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Abstract 

This thesis has examined the mechanical behavior of HDPE and PVC at large strains and at 

low to intermediate strain rates. This examination has been done by analyzing experimental 

results from uniaxial tension and compressions tests, where the test data has been evaluated 

through a combination of improved measurement techniques, simplified 1D material models 

and FEM simulations. Strains beyond the natural draw limit of HDPE have been achieved in 

uniaxial tension by utilizing a custom-made tension sample.  

DIC has been used to measure local deformation of test samples. Extra attention has been paid 

to the measurements of local strains as the neck forms and propagates in uniaxial tension. To 

this end, a custom implementation of a DIC algorithm has been presented, where the use of 

higher order elements has been shown to enable a more precise determination of the location 

of the neck. This has facilitated the development of a systematic approach for defining the 

section of a sample first experiencing necking and accurately measuring the deformation of 

this cross section with an infinitesimal length. An edge tracing algorithm has also been 

developed, allowing for the determination of additional geometrical properties of the section 

first experiencing necking. 

The improved measurement technique has allowed for the precise determination of stress and 

strain behavior of both materials at large strains. The measurement and calculation of the 

evolution of volumetric strain in uniaxial tension has been a central topic in this thesis, and it 

has been shown that a traditional approach to the calculation of volumetric strain can lead to 

results that severely misrepresent the actual material behavior. To this end an alternative 

equation for calculating the volumetric strain has been proposed and validated. With this 

improved method, it has been shown that the polymers investigated in this thesis exhibit a 

highly non-linear increase in volume when subjected to uniaxial tension. This volumetric 

growth has also been shown to depend on strain rate in the case of HDPE. Adiabatic heating 

has also been quantified by the use of a thermal camera, and it has been shown that adiabatic 

heating significantly affects mechanical properties even at intermediate strain rates. 

The experimental results have been incorporated into a FEM material model. Through 

thermo-mechanically coupled simulations, the material model has been shown to accurately 
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capture thermal softening and the non-linear volumetric growth. The simulations have also 

revealed discrepancies in the assumption that hardening in polymers is primarily entropic 

elastic. This assumption does not appear to be consistent with the measured generated heat 

found from experiments, and in the case of PVC it was shown that all hardening had to be 

assumed to be dissipative in order to achieve temperatures similar to those measured in the 

experiments. 
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1 Introduction 

1.1 Background 

The use of polymers in load-carrying or shock absorbing components is widespread and still 

increasing. During the recent years, it has become common to apply finite element method 

simulations as a tool in the design process of such structures, including the parts made of 

polymers. Advances in the modeling of these materials have however not kept up with the 

increased usage, and so there appears to be a gap between the wide field of applications and 

the ability to predict material behavior. 

Early modeling of polymers has been done by making similar assumptions as those made for 

metals, a field where the physical mechanisms are well mapped into the mathematical sphere. 

This was at least partly due to a lack of experimental data for polymers, as traditional 

experimental set-ups provided a very narrow insight into the large deformation range. 

Material models for metals would typically contain features such as the von Mises yield 

criterion, the associated flow rule, and pressure-insensitive material behavior. These 

assumptions are normally not fulfilled for polymers. In particular, it might quickly become 

apparent as one moves into the large deformation range that the framework of metal plasticity 

is unsuited and that the fundamental assumptions made for metals do not apply. The most 

obvious distinctions between metals and polymers are that some polymers exhibit plastic 

volume change during deformation, yielding of polymers can dependent on the hydrostatic 

stress state, viscous effects related to strain rate and temperature are more prominent, and 

polymers exhibit an entropy-elastic stiffness contribution at large strains. 

The mechanical properties of polymers have to be characterized through experimental tests. 

Indeed, there are two purposes with test campaigns. Firstly, the main features of the response 

of the material have to be explored to get an idea of whether it dilates, is pressure sensitive, 

has a strong entropic stiffness, etc. Such information is relevant in the development of 

constitutive models for finite element simulations. Next, mechanical tests are required for 

calibration of the material parameters involved in the model at hand. The strategy for model 

development and parameter identification is similar for metals. The most widely applied 
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loading mode for metals is uniaxial tension. Most ductile metals experience strain hardening 

after yielding, and the onset of necking occurs often late in the deformation process. 

Exploiting that the plastic deformation of metals is isochoric, i.e. volume preserving, this calls 

for an experimental protocol where an extensometer is sufficient to measure the strains up to 

necking. After necking, local strain measurements in the neck are required. 

The typical experimental procedures for tension tests on metals cannot be transferred to all 

types of polymers. An important reason is that the onset of necking often comes at 

comparatively small deformations. Another issue is that the dilatation makes it necessary to 

abandon the classical formula giving true stress as function of the nominal stress and strain, 

i.e. ( )1true nom nomσ σ ε= + . Yet, the design of tension test samples as recommended by 

standards for mechanical testing of polymers is strongly influenced by the geometrical shapes 

applied for tensile testing of metals [1]. Indeed, the main concern for such standards are often 

determination of the initial elastic stiffness and yield stress, while neither the response at large 

strains nor determination of relevant parameters for use in finite element simulations are 

usually addressed.  

Hence, new protocols for doing experiments on polymers, including the design of test 

samples as well as instrumentation, were required. For determination of the response, the use 

of optical measurement techniques represents the biggest modern breakthrough for measuring 

post-necking behavior. This was pioneered by G’sell et al. [2], using an in situ technique. 

Their method is based on tracking the displacement of a pattern of dots hand painted on the 

surface of a material test specimen. These dots will move as the sample deforms, and the 

relative movement of the dots will constitute a local deformation measurement. The technique 

does however require that the sample localizes at the center of the dot pattern, and it is hence 

necessary to machine a small imperfection that triggers the localization. This thesis will use a 

different, more general, video-based technique called digital image correlation (DIC) [3]. The 

technique requires that the material sample is sprayed with a random speckled pattern before 

the test and photographed hundreds of times during the deformation process with a digital 

camera. During the postprocessing of the pictures, an element mesh is assigned to an area of 

the test specimen on the first picture, representing an undeformed configuration. The DIC 

algorithm then deforms the mesh in the subsequent pictures so that the inverse of the 
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transformations of the regions, defined by the elements, matches the undeformed elements 

speckled pattern as closely as possible. The result is a continuous deformation field 

throughout the mesh with as many deformation configurations as there are pictures. The 

elements typically confine a region of a few hundred pixels out of a picture that is comprised 

of 5 Mpixels, resulting in a theoretical number of elements equal to about 5000. When taking 

into account the complexity and size of the nonlinear problem, it is clear that the DIC 

algorithm can be quite computationally heavy, and thus the data processing is usually done 

after the test is performed. This limits the use of DIC as an in-situ feed-back tool of the test 

conditions, where control of the local strain rate is a relevant example. Despite this drawback, 

DIC is well suited for measuring large strains over a non-homogenous field, and has earlier 

been used for quantifying the deformation of polymers by for example Parsons et al. [4] and 

Jerabek et al. [5]. Maturing of the technique as well as SIMLab developing its own DIC 

software [6] hold promise for a more in depth analysis of the large strain behavior of 

polymers. 

When it comes to design of the sample for tensile testing of polymers, a typical dog-bone test 

specimen with a long gauge part is in many ways incompatible with an accurate determination 

of the ultimate strains during the deformation process with DIC because resolution is lost 

when the pictures have to cover the entire stretching of a rather long sample. Thus, it is 

advantageous to look at alterative designs in order to facilitate measurements of large strains 

with DIC. Another aspect related to material tests is uniaxial compression. This type of test 

has been more widely applied for polymers than for metals, partly due to the challenges of 

necking and dilatation associated with tension. Yet, there are also drawbacks with 

compression tests, in particular friction and barreling. For a large number of practical 

applications, tension is the most important mode, in particular when it comes to large 

deformations, because thin parts subject to compression are likely to buckle at comparatively 

small strains. 

The aim with studies on the mechanical behavior of polymers is to provide information for 

numerical simulations with the finite element method. This thesis is a continuation of 

previous work done on polymers at SIMLab, where the initial contribution on material 

modeling was a hyperelastic-viscoplastic constitutive relation proposed by Polanco-Loria et 
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al. [7]. They further developed the idea, originally proposed by Haward and Thackray [8], that 

the response of glassy polymers can be split into the three stages; energy-elasticity, viscous 

flow and then entropic-elasticity with increased deformation. The Haward-Thackray model 

had already been refined by Boyce et al. [9, 10], Tervoort et al. [11], Wu and Buckley [12], 

Dupaix and Boyce [13], Richeton et al. [14] and Anand et al. [15], to mention a few, while 

Polanco-Loria et al. [7] introduced the pressure sensitive yield criterion proposed by Raghava 

et al. [16] and a non-associated flow rule. This enabled the model to account for the difference 

in yield stress observed when varying the hydrostatic stress, and also presented the possibility 

to describe plastic volume change in a more flexible way than an associated flow rule 

manages. Despite the number of mechanisms included in the model, it has a relatively small 

number of calibration parameters. This is to make it a viable model for use in industrial 

applications, which is a stated goal for most of the research carried out at SIMLab.  

The SIMLab model is in its current state able to represent the effects from most of the 

apparent mechanisms that compose the mechanical response of polymers [17, 18]. 

Specifically, it captures the response of a viscoplastic material where yielding is dependent on 

hydrostatic stress, the flow stress varies with strain rate, it can undergo plastic volume change, 

and it has a secondary rubber elastic stiffness. The accuracy for describing these mechanisms 

from small to large strains is however something that needs further investigation. In 

particular, it is suspected that the current flow rule, controlling the change of plastic volume, 

might be too simple for a sufficiently accurate representation of material behavior when it 

comes to implementation of a failure criterion in conjunction with the constitutive model. 

Reliable predictions of failure assume that the model captures the stress and strain fields 

during the subsequent deformation process in an adequate way. There are also unresolved 

questions pertaining to the separation of the material response into elastic, viscous, plastic and 

entropic elastic parts. These mechanisms may all be active at the same time in a single 

experimental test, which complicates the task of quantifying the contribution of the individual 

material properties. 
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1.2 Objectives 

The goal of the PhD is to improve the knowledge of the mechanisms that constitute the 

mechanical behavior of ductile thermoplastics. This will be done by studying HDPE and 

PVC. The primary focus is on strain rate effects, volumetric change and hardening at large 

strains. In order to investigate these areas, it is also necessary to develop a framework for 

experimental testing and data treatment. The objectives of this thesis are: 

• To develop a systematic approach for measuring the mechanical response of the 

materials in uniaxial tension and compression, with an emphasis on accurately 

capturing local strain behavior in uniaxial tension post necking. 

• To measure mechanical behavior at large strains.  

• To quantify the local change in volume when the materials are subjected to uniaxial 

tension. 

• To measure adiabatic heating and its effects. 

• To quantify the effects of changes in strain rate. 

• To correlate mechanical behavior with, strain, strain rate and temperature. 

• To develop a finite element material model that is able to capture the measured 

response of the materials. 

1.3 Scope 

The scope of this PhD project is limited by the specific materials investigated, the choice of 

measuring techniques and the choice of which boundary conditions are enforced.  

The materials investigated are a semi-crystalline high-density polyethylene (HDPE) and an 

amorphous poly-vinyl chloride (PVC). Thus, both main classes of ductile thermoplastics are 

covered. The materials were acquired as off-the-shelf extruded plates from a whole-saler. 

They are hence not tailored for research projects. Indeed, the specific blend of these polymers 

is in accordance with typical commercial products, which means they have particle inclusions 

and filler material. The exact amount and type of these additives are not provided by the 

producers. This further restricts the scope towards an investigation of typical industrial blends 
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of these classes of polymers. The mechanical response of these two materials is only 

investigated in uniaxial tension and compression. This limits the range of hydrostatic stress in 

which data is recovered from.  

Strain measurements are done using a DIC technique. Since this technique utilizes standard 

digital photography it is limited to measuring strains on visible surfaces, and so it provides no 

direct information about the deformation inside a volume. This technique is further limited to 

the use of a single camera, resulting in that only one surface of a test sample is monitored. 

This implies that assumptions have to be made for the surfaces not facing the camera. One 

important assumption in this thesis is that the materials are taken to behave isotropic. 

In addition to DIC, some tests are also monitored with a thermal camera to log additional 

data. A thermal camera provides a thermal history, where the change of temperature may be 

assumed to be closely correlated with the dissipation and storage of energy. This is useful for 

evaluating the plastic work in the sample. It is thus an appropriate addition to the large strain 

measurements of DIC, and further narrows the research scope towards an investigation of 

energy retention and dissipation. 

1.4 Organization of the Thesis 

The thesis can be broken down into three main parts. Chapters 2 through 4 address the 

techniques used for measuring and calculating material response from experimental data. 

These techniques are then applied to uniaxial tension and compression tests, and the results 

are presented in Chapter 5 and 6. The final main part is presented in Chapter 7, where the 

experimental results are incorporated into a FEM material model, which is then compared to 

the observations in the tests. 

Chapter 2 describes a custom made 2D DIC algorithm that has been designed and 

implemented to analyze the experimental data presented in this thesis. This DIC algorithm is 

supplemented by the edge tracing algorithm presented in Chapter 3. The edge tracing 

algorithm works in conjunction with the DIC algorithm to both validate DIC results as well as 

providing additional information required for an accurate determination of the volumetric 
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strain. The assumptions and models that are used to translate DIC and edge tracing data into 

material data from the uniaxial tension tests are then presented in Chapter 4.     

The material data obtained with the methodology presented in Chapters 2 through 4 are 

presented in Chapter 5 and 6, were Chapter 5 concerns uniaxial tension test data from the two 

material HDPE and PVC where each material has been tested with two different sample 

geometries. Data from uniaxial compression tests of both materials is presented in Chapter 7.  

The presented tests data is then used to improve a finite element method (FEM) material 

model in Chapter 7. This model is used to simulate both the uniaxial tension and compression 

tests in order to validate the obtained data and further analyze it. 

Finally, conclusion and suggestions for further work are provided in Chapter 8. 
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2 Digital Image Correlation 

The experimental results in this thesis are obtained with a purpose-made implementation of a 

2D digital image correlation (DIC) code. The code is written in MatLab and it is a finite 

element-based formulation of DIC, as proposed by Sun et al. [19] and Besnard et al. [20]. The 

finite element-based DIC formulation is less known than the original subset-based Newton-

Raphson formulation [21], but it is chosen for its inherent field continuity properties. In 

contrast to most of the work done on finite element-based DIC, the present code uses a higher 

order element with 16 nodes, whereas the norm elsewhere is to apply linear 4-node elements 

[6, 19, 20].  

The choice to write a custom code for this thesis was motivated by the observations made 

during material tests on ductile thermoplastics. When performing uniaxial tension tests of 

polymers until failure, large strains are observed. The deformation localizes in a neck at 

approximately the same time as the onset of yielding. The large local strains then create a 

highly non-linear strain field in the length direction of the specimen. This nonlinearity is 

important for identifying the center of the neck where the maximum strain occurs. The 

nonlinearity of this strain field is not possible to capture with linear DIC elements, which for 

this purpose can be considered as constant strain elements.  

The identification of the location of the neck can be done in one of two ways with DIC, either 

interpolating the close-to-constant strain values from linear elements in order to estimate the 

maximum strain and its location, or using the strain field from higher order elements directly. 

The latter option is chosen here. The order of the selected element should then reflect the 

order of the expected strain field. In the case of a uniaxial tension test with a neck, it is 

reasonable to assume that the longitudinal strain field is bell shaped when traversing the 

length of the specimen. Since it is the section of maximum strain that is of interest, it then 

follows that the element used should be able to describe a parabolic strain field (i.e., exhibit a 

maximum value). It might also be noted that in contrast to finite element simulations, an 

element in a DIC analysis has a minimum allowable element size. The limiting factor is the 

amount of pixels required inside an element for an analysis to be stable. For linear elements 

this limit is around 220 20 pix× , where pix  is applied as an abbreviation for pixels. This 
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inability in DIC for continued mesh refinement might also give some merit to the use of 

higher order elements. 

2.1 Theoretical Formulation of DIC  

The theoretical formulation for DIC in 2D using elements with only translational degrees of 

freedom is presented in the following. The aim of a DIC code is to locate the same points in 

two or more pictures, where a point is defined by its associated grayscale value (color) in a 

picture. For a single point that has moved from a position X  in a reference configuration to a 

position ( ), t=x X  in the current configuration, where  is a bijective mapping and t  is 

time, the fundamental equation used is then  

 ( ) ( )C RI I=x X  (2.1) 

where ( )CI x  is the grayscale value at position x  in a current image and ( )RI X  is the 

grayscale value at position X  in a reference image. Both positions are given in a fixed 

coordinate system defined by the pixel grid of the images. Equation (2.1) states the principle 

of “conservation of optical flow”. The vectors x  and X  are interpolated within an element 

defined by the positions of the n  nodes of the element. The position vector x  can then be 

defined as   

 
( , )

( , )
( , )

x

y

x

y

ξ η
ξ η

ξ η
= = =

nN 0
x A n

n0 N
 (2.2) 

where ( , )ξ ηN  is a row vector containing n  isoparametric shape functions, and ξ and η  are 

local element coordinates. The vectors xn  and yn  contain the x  and y  coordinates of the n  

nodes of the element. Similarly X  can be defined as 

 0

( , )
( , )

( , )
X

Y

X

Y

ξ η
ξ η

ξ η
= = =

nN 0
X A n

n0 N
 (2.3) 

where [ ]0

T

X Y=n n n  contains the initial coordinates of the nodes of the element.  
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A first-order Taylor expansion of ( )CI x  around x  is given by  

 ( ) ( ) C
C C

I
I I

∂
+ Δ = + Δ

∂
x x x x

x
 (2.4) 

where /CI∂ ∂x  is the grayscale value gradient expressed as 

 C C CI I I

x y

∂ ∂ ∂
=

∂ ∂ ∂x
 (2.5) 

By taking n  as the free variable, Equation (2.2) gives 

 
∂

Δ = Δ = Δ
∂

x
x n A n

n
 (2.6) 

so that Equation (2.4) can be rewritten to  

 ( ) ( ) C
C C

I
I I

∂
+ Δ = + Δ

∂
n n n A n

x
 (2.7) 

If we then assume that we have a position 0x  that is close to a position x , where Equation 

(2.1) is satisfied, we can find x  with the iterative equation  

 ,k k R C kI IΔ = −b n  (2.8) 

where k  is the iteration counter and the row vector kb  is defined by 

 C
k

k

I∂
≡

∂
b A

x
 (2.9) 

These equations are solved for the vector Δn , namely the incremental change of the nodal 

positions. This is a system of equations with twice as many unknowns as element nodes, i.e., 

there are two degrees of freedom per node, and may hence not be solved for a single point. 

However, the system is solvable by taking several points within the element into account. 

Assuming there are m  points within the element, we obtain a system of m  equations in the 

form  
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 , , 1, 2,...,i i i
k k R C kI I i mΔ = − =b n  (2.10) 

If the m  row vectors i
kb  are collected into a matrix kB and all the grayscale differences are 

gathered into a column vector kΔI , the result is a 2 n m×  system that can be written as 

 k k kΔ Δ=B n I  (2.11) 

Assuming that there are more points than twice the number of nodes, the system is solved as 

 1( )T T
k k k kk

−Δ = Δn B B B I  (2.12) 

This solution is equivalent to a least squares solution of (2.11). The updated node coordinates 

of the element are then 

 1
1 ( )T

k k k
T

k k k
−

+ = + Δn n B B IB  (2.13) 

The analysis can then be said to have converged to a local minimum when the absolute values 

of the components of kΔn  become smaller than a predefined limit. 

2.2 DIC Implementation 

The numerical implementation of a DIC code with a 16 node (Q16) element will now be 

outlined and discussed. A DIC code running an analysis can be broken down into six basic 

steps including post processing. The six steps are:  

1. element definition,  

2. pixel identification,  

3. grayscale gradient calculation,  

4. interpolation, 

5. reference updating, and  

6. post processing.  

These steps will here be presented in the order they are performed. For this presentation, let us 

assume that we have a series of pictures showing the deformation, rotation and translation of a 
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plane surface positioned perpendicular to the camera. Let us further restrict our interest to 

tracking a region of the surface using only one DIC element. 

 Element Formulation 2.2.1

The first step is to define the element that is going to be used. The Q16 element is defined by 

its 16 shape functions ( , )iN ξ η  , which should fulfil the interpolation conditions  

 ( , ) , ( , ) 1i j j ij i
i

N Nξ η δ ξ η= =  (2.14) 

where ,i j  are node numbers, ,i iξ η  are the element coordinates for node i , and ijδ  is the 

Kronecker delta. These shape functions are established by first deciding the desired 

polynomial degree, which is here a bi-cubic polynomial. The individual components of the 

polynomial are then collected in a row vector ( , )ξ ηh , which for this Q16 element is 

 
2 2 3 2 2 3

3 2 2 3 3 2 2 3 3 3

( , ) 1ξ η ξ η ξ ξη η ξ ξ η ξη η

ξ η ξ η ξη ξ η ξ η ξ η

=h
 (2.15) 

This isoparametric element is given an internal node numbering as seen in Figure 2.1, with 

the origin of its local coordinate system ( ),ξ η  placed at node 1, and the coordinates of node 7 

are equal to ( )1,1 . 
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Figure 2.1: Internal node numbering of a 16 node isoparametric element used in a 2D DIC 
implementation. 

The shape function ( , )iN ξ η  for node i  is expressed as 

 ( , ) ( , )i iN ξ η ξ η= h c  (2.16) 

The 16 elements of the column vector ic  are then found by solving the equation system  

 i i=Hc z  (2.17) 

where iz  has components j ijz δ=  and the matrix H  is defined by 

 

1 1

2 2

16 16

( , )

( , )

( , )

ξ η

ξ η

ξ η

=

h

h
H

h

 (2.18) 

A compact representation of the shape functions can then be written as  

 ( , )ξ η=N h C  (2.19) 

ξ

η
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where [ ]1 2 16N N N=N is a row vector containing the 16 shape functions and 

[ ]1 2 16=C c c c  is a 16 16×  matrix containing the column vectors ic . This compact 

formulation is useful, since differentiation of the shape functions is reduced to the 

differentiation of ( , )ξ ηh . These derivatives are obtained as 

 , , , ,,ξ ξ η η= =N h C N h C  (2.20) 

where ,ξh  and ,ηh  denote the differentiation of h  with respect to ξ  and η , respectively. 

These row vectors are given as 

 

2 2
,

2 2 3 2 2 3 2 3

2 2
,

3 2 2 3 2 2 3 2

( , ) 0 1 0 2 0 3 2 0

3 2 3 2 3

( , ) 0 0 1 0 2 0 2 3

2 3 2 3 3

ξ

η

ξ η ξ η ξ ξη η

ξ η ξη η ξ η ξη ξ η

ξ η ξ η ξ ξη η

ξ ξ η ξη ξ η ξ η ξ η

=

=

h

h
 (2.21) 

 Element Coordinates 2.2.2

The second step is to choose the region of interest. This is done by defining Xn  and Yn , 

which are the initial positions X and Y of the nodes. Figure 2.2 shows an undeformed test 

sample and the piecewise linear outline of an element with 16 nodes. It should be noted that 

the actual outline of the element is non-linear. All nodes and the internal node numbering are 

included in the figure. It can be seen that the nodes of the element are not arranged in a 

perfect rectangular grid in this undeformed reference image. This will usually be the case, but 

doing so also reduces the order of the shape functions resulting in a less general example. 
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Figure 2.2: Outline of a 16 node DIC element with internal node numbering drawn on the 
surface of a uniaxial tension sample.  

The element in Figure 2.2 has a size of about 200 200× pixels. It is now necessary to locate 

the pixels that are inside the element boundaries, and to determine their element coordinates 

ξ and η . This is approximated by first finding the smallest rectangle, having boundaries 

parallel with the image coordinate axes, which contains all nodes of the element, as shown 

with the blue lines in Figure 2.3. The four corners of the blue rectangle have coordinates 

( )min , minXi Yin n , ( )max , minXi Yin n , ( )max , maxXi Yin n  and ( )min , maxXi Yin n , where Xin  

and Yin  are the components of Xn  and Yn , respectively. It is then trivial to find all the pixels 

in this region. Figure 2.3 shows all the pixels inside the limiting blue rectangle in a darker 

gray color. It should be noted that the pixels contained in the blue rectangle do not necessarily 

contain the whole set of pixels inside the actual element, but rather within the piecewise linear 

border of the element. This can be seen from Figure 2.2, where it is obvious that there exists a 

point on the non-linear element boundary between node 8 and node 9 that has a larger Y-

coordinate than both nodes. Hence, this bounding box approach does not include pixels in 

areas like this. This is assumed to be negligible. 

 1
 2  3  4
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 8 910
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Figure 2.3: Search area for pixels inside Q16 DIC element. The red curve defines the piecewise 
linear element bound, and the blue rectangle defines the search area. 

To find the subset of pixels that are inside the red element, it is sufficient to calculate the 

element coordinates of the entire set of pixels, and then keep only the pixels that satisfy 

0 1ξ≤ ≤  and 0 1η≤ ≤  simultaneously. Calculating the element coordinates of the pixels is, 

however, not trivial since it involves an inversion of Equation (2.3). The initial coordinates 

X  and Y  of every pixel are known and so are the initial node positions defined by Xn  and 

Yn . Applying Equations (2.3) and (2.19) then yields two equations with two unknowns ξ  and 

η  for each pixel, namely 

 ( ) ( ),, ,X YX Yξ η ξ η= =h Cn h Cn  (2.22) 

There is no explicit solution to this problem, and an iterative method is used to solve for the 

pixel coordinates. Re-writing Equation (2.22) in residual form, we get 

 ( ) ( ),, , YYX X RR X Yξ η ξ η= − −=h Cn h Cn  (2.23) 

where the correct solution for ( ),ξ η  implies that 0X YR R= = . If we now use a first order 

Taylor approximation for the vector [ ]
T

X YR R  around the element coordinate ( ),ξ η , we get 
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( )
( )

( )
( )

( ) ( )
( ) ( )

, ,

, ,

, , , ,

, , , ,

X

Y

X X

Y Y

X

Y

XR

YR

ξ η

ξ η

ξ ξ η η ξ η

ξ ξ η η ξ η

ξ η ξ η

ξ

ξ

η ξ η η

= −

Δ

+ Δ + Δ −

+

Δ

Δ + −Δ

h Cn

h Cn

h Cn h Cn

h Cn h Cn

  (2.24) 

Solving these equations for zero residuals, we get  

 , ,

, ,

( , ) ( , ) ( , )

( , ) ( , ) ( , )
X X X

Y Y Y

X

Y
ξ η

ξ η

ξ η ξ η ξ ηξ

ξ η ξ η ξ ηη

−Δ
=

−Δ

h Cn h Cn h Cn
h Cn h Cn h Cn

 (2.25) 

The element coordinates for a pixel are found by solving this system of equations iteratively 

and updating the element coordinates. The solution will then converge if the initial values of 

ξ and η  are sufficiently close to the correct values. A good choice of the initial values is 

obtained by placing the four nodes of a Q4 element at the positions of corner nodes of the 

Q16 element, as shown in Figure 2.4. Equations (2.22) are invertible for the Q4 element, and 

may be explicitly solved for the element coordinates ξ  and η . This makes a Q4 element well 

suited for providing the initial element coordinates for the iteration procedure needed for the 

Q16 element. The shape functions for a Q4 element can be found and expressed in the same 

way as for the Q16 element, and are defined by 

 [ ]( , ) 1ξ η ξ η ξη=h  (2.26) 

The mapping from element coordinates ( ),ξ η  to reference coordinates ( ),X Y  is given by 

Equation (2.22). The inverse mapping is then the solution of two second-order equations in ξ  

and η . 
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Figure 2.4: Outline of a Q16 (red) and Q4 (green) element with internal node numbering shown 
for the both elements. 

With good initial values for ξ  and η , the convergence is fast, and after four iterations the 

absolute values of ξΔ and ηΔ  is smaller than 1010−  for this element, which is the 

convergence criterion used for finding the element coordinates. When all the element 

coordinates are found for the darker region in Figure 2.3 and all pixels outside the region 

0 1 0 1ξ η≤ ≤ ≤ ≤  are removed, the resulting region is within the element as shown in 

Figure 2.5. 
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Figure 2.5: Pixels region inside a Q16 DIC element (red) shown with initial pixel search area 
(blue). 

