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Abstract 
The world needs energy – and over the short and medium term it is clear that much of 

our global energy consumption will come from fossil sources such as oil, gas and coal. 

With the current growing demand for oil led by major energy consuming countries such 

as China and India, securing new oil resources is a critical challenge for the oil industry. 

Each year, new production is needed to compensate the natural decline of existing wells, 

and the additional production required to satisfy the yearly demand for hydrocarbon 

energy that will represent approximately 9% of the worldwide total production. For this 

growth to be sustainable, a strong focus will have to be placed on finding new 

discoveries and/or optimizing oil production from current resources. The cost associated 

with the first option is significant. Therefore, reservoir management teams all over the 

world will have to cater for this demand mainly by maximizing hydrocarbon recovery 

factors through Enhanced Oil Recovery (EOR) processes. EOR consists of methods 

aimed at increasing ultimate oil recovery by injecting appropriate agents not normally 

present in the reservoir, such as chemicals, solvents, oxidizers and heat carriers in order 

to induce new mechanisms for displacing oil.   

Chemical flooding is one of the most promising and broadly applied EOR processes 

which have enjoyed significant research and pilot testing during the 1980s with a 

significant revival in recent years. However, its commercial implementation has been 

facing several technical, operational and economic challenges. Chemical flooding is 

further subdivided into polymer flooding, surfactant flooding, alkaline flooding, 

miscellar flooding, alkaline-surfactant-polymer (ASP) flooding. ASP flooding is a form 

of chemical enhanced oil recovery (EOR) that can allow operators to extend reservoir 

pool life and extract incremental reserves currently inaccessible by conventional EOR 

techniques such as waterflooding. Three chemical inject in the ASP process which is 

synergistic.  

In the ASP process, Surfactants are chemicals that used to reduce the interfacial tension 

between the involved fluids, making the immobile oil mobile. Alkali reduces adsorption 

of the surfactant on the rock surfaces and reacts with acids in the oil to create natural 

surfactant. Polymer improves the sweep efficiency.  

By simulating ASP flooding for several cases, with different chemical concentrations, 

injection length, time of injection, current well optimization and new well placement, 

this report suggests a number of good alternatives. Simulations showed that the most 

effective method was not the most profitable.  

From the simulation results and economic analysis, ASP flooding can be a good 

alternative for the Norne E-segment. But the margins are not significant, so fixed costs 

(such as equipment rental) will be of crucial importance.  
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Chapter 1 

 

Introduction 

 

1.1    Introduction 

New discoveries of conventional oil fields are declining while demand for oil is 

estimated to increase approximately 1.5% per year. Water flood is commonly used as an 

economic and effective method in secondary recovery after primary methods have been 

exhausted. Many of sandstone or carbonate reservoirs have low primary and waterflood 

recovery due to poor sweep efficiency as the result of bypassed or unswept oil. In 

general, water flood still leaves 50-70% oil in the formation and oil cannot be further 

removed without the use of chemical, thermal or gas injection processes. 

Chemical flooding was, up to 2000's, less common EOR method than thermal & gas but 

now, huge projects are initiated or revisited. As the use of chemical flooding spreads to 

new reservoirs, especially oil-wet and mixed-wet reservoirs, the importance of 

surfactant-based wettability alteration will become important. There are also many oil-

wet and mixed-wet naturally fractured reservoirs with significant amounts of remaining 

oil in place. Middle East presents a significant opportunity to implement enhanced 

recovery methods on the fields with large remaining conventional oil resources and for 

future production growth. 

Chemical processes have been shown to be effective in recovering unswept oil by 

improving the mobility ratio (polymer flooding), or by reducing residual oil saturation 

(micellar or surfactant polymer flooding (SP), alkaline/surfactant/polymer (ASP)). 

Parameters such as mineralogy, permeability and viscosity ranges, temperature, salinity, 

have an impact on the feasibility of the process and also on the economics. 

Polymer flooding is the most important EOR process, improving the water-oil mobility 

ratio. The polymers act basically increasing the viscosity of the injected water and 

reducing the swept zone permeability, allowing an increase in the vertical and areal 

sweep efficiency of the water injection, and, consequently, increasing the oil recovery. 

The polymer is almost always hydrolyzed polyacrylamide (HPAM). Economic and 

technical successes are reported for polymer floods in both sandstones and carbonates.  

Processes using surfactant are classified as SP (Surfactant-Polymer), MP (Micellar-

Polymer) and ASP (Alkaline Surfactant Polymer). Basically, the method consists in 

injecting the surface-active agent (surfactant) to reduce the interfacial tension and 

mobilize the residual oil saturation The addition of an alkaline agent increases the 

process efficiency by decreasing the surfactant retention. Additional surface active 

agents may be produced in the case of acidic crude. 
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The ASP method can be applied as an improved waterflooding with large slug of low 

surfactant concentration. Chemicals used in the ASP flood are an alkali (NaOH or 

Na2CO3), a surfactant and a polymer. The alkali washes residual oil from the reservoir 

mainly by reducing interfacial tension between the oil and the water. The surfactant is 

mixed with the alkali and enhances the ability of the alkaline to lower interfacial tension. 

The polymer injected after the AS slug is added to improve sweep efficiency. Some of 

ASP floods in the world were commercially successful; however, the projects were 

generally small. Difficulties in applying large reservoir scale surfactant flooding are due 

to the evaluation of potential recoveries mainly because reservoir modeling is not 

available yet. ASP flooding is an important technology for enhanced oil recovery. The 

production rates of the 100 largest oilfields in the world are all declining from plateau 

production. The challenge is to develop EOR methods that ensure an economical tail end 

production from these fields. Field practice has shown that more than 20% OOIP 

incremental recoveries can be obtained with the ASP process. Better ASP systems need 

to be developed with more cost-effective surfactants in weak alkaline systems 
[15]

. 

1.2 Norne Field 

Norne Field located 200 km from Norwegian coast line in the geological blocks 6608/10 

and 6508/1 in the Norwegian Sea. Structure size is approximately 3x9 km and sea depth 

in the area is 380 m whereas reservoir depth is 2500 - 2700 m. It was discovered in 

December 1991. The production of oil and gas started November 1997 and 2001 

respectively. Reservoir is operated by Statoil Hydro Petroleum AS (63.95%) and 

partners: Petoro (24.55%) and Eni Norge AS (11.5%). Data is provided through 

Integrated Operations in the Petroleum Industry (IO). The field parameters have quite 

good quality. Porosity is in the range of 25-30%, net-to-gross ratio 0.7 - 1 and 

permeability varies from 20 to 25000 mD. Reservoir thickness changes from 120 m to 

260 m from south to north 
[1]

.  

 

Figure 1: The Norweigian Continental Shelf. 
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Figure 2: Map of Norne E-segment. 

As capillary forces limit the oil recovery in a reservoir to approximately 10 %, enhanced 

oil recovery (EOR) methods are used to increase recovery to 30–70 %. The search of 

new EOR is catalyzed by the oil price. As the North Sea oil price has increased from 18 

to 90 USD/bbl from 1998 to 2012, there has been an increase in search for improvement 

of EOR methods. Because of high expenditures of EOR (chemical cost, transport, pre- 

and post treating for environmental concerns), the oil price has to be high enough for 

EOR to be profitable. Some of the Enhanced Oil Recovery technologies that have been 

conducted in the North Sea from 1975 to 2005 include HC gas injection, Water 

Alternating Gas injection (WAG), Simultaneous Water Alternating Gas Injection 

(SWAG), Foam Assisted Water Alternating Gas (FAWAG) and Microbial Enhanced Oil 

Recovery (MEOR) 
[42]

. By considering this entire ASP flooding could be the best EOR 

method for Norne field.     

1.3 Goals to achieve 

This thesis is an expansion of the work done in the reservoir specialization project. This 

work focuses on possibility of increasing oil recovery in the Norne Field’s E Segment 

located in the Norwegian Continental Shelf by the use of ASP flooding, which is a 

chemical method of Enhanced Oil Recovery (EOR). Therefore, the report consists of two 

parts: theory and application. The theory part contains an insight into alkaline-surfactant-

polymer flooding, why it’s done and how it can be done, followed up by a detailed 

description of the Norne field. The application part consists of the following subjects: 

 EOR techniques 

 Chemistry of alkali, surfactant and polymer 

 General knowledge on ASP flooding 

 Build a synthetic model and analysis for different scenario 

 Effect of Continuous ASP flooding  

 Effect of injecting slug injection followed by water. 

 Amount of ASP needed 

 Timing of ASP flooding 
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 Optimization of production and injection 

 Effect of new well 

 Economic Evaluation 

 Uncertainty Analysis 

1.4 Outline of the Thesis  

This work contains 9 chapters in total; chapter 2 introduces and describes the Enhance 

Oil Recovery (EOR). Chapter 3 describes the details chemistry of alkali, surfactant and 

polymer. 

