1

q2

⎤
⎦ , Ā = [A 0N×1 0N×1] , b =

⎡
⎢⎢⎢⎢⎢⎢⎣

0N×1

0N×1

t1
0N×1

0N×1

t2

⎤
⎥⎥⎥⎥⎥⎥⎦ , (3.4.2)

and solve the extended quadratic programming problem

min
x̄∈R3N

‖Āx̄− y‖22 subject to Cx̄ ≤ b (3.4.3)

where C is a (4N + 2)× 3N matrix composed as follows:

C =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

I −I 0N×N

−I −I 0N×N

01×N 11×N 01×N

D 0N×N −I

−D 0N×N −I

01×N 11×N 0 11×(N−1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

The inequality sign “≤” in (3.4.3) is meant to be understood elementwise for the vector

quantities concerned. Moreover, I is the N × N identity matrix, and the notation 0m×n

and 1m×n signifies m× n sub matrices consisting of zeros and ones respectively.

D is an N ×N matrix performing partial sums in the operator D(x) in (3.3.11):

D =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 · · · 0

−1 1 0
...

0
. . .

. . .
. . .

...
...

. . .
. . .

. . . 0
0 · · · 0 −1 1

⎤
⎥⎥⎥⎥⎥⎥⎦ .
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3.4.2 Parameter Tuning

Good reconstruction requires proper choice of the thresholds t1 and t2 [115, 117] (or,

equivalently, of λ1, λ2). This choice may be both signal and application dependent. Often

an automatic tuning will be required, but situations where manual tuning are appropriate,

can also be imagined. In the present work, no particular method for parameter choice

is assumed. We have found experimentally that using t1 = ‖x‖1 and t2 = ‖Dx‖1 give

close to optimal results. These numbers will of course be unknown in practical use of the

method, so the results in the next section might be regarded as optimistic.

3.5 Experimental Results

3.5.1 Noise Robustness

A signal’s degree of clusteredness depends both on the signal’s origin and on the base in

which it is represented. To reveal some of the basic properties of the suggested method,

we first present an experiment with a family of binary signals with sparsity k/N ranging

from 0 to 1 defined by xk = [xk,1, xk,2, . . . xk,N ]
� with

xk,1 =

{
1 if l ≤ k
0 otherwise

These signals are “ultimately clustered", as all non zero values (which are all equal) are

placed together in a single connected block. For the measurement matrix A we have used

a random matrix with i.i.d. zero mean, unit variance Gaussian entries, further we have

scaled A row wise ( 1√
M

× randn(M,N)) and then scaled column wise so that we get

||Ax||= ||x||. With noise as defined in (4.3.1) this gives a measurement SNR

SNRm = E[y2i ]/E[w
2
i ] = k/σ2. (3.5.1)

The reconstruction quality can be measured by the reconstruction SNR

SNRr =
1

N
‖ x ‖22 /E[(x̂i − xi)

2] =
k/N

E[(x̂i − xi)2]
. (3.5.2)

The reconstruction SNR was estimated for both LASSO and modified LASSO by averag-

ing over 20 instances where both the noise vector and measurement matrix were randomly

chosen for each instance. The experiment was executed with signal length N= 300 and

observation length M = 200. The sparsity parameter varied in the range 1 ≤ k ≤ N. In

Figure 3.1 reconstruction SNR is plotted against k/M.

The top set of curves show the result when the measurement noise w = 0. Then SNRm =
∞, and LASSO outperforms the modified versions when the signal is clearly sparse. (This

corresponds to t2 = 0, showing that the chosen threshold value is evidently not optimal

in this case.) When the signal is less sparse, the performance gradually decreases until it
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Figure 3.1: SNRr vs. k/M for different SNRm

breaks down around k/M = 0.5 as expected, due to the phase transition property [30].

It is worth noting that the modified version does not have this break-down behaviour, but

obtains a stable performance around SNRr =24 dB.

For reduced SNRm this pattern repeats itself. Modified and unmodified LASSO have

similar performance for sparse signals, but when LASSO deteriorates with decreasing

sparseness, modified LASSO stabilizes at an SNRr level roughly proportional to the

measurement SNR. The noise robustness advantage of the modified version is clearly

increased with low values of SNRm.

As mentioned in Section 3.4.2 we have not done a thorough investigation of the choice

of thresholds t1, t2 in this work. More detailed methods for choosing these values might

improve the performance.

3.5.2 Comparison with other Methods

Our approach has been compared with two other CS algorithms that also take clustered-

ness into account. We will call these methods CluSS-MCMC and CluSS-VB respectively.

Both methods apply a hierarchical Bayesian model to model both the sparse prior and
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cluster prior simultaneously by taking into account the cluster structure property of sparse

signals, of which the non zero coefficients appear in clustered blocks. Their basic differ-

ence is in the signal recovery method. CluSS-MCMC [113] applies Markov Chain Monte

Carlo (MCMC) sampling, whereas CluSS-VB [114] uses a variational Bayes approach.

In the comparison two types of signals, Type I and Type II, have been used. Both types of

signals have length N = 100 and k non-zero values concentrated in two clusters whose

positions are randomly (uniformly) chosen.

For Type I signals, k = N/4 = 25 and the first cluster has a size k1 uniformly distributed

in the range 1 to k− 1 so that the other one gets length k2 = k− k1. Signal values within

each cluster are zero mean Gaussian variable with variance 1. An example is shown in

Figure 3.2.

For Type II signals, both clusters have length k = N/4 = 25. Signal values are constant

within each cluster with values 1 for the first one and 1/2 for the second one.

An indication of algorithm performance with M = N/2 = 50 measurements is given in

Figures 3.2–3.3.
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Cluss−VB, MSE = −11.2758
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CLASSO, MSE = −8.9795
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LASSO, MSE = −8.7594

Figure 3.2: Performance of algorithms using signal Type I, where the original signal is

represented in blue and the recovery by the respective algorithms are in red.

For signals of Type I we see that the methods CluSS-MCMC an CluSS-VB are better at

localizing the clustered regions and generating zero values where no signals are present.

For Signals of type II, where signal values are constant within each cluster, our method

clearly outperforms the rest.
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Figure 3.3: Performance of algorithms using signal Type II, where the original signal is

represented in blue blue colour and the recovery by the respective algorithms are in red.

A more quantitative comparison can be based on MSE computations and is shown in Fig-

ures 3.4–3.5 for Type I and Type II signals, respectively. The figures have been generated

by averaging over 10 simulations for each parameter combination.

For Type I signals, the performance difference between the methods is within 1-3 dB for

all tested measurement ratios. CLASSO shows only a slight improvement over LASSO

for these signals. The alternative methods CluSS-MCMC and CluSS-VB are inferior

at low M/N but improvs with increasing M/N where CluSS-VB seems to be the best

method among the tested ones.

For Type II signals, CLASSO is almost 10-15 dB better than the others over the whole

range of measurement ratios.

As a rough measure of computational complexity, the run time of Matlab implementations

of the different methods has been measured. This has shown for signals of Type I in

Figure 3.6 Similar results were obtained for Type II.

As expected, our method is somewhat more demanding than LASSO. The complexity of

the other two algorithms is one to two orders of magnitude larger.
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Figure 3.4: MSE performance versus measurement ratio M/N with signal type I.

3.5.3 Performance on a Naturally Sparse Image

Some images (e.g. printed text) are sparse in their native domain. As an example of

such an image we have chosen a picture containing six black alphabetic characters on a

white background as shown in Figure 3.7. The image consists of 300 columns, each of

length N = 300. For simplicity, all processing is made columnwise, i.e. only the simple

neighbour model (3.3.6) has been assumed. The columns of the image will mostly contain

zero pixels, but may have one or more segments consisting of clustered non-zero values.

Thus, the performance of the method should be expected to follow the same pattern as

the one investigated in Section 3.5.1 above. The number of non zero elements per column

varies from k = 0 to k = 122 distributed among up to six segments. To secure satisfactory

performance of LASSO, the number of observations per column should be larger than

2k, and we have chosen to use M = 244. The entries of the A matrix follow the same

distribution as used in Section 3.5.1. As an example of performance, we have used a noise

variance σ2 = 0.03 for this particular image. Now k, and consequently ‖ x ‖22 and E[y2i ],
varies from column to column, giving a maximum measurement SNR SNRm of 6.4 dB

by (3.5.1). The average number of non zero elements is k = 21.6 resulting in an average

SNRm of 0.5364 dB.

For zero-valued columns the SNR definition (3.5.2) is not very useful, so we have found
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Figure 3.5: MSE performance versus measurement ratio M/N with signal type II.

it natural to use PSNR for comparison, which is also a much used performance metric in

image processing. With max xi = 1 we have

PSNRr = 1/E[(x̂i − xi)
2].

The reconstruction PSNR was calculated by averaging over the 300 columns of the image.

This resulted in reconstruction PSNR values is given in Table 3.1. Visually, the advantage

of taking appropriate clustering into account is visible from Figure 3.7 and Table 3.1.

Again we see that CLASSO clearly outperforms the other methods when the signal shows

no or little variability within the clustered regions.

3.5.4 Sparsification

Natural images are most often not sparse in themselves, with a transform to a suitable

domain, however, their representation will often be sparse or nearly sparse. Such trans-

formation with a subsequent thresholding resulting in k << N non-zero values may be

termed sparsification.
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Figure 3.6: Execution time for the algorithms applied to signal Type I: LASSO, CLASSO,

Cluss-BV, Cluss-MCMC.

Table 3.1: Performance comparison for ABCDEF-Image

Algorithm Avarage PSNRr

in dB

LASSO 0.4675

CLASSO 5.485

CluSS 1.21

Cluss-VB 1.847

To demonstrate our method on a sparsified image, we have chosen the Shepp-Logan phan-
tom, a much used test image for medical application, as shown in Figure 3.8).

This image consists of 200 columns, each of length N = 200. For sparsification, we

used a discrete cosine transform (DCT) on each column, obtaining x′ = DCT (x). Each
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Figure 3.7: Reconstruction of naturally sparse image. a) Original, b) LASSO, c) Modified

LASSO

element of x′ with an absolute value less than a threshold was then set to zero, resulting in

a sparsified vector x′′. The threshold was chosen such that the maximum number of non

zero values k = 56. The sparsified vector was then subjected to CS measurement by

y = Ax′′ +w. (3.5.3)

Finally, sparsified reconstructions x̂′′ were produced by the investigated methods and a

final reconstructed signal by taking the inverse cosine transform

x̂ = DCT−1(x̂′′).

For experiments, M = 112 measurements were taken, where the measurement matrix

A was generated with the same statistical properties as in the previous example. All

processing was performed columnwise as in Section 3.5.3 with maximum measurement

SNR (PSNRm) of 13.44 dB. The mean square error of the reconstruction is given in

Table 3.2.
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Figure 3.8: Reconstruction of Phantom image using the algorithms CLASSO, LASSO,

Cluss-VB and CluSS.

Table 3.2: Performance comparison for Phantom-Image

Algorithm MSE in dB

LASSO 23.38

CLASSO 23.03

CluSS 37.79

Cluss-VB 32.52

The small difference between LASSO and CLASSO is deemed insignificant, as can also

be seen from Figure 3.8. Experiments with noisy measurements showed no further signifi-

cant difference between the two methods. Investigations of the transformed image reveals

that the representation is far from clustered. This can be ascribed to the rather strong
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symmetry of the original image. Symmetry in the spatial domain results in signal energy

being concentrated in even numbered coefficients in the DCT domain. Consequently,

clusteredness is not present, and the advantage over LASSO disappears. However, as is

visible from Figure 3.8 and Table 3.2 CLASSO performs better than CluSS, and Cluss-

VB. Actually, the two methods break down worst than the proposed method when there

is no structured sparsity in the signal, while our method is more robust, since it performs

approximately as LASSO.

3.6 Conclusion

We have suggested to model sparsity and clusteredness by a modified Laplacian prior dis-

tribution, resulting in a MAP estimator corresponding to a modified LASSO procedure

for compressed sensing reconstruction. For a naturally sparse image, an SNR improve-

ment of 10 dB over LASSO under noisy observations has been demonstrated. The method

involves the choice of two parameters, and the procedure for optimal choice of these has

not been addressed. In experiments values have been chosen based on knowledge of the

original signal. It is assumed that the measurements contain sufficient information that

appropriate parameter tuning can be performed.

Experiments with sparsification of non-sparse images turned out not to give the same

robustness gain. This shows the importance of choosing a representation base in which

the signal is both sparse and clustered.

Comparison with other methods highlights that our approach is particularly well suited

to clustered signals with little or no variation within the clustered regions, such as two-

level images or other binary signals. It should also be noted that, in contrast to methods

that require clusteredness in order to succeed, our method is fairly robust also with non-

clustered signals.
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Chapter 4

Clustered Compressive Sensing via a
Bayesian Framework

Solomon A. Tesfamicael and Faraz Barzideh

Adapted from the Proceedings of IEEE UKSIM2015-AMSS 17th Interna-
tional Conference on Modelling and Simulation.

4.1 Abstract

This chapter provides clustered compressive sensing (CCS) based signal processing using

a Bayesian framework. Images like magnetic resonance images (MRI) are usually very

weak due to the presence of noise and due to the weak nature of the signal itself. The com-

pressive sensing (CS) paradigm can be applied in order to boost such signal recoveries.