 Grayscale gradient 2.2.3

When the region of interest is defined, it is necessary to determine the grayscale gradient 

given in Equation (2.5). However, since this gradient is defined with respect to the changing 

current position x , the gradient has to be recalculated for each image. This would slow down 

the algorithm significantly, and a different approach is adopted herein. First, Equation (2.1) is 

reformulated as  

 ( ) ( )( ) ( ) ( )C C C RI I I I= = =x X X X   (2.27) 

where x  is considered a function of X  via the bijective mapping ( )=x X , which leads to 

the new function ( )CI X . We can then define a function g with only the position vector X  as 

a variable  

 ( ) ( )( ) ( ) 0C Rg I I= − =X X X   (2.28) 
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This function is equal to zero for all initial position vectors X , and may be thought of as a 

plane in 3D space, with its third coordinate g  equal to zero at all points. The gradient of this 

plane with respect to X  must then also be equal to zero, and we can write 

 
( ) ( ) ( )C R

g I I∂ ∂ ∂∂
= − =

∂ ∂ ∂ ∂

X X
0

X X X
  (2.29) 

We can then substitute with x  to obtain the relation  

 
( ) ( ) ( )C C R

I I I∂ ∂ ∂∂
= =

∂ ∂ ∂ ∂

x x Xx
F

x X x X
  (2.30) 

where /= ∂ ∂F x X is the deformation gradient. The current grayscale gradient at a position x  

is then obtained as  

 ( ) ( )( ) ( )1 1C RI I − −∂ ∂
=

∂ ∂
x x F x

x X
 (2.31) 

 

where ( )1−=X x . This is helpful since /RI∂ ∂X  only needs to be calculated for the reference 

image. Equation (2.9) can then be rewritten as 

 ( )( ) ( )( )( ) ( )( )1 1C R
k k k k

I I − −∂ ∂
≡ =

∂ ∂
b x n A x n F x n A

x X
 (2.32) 

or more compact as 

 1C R
k k

kk

I I −∂ ∂
≡ =

∂ ∂
b A F A

x X
  (2.33) 

The final result is that the grayscale gradient does not have to be recalculated for every image. 

Instead, the grayscale gradient in the reference image is mapped to the current image via the 

inverse of the deformation gradient. If we now choose to use only the gradient at the point 

where we want the iteration to converge, we can get rid of the iteration counter on the 

grayscale gradient from the reference gradient and approximate kb  as 
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 1R
k k

I −∂
≈

∂
b F A

X
  (2.34) 

This is equivalent to assuming a local constant grayscale gradient in the reference image. 

Alternatively, it could be considered as a form of the quasi-Newton method. The deformation 

gradient F  still has to be calculated in each iteration, but as will be discussed later, this DIC 

implementation updates its reference frame. This means that at adequately small intervals the 

current configuration is taken as the new reference configuration. The deformation gradient F  

will then be close to the identity mapping 1 . Thus, instead of calculating F  for each iteration 

the reference image is updated with sufficient high frequency, so that ≈F 1  always holds. 

Thus, Equation (2.12) can be written as  

 1( )T T
R R R k

−Δ =n B B B I  (2.35) 

where RB  is a constant matrix containing the row vectors , 1, 2,...,16i i =b  and is defined in 

the reference configuration, so that only kI  has to be updated. The whole iteration can then be 

written as   

 1
1 ( )T T

k k R R R k
−

+ = +n n B B B I   (2.36) 

It is now only required to calculate the grayscale gradient in the reference configuration at the 

natural coordinates of the pixels within the element. These coordinates are defined by the 

pixel position in the image table. The calculation is done via the central difference formula 

using the closest pixel values around the pixel of interest 

 

( )
( ) ( )( )

( )
( ) ( )( )

, 1
, ,

2
, 1

, ,
2

R
R R

R
R R

I X Y
I X h Y I X h Y

X h
I X Y

I X Y h I X Y h
Y h

∂
≈ + − −

∂

∂
≈ + − −

∂

 (2.37) 

where 1h = , corresponding to the spacing between neighbor pixels. 
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 Grayscale value Interpolation 2.2.4

With B  in Equation (2.13) defined, the iteration is reduced to a sequence of operations 

already presented in previous sections, with the exception of interpolating grayscale values. 

The necessity of interpolation originates from the fact that an image is discrete while the 

algorithm assumes a continuous field. A pixel in the reference image will have a coordinate 

X , where X  is represented by two integers. The location of the point X  after deformation, 

denoted x , is however represented by two real numbers. It is hence necessary to estimate 

( )CI x  by interpolation. This is done with a standard bi-cubic interpolation based on the 16 

closes pixels to the point x . A bi-cubic interpolation is chosen as it has been shown to be 

vastly superior to a bi-linear interpolation [22] while still being relatively cost effective in 

terms of computational time. This operation is performed for every point referred to by kI  for 

every iteration k , and hence constitutes the largest computational cost.  

All the quantities in the iteration shown in Equation (2.36) are now defined, so that the only 

task left is to define a criterion to stop the iteration. This algorithm uses a simple but strict 

convergence criterion given as  

 ( ) 7max 10 pixin −Δ <  (2.38) 

where inΔ  are the components of the vector Δn .  

 Update of reference frame 2.2.5

Since the grayscale gradient is not updated, it is necessary to update the reference frame 

during an analysis if there is significant strain or rotation. An obvious cause for updating the 

reference is in the case of rotation. As an example, consider a rotation of the region of interest 

of 90° counter-clockwise relative to the reference frame. In this case, /CI∂ ∂x  should, 

according to Equation (2.31), be equal to  

1 0 1

1 0
C C C C CRI I I I II

X Y Y X
−∂ ∂ ∂ ∂ ∂∂

= = = −
−∂ ∂ ∂ ∂ ∂ ∂

F
x X  
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while the assumption of =F 1 , i.e. no rotation, would give  

C C CI I I

X Y

∂ ∂ ∂
=

∂ ∂ ∂x  

This would obviously not converge to a correct result. The algorithm presented here updates 

the reference frame by doing all the steps already presented with the exception of defining the 

position of the element. This means that an update is treated like starting a new analysis. The 

reference grayscale values are hence also updated, which has some important advantages 

when measuring large deformation, translation or rotation. The effect of rotation on the 

algorithm was illustrated by the simple example above. Large deformation and translation can 

on the other hand change the color of a point. This can happen as the sample moves relative to 

the light sources, or by stretching the paint resulting in a change in paint color. Stretching of 

the sample can change all the terms in the deformation gradient, and hence make the 

assumption that F  is close to I  invalid. The reference update interval in terms of number of 

pictures should hence vary from test to test, primarily depending on picture frequency and 

deformation speed. A good indication of when to update the reference frame can be found 

from the number of iterations required to fulfill the convergence criterion. This number will 

slowly rise as the sample deforms, and then return to a base level when the reference is 

updated. The update frequency is in this thesis selected manually on a basis of test 

characteristics, where deformation speed relative to picture frequency is the dominant factor.  

 Post processing 2.2.6

The key information from a DIC analysis is the positions of the nodes for all images of 

interest. The deformation gradient F , describing the deformation from the initial, undeformed 

configuration to a deformed configuration at time t  can then be expressed as 

 
11

, , , ,

, , , ,

x x X X

y y Y Y

ξ η ξ η

ξ η ξ η

−−
∂ ∂ ∂

= = =
∂ ∂ ∂

N n N n N n N nx x X
F

N n N n N n N nX
 (2.39) 

where ,ξN and ,ηN are defined in Equation (2.20) and  is the element coordinate vector equal 

to [ ]
T

ξ η=  . It is important to note that X  now refers to the image where deformation is 
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assumed zero, and that it is not directly related to the reference images in the DIC algorithm. 

Applying polar decomposition, F  can be written as  

 =F RU  (2.40) 

where R  is an orthogonal rotation tensor (i.e., it describes local rigid rotation) and U  is the 

right stretch tensor. The rotation tensor is found by a simple iteration scheme [23] 

 
( )( )

1 0with
2

Tk k

k

−

+
+

= =
R R

R R F  (2.41) 

With R  given, the stretch tensor is obtained as 

 T=U R F   (2.42) 

Logarithmic strain tensor  can now be calculated as the logarithm of U , so we have 

 ( )ln= U   (2.43) 

2.3 Evaluation and verification of the DIC code 

 Verification 2.3.1

The presented DIC implementation will here be evaluated and verified by comparing the 

performance of the Q16 and a Q4 element when applied to the digital pictures of an HDPE 

sample in tension. This case is chosen because it has the largest deformations of the tests 

reported in this thesis. The specimen also exhibits significant strain localization. Further 

validation of the code will be presented in Section 4.1. 

Figure 2.6 shows a HDPE uniaxial tension test at five different stages of deformation, 

indicated by picture number, starting with an undeformed state. A coarse Q16 DIC mesh 

consisting of 5 1×  elements is shown in red, with initial element dimensions of 

270 300 pixh w× = × , roughly corresponding to 20.45 2 mm× .  
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Reference 200 300 400 500 

Figure 2.6: Element mesh for DIC analysis of HDPE at reference configuration and four 
subsequent stages of deformation specified with picture numbers. 

A line approximately in the longitudinal Y and y-direction of the specimen is then defined 

through the center of the elements with a local coordinate 0.5ξ = , as shown in blue in Figure 

2.7. The evaluation will pay attention to the longitudinal logarithmic strain as a function of 

current y-coordinate for the pictures shown in Figure 2.6. The mesh for the Q16 element is as 

shown in Figure 2.6 and Figure 2.7, while four different meshes are applied for the Q4 

element. The coarsest mesh has Q4 elements with the same size as the Q16 elements, and the 

mesh is successively refined by dividing the Q4 element in two. Thus, the four meshes with 

Q4 elements have 5, 10, 20 and 40 elements over the height corresponding to the total height 

of the Q16 elements, and the dimension of the Q4 elements is, respectively, 

270 300 pixh w× = × , 235 300 pix× , 217.5 300 pix×  and 28.75 300 pix× . 
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Figure 2.7: Path (blue line) for strain calculation on circular HDPE uniaxial tension sample with 
5 Q16 elements (red). 

Figure 2.8 shows the longitudinal logarithmic strain along the blue line on the specimen in 

Figure 2.7 at the four stages of deformation depicted in Figure 2.6 (excluding the reference 

frame). The four different meshes for the Q4 elements are addressed in sub-figures (a) to (d). 

There are several noteworthy observations in these plots. Firstly, the strains obtained with the 

Q4 elements converge to those obtained with the Q16 elements when the mesh is refined. 

This serves as a validation of the DIC implementation of the Q16 element. Secondly, based 

on the modest strain discontinuities when moving from one element to the next, the Q16 

element seems well suited to describe the strain localization in the specimen. It is also a trend 

that the two element types predict the same strain at the center of the Q4 elements, and are 

furthest apart at the edges of the Q4 elements. Finally, it is worth noting the irregular strain 

profile of the Q4 analysis with the smallest elements, suggesting that the optimal element 

height for the Q4 elements is somewhere in-between 17.5 and 8.75 pixels for this analysis.  
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(a) Q4 1/1 height (b) Q4 1/2 height 

  
(c) Q4 1/4 height (d) Q4 1/8 height 

Figure 2.8: Profiles of longitudinal strain from a uniaxial tension test on HDPE as measured by 
use of a Q4 and a Q16 element at pictures 200, 300, 400 and 500. Increasing strains corresponds 
to higher picture numbers. 

A second comparison between the performance of the element sizes and types is concerned 

with the ability to detect the correct grayscale values of the pixels compared to the reference 

image. The difference in grayscale values between the reference and current image in the 

region of interest can be expressed as ,
i i
R C kI I−  for a point i  at iteration k . This difference is 

the driving force of the DIC algorithm, and it is a measurement of the algorithm’s ability to 

track an area. The average absolute error at the end of an iteration can then be calculated as  

 
,

1

i i
R C en

N

d
i

I I

N
=

−

  (2.44) 
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where N  is the numbers of points used in the analysis and the subscript end  signifies that 

Equation (2.44) employs the final interpolated grayscale values found when the convergence 

criterion in Equation (2.38) has been met. This is shown for the four Q4 analyses and the one 

Q16 analysis in Figure 2.9 as a function of image number. The results here are more or less as 

expected, where the coarse Q4 mesh is seen to struggle when the neck starts to form after 

image 200. A finer Q4 mesh reduces the error, even in the case of the finest Q4 mesh. This 

can be seen as contradictory to what was seen in Figure 2.8, where this mesh had trouble 

reproducing a smooth strain field. This underpins the importance of not using grayscale error 

as the sole performance criterion. The Q16 element mesh has the smallest error by a slight 

margin, but the difference is minor. It should be noted that the error is here calculated with 

respect to image 1, while the actual analyses updated the reference frame. The large average 

difference above 10 in 8-bit grayscale value is a result of the paint changing color from being 

stretched as well as a change in light glare.   

Figure 2.9: Average absolute grayscale error comparison between different sized Q4 elements 
and constant sized Q16 elements. Values are relative to a 8-bit grayscale ranging from 0-255. 

With the result presented in Figure 2.8 and Figure 2.9, the Q4 and Q16 elements seem to 

perform at the same level, when run at their individual optimal mesh size. Defining the point 

of maximum strain is however an easier task with the Q16 element, since the strain field has a 

maximum within an element, and the coarser mesh ensures that the neck is contained within a 
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single element. This can be illustrated by plotting the strain along the same path as above, but 

now presented as a function of the reference Y -coordinate. Figure 2.10 shows where the point 

of maximum strain is in the reference configuration for the picture interval 200 to 400. The 

maximum variation of this position is equal to 0.83 pixels, which is considered acceptable.  

(a)  Longitudinal strain vs. Initial Y-position (b)  Y-position of maximum strain 

Figure 2.10: Point of localization in an HDPE uniaxial tension test as defined by the point of 
maximum longitudinal strain. 

 Mesh sensitivity 2.3.2

Another attractive property of the Q16 element is its low mesh sensitivity. This is here 

illustrated by comparing the analysis shown above with an analysis where the entire mesh has 

been moved 10 pixels in the Y-direction. Each element has a height 70 pixh = . These two 

analyses then result in the strain profiles and positions of maximum strain shown in Figure 

2.11. 
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Longitudinal strain vs. Initial Y-position Y-position of maximum strain 

Figure 2.11: Mesh sensitivity for Q16 element, where location of point of localization is 
compared for two different mesh placements. 

As seen in the figures above, the maximum strain seems to be preserved. The Y-positions of 

these points has shifted in the same direction as the mesh translation, but only by an average 

of about 1 pixel. The maximum strain in the two analyses is shown as a function of image 

number in Figure 2.12, where they can be seen to be in good agreement, with a maximum 

deviation of 3%.  



32 

 

Figure 2.12: Mesh sensitivity of maximum strain, where maximum longitudinal strain is found 
from two DIC analyzes where the mesh has a 10 pixels difference in vertical placement between 
the two analyzes.    

 2D DIC analysis on non-plane surfaces 2.3.3

As half of the experimental data presented in this thesis involves tension samples with a 

circular cross-section, it is worth commenting on the implication of using 2D DIC on a non-

planar surface. 

An ideal surface for performing 2D DIC is a surface that resides on a plane with its normal 

vector pointing towards the camera, and where this plane does not move in its normal 

direction during deformation. A case where an object which is to be measured moves towards 

or away from the camera is the easiest concept to investigate first. Figure 2.13 shows a basic 

pinhole camera model with a field of view described by the angle α . This camera is pointed 

towards two objects, both with lengths L , located at distances u  and u u+ Δ  from the 

camera. Intuitively, it seems reasonable that the object furthest away would be perceived as 

smaller by the camera. This relation can be formalized by realizing that perceived size of an 

object at a distance u  is relative to the diameter or height H  of the cone defining the camera 

view at the same distance.     



33 

 

Figure 2.13: Pinhole camera model for calculation of camera perceived length. 

It is now possible to calculate the perceived lengths 1L  and 2L  of the two objects in Figure 

2.13, using this simple model. The cone will have two different heights at the two distances u  

and u u+ Δ , and they will be equal to   

 
( )

( ) ( )
1

2

2 tan / 2

2 tan / 2

H u

H u u

α

α

=

= + Δ
  (2.45) 

The perceived length can now be calculated as the ratio between actual length and the height 

of the view cone at the distance of the object. We can then express the two perceived lengths 

as   

 
( )

( ) ( )

1
1

2
2

2 tan / 2

2 tan / 2

L L
L

H u

L L
L

H u u

α

α

= =

= =
+ Δ

  (2.46) 

The ratio between these two lengths can now be calculated as  

 1

2

1
L u u u

L u u

+ Δ Δ
= = +   (2.47) 

From Equation (2.47) it can now be seen that the closest object will appear to be a factor 

1 /u u+ Δ  larger than the object furthest away. This equation can now be applied for the real 

world case where a neck forms in a uniaxial tension test. The initial distance between the 
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camera and the surface of the sample is then equal to u . If the neck now is conservatively 

assumed to reduce the cross sectional area towards zero, the surface will then move a distance 

of up to half the thickness of the sample further away from the camera. Assuming a circular 

cross section with radius r  we can then from Equation (2.47) estimate the relative error in 

perceived length as 1 /r u+ . Since large deformation of polymers is of interest, it is in a 

tension test necessary to place the camera around one meter from the samples in order to keep 

the sample within the frame of the image throughout the deformation. Assuming a radius 

equal to 3 mm, which is the radius of the samples used in the experimental work in this thesis, 

the perceived length factor is then equal to 

 
3

1 1.003
1000

mm

mm
+ =   (2.48) 

This effect is hence considered as only a minor source of inaccuracy. 

A similar complication comes when a plane with its normal vector pointing towards the 

camera rotates about an axis within the plane. This will result in points moving towards or 

away from the camera. This results in the same type of change in perceived length, but given 

the limited distances a point on the sample can move towards or away from the camera, this is 

not investigated further. It might also be noted that in the analysis of uniaxial tension data, it 

is the point of initial necking that is of interest in this thesis. This area can be assumed to not 

rotate during deformation, which also makes a further analysis of the effects of rotation 

superfluous. A thorough investigation of the effects of out-of-plane motion on 2D and 3D 

DIC results has been done by Sutton et al. [24]. 

Measuring average radial stretch on a circular sample with a 2D DIC algorithm will not result 

in any significant inaccuracy if the mesh is applied to the whole visible width of the sample. 

This follows from the fact that the measured average radial stretch over the entire diameter 

can be expressed as 0/D D , where D  and 0D  is the current and initial diameter of the 

sample. This will be demonstrated in the Section 4.1 by comparing the results from DIC and 

an edge tracing algorithm. 
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3 Edge Tracing 

Edge tracing is used as a tool to quantify the parameters describing the geometry of the neck 

of a tension sample with a circular cross section. The characteristics of interest are the current 

minimum radius of the sample and the curvature of the neck. The method for establishing 

these parameters will be shown in this chapter. 

3.1 Edge Identification 

Identifying an edge is done by searching through the derivative of the grayscale value for a 

horizontal line of pixels parallel with the x-axis, where the grayscale value is numerically 

differentiated with respect to x. The location of an edge corresponds with a relatively large 

change in the absolute value of the derivative compared to the background noise. Figure 3.1 

(a) shows the position of such a horizontal line, while Figure 3.1 (b) shows the corresponding 

grayscale values along the line. A grayscale value of 255 is equal to pure white, and 0 

corresponds to black. It can be seen that even though the background appears to be white, 

some small level of gray is present together with some noise. It can also be seen that there is a 

trend of slight darkening from left to right.  
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(a) Horizontal pixel line (b) Grayscale value along line 

Figure 3.1: Grayscale value curve (b) along a horizontal line of a picture (a). 

To reduce the noise seen in Figure 3.1 (b), the image is filtered with a 2D moving average 

algorithm, substituting each grayscale value with the average value of itself and the closest 25 

pixels, creating a pixel square of 5×5 pixels. The filtered grayscale value curve is shown in 

Figure 3.2 (a), while Figure 3.2 (b) shows a comparison between the differentiated grayscale 

value for the raw and filtered data given in Figure 3.1 (b) and Figure 3.2 (a), respectively. The 

differentiation is done numerically with the central difference method.  

The goal of the algorithm is to identify the two large peaks seen in the derivative plot. A good 

quantification of the success of the moving average filter is then the ratio of the values of the 

large peaks divided by the maximum noise level, which in this case is equal to 4.38 before 

filtering and 14.7 after the filter has been applied. 
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(a) Filtered row of pixels (b) Raw and filtered absolute derivative of 
line 

Figure 3.2: Effect of filtering an image with a moving average. 

Identifying the peaks is done separately for the left and the right peak. The left peak is found 

by moving from left to right and identifying the first significant peak, while the right peak is 

found by moving right to left. This is necessary since the paint on the sample surface can 

create higher peaks than the edges do. The algorithm starts by moving from one of the sides 

towards the center, and searches for the first point above a set threshold which in this case is 

set to 5. This first point is now assumed to be a start point of the peak. The algorithm then 

climbs further up the peak until the value of the differentiated grayscale values is no longer 

increasing. This is equivalent with the second derivative changing sign, and marks the 

maximum value of the peak. 

The result of doing this for all the horizontal lines of interest is shown in Figure 3.3. The lines 

or area of interest is found from the DIC results, where the positions of the DIC nodes with 

the highest and lowest y-coordinate define the search area. The tracing process is then 

automated and performed on all the pictures from the test at hand.  
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Figure 3.3: Traced edges of uniaxial tension test after necking. 

3.2 Edge Mirroring 

In order to find the radius, slope and curvature at a given point of the sample from the edge 

detection data, it is useful to know the current longitudinal axis of the sample. This axis might 

have a small deviation from the vertical y-axis in Figure 3.3 due to a combination of 

inaccurate mounting of the sample, non-level camera or eccentricity occurring during the 

stretching of the sample. The longitudinal axis is identified by assuming that the axis is a 

symmetry line for the two edges found from the edge identification procedure.  

Let a vector p define a point that has been located on the edge of the sample. This vector can 

now be decomposed into three vectors as 0= + +p x h r . The first term 0x  defines an offset in 

the x direction of sample symmetry axis, while h has the same angle as the symmetry axis, 

with a length defining the position of the point p along the symmetry axis. The radius of the 

sample at this point is now described by r, which is a perpendicular to the vector h. This 

decomposition is shown in Figure 3.4.  
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Figure 3.4: Edge point decomposition for symmetry calculation.  

 As stated, p is decomposed as  

 0

0
x

y

p x

p
= = + + = + +0p x h r h r  (3.1) 

Further let the vector h be defined by a length H and an angle , where  describes the angle 

between the symmetry axis and the y-axis with positive clockwise rotation. The vector h can 

then be written as   

 
21 1

a H

a
=

+
h   (3.2) 

where ( )tana α= . Let the vector r  have a length R. Since r is defined as being normal to h, 

r can now be written as 

 
2

1

1

R

a a
=

− +
r   (3.3) 

 Equation (3.1) is solved for H  and R , giving 
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The decomposition of p can then be written as 

 0 0 0( ) ( , , ) ( , , )x a x a x= + +0p x h p r p   (3.5) 

Assuming symmetry, there should for each point on the edge = + +0p x h r  be a mirror point 

= + −0p x h r  with r in the negative direction. If a  and 0x  represent the true symmetry axis, 

two symmetrical points p and p  should then satisfy the two equations 

 0 0 0 0 0( , ) ( , , ) ( , , ) ( , , ) ( , , )a x a x a x a x a x= + − + =g h p r p h p r p 0   (3.6) 

If a  and 0x  are not known, the scalar error from an assumed symmetry axis can then be found 

as  

 0( , ) Tf xα = g g  (3.7) 

describing the absolute distance between two points, when one of them is mirrored about an 

axis given by α  and 0x . This function is then linearized with a first order Taylor expansion to 

give 

 1
00

k k
k k

af f
f f

xxα
+

Δ∂ ∂
= +

Δ∂ ∂
 (3.8) 

This equation can be optimized for 2n >  points with a least square fit algorithm by first 

writing it in vector form 
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where kf  is a vector containing n  values of kf , and the gradients are collected in the ( )2n×  

matrix k∂F . The least square zero solution to Equation (3.9) yields 

 1

0

( )T T
k

a

x
−

Δ
= ∂ ∂ ∂

Δ
F F F f  (3.10) 

Equation (3.10) provides updated values of a  and 0x , and the iteration continues until a 

convergence criterion is met. In this implementation, convergence is assumed when 

[ ]( ) 5
0max 10 pixelsa x −Δ Δ < . 

When a  and 0x  are known for a given picture, it is possible to convert the coordinates of both 

the left and right edge from picture coordinates to the coordinate system H - R , defined by 

Equation (3.4). Figure 3.5 shows the edges found in Figure 3.3 in H - R  coordinates, where in 

subfigure (a) it is assumed that 0α = , while in subfigure (b) the algorithm has been applied 

resulting in 0.0079α = − , equal to 0.45− . The red line is the left edge plotted with the 

absolute value of R  and the blue line is the right edge. It is seen from the difference in the 

two subfigures that even a small angle has a significant impact. 
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(a) Overlap with non-rotated symmetry axis (b) Overlap with rotated symmetry axis 

Figure 3.5: Sample edges in H-R coordinates. The red curve is the left edge plotted with the 
absolute value of R while the blue curve is the right edge. 

The good agreement found in Figure 3.5(b) implies that the symmetry is well preserved for 

the sample during deformation. It also means that the edge data may be smoothed by 

averaging the data from both the left and the right edge in H - R  space. This is useful since 

the accuracy of the original edge data is of the order of one pixel. 

By applying the algorithm to all the pictures of a test it is possible to look at the angle α  of 

the symmetry axis as a function of picture number. The shape of the curve describing this 

angle can also be found from DIC via R  from the polar decomposition defined in Equation 

(2.40). Figure 3.6 shows the symmetry line angle found from the algorithm and from R , 

where the initial angle from R  is set equal to the initial angle found from the mirror 

algorithm. R is here calculated for the point of necking of the sample. 
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Figure 3.6: Angle of symmetry axis as a function of image number, found from edge mirroring 
(red) and DIC (blue). 

As seen in Figure 3.6, the trends are quite similar for the two different calculations, which 

suggests that the measured rotations are not an artefact of the algorithm. The shape of the 

curve might indicate that the sample was slightly misaligned in the machine. It seems that the 

sample first sets by uneven slipping at the machine grips (image 0-250), before establishing a 

final misalignment that is slowly corrected as the sample gauge length increases. The angle 

found from the presented mirroring algorithm is preferred over the angle found from DIC 

since it represents the orientation of the sample as a whole, as well as providing an initial 

angle. 

3.3 Curvature of Neck 

The curvature of the neck can be found from the H - R  data shown in Figure 3.5 (b). The first 

step is to find the H coordinate of the center of the neck, denoted CH . The picture coordinates 

Cx and Cy for this point can be found from the DIC results by identifying the element 

coordinates of the point with the largest longitudinal strain when necking occurs. HC can then 

be calculated from Equation (3.4)II by substituting xp  and yp  with Cx  and Cy , and using the 

established values for a  and 0x . It is now possible to calculate the first derivative /dR dH  of 
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the data in Figure 3.5 (b) by numerical differentiation and then performing a linear fit around 

CH . Figure 3.7 shows the first derivative of the edge data shown in Figure 3.5 along with a 

linear fit of a sub-region around CH . This sub region is here colored red and has the range 

75CH H pix= ± . The figure also illustrates the linearity of the slope in the area of the neck, 

which is a general trend for any point in time during a test.  

Figure 3.7: Angle of neck region as a function of sample length position shown with a linear fit 
around the center neck position. 

The general expression for signed curvature κ  of a function ( )y x  is  

 
( )( )

3/22
1

y

y
κ

′′
=

′+
 (3.11) 

but since the slope of the center of the neck is zero we get yκ ′′= , which means that the slope 

of the linear fit of /dR dH  can be assumed to represent the curvature of the center of the 

neck. When this method is applied to a series of pictures representing the deformation of a test 

sample, it is possible to plot curvature as a function of picture number as shown in Figure 3.8. 

It is seen from the figure that the curvature has the shape one would expect, with an initial 

value close to zero, then exhibiting a peak as the neck starts to form, before returning to zero 

as the neck propagates away from the initial point of localization. 
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Figure 3.8: Neck curvature of a uniaxial tension test as a function of image number. 
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4 Analysis of Samples Subjected to Uniaxial Tension 

This chapter presents the methodology used to determine the response the investigated 

polymers has to uniaxial tension. This response includes true stress and strain, Bridgman-

correction of the stress, change of volume, and treatment of data from a thermal camera. 

Results from the individual tension tests follow in the next chapter, while Chapter 6 presents 

the compression data. 

Each test is analyzed in two main steps. First the DIC algorithm described in Chapter 2 is 

used. Thereafter, the edge tracing algorithm presented in Chapter 3 is applied. This order is 

preferred since the edge tracing method uses the coordinates of the DIC element nodes to 

limit its trace area. 

Before running the DIC analysis, it is necessary to define a mesh on the undeformed sample. 

Applying the higher-order DIC element presented in Section 2.2.1, the mesh consists of a 

single element in the width direction of the sample and an odd number of elements in the 

length direction. The mesh is centered and rotated to align with the initial orientation of the 

sample. Rotating the mesh to the sample orientation has the benefit that the element 

coordinate system has the same rotation as the sample coordinate system R H− , where 

R H− is discussed in Section 3.2. A single run of the edge tracing algorithm provides a good 

estimate of the sample symmetry axis vector. Afterward, it is easy to rotate and center the 

mesh along the transverse axis of the sample. It is however also desirable that the centroid of 

the center element is located at the section where necking first occurs along the longitudinal 

axis of the sample. This choice of center point for the mesh best exploits the element shape 

functions, which are chosen so as to describe a parabolic strain field. The reference 

coordinates of this point are however unknown, hence it is necessary to run an initial DIC 

analysis up to necking to determine this coordinate. With an initial DIC analysis, it is possible 

to plot longitudinal strain as a function of the image coordinates in the first image, as shown 

in Figure 2.10, facilitating the final placement of the mesh. Figure 4.1 shows an image of an 

undeformed sample with a 1 3×  mesh which has been aligned with the vertical symmetry-axis 

of the sample and the position of the neck. In the reference image in Figure 4.1, the 

symmetry-axis is found to be rotated clockwise with an angle 0 0.514α = ° .  
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Figure 4.1: Mesh alignment on uniaxial tension test with edge tracing in red, mesh in blue and 
sample symmetry axis in green. 