Chapter 4 describes the Norne field in details and the major sections in this chapter gives 

the general field information, talks about the field geology, main processing system, the 

recoverable reserves, drainage strategy, Norne E-segment and reservoir simulation model 

which is made by using Eclipse 100.  

Chapter 5 describes the Enhance Oil Recovery at the Norne E-segment and Chapter 6 

briefly describe the ASP flooding with simulation model and keyword required for 

activation in Eclipse 100. 

Chapter 7 deals with the results of synthetic model and ASP model in the Norne E-

segment. Here impact of ASP flooding in the Norne E-segment by considering different 

scenario is briefly discussed and most optimum solution is taken into consideration. 

In Chapter 8 economic evaluation discussed briefly and finally the conclusions and 

uncertainties are summarized in chapter 9. 
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Chapter 2 

 

Techniques and Theory 

 

2.1 Enhanced Oil Recovery 

Oil recovery is traditionally subdivided into three stages: primary, Secondary, and 

tertiary. Many a time, reservoir production operations are not conducted in the specified 

order that tertiary process may be applied at secondary stage instead of waterfloooding. 

Thus, the term “tertiary recovery” fell into disfavour in petroleum engineering literature 

and the designation of “enhanced oil recovery” (EOR) became more accepted. Another 

descriptive designation normally used is “improve oil recovery” (IOR), which includes 

EOR but also a broader range of activities, like reservoir characterization, improved 

reservoir management, and infill drilling 
[11]

. The Norwegian Petroleum Directorate 

(1993) defined IOR as: “Actual measures resulting in an increased oil recovery factor 

from a reservoir as compared with the expected value at a certain reference point in 

time.” 

2.1.1 Primary recovery 

Primary oil recovery refers to simple pressure depletion where only reservoir energy, 

through different mechanisms, is used to extract the oil. These natural energy sources 

are; solution-gas drive, gas-cap drive, natural water drive, fluid and rock expansion, and 

gravity drainage. The particular mechanism of lifting oil to the surface, once it is in the 

wellbore is not a factor in the classification scheme 
[11]

.The recovery factor after this 

depletion period is usually low, and normally, only 5-30 % of the original oil in place 

(OOIP) can be produced 
[43]

.  

2.1.2 Secondary recovery 

Secondary recovery is normally implemented when the reservoir natural energies are not 

sufficient to produce hydrocarbon. This involves injection of water or gas, either for 

pressure support or for displacement of oil towards the production wells. About 30-70 % 

of OOIP is left unproduced after the process 
[43]

. Gas injection is either into a gas cap for 

pressure maintenance and gas-cap expansion or into oil column wells. In this process, oil 

is displaced immiscibly according to relative permeability and volumetric sweep out 

considerations 
[11]

.  

2.1.3 Tertiary recovery/EOR processes 

Unfavorable reservoir characteristics such as heterogeneous rock properties (fractures, 
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layers with large permeability contrasts, impermeable layers), unfavourable wettability 

conditions, or capillary trapped and bypassed oil, results in areas of the reservoir not 

flooded by the injected fluid. Approximately 30-70 % of OOIP in the reservoir is left 

after these conventional secondary oil recovery processes 
[41,43]

. It is the residual oil that 

is left in the reservoir after the secondary recovery that is the target for EOR processes. 

Thus, the purpose of initiating tertiary oil recovery processes is to extend lifetime of oil 

reservoirs which are approaching economical limit by support of water flooding or other 

conventional methods 
[45] 

.Tertiary processes use miscible gases, chemicals, and/or 

thermal energy to mobilize and displace additional oil after the secondary recovery 

processes become uneconomical 
[11]

. EOR is defined by Baviere as: “EOR consists of 

methods aimed at increasing ultimate oil recovery by injecting appropriate agents not 

normally present in the reservoir, such as chemicals, solvents, oxidizers and heat 

carriers in order to induce new mechanisms for displacing oil” 
[ 43]

. Zhang also proposed 

the definition of EOR as any method, which is aiming to improve the fluid flow by 

means of changing physical property of the reservoir rock or fluids, including wettability, 

interfacial tension, fluid density, viscosity, permeability, porosity, pore size, etc 
[44]

. 

2.2 Basic Mechanisms of Enhanced Oil Recovery 

The main objective of all methods of EOR is to increase the volumetric sweep efficiency 

and to enhance the displacement efficiency, as compared to an ordinary waterflooding. 

One mechanism is aimed towards the increase in volumetric sweep by reducing the 

mobility ratio and the other mechanism is targeted to the reduction of the amount of oil 

trapped due to the capillary forces 
[13]

.  

2.2.1 Mobility Ratio 

Mobility ratio is defined in Equation 1 as the ratio between mobility of displacing fluid 

and displaced fluid where λ is the mobility.  

displacing

displaced

M



  

(1) 

Mobility of a fluid is a measure of how easy the fluid flows in a porous media. It is 

defined as ratio of permeability and viscosity (Equation 2) where k is the effective 

permeability, μ is the fluid viscosity and i could be oil, water or gas. 

 

Where mobility of a fluid can be shown as: 

i

i

K



  

(2) 

In the most efficient displacement, M is smaller than 1. It is possible to improve the 

mobility ratio by lowering the viscosity of the displaced fluid, increasing the viscosity of 

displaced fluid, increasing the effective permeability to oil or decreasing the effective 

permeability to the displacing fluid.  
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2.2.2 Capillary Forces 

The capillary forces have great influence on oil recovery efficiency, but the influence 

differs fundamentally for non-fractured and fractured reservoirs. Strong capillary forces 

during waterflooding will trap oil and cause relatively high residual oil saturation in a 

non-fractured reservoir. Reduction in the oil-water IFT to remobilizing residual oil is in 

this case the preferred conditions. In fractured reservoirs, spontaneous imbibition of 

water due to strong capillary forces is regarded as an important and necessary 

mechanism to attain high displacement efficiency
[12]

.  

Capillary pressure is defined as the pressure of the non-wetting fluid minus the pressure 

of the wetting fluid. For oil/water systems, water is regarded as a wetting phase. For 

oil/water systems, water is regarded as a wetting phase and expressed by the Equation 3 

where Pc is the capillary pressure, PNW is the Pressure of non-wetting phase at interface 

(oil) and PW is the pressure of wetting phase at interface (water) 
[11]

.  

                             Pc = Po – Pw = PNW - PW                                                  (3) 

Capillary Number (Nc) is a dimensionless ratio between the viscous forces and the 

capillary forces (Equation 4). Where υ is the Darcy's velocity, μ is the viscosity of the 

displacing fluid while σ is the interfacial tension between the displaced and the 

displacing fluid; k is the effective permeability to the displaced fluid and ΔP/L is the 

pressure gradient 
[11]

. By reducing the interfacial tension between the displacing and 

displaced fluids the effect of capillary forces is lowered, yielding a lower residual oil 

saturation and hence higher ultimate oil recovery 
[13]

. 

C

k P
N

L



 


   

(4) 

Figure 3 shows the fingering effect in to the oil bank in case of unfavourable conditions 

that is when M is greater 1. 

 

Figure 3: Water fingering for unfavourable mobility ratio (M>1) 

2.3 Classification of EOR Processes 

EOR technologies can be classified in different manners: depending upon the type of 

agents used EOR economics, etc. 
[13]

. A broad classification is basically thermal and non-

thermal where thermal methods are applied to heavy oil reservoirs and non-thermal 
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applied to light oils (Figure 4). The three major types of enhanced oil recovery 

operations are chemical flooding, gas injection and thermal recovery. Some EOR 

methods described in the below part of this chapter. 

 

Figure 4: Classifications of EOR Processes. 

2.3.1 Chemical flooding 

Chemical flooding, an EOR processes involve injection of specific liquid chemicals such 

as surfactants and alkaline agents (Figure 5). They also require phase-behaviour 

properties that results in decrease in interfacial tension (IFT) between the displacing 

liquid and oil. The process has the potential to increase both microscopic and 

macroscopic displacement efficiency due presence of polymer mobility buffer 
[12]

. 

Chemical flooding is further subdivided into polymer flooding, surfactant flooding, 

alkaline flooding, miscellar flooding, alkaline-surfactant-polymer (ASP) flooding. 

Surfactant Flooding 

Surfactant flooding represents one of the most promising methods in EOR, to recover the 

capillary trapped residual oil after waterflooding. These microscopic oil droplets usually 

constitute more than half the residual oil. By the injection of surfactant solution, the 

residual oil can be mobilized through a strong reduction in the interfacial tension (IFT) 

between oil and water 
[13]

. The addition of an alkaline agent increases the process 

efficiency by decreasing the surfactant retention. Additional surface active agents may be 

produced in the case of acidic crude 
[15]

. 
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Figure 5: Schematic of Chemical Flooding. 

Polymer Flooding 

Polymer flooding is an EOR method where polymer is added to the injected water results 

in increase in the viscosity of water and reduction in relative permeability to water 

(displacing phase). Polymer flooding will be favorable in reservoirs where the oil 

viscosity is high, or in reservoirs that are heterogeneous, with the oil-bearing layers at 

different permeabilities (Stratified reservoirs). Some of the North Sea reservoirs with a 

high permeability contrast are good candidates for polymer flood 
[13]

. 