We applied CS paradigm via a Bayesian framework. That is incorporating the different

prior information such as sparsity and the special structure that can be found in such sparse

signal improves signal recovery. The method is applied on synthetic and medical images

including MRI images. The results show that applying the clustered compressive sensing

outperforms the non-clustered but only sparse counter parts when it comes to mean square

error(MSE), pick signal to noise ratio (PSNR) and other performance metrics.

4.2 Introduction

Compressive Sensing (CS) is a paradigm to capture information at lower rate than the

Nyquist-Shannon sampling rate when signals are sparse in some domain. Actually, it is

a revived research topic by authors like Donoho, Candes, Romberg and Tao [1, 2, 3, 12],

which was used first in 1970s in Seismology by Claerbout and Muir [6]. It is a paradigm,

which tries to find sparse solutions to underdetermined linear systems, and reconstruct

signals from far fewer samples than is possible using the Nyquist paradigm. The problem
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of limited number of samples or measurements can occur in multiple scenarios, e.g. when

we have limitations on the number of data capturing devices, measurements are very

expensive or slow to capture such as in magnetic resonance imagining (MRI) [4, 8, 77].

The CS paradigm in signal processing requires three important ingredients [4]. First, the

desired signal should have a sparse representation in a known transform domain, i.e., it

should be compressible. If the signal is sparse spatially, for example consider an image

which is sparse in the pixels, then the transform domain can be the identity. Second, the

aliasing artefacts due to undersampling should be incoherent in the transform domain.

This creates a noise-like structure. This measurement noise then can be modelled using

white Gaussian noise. Third, a nonlinear reconstruction scheme should be used to enforce

sparsity and consistency with the data [77]. Recently, this recovery using CS has been

shown to be mathematically exact [3, 12].

As a signal processing scheme, CS follows a similar framework: encoding, transmis-

sion/storing, and decoding. Focusing on the encoding and decoding of such a system

with noisy measurement the block diagram is given in Figure 4.1. At the encoding side,

CS combines the sampling and compression stages of a traditional signal processing into

one step by measuring few samples that contain maximum information about the signal.

This measurement/sampling is done by linear projections using random sensing transfor-

mations as shown in the landmark papers by the authors mentioned above. Under conven-

tional sensing paradigm the dimension of the original signal and the measurement should

be at least equal. But in CS, the measurement vector can be far less than the original.

Figure 4.1: Block diagram for CS-based reconstruction.

While at the decoding side, reconstruction is done using nonlinear schemes. Eventually,

the reconstruction is more cumbersome than the encoding which was only projections

from a large space to a smaller space. On the other hand, finding a unique solution that

satisfies the constraint that the signal itself is sparse or sparse in some domain is com-

plex. Fortunately, there are many algorithms to solve the CS problem, such as convex
relaxations [2, 12], greedy iterative algorithms [118], iterative thresholding algorithms
[23, 25, 119]. However, in this paper, the focus is merely on the convex relaxation meth-

ods. We consider a noisy measurement and applied convex relaxation algorithms for

robust reconstruction. This is done using a Bayesian framework.

Among the two schools of thought called the classical (also called the frequentist) and the

Bayesian in the statistical world, the later is emphasized in this work. The basic difference

between the two schools arises from the basic definition of probability. Frequentists define
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P (x) as a long-run relative frequency with which x occurs in identical repeats of an exper-

iment. Whereas Bayesian defines P (x|y) as a real number measure of the probability of

a proposition x, given the truth of the information represented by proposition y. So under

Bayesian theory, probability is considered as an extension of logic. Probabilities represent

the investigator’s degree of belief- hence it is subjective. That belief or prior information

is an integral part of the inference done by the Bayesian [37, 38, 40, 47, 113, 120, 121].

For its flexibility and robustness this work focuses on Bayesian approach. Specifically the

prior information like sparsity and clusteredness (or structures on the patterns of sparsity)

of signals as two different priors. Therefore, our contribution in this work is to use the

Bayesian framework and incorporate two different priors in order to recover the original

signals using reconstructing algorithms and in addition we compare different algorithms.

Actually, this work is a generalization of the recent work [48, 122, 123].

Therefore, the chapter is organized as follows. In Section 4.3, we present the CS prob-

lem and redefine it under Bayesian framework and provide the convex recovery methods.

Section 4.4 discusses how the algorithms are implied. Results are shown in section 4.5

for synthetic signals and in Section 4.6 for medical images. Finally, in Section 4.7, con-

clusions and future work are presented.

4.3 Compressive Sensing-Based Recovery

Beginning with a given vector of measurements y ∈ R
M and measurement matrix A ∈

R
M×N , assuming noisy measurement with w ∈ R

M being i.i.d. Gaussian random vari-

ables with zero mean and covariance matrix σ2I, reconstructing the sparse vector x ∈ R
N

is the problem that we are considering given the linear model

y = Ax+w. (4.3.1)

Here N � M and N � k, where k is the number of non-zero entries in x. Applying CS

reconstructions using different algorithms we recover the estimate of the original signal

x, say x̂. The measurement noise is reduced simultaneously with the reconstruction of

the true image data using nonlinear reconstruction schemes.

Various methods for reconstructing x may be used. We have the least square (LS) estima-

tor in which no prior information is applied:

x̂ = (ATA)−1ATy, (4.3.2)

which performs very badly for the CS reconstruction problem considered here. Another

approach to reconstruct x is via the solution of the unconstrained optimization problem

x̂ = min
x∈RN

1

2
‖ y −Ax ‖22 +uf(x), (4.3.3)

where uf(x) is a regularizing term, for some non-negative u. Emphasis is done on f(x) =
‖x‖p as a penalizing norm. In this work, we shall consider when p = 0, 1 and 2, which

gives us different estimators which we define them here using a Bayesian framework.
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4.3.1 Bayesian Framework

Under Bayesian inference consider two random variables x and y with probability density

function (pdf) p(x) and p(y), respectively. Using Bayes’ theorem it is possible to show

that the posterior distribution, p(x|y), is proportional to the product of the likelihood

function, p(y|x), and the prior distribution, p(x),

p(x|y) ∝ p(y|x)p(x). (4.3.4)

Equation (4.3.4) is called the Updating Rule in which the data allows us to update our

prior views about x. And as a result we get the posterior which combines both the data

and non-data information of x [37, 47, 48]. Further, the Maximum a posterior (MAP),

x̂MP , is given by

x̂MAP = argmax
x

p(y|x)p(x)

To proceed further, we assume two prior distributions on x.

4.3.2 Sparse Prior

The reconstruction of x resulting from the estimator (4.3.3) for the sparse problem, con-

sider in this work, can be presented as a maximum a posteriori (MAP) estimator under the

Bayesian framework as in [49]. We show this by defining a prior probability distribution

for x on the form

p(x) =
e−uf(x)∫

x∈RN e−uf(x)dx
. (4.3.5)

Further, the likelihood function, p(y|x), can be shown to be

py|x(y | x) = 1

(2πσ)N/2
e− 1

2σ2 ‖y−Ax‖22 , (4.3.6)

the posterior, p(x|y),

px|y(x | y;A) =
e−u( 1

2
‖y−Ax‖22+λf(x))

(2πσ)N/2
∫
x∈RN e−u( 1

2λ
‖y−Ax‖22+λf(x))dx

and the MAP estimator is then given by

x̂MAP = arg min
x∈RN

1

2
‖ y −Ax ‖22 +λf(x), (4.3.7)

as shown in [48]. Now, as we chose different regularizing function which enforces spar-

sity into the vector x, we get different estimators listed below [49].
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1. Linear Estimators: when f(x) =‖ x ‖22 (4.3.7) reduces to

x̂Linear = AT (AAT + λI)−1y, (4.3.8)

which is the LMMSE estimator. But this estimator is not good enough for sparsity

problem since it does not enforce sparsity well. Instead, the following two estima-

tors are more interesting for CS problems.

2. LASSO Estimator: when f(x) =‖ x ‖1 we get the LASSO estimator and (4.3.7)

becomes,

x̂LASSO = arg min
x∈RN

1

2
‖ y −Ax ‖22 +λ ‖ x ‖1 . (4.3.9)

3. Zero-Norm regularization estimator: when f(x) = ‖x‖0, we get the Zero-Norm

regularization estimator and (4.3.7) becomes

x̂Zero-Norm = arg min
x∈RN

1

2
‖ y −Ax ‖22 +λ ‖ x ‖0, (4.3.10)

This is the best solution for reconstruction of the sparse vector x, but is NP-complete.

The worst solution among these lp-penalizing forms for the sparse problem considered is

the l2-regularization solution given by (4.3.8). However, the best approximation is given

by equation (4.3.9) and its equivalent forms such as l1-norm regularized least-squares

(l1 − LS) and others [1, 3, 12].

4.3.3 Clustering Prior

Building on the Bayesian philosophy, we can further assume another prior distribution for

clustering. The entries of the sparse vector x may have some dependency. We define the

dependency or structure among the sparse entries as follows: given Di as neighbor hood

of xi, typically

Di ≡ {xi−1, xi+1}, and

D+
i ≡ {xj ∈ Di|j > i}.

xj ∈ Di implies that xj and xi are dependent. This dependence can be described as a

Markov type dependence as

p(xi|Di ∪ E) = p(xi|Di) (4.3.11)

for some set E. By chain the rule:

p(x) = p(x1|x2, x3, · · · , xN) · p(x2|x3, x4, · · · , xN)·
p(x3|x4, x5, · · · , xN) · · · · p(xN−1|xN) · p(xN)

= p(x1|D+
i ) · p(x2|D+

2 ) · · · (xN−1|D+
N−1) · p(xN) (4.3.12)
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while

p(xi|D+
i ) = e

−[−λ|xi|+γ
∑N

x∈D+
i

|xi−x|]
. (4.3.13)

Now, by (4.3.11) and (4.3.13)

p(x) = e
−[−λ

∑N−1
j=1 |xi|+γ

∑N−1
j=1

∑N

x∈D+
i

|xi−x|]
(4.3.14)

= e−λ‖x‖1|−γ
∑N−1

i=1 |xi−xi+1|,

and by using this new prior and similar arguments as used in 4.3.2 we arrive at the Clus-

tered LASSO estimator

x̂CLASSO = arg min
x∈RN

1

2
‖ y −Ax ‖22 +λ ‖ x ‖1

+ γ

N∑
i=2

|xi − xi−1|, (4.3.15)

where λ, γ are our tuning parameters for the sparsity in x and the way the entries are

clustered, respectively.

4.4 Implementation of the Analysis

In this chapter, we have considered the convex optimization algorithms for solving the CS

recovery problem and we extended these algorithms by involving clusteredness among the

sparse entries of the original signal. Given relatively few measurements y contaminated

by measurement noise w and measurement matrix A we reconstruct the original signal

x. For recovery we used LMMSE, LASSO and clustered LASSO given by equations

(4.3.8), (4.3.9),(4.3.15) respectively. In the Equations (4.3.8) , (4.3.9), and (4.3.15) we

have parameters like λ and γ. As we have based our analysis in the Bayesian framework

we could have assumed some prior distributions on each of them, and build hierarchical

Bayesian compressive sensing. Instead we have used them as a tuning parameter for the

constraint and we have used them in the optimal way.

The optimal λ value for the LMMSE in (4.3.8), that is λ = 1e − 07. In implementing

(4.3.9), that is least square optimization with L1 regularization, we have used the Quadra-

ture programming with constraints similar to Tibshirani [8, 25] by solving

x̂ = min
x

‖Ax− y‖22 (4.4.1)

subject to ‖x‖1≤ t

instead of (4.3.9). t and λ are inversely related. In addition, Equation (4.3.15) is imple-

mented similar to LASSO with additional term on the constraint as follows:

x̂ = min
x

‖Ax− y‖22 (4.4.2)

subject to ‖x‖1≤ t and D(x) ≤ d.
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d and γ are inversely related. This is done to put a constrain on the neighbouring ele-

ments. Since we have vectorized the image for the sake of efficiency of the algorithm, the

penalizing terms are applied columnwise. Other ways of implementing (constraining) are

also possible. But we differ it for future work. In our simulations we have used optimal

values of these constraints. Figure 4.2 and 4.3 show the respective optimal values for one

of the simulations in the next section.
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Figure 4.2: This figure shows the MSE of LASSO and clustered LASSO for different

values of t for Figure 4.4. It can be seen that there is only one optimal value.

4.5 Results on Synthetic Data

The main focus of this work is to give a practical application of clustered compressed

sensing. In order to verify the theory we have selected different medical related images.

We used LS, LMMSE, LASSO and clustered LASSO given by Equations (4.3.2), (4.3.8),

(4.3.9), and (4.3.15), respectively, to reconstruct from a noisy measurement and compare

their performances. We apply our analysis to angiogram, phantom and then to functional

MRI (fMRI) images.
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Figure 4.3: This figure shows the MSE of LASSO and clustered LASSO for different

values of d for Figure 4.4. It can be seen that there is only one optimal value d and by

loosening the constraint clustered LASSO will converge to LASSO.

4.5.1 First Set of Synthetic Data

In order to demonstrate the performance of reconstruction of the sparse signal presented

in the chapter we have used synthetic data. The first set of data is a vector with entries

that are sparse and clustered in the spatial domain. We have applied Gaussian noise with

mean zero and variance σ2 = 1 and random matrix A with Gaussian entries with variance

σ2 = 1. For LMMSE we used λ = 0 in our simulations. However, we have used

equivalent constraints for λ and γ for the LASSO and clustered LASSO. The original

signal is x of length N = 300 and we added noise to it. By taking 204 measurements,

that is y is of length M = 204, and maximum number of non-zero elements k = 102,

we applied different reconstruction techniques such as LMMSE, LASSO and clustered

LASSO. The results are shown in Figure 4.4 and Table 4.1.