With the mesh established, a full DIC analysis is performed. Subsequently, the edges of the 

sample are traced in all the images, using the full DIC analysis to limit the region of interest. 

This provides sample edge data for all the images expressed in a current R H− system, as 

well as providing the curvature of the neck. 

4.1 Strain Measurements 

With a complete DIC and edge analysis, it is possible to calculate the strains at the critical 

section of the sample, i.e. the section first experiencing yielding. This is defined as the section 

of initial necking. It is found by identifying the point of maximum longitudinal strain along 

the length axis of the sample around the time when the sample shows visible necking. Since 

the mesh is centered with respect to the location of the neck and rotated with the initial sample 

orientation, the critical section of the sample is defined by the local element coordinates 

( ) ( ), ,0.5ξ η ξ=  for the center element.  

A representative description of local deformation in the neck is then found from the average 

of the deformation gradient along the line ξ . The average deformation gradient F is 

expressed as  

 
1

0

( ,0.5)dξ ξ=F F  (4.1) 
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where it is observed that the element dimension is unity in the local ( ),ξ η coordinate system. 

This expression is approximated numerically as 

 0

( / ,0.5)

1

N

i

i N

N
=≈

+

F
F  (4.2) 

where N  defines the number of points in the averaging process. Consistent results are 

obtained for values of N larger than 5 , but since the operation is computationally cheap, 

10N =  is used in the further work.  

With F defined, the average rotational tensor R  is found with the iteration described by 

Equations (2.41), and the average right stretch tensor U  is calculated as T=U R F . 

The matrix representation of U  denoted U  is defined in the picture coordinate system, while 

what is of interest here is a matrix representation U  that refers to a coordinate system that has 

been rotated to the orientation of the sample in the reference picture. This coordinate 

transform is then expressed as  

 TU QUQ=  (4.3) 

where Q is the transformation matrix defined as 

 0 0

0 0

cos( ) sin( )

sin( ) cos( )
Q

α α

α α
=

−
 (4.4) 

Here, 0α  is the initial angle of the sample relative to the picture frame, with positive 

rotational axis counterclockwise. With U  defined, the longitudinal and radial stretch Lλ  and 

Rλ  are given as 

 22L Uλ =  (4.5) 

and 
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 11R Uλ =  (4.6) 

 Next, the matrix representation of the true strain tensor ε , defined in the same coordinate 

system as U , is calculated from 

 ( )ln Uε =   (4.7) 

The first and second diagonal element of ε  are then defined as the average radial and 

longitudinal true strain Rε  and Lε , respectively, in the section experiencing the first onset of 

necking. 

After Rλ  has been calculated it is possible to evaluate the DIC results by comparing Rλ with 

0/R R  found from edge tracing. The ratio 0/R R is evaluated at a point H  which is given in 

Equation (3.4) as a function of current coordinates ( ),x y  and the symmetry axis parameters 

α  and 0x . Considering the center of the element, the coordinates ( ),x y  are calculated from 

the shape functions, current node positions and local element coordinates ( , ) (0.5,0.5)ξ η =  

with Equation (2.2). A comparison between Rλ and 0/R R  is shown in Figure 4.2, where it 

can be seen that the maximum difference between the measurements is around 1%. This 

comparison between radial stretch calculated from the edge tracing and DIC algorithm is done 

for all tests, and serves as an indication of the quality of a DIC analysis. 
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(a) Radial stretch (b) Deviation of DIC from Edge Tracing 

Figure 4.2: Comparison of radial stretch calculated with DIC and Edge Tracing. 

Equivalent plastic strain and equivalent plastic strain rate, p  and p  respectively, are also of 

interest. Equivalent plastic strain is defined as 

 el
L L Lp

E

σ
ε ε ε= − = −   (4.8) 

where E  is the Young’s modulus of the material in question, and σ  is the average true stress 

in the longitudinal direction, as defined in Section 4.4. Similarly, longitudinal plastic strain 

rate is defined as 

 el
L L Lp

E

σ
ε ε ε= − = −   (4.9) 

Since the Young’s modulus is not necessarily constant for polymers, it is assumed that the use 

of an effective modulus up to a stress level defined as yield stress is an adequate 

approximation.  

4.2 Elastic Parameters 

It is rather straightforward to find Young’s modulus E  and Poisson’s ratio ν  when the stress 

and strain have been determined. Both parameters are calculated in the elastic domain, 
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defined as the strain domain from zero to the onset of yielding. Poisson’s ratio is simply 

calculated as 

 R

L

ε
ν

ε
= −   (4.10) 

For a varying Poisson’s ratio, the equation will then describe the mean value from zero up to a 

given point of strain. Young’s modulus is similarly defined as an effective elastic stiffness, 

rather than a true tangent, and is defined as 

 
L

E
σ

ε
=   (4.11) 

The elastic modulus is however sensitive to strain rate, so in order to quantify the observed 

viscoelastic response, a model is assumed for the strain rate dependency of the modulus, viz. 

 ( ) ( )0
0

log L
L LE E

ε
ε η ε

ε
= +   (4.12) 

where 0E  is Young’s modulus at a constant strain rate 0ε  and η  is the viscosity of the 

material in the elastic domain. The factor η  then gives the additive increase of the modulus 

for a ten times increase in strain rate, compared to 0ε . The viscosity can then be found by 

looking at the difference in Young’s modulus of two tests performed at different speeds. 

Considering two tests k and l, the difference in stiffness k lE E−  is then, according to the 

model, equal to 

 ( )
0 0

log log
k l

k l L L
LE E

ε ε
η ε

ε ε
− = −   (4.13) 

 which solved for η  gives 

 ( )
( )log /

k l
kl

L k l
L L

E E
η ε

ε ε

−
=   (4.14) 
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If several pairs of tests performed at different speeds produce similar curves for η  as a 

function of strain, the mean curve will describe the elastic viscosity of the material.  

4.3 Calculation of Volumetric Strain  

Average volumetric strain in the neck can easily be calculated if it is assumed that there exists 

a material volume with cylindrical shape that remains a cylinder throughout the deformation, 

yet with an evolving height and radius. Considering the section which necks first, the cylinder 

has an initial radius 0R , equal to the initial radius of the sample, and a small height 0h . It is 

then straightforward to find the volume ratio Vλ  as 

 
22

20 0
2 2

0 0 0 0 0

( )L R
v L R

h RV hR

V h R h R

λ λπ
λ λ λ

π
= = = =  (4.15) 

where Lλ  and Rλ  were determined in Equations (4.5) and (4.6), respectively. This method is 

hereafter referred to as the “cylinder method”.  

The assumption of conserving the cylindrical shape throughout the entire deformation process 

is however not correct for a uniaxial tension test that exhibits necking. The problem with the 

assumption is illustrated in Figure 4.3, showing a schematic representation of the neck of a 

circular uniaxial tension test sample with a coordinate system ( ),r h  placed at the volumetric 

center of the sample. Any initially square infinitesimal element located at a point 

( )( ),R h h=X  at the surface of the sample, has to remain both parallel to the surface, now 

rotated with an angle β , and square. The conservation of the square shape comes as a result 

of the absence of shear stresses on the free surface of the sample. This means that any initially 

straight line, stretching from 0r =  to r R=  with 0h ≠ , will not remain straight when 

necking occurs, hence a cylinder does not remain a cylinder.   
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Figure 4.3: Schematic description of deformation in a neck of a tension sample with circular 
cross section. 

What seems more reasonable is to assume that a cylinder in the reference gauge section 

without any neck deforms into a cylinder with parabolic-shaped end caps, as seen in Figure 

4.4. Thus, it is assumed that the height ( )h r  of the deformed cylinder, centered at the neck, is 

dependent on the radius r  as well as the current angle β  of the surface, viz. 

 2 2( ) ( ) / 2
2

h r R r H
R

β
= − +  (4.16) 

where H is the current height of the cylinder inside the parabolic caps. The curve described 

by the equation is shown in Figure 4.4. 
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Figure 4.4: Principal for volumetric strain correction of tension sample with a circular cross 
section when a neck is formed. 

If we now consider the local change of volume in the neck, i.e. H  is small, we can assume 

that the radius R of the necked section is constant, and equal to the minimum radius of the 

neck. We can further estimate the angle β  as / 2Hβ κ≈ , where κ is the curvature of the 

neck, see Equation (3.11). Assuming axi-symmetric conditions, the total volume V of this 

deformed cylinder with parabolic end-caps and height ( )2 h r⋅  is then  

 2 2

0 0

2 2 ( ) 4 ( )
4 2

R R H H
V rh r dr R r r r dr

R

κ
π π= = − +  (4.17) 

where Equation (4.16) and the estimate / 2Hβ κ≈  were employed in the last equality. 

Performing the integration, the volume reads 

 
3 2

24 1
16 4 4

H R HR R
V R H

κ κ
π π= + = +  (4.18) 

Setting 0 LH H λ=  and 0 RR R λ= , where 0H  and 0R  are respectively the initial height and 

radius of the cylinder, we can express the volume as  
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 2 2
0 0 1

4L R

R
V R H

κ
π λ λ= +  (4.19) 

Dividing this expression by the initial volume 0V  gives 

 
2 2
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2

0 0 0

( / 4 1)
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4
L R

V L R

R H RV R

V R H

π λ λ κ κ
λ λ λ

π

+
= = = +    (4.20) 

It is seen that a curvature κ  equal to zero, which corresponds to a cylindrical shape of the 

sample, gives the same expression as that of Equation (4.15). A further observation is that the 

final expression is independent of a length scale. This method is hereafter referred to as the 

“parabolic method”.  

The performance of this method is illustrated by applying it to a uniaxial tension test of a M16 

steel bolt of grade 8.8. Since steel and other metals normally are assumed to be isochoric 

during plastic deformation, the bolt is well suited as a benchmark for the correction. A 

snapshot of the bolt with data gathered by DIC and edge tracing is shown in Figure 4.5, where 

the bolt is depicted in its ultimate state. Clearly, a pronounced neck is present. The DIC 

algorithm described in Chapter 2 gives Lλ and Rλ  while the edge tracing algorithm described 

in Chapter 3 gives κ  and R . It is now possible to compute the local volumetric strain with 

both the cylinder and the parabolic method, as given by Equations (4.15) and (4.20) 

respectively.  
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Figure 4.5: DIC and edge tracing data from a uniaxial tension test of a steel bolt, shown with a 
color map of longitudinal true strain. 

The evolution of the neck is well captured by plotting the curvature of the neck versus local 

longitudinal strain, as shown in Figure 4.6. The curvature can be seen to be practically zero up 

to a strain of about 0.1, after which it increases almost linearly with the longitudinal strain.  
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Figure 4.6: Neck curvature vs. longitudinal strain for uniaxial tension test of a steel bolt. 

The volumetric strain calculated with the two methods is shown in Figure 4.7, where 

volumetric strain is taken as the logarithm of the volumetric stretch, i.e. ( )lnV Vε λ= . As 

expected, the methods produce identical results before necking occurs at 0.1Lε ≈ , but then 

rapidly diverge. It is clearly seen that the results obtained with the parabolic method is much 

closer to what one would expect for a steel sample in tension, never resulting in negative 

volumetric strain and ending on a positive, yet moderate, volumetric strain of 0.021. The 

measured positive volumetric strain could be related to void growth in the material. On the 

other hand, it is highly unlikely that the steel has a negative volumetric strain while subjected 

to positive hydrostatic stress, as suggested by the cylinder method. Assuming there is zero 

change in volume, the volumetric stretch from the parabolic method has a maximum absolute 

error of 2.1%, while the standard cylinder method has a maximum absolute error of 16%.    
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Figure 4.7: Volumetric strain vs. longitudinal strain for uniaxial tension test of steel bolt, 
calculated with the parabolic (blue) and cylinder (red) method. 

This model for the variation in longitudinal strain through the cross section then predicts that 

a general straight section method, as with the cylinder method, will always under-predict 

volumetric strain in a neck. Furthermore it can be extrapolated that this effect will vary with 

the geometrical measurements of the cross section, where a wide and thin rectangular cross 

section will produce smaller error compared to a square cross section. This might indicate that 

the negative volumetric strain reported for glassy polymers in tension by some authors [25-

28] might be an artifact. 

4.4 Representative Stress 

In principle, there are two fundamentally different strategies for extracting stress response 

from a uniaxial tension test. The first would be to not correct the stress for any varying 

parameters such as stress triaxiality, strain rate and temperature. In this case, the reported 

stress measurement from a test could be simple engineering stress or true stress. The problem 

with this approach is that the reported stress is ill-suited for comparison with other tests if the 

parameters affecting stress differ. The other strategy is then to try to calculate a stress that is 

independent of varying affecting parameters. In this section the effects of triaxiality, strain 

rate and temperature will be discussed.   
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The average true stress in the longitudinal direction is easily calculated as  

 
2L

F F

A R
σ

π
= =  (4.21) 

where F  is the force measured by the test machine. This stress will however not necessarily 

represent the equivalent stress in a uniaxial loading scenario when necking occurs because 

two transverse normal stress components also are present. The stress triaxiality correction of 

Bridgman defines the equivalent Mises stress Mσ  as 
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 (4.22) 

where R  is the current radius of the sample and κ  is the curvature of the neck. The 

Bridgman correction assumes a material that yields according to the Mises yield criterion, and 

hence that yielding in the material is independent of hydrostatic pressure. Further, it presumes 

that all elements in the center section deform uniformly, resulting in the same yield stress 

across the center section [29]. Neither of these assumptions are necessarily correct for 

polymers, but the correction does give some indication of the difference between equivalent 

and longitudinal stress. As an example and a reference, Figure 4.8 shows the Bridgman 

correction factor, defined as the ratio /M Lσ σ , as function of curvature for three different 

constant radii R . The selected range of radii and curvature covers the cases occurring in the 

tests, indicating that the uniaxial stress Lσ  overestimates the equivalent stress Mσ  with a 

factor not larger than about 1.1. For comparison, the overestimation factor is equal to 1.4 for 

the steel bolt shown in the previous section. The Bridgman correction is hence of less 

importance for polymers than for ductile steel materials, and can be selectively applied when 

the geometry of the neck calls for it. The true stress in the longitudinal direction may then be 

assumed to be equal to the Mises stress within a relatively small margin of error. 
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Figure 4.8: Bridgman reduction of longitudinal stress vs. curvature for three different, constant 
radii. 

The second modification to the stress comes from the fact that the tests have been performed 

with a constant cross-head velocity, which in general does not produce a constant local strain 

rate. This can be accounted for by assuming how the material reacts to a change in strain rate. 

An additive formulation is adopted, decomposing the Mises stress into one rate-insensitive 

and one rate-sensitive term as 

 0 0
0

( ) ( ) ( ) lnM v

p
p p p C

p
σ σ σ σ= + = +  (4.23) 

where C  is the plastic viscosity modulus and 0p  is a reference plastic strain rate. The 

difference in Mises stress at a certain plastic strain for two tests k and l performed with 

different plastic strain rates kp  and lp , can be written as  

 ( )0 0( ) ( ) ( ) ( )k l k l k l
M M v v v vp p p pσ σ σ σ σ σ σ σ− = + − + = −  (4.24) 

Inserting the expression for vσ from Equation (4.23) into Equation (4.24) gives 
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Equation (4.25) can be solved for klC , giving 
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where klC is identical to lkC , i.e. kl lkC C C= = . With C  established, the strain-rate insensitive 

part 0 ( )pσ  at a constant strain rate 0p  can be expressed as  

 ( ) ( )0 0
0

, , lnM

p
p p p p C

p
σ σ= −  (4.27) 

This methodology may further be extended to include the effect of temperature change. 

Equation (4.23) is expanded to account for temperature sensitivity as follows 
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where ( )Tθ  is a factor that modifies the rate-insensitive stress 0σ  as a function of current 

temperature T. TR is the reference temperature, TM is the melting temperature of the material 

and m is a material parameter governing the temperature sensitivity of the material. It should 

be noted that the viscous stress vσ  is then assumed to be independent of temperature. This is a 

simplification since it is normally assumed that viscosity increases with temperature [30-32]. 

With this expression it is then possible to express the stress at the reference temperature TR as 
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The stress 0σ  at a prescribed and constant strain rate and temperature is then expressed as  
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It might also be of interest to calculate the effective stress in a cross-section with voids. This 

can be done if it is assumed that the increase in volume is caused by the formation of 

uniformly distributed cavities in the material. Supposing that the material is isochoric, i.e. the 

macroscopic change of volume is solely related to void growth, it follows that 

 
1

V

A V
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= =  (4.31) 

where A  and V represent local cross sectional area and volume, and A  and V represent 

effective material area and effective material volume [33]. The effective stress σ  can then be 

calculated as 

 M Vσ σ λ=  (4.32) 

where Mσ  represents stress based on total cross sectional area. Effective stress should 

however be used with caution, as can be illustrated by calculating the effective stress from the 

true stress. The effective true stress σ  is then equal to 

 2
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= = = =   (4.33) 

where s  is the engineering stress. Effective stress may hence contribute to conceal bad radial 

deformation measurements, since they are not involved in the calculation. 

4.5 Thermal data 

In order for the thermal data to be used in conjunction with the DIC data, the images from the 

thermal camera have to be related to the images from the digital camera. This is necessary 

since the two cameras are pointed towards opposite faces, have different aspect ratios and 

resolution, are centered differently and have different amounts of zoom. The first step is then 

to left/right mirror the thermal images. It is then assumed that the difference in the images can 

be corrected by translating, rotating and stretching all the thermal images taken for a test by 

the same amounts. This can be expressed as the vector transformation 
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 ( )θ α + =Q v b v   (4.34) 

where ( )θQ is the rotation matrix given in Equation (4.4), v  and v  are position vectors in the 

thermal and the digital images, respectively, addressing the same physical points, α  is the 

stretch factor and b  denotes the translation of the rotated and stretched thermal image. 

Equation (4.34) has four unknowns, i.e. θ , α , xb  and yb . Applying a nonlinear least square 

fit procedure, an optimized solution is available for three or more sets of vectors iv  and iv , 

where the superscript i  refers to a physical point in the images. The first step is to re-define 

the left-hand side of Equation (4.34) in component form as  

 cos( ) sin( )i i i
x y xf v v bθ α θ α= + +   (4.35) 

and  

 sin( ) cos( )i i i
x y yg v v bθ α θ α= − + +   (4.36) 

where if  and ig  are two scalar functions of the four unknowns θ , α , xb  and yb . A first 

order Taylor expansion of if  and ig  gives 
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and  
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where the increments of the unknown quantities θ , α , xb  and yb are gathered in the vector 

Δ . The subscripts k  and ( )1k +  refer respectively to the present and next increment. It is 
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then possible to write Equations (4.37) and (4.38) as one system of equations for [ ]1,i N= , 

where the number N of vectors v  and v  is larger than two 

 1
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xk k k
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∂
≈ + Δ =
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vf f F

vg g G
  (4.39) 

where f  and g  represent vectors, each with N elements consisting of respectively if  and ig , 

and k∂F  and k∂G  are matrixes with N rows, each comprised of ˆ i
k∂f  and ˆ i

k∂g  respectively. 

The vectors xv  and yv  contain the x and y components of the N vectors v . The system is 

now iteratively optimized by solving the equation 
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and updating the values of .  

The manual process of defining similar points is shown in Figure 4.9, where six 

corresponding points have been chosen in the DIC and a left/right mirrored thermal image. As 

can be seen from the thermal image, it is not trivial to identify features of the sample, which is 

why more points than strictly necessary are selected. 
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DIC image Thermal image 

Figure 4.9: DIC and thermal image correlation by manual point identification. 

For the sample shown in Figure 4.9, the iteration process of Equation (4.40) gives the 

correlation values of Table 4.1. 

Table 4.1: Correlation values for test in Figure 4.9 

 [rad] bx [pix] by [pix] 

–0.0195                                8.1065                               892.86                              –132.19 

It can be seen from the table that the images are rotated about 1 degree relative to each other, 

and the α  factor tells us that the DIC image has approximately an 8 times higher resolution in 

each direction compared to the thermal camera. 

By applying Equation (4.34) with the parameters in Table 4.1, it is then possible to 

superimpose the thermal image onto the DIC image. This is shown in Figure 4.10, where two 

semitransparent thermal images are placed over two black and white DIC images. As can be 

seen, the correlation model and solution seems to work well, matching up images taken at 

different points of the deformation history using the same set of parameters.  
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Reference pictures Necked specimen 

Figure 4.10: Merged DIC and thermal image, where a semi-transparent colored thermal image 
is superimposed on a gray scale digital image.   

In order to correlate the temperature measured with digital image thermography (DIT) with 

the stress and strain obtained with DIC, it is necessary to have a model for adiabatic heat 

generation. For a material point undergoing plastic deformation it is assumed that a fraction of 

the plastic work is converted to heat. This fraction is referred to as the Taylor-Quinney 

coefficient χ  [34]. For a simple case where there is no heat transfer, i.e. adiabatic conditions, 

the increase in temperature T at a material point can be expressed as 

 eq
p

dT dp
C

χ
σ

ρ
=   (4.41) 

where Mρ is the material density and pC is the specific heat capacity of the material. The 

Taylor-Quinney coefficient is in general not constant. In order to estimate χ as a function of 

equivalent plastic strain, a rate form of Equation (4.41) is adopted  
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where it is assumed that ρ  and pC are constant. A change in the Taylor-Quinney coefficient 

can then signify that the ratio between stored and dissipated energy has changed.  
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5  

This chapter presents four series of tests involving two materials a semicrystalline HDPE and 

an amorphous PVC and two designs of the tension test sample. It also includes an analysis of 

the test results in accordance with the methodology outlined in the previous chapter. The first 

set that was tested used a traditional dog-bone geometry, while the second set took advantage 

of a new and improved geometry. This improved sample geometry was designed for more 

accurate DIC measurements at large strains. The time difference between the two series was 

about two years. The material was acquired about one year before the first test series. 

5.1 Experimental Setup and Material Test Samples 

 Rectangular Test Samples with Thermal Monitoring 5.1.1

HDPE and PVC were tested in uniaxial tension at room temperature (23 °C). For each 

material a total of six samples were tested at six different yet constant crosshead velocities. 

The velocities were equivalent to the six nominal strain rates 3.5 110 s− − , 3.0 110 s− − , 2.5 110 s− − ,

2.0 110 s− − , 1.5 110 s− −  and 1.0 110 s− − , calculated from the initial gauge length of the samples (33 

mm). The strain rates were chosen so as to span the range from isothermal conditions up to 

close to adiabatic conditions. The tests were monitored by both an optical and a thermal 

camera.  

The sample geometry is shown in Figure 5.1. This dog-bone shaped specimen was used for 

both materials, cut from 10 mm thick extruded plates and machined down to a constant 

thickness of 5 mm by removing 2.5 mm of thickness at both surfaces. 
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Figure 5.1: Rectangular uniaxial tension test sample for HDPE and PVC [mm]. 

The tension tests were carried out in an electronic screw-driven Zwick Z030 universal test 

machine. Data collection consisted of force and displacement measurements from the 

machine, images taken with a single 5 Mpix, 8 bit, CCD Nikon digital camera, and thermal 

images taken with a FLIR SC7500MB high-speed thermal camera. The sampling frequency 

was adapted to the velocity of the test at hand. The number of images taken per test varied 

between 100 and 300, where the faster tests had fewer images due to capturing speed 

limitations of the CCD camera system. The samples were airbrushed on one side to create a 

speckled pattern for DIC, with the digital camera facing this side. The thermal camera was 

facing the opposite, unpainted side.  

 Circular Test Samples 5.1.2

The second set of tests was performed on samples with circular cross section for the HDPE 

and PVC materials as shown in Figure 5.2 and Figure 5.3, respectively. The geometrical 

measures of the samples were custom defined to enable DIC measurements while the whole 

gauge length of the sample undergoes cold drawing. The short gauge length serves to 

maximize the resolution from the stationary monitoring camera while keeping the sample 

within the camera frame throughout the test. The shoulders have a small diameter of 6 mm to 

facilitate a quick increase of area when the neck reaches the shoulders. This rapid growth in 

cross sectional area at the shoulders increases the total force applied to the sample, resulting 

in strains and stresses in the gauge section that exceed those observed during cold drawing. 

The short gauge length does however increase the stress triaxiality, which is why the PVC 

sample has a longer gauge part. This is reasonable since PVC is less ductile that HDPE, so the 

deformed HDPE geometry will be longer than the deformed PVC geometry. The PVC 
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material is also assumed to be more sensitive to triaxiality [17], compared to the HDPE 

material. 

Figure 5.2: Circular uniaxial tension test sample for HDPE [mm]. 

 

Figure 5.3: Circular uniaxial tension test sample for PVC [mm]. 

HDPE and PVC were tested in uniaxial tension at room temperature (23 °C). For each 

material a total of six samples were tested at three different crosshead velocities, i.e., there 

were two replicates at each velocity. The three speeds were chosen so as to be equivalent to 

the three nominal strain rates 2.5 110 s− − , 2.0 110 s− −  and 1.5 110 s− − , calculated from the initial 

gauge length of the samples (4 and 8 mm). 

These tests were also performed in the electronic screw-driven Zwick Z030 universal test 

machine. Data collection consisted of force and displacement measurements from the 

machine and images taken with a single 5 Mpix, 8 bit, CCD digital camera, equipped with a 

macro lens. The camera was placed approximately 1m from the specimen, and took a 

minimum of 500 images per test. The experimental setup is shown in Figure 5.4. These tests 

were not instrumented with the thermal camera. 
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Figure 5.4: Test setup: (a) camera with macro lens, (b) sample lighting, (c) background lighting, 
(d) sample, (e) diffuse reflective background. 

Lighting was set up so as to create a homogenous colored background. This was done in order 

to facilitate the identification of the boundaries of the specimens in the pictures by using the 

edge tracing algorithm described in Chapter 3. The background color was created by placing a 

piece of roughly polished metal about 30 cm  behind the sample (Figure 5.4 (e)), and using a 

dedicated lamp to illuminate the metal (Figure 5.4 (c)). This resulted in a white-saturated 

background which is out of focus, creating excellent conditions for edge tracing, as 

demonstrated by the picture in Figure 5.5. 

(a) 
(b) 

(c) (d) (e)
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Figure 5.5: Representative image from tension test performed on a circular HDPE sample. 

Undeformed samples and samples tested to failure were studied with a scanning electron 

microscope (SEM) after the test. The area of interest was a plane oriented along the length of 

the sample, dividing the sample in two, as seen in Figure 5.6. It was hence necessary to split 

the samples. This was done by cooling the samples in liquid nitrogen for 5 minutes, and then 

immediately cleaving the samples using a sharp knife blade and a hammer. The idea is to 

trigger a controlled brittle fracture, and hence avoiding tool marks. A similar method was 

described and used by Ognedal et al. [35]. As SEM requires conductive surfaces, the samples 

were coated with gold via a vaporization process. The intention with the SEM investigation 

was to see whether a macroscopic change of volume was related to void growth at the 

microscale. 
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Figure 5.6: Cutting and image plane for SEM images from circular tensions samples. 

5.2 Thermally Monitored rectangular HDPE samples 

 Raw Data 5.2.1

Figure 5.7 shows the force-displacement curves for the rectangular HDPE samples tested at 

five different nominal strain rates. These curves are based on the force and displacement data 

collected by the test machine during each test. Considering the two curves obtained at the 

lowest strain rates of 3.5 110 s− −  and 3.0 110 s− − , the difference in force is almost constant during 

the entire deformation process. This observation suggests that an isothermal state is retained 

at these low speeds. At higher strain rates, the curves tend to cross each other, possibly 

indicating that adiabatic heating plays a significant role at these loading velocities. 
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Figure 5.7: Force vs. displacement curves for rectangular HDPE samples tested at five different 
nominal strain rates. 

Figure 5.8 shows an excerpt of the image data recorded of the test at the highest strain rate, 

i.e. 10–1.5  s–1, where a partially transparent thermal image is superimposed on the digital 

pictures used for DIC, as described in Section 4.5. Since the normal photos define the 

coordinate system for the DIC analysis, it is possible to relate thermal and DIC data when the 

transformation between the two sets of pictures, see Section 4.5, is established. The right 

image in Figure 5.8, addressing the sample when the displacement is 30 mm, shows that there 

is a significant temperature increase of almost 30 °C in the gauge part.  
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u  = 10 mm u  = 20 mm u  = 30 mm 

Figure 5.8: Merged photographic and thermal images for a rectangular HDPE sample stretched 
at a nominal strain rate of 10–1.5 s–1 shown at three different stages of displacement u. The color 
bars show temperature in degrees Celsius. 