Alkaline Flooding  

Alkaline flooding is a very complex process. Alkaline flooding improves oil recovery by 

using in situ surfactants produced from the reaction of alkali and the natural organic 

acids. There are three possible mechanisms of alkaline flooding to improve oil recovery 

which include-dispersion and entrainment of oil, wettability reversal, emulsification and 

entrapment of oil as well. It is pointed out that each mechanism worked under different 

injection conditions with respect to oil, formation rock, and injection water properties, 

and, therefore, each process should be designed to improve oil recovery in a somewhat 

different manner. Alkaline flooding has been extensively studied in EOR for 

conventional oils, including numerous laboratory experiments and some field tests. For 

heavy oils, the investigations on EOR by alkaline flooding are very limited due to the 

adverse mobility ratio between the water and oil phases 
[21]

.Alkaline flooding began with 

the injection of sodium carbonate solution in Bradford area of Pennsylvania in 1925 and 

since then, work on this process has continued. 

ASP Flooding 

This process, as the name suggests, is a combination of the three processes namely 
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alkaline, surfactant and polymer flooding in which the three slugs are used in sequence. 

Alternatively, the three fluids could be mixed together and injected as a single slug. The 

objective of the ASP flooding process is to reduce the amount of chemical consumed per 

unit volume of oil required 
[52]

 and invariable a reduction in cost. 

2.3.2 Gas Injection 

The concept of injecting gases into reservoirs to improve oil recovery is an old theory. 

While the thermal EOR process and its variations are aimed mainly at recovering heavy 

oils by lowering their viscosity to enable their flow, the chemical and miscible gas 

processes targeted the light and medium gravity crude oil by lowering the interfacial 

tension between the inject fluid and the crude oil to minimize the trapping oil in the rock 

pores by capillary or surface forces 
[48]

. 

Carbon Dioxide Injection 

Miscible flooding with carbon dioxide or hydrocarbon solvents is considered one of the 

most effective enhanced oil recovery processes applicable to light to medium oil 

reservoirs. CO2 has a viscosity similar to hydrocarbon miscible solvents. Both types of 

solvents affect the volumetric sweep-out because of unfavorable viscosity ratio. 

However, CO2 density is similar to that of oil. Therefore, CO2 floods minimize gravity 

segregation compared with the hydrocarbon solvents. Miscible displacement between 

crude oil and CO2 is caused by the extraction of hydrocarbon fractions, as well as the 

heavier gasoline and has oil fractions, are vaporized into the CO2 front. Consequently, 

vaporizing-gas drive miscibility with CO2 can occur with few or no C2 to C6 

components present in the crude oil 
[50]

. Figure 6 shows the schematic of carbon dioxide 

injection. 

 

Figure 6: Carbon Dioxide Injection. 
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2.3.3 Thermal Recovery 

In thermal recovery methods, hot fluids, such as steam or hot water, are injected into 

hydrocarbon to reduce the retaining forces responsible for oil entrapment and enhance 

recovery efficiency 
[46]

. This is typical for oil reservoirs with very high viscosities and 

low API gravities, otherwise known as heavy oil reservoirs. These heavy oil reservoirs 

are typical in Indonesia, Canada, Venezuela and USA. Thermal recovery is subdivided 

into the following;  

 Steam-based thermal recovery process  

 Cyclic Steam Stimulation (CSS) 

  Steam Assisted Gravity Drainage (SAGD)  

 In Situ Combustion  

 Toe-to-Heel Air Injection (THAI) 

  Solvent-based Tertiary Resources  

 VAPEX  

 Thermal Solvent  

 Solvent-based Tertiary Resources  

 Hybrid (Steam-solvent) and co-injection processes  

Thermal recovery comprises the techniques of steam flooding, cyclic steam stimulation 

and in situ combustion. The alteration of oil viscosity, favorable phase behavior, and in 

some cases, chemical reaction, are the primary mechanisms leading to improve oil 

recovery. Some common types of thermal recovery used in the oil industries are 

discussed below: 

Cyclic Steam Stimulation (CSS) 

Cyclic steam stimulation (Figure 7), also known as the “huff-and-puff” method, is 

sometimes applied to heavy-oil reservoirs to boost recovery during the primary 

production phase. Steam is injected into the reservoir, and then the well is shut in to 

allow the steam to heat the producing formation around the well. After a sufficient time, 

generally a week or two, the injection wells are placed back in production until the heat 

is dissipated with the produced fluids. This cycle may be repeated until the response 

becomes marginal because of declining natural reservoir pressure and increased water 

production. At this stage a continuous steamflood is usually initiated to continue the 

heating and thinning of the oil and to replace declining reservoir pressure so that 

production may continue. 

Steam-Assisted Gravity Drainage (SAGD) 

Steam Assisted Gravity Drainage (SAGD), illustrated in Figure 8, is an enhanced oil 

recovery method that is used to extract heavy oil or bitumen from underground. It is an 

advanced form of steam flooding which involves the drilling of two in the reservoir with 

one well located a few meters above the other. Low pressure steam is flowing through 
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the upper well as heat source to heat the oil and reduce its viscosity, enabling the oil to 

become mobile and flow into the lower well for production 
[22]

.  

 

Figure 7: Cyclic steam injection (CSS). 

 

Figure 8: Steam-Assisted Gravity 

Drainage. 

Toe to Heel Air Injection (THAI) 

It is an in-situ combustion method for producing heavy oil. In the Toe to Heel Air 

Injection (THAI) technique (Figure 9), the first fire flooding starts from a vertical well, 

while the oil is produced from a horizontal well having its toe in close proximity to the 

vertical air-injection well. This production method is a modification of conventional fire 

flooding techniques in which the flame front from a vertical well pushes the oil to be 

produced from another vertical well. 

 

Figure 9: Toe to Heel Air Injection (THAI) 
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2.4 EOR Screening 

The world petroleum industry has extensive experience in the application of EOR 

methods. A variety of conditions, both geological and geographical, require systematic 

analysis of the applicability of EOR processes under varying reservoir conditions. 

Screening EOR techniques has various applications: 

 Identifying EOR methods that are technically feasible for given reservoir 

conditions. This implies defining ranges for some critical reservoir/fluid 

parameters. 

 Predicting EOR reserve potential for a given field. Combined with the result of a 

simple economic calculation it enables determining if there exists a realistic 

possibility for any field application. 

 Predicting EOR reserve potential for a number of fields. 

 Evaluating the economy of various EOR techniques. 

 Uncertainty analysis by relating the uncertainty in EOR production to that of the 

critical reservoir/fluid parameters. 

 

A feasibility study for screening potential EOR methods should be done at early stage of 

a project design. It improves the timing of important planning decisions 
[13]

.  
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Chapter 3 

 

Surfactant, Polymer and Alkali 

 

3.1     Overview of Surfactant 

A shortened form of "surface-active agent", a surfactant is a chemical that stabilizes 

mixtures of oil and water by reducing the surface tension at the interface between the oil 

and water molecules. Because water and oil do not dissolve in each other a surfactant has 

to be added to the mixture to keep it from separating into layers 
[4]

. A surfactant or 

surface active agent is a substance that, when dissolved in water, gives a product the 

ability to remove dirt from surfaces such as the human skin, textiles, and other solids. 

Surfactants also use as an emulsifier in cosmetics; everyday life like soap, shampoo etc.; 

industry as pharmaceutical products, paints, textiles or plastics 
[26]

. 

3.1.1 Types of Surfactant and Their Structure  

Surfactants are usually organic compounds that are amphiphilic, meaning they contain 

both hydrophobic groups (tails) and hydrophilic groups (heads). Therefore, a surfactant 

molecule contains either a water insoluble or oil soluble component and a water soluble 

component. Depending on the nature of the hydrophilic group, surfactants are classified 

into four (anionic, cationic, zwitterionic and nonionic) groups 
[5]

. 

 

Figure 10 : Surfactant molecule. 

 

 Figure 11: 3-D Plot of Sulfate. 

The surface-active portion of anionic surfactants bears a negative charge, e.g. 

carboxylate (COO
−
), sulfate (SO

−4
) or sulfonate (SO

−3
). Cationic surfactants have a 

hydrophilic part bears a positive charge. cetyl ammonium bromide (C16H33N(CH3)Br) is 

an example of a cationic surfactant. When this surfactant dissolves in water, the positive 

charge will be on the N-atom. zwitterionic surfactants have both a positive and a 

negative charge, e.g. RN
+
H2CH2COO

-
 (Long chain amino acid), C17H37NSO3 

(alkyldimethylpropanesultaine ). Nonionic surfactants bear no apparent ionic charge. 

However the hydrophilic part is soluble in water because of polar groups. These groups 

http://en.wikipedia.org/wiki/Organic_compound
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can be hydroxyl (OH) or polyethylen oxides (OCH2CH2)n
[26]

. Examples of high 

performance surfactants are N67-7PO-Sulfate and N67-7PO-Sulfonate. Figure 10 shows 

a structure of a surfactant molecule and Figure 11 shows the schematic of sulfate. 