4.5.2 Second Set of Synthetic Data

The second set of data is an image with a single English letter, where the image itself is

sparse and clustered in the spatial domain(in the pixel). We have applied Gaussian noise
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Figure 4.4: Application of different reconstruction techniques discussed in the paper (in

their vertical order: Original signal, LMMSE, LASSO, clustered LASSO).

Table 4.1: Performance comparison for the first set of Synthetic Data

Algorithm SNR in dB

LMMSE 5.0208

LASSO 19.3526

Clustered LASSO 33.8917

with mean zero and variance σ2 = 0.25 and random matrix A with Gaussian entries with

variance σ2 = 1. For LMMSE we used λ = 1e − 07 in our simulations. However, we

have used equivalent constraints for λ and γ for the LASSO and clustered LASSO.

The original signal after vectorization is x of length N = 300 and we added noise to it.

By taking 185 measurements, that is y is of length M = 185, and minimum number of

non-zero elements k = 0 maximum number of non-zero elements k = 84, and average

k = 28.71, we applied different reconstruction techniques such as LMMSE, LASSO and

clustered LASSO. The results are shown in Figure 4.5 and Table 4.2.
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a b

c d

Figure 4.5: Comparison of reconstruction schemes: a) Original image x b) LMMSE c)

LASSO d) Clustered LASSO.

Table 4.2: Performance comparison for the second set of Synthetic Data

Algorithm MSE in dB

LMMSE -25.2224

LASSO -37.0353

Clustered LASSO -63.9963

4.5.3 Third Set of Synthetic Data

The third set of data is an image with a several English letters, where the image itself is

sparse and clustered in the spatial domain but more evolving in terms of the sparseness

and clusteredness in the data than the second one. We have applied Gaussian noise with

mean zero and variance σ2 = 0.25 and random matrix A with Gaussian entries with

variance σ2 = 1. For LMMSE we used λ = 1e − 07 in our simulations. However, we

have used equivalent constraints for λ and γ for the LASSO and clustered LASSO.

The original signal after vectorization is x of length N = 300 and we added noise to it.

By taking 269 measurements, that is y is of length M = 269, and minimum number of

non-zero elements k = 0 maximum number of non-zero elements k = 122, and average

k = 21.56, and applied the reconstructing algorithms used above. Note that, we needed

more measurements in this case than the previous because we have more non-zero ele-

ments. The results are shown in Figure 4.6 and Table 4.3. The results in Figures 4.4-4.10
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c d

Figure 4.6: Comparison of reconstruction schemes: a) Original image x b) Noisy mea-

surement c) LASSO d) Clustered LASSO.

Table 4.3: Performance comparison for the third set of Synthetic Data

Algorithm MSE in dB

LMMSE -15.3121

LASSO -36.6692

Clustered LASSO -52.7103

and Tables 4.1-4.3 showed that reconstruction using LASSO is much better than LS and

LMMSE algorithms for the sparse reconstruction problem. Further, clustered LASSO

outperforms LASSO since it uses more accurate information about the structure of the

sparsity.
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4.6 Results on Medical Images

To give another practical application of clustered compressed sensing method, it is applied

on different medical related images: Angiogram, phantom and then to functional MRI

(fMRI) images.

4.6.1 Angiogram Image

The first one is an angiogram image taken from University Hospital Rechts der Isar, Mu-

nich, Germany [124]. Angiogram images are already sparse in the pixel representation.

In general MRI images are sparse (and even clustered) in the spatial and the transformed

domain. The image we took is also clustered as well. The original signal after vector-

ization is x of length N = 960. By taking 746 measurements, and maximum number

of non-zero elements k = 373, we applied the different reconstruction schemes and the

results are shown in Figure 4.7 and Table 4.4.

a b

c d

Figure 4.7: Comparison of reconstruction schemes: a) Original image x b) LMMSE c)

LASSO d) Clustered LASSO.
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Table 4.4: Performance comparison using MSE

Algorithm MSE in dB

LMMSE -35.1988

LASSO -53.6195

Clustered LASSO -63.6889

4.6.2 Phantom Image

Consider the Shepp-Logan phantom which is not sparse in the spatial domain but can be

sparsified in K-space by zeroing out small coefficients. We then measured the sparsified

image and added noise. The original signal after vectorization is x of length N = 200.

By taking 94 measurements, that is y is of length M = 94, and maximum number of non-

zero elements k = 47, we applied the different reconstruction algorithms used above. The

result shows clustered LASSO does well compared to the others as can be seen in Figure

4.8 and Table 4.5.

a b c

d e f

Figure 4.8: Comparison of reconstruction schemes: a) Original image x b) sparsified

image c) Least Square (LS) d) LMMSE e) LASSO f) Clustered LASSO.
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Table 4.5: Performance comparison of Phantom Image

Algorithm MSE in dB

LS -21.3304

LMMSE -27.3876

LASSO -37.9978

Clustered LASSO -40.0068

4.6.3 fMRI Image

Another example to apply the clustered LASSO based image reconstruction using Bayesian

framework to medical images is a functional MRI (fMRI) image. Taken from the slices

of fMRI image, as it is shown in Figure 4.9 in the transform domain, the fMRI image in

Figure 4.10 has presented the sparsity and clusteredness properties. That gives grounds

to apply the framework and the procedure used here. The performance of the different

reconstruction schemes is visible from Figure 4.10.

R #1

I #1

R #2

I #2

R #3

I #3

R #4

I #4

R #5

I #5

Figure 4.9: The five column images represent the real and imaginary part of the Fourier

transform representation of the data set we have chosen to present further, which in gen-

eral shows that the fMRI image have sparse and clustered representation.

In addition, for synthetic data we have compared the different recovery techniques by

using pick signal to noise ratio (PSNR) versus measurement ratio (M/N) and the result

is shown in Figure 4.11. Generally, reconstruction using LASSO is much better than

the LS and LMMSE algorithms for the sparse reconstruction problem. Further, clustered
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Figure 4.10: Application of sparse and cluster prior on a fMRI data analysis:N = 80 and

k > 50

LASSO outperforms LASSO since it uses more accurate information about the structure

of the sparsity. Furthermore, we see the impact of sparsity ratio on the performances of

the reconstruction schemes in Figures 4.12 and 4.13 using the reconstruction ratio versus

the sparsity ratio, k/N and M/N , respectively.

In addition, we show the robustness of the LASSO and clustered LASSO reconstruction

schemes where we have applied different noise levels. The result, as given in Figure 4.14,

reveals that both are robust but clustered LASSO is better.
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Figure 4.11: Here LS is included in the figure in addition to LMMSE, LASSO and

CLASSO.

Figure 4.12: Comparison of different reconstruction algorithms using the metric recon-

struction ratio versus and sparsity ratio, k/N .

4.7 Conclusions

In this chapter, clustered compressive sensing using a Bayesian framework is presented.

Our emphasis in this work is to incorporate prior information like sparseness and clus-86
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Figure 4.13: Comparison of different reconstruction algorithms using the metric recon-

struction ratio versus and sparsity ratio, M/N .
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Figure 4.14: Robustness of LASSO and Clustered LASSO reconstruction schemes.
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teredness in the reconstruction of signals from fewer measurements. We apply it on dif-

ferent medical related images. Clustered LASSO recovery does well in terms of PSNR

and MSE than LASSO (using only sparse prior), LMMSE and LS. In addition, in this

work we have shown comparison of the performance of different reconstruction algo-

rithms for different amounts of measurement ratio versus PSNR and MSE. In addition

sparsity ratio and measurement ratio versus reconstruction ratio is provided to see how

the schemes behave with the amount of sparsity and measurement. For future work we

plan to apply different forms of clustering depending on the prior informations of images

or geometry of clusteredness and compare them to state of the art algorithms in the area.
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Chapter 5

Compressed Sensing-Based Rotative
Quantization in Temporally Correlated
MIMO Channels

Solomon A. Tesfamicael and Lars Lundheim

Adapted from the Proceedings of Recent Developments on Signal Process-
ing (RDSP), September 2013.

5.1 Abstract

Channel adaptive transmission requires knowledge of channel state information at the

transmitter. In temporally correlated MIMO channels, the correlation can be utilized to

reduce feedback overhead and improve performance. In this paper, Compressed Sensing

(CS) methods and rotative quantization are used to compress and feedback channel state

information for MIMO systems as an extension work of [125]. Using simulation, it is

shown that the CS-based method reduces feedback overhead while delivering the same

performance as the direct quantization scheme.

5.2 Introduction

In modern wireless communications multiple-input multiple-output (MIMO) systems are

integrated due to their advantage in improving performance with respect to many per-

formance metrics. One of the advantages is the ability to transmit multiple streams us-

ing spatial multiplexing [126]. However, one needs channel state information (CSI) at

the transmitter in order to get optimal system performance [127]. In frequency division

duplexing (FDD) MIMO, a dedicated feedback channel of limited capacity is usually
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assumed. Several limited feedback strategies are proposed using codebooks which are

known to the transmitter and receiver [128, 129, 130, 131, 132, 133].

Temporal correlation of wireless channels can be used to reduce the feedback require-

ment in limited feedback systems. One technique to reduce the feedback requirement in

temporally correlated channels is to quantize the rotative change of singular vectors. For

instance, differential rotation feedback is proposed in [128].

In [125], scalar quantization using adaptive range is used to utilize the temporal correla-

tion. This paper, extends the work done in [125] by introducing the concept of compressed

sensing (CS) for rotative quantization methods. The near-sparse nature of the rotation

matrices is used to reduce the feedback requirement by using compressed sensing based

coding and decoding.

Recently questions like, why go to so much effort to acquire all the data when most of

what we get will be thrown away? Can we not just directly measure the part that will not

end up being thrown away? that were posed by Donoho [1, 3] and others, triggered a new

way of sampling or sensing called compact ("compressed") sensing (CS). In CS the task

is to estimate or recover a sparse or compressible vector x ∈ RN from a measurement

vector y ∈ R
M [2, 3]. These are related through the linear transform y = Ax. Here, x

is a sparse vector and M � N . In the seminal papers [1] and [3], x is estimated from y,

by the algorithm: min ||x||0 such that y = Ax, This is a non-convex NP-complete. The

usual wisdom is to solve it using approximation with min ||x||1 such that y = Ax, which

is a convex optimization problem [30], [49]. One of the most famous approaches is the

l1-regularized least square or LASSO and we used this estimator as a recovery algorithm

in this paper.

The concept of applying compressed sensing for limited (compressed) feedback of pa-

rameters of the channel is well known [134, 135, 136]. In this work though, we combine

rotative quantization and CS to reduce the feedback overhead in temporally correlated

MIMO channels.

This chapter is organized as follows. First we give the MIMO system model that we work

with in Section 5.3. In Section 5.4, we review the concept of rotative quantization. In

Section 5.5, it is shown how rotative quantization can be combined with CS to reduce

the feedback overhead. Then in Section 5.6, the performance of the proposed method is

shown using simulations. The last section gives conclusions and recommendations for

future work.

5.3 System Model

Considering a frequency division duplex (FDD) MIMO system consisting of Nt transmit

and Nr receive antennas we assume that the channel is a flat-fading, temporally correlated

channel denoted by a matrix H[n] ∈ C
Nr×Nt where n indicates a channel feedback time

index with block fading assumed during the feedback interval. Applying Singular Value

Decomposition (SVD) of H[n] gives H[n] = U[n]Σ[n]VH [n], where U ∈ C
Nr×r and
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V ∈ C
Nt×r are unitary matrices and Σ ∈ C

r×r is a diagonal matrix consisting of r =
min(Nt, Nr) singular values.

In the presence of perfect channel state information (CSI) a MIMO system model can be

given by the equation

ỹ = UH [n]H[n]V[n]x̃+UH [n]n (5.3.1)

where x̃ ∈ C
r×1 is transmitted vector, V[n] is used as precoder at the transmitter, UH [n]

is used as decoder at the reciver, n ∈ C
Nr×1 denotes a noise vector whose entries are i.i.d.

and distributed according to CN (0, 1) and ỹ ∈ C
Nr×1 is the received vector.

In practice, partial channel state information is available at the transmitter, hence we as-

sume that only a quantized version V̂[n] is available, Further, assuming a generalized

receiver R[n], (5.3.1) becomes:

ỹ = RH [n]H[n]V̂[n]x̃+UH [n]n. (5.3.2)

In this chapter we consider two different alternatives for R[n]. Assuming a minimum

mean square error (MMSE) approach we get

R[n] =
[
(H[n]V̂[n])HH[n]V̂[n] + rσ2

nI
]−1

(H[n]V̂[n])H .

Alternatively, a Matched Filter (MF) receiver gives

R[n] = (H[n]V̂[n])H .

The receiver estimates the channel from pilot symbols, computes SVD, quantizes and

then feedbacks Ṽ[n].

Further we assume a first-order Gauss-Markov process to model the channel variation in

a channel with temporal correlation as used in [125] and[126] given by the equation

H[n] = ηH[n− 1] +
√
1− η2G[n] (5.3.3)

where η is the temporal correlation and G[n] ∈ C
Nr×Nt denotes the innovation process

having i.i.d. entries distributed according to CN (0, 1). η is given by η = J0(2πfdτ ),

where J0(·) is the zero order Bessel function of the first kind, τ is the channel feedback

interval, fd is the Doppler frequency and fdτ is the normalized Doppler frequency.