 Stress-Strain and Thermal Response  5.2.2

Figure 5.9 shows the true stress vs. longitudinal logarithmic strain for the five tension tests, 

applying Equation (4.7) for the strain and Equation (4.21) for the calculation of the true stress. 

Stress and strain are calculated for the section of initial necking, as described in Sections 4.4 

and 4.1. As suggested by the force-displacement curves, it can here be seen that the curves for 

the two lowest strain rates remain parallel to each other throughout the entire deformation 

process. This indicates that the speed of deformation is slow enough for the heat generated by 

plastic work to dissipate to the surroundings without producing any significant increase of 

temperature in the plastically deformed material. The faster tests do not follow this pattern, 

and it can be seen that the stress-strain curves for speeds from 2.0 110 s− − and upwards cross the 

curves of lower speeds at a strain around 1.5. This again suggests that adiabatic heating is 

playing a role.  
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Figure 5.9: True stress vs. longitudinal strain curves for rectangular HDPE tension samples 
stretched at five different nominal strain rates. 

With stress and the strains established, it is possible to calculate the elastic parameters of the 

material. Poisson’s ratio and Young’s modulus are calculated with Equations (4.10) and 

(4.11) respectively for a longitudinal strain level between 0.005 and 0.07. The evolution of the 

two parameters is shown in Figure 5.10. As can be seen, Poisson’s ratio seems to be close to 

0.5, with no apparent variation with strain rate. Young’s modulus, on the other hand, clearly 

varies with both strain and strain rate.  
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Poisson’s Ratio Young’s Modulus 

Figure 5.10: Elastic parameters for rectangular HDPE samples stretched at five different 
nominal strain rates. 

The strain rate dependency of the measured Young’s modulus can be quantified with 

Equation (4.14), giving elastic viscosity η  as a relation involving the stiffness and strain rate 

in two tests with different velocity. The elastic viscosity as function of strain for the four 

fastest tests is shown in Figure 5.11. In all four cases, the slow test at a strain rate of 10–3.5 s–1 

is selected as reference when using Equation (4.14). The data shows some spread, but in 

general it can be seen that a 10 times increase in strain rate increases the stiffness in the elastic 

domain with about 80 MPa. 
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Figure 5.11: Elastic viscosity vs. longitudinal strain curves for rectangular HDPE tension 
samples stretched at four different nominal strain rates. Elastic viscosity is calculated relative to 
a fifth test stretched at a nominal strain rate equal to 10-3.5 s-1. 

The suspicion of heating in the two highest strain rates is further supported by the curves in 

Figure 5.12, showing temperature versus longitudinal strain for all tests. The temperature as 

well as the strain are measured in the neck. Here it can be seen that the temperature at the two 

fastest strain rates is significantly higher after a strain of approximately 1, compared to the 

three slowest tests. The maximum temperature of the fastest test is 47 °C. Indeed, Figure 5.12 

shows that there also is a minor temperature increase of about 2 °C in the two slowest tests, 

but this does not seem to influence the stress-strain response. Another interesting feature, 

although not clearly visible in all five tests, is that there is a small decrease of approx. 1 °C in 

temperature during the initial elastic deformation, i.e. for strains below 0.05.  
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Figure 5.12: Temperature vs. strain response for rectangular HDPE tension samples stretched at 
five different nominal strain rates measured at the point of initial localization. 

The local strain rate in the necked section can also be found for the tests, and will vary with 

respect to time and strain since the test machine operates at a constant cross head velocity. 

Figure 5.13 shows the curves describing plastic strain rate vs. plastic strain for the five tests. 

Plastic strain and plastic strain rate is calculated from Equations (4.8) and (4.9) with an 

assumed elastic modulus E=650 MPa. As seen from the figure, the strain rates vary within 

approximately half of a decade of their nominal values. A more surprising feature is that the 

shift observed between the tests is close to constant, as an intuitive expectation might be that 

thermal softening would increase the local strain rate relative to slower tests.  

°
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Figure 5.13: Plastic strain rate vs. plastic strain for rectangular HDPE tension samples stretched 
at five different nominal strain rates measured at the point of initial localization. 

By combining the data from Figure 5.9 and Figure 5.13, the plastic viscosity parameter C  can 

be found as a function of plastic strain from Equation (4.26). This is shown in Figure 5.14, 

where the slowest test with a nominal strain rate of 3.5 110 s− −  is used as a reference. Plastic 

viscosity is calculated for plastic strain between 0.03 and 0.6 to minimize uncertainties related 

to the choice of Young’s modulus and heat influence. As can be seen from the figure, there is 

a clear trend of reduction in the parameter with larger strains, for further use however, C  is 

assumed constant and equal to 1.8 MPa.    
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Figure 5.14: Plastic viscosity vs. plastic strain for rectangular HDPE tension samples stretched 
at four different nominal strain rates. Plastic viscosity is calculated relative to a fifth test 
stretched at a nominal strain rate equal to 10-3.5 s-1. 

With C established, it is possible to normalize the stress-strain curves from Figure 5.9 to a 

constant strain rate by applying Equation (4.27). This is shown in Figure 5.15 where the 

response is normalized to a constant strain rate of 10–2.5 s–1. As seen from the figure, the 

curves collapse nicely up to a strain of about 1, after which the faster tests show less 

hardening. It will be shown subsequently that this scatter between the curves is likely to be 

caused by temperature softening.  
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Figure 5.15: Strain rate normalized Stress vs. strain response for rectangular HDPE tension 
samples stretched at five different nominal strain rates, normalized to a constant strain rate of 
10–2.5 s–1. 

Finally, the stress-strain data are normalized with respect to temperature by applying Equation 

(4.29). For this calculation, the room temperature was RT  = 22 °C, the melting temperature 

was set to MT  = 130 °C, which is within the normal limits for HDPE, and the value m = 1.1 

was found to give good results for the temperature sensitivity. The resulting stress-strain 

curves after this normalization process are shown in Figure 5.16. It can now be seen that the 

curves do not intersect each other, and they are close to parallel.  
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Figure 5.16: Temperature-normalized stress vs. strain response for rectangular HDPE tension 
samples stretched at five different nominal strain rates, normalized to a constant temperature of 
22 °C. 

With the parameters established for both strain rate sensitivity and temperature softening, it is 

possible to normalize the stress-strain curves with respect to both strain rate and temperature 

by applying Equation (4.30). This is shown in Figure 5.17, where the stress-strain curves are 

normalized to a constant strain rate of 10–2.5 s–1 and a constant temperature of 22 °C. As can 

be seen from the figure, the curves collapse pretty well into one master curve, indicating that 

the applied material model, see Equation (4.28) and parameters are well suited.  
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Figure 5.17: Temperature and strain rate normalized stress-strain response for rectangular 
HDPE tension tests stretched at five different nominal strain rates, normalized to a constant 
strain rate of 10–2.5 s–1 and a constant temperature of 22 °C. 

It is also of interest to examine the relationship between the generated heat and plastic work 

with use of Equation (4.42). This is done for the fastest test with a nominal strain rate of 10–1.5 

s–1, where an assumption of no heat dissipation will be most correct. Figure 5.18 shows both 

the stress versus plastic strain curve and the evolution of the Taylor-Quinney coefficient 

versus plastic strain for this test. The material is assumed to have a constant density 

3 970 kg/mMρ =  and a constant specific heat capacity  2200 J/kg KpC = . The Taylor-

Quinney coefficient starts at around 1 for small plastic strains. The coefficient then stabilizes 

at a level of 0.8 before decreasing rapidly when the plastic strain exceeds 1. The interesting 

part of this curve is the last half, which suggests that the part of the work converted to heat 

decreases significantly. This might be explained by the theory of network stretching, which 

assumes that the late stage exponential type hardening observed in uniaxial tension is an 

elastic process, and hence does not dissipate energy.     
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Figure 5.18: Stress vs. plastic strain and Taylor-Quinney coefficient vs. plastic strain for a 
rectangular HDPE tension test stretched at a nominal strain rate of 10–1.5 s–1. 

 Volumetric Strain 5.2.3

Volumetric strain is calculated for the tests by using the somewhat simplified Equation (4.15). 

As the tests were instrumented with only one digital camera for subsequent DIC analyses, it is 

assumed that the width stretch is equal to the thickness stretch. This assumption relies on the 

material being isotropic as well as an absence of geometrical effects related to the dimensions 

of the cross section. As will be shown by the numerical simulations, see Chapter 7, the 

assumption seems to be correct, and the measured volumetric strain is representative for the 

considered section. The volume correction presented in Section 4.2 is not relevant, since it 

requires a circular cross section. Speculation by the same logic would however indicate that 

the combination of a small thickness of the sample relative to the width, and the small 

curvature of the main surface would produce only minor variations in length stretch through 

the thickness. A volumetric correction is hence of less importance.  

The calculated volumetric strain is shown in Figure 5.19. The most striking feature is the 

apparent increase in volumetric strain with an increase in strain rate. It is also seen that 

volume growth does not set inn before a strain level of 0.5. It is worth remembering that the 

variation in volumetric strain between tests could also be related to temperature. This is 

χ
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difficult to assess with this data set, but it is can be seen that the two lowest tests still exhibit a 

clear difference in volumetric strain level despite having similar temperatures, indicating that 

strain rate might be the primary variable. The proportionality of local strain rate between tests 

is also more consistent compared to the variation in temperature, as seen from Figure 5.13 and 

Figure 5.12. It might hence be speculated that the smooth and gradually increasing difference 

in volumetric strain reflects the proportionality in the strain rates. 

Figure 5.19: Volumetric strain vs. longitudinal strain for rectangular HDPE tension samples 
stretched at five different nominal strain rates. 

5.3 Thermally Monitored Rectangular PVC Samples 

 Raw Data 5.3.1

Figure 5.20 shows the force-displacement curves for the rectangular PVC samples tested at 

six different nominal strain rates. Some of the trends are similar to the HDPE tests presented 

in the previous section, where a constant initial shift of the curves is followed by a relative 

decrease in strength for tests performed at higher strain rates compared to the slower tests. 

The softening is more pronounced for the PVC samples than in the case of HDPE. On the 

other hand, the initial elastic stiffness seems to be less rate dependent than for HDPE. 

Moreover, it can be seen that the two samples at the highest rate fail at a displacement of only 



88 

 

20 and 25 mm, which might indicate significant thermal softening. It should be noted that the 

test with a strain rate equal to 2.010−  s–1 failed at a displacement of 48 mm. It is also here 

observed that the force-displacement curves of the two slowest tests only differ with a 

constant shift of stress level from the onset of yielding, indicating isothermal conditions. The 

two fastest tests also behave similarly, which suggests a similar amount of adiabatic heating 

in these two cases.  

Figure 5.20: Force vs. displacement curves for rectangular PVC tension samples tested at six 
different nominal strain rates. 

Figure 5.21 shows the merging of the DIC pictures and thermal data, where the thermal 

images have been adjusted to align with the images using the method described in Section 

4.5. It can be seen that the temperature has increased with approximately 20 C°  in the neck at 

a displacement of 16 mm. These hybrid images also give an indication of the temperature 

localization.   
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u = 8 mm u = 12 mm u = 16 mm 

Figure 5.21: Merged photographic and thermal images for a rectangular PVC sample stretched 
at a nominal strain rate of 10–1.0 s–1 at three different stages of displacement u. The legend shows 
temperature in degrees Celsius. 

 Stress-Strain and Thermal Response 5.3.2

The stress-strain response, calculated with the force data shown in Figure 5.20 and DIC, is 

shown in Figure 5.22. As suggested by the force-displacement curves, the stress-strain data 

confirm that the response is isothermal at the two lowest rates as there is a constant shift 

between these two curves over the entire range of plastic deformation. The same type of 

constant shift is also seen for the two fastest tests up to a strain of approximately 0.6, 

indicating that these tests are fast enough to result in a similar temperature-strain profile. The 

curves for the two intermediate strain rates are then reasonable to characterize as transitional 

in terms of temperature.  
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Figure 5.22: Stress vs. strain response for rectangular PVC tension samples stretched at six 
different nominal strain rates. 

The elastic parameters ν  and E  can now be identified from Equations (4.10) and (4.11), and 

are shown in Figure 5.23. As for HDPE, Poisson’s ratio of PVC does not seem to be 

dependent on strain rate, while the elastic stiffness has a more pronounced strain rate 

dependency.  
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(a) Poisson’s Ratio (b) Young’s Modulus 

Figure 5.23: Elastic parameters of rectangular PVC tension samples stretched at six different 
nominal strain rates. 

Again, the viscous effect on the elastic stiffness can be characterized by use of Equation 

(4.14). The viscosities of the samples tested at the five highest speeds are calculated from 

their stiffness and strain-rate relations to the slow test at 10–3.5 s–1, and is shown in Figure 

5.24. It can then be seen from the figure that a ten times increase in strain rate results in an 

increase in elastic stiffness of about 100 - 300 MPa. 
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Figure 5.24: Elastic viscosity of rectangular PVC tension samples stretched at five different 
nominal strain rates. Elastic viscosity is calculated relative to a sixth test stretched at a nominal 
strain rate equal to 10-3.5 s-1. 

The suspicion of thermal involvement suggested by the stress-strain curves is further 

confirmed by looking at the temperature-strain curves, shown in Figure 5.25. Here it can be 

seen that the rise in temperature with strain is equal for the two fastest tests, while the 

temperature does not exceed 28°C in the two slowest tests. Again it can be seen that the 

temperature for the tests performed at the intermediate speeds has a transitional temperature 

profile, placing them somewhere in-between room temperature and maximum adiabatic 

temperature. 
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Figure 5.25: Temperature vs. strain response for rectangular PVC tension samples stretched at 
six different nominal strain rates. 

The local plastic strain rate in the neck is shown as a function of plastic strain in Figure 5.26. 

The calculations were done by assuming an elastic stiffness of E=1700 MPa. It might be 

noted that the strain rate stabilizes at a certain level for the two faster tests, while for the tests 

performed at lower speeds, the strain rate reaches a peak and then decreases. This is a result of 

the temperature softening in the two fastest tests, which leads to a continued localization 

rather than a neck propagation, resulting in an accelerated failure process in the section of 

initial localization. 

°
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Figure 5.26: Plastic strain rate vs. longitudinal plastic strain response for rectangular PVC 
tension samples stretched at six different nominal strain rates. 

As with the HDPE tests, the plastic strain rate sensitivity is investigated by calculating the 

plastic viscosity parameter C  from Equation (4.26) and plotting it as a function of plastic 

strain. This is done for the five fastest tests with the slowest sixth test as a reference, with the 

result shown in Figure 5.27. The parameter is calculated for a plastic strain between 0.03 and 

0.2 to minimize the effects of the generated heat. As with the rectangular HDPE tests a trend 

of a decrease in plastic viscosity is seen as a function of plastic strain, even when looking at 

the second slowest test. For the following work, the plastic viscosity parameter C  is assumed 

constant and equal to 2.3 MPa. 
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Figure 5.27: Plastic viscosity vs. plastic strain for rectangular PVC tension samples stretched at 
six different nominal strain rates. Plastic viscosity is calculated relatively to a sixth test 
performed at a nominal strain rate equal to 10-3.5 s-1 

It is possible to look at the strain-rate normalized behavior of the material by using Equation 

(4.27) when the viscoplastic constant C  has been found. These normalized stress-strain 

curves are shown in Figure 5.28. As expected, the curves collapse nicely at small and 

moderate deformation, but vary significantly towards the end, again owing to temperature 

softening. 
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Figure 5.28: Strain rate normalized stress-strain response for rectangular PVC tension samples 
stretched at six different nominal strain rates, normalized to a constant strain rate of 10–2.5s–1. 

The stress-strain response is further normalized to a constant temperature by means of 

Equation (4.29). Figure 5.29 shows the temperature-normalized stress strain response, where 

the curves are normalized to a temperature of 22 °C, which corresponds to the room 

temperature TR. Further, the melting temperature TM is set to 100 °C, and a temperature 

sensitivity parameter m = 1.3 is adopted. With this normalization, it is seen that the curves do 

not intersect, and the difference in stress between the curves is more or less constant. The 

significant hardening of the second fastest test might also be noted, where the maximum 

stress has changed from 80 MPa in the original data to above 190 MPa in the normalized data. 
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Figure 5.29: Temperature normalized stress-strain response rectangular PVC tension samples 
stretched at six different nominal strain rates, normalized to a constant temperature of 22 °C. 

Finally, the stress-strain curves are normalized with respect to both temperature and strain 

rate, as shown in Figure 5.30. The normalized stress-strain response in this figure is plotted 

with a vertical axis covering the entire data range. In order to compare the normalized data 

with the raw data, Figure 5.31 shows the same curves together with the original stress strain 

curves with the same limits of the vertical axis. As can be seen from the figures, the data 

collapse nicely into a single master curve, illustrating the applicability of the material model 

outlined in Section 4.4 also for PVC.  
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Figure 5.30: Temperature and strain rate normalized stress-strain response for rectangular 
PVC tension samples stretched at six different nominal strain rates, normalized to a constant 
strain rate of 10–2.5 and a constant temperature of 22 °C. 

 

(a) Original data (b) Normalized data 

Figure 5.31: Comparison of non-normalized (a) and temperature and strain rate normalized (b) 
stress-strain response for rectangular PVC tension samples stretched at six different nominal 
strain rates, normalized to a constant strain rate of 10–2.5 and a constant temperature of 22 °C. 

For subsequent use it is also of interest to look at how the heat is generated and dissipated. 

The generation of heat can be examined by using Equation (4.42) on the test performed at 

1.5 110 s− − . The material is assumed to have a constant density ρ  and a constant specific heat 
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capacity  1000 J/kgKpC = . The resulting Taylor-Quinney coefficient is shown in Figure 

5.32, where it is plotted against plastic strain. A nonlinear least square fit is also included. The 

nonlinear fit uses a Voce type formulation 

  ( ) ( )1 1 2 2( ) 1 exp( ) 1 exp( )pl pl pla b a bχ ε ε ε= − − + − −  (5.1) 

with the parameters shown in Table 5.1. 

Table 5.1: Fit of parameters for Equation (5.1) representing the Taylor-Quinney coefficient for 
PVC. 

1a   1b  2a  2b  

0.3421 5.0807 0.4974 47.4509 

The chosen fitting model, represented by Equation (5.1), seems reasonable for the evolution 

of the Taylor-Quinney coefficient. It is seen in Figure 5.32 that χ   rises from a value close to 

zero, and then stabilizes as it gets closer to one. The initially low value is believed to reflect 

the gradual transition from pure elastic to elasto-plastic deformation. It is observed that the 

evolution of χ  is completely different for HDPE and PVC, see Figure 5.18.  
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Figure 5.32: Taylor-Quinney coefficient vs. plastic strain for rectangular PVC tension sample 
performed at a nominal strain rate of 10–1.5s–1. 

By use of Equation (5.1), it is now possible to accurately model the adiabatic temperature rise 

in the two fastest tests. For future use it is however also of interest to look at the temperature 

in the slower tests, and it is hence necessary to include some form of heat transfer. It is here 

assumed that heat only transfers to air through convection, i.e. it is assumed that heat radiation 

and conduction is negligible. These assumptions might be reasonable since the difference in 

temperature between the room and the material is small in a radiation perspective, while the 

low conductivity of polymers in general might justify the assumption of no conduction. 

Energy dissipation by convection is assumed to be linear with the difference in temperature 

between the air and the material [36]. The increase of the local surface area that is exposed to 

air in the neck of the sample is incorporated. The equation for the temperature T in the neck at 

a time t t+ Δ  is then given as 

  ( ) ( ) int
t t t pl pl R t

p

A t
T T h T T

V C
χ ε σε

ρ
+Δ

Δ
= + + −  (5.2) 

where h  is the heat transfer coefficient between PVC and air, intA  represents the surface area 

in the neck, V  is the volume, and RT  is the room temperature.  

The ratio between interface area and volume, is then approximated as  

χ
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where 0w  and 0t  is the initial width and thickness of the sample and wλ  is the stretch in the 

width direction. Having established a complete model for generation and transfer of heat, it is 

now possible to simulate the temperatures observed in the tests. This is shown in Figure 5.33, 

where both the measured and modeled temperatures are plotted against equivalent plastic 

strain. It was found that a heat transfer coefficient h  equal to 220 W/ K m  gave the best 

result. This value should serve as an upper limit, since it in principle is used to model several 

mechanisms for heat transfer. As can be seen, the agreement for all tests is quite good 

considering the simple model defined by Equation (5.2). In particular, the model captures the 

decrease of temperature in the last phase of the slow and medium rate tests. This decrease 

occurs when the neck starts to propagate, resulting in less local deformation per time, while 

the convection to the surrounding air increases due to the increased surface area in the necked 

section. 
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Figure 5.33: Temperature vs. equivalent plastic strain, measured and modeled, for rectangular 
PVC tension samples stretched at six different nominal strain rates. 

 Volumetric Strain 5.3.3

Volumetric strain is calculated with the same simplified assumption as for the rectangular 

HDPE samples, i.e. with use of Equation (4.15) and taking the natural logarithm of the 

volumetric stretch. Figure 5.34 shows volumetric strain vs. longitudinal strain for the six tests. 

As can be seen from the curves for the four lowest strain rates, there are some variations in the 

data with no obvious relation to strain rate. A general trend seen in the four slowest tests is 

however a rapid increase of volume in the initial phase of the tests, followed by a decrease of 

the gradient and finally a constant volumetric strain around 0.1. The two fastest tests, which 

also experienced significant heating, do however not stabilize in volume, but rather exhibit an 

exponential growth after 0.4 in strain. The data then suggests that strain rate does not affect 

the volumetric strain, while temperature might be a governing parameter. 

°
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Figure 5.34: Volumetric strain vs. longitudinal strain for rectangular PVC tension samples 
stretched at six different nominal strain rates. 

5.4 HDPE samples with Circular Cross-Section 

This part of the experimental program contains six uniaxial tension tests on the HDPE 

material, this time applying the custom-designed sample with a rather short gauge length and 

also shoulders with limited length, see Figure 5.2. The circular cross section combined with 

the instrumentation with a digital camera facilitates a Bridgman-correction of the calculated 

stress. The tests were carried out at three different nominal strain rates of 10−2.5, 10−2.0 and 

10−1.5 s−1, and there were two replicate tests at each rate. All the HDPE test specimens 

behaved well in the sense that they exhibited repeatable force-displacement response, necking 

initialized at the center of the test samples, and the final fracture occurred at the shoulders of 

the samples after the neck had propagated through the entire gauge length of the samples. 

This test series was not monitored with the thermal camera. The calculation of the elastic 

parameters is not addressed in this section as the results are similar to those of the rectangular 

tension tests, see Section 5.2.2. 
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 Raw Data 5.4.1

Figure 5.35 shows the force-displacement response for six tension tests of HDPE carried out 

at the three different nominal strain rates of 10−2.5, 10−2.0 and 10−1.5 s−1. It can be seen from the 

figure that the replicate tests performed at the same nominal strain rate have strong 

similarities, indicating a good repeatability for the tests. The effect of the custom sample 

geometry is also visible, and is seen by the increase in force-displacement slope when the 

displacement exceeds approximately 30 mm. This is the point where the neck has propagated 

through the whole gauge length and reached the shoulders of the sample. The neck then starts 

to propagate into the shoulders of the sample where the larger dimensions of the cross section 

increases the force. 

It might also be noted that three of the tests were unloaded, while the others were stretched to 

failure. The controlled unloading was done when the measured force started to decrease, and 

hence all tests may be considered as being stretched up to failure.   

Figure 5.35: Force vs. crosshead displacement curves for six circular HDPE tension samples 
subjected to uniaxial tension at three different nominal strain rates. 

Figure 5.36 shows images of the deformation of a sample at different cross head 

displacements u . A pronounced neck is visible at 5 mmu = , and cold drawing of the sample 

is easily recognizable from 10 mmu > . The deformation of the middle region of the sample is 



105 

 

again homogeneous when the deformation exceeds about 20 mm . From this stage onwards, 

the central region is for the second time in a pure uniaxial tension state, with little to no 

interference from triaxiality.  

     
u = 0 mm u = 5 mm u = 10 mm u = 20 mm u = 30 mm 

Figure 5.36: Deformation of circular HDPE sample in uniaxial tension at different cross head 
displacements u, stretched at a nominal strain rate of 10−−2.5 s-1.  

 Stress-Strain Response 5.4.2

Figure 5.37 shows the average true stress as defined in Equation (4.21) versus the local 

logarithmic longitudinal strain in the section that experiences the onset of necking. As seen 

from the figure, both the local strain and in particular the stress reach significantly higher 

values than observed for the conventional sample, see Figure 5.9. The maximum logarithmic 

strain, occurring in one of the tests at the highest strain rate, is 2.11, and the accompanying 

true stress is 162.3 MPa. A logarithmic strain of 2.11 is equivalent to a stretch of 8.24, while 

the maximum stress is about 5.4 times higher than the yield stress. The effects of strain rate 

are more apparent in Figure 5.38, which addresses only the first part of the stress-strain curve 

and therefore has an improved resolution at the ordinate axis. Figure 5.38 also serves to 

illustrate the good consistency between tests performed at the same nominal strain rate.    
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Figure 5.37: True stress vs. logarithmic longitudinal strain curves for six circular HDPE tension 
samples stretched at three different nominal strain rates. 

 

Figure 5.38: Excerpt of stress-strain curves for six circular HDPE tension samples stretched at 
three different nominal strain rates. 

The radius and curvature of the neck can be found from the edge tracing algorithm described 

in Chapter 3, and are shown in Figure 5.39. As can be seen from the curvature plot, the neck 

is most pronounced at a strain of about 0.75, this is a bit after the neck radius changes slope. 
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This could indicate a transition from deformation dominated byplasticly to deformation 

governed by network stretching. 

(a) Neck radius (b) Neck curvature 

Figure 5.39: Geometrical measures at neck as a function of local logarithmic strain for six 
circular HDPE tension samples stretched at three different nominal strain rates. (a) Neck radius 
and (b) neck curvature. 

Having found the local radius and curvature of the neck during the test, it possible to calculate 

the uniaxial Mises stress with the help of the Bridgman correction given in Equation (4.22). 

The effect of the Bridgman correction for one of the tests carried out at a nominal strain rate 

of 10–2.5 s–1 is illustrated in Figure 5.40 (a), showing a maximum reduction in stress of about 4 

MPa. In accordance with the neck curvature shown in Figure 5.39 (b), it appears that the 

Bridgman correction is relevant for longitudinal strains between approx. 0.2 and 1.5. For 

larger strains, the curvature in the section is close to zero, as already shown in the two photos 

to the right in Figure 5.36, and the correction is therefore superfluous. Figure 5.40 (b) shows 

all six curves with the applied correction. The effect of the Bridgman correction is almost 

identical for all six tests, as is expected from the strong similarities between the curves at 

different rates in Figure 5.39. The Bridgman corrected curves are used in the further work. 
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(a) Effect of Bridgman correction (b) Bridgman corrected curves 

Figure 5.40: Difference between uncorrected and Bridgman corrected stress(a), and Bridgman 
correction of stress for six circular HDPE tension samples stretched at three different nominal 
strain rates (b). 

Strain rate correction to the calculated stress, see Equation (4.27), is possible by first 

establishing the local strain rate versus strain for the tests, as shown in Figure 5.41. 

 
Figure 5.41: Strain rate in section first experiencing necking as a function of logarithmic strain 
for six circular HDPE tension samples stretched at three different nominal strain rates. 

By assuming the additive split of the stress into a plastic and an viscoplastic part, as shown in 

Equation (4.23), it is possible to investigate the validity of the viscoplastic coefficient C . 

Equation (4.26) states that 
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In order to calculate plastic strain and strain rate, a constant Young’s modulus of 650 MPa is 

assumed. It is then possible to calculate the plastic viscosity parameter C  for the tests as a 

function of plastic strain. This is shown in Figure 5.42 where C  is calculated from the 

relations between the tests performed at the two fastest speeds and one of the tests performed 

at a nominal strain rate of 2.5 110 s− − . As seen from the figure, C  shows some initial decrease, 

but then seems to stabilize at around 1.4 MPa for plastic strains between 0.2 to 0.8 for three of 

the tests. In the further work these tests are assumed to have a constant C  equal to 1.42 MPa.  

 
Figure 5.42: Plastic viscosity vs. plastic strain for circular HDPE tension samples stretched at 
two different nominal strain rates. Plastic viscosity is calculated relatively to a third test 
stretched at a nominal strain rate equal to 10-2.5 s-1 

Applying Equation (4.27), Figure 5.43 shows the strain-rate independent stress 0σ  as function 

of total strain for all six tests. The reference plastic strain rate is selected as 2.5
0 10p −= s−1. All 

six curves collapse into more or less the same curve. Again, this good agreement validates 

that the viscoplastic model, defined in Equation (4.23), with an additive decomposition of the 

equivalent stress is well suited as a model. The average of the six curves in Figure 5.43 can be 

viewed as the master curve for this material.  
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Figure 5.43: Strain-rate corrected stress vs. logarithmic longitudinal strain for six circular 
HDPE tension samples stretched at three different constant loading velocities. 