3.1.2 Principles of surfactants 

Surfactants have several functions. They must first reduce the interfacial tension so the 

oil and water can create emulsion and flow in continuous phases 
[37]

. Surfactant 

molecules will diffuse in water and adsorb at interfaces between air and water or at the 

interface between oil and water, in the case where water is mixed with oil. The insoluble 

hydrophobic group may extend out of the bulk water phase, into the air or into the oil 

phase, while the water soluble head group remains in the water phase. This alignment of 

surfactant molecules at the surface modifies the surface properties of water at the 

water/air or water/oil interface. 

 

Figure 12: Principles of Surfactants. 

Surfactants can be used to dissolve two immiscible fluids (e.g. oil and water) into each 

other. This is called an emulsion. To be able to do this, surfactants form micelles 

spontaneously water when the concentration of surfactants is high enough. A micelle can 

be spherical, cylindrical or a bilayer. The hydrophobic part dissolves in the oil phase, and 

the hydrophilic part dissolves in the water phase (Figure 12). The micelle acts like a 

barrier between the two phases so they never come in direct contact to each other. The 

surface tension between the two phases will decrease with increasing amounts of 

surfactants up to a critical micellar concentration (CMC). At CMC the maximum limit is 

obtained, and the surface tension will not change. The same happens to other properties, 

e.g. osmotic pressure and conductivity. 

3.1.3 Mechanism 

The aim of surfactant flooding is to recover the capillary-trapped residual oil after water 

flooding. By the injection of surfactant solution, the residual oil can be mobilized 

through a strong reduction in the interfacial tension (IFT) between oil and water. A 

typical plot of residual oil saturation as a function of  NC called the Capillary 

Desaturation Curve (CDC) is shown in Figure 13. From the figure it can be illustrates 

that a surfactant floods should perform best in a water-wet reservoir 
[13]

. 
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Figure 13: Schematic Capillary Desaturation Curve. 

3.2 Overview of Polymer 

The word polymer is derived from the Greek words poly means "many" and meros 

meaning "part". A polymer is a high-molecular-weight organic compound, natural or 

man-made, consisting of many repeating simpler chemical units or molecules called 

monomers. Therefore, polymers are large molecules whose molecular weight 

can range from the thousands to millions . Because of the extraordinary range of 

properties of polymeric materials, they play an essential and ubiquitous role in everyday 

life. This role ranges from familiar synthetic plastics and elastomers to natural 

biopolymers such as nucleic acids and proteins that are essential for life 
[6]

. 

3.2.1 Types of Polymer Used for EOR and Their Structure  

Polymers molecules are long chains of repeating units (monomers) linked by covalent 

bonds. There are two sets extensively used for enhancing oil recovery, namely synthetic 

polymers and biopolymers. The major field experience is with synthetic polymers. The 

most used polymer in field operations is polyacrilamide, PAM or hydrolyzed 

polyacrilamide, HPAM etc. These are polymers where the monomeric unit is acrylamide. 

The chemical structure of HPAM is shown in Figure 14. 

Two biopolymers are used for EOR purposes, named xanthan and seleroglucan. Both 

have a helical, rodilike structure and are extremely pseudoplastic with high viscofying 

effect. They are formed from polymerization of saccaride molecules in fermentation 

processes.  

http://en.wikipedia.org/wiki/Biopolymers
http://en.wikipedia.org/wiki/Nucleic_acid
http://en.wikipedia.org/wiki/Protein
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Figure 14: Structure of HPAM 

3.2.2 Principles of polymer  

Polymer solutions behave like Newtonian fluids at very low and at very high shear rates. 

However, at intermediate shear rates they behave as pseudo-plastics obeying the power-

law of the dependency of their viscosity on the shear rate. An overall behavior of 

polymer solutions in a wide range of shear rates can be well described by the Carreau 

model which is shown by the Figure 15 where μ is the viscosity, μo is zero shear rate 

viscosity, μ∞ is infinite shear rate viscosity, τ is relaxation constant,   is shear rate and η 

is power law exponent. Carreau model explains the behavior of polymer solutions at pure 

shear flows where the velocity gradient is orthogonal to the direction of flow which is 

shown in Figure 16
[13]

. 

 

Figure 15: Carreau Model for Viscosity of Polymers. 

Based on Carreau model, macromolecules rotate at a constant angular velocity at low 

shear rates. Hence, the viscosity remains constant and the regime of flow is Newtonian. 

When shear rates increase, macromolecules start to deform or orient themselves in the 

direction of flow which results in a reduced interaction between macromolecules and 

cause a gradual reduction of viscosity shear-thinning flow regime. At high shear rates all 

the macromolecules are oriented in the flow direction and do not affect the viscosity of 

polymer solution. Regime of flow is again Newtonian but at lower viscosity 
[13]

. 
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Newtonian behavior        

(high viscosity) 

Power law type of behavior 

(shear-thinning regime) 

Newtonian behavior  

(low viscosity) 

Figure 16: Orientation of Polymer Molecules and Flow Regimes of a Polymer Solution at 

Different Shear Rates. 

3.2.2.1 Stability of Polymers 

HPAM is subjected to mechanical degradation because of an elastic behavior PAM will 

easily degraded by high shear rates in porous media. PAM is stable up to 90
0
C at normal 

salinity and up to 62
0
C at seawater salinity, which put certain restrictions to their use in 

off-shore operations.Temperature stability for xanthan is reported in the range 70
0
C to 

above 90
0
C, and above 105

0
C for scleroglucon. The polymers and especially the 

biopolymers are susceptible to bacterial attack in the low-temperature region in the 

reservoir. To prevent biological degradation, biocides like formaldehyde in 

concentrations 500 to 1000 ppm are effectively used 
[13]

. 

3.2.2.2 Retention of Polymers 

Retention is a term used to cover all the mechanisms responsible for the reduction of 

mean velocity of polymer molecules during their propagation through porous media. 

Polymers molecules can be retained by reservoir rock by means of  

 Adsorption on the surface of pores; 

 Mechanical entrapping in pores; 

 Precipitation, i.e. local ion of polymer molecules. 

Figure 17 shows the types of polymer retention in the porous media. In order to calculate 

the amount of polymer required for successful polymer flooding the following mass 

balance formulation can be used 
[13]

: 

Mass of Polymer Injected = Mass of Polymer Retained. 
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Figure 17: Types of Polymer Retention in Porous Media. 

3.2.2.3 Inaccessible pore volume 

Due to the bigger size of macromolecules, narrow pore throats can serve as obstacles for 

polymer invasion thus creating a so-called inaccessible pore volume (IPV). The IPV can 

reach as much as 30% of the pore volume swept by polymer flooding. 

3.2.2.4 Apparent Viscosity and Shear Rates 

Due to the microheterogeneity of formation and the fact that polymer solution has non-

Newtonian properties the shear rate and thus, the viscosity of the solution will vary 

within the porous medium. In order to predict effectiveness of polymer flooding one has 

to deal with averaged, i.e. apparent values of a polymer solution viscosity. Since the 

effective shear rate   is proportional to flow rate Q. Based on a simple capillary bundle 

model the effective shear rate   can be determined by the equation 5 where is a constant 

related to the pore geometry and type of porous media 
[13]

.  

4

8

u

k
 


 

                                                         (5) 

3.2.2.5 Resistance and Permeability Reduction Factor 

There are two important factors that must be taken into account while simulating 

polymer flooding, namely Resistance factor and Residual resistance factor. Resistance 

factor R can be defined as the ratio of mobility of water (brine) λw to that of polymer 

solution λp under the same conditions which is shown in equation 7. 

w

p

R



  

                                                         (6) 

Residual resistance factor is the mobility ratio of water before λw and after polymer 

injection λwp under the same conditions, where kp is permeability to polymer solution. 

w w w

wp wp p

k k
R

k k




    

                                                         (7) 

The last term of equation 7 is called Permeability Reduction factor R and often used for 

the quality estimation of polymer solution. 
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3.2.3 Polymers application in the oil industry 

Significant increases in recovery when compared to conventional water flooding 

projects. It reduces the unfavorable effect of permeability variations. The Primary 

features for effectiveness of reservoir heterogeneity and mobility ratio of reservoir fluids.  

Hydrolyzed polyacrylamide(HPAM) is the only commonly used polymer in the field and 

can be used up to about 185 F depending on the brine hardness. Modified 

polyacrylamidessuch as HPAM-AMPS co-polymers are commercially available now for 

about $1.75/lb and are stable to higher temperatures. 

3.2.4  Potential of polymer flooding in the Norwegian shelf 

The North Sea reservoir conditions put strong restrictions on the use of polymers: high 

injection rates, high temperatures, large interwell distances which means that the 

polymer must be stable over a long time at high temperatures and the use of seawater 

with high salinity 
[13]

. 