5.4 Rotation-Based Quantization

In the temporally correlated environment we apply a rotation-based limited feedback sys-

tem for a Rayleigh flat fading MIMO channels as in [128]. The differential rotation of

the precoder matrix at a time index n, V[n], compared to the one at a previous time

instant,V[n− 1] is quantized. This has advantage of reducing the feedback overhead.
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The precoder matrix V[n] can be represented equivalently as

V[n] = T[n]ĨNt×r (5.4.1)

where, T[n] ∈ C
Nt×Nt is a matrix containing all singular vectors and Ĩ[n] is a matrix

composed of the first m columns of the identity matrix INt×Nt . As in [128] we assume

that both receiver and transmitter has a common estimate T̂[n] of T[n]. Then we can

define a rotation matrix

Θ [n] = T̂H [n− 1]V[n] (5.4.2)

where, Θ [n] ∈ C
Nt×r. A quantized version Θ̂[n] is then fed back to the transmitter where

an estimate

V̂[n] = T̂[n− 1]Θ̂[n] (5.4.3)

can be reconstructed.

In order to quantize Θ [n] various methods can be used. Vector quantization of this matrix

is used in [128], parameterization using Givens rotations is also used in [125]. Before

introducing our new method, we present a baseline approach for comparison. This is

Algorithm 1 below, where Θ [n] is vectorized and vector quantization of the resulting

vector is used. The codebook used for vector quantization consists of vectors uniformly

distributed in a Nt × r dimensional unit hypersphere. We have assumed that the feedback

channel is error free and the only inaccuracy comes from quantization error.

Algorithm 1 Rotative Quantization feedback using CS for temporally correlated MIMO

channels
1. Initialization: (both transmitter and receiver)

Set T̃[0] = IN×N .

2. For each time index n ≥ 1:

Receiver:
Obtain Θ [n] = T̂H [n− 1]V[n].
Update T̂[n].
Perform vector quantization of Θ̂[n].

Transmitter: Re-construct Θ̂[n] from received parameters.

Obtain the estimate of the current singular vector matrix using V̂[n] = T̂[n− 1]Θ̂[n].

To simplify the analysis we assume Nr = Nt = N , for the rest of the chapter.

5.5 Quantization using Compressed Sensing

We will now modify Algorithm 1 above by using CS instead of direct quantization of

Θ̂[n]. The approach is summarized in Algorithm 2 and Figure5.1 below. The first step
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is to arrange the entries of Θ [n] in a column vector x. We denote this operator by x =
vec(Θ [n]). Assuming strong correlation, Θ̂[n] will be close to diagonal and x[n] sparse.

Next, we apply a random fat matrix A, which is known both to the transmitter and the

receiver, to get another vector y = Ax, which has much less dimension than the orignal

vector x. A quantized version ŷ is sent through the feedback channel. The receiver

reconstructs x̂ from the received vector ŷ and the matrix A using LASSO:

x̂ = argmin
x

||ŷ −Ax||22+||x||1. (5.5.1)

Then we apply the reverse process of the vectorization, unvec(x̂), and we get Θ̂[n], which

is an estimate of Θ [n]. Finally, since we are interested in estimating V[n], we can derive

it from V̂[n] = T̂[n− 1]Θ̂[n].

Algorithm 2 Rotative Quantization feedback using CS for temporally correlated MIMO

channels
For each time index n ≥ 1:

Receiver:
Vectorize Θ [n] obtained from algorithm 1, x = vec(Θ [n]).
CS encoding y = Ax.

Quantize y and feedback the resulting ŷ.

Transmitter:
Recover using LASSO, x̂ = argmin

x
||ŷ −Ax||22+||x||1.

Unvectorize x̂ to get Θ̂[n] .

Obtain V̂[n] = T[n− 1]Θ̂[n] (as in algorithm 1).

Figure 5.1: Algorithm 2
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5.6 Results

In order to verify the proposed algorithm, we consider a 2 × 2 MIMO channel with a

temporal correlation of 0.98. Spatial streams are assumed to be transmitted with equal

power allocation in the 2 × 2 MIMO system. Unitary precoding is applied based on the

feedback, and matched filter or MMSE equalizers are applied at the receiver.

Three methods are compared in the simulations in Figure 5.2, Figure5.3 and Figure 5.4.

The first is the perfect channel state information scenario. The second is using Algorithm

1. The third method is using Algorithm 2.

In Figure 5.2, and Figure 5.3, sum rates are compared against signal-to-noise-ratio (SNR);

result using both matched filter and MMSE receivers is shown. In the second method, a

total feedback bits B = 10 are used. On the other hand, the CS method uses half the

number of bits, B = 5. We can observe that the performance of the CS method is almost

equal to that of the method without using CS while saving half the number of bits.

The advantage of CS can also be confirmed from the result in Figure5.5, where the bit-

error-rate is plotted but in this case the CS and without CS using same number of bits. In

this case, we observe that the CS method has a better bit error rate performance. These

two figures demonstrate the clear advantage of using CS in feedback of singular vectors

in the rotative-based method.
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Figure 5.2: Sum rate vs. SNR for a 2 × 2 MIMO system with and without CS with two

streams,
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Figure 5.3: Sum rate vs. SNR for a 2 × 2 MIMO system with and without CS with two

streams,

Figure 5.4: Sum rate vs. SNR for a 2 × 2 MIMO system with and without CS with one

stream,
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Figure 5.5: Bit error rate vs. SNR using matched filter receiver for a 2× 2 MIMO system

with one stream,

5.7 Conclusion

In this chapter, the concept of compressed sensing (CS) is applied to limited feedback in

temporally correlated MIMO channels. The near-sparse nature of the rotation matrices is

utilized to combine techniques from CS with rotative quantization for reducing feedback

overhead. Simulations show that the use of CS reduces feedback overhead significantly

while delivering the same performance. On the other hand, CS-based feedback improves

performance as compared to direct quantization for the same feedback overhead. CS-

based limited feedback is in general a promising method that can be applied in various

scenarios taking advantage of the sparse nature of the elements to be quantized.
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Chapter 6

Conclusions and Future work

6.1 Summary and Discussion

In Chapter 1, a new paradigm in signal processing, called compressive sensing (CS),

is presented. The fundamental concepts, the standard CS problem, together with how

reconstructions are done, were explained. The conditions for perfect recovery of sparse

signals were described using concepts like coherence and restricted isometric properties

of matrices. Two major categories of recovery algorithms were also identified: convex

and greedy algorithms. The use of convex relaxation methods were adhered to rather than

the greedy algorithms, due to the analytical tools that came later in the research. Examples

of how recovery algorithms performance is done in the literature are given.

In addition, Bayesian theory was introduced briefly since much emphasis was given to

inference based on prior and posterior distribution of signals in the thesis. Based on the

Bayesian inference a very powerful analytical tool borrowed from statistical mechanics,

called the replica method, was also presented in this chapter. Considering a non-noisy CS

problem, an example of performance analysis via the replica method was provided show-

ing the phase transition when different convex relaxation-based recovery algorithms, like

lp-reconstruction schemes, were used. For convex optimization algorithms like, the l1-
reconstruction, the replica symmetry ansatz provide gives good results. However, for l0-
reconstruction, which is non-convex, the need for the use of the replica symmetry break-

ing ansatz is motivated in the chapter. Further, application of compressed sensing theory

in imaging and communication is also presented briefly as an extension of research done

elsewhere before concluding the chapter with the scope and the contribution of the thesis.

In Chapter 2, the performance of the estimators used in compressed sensing which are

generalized as MAP estimators were done analytically using the statistical mechanics tool.

This employed the replica method, to extend results from the SPAM project to CS systems

for large systems with M/N fixed, where N and M are the original and measured signal

dimensions, respectively. Beginning from the posterior distribution of the CS system

and redefining it as Boltzmann-Gibbs distribution in the context of statistical mechanics

terms, the free energy of the system is calculated via the partition function. From the
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free energy other important quantities like the energy of the system can be calculated.

The analysis is done for the LASSO and Zero-Norm regularizing estimator, where replica

symmetry is sufficient for the former while the later requires at least one-step replica

breaking ansatz (1RSB). This is shown only for one example, i.e. for Bernoulli-Gaussian

Mixture Distribution due to time and financial constraints in the project.

In Chapter 3, a new method of compressive sensing reconstruction was presented assum-

ing the signal to be estimated as both sparse and clustered. Under the Bayesian framework

the two priors are modelled as a modified Laplacian prior distribution, resulting a modified

LASSO reconstruction algorithm. The results were compared with other contemporary

methods that consider clusteredness and this method gives better performance for some

sparse and structured signals. While in Chapter 4, a similar algorithm was called clus-

tered LASSO and it was applied on a different synthetic data and medical images such

as angiogram, phantom and functional magnetic resonance images (fMRI). It was shown

that the performance of clustered LASSO is much better in terms of the metrics PSNR

and MSE than the traditional LASSO and other equivalent algorithms.

In Chapter 5, an application of CS on communication was provided. The near-sparse

nature of the rotation matrices in temporally correlated MIMO channels has given the

opportunity to apply CS theory to reduce feedback overhead with out reducing the perfor-

mance of the system. This indicates that the CS method can have a great impact in future

communication systems.

6.2 Contributions of the Thesis

This thesis deals with the contemporary signal processing technique called CS. As a sig-

nal processing scheme, it follows a similar framework: encoding, transmission/storing,

and decoding, where the encoding part is done using random projection (RP) or random

sensing, and the decoding is done via nonlinear reconstruction algorithms from fewer

measurements. The performance of the reconstruction schemes used and the application

of such paradigm is the focus in this thesis. Saying that, the thesis contributes the follow-

ing particular results:

• Analytical performance analysis of noisy CS systems is done using the replica

method including one step replica breaking ansatz (1RSB) by interpreting the con-

vex relaxation-based recovery algorithms as MAP estimators as proposed by [49].

The idea here is that for non-convex recovery algorithms, where the replica sym-

metry ansatz may not give a precise result, and in such cases 1RSB ansatz may be

enough to provide us a better analysis as shown for the MIMO case in [55]. How-

ever, it was only shown for one particular example for the CS problem, i.e., for

Bernoulli-Gaussian distribution.

• A new method of compressive sensing was suggested to model sparsity and clus-

teredness by a modified Laplacian prior distribution, resulting in a MAP estimator

corresponding to a modified LASSO procedure for compressed sensing reconstruc-

tion. For a naturally sparse image, an SNR improvement of 10 dB over LASSO
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under noisy observations has been demonstrated.

• Additional information such as the structure of the sparse entries can be exploited

in order to boost signal recovery. This has been demonstrated for synthetic and

known medical images using Bayesian framework. This can have great impact in

reducing scanning time and improving reconstructed images for better diagnosis

in medical imaging. Using the performance metrics like PSNR and MSE it was

demonstrated that clustered compressive sensing (CSS) performs much better than

the non-clustered sparse counterparts.

• The concept of compressed sensing applied to limited feedback in temporally cor-

related MIMO channels can reduce the feedback overhead. A novel algorithm was

proposed in the Rotative Quantization feedback using CS for temporally correlated

MIMO channels. The near-sparse nature of the rotation matrices is utilized to com-

bine techniques from CS with rotative quantization. Simulations show that the use

of CS reduces the feedback overhead significantly while delivering the same perfor-

mance. On the other hand, CS-based feedback improves performance as compared

to direct quantization for the same feedback overhead. CS-based limited feedback

is in general a promising method that can be applied in various scenarios taking

advantage of the sparse nature of the elements to be quantized.

6.3 Future Work

• Though analytical performance analysis using replica method using the replica

symmetry (RS) and one step replica breaking ansatz (1RSB) is done. However,

the numerical simulation of it was far from simple to show it due to lack of funds

and shortage of time. The idea of 1RSB analysis to MAP estimators was done for

other systems like MIMO and CDMA prior to 2011 when this analysis was done.

Extending it to CS was the task and it gives a better understanding if numerical

simulations of different distributions are done at that time since in this thesis it is

done only for one particular example, i.e., Bernoulli-Gaussian distribution. It may

be interesting to compare estimators based on other metrics such as the input/output

distribution as done in [55], other than using the free energy. In addition, it is also

possible to see such analysis for the greedy algorithms.

• To study the connection of other tools from statistical mechanics, such as cavity
method, gauge theory and others to CS systems as replica method are applied in CS

and other systems.

• The method modified LASSO for compressed sensing reconstruction presented in

the thesis was dependent on the choice of two parameters. The procedure for op-

timal choice of these parameters has not been addressed. This can be a bottleneck

for the performance of the algorithm if there is a lack of prior knowledge about the
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data. Building on a robust parameter tuning algorithm overcoming this can also be

an interesting problem to work with, especially, in the medical imaging area.

• In clustered LASSO recovery, simple clustering function was used and one can

develop other clustering functions that will model effectively the particular signal

type. Therefore, for future work one can apply different forms of clustering de-

pending on the prior information of images or geometry of clusteredness.