Figure 5.44 shows the comparison between a strain rate corrected and uncorrected stress-

strain curve for a test with a nominal strain rate equal to 2.0 110 s− − . The corrected curve 

represents the stress-strain response at a constant local strain rate equal to the nominal strain 

rate. As expected from looking at the strain rate history in Figure 5.41, the uncorrected curve 

in Figure 5.44 underestimates the yield stress, gives a fair representation of the intermediate 

stress, and again underestimates the last third of the stress-strain response. It is in other words 

important to take the local strain rate into account when determining an accurate 

representative value of the stress. 
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Figure 5.44: Comparison between strain-rate corrected and uncorrected stress vs. logarithmic 
strain for a test stretched at a nominal strain rate of 10–2 s–1. 

 Volumetric Strain 5.4.3

A straightforward calculation of the average volumetric strain with the “cylinder method”, see 

Equation (4.15), yields the six curves shown in Figure 5.45. Clearly, this method for 

calculating volumetric strain results in a significant amount of negative volumetric strain as 

the neck initializes, before the volumetric strain attains a positive value as the neck stabilizes 

and propagates. As argued for in Section 4.2, this negative volumetric strain is a fictive 

measurement stemming from an incorrect assumption of the deformation of a finite volume in 

the neck. 
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Figure 5.45: Logarithmic volumetric strain vs. logarithmic longitudinal strain calculated with 
the “cylinder method” for six circular HDPE tension samples stretched at three different 
nominal strain rates. 

On the other hand, applying the correction defined by the “parabolic method” in Equation 

(4.20) gives the plots shown in Figure 5.46. It is seen that the negative volumetric strain in the 

initial phase of the test has disappeared. The volumetric strain seems to be close to zero for 

strains below 0.25. Thereafter, the volumetric strain increases almost linearly until it saturates 

at a strain value around 1.25. The deformation at high strains is in other words isochoric, i.e. 

volume preserving. Recalling the observations in Figure 5.19, also these data indicate that 

volumetric strain in HDPE is dependent on strain rate, as higher strain rates seem to produce 

larger volumetric strains. 
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Figure 5.46: Logarithmic volumetric strain vs. logarithmic longitudinal strain calculated with 
the “parabolic method” for six circular HDPE tension samples stretched at three different 
nominal strain rates. 

 SEM Study 5.4.4

Virgin and deformed HDPE material samples were investigated using a scanning electron 

microscope (SEM). The purpose was to try to identify the mechanism behind the measured 

increase in volume. Figure 5.47 and Figure 5.48 show micrographs of an undeformed HDPE 

sample at two different magnifications. It is not clear if the observed porous web-like 

structure is representative of the material or is an artifact of the method used to split the 

sample, see Section 5.1.2. What is clear is that small spherical particles are present in the 

material. These particles have a size of about 0.5 m. 
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Figure 5.47: SEM micrograph of the interior of an undeformed HDPE sample, magnified 3500 
times. 

 

 
Figure 5.48: SEM micrograph of the interior of an undeformed HDPE sample, magnified 7000 
times. 
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Micrographs of samples deformed at a nominal strain rate of 10–2.5 s–1 are shown in Figure 

5.49, Figure 5.50 and Figure 5.51. The SEM images are taken from a surface inside the 

sample, as shown in Figure 5.6 in the area of initial necking. This means that the plane has 

been elongated by a factor of about 8 in one direction marked by the red arrows, and 

compressed to a factor of 0.14 in the normal direction to the arrows. The image in Figure 5.49 

does not show many interesting features, and it is suspected that the method of splitting the 

sample combined with the high ductility of the material has created a smeared surface. The 

direction of deformation is however easily identified, and some elongated cavities can be 

seen. The particles observed in the undeformed material are not found, and no apparent effect 

can be linked to them from the image. The micrographs in Figure 5.50 and Figure 5.51 are 

from a sample split with a different method, where the sample was cooled with liquid nitrogen 

and then ripped in two along the length axis of the sample. The fact that it is possible to easily 

split a deformed sample in the radial direction is by itself interesting in that it gives a 

qualitative idea of the anisotropy in a deformed sample. According to the micrographs, this 

anisotropy seems to be caused by a material structure resembling a collection of filaments 

oriented along the stretching direction of the sample. The filaments appear to be loosely 

connected in their radial direction, explaining the weak radial strength. 
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Figure 5.49: SEM micrograph of the interior of a circular HDPE sample stretched in uniaxial 
tension along the horizontal axis, sample split by cleaving, magnified 150 times. The red arrow 
indicates the tension direction. 

 

 
Figure 5.50: SEM micrograph of the interior of a HDPE sample stretched in uniaxial tension 
along the horizontal axis, sample split by ripping, magnified 150 times. The red arrow indicates 
the tension direction. 
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Figure 5.51: SEM micrograph of the interior of a HDPE sample stretched in uniaxial tension 
along the horizontal axis, sample split by ripping, magnified 3500 times. The red arrow indicates 
the tension direction. 

5.5 PVC samples with Circular Cross-Section 

The experimental program of the PVC samples with circular cross section was similar to the 

one described for HDPE in the previous section: Six tests were carried out at nominal strain 

rates of 10−2.5, 10−2.0 and 10−1.5 s−1; two samples at each rate. In contrast with the HDPE tests, 

the neck did not initiate at the center length of the PVC samples in all the tests, and fracture 

occurred at different parts of the test samples. The calculation of the elastic parameters is not 

addressed in this section as the results are similar to those of the rectangular tension tests, see 

Section 5.3.2. 

 Raw Data 5.5.1

Figure 5.52 shows the force-displacement curve for six PVC samples tested at the same three 

crosshead velocities as HDPE, i.e. 10−2.5, 10−2.0 and 10−1.5 s−1. As is obvious from the curves, 

the repeatability of the tests was good with respect to force-displacement measurements. It is 
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noted that curves representing tests at higher nominal strain rates cross the curves of tests at 

lower nominal strain rates. It will be demonstrated in the next section that this is an effect of 

material softening caused by adiabatic heating. 

 
Figure 5.52: Force vs. crosshead displacement curves for six circular PVC tension samples 
stretched at three different nominal strain rates. 

Figure 5.53 shows the DIC pictures for one of the two slowest PVC tests, taken at five 

different stages during the test. The pictures illustrate that this PVC material produces a less 

pronounced neck than what was observed for HDPE. This seems contradictory in that the 

material initially has a negative hardening slope after necking, which intuitively should lead 

to a highly localized neck. The explanation is that relatively small plastic strains are required 

to reach a high positive hardening. The deformation in the section of initial localization is 

hence limited, as the neck propagates early compared to HDPE. The rapid increase in volume 

exhibited by PVC in tension, as was seen in Figure 5.34, should also contribute to hide the 

neck since the sample does not contract as much compared to a plastically incompressible 

material. Despite the rather diffuse neck, it is still possible to find the section with the local 

maximum of the strain from the digital images and the DIC analysis. The stress-strain data 

presented in the subsequent figures are taken from this section.   
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u = 0 mm u = 5 mm u  = 10 mm u = 15 mm u  = 19 mm 

Figure 5.53: Deformation of PVC in uniaxial tension at different cross head displacements u. 
Stretched at a nominal strain rate of 10-2.5 s-1. 

 Stress-Strain Response 5.5.2

Figure 5.54 shows the true average stress versus logarithmic longitudinal strain for the six 

PVC tests. Again, it is observed that the curves from the higher strain rate tests cross the 

curves from the tests with lower strain rates. This means that the crossing of the force-

displacement curves in Figure 5.52 is not a pure result of differences in cross sectional area, 

but a de facto change of strain hardening with increasing rate. This variation in strain 

hardening is a result of adiabatic heating in the material. The reason why this temperature 

softening is much more prevalent in the PVC tests compared to the HDPE tests is that the 

yield stress in PVC is about twice as high as it is for HDPE, further, PVC has a much lower 

specific heat capacity. This results in more dissipated energy per unit of strain, hence more 

heat. Indeed, Figure 5.12 and Figure 5.25, show that PVC experiences a larger increase in 

temperature than HDPE does. The crosshead velocity was also twice as high for the PVC 

samples because these samples had a longer gauge section, see Figure 5.3. The generated heat 

therefore had less time to diffuse. A secondary effect of the temperature softening is that the 

tests performed at the highest strain rates reach higher local strains. This comes as a 
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consequence of the material in the neck requiring more straining to reach a high enough 

hardening slope to stabilize the neck. For higher strain rates it would be expected that failure 

would always take place in the neck, as the slope of hardening would not get large enough to 

stabilize the neck before failure occurs. There is also an obvious visco-plastic component to 

the stress response of the material, as can be seen from the stress values at yielding.    

 
Figure 5.54: True stress vs. logarithmic longitudinal strain curves for six circular PVC tension 
samples stretched at three different nominal strain rates. 

Effective stress calculated from Equation (4.32) is shown against logarithmic longitudinal 

strain in Figure 5.55. Since PVC exhibits a significant change of volume, it is especially 

interesting to look at the effective stress, where two differences might be noted compared to 

the results in Figure 5.54. Firstly, most of the strain softening after yielding has now 

disappeared, and the initial plastic slope is close to zero. This could indicate that a major part 

of the strain softening observed in PVC is a direct result of rapid void growth. The second 

interesting feature is that the curves representing tests performed at the same strain rate are 

more similar when effective stress is used. This could indicate that volumetric growth has 

varied between the tests stretched at the same speed. Another possible explanation for the 

observed variation in the response of identical tests could be material anisotropy in the radial 

direction. The result of this would be that an initialy circular cross-section would change into 

a eliptical cross section when stretched, rendering the assumtions used for calculating the 
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cross sectional area invalid. This could affect the samples differently since they were tested 

with an arbitrary radial orientation, resulting in differences in calculated stress.  

 
Figure 5.55: True effective stress vs. logarithmic longitudinal strain curves for six circular PVC 
tension samples stretched at three different nominal strain rates. 

Figure 5.56 (a) shows the change of neck radius as a function of longitudinal strain, where it 

can be seen that there is some variation between samples tested at the same speed. Figure 5.56 

(b) shows neck curvature as a function of longitudinal strain. Firstly it is observed that the 

curvature of the neck is quite small, about 40% of that observed for HDPE. Secondly it seems 

to depend on strain rate, but the actual cause is most likely heat. The faster tests achieve a 

higher temperature, resulting in more softening and hence more localization before the neck 

propagates. It can also be seen that at these speeds, the neck is still able to propagate, as 

evident from the eventual decrease of curvature. The small curvature of the neck makes the 

use of the Bridgman correction less relevant compared to the HDPE tests. From Figure 4.8 it 

can be estimated that the largest error from assuming that the longitudinal stress is equal to 

the Mises stress is around 5%.  
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(a) Neck radius (b) Neck curvature 

Figure 5.56: Geometrical measures at neck as a function of local logarithmic strain for six 
circular PVC tension samples stretched at three different nominal strain rates. 

Figure 5.57 shows the strain rate vs. logarithmic longitudinal strain for the three PVC tests. It 

can be seen that necking occurs quite suddenly compared to HDPE, as evident by the fast 

change of slope before the strain approaches 0.1. Secondly the end of localization can be 

characterized as the point of maximum strain rate, occurring at about 0.5 in strain. These 

observations support the earlier hypotheses concerning the evolution of the neck.  
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Figure 5.57: Strain rate vs. logarithmic longitudinal strain curves for six circular PVC tension 
samples stretched at three different nominal strain rates. 

With the local strain rate established, it is possible to look at the plastic strain rate sensitivity 

of the material. Since the material shows temperature softening, it is again reasonable to only 

look at plastic viscosity for small plastic strains. A constant Young’s modulus of 1700 MPa is 

again assumed, and C  is calculated for plastic strain form 0.03 to 0.2. This is shown in Figure 

5.58, where one of the tests performed at a nominal strain rate of 2.5 110 s− −  is used as the 

reference. The evolution of C  is similar to what was seen for the rectangular PVC tension 

samples, see Figure 5.27, and as for the rectangular samples, a constant C  equal to 2.3 MPa 

is assumed in the following calculations.  
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Figure 5.58: Plastic viscosity vs. longitudinal plastic strain for four circular PVC tension samples 
loaded at two different nominal strain rates. Plastic viscosity is calculated relatively to a fifth test 
stretched at a nominal strain rate equal to 10-2.5 s-1. 

It is now possible to normalize the stress-strain curves with respect to plastic strain rate. This 

is done by applying Equation (4.27) to the stress-strain data, using the established value for C. 

This is shown in Figure 5.59, where the curves are normalized to a constant strain rate of 

2.5 110 s− − . As would be expected, the curves collapse nicely at yield but start to deviate 

significantly after a strain of about 0.4, which is a similar trend to that of the rectangular PVC 

tests. This is a result of temperature softening. 
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Figure 5.59: Strain-rate normalized stress-strain response for six circular PVC tension samples 
stretched at three different nominal strain rates, normalized to a constant strain rate of    10−−2.5 

s−1. 

In order to investigate the effect of temperature, temperature change is modeled for these tests 

by using Equation (5.2) and the temperature parameters found for the rectangular PVC 

tension tests. The ratio of interface area to volume for a circular specimen is then equal to  

  
2

0

2 2int

R

A rl

V r l r

π

π λ
= =  (5.4) 

where 0r  represents the initial radius and Rλ  is the local radial stretch. The initial temperature 

is assumed to be equal to room temperature, assume to be 21 °C. It is now possible to 

simulate the temperature in the specimens, as shown in Figure 5.60, where simulated 

temperature is plotted versus equivalent plastic strain. The predicted temperatures seem 

reasonable compared to those found for the rectangular samples. The tests performed at 

nominal strain rates of 2.0 110 s− − and 2.5 110 s− − show significant heat transfer towards the end of 

the deformation process, while the temperature of the test performed at 1.5 110 s− −  has a close to 

linear increase with plastic strain. 
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Figure 5.60: Simulated temperature versus equivalent plastic strain for six circular PVC tension 
samples stretched at three different nominal strain rates.  

The validity of these simulated local temperatures can be somewhat confirmed by trying to 

normalize the stress-strain curves with respect to these temperatures. Temperature 

normalization is done by using Equation (4.29), and is shown in Figure 5.61. As can be seen, 

the curves are now stacked according to nominal strain rate, and have a more or less constant 

shift of stress. The major outlier is one of the tests performed at the nominal strain rate of 

2.5 110 s− − . 

°
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Figure 5.61: Temperature normalized stress-strain response six circular PVC tension samples 
stretched at three different nominal strain rates, normalized to a constant temperature of  22 °C. 

Removing the one outlier test and normalizing the stress-strain data with respect to both strain 

rate and temperature results in the curves shown in Figure 5.62 and Figure 5.63 (b). As can be 

seen, the curves collapse nicely, indicating that both temperature and strain rate sensitivity 

have been characterized to a satisfactory level of accuracy. The mean of the curves in Figure 

5.62 can now be considered a master curve for this PVC material.   
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Figure 5.62: Plastic strain rate and temperature normalized stress-strain response for six 
circular PVC tension samples stretched at three different nominal strain rates, normalized to a 
constant strain rate of 10–2.5 s–1 and a constant temperature of 22 °C. 
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(a) Original data (b) Normalized data 

Figure 5.63: Comparison between stress-strain response for non-normalized and normalized 
stress. Calculated for six circular PVC tension samples stretched at three different nominal 
strain rates. Normalized stress is calculated for a constant strain rate of 10–2.5 s–1 and a constant 
temperature of 22 °C.  

 Volumetric Strain 5.5.3

The average volumetric strain calculated by the somewhat inaccurate “cylinder method”, see 

Equation (4.15), is shown for the six tests in Figure 5.64 as a function of strain. The general 

response seems reasonable, with an initial rapid increase in volume followed by a less 

pronounced growth. It is also worth mentioning that the two outlying curves are the same two 

curves that show the least degree of conformity when the stress-strain curves are normalized. 

This could indicate that a difference in volumetric growth is the reason for the differences 

seen in stress-strain behavior. The reason for this variation might be a stochastic variation in 

the volumetric growth mechanism or anisotropy. As will be shown, SEM micrographs suggest 

that the major mechanism is debonding between matrix material and stiff particles, which is 

similar to what was found by other authors [37]. It might also be noted that the volumetric 

growth gets a steeper slope at about 0.02 in strain, coinciding with yield in the material. This 

could imply a correlation between yielding and void growth. 
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Figure 5.64: Volumetric strain vs. longitudinal strain curves for six circular PVC tension 
samples stretched at three different nominal strain rates. Volumetric strain is calculated with 
the “cylinder method”. 

Calculating the volume with the “parabolic method” is done by applying Equation (4.20). The 

resulting logarithmic volumetric strain is shown as a function of longitudinal strain in Figure 

5.65. The difference between the two methods is less significant for PVC compared to HDPE, 

and this observation is expected because HDPE experienced much more pronounced necking 

than PVC. Nevertheless, the volumetric strain approaches a saturation level when calculated 

with the “parabolic method”, and this trend was much less apparent in Figure 5.64. 
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Figure 5.65: Volumetric strain vs. longitudinal strain curves for six circular 
PVC tension samples stretched at three different nominal strain rates. 
Volumetric strain is calculated with the “parabolic method”. 

 SEM Study 5.5.4

The PVC material was also investigated by SEM. The purpose was to explore the mechanism 

behind the measured increase in volume. Figure 5.66 shows undeformed PVC and Figure 5.67 

and Figure 5.68 show stretched PVC, where the deformed sample corresponds to one of the 

PVC tests stretched at a strain rate of 2.5 110 s− − . The SEM images are taken from a surface 

inside the sample, as shown in Figure 5.6 in the area of initial necking. The plane has then 

been elongated by a factor of about 2.7 in the one direction, and compressed to a factor of 

0.14 in the other direction. Particles are present in the undeformed material but there are no 

apparent visible voids. The images of the deformed PVC on the other hand show around 100 

ellipsoidal shaped pores with rigid particles at the center. The ellipsoidal pores are oriented 

along the stretching direction, shown with the red arrows. This seems to indicate that the 

mechanism of volume growth is the debonding of the material matrix from particles, creating 

a small void that continues to stretch with the material. The particle also seems to prevent the 

void from collapsing in the transverse direction. These observations agree with what was seen 

by Ognedal et al. [17], who also showed that the total volume of the voids corresponded with 

the macroscopically measured volumetric strain.   
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Figure 5.66: SEM micrograph of undeformed PVC, magnified 3500 times. 

 

Figure 5.67: SEM micrograph of deformed PVC, magnified 1800 times. The red arrow indicates 
the tension direction. 
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Figure 5.68: SEM micrograph of deformed PVC, magnified 3500 times. The red arrow indicates 
the tension direction 
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6  

Two compression tests at a nominal strain rate of 2.5 110 s− −  were performed for each of the two 

materials. Only one test per material was suited for edge tracing, meaning that curvature is 

only calculated for these two tests. The test samples were machined from extruded plates into 

cylinders with a height of 10 mm and a diameter of 8 mm, with the height of the cylinders 

along the extrusion direction of the plates. The samples were compressed between two 

smooth steel cylinders. To minimize friction at these contact surfaces a piece of teflon tape 

was applied to each side of the samples, and also lubricated with a small amount of oil. The 

tape was applied to the samples rather than the steel cylinders to avoid the problem of the 

sample carving in to the teflon. By applying the tape to the samples, it is deformed with the 

samples, providing a decrease in friction throughout the tests. The pieces of tape were neatly 

cut to fit the top of the samples, so as not to obstruct the view of the monitoring DIC camera. 

The samples were deformed past the point where DIC was feasible. Data is hence only 

presented for the ranges of deformation were DIC is applicable. Force and images were 

logged with a frequency of 5 Hz, resulting in approximately 700 data points per test.  

6.1 Treatment of experimental data 

The compression tests are also analyzed with the DIC algorithm presented in Chapter 2, but 

more elements are used to analyze the compression tests compared to the tension tests. The 

samples are meshed with 5 5×  elements, with element height and width respectively of 210 

and 180 pix. The mesh is shown in Figure 6.1, where it can be seen that the location of the 

mesh ensures that as much of the visible surface as possible is covered. The mesh is rotated to 

match the initial orientation of the sample. 

 Strain Measurements and Stress 6.1.1

Strains are calculated from a mean deformation gradient, as described in Section 4.1. Two 

approaches are used, where either the mean deformation gradient is calculated along a radial 

line, as shown in Figure 6.1, or it is calculated from all the elements in the analysis. 
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Longitudinal and radial strain is then defined in the same way as for tension tests, given by 

Equation (4.7). 

 
Undeformed Deformed 

Figure 6.1: DIC mesh on a PVC compression test in undeformed and deformed states. 

The volumetric strain is calculated as the natural logarithm of the volumetric stretch, defined 

in Equation (4.15), and true stress is calculated using Equation (4.21) . 

The stress response is not corrected for strain rate. The reason for this is that strain rate does 

not vary significantly through the test (from 2.610− to 2.4 110 s− − ), compared to the tension tests. 

This comes as a result of less stress localization in the compression tests compared to the 

tension tests.   

6.2 Results 

The as-measured force-displacement data are shown in Figure 6.2. The response of PVC has a 

striking feature: there is a drop in force level right after yield. This is interesting since there is 

no local neck in compression, which suggests that the force reduction after yielding is related 

to material and not geometrical instabilities for PVC. It can also be seen that the test setup 

provides a good repeatability for both materials. 
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Figure 6.2: Force vs. displacement curves for PVC and HDPE in uniaxial compression deformed 
at a nominal strain rate of 10-2.5 s-1.  

Absolute true stress-strain curves for the four tests are shown in Figure 6.3. Stress and strain 

are here calculated locally for the center sections of the samples. The stress-strain response of 

PVC does still exhibit a drop in resistance, as would be expected from the force-displacement 

curves, followed by some hardening. From the HDPE curves it can be seen that there in no 

strain hardening after a strain levels of 0.4. As can be seen, the stress and strain behavior is 

also consistent between the two replicate tests for each material. In the remaining part of this 

section on the compression tests, only the samples PVC 1 and HDPE 1 will be considered.  
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Figure 6.3: Stress vs. strain curves for HDPE and PVC in compression deformed at a nominal 
strain rate of 10-2.5 s-1. 

To investigate the difference between calculating stress and strain for the center section and 

calculating it from all the elements over the entire height of the specimen, the two approaches 

are compared in Figure 6.4. The response calculated from strains found from the center 

section of the sample is labelled “Local”, while the curves labeled “Global” are found from 

the mean strains for the entire sample. As can be seen, the response is close to identical in the 

two cases, with the exception that larger longitudinal strains are present when the global mean 

strain is used. This is a result of the strain localizing at the top and/or the bottom of the sample 

when the sample starts to barrel, generating larger longitudinal strains in this region, 

compared to at the center of the sample. 
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Figure 6.4: Stress vs. strain curves for HDPE and PVC in compression deformed at a nominal 
strain rate of 10-2.5 s-1. Calculated with the average strains across the sample (Global) and with 
the center section strains (Local). 

The difference in stress-strain behavior in compression and tension is shown in Figure 6.5 for 

both materials. The tension curves are the uncorrected curves from the tests performed at the 

same speeds. HDPE appears to have a very similar behavior for the two load cases up to a 

strain of about 0.4. On the other hand, PVC shows significantly different response in 

compression and tension. Firstly, the yield stress is about 18 MPa higher in compression, but 

this difference is reduced to about 10 MPa at a strain of 0.2. This can be explained by 

assuming that particle-matrix debonding determines the onset of yielding, and that this 

process requires more force in compression, involving debonding in two transverse directions, 

compared to tension. It is then a comparatively larger stress that has to be released in 

compression than in tension. The difference in stress between the two tests on PVC in 

compression and tension is reduced to about 8 MPa at the end of the softening process, i.e. at 

a longitudinal strain around 0.3. This offset of 8 MPa between the curves seems to be retained 

for the remaining part of the test, and is likely to be related to some intrinsic behavior of the 

matrix material.      
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Figure 6.5: Comparison between stress-strain response in uniaxial compression and tension for 
PVC and HDPE stretched at a nominal strain rate of 10–2.5 s–1.  

The evolution of the curvature of the samples is interesting also in compression because this 

quantity gives an indication of the applicability of classical uniaxial loading assumptions and 

demonstrates the onset of barreling. The curvature was found with the algorithm described in 

Section 2.3.3, and is plotted against longitudinal strain for both samples in Figure 6.6. 

Curvature is found in a reoriented H R−  system as described in Section 3.2 where the H - 

axis is oriented along the length of the sample at a radius equal to zero and R  is defined as 

positive. With this convention, a barreling compression test will have a negative signed 

curvature. As can be seen, there is a significant difference in longitudinal strain when the 

samples start to barrel. The onset of barreling in PVC occurs right after yielding, while the 

HDPE sample remains straight for a much longer time. The early onset of barreling for PVC 

can be seen as support for the involvement of particle debonding in yielding, as will be further 

discussed when the SEM images of the tested samples are studied. 
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Figure 6.6: Center curvature vs. longitudinal strain response for PVC and HDPE in uniaxial 
compression deformed at a nominal strain rate of 10-2.5 s-1. Negative curvature indicates 
barreling.  

The volumetric strain is calculated in two ways. The local approach uses the strain measured 

locally at the center section, while the global volumetric strain is found for the entire sample. 

The volumetric strain is plotted against the absolute value of the longitudinal strain in Figure 

6.7, where the first thing to note is the large discrepancy between the local and the global 

measurements. To try to explain this, it might be noted that the local measurement curve for 

HDPE changes tangent at about 0.3 in strain. Looking at the curvature-strain graph in Figure 

6.6, it can be seen that HDPE starts to barrel around the same amount of strain. This is not 

believed to be a coincidence, since, according to the same argument as that used for the 

volume correction method presented in Section 4.2, barreling should lead to an overestimation 

of local volumetric strain. The same explanation can also be applied to the PVC test, where 

the divergence of the global and local volumetric strain happens earlier, as would be expected 

from the early barreling of the sample. The global response is hence assumed to best represent 

how the materials change volume in uniaxial compression. The global response then indicates 

that there is in fact an increase in volume for both materials when subjected to uniaxial 

compression. This is somewhat counterintuitive since hydrostatic stress in uniaxial 

compression is negative, but of importance for modelling the materials.  
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Figure 6.7: Volumetric strain vs. longitudinal strain for PVC and HDPE tested in uniaxial 
compression, calculated for the center section and the whole specimen. 

6.3 SEM Investigation 

The deformed samples were inspected with a SEM in order to study what occurs around the 

particles in the material. The deformed samples were cooled in liquid nitrogen before they 

were split in two. The splitting plane is the same as the cross section plane, so that the images 

represent a plane in the radial direction of the samples. The surfaces shown are from the 

center section of the sample, so they have undergone the deformation shown by the earlier 

figures.  

The HDPE micrograph in Figure 6.8 does not exhibit many interesting features, and it is 

difficult to identify the particles seen in the undeformed material in Figure 5.47. Again this is 

believed to be related to the method of splitting the sample, where the fracture seems to have 

been more ductile than expected, creating a smeared surface.  

The micrograph for the less ductile PVC is shown in Figure 6.9, where more features are 

visible. The particles are seen as white spheres, where the surrounding material is clearly not 

adhering to the particles. This seems to point to a mechanism where voids are created around 

particles in compression by debonding from the particles in the normal direction to the 
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applied force, while the particle keeps the void from collapsing. From the measured 

volumetric strain and curvature, debonding is believed to happen at yielding. This could serve 

as an explanation for relatively larger spike seen at yielding in compression compared to in 

tension, assuming debonding requires more force in compression than in tension. 

 
Figure 6.8: SEM micrograph of the interior of a HDPE sample deformed in uniaxial 
compression normal to the picture plane, sample split by cleaving, magnified 3500 times. 
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Figure 6.9: SEM micrograph of the interior of a PVC sample deformed in uniaxial compression 
normal to the picture plane, sample split by cleaving, magnified 3500 times. 

 

  



145 

 

7 Simulation 

In order to validate and further analyze the experimental data, the performed tests are 

simulated with the finite element program Abaqus [38]. The simulations are performed with 

the explicit module of Abaqus, utilizing a user defined material model. A hyperelastic-

viscoplastic constitutive relation previously presented by Polanco-Lorai et al. [7] was chosen 

as a base-line model. This model is reviewed in the next section. It appears that some of the 

features observed in the tests were not well captured by the model. Thus, the experimental 

observations are used to propose improvements of the model. This chapter presents numerical 

simulations of all tests and the implementation of a custom material model that allows for a 

more accurate investigation of the measured response.  

7.1 Material model 

The implemented material model is a modified version of the hyperelastic-viscoplastic model 

proposed by Polanco-Loria et al. [7]. As shown in Figure 7.1 (a), the model consists of two 

sub-models connected in parallel, designated Part A and Part B. The two parts are exposed to 

the same deformation gradient F . Part A is classic elastic-viscoplastic model, yet it is 

expressed with the deformation gradient as the main kinematic variable. It uses a neo-

Hookean elastic formulation with a Raghava [16] equivalent stress and a non-associated flow 

potential, also defined by the Raghava function, and an Arrhenius type of rate of flow [32]. 