3.3     Overview of Alkali 

Alkali (from Arabic: Al-Qaly)  is a basic, ionic salt of an alkali metal or alkaline earth 

metal element. Alkalis are best known for being bases that dissolve in water. Bases are 

compounds with a pH greater than 7. There is a vast uses of alkali like Sodium hydroxide 

is used to make paper, detergents and soap; Potassium hydroxide; Calcium carbonate is 

used as a building material; Magnesium hydroxide is used to help with stomach aches or 

indigestion. It makes the contents of a stomach less acidic. 

3.3.1 General structure of Alkali 

Alkalis are all Arrhenius bases, which form hydroxide ions (OH-) when dissolved in 

water. Common properties of alkaline aqueous solutions include: Moderately 

concentrated solutions (over 10−3 M) have a pH of 10 or greater. Concentrated solutions 

are caustic (causing chemical burns). Alkaline solutions are slippery or soapy to the 

touch, due to the saponification of the fatty acids on the surface of the skin.  

Most basic salts are alkali salts, of which common examples are: sodium hydroxide 

(often called "caustic soda"), potassium hydroxide (commonly called "caustic potash"), 

lye, calcium carbonate, magnesium hydroxide is an example of an atypical alkali since it 

has low solubility in water. Nowadays, instead of sodium hydroxide (NaOH), sodium 

bicarbonate (NaHCO3) or sodium carbonate (Na2CO3) is used to reduce emulsion and 

scale problems. 

3.3.2 Mechanisms 

Alkali reduces adsorption of the surfactant on the rock surfaces and reacts with acids in 

the oil to create natural surfactant. Alkaline chemicals can cause improved oil recovery 

through the formation of emulsions. In alkaline flooding, emulsification is instant, and 

http://en.wikipedia.org/wiki/Base_(chemistry)
http://en.wikipedia.org/wiki/Ionic_compound
http://en.wikipedia.org/wiki/Salt_(chemistry)
http://en.wikipedia.org/wiki/Alkali_metal
http://en.wikipedia.org/wiki/Alkaline_earth_metal
http://en.wikipedia.org/wiki/Alkaline_earth_metal
http://en.wikipedia.org/wiki/Chemical_element
http://simple.wikipedia.org/wiki/Sodium_hydroxide
http://simple.wikipedia.org/wiki/Paper
http://simple.wikipedia.org/wiki/Detergent
http://simple.wikipedia.org/wiki/Soap
http://simple.wikipedia.org/wiki/Potassium_hydroxide
http://simple.wikipedia.org/wiki/Calcium_carbonate
http://simple.wikipedia.org/w/index.php?title=Magnesium_hydroxide&action=edit&redlink=1
http://simple.wikipedia.org/wiki/Stomach
http://simple.wikipedia.org/w/index.php?title=Indigestion&action=edit&redlink=1
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emulsions are very stable. Emulsification mainly depends on the water/oil IFT. The 

lower the IFT, the easier the emulsification occurs. The stability of an emulsion mainly 

depends on the film of the water/oil interface. The acidic components in the crude oil 

could reduce IFT to make emulsification occur easily, whereas the asphaltene surfactants 

adsorb on the interface to make the film stronger so that the stability of emulsion is 

enhanced. Local formation of highly viscous emulsions is not desirable since these 

would promote viscous instability. In carbonate reservoirs where anhydrite (CaSO4) or 

gypsum (CaSO4·2H2O) exists, the CaCO3 or Ca(OH)2 precipitation occurs when Na2CO3 

or NaOH is added. Carbonate reservoirs also contain brine with a higher concentration of 

divalents and could cause precipitation. To overcome this problem, Liu (2007) suggested 

NaHCO3 and Na2SO4. NaHCO3 has a much lower carbonate ion concentration, and 

additional sulfate ions can decrease calcium ion concentration in the solution. 

3.3.3 Alkaline application in the oil industry 

Alkali reacts with the petroleum acids during the alkaline flooding in the reservoir. To 

form a surfactant hydroxide ion reacts with a pseudo-acid component which is known as 

hydrolysis reaction (Equation 8). When pseudo-acid is not present in the crude oil then 

little surfactant can be generated.  

      HAo + NaOH
-
    ‹―› NaAo + H2O                                                                                                 (8) 

The reaction depends strongly on the aqueous solution pH and occurs at the water/oil 

interface. A fraction of organic acids in oil become ionized with the addition of an alkali, 

whereas others remained electronically neutral. The hydrogen-bonding interaction 

between the ionized and neutral acids can lead to the formation of a complex called acid 

soap. Thus, the overall reaction, equation 9, is decomposed into a distribution of the 

molecular acid between the oleic and aqueous phases,  

      HAo  ‹―› HAw                                                                                                (9) 

and an aqueous hydrolysis where, HA denotes a single acid species, A- denotes anionic 

surfactant, and subscripts o and w denote oleic and aqueous phases, respectively 
[29]

. 

      HAw  ‹―› H
+
 + A

-
                                                                                                (11) 

 

Figure 18: Schematic of alkaline recovery process. 
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Chapter 4 

 

Norne Field 

 
4.1 General Field Information 

Norne is an oil and gas field on the Norwegian continental shelf operated by Statoil 

Petroleum AS with Eni Norge AS and Petoro AS as partners. The field is located 200km 

west of Brønnøysund and 80km north of the Heidrun field, in blocks 6608/10 and 

6508/10, the southern part of the Nordland II area, see Figure 1.1. It was first discovered  
 

in December 1991 and oil production 

started from 6
th

 November, 1997. But 

gas production started in 2001. The 

field is subsea developed with six 

subsea templates, connected to a 

production and storage vessel. In April 

2008 an updated plan for development 

and operation (PDO) for Norne and 

Urd was approved. This plan also 

includes 6608/10-11 S Trost and other 

prospects around Norne and Urd 
[1,53,54]

. 

 

 

Figure 19: Fields and discoveries in the Norwegian 

Sea, Norne field circled in red. 

4.2 Reserves 

Most likely in-place volumes reported in the Revised National Budget (RNB) 2006 were 

157,0 MSm3 oil in place (OIIP) and 29,8 GSm3 gas in place (GIIP). By August 2009 

they had produced 82,1 MSm3 oil and 6,0 GSm3 gas, or recovery of 52,3% and 20,1% 

for oil and gas respectively.25 The Norwegian Petroleum Directorate (NPD) estimated 

the recoverable reserves to be 94,9 MSm3 oil and 11,0 GSm3 gas. This indicates that 

they expect a recovery of 60,4% for oil and 36,9% for gas
[56]

. 

4.3 Structure 

The field has two separate compartments:  

 Norne Main Structure (Norne C, Norne D and E-segment)  

Relatively Flat with generally a gas filled Garn Formation and the gas oil contact in the 

vicinity of the Not formation clay stone. The Norne main structure includes 97% of the 

oil in place.  
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 Northeast Segment (Norne G-Segment)  

The northen flank dips towards north-northwest with an oil leg in the Garn Formation. 

 

  

Figure 20: Main fault blocks are denoted C. D, E and G. 

The hydrocarbons are proven in the rocks of Lower and Middle Jurassic age. An oil 

column of 110m, and a gas cap of 25m were proven in exploration well 6608/10-2 and 

confirmed in well 6608/10-3, the two exploration wells in the Main Structure. A third 

exploration well, 6608/10-4, were drilled in the Northeast Segment. As much as 98% of 

the total hydrocarbons were proven in the Main Structure. 

The Norne field is a raised fault block, a at horst structure, bounded by normal faults. In 

the Main Structure the Garn Formation is gas filled; the structure dips towards north-

northwest and has an oil leg. The gas oil contact is in the proximity of the Not 

Formation. Reservoir pressure data from the wells shows that there is no reservoir 

communication across the Not Formation. Oil is mostly found in Ile and Tofte 

Formations 
[55,56]

. 

4.4 Geology  

The reservoir is situated in a fault complex in the Norwegian Sea. Rifting of the area 

occurred in Permian and Late Jurassic - Early Cretaceous. Normal faults with north-

northeast to south-southwest trends are common from the first rifting period. Footwall 

uplift and erosion of the higher structures appeared in the second rifting. In between the 

rifting periods there was limited tectonic activity, subsidence and transgression was 

dominating. As time goes the reservoir has been buried deeper, increasing the diagenetic 

processes. Norne reservoir rocks are of, as already mentioned, from Late Triassic to 

Middle Jurassic age 
[57]

. 
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4.4.1 Stratigraphy and Sedimentology 

The reservoir sandstones in the formations Garn, Ile, Tofte and top Tilje, have a near 

shore marine depositional environment with source area to the north-east and east. They 

are fine-grained, well to very well sorted sub-arkosic arenites. Tilje Formation has origin 

from a marginal marine, tidally influenced environment, and the Not Formation clay 

stone was deposited in quiet marine environment. Being buried at a deep between 2500m 

and 2700m, mechanical compaction is an important process which reduces the quality of 

the reservoir. The reservoir rocks have still good quality with porosity in range of 25-

30% and permeability varies from 20 to 2500 mD 
[56]

. Figure 4.1 shows the formations 

and their properties of the reservoir. 