• It is interesting to see CS-based feedback coupled with other types of feedback

schemes for example with Adaptive Rotative Quantization (ADRQ) proposed by

[125].
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Appendix A

Appendices to Chapter 1

A.1 Proof of Theorem 2

Consider an two arbitrary k-sparse vectors x and z and define

θx =
A(z− x)

2
and θz =

A(x− z)

2
, (A.1.1)

and note that

Ax+ θx = Ax+ θz =
A(x+ z)

2
. (A.1.2)

Let x̂ = Δ(Ax + θx) = Δ(Az + θz). From triangle inequality and the definition of

C-stability, we have that

||x− z||2 = ||x− x̂+ x̂− z||2 (A.1.3)

≤ ||x− x̂||2+||x̂− z||2 (A.1.4)

≤ C||wx||2+C||wz||2 (A.1.5)

= 2C||A(x− z)

2
||2 (A.1.6)

= C||Ax−Az||2. (A.1.7)

Since this holds for any k-sparse vectors x and z, the results holds. Completes the proof

( see also [137]).

A.2 Proof of Theorem 1.1.18

Let Λ ⊂ {1, 2, 3, · · ·n} be a subset of indices and B(y) = {x : ||Ax− y||2≤ ε}. We are

interested in bounding ||h||2= ||x̂ − x||2. Since ||w||2≤ ε, x ∈ B(y), and therefore we

know that ||x̂||≤ ||x||1. Thus we apply the result in Lemma 1.6 in [8] for the noiseless CS
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problem, where h is bounded

||h||2≤ C0
σk(x)√

k
+ C1

|〈AhΛ,Ah〉|
||hΛ||2 (A.2.1)

where

C0 = 2
1− (1−√

2)δ2k

1− (1 +
√
2k

, C1 =
2

1− (1 +
√
2k

(A.2.2)

Now it remains to bound |〈AhΛ,Ah〉|. In order to do that

||Ah||2 = ||A(x̂− x)||2 (A.2.3)

= ||Ax̂− y + y −Ax)||2 (A.2.4)

≤ ||Ax̂− y||2+||y −Ax)||2≤ 2ε. (A.2.5)

where the last inequality follows since x, x̂ ∈ B(y). Combining this with the RIP (1.1.6)

and the Cauchy-Schwarz inequality we obtain

|〈AhΛ,Ah〉|≤ ||AhΛ||2||Ah||2≤ 2ε
√

1 + δ2k||hΛ||2. (A.2.6)

Thus,

||h||2 ≤ C0
σk(x)√

k
+ C12ε

√
1 + δ2k (A.2.7)

= C0
σk(x)√

k
+ C2ε. (A.2.8)

Completes the proof.

A.3 Proof of Equations 1.2.6 and 1.2.7.

The posterior distribution is calculated from the likelihood and the prior pdf as follows:

px|y(x|y;A) =
py|x(y|x)p(x)∫
py|x̃(y|x̃)p(x̃)dx̃ . (A.3.1)

After plugging the prior pdf, p(x),

p(x) =
e−uf(x)∫

x∈RN e−uf(x)dx
(A.3.2)

and the likelihood function

py|x(y | x) = 1

(2πσ)N/2
e− 1

2σ2 ‖y−Ax‖22 . (A.3.3)
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in A.3.1, the posterior pdf becomes

px|y(x | y;A) =

(
e− 1

2σ2 ‖y−Ax‖22
)(

e−uf(x)
)

(2πσ)N/2
∫
x̃∈RN e− 1

2σ2 ‖y−Ax̃‖22e−uf(x̃)dx̃

=
e−u( 1

2
‖y−Ax‖22+λf(x))

(2πσ)N/2
∫
x̃∈RN e−u( 1

2λ
‖y−Ax̃‖22+λf(x̃))dx̃

. (A.3.4)

Further, we find the maximum a posterior (MAP) of the distribution which gives the most

probable value for the parameters, denoted as x̂MP , is calculated as

x̂MP = argmax
x

p(y|x)p(x)∫
x̃
p(y|x̃)p(x̃)dx̃

(a)
= argmax

x
e−u( 1

2
‖y−Ax‖22+λf(x))

(b)
= argmin

x

1

2
‖ y −Ax ‖22 +λf(x). (A.3.5)

Note that at (a) we used the fact that the denominator is constant and finding the x that

maximises is not dependent on it. Where as at (b), maximising the exponential function

is the same as finding the maximum of the argument and further, maximising the negative

argument is the as minimizing the opposite. Hence, 1.2.6 and 1.2.7 are proved here as it

is shown by A.3.4 and A.3.5 , respectively.

A.4 Basic Concepts from Statistical Mechanics

Macroscopic versus Microscopic properties

Large size systems can be characterized by physical terms like "macroscopic" and "mi-

croscopic" properties. Let us take different examples of such physical terms. The magne-

tization of a magnet is a macroscopic property but the interactions of the magnetic spins

can be a microscopic property. Temperature or pressure of a gas is a macroscopic prop-

erty whereas the trajectories of the particles in the gas can be a microscopic property. A

particular macroscopic property in the context of the thesis can be the norm of a sparse

vector x or the posterior distribution x given y. In general, whatever inference we do

on the vector will be on the macro level, however if one attempts to see the combination

of entries of the sparse vector minimizing some other macroscopic characteristics of the

given system, then one is at micro level [66], [53], [67].
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Self-Averaging

Obtaining the macroscopic characterizations of large disordered systems on the basis of

their microscopic specifications is a central purpose in large size systems study. One fun-

damental property that comes in between these two characteristics of a large system is

self-averaging. Large systems that can be approximated by self-averaging are called ther-
modynamic systems. When a system is at a state of thermodynamic equilibrium, it means

that the system can be described by using deterministic value. That is, the probabilistic

value converges to the deterministic one. In other words, by assuming self-averaging on

the microscopic properties we can describe the macroscopic properties of a system. Ac-

tually the replica method is a tool that helps to infer about the macroscopic properties by

using self averaging over the microscopic properties. In fact, to apply replica method the

system is assumed to be at thermodynamic equilibrium [66], [53], [67].

Partition Function

The statistical mechanics of the Boltzman-Gibbs distributuion is given by

Pβ(x|y) = 1

Z e−βH(x), (A.4.1)

as in (1.3.5) for the CS system under consideration, where Z(β;y) is the partition func-
tion,

Z(β;y) =

∫
e−β‖x‖pδ(y −Ax)dx. (A.4.2)

This function is an important quantity from which other parameters of a given physical

system can be computed (see below).

Free Energy

One of the important macroscopic quantities in statistical mechanics which is also a self

averaging quantity is free energy [56], [36], [66], [53], [67] [55] and [54], defined as

F = E − β−1P , (A.4.3)

where E and P are the energy and the entropy of the system, respectively. Further, these

three quantities: the free energy, the energy, and the entropy, can be derived from the

partition function Z as follows:

F = −β−1 logZ (A.4.4)

E = ∂(Fβ )/∂β and P = −∂F/∂(
1

β
). (A.4.5)

Since free energy is a self averaging quantity it can be re-written as

F = −β−1
E(logZ). (A.4.6)
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To calculate E(logZ) we need the replica method.

Replica Method

Let us as assume that we are interested in evaluating E(lnZ), in relation to the aver-

age free energy as shown above in Equation (A.4.6). In order to ease the difficulty the

following identity is used:

log(Z) = lim
n→0

∂

∂n
logZn. (A.4.7)

Using this identity (A.4.7), E(logZ) can be expressed as

E(logZ) = lim
n→0

∂

∂n
logE(Zn). (A.4.8)

At this stage a number of assumptions are made: It is assumed that the limit and the

expectation can be interchanged giving the opportunity to to deal with E(Zn) whenever

dealing with E(logZ) is difficult task. If n is a natural number then first we calculate

Zn, i.e., n replicas of the random variable. Then in order to calculate the derivative and

the limit, n has to be continuous variable. This is another critical assumption! These as-

sumptions together with (A.4.8) are called replica trick, and this is where the name replica

and the method, replica method, has evolved from. It is only recently that some of the

assumptions made here have been rigorously proved [52]. Therefore, the replica method

is now a standard technique to study the free energy of disordered systems. Applying the

replica method the avaraged free energy given in (A.4.6) becomes

F̄ = − lim
N→∞

E(
1

Nβ
logZ)

= − lim
N→∞

1

Nβ
lim
n→0

∂

∂n
logE(Zn) (A.4.9)

= − lim
n→0

∂

∂n
lim

N→∞
1

Nβ
logE(Zn). (A.4.10)

Note that here interchanging the order of the limits limN→∞ and limn→0 is another as-

sumption made in the replica calculation. Further, taking the expectation of the product

of n identical replicas of Z(β;y), i.e.,

E(Zn(β;y)) = E

( n∏
a=1

Za(β;y)
)
. (A.4.11)

Replica Symmetry

The replica ansatz are generally arbitrary and often assumed to be independent random

variables. Hence calculating the expectation of the right hand side of (A.4.11) is not an

easy matter. Another assumption is needed in order to simplify it further. First, it is

possible to assume symmetry among the replica ansatz, which is called replica symmetry
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(RS), which is sufficient for the convex CS optimization problem at hand [36], [52] [66],

[53], [67] [55] and [54]. Therefore, it is possible to assume RS ansatz in (A.4.11).

By inserting the partition function given in (A.4.2) inside (A.4.11), the expectation of the

n-th power of this partition function for the replicated ansatz yields

E(Zn(β;y)) =

∫ n∏
a=1

e−β‖xa‖p
n∏

a=1

δ(Axa − y)
n∏

a=1

dxa, (A.4.12)

where the xa are the replicated ansatz and E(·) is averaing over the distributions of A and

x0. Focusing on the inside
∏n

a=1 δ(·) expression in (A.4.12), it can be further expressed

using an identity

δ(x) = lim
τ→+0

(2πτ)−1 exp (−x2/(2τ)).

and substituting y = Ax0 we get,

n∏
a=1

δ(Axa − y) = lim
τ→+0

1

(2πτ)nM
exp

[
− 1

(2πτ)

n∑
a=1

|A(xa − x0)|2
]

= lim
τ→+0

1

(2πτ)nM
exp

[
− 1

(2πτ)

M∑
μ=1

n∑
a=1

|vaμ − v0μ)|2
]
, (A.4.13)

where, vaμ =
∑N

i=1Aμix
a
i , for μ = 1, 2, · · · ,M , and a = 0, 1, 2, · · · , n. The vaμ can be

assumed to be zero-mean multivariate Gaussian random variable which are characterized

by the covariances [vaμv
a
ν ]A = Qabδμν , where [· · ·]A denotes the operation of averaging

with respect to A and

Qab =
1

N
xa · xb, (A.4.14)

and δμν is unity for μ = ν and is zero otherwise. This where the assumption of replica

symmetry comes into the calculation of the minimization problem. One possibility of

replica symmetry can be

QRS =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

ρ m m m m · · · m
m Q q q q · · · q
m q Q q q · · · q
...

...
...

. . .
...

...

m q q q q
m q q q · · · q Q

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

Representing this compactly we get

x0 · xa = Nm

xa · xb = Nq for a �= b

xa · xa = NQ. (A.4.15)
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Now substituting these quantities in(A.4.13) and averaging over distributions of A, we

get

EA

[
n∏

a=1

δ(Axa − y)

]
=

α

2
ln

((
1− n(q − 2m+ ρ)

Q− q

)
(Q− q)n(2π)2

)
≡ τn(Q, q,m).

(A.4.16)

Further averaging over the distribution of x0, we get

1

N
Ex0

[∫ n∏
a=1

dxae−β‖xa‖pI({xa}na=1;Q, q,m)

]
(A.4.17)

= extrQ̂,q̂,m̂

{
nQ̂Q

2
− n(n− 1)q̂q

2
− nm̂m+ lnJ (Q̂, q̂, m̂; β)

}
(A.4.18)

≡ K(Q, q,m) (A.4.19)

where,

I({xa}na=1;Q, q,m) =
n∏

a=1

δ(|xa|2−NQ)δ(x0 · xa −Nm)
∏
a>b

δ(xa · xb −Nq)

(A.4.20)

J (Q̂, q̂, m̂; β) = lim
ε→+0

∫
DzEx0

[(∫
dxe− Q̂+q̂

2
+(

√
q̂z+m̂x0)x−β|x|p+ε

)]
. (A.4.21)

Now as β → ∞,

1

N
E(Zn(β;y)) = I({xa}na=1;Q, q,m) + J (Q̂, q̂, m̂; β).

and inserting it it in (1.3.21) and contniuing some analytical procedures with new vari-

ables Q̂, q̂, m̂, we get

Cp = extrΘ

{
α(Q− 2m+ ρ)

2χ
+mm̂− Q̂Q

2
+

χ̂χ

2

+ (1− ρ)

∫
Dzφp(

√
χ̂z; Q̂) + ρ

∫
Dzφp(

√
χ̂+ m̂2z; Q̂)

}
, (A.4.22)

as shown in [68] and [70], where extrΘ{G(X)} denotes the extremization of a function

G(X) with respect to X , Θ = {Q,χ,m, Q̂, χ̂, m̂}, also Dz = dz exp(−z2/2)/
√
2π is a

Gaussian measure and

φp(
√

χ̂z; Q̂) = lim
ε→+0

{
min
x

{
Q̂

2
x2 − hx+ |x|p+ε

}}
. (A.4.23)

This proves the expression given by (1.3.23) where the function

Ψ(Q,χ,m, Q̂, χ̂, m̂) = (1− ρ)

∫
Dzφp(

√
χ̂z; Q̂) + ρ

∫
Dzφp(

√
χ̂+ m̂2z; Q̂).
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Appendix B

Appendices to Chapter 2

B.1 Important Definitions

B.1.1 Green’s Function

In classical probability theory (CPT) one is concerned with the densities, moments and

comulants of elements of random matrices. Where as in random matrix theory (RMT),

also called free random variable calculus, one is engaged in finding the spectral densities,

moments and cumilants. As the Fourier transform is the generating function for the mo-

ments in CPT, Green’s function (also called Stieltjes transform) is the generating function

for the spectral moments defined as

G(z) ≡ 1

N
〈Tr

1

z1N −X
〉 ≡

∫
ρ(λ)

z − λ
dλ ≡

∞∑
n=0

1

zn+1
Mn, (B.1.1)

where X is N × N random matrix and 1N is of the same size unit matrix, λ are the

eigenvalues, and Mn is the spectral moment. The integral is over the support set of the

eigenvalues.