The hyperelastic Part B represents the stretching of polymer chains, which is modeled with 

the non-linear entropic-elastic potential function proposed by Arruda and Boyce [39]. A 

fundamental assumption in the model is that the total deformation gradient F  is equal to the 

deformation gradients AF  and BF  of Parts A and B, respectively, emphasizing the parallel 

nature of the model. The multiplicative decomposition of the deformation gradient of Part A, 

A =F F , into a plastic and an elastic part, designated pF  and eF  respectively, is illustrated in 

Figure 7.1 (b).  
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(a) Rheological Model (b) Model Kinematics 

Figure 7.1: Material model whit rheological model in subfigure (a), and the kinematics shown in 
subfigure (b). 

 Part A 7.1.1

A multiplicative split of the deformation gradient A =F F gives 

 e p=F F F   (7.1) 

The plastic deformation gradient pF  maps a material point from an undeformed configuration 

0Ω  to an incompatible intermediate configuration Ω , while the elastic deformation gradient 

eF  maps the material point from the intermediate configuration Ω  to a current configuration 

Ω , as illustrated in Figure 7.1 (b). The velocity gradient A=L L  is defined in the current 

configuration Ω  as  

 1−=L FF     (7.2)    

Inserting Equation (7.1) into Equation (7.2), then gives 

 1 1 1
e e e p p e e p

− − −= + = +L F F F F F F L L    (7.3) 

where eL  and pL  are the elastic and plastic velocity gradients, respectively, in the current 

configuration Ω . Plastic deformation power dP  of Part A is equal to 
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 :d A p

V

P dV= L   (7.4) 

where A  is the Cauchy stress tensor of Part A, and dV  represents an infinitesimal current 

volume. Inserting the expression for the plastic velocity gradient into the equation for plastic 

power, we get  
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where edV J dV=  is an infinitesimal volume in the intermediate configuration Ω , and 

( )dete eJ = F  is the elastic change of volume. Further, the Mandel stress A  on the 

intermediate configuration is defined as 

 T T
A e e A eJ −= F F   (7.6) 

Equation (7.5) also introduces pL  as the rate-of-plastic-deformation tensor conjugate to the 

Mandel stress, where pL  is expressed in the intermediate configuration Ω  as 

 1
p p p

−=L F F   (7.7) 

The elastic Neo-Hookean potential function used in Part A is given as [40] 

 ( )
21 1

( ) ln ln (tr 3)
2 2e e e e e e eU J Jμ λ λ= − + −C C   (7.8) 

where eμ  and eλ  are the Lamé constants and eC is the elastic right Cauchy-Green 

deformation tensor, defined as T
e e e=C F F . The two Lamé constants may be exchanged with 

the more familiar elastic constants E  and ν , corresponding respectively to Young’s modulus 

and Poisson’s ratio. 

The Mandel stress tensor for Part A, A , may then be expressed in the Ω  configuration as [7] 
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e

U
Jλ μ

∂
= = + −

∂
C I C I

C
  (7.9) 

where I  is the second-order unit tensor.  

The equivalent stress proposed by Raghava et al. [16] reads 

 
( ) ( )

2 2
1 1 21 1 12

2
A A A

A

I I Jα α α
σ

α

− + − +
=   (7.10) 

where 1 trA AI =  and dev dev
2 1 2 :A A AJ =  are respectively the first invariant and the second 

deviatoric invariant of the Mandel stress tensor of Part A. The deviatoric part of the Mandel 

stress tensor in Part A is defined as ( )( )dev 1 3 trA A A= − I . The material parameter 1α ≥  

controls hydrostatic stress dependency, and is commonly defined as the ratio between the 

yield stresses ,A Cσ  and ,A Tσ  in compression and tension, respectively, i.e. , ,A C A Tα σ σ= . It 

may be noted that 1α =  reduces the equivalent stress to 23A AJσ = , which is the Mises 

equivalent stress. The Raghava equivalent stress also corresponds to the applied stress in 

uniaxial tension, and α  times the absolute value of the applied stress in uniaxial compression.  

The flow potential function g  is similarly expressed as  

 
( ) ( )

2 2
1 1 21 1 12

0
2

A A AI I J
g

β β β

β

− + − +
= ≥   (7.11) 

where 1β ≥  controls the plastic volumetric growth. The model is thus non-associated for 

α β≠ , and this possibility allows for a more precise representation of plastic dilatation than 

an associated formulation does. The plastic velocity gradient tensor pL  in the intermediate 

configuration is defined by the flow rule  

 ( )1 dev
1 2p p p p p A

A

g
g gλ λ− ∂

= = = +
∂

L F F I   (7.12) 
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where pλ  is the rate of the plastic multiplier and the gradients 1g  and 2g  of the flow potential 

function are defined as 
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  (7.13) 

Inserting Equation (7.12) into the expression for the plastic deformation power, see Equation 

(7.5), gives 

 : :d A p A p p
AV V V

g
P dV dV gdVλ λ

∂
= = =

∂
L   (7.14) 

which is non-negative when 0pλ ≥ . It is also of interest to look at the relationship between 

the plastic multiplier and the equivalent plastic strain rate p , which can be found from the 

integrand of Equation (7.14) by enforcing the equality 

 :A p p Ag pλ σ= =L   (7.15) 

which defines the relationship between the plastic multiplier and the equivalent plastic strain 

rate as 

 A
p p

g

σ
λ =   (7.16) 

The equivalent plastic strain rate is defined by the Arrhenius type relationship  
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where 0p  is a reference plastic strain rate, ( )0 0A A pσ σ=  is the stress response of Part A in 

uniaxial tension at the reference plastic strain rate, and C  is a parameter controlling the 

plastic viscosity. The yield function f  can then be written as  

 ( )0A Af pσ σ= −   (7.18) 

For 0f > , Equation (7.17) defines the constitutive visco-plastic relation for Part A as 

 ( )0
0

ln 1A A

p
p C

p
σ σ= + +   (7.19) 

This equation differs from the constitutive visco-plastic relation proposed by Polanco-Loria et 

al. [7] in that the term containing the plastic viscosity now is added to the strain hardening 

term ( )0A pσ , whereas they used a multiplicative relation. The strain hardening response of 

Part A, ( )0A pσ , is assumed to be a Voce-type function of the equivalent plastic strain p , 

defined as 

 ( ) ( )
2

0 0
1

1 expA y i i
i

p Q C pσ σ
=

= + − −   (7.20) 

where 0yσ  corresponds to the yield stress in uniaxial tension at the reference plastic strain rate 

0p , and the shape of the strain-hardening curve is described by the Voce parameters iQ  and 

iC , where 1, 2i = .  

 Part B 7.1.2

Part B, representing chain resistance from orientation and stretching, is based on the Arruda- 

Boyce model [39]. The constitutive law can be written for Cauchy stress tensor as  

 ( )1 * 21

3
R L

B
L

C

J

λ λ
λ

λ λ
− −= B I   (7.21) 



151 

 

The material parameters RC  and Lλ  describe the initial stiffness and the locking stretch, 

respectively. The function 1−  is the inverse of the Langevin function ( ) ( )coth 1/x x x= −  

and J  is the determinant of the deformation gradient. The effective distortional stretch λ  is 

calculated from the distortional left Cauchy-Green deformation tensor *B  as 

 ( )*1
tr

3
λ = B   (7.22) 

where *B  is calculated as  

 ( )( )* * * * 1/3,
T

J −= =B F F F F   (7.23) 

There exists no analytical expression for the inverse function 1−  of the Langevin function. 

An approximation recently proposed by Jedynak [41] is used herein. The approximation reads 
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1
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− +
≈   (7.24) 

An important aspect of the network stretching model is how its response differs depending on 

the type of deformation. It is of special interest in this thesis to look at the difference in 

response between uniaxial compression and tension. This can be done by looking at the first 

element of an assumed diagonal stress tensor B , denoted ,1Bσ , in uniaxial tension and 

compression. The ratio s  between these two stress components can then be defined as  

 ( )
( )
( )

,1

,1

,
, ,

,

B L

L

B L

t

t c

c
s

σ λ
λ

σ λ
=

−

F
F F

F
  (7.25) 

where tF  and cF  are the resulting deformation gradients when a material point is loaded in 

uniaxial tension and compression respectively. Assuming that these two deformation 

gradients only have non-zero elements on the main diagonal and that the second and third 

diagonal elements are equal, they can be written as 
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 and  
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where 1
tλ  and 1

cλ  are the stretches in the 1 direction, representing the loading direction. The 

determinant J  of the deformation gradients is assumed to be equal in both deformation 

modes since the case of isochoric behavior is going to be investigated. We now want to 

evaluate the ratio s  at comparable states of uniaxial tension and compression. It is here 

chosen to evaluate the ratio s  when 

 1 1
c tε ε= −   (7.28) 

where 1
cε  and 1

tε  is the logarithmic strain in the 1 direction in compression and tension, 

respectively. Recalling the relation ( )lnε λ=  between logarithmic strain and stretch, this 

gives the relation 

 1
1

1c
t

λ
λ

=   (7.29) 

Inserting this result into Equations (7.26) and (7.27), we can write both deformation gradients 

in terms of the stretch 1
tλ  and the determinant J . The deformation gradients can again be 

inserted into Equation (7.25), and we get the ratio s  as a function of the variables 1
tλ  and J , 

and the constant Lλ . This ratio is plotted in Figure 7.2 against the logarithmic longitudinal 

strain 1
tε  for the case of 6Lλ =  and 1J = . As evident from the figure, the stress ratio s  
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increases rapidly from unity, and Part B has hence a significantly larger contribution to the 

stiffness in uniaxial tension compared to uniaxial compression. This ratio goes towards 

infinity when the effective distortional stretch approaches the locking stretch, i.e. when  

Lλ λ→ .    

Figure 7.2: Part B stress response ratio from uniaxial tension and compression as a function of 
longitudinal strain calculated with no volume change and a locking stretch equal to 6.  

The parameters of the entire model are summarized in Table 7.1 where the Lamé constants eμ  

and eλ  of Equation (7.8) have been replaced by the classic elastic constants E  and ν . As 

emphasized at the start of the chapter, the model relies on the framework described by 

Polanco-Loria et al. [7]. The main modifications so far are that an additive rather than 

multiplicative formulation of the strain-rate dependency is employed, see Equation (7.19), and 

strain-hardening described by the Voce law is introduced in Equation (7.20). 

Table 7.1: Parameters for the base-line polymer model. 

Elasticity Yielding Plastic hardening 
Plastic rate 
dependency 

Pressure 
sensitivity 

Plastic 
dilatation 

Elastic 
network 

E  ν  0yσ
 1Q  1C  2Q  2C  C  0p  α  β  RC  Lλ  
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 Change of Volume During Plastic Deformation 7.1.3

The experimental tests have revealed that there is a significant increase of volume during 

plastic deformation in both materials. It is therefore of interest to look closer at the evolution 

of volumetric strain in the model. Equation (7.12) gives 

 p p p p p

g
λ λ

∂
= =

∂ A

F F rF   (7.30) 

where /g= ∂ ∂ Ar  is defined in Equation (7.13) as 

 dev
1 2 Ag g= +r I   (7.31) 

representing the gradient of the flow potential function g . We now assume that p= =F U F , 

i.e. that the deformation process is purely plastic and that stretching only occurs along the 

eigenvectors of pF . A further assumption is that that the second and third eigenvalue have the 

same values. The plastic deformation gradient can then be written as  
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From Equation (7.12) it can also be seen that /g∂ ∂ A , which is equal to r , becomes a 

diagonal tensor for a diagonal stress tensor. Assuming that the second and third eigenvalues 

of r  are equal, the diagonal elements of r  can be written as 1r , 2r  and 2r . Equation (7.30) is 

now written as 
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Let now 1λ  be equal to 

 1 11 tλ λ= +   (7.34) 



155 

 

where 1λ  represents a constant stretch rate and t  represents time. This is equivalent to 

,11 1pF λ= , and the plastic multiplier pλ  is then according to Equation (7.33) equal to 

 1

1 1
p r

λ
λ

λ
=   (7.35) 

Applying this expression for the plastic multiplier pλ  for the transverse component ,22pF  

yields 

 1
,22 2 2 2 2 2

1 1
p pF r r

r

λ
λ λ λ λ

λ
= = =   (7.36) 

A differential equation can then be defined for the unknown 2λ  

 2
2 1

2 1 1

1 1r
d d

r
λ λ

λ λ
=   (7.37) 

If the ratio 2 1/r r  is assumed to be constant, the differential equation can be solved to give 
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Recalling that the relation between true strain and stretch reads ( )lni iε λ=  , the transverse 

strain can be calculated from 

 2
2 1

1

r

r
ε ε=    (7.39) 

The volumetric strain Vε  is equal to 1 22Vε ε ε= + . The ratio γ  between volumetric strain and 

longitudinal strain can then be expressed as 

 2

1 1

1 2V r

r

ε
γ

ε
= = +   (7.40) 
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The volumetric strain ratio γ  can now be calculated for different stress states. For the special 

cases of uniaxial loading, we can write the deviatoric Mandel stress tensor as 

 

2 0 0
1

0 1 0
3

0 0 1

dev
A σ= −

−

  (7.41) 

where σ  is the applied uniaxial stress. The first invariant of the Mandel stress tensor in the 

case of uniaxial tension and compression is respectively 1
t
AI σ=  and 1

c
AI σ= − , while the 

second deviatoric invariant is equal to 2
2 / 3AJ σ=  for both loading modes. The functions 1g  

and 2g  in Equation (7.13) can then be written as 
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where the superscripts t and c indicates 0σ >  and 0σ < , respectively, or simply tension or 

compression. The ratio 2 1/r r  can now be evaluated, and for tension and compression 

respectively we get from Equation (7.31) 

 

2 1 2

1 1 2

2 1 2

1 1 2

/ 3 2

2 / 3 1

/ 3 2 1

2 / 3 1

t t t

t t t

c c c

c c c

r g g

r g g

r g g

r g g

σ β

σ β

σ β

σ β

− −
= =

+ +

− −
= = −

+ +

  (7.43) 

It is now possible to find the γ  ratio for these two load cases, where for uniaxial tension we 

get  

 
( )3 1

1UT

β
γ

β

−
=

+
  (7.44) 

and for uniaxial compression we get 
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( )3 1

1UC

β
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β

−
= −

+
  (7.45) 

where UTγ  and UCγ  is the volume to length strain ratio in uniaxial tension and uniaxial 

compression, respectively. Considering the shape of the flow potential, which is defined by 

the Raghava function in Equation (7.11), it is a bit counter-intuitive that the absolute values of 

these two volumetric strain ratios are equal. The similarity between tension and compression 

arises from the fact that logarithmic strain is being used in the ratio, while the partial 

derivatives of the flow potential controls the plastic deformation gradient via the plastic 

velocity gradient. Nevertheless, if the ratio UTγ  is known from an experiment, it is then 

possible to calculate an appropriate β  value for a simulation by solving Equation (7.44) for 

β  and get 
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3
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=
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  (7.46)   

This expression is useful for calibration of β  from a uniaxial tension test. 

It is also of interest to investigate the models response when β  is assumed to vary with the 

strain component 1ε , which then implies a non-constant ratio 2 1/r r . From Equation (7.37) we 

get the relation 

 2 2
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1 1

r
d d

r

λ
λ λ

λ
=   (7.47) 

Volumetric stretch is calculated as 2
1 2Vλ λ λ= . An infinitesimal change in volumetric stretch is 

then equal to  

 2
2 1 1 2 22Vd d dλ λ λ λ λ λ= +   (7.48) 

By inserting Equation (7.47) into Equation (7.48) we then get the relation 

 22
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r
d d
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Using the relations exp( )V Vλ ε=  and 1 1exp( )λ ε= , we can substitute Vdλ  and 1dλ  in 

Equation (7.49) and get the relation 

 2

1 1

1 2Vd r

d r

ε

ε
= +   (7.50) 

The ratio 2 1/r r  is for uniaxial tension defined in Equation (7.43)I, and inserting it into 

Equation (7.50) we the final equation for the change in volumetric strain becomes  
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or solved for β  and assuming that 1 pε =  and p
V Vε ε=   
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This relation can now be used to find an evolution law for β  as a function of equivalent 

plastic strain p  from experimental data. 

7.2 Simulation of Material Tests 

Chapter 5 presented uniaxial tension tests on two polymeric materials; HDPE and PVC. 

Moreover, two different samples were used in the tension tests; one with circular and one with 

rectangular cross-section. The tests were carried out at different strain rates, and the increase 

of temperature during plastic deformation was measured for the test series with rectangular 

cross section. The uniaxial compression tests on both materials followed in Chapter 6. 

Applying the material model outlined in Section 7.1, numerical simulations of the material 

tests presented in Chapters 5 and 6 will here be compared with the experimental results. To 

this end, all data reported from the simulations, if not stated otherwise, will be extracted from 

the surface of the simulated samples. This way of finding the strains etc. in the simulations 



159 

 

corresponds closely to how the strains were determined in the tests, and hence provides the 

best basis for comparison. The strains reported from the simulations are calculated from the 

coordinates of surface nodes in the cross-section first experiencing necking. These strains are 

further used to calculate the current area of the cross-section. 

Throughout the subsequent sections, the experimental observations will be used to augment 

the baseline constitutive model presented in Section 7.1. In particular, an improved 

description of the dilatation will be included in the model in Sections 7.2.1 and 7.2.3. Both 

these sections address HDPE. Additionally, incorporation of the temperature-dependent flow 

stress curve proposed in Chapter 4 is presented in Section 7.2.3. 

All the performed simulations are explicit simulations. Mass scaling is used in all simulations 

in order to keep the time steps at a reasonable level. This can lead to unwanted oscillations 

and unrealistic inertia forces. In order to avoid this, kinetic energy is monitored, and the ratio 

total kinetic energy divided by total strain energy is not allowed to exceed 2% at any point 

during the simulation. A second simulations parameter is the choice of element. The 

simulations of the tests of both HDPE and PVC using dog-bone samples use a reduced 

integrated 8-noded thermally coupled brick elements with the Abaqus designation C3D8RT. 

Simulations of the circular PVC tension samples as well as the cylindrical PVC compression 

tests both use reduced integrated 4-noded thermally coupled axisymmetric elements 

designated CAX4RT. The circular HDPE tension samples as well as the cylindrical HDPE 

compression tests are simulated without thermal coupling and use reduced 4-noded 

axisymmetric elements with the designation CAX4R. Hourglass control is used to minimize 

spurious modes, and as with kinetic energy, total hourglass energy is controlled against total 

strain energy. The accepted ratio of hourglass energy to strain energy is set to 5%.          

 HDPE Samples with Circular Cross-section 7.2.1

The circular HDPE tension tests are the first tests to be simulated since the effects of adiabatic 

heating on material behavior seemed to be negligible, as shown in Section 5.4. On the other 

hand, the determination of the volumetric strain is quite accurate for this sample geometry, 

and it also facilitated true strains exceeding 2. The experimental results were presented in 

Section 5.4. For the numerical simulations, it is assumed that an axisymmetric half-model is 
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able to represent the behavior of the test specimen. The mesh used in the simulations is shown 

in Figure 7.3. It is observed that the elements in the gauge part of the model are rectangular 

with a 4:1 ratio in width versus length. This is done in order to better preserve reasonable 

element dimension ratios as the mesh undergoes large deformations. It might also be noted 

that the grip of the simulated sample is shorter than the grip of the actual samples. The 

samples in the numerical model have a grip length of 10 mm, whereas the tested samples had 

a grip length of 20 mm, as seen in Figure 5.2.  

In the same way as in the test, the simulations were performed under displacement control. A 

constant velocity corresponding to half of the nominal cross-head velocity of the testing 

machine was applied to the exterior grip nodes which are shown as red dots on the lower right 

horizontal edge of Figure 7.3. This loading length and location roughly corresponds to the 

size of the clamps that stretched the samples during the experiments. The remaining unloaded 

grip area closest to the sample shoulders in Figure 7.3 can also be seen in the experiments in 

Figure 5.36. Crosshead displacement is measured as the horizontal translation of the bottom 

right node. Any compliance of the test machine was disregarded. 

In all simulations the neck initiated at the center of the sample, corresponding to the left 

vertical boundary of the mesh in Figure 7.3. All local data presented is hence calculated for 

this section.  

Figure 7.3: Mesh for simulations of circular HDPE samples in tension. 

The material constants for the simulations are given in Table 7.2. The elastic parameters ν  

and E  are found from Figure 5.10 (a) and (b) respectively. For numerical stability it is chosen 

to apply a value slightly lower than 0.5 for ν , while Young’s modulus E  was taken at a strain 

of approx. 0.025 for the slowest tests in Figure 5.10 (b). It should be kept in mind, however, 
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that the elastic response is not the central topic of this investigation, and it is anticipated that 

the elastic response of the samples with circular cross-section does not differ much from the 

observations in Figure 5.10, which addresses tests on rectangular-shaped samples. Plastic 

hardening is described using only one term of the Voce hardening described by Equation 

(7.20), where the two constants 1Q  and 1C  are fitted to the strain rate corrected stress seen in 

Figure 5.43. Concerning the viscous part of the model, the reference strain rate is selected as 

7 1
0  10p s− −= . The plastic viscosity parameter C  is found from Figure 5.42, and the yield 

stress parameter 0yσ  at the defined reference strain rate 0p  is calculated from Equation (4.27)

. The α  factor, representing the ratio between the yield stress in compression and tension, 

was seen to be close to unity in Figure 6.5. The value of the β  parameter is found from 

Figure 5.45 , where it can be seen that the volumetric strain is equal to about 0.15 at a 

longitudinal strain of 2. The corresponding volumetric strain ratio is 

1 0.15 2 0.075t
UT Vγ ε ε= = = . The parameter β  is then calculated with Equation (7.46). The 

calibration of the Part B parameters, i.e. RC  and Lλ , is less straightforward, and they were 

found with an iterative approach involving several simulations.  

Table 7.2: Material parameters for simulations of the circular HDPE tests.  

E
[MPa] 

ν  
 

0yσ
 

[MPa] 
1Q

[MPa] 
1C  
 

C  
[MPa] 

0p  
[s-1] 

α  
 

β  
 

RC
[MPa] 

Lλ  
 

650 0.48 5.27 6.57 40 1.421 1⋅10-7 1 1.051 1.65 6 

The resulting stress-strain response with the given parameters is shown in Figure 7.4 together 

with the experimental results. The continuous lines, representing the test data, are taken from 

Figure 5.37, and correspond to one representative curve from each strain rate. It is recalled 

from Figure 5.38 that the scatter between the two replicate tests at each rate was negligible. 

The curves in Figure 7.4 and throughout this chapter have the same color coding as the curves 

throughout Chapter 4, indicating the same nominal strain rates. The true stress and 

longitudinal strain from the experimental tests are taken from the first section experiencing 

necking. The dashed curves are from the simulations, where stress and strain also have been 

calculated from the longitudinal and transverse strains occurring at the surface of the sample 

and the total force. Neither the test nor the simulation data in Figure 7.4 are Bridgman-
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corrected. As can be seen, the overall similarity is quite good, but the simulation of the tests 

with the highest strain rate is slightly overestimating the hardening of the material for strains 

between 0.5 to 1.7. The small deviation could possibly be attributed to thermal softening, 

which is not captured by the present isothermal model. 

 
Figure 7.4: Comparison between simulations and experiments for uniaxial tension tests on 
HDPE with samples with circular cross-section, stretched at three different nominal strain rates. 
True stress versus longitudinal strain. 

Volumetric strain vs. longitudinal strain curves from the simulations and the experiments are 

shown in Figure 7.5 (a). Volumetric strain is here calculated with the “cylinder method”, as 

defined by Equation (4.15), for both experiments and simulations. This volumetric strain is 

referred to as apparent volumetric strain, since it is entirely based on the longitudinal and 

transverse strains measured at the surface. In the simulations, the volumetric strain was also 

found in a different way; by calculating the average determinant of the elements constituting 

the section of initial necking. This measure is in the following referred to as actual volumetric 

strain. 

Figure 7.5 (a) addresses the so-called apparent volumetric strain from both experimental tests 

and simulations, i.e. Vε  as found with the “cylinder method” in Section 4.3. It is seen that the 

simulated apparent volumetric strain follows the general trend observed in the tests, but it is 

obvious that the model is not able to capture the exact details of the response. As can be seen, 
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the choice of 1.051β =  gives a volumetric strain that approaches a level of about 0.15, which 

corresponds well with the experimental data at the end of the tests. On the other hand, the 

numerical model initially overestimates, then underestimates, and again overestimates Vε . It 

is also of interest that the model predicts slightly higher volumetric strains with decreasing 

rate, which is the opposite of what was measured in the tests, see Figure 5.45 (and Figure 

5.46). The simulations also show that even though actual volumetric strain should increase 

linearly with longitudinal strain, as shown by Equation (7.44), the apparent volumetric strain 

is highly non-linear. It is also seen that apparent volumetric strain is negative for longitudinal 

strains between 0 and 1, even though the constitutive model as such does not allow for 

negative plastic volumetric strains. This further supports the hypothesis that negative 

volumetric strain comes as a consequence of an erroneous assumption, i.e. the “cylinder 

method”. This issue will shortly be investigated more thoroughly.  

The strain rate is plotted against longitudinal strain in Figure 7.5 (b). Again, the section 

experiencing the first onset of necking is addressed in the case of both test and numerical 

analysis, and the strain rates are in both cases determined from the longitudinal strains at the 

surface. Three deviations between simulations and experiments are worth pointing out. It can 

be seen that the initial strain rate in the simulations is too high. This was found to be a result 

of machine compliance. More interesting is the distinct change of slope for the dashed curves 

obtained from the simulations at a strain of about 0.15. This is an effect of the sudden 

transition from elastic to plastic deformation that results from the choice of applying a yield 

criterion in the constitutive model, see Equation (7.17). Thirdly, it is obvious that the strain 

rate in the simulations overestimates the strain rate in the experiments. This indicates that 

neck propagation initiates later in the simulation compared to the experiments. The delayed 

propagation comes as a result of too little hardening after a strain of around 1. This lack of 

hardening is related to the rigidity in the model, where Part B almost exclusively controls late 

stage hardening.  
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(a)  (b) 

Figure 7.5: Comparison between simulation and experiments for uniaxial tension tests on HDPE 
with samples having circular cross-section. (a) Volumetric strain calculated with the “cylinder 
method” versus longitudinal strain, and (b) strain rate versus longitudinal strain. 

So far, the comparison between tests and simulations has been concerned with local measures 

such as stress, strain and volumetric strain. It is also of great interest to look at global, or 

integrated quantities such as force, displacement and reduction of diameter at the neck. This 

information is provided in Figure 7.6. As would be expected from the good data agreement on 

the material scale as seen in Figure 7.4 and also to some extent in Figure 7.5 (a), the force-

displacement curves from the simulations are close to the experimental curves, see Figure 7.6 

(a). It should be noted that the origin of the force vs. displacement curves from the 

simulations in Figure 7.6 (a) have been shifted to the right so that the peak points of the 

curves from the simulations coincide with the peak points of the experimental curves. This 

was done to account for machine compliance, and was validated for these three tests by 

calculating the displacement using DIC and comparing it to the machine displacement shown 

in the figure. It was then observed that the deformation speed found from DIC was lower up 

to peak force compared to the velocity applied by the machine, while the two speeds quickly 

converge after peak force. It is hence assumed that machine compliance is negligible after 

peak force. A similar shift of the force vs. crosshead displacement curves has been done in all 

subsequent simulations.  

It can be seen that the general agreement between the force-displacement curves is good. The 

simulations capture the peak force, the subsequent softening, the drawing force and finally the 
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force increase as the neck propagates into the sample shoulders. Such an agreement requires 

that the model is able to represent both the longitudinal stress-strain behavior of the material 

as well as the transverse deformations. It is however noted that the force level after 30 mm 

displacement is slightly underpredicted for the two fastest tests. The force level on this plateau 

is highly sensitive to the calibration of Part B. With the current model it is possible to capture 

this level exactly for only one of the three strain rates covered in this investigation. This 

observation suggests that Part B should include some rate sensitivity. 

Figure 7.6 (b) shows the force as function of the minimum cross-section radius in the neck. 

Such a plot serves to display whether the transverse deformations and the subsequent cold-

drawing process are captured. The general trend is that there is a good agreement between 

results from tests and simulations. Yet, a systematic overprediction of the force, followed by 

an underprediction, with decreasing radius can be observed. This is a result of the simplicity 

of the implemented plastic dilatation model, where the parameter β , and hence γ  is constant. 

It can also be seen that the force in the simulations converge at the final radius around 1.2 

mm, while it in the experiments increases from the slowest to the fastest one. Again, this 

suggests that plastic dilatation is dependent on viscosity.  

 
(a) Force vs. Crosshead Displacement (b) Force vs. Radius at Neck 

Figure 7.6: Force vs. displacement and force vs. neck radius comparison between simulation and 
experiments of tests performed with circular HDPE samples, stretched at three different 
nominal strain rates. 