 

Figure 21: Stratigraphical sub-division of the Norne reservoir 
[56]

. 

 

The source rocks are believed to be in the Spekk Formation shale and Åre Formation 

coal beds. They were deposited in Upper and Lower Jurassic, respectively. Åre has 

alluvial to delta plain setting and contain mainly channel sandstones interblended with 

mudstones, shales and coal. 

Due to increased erosion to the North reservoir thickness varies over the entire field. 

From Top Åre to Top Garn it goes from 260m in the southern parts to 120m in the 

northern part. From seismic mapping it has been found that particularly the Ile and Tilje 

Formations decrease 
[57]

. 
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4.4.2 Reservoir Communication 

Both structural and stratigraphic barriers influence the vertical and lateral flow within a 

reservoir. Structural barriers such as faults, at least major faults, can be seen on seismic. 

If the faults are sealing and extend over the whole reservoir height it is considered as a 

trap. This is beneficial in order to trap the hydrocarbons. If it is an intra-reservoir fault 

this is not wanted as it’s limiting the reservoir communication. No faults have been cored 

out from Norne, so it is impossible to measure the permeability in these. The Heidrun 

field located 80km south of Norne is the best analog and three main types are found here. 

Results from two different fault analysis indicates that both the intra-reservoir faults at 

Norne most likely are non sealing 
[57]

. Table 1 shows the GOC and OWC in the different 

formations and segments in the Norne Field and Figure 22 shows the Structural cross 

sections through the Norne Field with fluid contacts. 

Table 1: GOC and OWC in the different formations and segments in the Norne Field. 

 

 

Figure 22: Structural cross sections through the Norne Field with fluid contacts [Statoil, 2001]. 

 

In the formations Tofte, Ile and Garn there are interpreted three continuous calcareous 

cemented layers. These are believed to act as stratigraphic barriers to vertical flow. They 

have a thickness in the range of 0.5-3m. However, there are many intra-reservoir faults 
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which offset the sealing layers and enable vertical reservoir communication. In addition 

the Not Formation with a thickness of 7-10 m is sealing. From well data and RFT 

(Repeat Formation Tester) pressures such lateral barriers can be shown. These are of 

variable extension but generally thin, below seismic resolution, and partially sealing 
[56]

. 

4.5 Field Development 

As of November 2009 the field are developed using six subsea templates connected to a 

production vessel. There are 8 wells injecting water and 16 wells producing oil. In total 

there are 4 exploration wellbores and 48 production and injection wellbores. The 

drainage strategy was originally pressure support by water injection in the water zone 

and re-injection of gas into the gas cap. Experience from the first year of production 

showed that the Not Formation was sealing over the Norne Main Structure and gas 

injection discontinued in 2005. 
 

The Norne field is developed using only near horizontal producers. In Figure 5.1 the 

general drainage pattern are shown. Water injectors at the bottom and the water-oil 

contact (WOC) will gradually move upwards with production. Figure 23 shows the 

drainage strategy of the Norne field where vertical arrows illustrates injection streams, 

horizontal arrows illustrates production streams as well as red, green and blue color  

illustrates gas, oil and water phase respectively 
[55,57,58]

.  

 

 

Figure 23: General drainage pattern 
[2] 

Since the Norne field now are considered to be a mature field and in tail production, see 

Figure 23, increased oil recovery (IOR) techniques are needed to achieve their high 

recovery goal. Uncertainties regarding infill drilling and reservoir performance are 

major. Infill drilling is being performed using through tubing rotary drilling (TTRD). 

TTRD meaning drilling through the existing production tubing and conveniently creating 

multilateral wells, effectively optimize the reservoir drainage. Also to effectively update 

the reservoir models, time laps seismic are used. Using seismic to interpret the changes 

in a reservoir over time is beneficial as the production and fluid movements influence the 
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seismic reflection properties. Techniques are developed to estimate reservoir properties 

and optimize the simulation models giving more accurate predictions. From such updated 

models, reservoir performance, water-cut (WC) and gas-oil ratio (GOR) development 

can be predicted more accurate. As a result wells can be plugged and sidetracked in 

overlaying formations to optimize reservoir drainage, see Figure 54 
[1,58]

. 

 

 

Figure 24: Gross Production of Oil, April 2009 ‐ March 2010 [NPD, 2010] 
[1] 

4.6 Norne Model in Eclipse  

The reservoir simulation model at the Norne field is an Eclipse 100 model, a fully-

implicit, three phases, three dimensional black oil simulators. A coarsened model was 

made from the original full field reservoir simulation model and used in this thesis. The 

coarsened model was made by Mohsen Dadashpour at the IO center and can be seen in 

Figure 25. The model is runs from November 1997 until December 2004 and history 

matched until December 2004 by Statoil. 

ECLIPSE from Schlumberger is one of the leading reservoir simulators in oil industry. It 

is a batch program. As an input user creates text file with a set of keywords that must be 

located in particular section. Such data file gives complete description of a reservoir.  

The Norne Field model starts at 06 November 1997. The dimensions are 46 × 112 × 22, 

the unit system is metric and five phases gas, oil, water, dissolved oil and vapour gas are 

activated in the simulation. The grid consists of 113344 cells, where 44927 are active 

cells and the grid units are meters. The model is physically divided into two sections by a 

shale layer which is called NOT formations. The upper and lower sections are consists of 

3 and 18 layers respectively. Reservoir properties are assigned to every cell then they are 

modified according to specific segments, wells and layers. Net-to-gross, porosity and 
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Figure 25: Norne model grid and E-segment 

 

permeability appear to have a layer-dependent structure. The defined permeability in X 

direction is copied to Y direction and Z direction. However, permeability Z is reduced 

using multipliers according to particular layer. This means that permeability in X and Y 

direction are the same while permeability Z differs. Specified transmissibilities are 

modified further in the edit section to honour the changes in a reservoir structure made 

by drilling through the faults and the layers. Areas near the wells have set increased 

transmissibility multipliers. For Norne the value varies from 0.00075 to 20. 

Transmissibility multipliers only for two faults are bigger than 1 what means that 

appearing of these faults increased easy with which flow goes through that fault. The 

initial reservoir properties of Norne field has shown in the Table. 

The reservoir can be subdivided into regions if there is a need to set different local 

properties for the field. There are 4 flux regions for each geological layer: Garn, Ile, 

Tofte, Tilje-top and Tilje-bottom. Thus there are 20 regions in total in Norne Field. There 

are transmissibility multipliers specified between each pair of neighbouring regions.  

4.7 Norne E-segment 

The E segment of the Norne field is part of the Norne main structure which also 

comprise of the C and D segments. The Ile and the Tofte formations are the most 

important in this segment because about 80% oil in the Norne field is contained in these 

formations. There are five wells in the E segment, two injectors and three producers. 

Table 2 gives the details status of the wells. Wells localization can be seen in the Figure 

26 and Table 3.  

 

E-segment 
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Table 2: Norne E-segment current well status. 

Well Type Status 

F-1H Water Injector Active 

E-3H Oil Producer Shut 

E-3AH Oil Producer Active 

E-2H Oil Producer Active 

F-3H Water Injector Active 

 

I1 I2 J1 J2 K1 K2 

6 6 45 88 1 22 

7 7 45 90 1 22 

8 8 47 91 1 22 

9 9 49 92 1 22 

10 10 54 94 1 22 

11 11 55 94 1 22 

12 12 57 96 1 22 

13 13 60 97 1 22 

14 14 62 99 1 22 

15 15 65 100 1 22 

16 16 70 100 1 22 

Table 3:E‐segment definition by grid cell 

positions. 

 

 
 

Figure 26: Localization of wells in E-segment. 

 

 

The Norne E‐segment is separated from the rest of the field by keeping the E‐segment 

part as original grid and coarsening the rest.  

E‐segment contains 8733 active cells. Size of the blocks is between 80 m to 100 m in the 

horizontal direction. In total it 8 wells have been drilled in the E‐segment part. These 

comprise of one observation, 2 injector and 5 producers. Some properties of the oil and 

gas in the Norne Field are shown in the Table 4. 

Table 4: Properties of the Norne Field. 

Initial Pressure 273 bar at 2639 m TVD 

Reservoir temperature 98
0
 C 

Oil density 859.5 Kg/m
3
 API =32.7 

Gas density 0.854 Kg/m
3 

Water density 1033 Kg/m
3
 

Oil formation volume factor 1.32 

Gas formation volume factor 0.0047 

Rock wettability Mixed 

Pore Compressibility 4.84×10‐5 1/bar at 277 bar 
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Chapter 5 

 

EOR at the Norne E-Segment 

 
5.1 Fluid Properties of the Reservoir 

Figure 27 shows the graph of fluid properties vs pressure of the reservoir. First one is gas 

formation volume factor vs pressure, second one RSO and RSG vs pressure, third one is oil 

formation volume factor vs pressure and final one is oil as well as gas viscosity vs 

pressure. 