B.1.2 R-Transform

The generating function for the cumulants of the CPT is given by the logarithm of the

Fourier transform. In similar manner to the above section we can define the generating

function for spectral cumulants. It is called the R-transform (Voiculescu,1986). It is given

by

R(z) ≡
∞∑
n=1

Cnz
n−1, (B.1.2)
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where Cn are the spectral cumulants of the random matrix X. We can relate R-transform

with Greens’s function as follows:

G(R(z) +
1

z
) = z or R(G(z)) +

1

G(z)
= z. (B.1.3)

The spectral density of the matrix J = ATA converges almost surely to the Marchenko-

Pastur law as M = αN → ∞ [96]. And the R-transform of this matrix is given by

R(z) =
1

1− αz
(B.1.4)

and its derivative with respect to z becomes

R′(z) =
α

(1− αz)2
, (B.1.5)

where α = N/M is system load.

B.2 Proof of Propostion 1

The average energy penality can be derived from the average free energy given in (2.4.18)

Ē = lim
β→∞

1

β
F̄ = − lim

β→∞
1

β
lim
N→∞

1

N
E
w,J

{log Z}

= − lim
β→∞

1

β
lim
n→0

∂

∂n
lim
N→∞

1

N
log E

w,J
{(Z)n}︸ ︷︷ ︸

Ξn

. (B.2.1)

where Ξn is as given by (2.4.20),

Ξn = lim
N→∞

1
N
log

(
αN/2

∫
{xa}

e
−βγ

σ2
u

n∑
a=1

f(xa)
e

n∑
a=1

∫ λa
0 R(−v)dv

n∏
a=1

dxa

)
. (B.2.2)

with α = σ2
u

σ2
u+nσ2

0
. Using (2.4.21) as the splitting of the space, we get

Ξn = lim
N→∞

1

N
log

∫
Rn2

eNLeNI{Q}e−NG{Q}DQ (B.2.3)

where

DQ =
n∏

a=1

dQaa

n∏
b=a+1

dQab (B.2.4)

is the integration measure,

G(Q) =
n∑

a=1

∫ βγ

σ2
u
λa(Q)

0

R(−v)dv (B.2.5)

= Tr

∫ βγ

σ2
u
Q

0

R(−v)dv (B.2.6)

=

∫ βγ

σ2
u

0

Tr[QR(−vQ)]dv (B.2.7)
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L =
1

2
lnα− βγ

2N

n∑
a=0

f(xa) and (B.2.8)

eNI{Q} =

∫
{xa}

n∏
a=1

δ(φ1(x
aa)−NQaa)

n∏
b=a+1

δ(φ1(x
ab)−NQab)

n∏
a=1

dxa (B.2.9)

denotes probability weight of the subshell composed of Dirac-functions in the real line,

where φ1(x
cd) = (x0−xc)T (x0−xd). This procedure is a change of integration variables

in multiple dimensions where the integration of an exponential function over the replicas

has been replaced by integration over the variables Q. To evaluate eNCeNI{Q} we follow

[53], [55] and represent the Dirac measure using the Fourier transform as

δ
(
φ1(x

ba)−NQab

)
=

∫
J
e
Q̃ab

(
φ1(xcd)−NQab

)
dQ̃ab

2π
, (B.2.10)

where a, b = 1, · · · , n and this gives

eNLeNI{Q} =

∫
{xa}

∫
J n2

e

∑
a,b

Q̃abφ1(xba)−NQab

e
1
2
lnα− βγ

σ2
u

n∑
a=1

f(xa)
D̃Q̃

n∏
a=1

dxa

=

∫
J n2

e−NTr(Q̃Q)

(∫
{xa}

e

∑
a,b

Q̃abφ1(xba)

e
1
2
lnα− βγ

σ2
u

n∑
a=1

f(xa)
n∏

a=1

dxa

)
D̃Q̃

(B.2.11)

where

D̃Q̃ =
n∏

a=1

(
dQ̃

(I)
aa

2πj

n∏
b=a+1

dQ̃
(I)
ab dQ̃

(Q)
ab

(2πj)2

)
. (B.2.12)

W.l.o.g. 1 assuming f(xa) = ‖xa‖1=
N∑
i=1

|xa
i | , which is the sparsity enforcer as described

above in LASSO estimator, and after doing some rearrangements, the inner expectation

of (B.2.11) can be given by

∫
{xa}

e

∑
a,b

Q̃ab(x
0−xb)T (x0−xa)

e
1
2
lnα− βγ

σ2
u

n∑
a=1

f(xa)
n∏

a=1

dxa (B.2.13)

=
N∏
i=1

∫
{xa

i ∈χ}
e
(
∑
a,b

Q̃ab(x
0
i −xb

i )
T (x0

i −xa
i ))+

1
2
lnα− βγ

σ2
u

n∑
a=1

|xa
i | n∏

a=1

dxa
i (B.2.14)

Now defining

Mi(Q̃) =

∫
{xa

i ∈χ}
e
(
∑
a,b

Q̃ab(x
0
i −xb

i )
T (x0

i −xa
i ))+ 1

2
lnα− βγ

σ2
u

n∑
a=1

|xa
i | n∏

a=1

dxa
i (B.2.15)

1It is possible to take the other regularizing terms. In that case, some adjustment are needed. However,

the last expression, the general regulirizing term is used.

113



we can get

eNLeNI{Q} =

∫
J n2

e
−NTr(Q̃Q)+

N∑
i=1

logMi(Q̃)
D̃Q̃. (B.2.16)

Following the i.i.d. assumption for the component of the sparse vector x, and applying

the strong law of large numbers as N → ∞ we get

logM(Q̃) =
1

N

N∑
i=1

logMi(Q̃)

→
∫

log

∫
{xa

i ∈χ}
e
(
∑
a,b

Q̃ab(x
0
i −xb

i )
T (x0

i −xa
i ))+ 1

2
lnα− βγ

σ2
u

n∑
a=1

|xa
i | n∏

a=1

dxa
i dFX0(x0)

=

∫
log

∫
{x∈χn}

e
(x01−x̃)T Q̃(x01−x̃)+ 1

2
lnα− βγ

σ2
u

‖x̃‖1
dx̃dFX0(x0) (B.2.17)

where, dFX0(x0) is a probability measure of x0 and x̃ is vector of dimension n. Next

we apply the saddle point integration concept on the remaining part of (B.2.3), i.e., as

N → ∞ the integrand will be dominated by the exponential term with maximal expo-

nent. Hence in (B.2.3) only the subshell that corresponds to this extremal value of the

correlation between the vectors {xa} is relevant for the calculation of the integral.∫
Rn2

eNLeNI{Q}e−NG(Q)DQ

=

∫
Rn2

(∫
J n2

e
−NTr(Q̃Q)+

N∑
i=1

logMi(Q̃)
D̃Q̃

)
e−NG{Q}DQ (B.2.18)

Therefore, at the saddle point we have the following equations with partial derivatives

being zero (see the proof in Appendix B of [55]):

∂

∂Q

[
G(Q) + Tr(Q̃Q)

]
= 0 and (B.2.19)

∂

∂Q̃

[
logM(Q̃)− Tr(Q̃Q)

]
= 0. (B.2.20)

And from the former we get

Q̃ = βR(−βγ

σ2
u

Q) (B.2.21)

and from the later, using (B.2.17) we finally get

Q =

∫ ∫
{x̃∈χn} ψ2(x̃)e

ψ1(x̃)+
1
2
lnα− βγ

σ2
u

‖x̃‖1
dx̃∫

{x̃∈χn} e
ψ1(x̃)+

1
2
lnα− βγ

σ2
u

‖x̃‖1
dx̃

dFX0(x0) (B.2.22)

with ψ1(x̃) = (x01− x̃)T Q̃(x01− x̃), ψ2(x̃) = (x01− x̃)(x01− x̃)T , and x̃ is vector of

dimension n .
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B.3 Proof of Propostion 2

Taking the same line of thought as we do for Q, we can assume a natural replicated

variables for the symmetric correlation matrix Q̃ and the 1RSB as follows:

1. replica symmetry ansatz :

Q̃ =
β2f 2

0

2
1n×n − βe0In×n (B.3.1)

2. one replica symmetry breaking ansatz :

Q̃ = β2f 2
11n×n + β2g21Inβ

μ1
×nβ

μ1

⊗ 1μ1
β

×μ1
β
− βe1In×n (B.3.2)

The variables q0, b0, q1, p1,b1, f0,e0,f1,g1,e1, and μ1 are called the macroscopic variables

and they are all functions of n. They all can be calculated from the saddle point equations.

First let us prove proposition 2 using the ansatz in (2.4.24) and (B.3.1) using equations

(B.2.1), (B.3.3) and (B.2.18) and applying the saddle point integration rule. What matters

most becomes the argument of the exponential in (B.2.18): Tr(Q̃Q), G(Q), logM(Q).
The limiting energy expression is dependent on the macroscopic parameters mentioned

above, therefore we also provide the expressions for each macroscopic variable. Hence

using (2.4.24) and (B.3.1) we get

Tr(Q̃Q) = n(q0 +
b0
β
)(
β2f 2

0

2
− βe0) +

n(n− 1)

2
q0β

2f 2
0 (B.3.3)

and using (B.2.15) and (B.3.1) again we get

Mi(Q̃) =

∫
{xa

i ∈χ}
e
(
∑
a,b

Q̃ab(x
0
i −xb

i )
T (x0

i −xa
i ))+ 1

2
lnα− βγ

σ2
u

n∑
a=1

|xa
i | n∏

a=1

dxa
i (B.3.4)

=

∫
{xa

i ∈χ}
e

β2f20
2

(
n∑

a=1
(x0

i −xa
i )

)2

−e0β
n∑

a=1
(x0

i −xa
i )

2+ 1
2
lnα− βγ

σ2
u

n∑
a=1

|xa
i | n∏

a=1

dxa
i (B.3.5)

=

∫
{xa

i ∈χ}

∫
C

e
β

n∑
a=1

f0
{(x0−xa
i )z

∗}−e0(x0
i −xa

i )
2+ 1

2nβ
lnα− βγ

σ2
u

n∑
a=1

|xa
i |
Dz

n∏
a=1

dxa
i

(B.3.6)

=

∫
{xa

i ∈χ}

∫
C

e
β

n∑
a=1

f0
{(x0−xa
i )z

∗}−e0(x0
i −xa

i )
2+ 1

β
lnα− βγ

σ2
u

n∑
a=1

|xa
i |
Dz

n∏
a=1

dxa
i (B.3.7)

=

∫
C

(∫
R

e
βf0
{(x0−xi)z

∗}+e0(x0
i −xi)

2+ 1
2
lnα− βγ

σ2
u

|xi|
dxi

)n

Dz. (B.3.8)

From (B.3.5) to (B.3.7) we apply completing the square on the exponential of the argu-

ment and the Hubbard-Stratonovich transform,

e|x|2 =
∫
C

e2
{xz∗}Dz, (B.3.9)
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where Dz is Gaussian measure defined as before, to linearize the exponential argument.

And we finally transformed the expression to a double integral problem. Moreover, for

N → ∞, by the law of large numbers we have

logM(e, f) =
1

N

N∑
i=1

logMi(e, f)

=

∫
R

log

∫
C

(∫
χ

e
βf0
{(x0−x)z∗}+e0(x0

i −x)2+ 1
2
lnα− βγ

σ2
u

|x|
dx

)n

DzdFX0(x0),

(B.3.10)

where, dFX0(x0) is a probability measure of x0 .