The simulation of the slowest test, which was performed at a nominal strain rate of 10-2.5 s-1, 

is shown at three stages of localization and neck propagation in Figure 7.7. The non-
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homogenous distribution of longitudinal strain through the radius of the sample seen in Figure 

7.7 (a) illustrates the problem of calculating a representative strain based on exterior strain 

measurements. This in turn also leads to the difference in results obtained with the “cylinder” 

and “parabolic” method as discussed in Section 4.3. This strain inhomogeneity in the radial 

direction can be seen to follow the front of the neck propagation, leaving a homogenous strain 

field in its wake.   

(a) Initial localization, 
u=3.6 mm 

(b) Early stage neck 
propagation, u=5.8 

(c) Late stage neck 
propagation, u=13.2 

Figure 7.7: Simulation of circular HDPE sample stretched at a nominal strain rate of 10-2.5 s-1 
shown at three different elongations. The colors map indicates level of principal logarithmic 
strain. 

Assuming that the current model provides an overall good representation of the material, it is 

now possible to look more in depth on the plastic volume change. The dilatation is primarily 

governed by the parameter β . Applying three different values for β , the resulting volumetric 

strains from simulating the experiment with the intermediate loading speed of 10-2.0 s-1 are 

shown in Figure 7.8 along with the measured volumetric strain of the corresponding 

experiment. The figure shows apparent volumetric strain calculated with the “cylinder 
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method” as solid lines, while actual volumetric strain determined from the determinant of the 

deformation gradient is shown with dashed lines. As can be seen, there is a significant 

deviation between the two sets of numerical predictions up to a longitudinal strain of about 

1.7. This is the point in the test where the neck starts to propagate, and the section of initial 

necking returns to a straight section. At this stage the two volumetric strain calculations start 

to give similar results in terms of shape and volumetric strain level. It can also be seen that the 

material initially appears to conserve its volume up to a strain of about 0.25, as the apparent 

volumetric strain in the experiment is close to the apparent volumetric strain of the volume 

preserving simulation with 1.00β = .   

 
Figure 7.8: Apparent and actual volumetric strain in simulations for different values of , shown 
with apparent measured volumetric strain from experiment (black). Solid lines are apparent 
and dashed lines are actual volumetric strain (red, green and blue). 

With the data shown in Figure 7.8, it is now possible to estimate the shape of the actual 

volumetric vs. longitudinal strain curve from the experiment. This can be done by assuming 

that the level of apparent volumetric strain at a given point of longitudinal strain is only a 

function of the current level of actual strain. It is then possible through interpolation of the 

simulation data do determine what value of actual volumetric strain is required to produce an 

experimentally measured value of apparent volumetric strain. An example of this is show in 

Figure 7.9, where the blue, green and red circles represent the actual and apparent volumetric 

strain from the three simulations at a longitudinal strain level of 1. This data is then 

β

β

β
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interpolated to get an actual volumetric strain for an apparent volumetric strain equal to 0.045, 

which is what was measured in the experiment at the same longitudinal strain level.  

 
Figure 7.9: Interpolation of actual volumetric strain as a function of apparent volumetric strain 
at a longitudinal strain level of 1. 

The process illustrated by Figure 7.9 can now be performed for the whole range of 

longitudinal strain, and an approximation of the actual volumetric strain in the experiment can 

be obtained. This interpolation approximation is shown in Figure 7.10 together with the 

original measurement (“apparent”) as well as the corrected volumetric strain obtained with the 

“parabolic method” as defined by Equation (4.20). As can be seen, there is a good agreement 

between the correction suggested in this thesis and the volumetric strain found by 

interpolating the simulation results. This further validates the proposed volumetric correction. 

The largest deviation between the interpolated and corrected volumetric strain is at a 

longitudinal strain equal to 1.5. Interestingly, the interpolated volumetric strain here shows a 

tendency to reach a maximum, and then reduce with about 0.02.   

β

β

β
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Figure 7.10: Volumetric strain for a test performed with circular HDPE sample stretched at a 
nominal strain rate equal to 10-2.5 s-1. Comparison between apparent, corrected and interpolated 
volumetric strain. 

When the actual behavior of volumetric strain is known, it is possible to refine the FEM 

material model. This can be done by first calculating ( )pβ  using Equation (7.52) and the 

experimental data.  This is shown in Figure 7.11 along with a calibrated model for ( )pβ . The 

model for ( )pβ  used a simple Gaussian bell function. This function is defined as  

 
( )

2

2
( ) exp 1

2

p b
p a

c
β

− −
= +   (7.53) 

where the fitted set of constants is [ , , ] [0.14 0.78 0.30]a b c = . As can be seen, 1a +  is 

equal to the peak value of β , b  defines at which value of p  the maximum β  occurs, while 

c  defines how steep the peak of the function is. 
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Figure 7.11: Plastic dilation parameter  plotted as a function of equivalent plastic strain for a 
tests performed on a circular HDPE sample (blue) shown with fitted model (red). 

This function for β  was implemented in the material model, and the resulting volumetric 

strain is shown in Figure 7.12. As evident from the comparison with the experiment, the 

refined dilatation model is a considerable improvement over the original constant β  

implementation. As a side note, this variation of β  with equivalent plastic strain could 

potentially also be used for α , making the flow rule of Section 7.1.1 associated. Since 

yielding occurs at the same stress level in compression and tension, while there is clear 

volumetric growth in tension, it has earlier been assumed that the material model is non-

associated. If α  were to vary with β  as described by Equation (7.53) and the given 

calibration, these experimental observations would still hold true since α  initially would be 

equal to 1. It can further be see that an associated model like this would lead to an increase in 

yield strength in compression relative to tension with an increase in equivalent plastic strain. 

This is also something that seems to be supported by experiments. The drawback of such an 

assumption is however that it would impose a complicated plastic volumetric strain evolution 

in compression without the experimental data to validate it. This concept is hence not 

developed further in this thesis, and is left for further work.  

β
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Figure 7.12: Volumetric vs. longitudinal strain for a circular HDPE sample in tension, 
experimental and simulation. Simulation with modified material model adding varying  with 
equivalent plastic strain.  

 HDPE in Compression 7.2.2

The same set of material parameters as used in tension (Table 7.2) is also employed for a 

simulation of the compression test, thus applying a constant value of β . The problem is 

assumed to be axisymmetric, where the sample is compressed between two rigid plates. The 

rigid plates are represented as two analytical, mesh free, rigid surfaces. Coulomb friction is 

assumed between the rigid surfaces and the sample with a constant friction coefficient equal 

to 0.03. The mesh is shown along with a representation of the rigid analytical surfaces in 

Figure 7.13. 
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Figure 7.13: Axisymmetric mesh for simulations of cylindrical HDPE samples in compression. 

A contour plot showing volumetric stretch Vλ  at the end of the simulation is presented 

together with the initial geometry of the sample in Figure 7.14. Note that the largest 

volumetric stretch is equal to 1.055, which is equivalent to a volumetric strain of 0.053. The 

corresponding longitudinal strain is around –0.6. Again, all material response curves 

presented from the simulation are calculated from the strains occurring at the surface of the 

sample and the total compression force.  
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Figure 7.14: Contour plot from axisymmetric simulation of HDPE sample in compression at the 
end of the simulation superposed on the undeformed sample. The contours address volumetric 
stretch V. 

The true stress-strain curve obtained in the simulation is shown in Figure 7.15, which also 

includes the curve found from the experimental test. As evident from the figure, the 

simulation follows the test results well up to a strain of 0.15, after which there is a difference 

of 2-3 MPa. The choice of friction coefficient will affect the stress-strain curve from the 

numerical analysis. A detailed study of how the results are affected by different values of the 

friction coefficient is, however, not within the scope for this evaluation of the numerical 

model. Yet, some comments will be provided in the following, and the effect of changing the 

friction coefficient will be elaborated in Section 7.2.6 dealing with PVC in compression.  
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Figure 7.15: |True stress| vs. |longitudinal strain| for HDPE in compression, comparison between 
simulation and experiment. 

As for the tension tests, a comparison of the deformed shape of the sample from the 

compression test and the corresponding simulation is of interest. The center section, located 

half-way between the two rigid plates, is chosen for this evaluation. The center radius and the 

curvature of the boundary at the center are compared between experiment and simulation in 

Figure 7.16 (a) and (b), respectively. In both cases, the longitudinal strain is taken as reference 

at the horizontal axis. Looking at the radius, it can be seen that the simulation slightly 

overpredicts the radius at intermediate strain levels. This observation suggests that the 

transverse strains and hence change of volume is reasonably captured by the numerical model.  

On the other hand, it can be seen from Figure 7.16 (b) that the curvature in the simulation 

differs significantly from the curvature measured in the test. It was found that this curvature is 

extremely sensitive to the friction coefficient used in the simulations. Additionally it seems 

that it is not possible to recreate the shape of the curve from the test using a constant friction 

coefficient. This can be seen when comparing the two curves in Figure 7.16 (b) for center 

curvature. The sample in the simulation has an earlier onset of barreling, see also Figure 7.16 

(a), and is overpredicting barreling up to a strain of 0.5. At a strain of 0.5, the curvatures are 

the same, whereas after, the simulation underpredicts curvature with a large slope difference 

between the two curves in Figure 7.16 (b). The reason for the rapid increase in barreling seen 
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in the experiment could possibly be attributed to a change in lubricant condition, but it could 

also be caused by a local and considerable volume expansion in the center section of the 

sample. 

(a) Center radius vs. |longitudinal strain| (b) Center curvature vs. |longitudinal strain| 

Figure 7.16: Radius and curvature at center section of the sample versus |longitudinal strain|. 
Comparison between simulation and experiment. 

Figure 7.17 shows volumetric strain in the center section of the sample for test and 

simulation. The volumetric strain is in both cases calculated from the strains at the surface of 

the sample, applying the same assumptions as for the “cylinder method” described in Section 

4.3. Figure 7.17 in other words presents an average volumetric strain in the center section. 

This figure is included to show the large error present when trying to measure volumetric 

strain locally in compression. This is apparent by comparing the maximum values in Figure 

7.17 to those previously shown in the contour plot of the volumetric stretch in Figure 7.14. In 

the latter case, which represents the end of the simulation and hence a longitudinal strain of –

0.6, there is no element that ever experiences a volumetric strain larger than 0.053. Despite 

this, the local exterior calculation yields a maximum value of about 0.15. This large 

inaccuracy is a result of the sample barreling, resulting in non-homogeneous strains through 

the volume of the sample. This explains why the volumetric strain seems to start increasing at 

the onset of barreling, as well as the seemingly inverse relationship between curvature and 

local volumetric strain. Another observation is that the volumetric strains are larger in the 

interior of the center section than at the surface, see Figure 7.14.This means that the “cylinder 

method” for calculation of volumetric strains is strongly misleading after the onset of 
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barreling. Additionally it was found that this method of calculating volumetric strain was 

highly sensitive to a change in the friction coefficient, as will be shown for the PVC 

compression test in Section 7.2.6.  

Figure 7.17: Volumetric strain vs. |longitudinal strain| for HDPE in compression, comparison 
between simulation and experiment. Volumetric strain calculated for the center section of the 
specimen with the “cylinder method”. 

Force versus displacement curves from tests and simulations are compared in Figure 7.18. 

Keeping the large deviations between tests and simulations in Figure 7.16 and Figure 7.17 in 

mind, the agreement of the curves in Figure 7.18 is surprisingly good. The reason for this is 

that stress was underpredicted in the simulations, see Figure 7.15, while the cross sectional 

area was overpredicted in Figure 7.16 (a). The net result is then that the deviations somewhat 

cancel each other out. The good agreement is thus not fully representative of the quality of the 

simulation. Hence, Figure 7.16 to Figure 7.18 demonstrate that even if the global response is 

well captured in a numerical simulation, it is also worthwhile to have a close look at the local 

deformation during an evaluation process of a numerical model. 
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Figure 7.18: |Force| vs. |displacement| curves for HDPE in compression, comparison between 
simulation and experiment. 

 HDPE Samples with Rectangular Cross-section  7.2.3

The tests performed with the rectangular HDPE samples were simulated with the material 

parameters shown in Table 7.3. The improved model for change of volume, i.e. the relation 

for evolution of β  as function of accumulated plastic strain p , see Equation (7.53), is now 

employed. The parameter β  is therefore not given in Table 7.3.  

An inspection of the parameters in Table 7.2 and Table 7.3 reveals that some of them differ, 

although both sets refer to the same HDPE material. The cause of this is believed to be that 

the tests with the rectangular samples were performed two and a half years before the series 

on the circular samples, respectively in 2012 and 2014. The minor changes of the mechanical 

properties of the material could be due to an aging effect. This hypothesis is however difficult 

to prove since different sample geometries were used. Hence, some or all of the difference 

between the material parameters in Table 7.2 and Table 7.3 could potentially come as a result 

of different design of the specimens.  
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Table 7.3: Material parameters for simulations of the rectangular HDPE tests 

E
[MPa] 

ν  
 

0yσ
 

[MPa] 
1Q

[MPa] 
1C  
 

C
[MPa] 

0p  
[s–1] 

α  
 

β  
 

RC
[MPa] 

Lλ  
 

650 0.48 2.43 5.1 40 1.788 1⋅10–7 1 - 1.9 6 

The two material calibrations are compared in Table 7.4. As can be seen, different values 

occur for the initial yield stress 0yσ , the plastic hardening parameter 1Q , the plastic viscosity 

parameter C  and in the network stiffness coefficient RC . The initial yield strength seems to 

have increased with time, which corresponds well with typical aging effects. On the other 

hand, the viscosity is reduced. The net effect of these two changes at the strain rates 

investigated here is that the circular tests have an increased yield stress of about 1.2 MPa. The 

decrease in network stiffness RC  might suggest some form of material deterioration with 

time. Given the lack of data on this subject it is not further investigated, and for practical 

purposes the two test series of rectangular and circular specimens are assumed to be of similar 

but not identical materials.  

Table 7.4: Comparison of material calibration for rectangular and circular HDPE samples  

 E
[MPa] 

ν  
 

0yσ
 

[MPa] 
1Q

[MPa] 
1C  

C
[MPa] 

0p  
[s-1] 

α
 

β  
 

RC
[MPa] Lλ  

Rectangular 

(2012) 
650 0.48 2.43 5.1 40 1.788 10–7 1 - 1.9 6 

Circular 

(2014) 
650 0.48 5.27 6.57 40 1.421 10–7 1 1.051 1.65 6 

Difference 0 0 -2.84 -1.47 0 0.367 0 0 - 0.25 0 

As was seen in Figure 5.19, there is a significant increase of the volumetric strain in the 

rectangular specimens during the tension test. Moreover, the figure also suggests that the 

evolution of the volumetric strain is dependent on the strain rate. Employing the same method 

as used for the circular samples in Section 7.2.1, it is possible to calculate β  as a function of 

plastic strain for the tests using Equation (7.52). This is shown in Figure 7.19, where again it 

seems to be a strong strain-rate dependency. Additionally, β  seems to evolve with plastic 

strain in a similar fashion as was seen for the circular samples. It then seems natural to extend 
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Equation (7.53) to incorporate strain rate sensitivity. To this end, the value of β  at a plastic 

strain equal to 1.17 has been marked in the plot, and it can be seen that this is close to the 

maximum of β  for all tests.  

Figure 7.19: Plastic dilatation factor  as a function of longitudinal plastic strain for rectangular 
HDPE tests.  

Equation (7.53), describing the model for ( )pβ , can now be extended to incorporate strain 

rate dependency. This is done by first assuming that the maximum value of β occurs at the 

same value of equivalent plastic strain p p=  for all tests. This implies that b p= , which 

reduces Equation (7.53) to ( ) 1p aβ = + . It then seems reasonable to assume that the 

parameter a  should depend on strain rate. We now propose that a  is a logarithmic-linear 

function of strain rate   

 
0

( ) ln 1
p

a p d e
p

= + +   (7.54) 

where d and e  are calibration parameters and 0p  is a reference plastic strain rate. Recalling 

the ( ) 1p aβ = +  at the strain level p p=  identified with circles in Figure 7.19, there are now 

two relations available for ( )a a p=   

β
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0

( ) ln 1 ( ) 1
p

a p d e p
p

β= + + = −   (7.55) 

The parameters d and e  can now be optimized by performing a linear fit to the values 

( ) 1pβ −  on the vertical axis and the values ( )0ln / 1p p +  on the horizontal axis. This is 

shown in Figure 7.20 where the β  values found for 1.17p =  are denoted as “Beta Max” at 

the vertical axis. The reference strain rate 0p  is set to 7 110 s− −  which is the same value as 

used in the visco-plastic model, see Table 7.3. As can be seen, the assumed logarithmic linear 

model provides a good fit to the experimental observations in Figure 7.20, and the parameters 

in Equation (7.54) are found to be 0.193d = −  and 0.0295e = . It should be noted that having 

the parameter 0d <  can result in 1β <  for low strain rates. This is not allowed in the model, 

so it is hence necessary to specify that ( )a p  should not be allowed to become negative. 

Figure 7.20: -1 as a function of relative plastic strain rate for tests performed with rectangular 
HDPE samples. 

It was found that a value of 0.5 for the last coefficient c  in Equation (7.53) resulted in a good 

agreement. The extended function for β , which now also incorporates the strain rate, is then  

 
( )

2

2
0

( , ) ln 1 exp 1
2

p bp
p p d e

p c
β

− −
= + + +   (7.56) 



181 

 

where the value of the parameters are [ ]b c d e = [ ]1.17 0.5 0.193 0.295− . It may be 

noted that 1.17b =  and 0.5c =  in this case, while the values from the tests performed on the 

circular samples were found to be 0.78b =  and 0.3c = . This shows that volumetric strain 

stabilizes at an earlier stage of plastic deformation in the tests performed with the circular 

specimens compared to the rectangular ones. It was also seen in the data from the circular 

samples that there was little variation in volumetric growth between strain rates. This is 

consistent with the reduced plastic viscosity seen in the yield stress. These variations in 

volumetric growth are also assumed to be a result of the time difference between the two sets 

of tests. The complete model as described with Equation (7.56) is compared against the 

experiments in Figure 7.21. As can be seen, the model seems to describe the variation of β  

quite well. 

 
Figure 7.21: Variation in  as a function of longitudinal plastic strain in HDPE tests and model. 

In addition to plastic strain and strain rate, temperature caused by adiabatic heating was also 

measured in the tests on the specimens with rectangular cross section. It should be noted that 

since strain rate and temperature have not been varied independently in the tests, it is difficult 

to evaluate their individual influence on volumetric growth. A pragmatic approach is to 

assume that β  is only dependent on one of them. Strain rate was chosen since β  increases 

with increased strain rates, as seen from Figure 7.20, even between the three slowest tests that 

β
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experienced modest to no increase in temperature, confer Figure 5.12. On the other hand, no 

such clear dependency was found for temperature. The validity of this assumption should 

however be evaluated by performing equivalent uniaxial tension tests at constant strain rate, 

but with varying temperature. 

The test series with rectangular samples was monitored with an infrared camera and it was 

shown in Figure 5.12 that significant heat was generated for strain rates of 10-2.0 s-1 and 

higher. This adiabatic heating affects the behavior of the material, so in order to evaluate and 

simulate this problem, it is necessary to run a fully coupled explicit thermo-mechanical 

analysis. The thermal parameters used in the simulations are shown in Table 7.5. Specific heat 

pC  and thermal conductivity k  was found from the online database MATBASE [42]. As was 

seen in Figure 5.18, there is significant variation in the Taylor-Quinney coefficient χ  with 

plastic strain when calculated from the total stress. However, in the material model used in the 

simulations, it is only Part A that dissipates heat. This serves as an explanation for the high 

constant χ  factor used when compared to the measured one. The thermal convection 

coefficient h  between HDPE and air was estimated from a simple experiment. In the 

experiment, a thin square sheet of HDPE was first submerged in 50°C hot water for 5 

minutes, before being removed from the bath, dried off and then left to air cool. While the 

sheet air cooled, the temperature was measured every 15 seconds for approximately 10 

minutes. The change in material temperature T  with respect to time can then be expressed 

from the last part of Equation (5.2). We then have 

 ( ) int
R

p

A
T h T T

V Cρ
= −   (7.57) 

which solved for the unknown convection coefficient h  gives  

 
( )

p

int R

V C T
h

A T T

ρ
=

−
  (7.58) 

For a square sheet with widths W and a thickness t , the ratio int/V A , describing the volume 

of the body divided by the external surface area, is  



183 

 

 
( ) ( )

2

2
int 2 42 4

V W t Wt

A W tW Wt
= =

++
  (7.59) 

Equation (7.58) can then be solved when the temperature is measured, and the time derivative 

of the temperature T  is calculated with numerical differentiation. 

Table 7.5: Thermal parameters for simulating tests performed with rectangular HDPE samples. 

ρ  
[ kg/m3] 

χ  
  

pC
 

[ J/kgK] 

k  
[ W/mK]  

h  
[ W/m2K]  

970 0.9 2200 0.5 8 

In addition to the thermal parameters, a model for how temperature affects the stress is also 

required. A temperature scaling factor Ψ  is defined as  

 ( ) ( )1
m

R
R

M R

T T
T sign T T

T T

−
Ψ = − −

−
  (7.60) 

where T  is the temperature in the material point, RT  is the room temperature, MT  is the 

melting temperature of the material and m  is a calibration parameter. The shape of the 

function for different values of m  is shown in Figure 7.22 for R MT T T≤ ≤ , with 20RT C= °  

and 100MT C= ° .  
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Figure 7.22: Temperature scaling factor  presented with different values of m, shown against 
temperature. Room and melting temperatures are set to 20°C and 100°C.  

Equation (7.60) is simply a numerically more robust version of the temperature dependent 

stress scaling factor ( )Tθ  in Equation (4.28). The use of the sign  function and the absolute 

value ensures that ( )TΨ  is real number for RT T< , i.e. at low temperatures, and arbitrary 

choices of m . This scaling factor is then multiplied with the flow stress 0 ( )A pσ  in the 

constitutive visco-plastic relation for Part A shown in Equation (7.19). We then get  

 ( ) ( )0
0

ln 1A A

p
T p C

p
σ σ= Ψ + +   (7.61) 

where ( )0A pσ  is defined in Equation (7.20). In addition, the initial stiffness parameter RC   in 

Part B, see Equation (7.21), is also multiplied with the same factor ( )TΨ . As seen from 

Equation (7.61), the viscosity is assumed to be independent of the temperature in the material. 

Thermoelastic effects are neglected in this presented model and in all simulations in general.   

As the model now is expanded to include strain rate sensitivity in the evolution of β , and 

also incorporates possible change of temperature due to adiabatic heating, it is now possible to 

simulate the tests. The simulations assume three planes of symmetry, reducing the 3D model 

of the entire specimen to a 1/8 model with half the length, thickness and width of the sample 

°

ψ
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dimensions given in Figure 5.1. The mesh used is shown in Figure 7.23. It consists of 

thermally coupled elements with 8 nodes, having the ABAQUS designation C3D8RT. All 

material curves reported from the simulations are taken from the surface of the center section 

since necking initiated at this point at all loading rates. All simulated samples were given 

initial homogenous temperatures equal to what was measured as initial temperatures in the 

experiments. 

Figure 7.23: Mesh for simulations of rectangular HDPE samples in tension.  

True stress vs. longitudinal strains curves for the five strain rates are compared between 

simulations and experiments in Figure 7.24. The general trends are well captured by the 

model. The largest deviation is observed in the test with the highest strain rate, where it is 

observed that the simulation predicts too much thermal softening. This is primarily a result of 

an excessively high temperature at strains up to 1.3 in the simulation of this test at 10-1.5 s-1 (as 

seen in Figure 7.25).  
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Figure 7.24: Stress vs. strain curves for experiments and simulations of uniaxial tension tests 
performed with rectangular HDPE tension samples, stretched at five different nominal strain 
rates. 

Temperature versus strain for the simulations and experiments is shown in Figure 7.25. The 

simulations capture the measured temperatures well for the four slowest tests, whereas the 

simulation of the fastest test does not manage to follow the non-linear evolution of 

temperature as function of strain seen in the experiment. This is related to the use of a 

constant value of the Taylor-Quinney coefficient χ . According to Figure 7.25, there is an 

increase in slope of the fastest test when the strain exceeds 1. The model represents this stage 

of deformation as a non-linear elastic network, but the underestimation of the temperature 

suggests that an energy-dissipating mechanism is more likely to be correct. 
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Figure 7.25: Temperature vs. strain curves for experiments and simulations of tests performed 
with rectangular HDPE tension samples stretched at five different nominal strain rates. 

Figure 7.26 shows volumetric strain versus longitudinal strain curves. This figure hence 

highlights the ability of the implemented evolution function for the β  parameter, see 

Equation (7.56), to capture the dilatation. As seen from the figure, the model is in good 

agreement with the experimental results. It is recalled that the response in Figure 7.26 

addresses the section experiencing the first necking. There is a significant change in the strain 

rate in this section during the deformation process, yet the model represents the dilatation in 

an adequate way. 

°
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Figure 7.26: Volumetric strain vs. longitudinal strain curves for experiments and simulations of 
tests performed with rectangular HDPE tension samples stretched at five different nominal 
strain rates. 

For the sake of completion, strain rate versus strain curves are shown in Figure 7.27. Again, 

the response in the neck is addressed. The simulations capture the general strain-rate levels 

and the overall shapes of the curves from the experimental tests quite well, but there is a trend 

of a delay in peak values in the simulations. 
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Figure 7.27: Strain rate vs. longitudinal strain for experiments and simulations of tests 
performed with rectangular HDPE tension samples stretched at five different nominal strain 
rates. 

The last comparison involves force versus displacement curves obtained from experiments 

and simulations. Figure 7.28 pays attention to these global response parameters. In a similar 

way as in the previous Figure 7.6 (a), the origin of the force-displacement curve in the 

simulations is shifted in the right-hand direction to compensate for an inaccurate 

representation of the elastic stiffness in the experimental data. Again, this is due to 

compliance of the test machine and possibly also deformation of the gripping parts of the 

specimen. It is observed from Figure 7.28 that the peak force and the constant force levels 

corresponding to cold drawing are well captured in all the simulations, i.e. at all strain rates. 

Also the softening transition from peak force to the drawing force level is excellent in the 

three slowest cases. However, the level of force is overestimated in this softening region in 

the faster tests. This overestimation of force indicates that the stiffness in the simulations is 

too high at some point between yield and maximum obtained strain. Recalling from Figure 

7.25 that the temperature was too high for moderate strains in the simulations, the mismatch 

for the fastest test could be related to temperature softening. 
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Figure 7.28: Force vs. displacement curves for experiments and simulations of tests performed 
with rectangular HDPE tension samples stretched at five different nominal strain rates. 

 Rectangular PVC Samples 7.2.4

Numerical simulations of the uniaxial tension and compression tests on the HDPE material 

were presented in the previous sections. All these simulations employed the hyperelastic-

viscoplastic constitutive model outlined in Section 7.1. Based on observations in the 

experimental tests on HDPE, the model was extended with some features in order to improve 

the representation of the physical response. Firstly, the tests revealed that the evolution of the 

volumetric strain depends on both strain and strain rate. The volumetric strain is governed by 

the parameter β , and Equation (7.56) proposes an expression for ( ),p pβ β= . Further, the 

tension tests on HDPE samples with rectangular cross section were instrumented with a 

thermal camera, facilitating measurements of the significant temperature increase due to 

adiabatic heating in the tests at strain rates of 10–2.0 s–1 and higher. A factor allowing for 

thermal softening of the flow stress was introduced in Equation (7.60). 

The material model, including the extensions proposed in the previous sections, will now be 

used in numerical simulations of the uniaxial tests on PVC. The rectangular PVC samples 

were instrumented with a thermal camera in the experimental tests. These tests are therefore 

used for identification of the parameters in the material model, including the thermal part. 
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Subsequently, the model will be applied in simulations of circular tests and compression tests 

in Sections 7.2.5 and 7.2.6, respectively.  

The PVC samples are modeled without Part B, representing the network stiffness. All 

stiffness increase after yield is in other words assumed to be isotropic plastic hardening. This 

is done in order to better capture the dissipation of energy, resulting in temperatures closer to 

what was measured in the experiments. Within the context of large deformations, it is also 

recalled from Section 5.3 that the failure strain in the experimental tests on PVC is around 1, 

while the HDPE samples experienced twice as high logarithmic strain at failure.  