 

 

 

 

Figure 27: Fluid Properties of the Norne Field. 
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5.2 Pressure Profile of the Reservoir 

The initial reservoir pressure of Norne field was 277 bars which decline with oil and gas 

production due to the injection of gas into the Garn formation as well as injection of 

water into the Tilje formation. As there was no communication between Garn and Ile 

formation, the injection of gas had to discontinue. Later gas injected into the Tilje 

formation. The bubble point pressure for the Norne Main Structure is 251 bars while for 

the Norne-G Segment are 216 bars. The pressure profile for the Norne field is shown in 

Figure 28. The plot of Formation volume factor and reservoir pressure profile shows that 

the Norne reservoir is still in the undersaturated region. This is because the reservoir 

pressure is above the bubble point pressure. 

 

Figure 28: Reservoir pressure vs Time for the Norne Field. 

5.3 EOR Potentiality at the Norne E-segment 

As most of the oil in Norne E-segment is located in the Ile and Tofte formation, therefore 

these two formations are chosen as the target area for EOR. Figures 31 through 34 shows 

the oil saturations in top and bottom of both Ile and Tofte layer in 1997 and 2004. Ihe Ile 

and Tofte formations are represented by layers 5–18 in the Eclipse model and oil have 

been produced from 1997 to 2004. In some areas the oil saturation are still high, as you 

can see from the different layers. This indicates that the best target area for further 

production and EOR methods for the Norne E-segment is between layers 5–12, the Ile 

formation. Here the oil saturation is higher than further down in the reservoir, and a 

lower water cut will be achievable. 
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Figure 29: Reservoir oil in place in top of the Ile formation. 

  

Figure 30: Reservoir oil in place in bottom of the Ile formation. 

The 3-D Plots, (Figures 35 and 36) show the oil left in 2005 after long time production 

from the field in the Ile and Tofte formations, respectively. In 2004, the top of Ile 

formation still had 78 % of oil in place left, which means that the recovery factor only 

was 22 % and there still was a lot of producible oil left which is shown in Figures 29 and 

30. 
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Figure 31: Oil saturation in the Ile top and bottom layer in 1997. 

 

 

 

 
 

Figure 32: Oil saturation in the top and bottom Ile layer in 2004 
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Figure 33: Oil saturation in the Tofte top and bottom layer in 1997. 

 

 
  

 

 

Figure 34: Oil saturation in the Tofte top and bottom layer in 2004. 
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Figure 35: Oil saturation in the Norne E-segment 

after 2005. 

 

 
 

Figure 36: Oil saturation in the Ille 

formation after 2005. 

Figure 37 shows the recovery factor vs. time for the Norne E-segment. The green line is 

the history and end at 37,6 % in November 2004, which is the end of the history matched 

model used in this thesis. Further prediction was made by an Eclipse 100 simulation, and  

 

Figure 37: Oil in place at the Norne E-

segment. 

 

 

Figure 38: Oil Recovery vs Time at the Norne E-

segment 

the result in oil recovery is displayed as the blue line in Figure 37 which end at around 54 

% in December 2021. A recovery factor is about 55 % which is very good result and 
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satisfy the target set by NPD of a recovery factor of 50 %. The remaining 45% will 

amount around 12,5 million Sm3 which is displaced in Figure 38 and a 2 % increase in 

recovery will have a present value of 304 million USD with an oil price of 90 USD/BBL. 

5.4 ASP Model at Norne E-segment 

As 80 % oil still trapped in the Ile and Tofte formation, it is required to add extra 

chemical to get the higher recovery. Also the above observation (Figure 29-38) demands 

for an EOR method by which oil production can be increased with good pressure 

maintenance. Thus, there is a need for chemical flooding into the reservoir. It may be 

surfactant flooding or polymer flooding or AS flooding or all together. As three is 

synergistic, therefore ASP flooding is the good option to add. Again surfactant is very 

expensive. Therefore in addition of alkali reduce the cost and maximize the profit. 

 Also, a plot of block oil saturation for block I=15, J=74 and K=7 shows (Figure  39) that 

the oil saturation is still very high. When this use with surfactant and polymer flooding to 

perform an Alkaline-Surfactant Polymer (ASP) flooding, the low cost alkaline can 

reduce the adsorption of both surfactant and polymer on the rock surface, therefore the 

effectiveness of the surfactant and polymer drive is enhanced. Other reasons to use 

alkaline-surfactant-polymer (ASP) flooding is lower cost alternative to traditional SP 

flooding. Therefore, ASP flooding is the best option to get the higher oil recovery at the 

Norne E-segment. 

 

  

Figure 39: Oil saturation at Block 15, 74 and 7 in the Norne E-segment. 
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Chapter 6 

 

ASP Flooding 

 
6.1 Overview of ASP Flooding 

ASP flooding is a form of chemical enhanced oil recovery (EOR) that can allow 

operators to extend reservoir pool life and extract incremental reserves currently 

inaccessible by conventional EOR techniques such as waterflooding. Although a 

relatively new and progressing technology, many ASP floods have been successfully 

conducted worldwide in recent years, commonly achieving 20% incremental oil 

recovery. One Albertan example of an ASP flood is the Husky Taber South Mannville B 

Pool which began ASP flooding in 2006 and is currently ongoing. 

6.2 Process 

ASP flood slug is the process where high concentration of Alkali as well as low 

concentration of Surfactant and Polymer is injected in to the reservoir.  Alternately, 

alkaline and surfactant are injected followed by Polymer slug for mobility control. Upon 

completion of the ASP and polymer injection, regular waterflooding behind the ASP 

wall resumes again. 

6.3 Mechanism 

In the Alkaline Surfactant Polymer (ASP) process, a very low concentration of the 

surfactant is used to achieve ultra low interfacial tension between the trapped oil and the 

injection fluid/formation water. The ultra low interfacial tension also allows the alkali 

present in the injection fluid to penetrate deeply into the formation and contact the 

trapped oil globules. The alkali then reacts with the acidic components in the crude oil to 

form additional surfactant in-situ, thus, continuously providing ultra low interfacial 

tension and freeing the trapped oil. In the ASP Process, polymer is used to increase the 

viscosity of the injection fluid, to minimize channeling, and provide mobility control. 

6.4 ASP Process in the Oil Industry 

Oil recovery can be greatly improved by using two or three chemical together. To use 

alkaline, surfactant and polymer together has been recognized to be one of the major 

EOR techniques because this process reduces the quantity of surfactant used singly.  

Also typical alkali can be used which is much cheaper than surfactant. Therefore, it is the 

most economical process.  
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Field implementation of an ASP flood requires much thorough research. Laboratory 

testing must be conducted to determine the most suitable alkali, surfactant and polymer 

type and concentrations for the reservoir oil and rock. Radial and linear corefloods tests 

should be conducted as well as simulation studies to determine flood effectiveness and 

feasibility. 

As conventional reserves diminish and reservoirs mature, it is crucial and financially 

beneficial to maximize existing reserve potential. As research and technology progress, 

the potential and feasibility of ASP flooding continues to grow and offers much potential 

for increased oil recovery. 

6.5 ASP Model with Eclipse Simulator 

The combination of the three chemicals is synergistic. Together they are more effective 

than as components alone. Addition of a surfactant lowers the interfacial tension between 

water and oil which helps to reduce capillary pressure in the reservoir. This allows 

residual oil to be mobilized and produced from the formation. The use of alkali adds 

many benefits to an ASP flood. The alkali reacts with elements of the oil to form in-situ 

surfactants. Additionally, it helps make the reservoir rock more water wet, thus 

increasing the flood effectiveness. The injection of only alkaline will not mobilize 

residual oil – one must inject the alkaline along with some surfactant to do an EOR 

flood. Once you inject some surfactant then the alkaline will help the surfactant to reduce 

the IFT. The polymer increases the vertical and areal sweep efficiencies of the flood by 

increasing water viscosity. The increased viscosity decreases the chance of fingering and 

allows more oil to be contacted on a macroscopic scale. Therefore, ASP flooding is the 

more encouraging EOR to increase the oil recovery. 

To make ASP model by using Eclipse 100, it is required to activate three model- 

surfactant, polymer and alkaline. The details of surfactant model, polymer model as well 

as alkaline model with eclipse discussed in this chapter. 

6.5.1 The Surfactant Model  

The Eclipse 100 surfactant model does not provide a detailed chemistry of a surfactant 

flooding, but modeling the most important features is full field basis. The surfactant 

distribution is modeled by solving the conservation equation for surfactant within the 

water phase. The surfactant concentration is calculated fully implicit at end of each time 

step, after the calculation of water, oil and gas is done. The input of surfactant to the 

reservoir is specified by concentration of the surfactant in the injected water and occurs 

only in the water phase 
[36]

.  

6.5.1.1 Calculation of the capillary number 

The capillary number is a dimensionless group that measures the ration of viscous forces 

to capillary forces. The capillary number is given by Equation 10, where K is the 
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Permeability, P is the potential, ST is the interfacial tension and Cunit is a conversion 

factor. 