To evaluate G(Q) we should first find the eigenvalues of the matrix L(n). Under the RS

ansatz the matrix L(n) has three types of eigenvalues: λ1 = −(σ2
u + nσ2

0)
−1(b0 + nβq0),

λ2 = −(σ2
u)

−1b0 and λ3 = 0, and the numbers of degeneracy for each are 1, n-1, and N-n,

respectively.Thus we get

G(Q) =

∫ (b0+nβq0)

σ2
u+nσ2

0

0

R(−v)dv + (n− 1)

∫ b0
σ2
u

0

R(−v)dv (B.3.11)

The integral in (B.2.18) is dominated by the maximum argument of the exponential func-

tion. Therefore, the derivative of

G(Q) + Tr(Q̃Q) (B.3.12)

with respect to q0 and b0 must vanish as N → ∞. Plugging (B.3.3) and (B.3.11) into

(B.3.12) and taking the partial derivatives we get

βn

σ2
u + nσ2

0

R
(−(b0 + nβq0)

(σ2
u + nσ2

0)

)
+

n(n− 1)

2
β2f 2

0 + nβ(
βf 2

0

2
− e0) = 0 (B.3.13)

1

σ2
u + nσ2

0

R
(−(b0 + nβq0)

(σ2
u + nσ2

0)

)
+

1

σ2
u

(n− 1)R
(−b0
σ2
u

)
+ n(

βf 2
0

2
− e0) = 0, (B.3.14)

respectively. After algebraic simplification and solving for e0 and f0 we get

e0 =
1

σ2
u

R
(−b0
σ2
u

)
, (B.3.15)

f0 =

√√√√ 2

nβ

[
1

σ2
u

R
(−b0
σ2
u

)
− 1

σ2
u + nσ2

0

R
(−(b0 + nβq0)

(σ2
u + nσ2

0)

)]
. (B.3.16)

and with the limit for n → 0

f0
n→0
−→

√√√√ 2

β

[
σ2
0

σ4
u

R
(−b0
σ2
u

)
+

βq0σ2
u + b0σ2

0

σ6
u

R′
(−b0
σ2
u

)]
. (B.3.17)
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Using (B.3.10), substituting (B.3.3) into (B.2.20), and doing the partial derivative of

logM(e0, f0)− Tr(Q̃Q)

=

∫
R

log

∫
C

(∫
χ

e
βf0
{(x0−x)z∗}+e0(x0

i −x)2+ 1
2
lnα− βγ

σ2
u

|x|
dx

)n

DzdFX0(x0)

−
(
n(q0 +

b0
β
)(
β2f 2

0

2
− βe0) +

n(n− 1)

2
q0β

2f 2
0

)
, (B.3.18)

with respect to e0 and f0 and equating to zero we get,

q0 = −b0
β

+

∫
R

∫
C

∫
{x∈χ}(x

0 − x)2ψ3(x)dx∫
{x∈χ} ψ3(x)dx

DzdFX0(x0) (B.3.19)

b0 = −βnq0 +
1

f0

∫
R

∫
C

∫
{x∈χ} �{(x0 − xa

i )z
∗}ψ3(x)dx∫

{x∈χ} ψ3(x)dx
DzdFX0(x0) (B.3.20)

where

ψ3(x) = e
βf0
{(x0−xa

i )z
∗}+e0β(x0−x)2+ 1

2
lnα− βγ

σ2
u

|x|
. (B.3.21)

So collecting the macroscopic variables in (B.3.15), (B.3.16), (B.3.19) and (B.3.20) and

sending n → 0 we have

e0 =
1

σ2
u

R
( b0
σ2
u

)
(B.3.22)

f0
n→0
−→

√√√√ 2

β

[
σ2
0

σ4
u

R
(−b0
σ2
u

)
+

βq0σ2
u + b0σ2

0

σ6
u

R′
(−b0
σ2
u

)]
(B.3.23)

q0 = −b0
β

+

∫
R

∫
C

∫
{x∈χ}(x

0 − x)2ψ4(x)dx∫
{x∈χ} ψ4(x)dx

DzdFX0(x0), (B.3.24)

b0
n→0
−→

1

f0

∫
R

∫
C

∫
{x∈χ} �{(x0 − xa

i )z
∗}ψ4(x)dx∫

{x∈χ} ψ4(x)dx
DzdFX0(x0). (B.3.25)

where

ψ4(x) = e
βf0
{(x0−xa

i )z
∗}+e0β(x0−x)2− βγ

σ2
u

|x|
. (B.3.26)
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And the fixed point equations (B.3.23), (B.3.24) and (B.3.25) further can be simplified

via the saddle point integration rule in the limit β → ∞ as

f0 =

√
2
q0
σ4
u

R′
(−b0
σ2
u

)
(B.3.27)

q0 =

∫
R

∫
C

∣∣∣x0 − argmin
x∈χ

∣∣∣−zf0 + 2e0(x
0 − x)− γ

σ2
u

∣∣∣∣∣∣2DzdFX0(x0), (B.3.28)

b0 =
1

f0

∫
R

∫
C

�
{
x0 − argmin

x∈χ

∣∣∣−zf0 + 2e0(x
0 − x)− γ

σ2
u

∣∣∣z∗
}
DzdFX0(x0).

(B.3.29)

Putting together the results above we have

Ξn = I{Q}+ L − G(Q)

= −G(Q) + logM(Q̃)− Tr(Q̃Q) (B.3.30)

= −
∫ (b0+nβq0)

σ2
u+nσ2

0

0

R(−v)dv − (n− 1)

∫ b0
σ2
u

0

R(−v)dv

+ logM(e0, f0)−
(
n(q0 +

b0
β
)(
β2f 2

0

2
− βe0) +

n(n− 1)

2
q0β

2f 2
0

)
, (B.3.31)

and the average free energy becomes

βF̄ = −lim
n→0

∂

∂n
lim
N→∞

1

N
log E

n,J
{(Z)n}︸ ︷︷ ︸

Ξn

(B.3.32)

= lim
n→0

∂

∂n

{∫ (b0+nβq0)

σ2
u+nσ2

0

0

R(−v)dv + (n− 1)

∫ b0
σ2
u

0

R(−v)dv

− logM(e0, f0) + (n(q0 +
b0
β
)(
β2f 2

0

2
− βe0) +

n(n− 1)

2
q0β

2f 2
0 )

}
(B.3.33)

= lim
n→0

{[−(b0 + nβq0)

σ2
u + nσ2

0

]
R
(−(b0 + nβq0)

σ2
u + nσ2

0

)

+
−(b0 + nβq0)

(σ2
u + nσ2

0)

[
−
(
βq0(σ

2
u + nσ2

0)− (b0 + nβq0)σ
2
0

)
(σ2

u + nσ2
0)

2

]
R′
(−(b0 + nβq0)

(σ2
u + nσ2

0)

)

+

∫ b0
σ2
u

0

R(−v)dv −
∫
R

∫
C

ψ4(x)
n lnψ4(x)

ψ4(x)n
DzdFX0(x0)

}
(B.3.34)

=
−b0
σ2
u

R
(−b0
σ2
u

)
+

b0(βq0σ
2
u − b0σ

2
0)

σ6
u

R′
(−b0
σ2
u

)

+

∫ b0
σ2
u

0

R(−v)dv −
∫
R

∫
C

lnψ4(x)DzdFX0(x0). (B.3.35)
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Coming back to the main goal, the solution for the main unconstrained optimization prob-

lem (4.3.3) is given by the extremum of (2.4.9), it is calculated through the free energy by

sending β → ∞ as follows

Ē lasso
rs = − lim

β→∞
1

β
lim
n→0

∂

∂n
Ξn (B.3.36)

= lim
β→∞

1

β

{
−b0
σ2
u

R
(−b0
σ2
u

)
+

b0(βq0σ
2
u − b0σ

2
0)

σ6
u

R′
(−b0
σ2
u

)
+

∫ b0
σ2
u

0

R(−w)dw

−
∫
R

∫
C

lnψ4(x)DzdFX0(x0)

}
(B.3.37)

= lim
β→∞

R
(−b0
σ2
u

)( q0
σ2
u

+
b0
βσ2

u

)
+

b0q0
σ4
u

R′
(−b0
σ2
u

)

− lim
β→∞

1

β

{∫
R

∫
C

lnψ4(x)DzdFX0(x0)

}
(B.3.38)

=
q0
σ2
u

R
(−b0
σ2
u

)
− b0q0

σ4
u

R′
(−b0
σ2
u

)
. (B.3.39)

This proves propostion 2.

B.4 Proof of Propostions 3

Turning to the LASSO estimator with RSB ansatz we first use (2.4.25) and (B.3.2) to get

Tr(Q̃Q) = n(q1 + p1 +
b1
β
)(β2f 2

1 + β2g21 − βe1)

+ n(
μ1

β
− 1)(q1 + p1)(β

2g21 + β2f 2
1 ) + n(n− μ1

β
)q1β

2f 2
1 . (B.4.1)

To evaluate G(q1, p1, f1, μ1) we should first find the eigenvalues of the matrix L(n). Under

the RSB ansatz the matrix L(n) has four types of eigenvalues: λ1 = −(σ2
u +nσ2

0)
−1(b1 +

μp1 + βnq1), λ2 = −(σ2
u)

−1(b1 + μp1), λ3 = −(σ2
u)

−1b1 and λ4 = 0, and the numbers of

degeneracy for each are 1, nβ/μ− 1, n− nβ/μ, and N − n, respectively. Hence

G(q1, p1, f1, μ1) =

∫ b1+μ1p1+βnq1
σ2
u+nσ2

0

0

R(−v)dv + (
nβ

μ1

− 1)

∫ b1+μ1p1
σ2
u

0

R(−v)dv

+ (n− nβ

μ1

)

∫ b1
σ2
u

0

R(−v)dv (B.4.2)

Further with entries of Q̃ being RSB ansatz (B.2.17) will have more involved terms than
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the RS ansatzs. i.e. ,

logM(q1, p1, f1, μ1)

=

∫
R

log

∫
{xa∈χn}

e
(x01−xa)T Q̃(x01−xa)+ 1

2
lnα− βγ

σ2
u
xa

n∏
a=1

dxadFX0(x0)

=

∫
R

log

∫
{xa∈χn}

e
ψ5(x)+

1
2
lnα− βγ

σ2
u

n∑
a=1

|xa| n∏
a=1

dxadFX0(x0), (B.4.3)

where dFX0(x0) is a probability measure of x0 and

ψ5(x) = e
β2f2

1

∣∣∣∣∣
n∑

a=1
(x0−xa)

∣∣∣∣∣
2

+β2g21

nβ
μ −1∑
l=0

∣∣∣∣∣
μ
β∑

a=1
(x0−x

a+
lμ1
β )

∣∣∣∣∣
2

−βe1
n∑

a=1
(x0−xa)2

. (B.4.4)

Using the Hubbard-Stratonovich transform (B.3.9) we can express (B.4.3) as in (c.f. [[96],

(66)-(70)]) as follows

logM(q1, p1, f1, μ1)

=

∫
R

log

∫
{x∈χn}

∫
C

e
ψ6(x)+β2g21

nβ
μ −1∑
l=0

|
μ
β∑

a=1
(x0−x

a+
lμ1
β )|2

Dz
n∏

a=1

dxa
i dFX0(x0)

=

∫
R

log

∫
C

[∫
C

(∫
{x∈χ}

K( x, y, z)dx

)μ1
β

Dy

]nβ
μ1

DzdFX0(x0) (B.4.5)

where

ψ6(x) =
n∑

a=1

[2βf1�{(x0 − xa)z∗} − βe1|(x0 − xa)|2+1

2
lnα− βγ

σ2
u

|xa|] (B.4.6)

K( x, y, z) = e
2β
{(x0−x)(f1z∗+g1y∗)}−βe1|(x0−x)|2+ 1

2
lnα− βγ

σ2
u

|x|
. (B.4.7)

Applying the partial dervative, as in (B.2.19), on

G(q1, p1, f1, μ1) + Tr(Q̃Q) (B.4.8)

with respect to the macroscopic variables q1, p1, and b1 as N → ∞ , we get zero by

definition of the saddle point approximation. And plugging (B.4.1) and (B.4.2) in (??)

and calculating the partial derivatives and setting them to zero and after some algebraic

manipulation we get the following set of equations
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0 = n2β2f 2
1 + nβμ1g

2
1 − nβe1 +

nβ

σ2
u + nσ2

0

R(
−b1 − μ1p1 − βnq1

σ2
u + nσ2

0

) (B.4.9)

0 = nβμ1b
2
1 + nβμ1g

2
1 − nβe1 +

(nβ − μ1)

σ2
u

R(
−b1 − μ1p1

σ2
u

)

+
μ1

σ2
u + nσ2

0

R(
−b1 − μ1p1 − βnq1

σ2
u + nσ2

0

) (B.4.10)

0 = nβf 2
1 + nβg21 − ne1 +

(n− nβ
μ1
)

σ2
u

R(
−b1
σ2
u

) +
(nβ
μ1

− 1)

σ2
u

R(
−b1 − μ1p1

σ2
u

) (B.4.11)

+
1

σ2
u + nσ2

0

R(
−b1 − μ1p1 − βnq1

σ2
u + nσ2

0

). (B.4.12)

Solving for e1, g1, f1 we get

e1 =
1

σ2
u

R(
−b1
σ2
u

), (B.4.13)

g1 =

√√√√ 1

μ1

[
1

σ2
u

R(
−b1
σ2
u

)− 1

σ2
u

R(
−b1 − μ1p1

σ2
u

)

]
, (B.4.14)

f1 =

√√√√ 1

nβ

[
1

σ2
u

R(
−b1 − μ1p1

σ2
u

)− 1

σ2
u + nσ2

0

R(
−b1 − μ1p1 − nβq1

σ2
u + nσ2

0

)

]
, (B.4.15)

and further with the limits n → 0

f1
n→0
−→

√√√√ 1

β

[
σ2
0

σ4
u

R(
−b1 − μ1p1

σ2
u

) +
(σ2

uβq1 + σ2
0(b1 + μ1p1))

σ6
u

R′(
−b1 − μ1p1

σ2
u

)

]
.