The material parameters used to simulate the rectangular PVC samples are shown in Table 

7.6. The elastic parameters ν  and E  are found from the results presented in Figure 5.23 (a) 

and (b) respectively, while the plastic viscosity parameter C  is taken from the results shown 

in Figure 5.27. The initial yield stress 0yσ  at the selected plastic reference plastic strain rate 

0p  can be found from the average of the strain-rate normalized curves shown in Figure 5.28, 

combined with Equation (4.27). Both the initial softening and the eventual hardening of the 

PVC material are modeled using a two-term Voce hardening law. By letting iQ  take on a 

negative value, it is possible to approximate plastic softening, while defining the values of 

both iQ  and iC  as negative results in an exponential type hardening. The Voce parameters are 

found by doing a fit to a stress vs. plastic strain curve corrected for both strain rate and 

temperature, as shown in Figure 5.30. In contrast to HDPE, it is seen from Table 7.6 that the 

parameter α , controlling yield sensitivity to hydrostatic stress, is not set to unity, but rather 

1.3 . This stress ratio is found directly from the yield stresses in compression and tension as 

seen in Figure 6.5. The shape of the volumetric strain vs. longitudinal strain curve was 

observed to be less non-linear compared to the HDPE tests, see Figure 5.34. The plastic 

dilatation parameter β  is hence assumed to be constant for these simulations, and Equation 

(7.56) is therefore not employed for PVC. The value for β  is found from Figure 5.34 where it 

can be seen that the volumetric strain is about 0.1 at a longitudinal strain of 0.8. The ratio of 

volumetric strain to longitudinal strain is then 0.125UTγ = . Inserting this into Equation (7.46) 

then gives 1.09β = .   
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Table 7.6: Material parameters for simulation of rectangular PVC samples. 

E  
[MPa] 

ν  
 

0yσ
  

[MPa] 

1Q  
[MPa] 

1C  
 

2Q  
[MPa] 

2C  
 

C  
[MPa] 

0p  
[s-1] 

α  
 

β  
 

 1700 0.41 23.21 -7 -2.5 -10 20 2.309 1⋅10-8 1.3 1.09 

The parameters controlling heat generation, conductivity, convection and the effect on 

hardening are shown in Table 7.7, which also includes the density. Density ρ , specific heat 

pC  and thermal conduction k  were all found from the database MATBASE [43]. The Taylor-

Quinney coefficient χ  was found from Figure 5.32, while the thermal film convection 

coefficient h  between PVC and air was estimated in the same way as for HDPE, described in 

Section 7.2.3. The melting temperature MT  and the softening parameter m  were both found 

through iterative simulations, where the best choice of parameters within reasonable limits 

was used. Room temperature RT  was set to 20°C for all simulations. Thermal softening is 

defined by Equation (7.61). 

Table 7.7: Thermal parameters for simulation of rectangular PVC samples. 

ρ  
[ kg/m3] 

χ   
 

pC
 

[ J/kgK] 

k  
[ W/mK]  

h  
[ W/m2K]  

m   
 

RT  
[°C]  

MT  
[°C] 

1414  0.8 1000 0.2 7 0.8 20 100 

With the model parameters defined, it is now possible to perform the simulations. The tests 

are simulated using a 1/4 model, were the model has half the thickness and width of the 

physical samples. The element discretization can be seen in Figure 7.29. The full length of the 

sample was used in these simulations since, as will be shown, there was a tendency to 

localization close to the shoulder at higher rates. Using a half-length model would then imply 

that two necks formed rather than one. This problem was solved by introducing a small 

imperfection in the form of a thickness reduction of 0.005 mm. This imperfection was 

introduced approximately at the middle of the section with the finest mesh, seen as the right 

part of the gauge area of the sample in Figure 7.29. As with all simulations, strains were taken 

only from the surface of the section first necking. Since necking initiated at different areas of 
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the geometry dependent on the loading speed, the location of the section for data collection 

varies between the simulations.  

Figure 7.29: Mesh for simulations of rectangular PVC samples in uniaxial tension.  

The stress-strain curves from the simulations are shown with the curves from the experiments 

in Figure 7.30. The curves from the tests, addressed with solid lines, are previously shown in 

Figure 5.22. In general, there is a good agreement between the solid and corresponding 

dashed curves, yet with some overestimation of the stress for the three fastest tests. The 

differences can primarily be attributed to the thermal softening model and calibration. It 

should also be noted that the plot does not show the complete curves of the simulations of the 

two fastest strain rates. These curves continue to increase to unrealistically large strain values. 

It was found that at higher loading speeds, the thermal softening was so large that it prevented 

propagation of the neck from the section of initial necking. This section hence continued to 

localize and without a fracture criterion, their cross-section area was monotonically reduced 

towards zero. The same phenomenon is also responsible for the abrupt drop in stress seen in 

the simulation of the third fastest test (dashed blue graph). In this simulation the continued 

strain localization happens outside the point of initial localization, resulting in an unloading of 

the section addressed in the stress-strain curve in Figure 7.30.   
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Figure 7.30: Stress vs. strain curves for experiments and simulations of rectangular PVC 
samples stretched at six different nominal strain rates. 

The curves showing the relation between temperature and longitudinal strain for experiments 

and simulations are presented in Figure 7.31. The simulations capture the measured 

temperature well, and it can be seen that the use of a constant Taylor-Quinney coefficient 

results in a good agreement. It should be kept in mind that the entire exponential-type of 

hardening is now defined as plastic because Part B of the material model is omitted, and 

hence contributes to heat generation. Even with this conservative approach an 

underestimation of temperature is still observed in the simulation of the two fastest tests.  
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Figure 7.31: Temperature vs. strain curves for experiments and simulations of tension tests 
performed with rectangular PVC samples stretched at six different nominal strain rates. 

Volumetric strain and strain rate are shown against longitudinal strain in Figure 7.32 (a) and 

(b), respectively. As can be seen from Figure 7.32 (a), the choice of a constant β  results in a 

reasonable representation of the dilatation to what was measured from the tests. Looking at 

Figure 7.32 (b), it can be seen that the strain rate is well described up to a longitudinal strain 

of 0.4, while the simulations overestimate the strain rate at larger strains. This deviation from 

the experimental curves comes as a result of thermal softening and a slight difference in the 

propagation of the neck. 

°
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(a) Volumetric strain (b) Strain rate 

Figure 7.32: Volumetric strain versus longitudinal strain curves (a), and strain rate versus 
longitudinal strain (b). Comparison between simulation and tests performed with rectangular 
PVC samples stretched at six different nominal strain rates. 

Figure 7.33 shows force vs. displacement curves for the simulations and the experiments. As 

seen, the curves from the simulations are quite close to the experimental curves for all strain 

rates. An interesting and somewhat unexpected feature is that the simulations predict failure 

through localization for all three tests where failure was observed, i.e. the fastest tests, 

although at less displacement than in the experiments. This numerical representation of the 

final localization and subsequent failure is made possible by omitting Part B, which at a limit 

level of strain predicts a stiffness approaching infinity for all positive values of RC . This 

would hence halt localization in the simulation and rather promote neck propagation. The fact 

that the simulations are able to capture this localization behavior also underpins the 

importance of including thermal softening if material failure is of interest. Thus, Figure 7.33 

demonstrates that constitutive model at hand seems to capture the distinctly different physical 

response of PVC at strain rates ranging from 10–3.5 to 10–1.0 s–1. 
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Figure 7.33: Force vs. displacement curves for experiments and simulations of rectangular PVC 
samples stretched at six different nominal strain rates. 

The degree of localization as function of nominal strain rate is illustrated in Figure 7.34, 

showing the deformed shape as found from all six simulations at a crosshead displacement of 

15 mm. The color map shows the distribution of longitudinal strain in the samples. The 

general trend is that all simulations initially localize close to both shoulders due to the slightly 

increased stress triaxiality at the end of the gauge part of the sample. At low loading rates, the 

thermal softening is negligible, and the strain hardening ensures that the two diffuse necks 

converge quickly to the center of the sample, creating a visually distinct neck. However, at 

higher loading speeds, the significant thermal softening prevents these diffuse necks from 

propagating to the center of the sample, and instead a distinct neck is formed at one or both 

locations. As mentioned, the homogeneity of the simulations initially resulted in two 

symmetric necks close to the shoulders, so a small local reduction in thickness was introduced 

in all simulations approximately where the neck is seen to form in the faster tests. 
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10-1.0 s–1 10-1.5 s–1 10-2.0 s–1 10-2.5 s–1 10-3.0 s–1 10-3.5 s–1 

Figure 7.34: Contour plots of longitudinal strain from simulations of PVC performed at six 
different loading speeds, taken at a crosshead displacement of 15 mm.  

 Circular PVC Sample 7.2.5

The benefit of the circular cross-section is that this design of the sample facilitates larger 

deformations before failure, and also that the determination of volumetric strain is somewhat 

more reliable than it is for the rectangular specimens. The tests performed with the circular 

PVC samples were simulated with an explicit thermo-mechanical axisymmetric model with 

the mesh shown in Figure 7.35. All simulations localized at the center of the sample, hence, 

this mid-section defines the area where local data is recovered from.  
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Figure 7.35: Mesh for simulations of circular PVC samples in tension. 

The material parameters used to simulate the circular PVC tests are given in Table 7.8. The 

parameters have the same values as those applied for the rectangular PVC samples, with the 

exception of 0yσ , 1Q , 1C  and 2Q . As previously emphasized for the HDPE material, the tests 

on the specimens with circular cross section were carried out two years after the tests with  the 

rectangular specimens also in the case of PVC, and the decreased level of the flow stress 

might be attributed to time-dependent degeneration of the material. 

Table 7.8: Material parameters for simulation of circular PVC samples. 

E  

[MPa] 

ν  

 

0yσ
  

[MPa] 

1Q  

[MPa] 

1C  

 

2Q  

[MPa] 

2C  

 

C  

[MPa] 

0p  

s-1 

α  

 

β  

 

 1700 0.41 16.0 -3.2 -3 -8 20 2.309 1⋅10-8 1.3 - 

The parameters describing the plastic strain hardening are compared in Table 7.9. As seen, the 

initial yield stress 0yσ  is lower in the tests with the circular tension samples, but so is the 

parameter 2Q  controlling the softening occurring immediately after yielding. The net result is 

that the tests with the rectangular samples exhibit a larger peak stress value compared to the 

tests with circular samples, but this difference is reduced with softening. This can be seen by 

looking at the sum of 0yσ  and 2Q , the results are then equal to 13.21 and 8 MPa for the model 

of the rectangular and circular tests respectively. They were also found to have a difference in 

hardening, as seen by the value of 1Q  and 1C .  
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Table 7.9: Comparison of material calibration for square and circular PVC samples. 

 
0yσ
  

[MPa] 

1Q  

[MPa] 

1C  

 

2Q  

[MPa] 

2C  

 

Rectangular 

(2012) 
23.21 -7 -2.5 -10 20 

Circular 

(2014) 
16 -3.2 -3 -8 20 

Difference 7.21 -3.8 0.5 -2 0 

The thermal parameters are equal to those found for the simulations of the rectangular 

samples, and were shown in Table 7.7. 

As seen from the experimental test results in Figure 5.64 and Figure 5.65, volumetric growth 

was more or less the same at different strain rates. In order to replicate this behavior, β  is 

assumed to vary only with equivalent plastic strain p , while the factor due to strain rate p  in 

Equation (7.56) is discarded. The function shown in Equation (7.53) is used with the 

parameter set [ , , ] [0.45 0 0.28]a b c = . These parameters are calibrated from the corrected 

volumetric strain shown in Figure 5.65, calculated with the “parabolic method”. Setting the 

parameter b  equal to 0  is equivalent to assuming that the maximum slope of volumetric 

strain growth /p
UT Vd dpγ ε=  occurs when 0p = , which corresponds well with Figure 5.65. 

The initial value for β  is then equal to the value of 1 1.45a + = , and from Equation (7.51) it 

can be seen that this result in the initial volumetric growth / 0.55p
Vd dpε = .  

The stress-strain behavior in the simulations and tests are compared in Figure 7.36. As seen 

from the figure, the simulations do a fair job of replicating what was measured in the 

experiments. The model captures the local stress maximum at the onset of yielding and the 

trends of thermal softening, but overestimates the stress at higher strain levels. This could 

either be a result of an underestimation of temperature or an underestimation of thermal 

softening. This cannot be determined since thermal data was not recorded for this test series. 
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Figure 7.36: Stress vs. strain curves for experiments and simulations of circular PVC samples 
stretched at three different nominal strain rates. 

On the other hand, the numerical model provides predictions of the temperature increase, and 

it is shown for the three strain rates in Figure 7.37. It is difficult to comment on the accuracy 

of these curves, but it was previously shown in Figure 7.31 that the agreement between the 

temperatures measured in the tests and calculated in the simulations was satisfactory for the 

PVC samples with rectangular cross-section. It can be seen from Figure 7.37 that the slowest 

of the tests has a modest temperature increase of 6°C. This test at 10–2.5 s–1 is hence assumed 

to represent conditions that are close to isothermal. 
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Figure 7.37: Temperature vs. strain curves for simulations of circular PVC samples stretched at 
three different nominal strain rates. 

Strain rate is shown against strain in Figure 7.38 for the experiments and simulations. As can 

be seen, the simulations capture the general levels of strain rate well, with the exception of the 

distinct peaks predicted at a strain of 0.1. The peaks in the simulations are obviously related to 

plastic softening and hardening, where the strain rate increases as the material softens, and 

then decreases as it again hardens. The question is then; why is the peak not present in the 

experimental data? The answer seems to be that necking in the simulations is a more localized 

and rapid process.  

°
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Figure 7.38: Strain rate vs. strain curves for experiments and simulations of circular PVC 
samples stretched at three different nominal strain rates. 

The effects of employing a strain-dependent function for β , see Equation (7.53), can best be 

seen in Figure 7.39 where volumetric strain is shown against longitudinal strain. As evident 

from the figure, the simulations describe the apparent volumetric strain well, even capturing 

the difference in slope between the three tests. This shows that the proposed evolution law in 

Equation (7.53) for the β  parameter is flexible enough to handle different materials and that 

there is a common trend for both tested materials that the volumetric strain converges to a 

limit level.  
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Figure 7.39: Volumetric strain vs. longitudinal strain curves for experiments and simulations of 
circular PVC samples stretched at three different nominal strain rates. 

As the simulations capture the correct level of volumetric strain as function of longitudinal 

strain, but overpredicts the level of stress, it is natural that the simulations also overestimates 

the force level as a function of the radius of the section first experiencing necking. This is 

confirmed in Figure 7.40. Moreover, it appears from the figure that the force approaches a 

constant level for the fastest test, while there is some increase in force when the neck radius is 

around 2 for the two other cases. This difference is likely to be a result of thermal softening. 
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Figure 7.40: Force vs. radius curves for experiments and simulations of circular PVC samples 
stretched at three different nominal strain rates. 

The final figure from the simulations of these tests shows the force-displacement curves. 

Again, the simulations in Figure 7.41 capture the trends from the tests well, and follow the 

curves from the experiments throughout the whole range of deformation for the two slowest 

tests. The simulation captures the slope immediately before failure of the fastest test, but 

overestimates the force level. This is again related to the overestimation of stress as seen in 

Figure 7.36. 
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Figure 7.41: Force vs. displacement curves for experiments and simulations of circular PVC 
samples stretched at three different nominal strain rates. 

 PVC in Compression 7.2.6

The PVC compression test is simulated with a full length thermo-mechanical axisymmetric 

model. The simulation uses the same boundary conditions and mesh as the one used for the 

simulation of the HDPE compression test, as seen in Figure 7.13. The material parameters 

used in the simulations of the circular PVC tension samples are also used to simulate the PVC 

compression test, with the exception of assuming a constant value of 1.09β =  of the plastic 

dilatation parameter. It is assumed constant since volumetric growth data is considered 

unreliable. Any simulation result would hence have no solid basis of comparison.  

As mentioned when the simulation of the HDPE compression test was discussed, it was found 

that it is challenging to capture friction correctly in the simulations. This can be seen in most 

response parameters, but is especially influential when it comes to apparent volumetric strain. 

It is recalled that this corresponds to the volumetric strain calculated with the “cylinder 

method”, i.e. ( ) ( )2ln lnV V L Rε λ λ λ= = . The stretches are determined from the surface of the 

mid-section of the sample in the test as well as the simulations. Figure 7.42 shows apparent 

volumetric strain from an experimental test and three simulations where only the Coulomb 

friction coefficient is varied. The friction coefficient is set to 0.12, 0.06 and 0.04 for the black, 
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red and green curve respectively. It is an obvious problem that the volumetric strain, which 

normally is assumed to be independent of friction, is seen to be highly influenced by friction. 

This is a fundamental problem associated with compression test samples having a cylindrical 

shape with constant radius. In the following figures, the friction coefficient is assumed to be 

equal to 0.03 . 

Figure 7.42: Volumetric strain vs. |longitudinal strain| curves for experiment and simulations of 
PVC compression test. Simulations shown apparent local volumetric strain, calculated with the 
“cylinder method” for simulations run with three different values of Coulomb friction equal to 
0.12 (black curve), 0.06 (red curve) and 0.04 (green curve).  

The absolute value of stress is plotted against the absolute value of strain in Figure 7.43. As 

seen from the figure, the simulation captures the yield stress level, and represents the 

softening in an adequate manner. The good agreement in yield stress shows that the α  

parameter is well calibrated. However, when it comes to the hardening, the simulation is 

vastly overestimating the stress. This comes as a result of the use of the isotropic plastic Voce 

hardening to model what is more likely to be the network stiffness of the material. As 

demonstrated in Figure 7.2, the contribution from Part B to the stiffness in uniaxial 

compression is much smaller than it is for uniaxial tension, but such a difference between 

tension and compression is not present for Voce’s hardening law. Thus, the simulation 

predicts way too high hardening modulus.  
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Depending on whether Part B is employed to model network stiffness or not, it appears that 

the current model can only represent either tension or compression in a proper way. It can 

either omit Part B and capture the plastic work needed to create the adiabatic heating 

measured in the tension tests, providing the correct thermal softening, or provide an accurate 

hardening modulus in both tension and compression, but then only for isothermal conditions. 

Figure 7.43: |True stress| vs. |longitudinal strain| curves for experiment and simulations of PVC 
compression test. 

Center radius and volumetric strain is shown against the absolute value of longitudinal strain 

in Figure 7.44 (a) and (b). As seen, the simulation roughly captures the response at the end of 

the test, i.e. at a strain around 0.5, but is overestimating both radius and volumetric strain for 

most of the deformation process. The strong dependency on friction does however complicate 

the analysis of the data. The inability of the simulations to capture the non-linearity of the 

measured volumetric growth could be a result of the assumed friction model. As will be 

showed in the Figure 7.45 (a), it seems that Coulomb friction coefficient increases throughout 

the test. It can then be assumed that this would lead to an exponential type increase in 

apparent volumetric growth, from the results seen in Figure 7.42.  
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(a) Center radius (b) Volumetric strain 

Figure 7.44: Radius vs. |longitudinal strain| (a) and volumetric strain vs. |longitudinal strain| (b) 
for a simulation and test of a PVC sample in compression. 

It has already been demonstrated that the simulation of compression tests with the assumption 

of constant Coulomb friction does not seem to adequately represent the reality of the test. 

Another illustration is provided by looking at the evolution of the curvature of the sample, as 

compared between simulation and experiment in Figure 7.45 (a). The same trend seen for the 

simulation of HDPE in compression is also observed here, where the choice of friction 

parameter initially seems to be too high, while it is probably too low at larger strains. 

Since the simulation is a coupled thermo-mechanical analysis, predicted temperature is also 

available. The temperature calculated at the surface of the center section of the sample is 

shown in Figure 7.45 (b). Since the stress is too high, the temperature is probably also 

overestimated, yet it is likely that the current choice of loading rate in the compression test 

creates a substantial increase in temperature. Further work should hence monitor the 

temperature, also in compression tests. 
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(a) Center curvature (b) Temperature in simulation 

Figure 7.45: Curvature vs. |longitudinal strain| (a), comparison between simulations and test of 
PVC in compression. Predicted temperature vs. |longitudinal strain| from simulation (b) for 
PVC in compression. 

The final figure from the simulation of the compression test shows the force-displacement 

curves for the simulation and the experiment. As would be expected, the force is 

overestimated in a fashion similar to the difference in stress-strain response already reported 

in Figure 7.43. The deviation in the radius plot in Figure 7.44 (a) also contributes to the 

deviation between the force-displacement curves.  

°
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Figure 7.46: |Force| vs. |crosshead displacement| curves for test and simulations of cylindrical 
PVC compression sample. 

 

 Summary of Numerical Simulations 7.2.7

This chapter has been devoted to numerical analyses of the uniaxial tension and compression 

test presented in Chapters 5 and 6, respectively. Moreover, an incremental expansion of the 

baseline material model presented in Section 7.1 have been outlined, where extensions to the 

model have been added when the complexity of the experimental observations has demanded 

it.  

A consistent method for characterizing and modeling the sensitivity of volumetric growth to 

plastic strain and strain rate in uniaxial tension has been presented through Equations (7.46),  

(7.52) and Section 7.2.3. The final equation for the plastic dilatation parameter β  expressed 

as a function of equivalent plastic strain p  and strain rate p  was given in Equation (7.56).   

A simple but effective temperature softening formulation was also included in the model in 

Section 7.2.3, with the formulation shown in Equation (7.60). The incorporation of this 

softening formulation as well as the use of a coupled thermo-mechanical analysis has 
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throughout this chapter been shown to be essential for simulating both HDPE and PVC over 

the range of strain rates covered in the laboratory tests.       

Finally, it has been shown that there seems to be a problem unifying the use of the elastic 

eight-chain network stretching model [39] with the dissipated energy measured as an increase 

in temperature. It was shown in Section 7.2.4 that there is a significant dissipation in PVC 

which is not possible to capture with the assumption that late stage hardening is not 

dissipating energy. On the other hand, it was also shown that the assumption that hardening in 

PVC is a plastic and isotropic process most likely is incorrect, as this assumption leads to 

substantial overestimation of the stiffness in PVC in uniaxial compression, as was shown in 

Section 7.2.6. Thus the mechanisms for energy dissipation and subsequent temperature 

increase during deformation call for further investigation. 

Nevertheless, the extended model has been shown to be highly capable in its ability to 

simulate the mechanical and thermal response of both HDPE and PVC in uniaxial tension up 

to large strains at several strain rates. Its predictive prowess outside this narrow range of 

triaxiality is uncertain, but it is believed that the presented model and model development 

methodology can be used and expanded on in order to create a more general model.  

 



213 

 

8 Conclusions and Suggestions for Further Work 

8.1 Conclusions 

Ductile thermoplastics is a class of materials that often experiences large deformations before 

the ultimate failure. Moreover, such materials typically localize rather early in the tensile 

deformation process, after which the neck cold-draws until the molecular chains start 

straightening out, giving an excess straining before the material fails. State-of-the-art today is 

to instrument uniaxial tension tests with a digital camera, and subsequently analyze the 

pictures with digital image correlation (DIC) to determine the strain field. A dog-bone shaped 

test sample is most frequently employed in such investigations.  

It has been shown in this thesis that linear DIC elements have shortcomings in their 

representation of the strains during the necking process. To improve the accuracy of the 

strains found from a set of picture, a higher order DIC element with 16 nodes has been 

developed and implemented. Moreover, this new DIC element is complemented with an edge 

tracing technique serving to determine the radius of curvature at the neck. The use of higher 

order DIC elements simplifies the process of locating and recording the deformation of the 

material section first experiencing necking in a uniaxial tension test. The proposed method of 

locating and calculating the strains for this material section has been shown to give consistent 

results across repetitions of tests. The combination of DIC and edge tracing is advantageous 

in that the measurements both overlap and complement each other. They hence serve as 

validations of each other as well as providing additional information. The use of a custom-

made DIC code has also proven beneficial for the process of combining thermal imagery with 

strain measurements. This measurement methodology has been validated through FEM 

simulations. As a part of the improvement of the test protocol, the uniaxial tension test sample 

has been re-designed. In order to explore the large post-necking strains occurring towards the 

end of a test, the new sample has a comparatively short gauge length to assure that the 

resolution of the digital pictures is maintained. Moreover, investigations on the failure process 

call for accurate measurements of the volumetric strains, and the new test sample therefore 

has a circular cross section. 
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It has been shown that the combination of a 1D material model and experimental data serves 

to separate and quantify the effects of strain rate and temperature on mechanical response 

found from experimental data, even when these quantities have large variations throughout a 

single test. It appears from the uniaxial tension tests that both HDPE and PVC, which were 

the materials investigated in this thesis, experience a significant increase in temperature even 

at strain rates of order 10–2 s–1 as a result of adiabatic heating. This temperature increase 

greatly affects the mechanical material response in both materials.  

Great care should be taken when local deformation is quantified in the post-necking phase 

during a tension test. This is especially obvious when it comes to measuring volumetric strain. 

It has been demonstrated that using the traditional method for calculating the change of 

volume in uniaxial tension, assuming that the volumetric strain is the sum of the three normal 

strain components, can lead to severely inaccurate results. An alternative method for 

calculating volumetric strains, taking the radius of curvature of the neck into account, has 

been proposed in the form of an equation which has been validated through FEM simulations 

and an experiment. This improved equation is believed to be applicable to a wide range of 

materials, although it is limited to samples with circular cross section in its present form.  

Applying the purpose-made higher-order DIC element and the edge tracing technique in 

combination with the improved formula for volumetric strain, new insight into the evolution 

of volumetric strain up to large deformation for the two materials was gained. Volumetric 

growth in PVC, when subjected to uniaxial tension, has through electron microscopy been 

linked to the debonding of rigid particles and the material matrix. It was further observed that 

volumetric growth in PVC is non-linear with longitudinal strain, and appears to saturate at 

large longitudinal strains. Volumetric strain in PVC was not much affected by strain rate. The 

volumetric increase in HDPE in uniaxial tension had a somewhat similar evolution to that of 

PVC, but with a delayed initiation and a slower rate of growth. In contrast to PVC, the 

volumetric growth in HDPE was seen to be dependent on strain rate. The mechanism behind 

dilatation in HDPE was not identified, but the absence of observable voids in an electron 

microscope might indicate that the mechanism operates on an inter-molecular level. 

The material model proposed by Polanco-Loria et al. [7] has been modified and extended to 

account for the non-linear volumetric growth measured in tension and the material softening 
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that follows from adiabatic heating. FEM simulations with this new material model have 

revealed that the eight-chain entropic elastic network stretching model proposed by Arruda 

and Boyce [39] is well suited to capture the exponential type hardening observed in HDPE, 

even at strains past the natural draw ratio. It was however seen that the inclusion of this 

hyperelastic model at higher strain rates resulted in an underprediction of dissipated energy, 

as measured by the increase of material temperature. This was even more prominent in PVC. 

In the simulations, it was therefore necessary to assume that all hardening was plastic in order 

to achieve the material temperatures measured in the experiments. This indicates that the late 

stage hardening observed in the tests on both HDPE and PVC is not a pure elastic mechanism 

as it appears to dissipate energy.  

The inclusion of temperature softening has been shown to be integral to the simulation of 

these materials, even at relatively low strain rates. The simple softening model proposed in 

this thesis was seen to give results that were in good agreement with the experimental results. 

The proposed model for plastic volumetric strain, where it is assumed that plastic volumetric 

strain can vary with equivalent plastic strain and equivalent plastic strain rate, was shown to 

give excellent results in the simulations of uniaxial tension tests.  

Finally, the simulations of cylindrical material samples subjected to uniaxial compression 

highlighted several problems with this type of material test at strains past yielding. The main 

challenge is friction, and it was seen that the mechanical response measured in the tests was 

highly sensitive to a change in the coefficient of friction. The simulation of PVC cylinders in 

uniaxial compression also revealed that even though exponential hardening in tension was 

best modeled as a plastic process, this hardening cannot be isotropic, as it was seen that 

isotropic hardening resulted in a significant overestimation of the force in compression.  

8.2 Suggestions for further work 

Two main types of uniaxial tension test samples have been used in this thesis: samples with a 

circular cross section and samples with a rectangular cross section. These two sample 

geometries were seen to indicate different mechanical response for the same material. This 

has been assumed to be related to the storage time since the tests on the different sample types 
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were performed about two years apart. This assumption should however be verified by 

performing uniaxial tension tests using both geometries within a short span of time. 

The volumetric growth in HDPE and PVC has been thoroughly documented and investigated 

in uniaxial tension. Further work is however required in order to answer some remaining 

research questions: 

• How does volumetric growth respond to a change in triaxiality? 

• What are the limits of the assumption that volumetric strain is independent of 

temperature? 

• What is the mechanism or mechanisms behind volumetric growth in HDPE? 

• How is volumetric growth connected to failure? 

• What is the mechanism behind the saturation of volumetric strain? 

Temperature effects have been analyzed and quantified, but material behavior has only been 

observed at elevated temperatures that came as a result of adiabatic heating. Temperature and 

strain rate has hence not been varied independently, and the materials have not been subjected 

to temperatures lower than room temperature. Further work should hence include equivalent 

uniaxial tension tests performed at a close-to isothermal strain rate, but with higher and lower 

constant temperatures relative to the room temperature applied in this thesis. Unanswered 

questions are: 

• Is the presented temperature softening model valid at lower temperature? 

• How does plastic viscosity change with temperature? 

• How is mechanical response at low strains affected by temperature change? 

The presented extended material model is likely to be limited in terms of larger changes in 

triaxiality. In addition, it was shown that it does not manage to represent both uniaxial tension 

and compression when temperature softening is relevant. Unanswered questions pertaining to 

modeling the two materials are:  

• How should network stretching be modeled in order to both capture the reported 

temperature increase and also capture the difference in stiffness seen in tension and 

compression? 
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• Can the materials be modeled with an associated yield function and flow potential if 

they both are assumed to vary despite a constant triaxiality? 

• How should failure be modeled? 
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