(B.4.16)

and as β → ∞ we can simplify it further as

f1
n→0
−→

√
q1
σ4
u

R′(
−b1 − μ1p1

σ2
u

). (B.4.17)

Similarly following (B.2.20) the partial derivatives of

logM(q1, p1, f1, μ1)− Tr(Q̃Q)

with respect to f1, g1, and e1, must also vanish as N → ∞. This produces the following

set of equations while taking n → 0.

b1 + p1μ1 =
1

f1

∫
R

∫
C2

ψ7(x)

∫
x∈χ

�{xz∗}K( x, y, z) dxDyDzdFX0(x0) (B.4.18)
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b1 + (q1 + p1)μ1 =
1

g1

∫
R

∫
C2

ψ7(x)

∫
x∈χ

�{xy∗}K( x, y, z)dxDyDzdFX0(x0)

(B.4.19)

q1 + p1 = −b1
β

+
1

g1

∫
R

∫
C2

ψ7(x)

∫
x∈χ

|x|2K( x, y, z)dxDyDzdFX0(x0), (B.4.20)

where

ψ7(x) =

(∫
x∈χ

K( x, y, z)
)μ1

β
−1

∫
C

(∫
x∈χ

K( x, y, z)
)μ1

β
Dỹ

. (B.4.21)

In addition when we take the partial derivative of

G(q1, p1, f1, μ1) + Tr(Q̃Q)− logM(q1, p1, f1, μ1) (B.4.22)

with respect of μ1 is vanishes and yields at the limit as n → 0

0 =
1

μ2
1

∫ b1+μ1p1
σ2
u

b1
σ2
u

R(−v)dv +
p1
μ2
1

R(−b1 + μ1p1
σ2
u

) + (q1 + p1)g
2
1 + p1f

2
1

+

∫
R

∫
C

[
1

μ2
1

log
(∫

C

(∫
{x∈χ}

K( x, y, z)dx
)μ1

β
Dy

)

−
∫
C

1

βμ2
1

ψ7(x) · log
(∫

x∈χ

K( x, y, z)dx
)
Dy

]
DzdFX0(x0) (B.4.23)

So as β → ∞ these fixed point equations can be simplified as follows:

b1 + p1μ1 =
1

f1

∫
R

∫
C2

�
{(

x0 −Ψ2

)
z∗
}
Δ̃(y, z)DyDzdFX0(x0) (B.4.24)

b1 + (q1 + p1)μ1 =
1

g1

∫
R

∫
C2

�
{(

x0 −Ψ2

)
y∗
}
Δ̃(y, z)DyDzdFX0(x0) (B.4.25)

q1 + p1 =
1

g1

∫
R

∫
C2

|Ψ2|2Δ̃(y, z)DyDzdFX0(x0) (B.4.26)

where

Ψ2 = argmin
x∈χ

∣∣∣2�{(x0 − x)(f1z
∗ + g1y

∗)} − e1|(x0 − x)|2− γ

σ2
u

|x|
∣∣∣,

and

Δ(y, z) ≡ e
−μ1 minx∈χ −2
{(x0−x)(f1z∗+g1y∗)}+e1(x0−x)2− γ

σ2
u

|x|
, (y, z) ∈ �2 (B.4.27)
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and its normalized version

Δ̃(y, z) =
Δ(y, z)∫

C
Δ(ỹ, z)dỹ

. (B.4.28)

Putting together the results again as in (B.3.30) and repeating the steps (B.34) to (B.38)

for the RSB case

Ē lasso
1rsb = − lim

β→∞
1

β
lim
n→0

∂

∂n
Ξn (B.4.29)

= − lim
β→∞

1

β
lim
n→0

∂

∂n
{−G(Q)− Tr(Q̃Q) + logM(Q̃)} (B.4.30)

= lim
β→∞

1

β
lim
n→0

∂

∂n

{∫ b1+μ1p1+βnq1
σ2
u+nσ2

0

0

R(−v)dv + (
nβ

μ1

− 1)

∫ b1+μ1p1
σ2
u

0

R(−v)dv

+ (n− nβ

μ1

)

∫ b1
σ2
u

0

R(−v)dv +
[
n(q1 + p1 +

b1
β
)(β2f 2

1 + β2g21 − βe1)

+ n(
μ1

β
− 1)(q1 + p1)(β

2g21 + β2f 2
1 ) + n(n− μ1

β
)q1β

2f 2
1

]

− logM(q1, p1, f1, μ1)

}

= lim
β→∞

1

β

{
(
b1 + μ1p1

σ2
u

)R(
−b1 − μ1p1

σ2
u

)

+ (
b1 + μ1p1

σ2
u

)
(−βq1σ

2
u − (b1 + μ1p1)σ

2
0)

σ4
u

R′(
−b1 − μ1p1

σ2
u

)

+
β

μ1

∫ b1+μ1p1
σ2
u

0

R(−v)dv + (1− β

μ1

)

∫ b1
σ2
u

0

R(−v)dv

+
[
b1(βf

2
1 + βg21 − e1) + μ1(q1 + p1)(βf

2
1 + βg21 −

β

μ1

e1)− μ1q1βf
2
1

]

− β

μ1

∫
log

∫
C

∫
C

(∫
{x∈χ}

K( x, y, z)dx

)μ1
β

DyDzdFX0(x0)

}

=−q1
σ2
u

(
b1+μ1p1

σ2
u

)R(
−b1−μ1p1

σ2
u

)+ 1
μ1

∫ b1+μ1p1
σ2
u

0 R(−v)dv− 1
μ1

∫ b1
σ2
u

0 R(−v)dv

+
[
(b1 + μ1(q1 + p1))(f

2
1 + g21)− e1(q1 + p1)− μ1q1f

2
1

]

− lim
β→∞

1

β

{
β

μ1

∫
log

∫
C

∫
C

(∫
{x∈χ}

K( x, y, z)dx

)μ1
β

DyDzdFX0(x0)

}

(B.4.31)
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Further simplification leads to the 1RSB-ansatz expression given in the propositions.

Ē lasso
1rsb =

1

σ2
u

(q1 + p1 +
b1
μ1

)R(
−b1 − μ1p1

σ2
u

)− b1
μ1σ2

u

R(− b1
σ2
u

)

− q1
σ2
u

(
b1 + μ1p1

σ2
u

)R′(
−b1 − μ1p1

σ2
u

) (B.4.32)

Now, if we only have the RS-ansatz instead of the RSB-ansatz, that is, with p1 = 0,

μ1 = 1, b1 = b0, and q1 = q0, then

Ē lasso
1rsb =

1

σ2
u

(q0 + 0 +
b0
1
)R(

−b0 − 1 · 0
σ2
u

)− b0
1 · σ2

u

R(− b0
σ2
u

)

− q0(
b1 + 1 · 0

σ2
u

)R′(
−b0 − 1 · 0

σ2
u

) (B.4.33)

=
q0
σ2
u

R(
−b0
σ2
u

) +
b0
σ2
u

R(
−b0
σ2
u

)− b0
σ2
u

R(− b0
σ2
u

)

− q1
σ2
u

(
b1
σ2
u

)R′(
−b0
σ2
u

) (B.4.34)

= Ē lasso
rs (B.4.35)

B.5 Calculations for Section 2.5

Now to evaluate (2.4.31), the macroscopic variables q0 and b0 should be

simplified further as follows: Beginning from

q0 =

∫
R

∫
C

∣∣∣x0 −Ψ1(x)
∣∣∣2DzdFX0(x0) (B.5.1)

=

∫
C

∫
R

∣∣∣x0 −Ψ1(x)
∣∣∣2dFX0(x0)Dz, (B.5.2)
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and substituting dFX0(x0) = [(1− ρ)δ(x0) + ρ 1√
2π
e−

(x0)2

2 ]dx0, we get

q0 =

∫
C

∫
R

∣∣∣x0 −Ψ1(x)
∣∣∣2[(1− ρ)δ(x0) + ρ

1√
2π

e−
(x0)2

2 ]dx0Dz (B.5.3)

= (1− ρ)

∫
C

∫
R

∣∣∣x0 −Ψ1(x)
∣∣∣2δ(x0)dx0Dz

+ ρ
1√
2π

∫
C

∫
R

∣∣∣x0 −Ψ1(x)
∣∣∣2e− (x0)2

2 dx0Dz (B.5.4)

= (1− ρ)

∫
C

∣∣∣−Ψ0(x)
∣∣∣2Dz

+ ρ
1√
2π

∫
C

∫
R

∣∣∣x0 −Ψ1(x)
∣∣∣2e− (x0)2

2 dx0Dz, (B.5.5)

and

b0 =
1

f0

∫
R

∫
C

�
{
x0 −Ψ1(x)z

∗
}
DzdFX0(x0) (B.5.6)

=
1

f0

∫
C

∫
R

�
{
x0 −Ψ1(x)z

∗
}
[(1− ρ)δ(x0) + ρ

1√
2π

e−
(x0)2

2 ]dx0Dz

(B.5.7)

=
(1− ρ)

f0

∫
C

∫
R

�
{
x0 −Ψ1(x)z

∗
}
δ(x0)dx0Dz

+
ρ√
2πf0

∫
C

∫
R

�
{
x0 −Ψ1(x)z

∗
}
e−

(x0)2

2 dx0Dz (B.5.8)

=
(1− ρ)

f0

∫
C

�
{

−Ψ0(x)z
∗
}
Dz

+
ρ√
2πf0

∫
C

∫
R

�
{
x0 −Ψ1(x)z

∗
}
e−

(x0)2

2 dx0Dz (B.5.9)

where,

Ψ0(x) = argmin
x∈χ

[∣∣∣−zf0 − 2e0x− γ

σ2u

∣∣∣
]
, (B.5.10)
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and

Ψ1(x) = argmin
x∈χ

[∣∣∣−zf0 + 2e0(x
0 − x)− γ

σ2u

∣∣∣
]
. (B.5.11)

Solving (B.5.10) and (B.5.11) for x and simplifying further B.5.5 and B.5.9

we get for q0 and b0:

q0 = (1− ρ)

∫
C

∣∣∣zf0 + γ
σ2
u

2e0

∣∣∣2Dz +
ρ√
2π

∫
C

∫
R

∣∣∣zf0 + γ
σ2
u

2e0

∣∣∣2e− (x0)2

2 dx0Dz,

(B.5.12)

b0 =
(1− ρ)

f0

∫
C
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Further, replacing Dz = 1
πe

−|z|2dz, we get (2.5.2) and (2.5.3).
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Appendix C

Secondary Papers

Clustered Compressed Sensing in fMRI Data Analysis
using a Bayesian Framework

Solomon A. Tesfamicael and Faraz Barzideh, Adapted from: Interna-
tional Journal of Information and Electronics Engineering vol. 4, no. 2,
pp. 74-80, 2014.

Abstract:- This paper provides a Bayesian method of analyzing functional magnetic reso-

nance imaging (fMRI) data. Usually fMRI signals are noisy and need efficient algorithms

to estimate or detect the signals accurately. Using a Bayesian framework we have used

two different priors: sparsity and clusteredness in the fMRI data by using a general linear

model (GLM), which is used as a main tool in fMRI studies. These enhance the effec-

tiveness of the model to help analyze the data better. So in this work we have built the

Bayesian framework needed first. Then, we have applied our analysis on synthetic data

that we made and that are well known, and the results show that clustered compressive

sampling has given better results compared to using of only sparse prior and/ or to the

analysis with out considering the two priors. Later we have applied it on fMRI data and

the results are much better in terms of signal to noise ratio (SNR) and intensity of images.

Clustered Compressive Sensing: Application to
Medical Imaging

Solomon A. Tesfamicael and Faraz Barzideh, Adapted from: International Journal of
Information and Electronics Engineering vol. 5, no. 1, pp. 46-50, 2015.

Abstract:- This paper provides clustered compressive sensing (CCS) based image pro-
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cessing using Bayesian framework applied to medical images. Some images, for example

like magnetic resonance images (MRI) are usually very weak due to the presence of noise

and due to the weak nature of the signal itself. The compressed sensing (CS) paradigm

can be applied in order to boost such signals. We applied the CS paradigm via a Bayesian

framework. Using different sparse prior informations and in addition incorporating the

special structure that can be found in sparse signal improves image processing. This is

shown in the results of this paper. First, we applied our analysis on Angiogram image,

then on Shepp-logan phantom finally on another magnetic resonance image (MRI) image.

The results show that applying the clustered compressive sensing give better results than

the non-clustered version.

Clustered Compressed Sensing-Based Image Denosing
Using a Bayesian Framework

Solomon A. Tesfamicael and Faraz Barzideh, David C. Wyld et al. (Eds) : ITCS, CST,
JSE, SIP, ARIA, DMS-2015 pp. 185-197, 2015.

Abstract:- This paper provides a compressive sensing (CS) method of denoising images

using Bayesian framework. Some images, for example magnetic resonance images (MRI)

are usually very weak due to the presence of noise and due to the weak nature of the signal

itself. So denoising boosts the true signal strength. Under the Bayesian framework, we

have used two different priors: sparsity and clusteredness in an image data as prior infor-

mation to remove noise. Therefore, it is named as clustered compressive sensing based

denoising (CCSD). After developing the Bayesian framework, we applied our method

on synthetic data, the Shepp-logan phantom and sequences of fMRI images. The results

show that applying the CCSD give better results than using only the conventional com-

pressive sensing (CS) methods in terms of Peak Signal to Noise Ratio (PSNR) and Mean

Square Error (MSE). In addition, we showed that this algorithm could have some advan-

tages over the state-of-the-art methods like Block-Matching and 3D Filtering (BM3D).
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