 

.
C unit

K gradP
N C

ST
                                   

                 (10) 

 

.K gradP  is calculated as: 

2 2 2. ( . ) ( . ) ( . )x x y y z zK gradP K gradP K gradP K gradP                      (11) 

Where for cell i 

1 1, 1 , 10.5 ( ) ( ) ( ) ( )x x
x x i i i i i i i i

x x

K K
K gradP P P P P

D D
   

 
       

 
 

                                                            

(12) 

6.5.1.2    Relative Permeability Model 

The Relative Permeability model is essentially a transition from immiscible relative 

permeability curves at low capillary number to miscible relative permeability curves at 

high capillary number. A transition between these curves are made, and a table that 

describes the transition as a function of log10 of the capillary number must be included 

Figure 40 illustrates the calculation for the relative permeability for oil, the relative 

permeability for water is calculated in the same way. First an interpolation between the 

endpoints are made (point A); then the miscible and immiscible curves are scaled 

between A and B. Then the relative permeability is found for both curves, and the final 

relative permeability is an interpolation between these two values. 

 

 
           

Figure 40: Calculation of the relative permeability. 
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6.5.1.3     Capillary Pressure 

The capillary pressure will be reduced along with the increase in surfactant 

concentration, but it is only the reduction in the oil water capillary pressure that will 

reduce the residual oil saturation. The oil water capillary pressure is given in Equation 

13. 

 

( )

( 0)

surf

cow cow w

surf

ST C
P P S

ST C
  


 

(13) 

 

Where ST(Csurf) is the surface tension at the present surfactant concentration, ST(Csurf = 

0) is the surface tension at zero concentration and Pcow(Sw) is the capillary pressure from 

the immiscible curves initially scaled to the interpolation end-points calculated in the 

relative permeability model.   

6.5.1.4    Water PVT Properties 

When surfactant is injected the water input in PVTW is modified according to Equation 

14 where μs is the surfactant viscosity, μw is the water viscosity, μws is the water-

surfactant solution viscosity for a given concentration of surfactant viscosity and Pref  is 

the reference pressure in the PVTW. 
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Equation 16 shows that the viscosity of the water surfactant solution differs from the 

pure water, but in low surfactant concentrations it is assumed the same viscosity for the 

water surfactant solution as pure water. 

6.5.1.5  Adsorption 

The adsorption of the surfactant is assumed to happen immediately, and the amount of 

the adsorbed surfactant is a function of the surfactant concentration is given in Equation 

15. 

Mass of adsorbed surfactant
1

. ( )surfPORV MD CA C





                       (15) 

 

Where PORV is the pore volume of the cellsurfactant viscosity, Φ is the porosity, MD is 

the mass density of the rock and CA (Csurf) is the adsorption isotherm as a function of 

local surfactant concentration in solution. 
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6.5.2 The Polymer Model 

To achieve maximum efficiency, the polymer solution is often applied in the form of a 

tapered slug. At the front edge of the slug, the displacement is stable but the interface 

between the water and the polymer solution smears due to physical dispersion of the 

polymer. At the rear edge, the mobility ratio is unfavorable and is dominated by viscous 

fingering. Both effects cause deterioration of the slug, and are modeled in ECLIPSE by 

means of a mixing parameter applied to the viscosity terms in the fluid flow equations. 

6.5.2.1 The polymer flood simulation model 

The flow of the polymer solution through the porous medium is assumed to have no 

influence on the flow of the hydrocarbon phases. Therefore, standard black-oil equations 

use to describe the hydrocarbon phases in the model. 

It is required to modify the standard aqueous equation and additional equations are 

needed to describe the flow of polymer and brine within the finite difference grid. The 

water, polymer and brine equations used in the model are given in Equation 16-18. 

. 
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6.5.2.2 Treatment of fluid viscosities 

The viscosity terms used in the fluid flow equations define the effects of a change of 

viscosity in the aqueous phase due to the presence of polymer and salt in the solution. 

However, to incorporate the effects of physical dispersion at the leading edge of the slug 

and also the fingering effects at the rear edge of the slug the fluid components are 

allocated effective viscosity values that are calculated using the Todd-Longstaff 

technique. The effective polymer viscosity is calculated by the Equation 19 where ω is 

the Todd-Longstaff mixing parameter. 

 

  1

,P eff m P PC
      (19) 

 

Here, the viscosity of a fully mixed polymer solution is an increasing function of the 

polymer concentration in solution (μm(CP) ) and viscosity of the solution at the maximum 
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polymer concentration also needs to be specified which denotes the injected polymer 

concentration in solution (μP ).  

The mixing parameter is useful in modeling the degree of segregation between the water 

and the injected polymer solution. If ω = 1 then the polymer solution and water are fully 

mixed in each block. If ω = 0 the polymer solution is completely segregated from the 

water. 

6.5.2.3 Treatment of polymer adsorption 

Adsorption is treated as an instantaneous effect in the model. The effect of polymer 

adsorption is to create a stripped water bank at the leading edge of the slug while 

desorption effects may occur as the slug passes. The isotherm adsorption can be specified 

in two ways such as: 

 Look-up table of adsorbed alkaline which is a function of alkaline concentration  

 A generic analytical adsorption model. 

If desorption is prevented then the adsorbed polymer concentration may not decrease 

with time. If desorption is allowed then each grid block retraces the adsorption isotherm 

as the alkaline concentration rises and falls in the cell. 

6.5.2.4 Treatment of permeability reductions and dead pore volume 

The adsorption process causes a reduction in the permeability of the rock to the passage 

of the aqueous phase and is directly correlated to the adsorbed polymer concentration. In 

order to compute the reduction in rock permeability, it is required to specify the residual 

resistance factor (RRF) for each rock type.  

The actual resistance factor can be calculated by Equation 20 where CP
amax

 is the 

maximum adsorbed concentration and depends on the rock type. This value must be non 

zero. The dead pore volume must also be specified for each rock type. It represents the 

amount of total pore volume in each grid cell that is inaccessible to the polymer solution. 

The effect of the dead pore volume within each cell is to cause the polymer solution to 

travel at a greater velocity than inactive tracers embedded in the water. This 

chromatographic effect is modeled by assuming that the dead pore space is constant for 

each rock type. 

 

max
1 ( 1)

a

P
K a

P

C
R REF

C
    

(20) 

 

6.5.2.5 Treatment of the non-Newtonian rheology 

Two models can be taking into account to understand non-Newtonian rheology behavior 

reported for polymer solutions. One model targets the shear thinning of polymer that has 
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the effect of reducing the polymer viscosity at higher flow rates. Other model is the 

Herschel-Bulkey that can be used to model shear thinning and thickening as well as yield 

stress, dependent on polymer concentration.  

The first model assumes that shear rate is proportional to the flow viscosity. This 

assumption is not valid in general, as for example, a given flow in a low permeability 

rock will have to pass through smaller pore throats than the same flow in a high 

permeability rock, and consequently the shear rate will be higher in the low permeability 

rock. However, for a single reservoir this assumption is probably reasonable. Therefore 

this model is considered for this project study. 

The water flow velocity is calculated by Equation 21 where Fw is the water flow rate in 

surface units, Bw is the water formation volume factor, Φ is the average porosity of the 

two cells and A is the flow area between two cells. 

w
w w

F
V B

A
  

(21) 

The reduction in viscosity of the polymer solution is assumed to be reversible as a 

function of the water velocity. The resulting shear viscosity of the polymer solution is 

calculated by the Equation 22 where μsh is the shear viscosity of the polymer solution, 

μw,eff is the effective water viscosity, P is the viscosity multiplier and M is the shear 

thinning multiplies. 
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6.5.3 The Alkaline Model 

ECLIPSE provides a simplified model that does not take into account the in-situ 

surfactant creation and the phase behavior. Alkaline conservation equation is taken into 

consideration for this model. 

6.5.3.1  Alkaline conservation equation 

The alkaline is assumed to exist only in the water phase a concentration in a water 

injector. The distribution of the injected alkaline is modeled by solving a conservation 

equation which is given in Equation 23 where ρw,ρr is the water and rock density, Ca is 

the alkaline concentration, Ca
a
 is the adsorbed alkaline concentration, μseff is the effective 

viscosity of the salt, Dz is the cell center depth, Bw Br is the water and rock formation 

volume respectively, T is the transmissibility, krw is the water relative permeability, Sw is 

the water saturation, V is the block pore volume, Pw is the water pressure and g is the 

gravity acceleration.  
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6.5.3.2  Treatment of adsorption 

The adsorption of alkaline is assumed to be instantaneous. The isotherm adsorption is 

specified as either a look-up table of adsorbed alkaline as a function of alkaline 

concentration using the ALKADS keyword or by a generic analytical adsorption model 

using the ADSORP keyword.  

If desorption is prevented then the adsorbed alkaline concentration may not decrease 

with time. If desorption is allowed then each grid block retraces the adsorption isotherm 

as the alkaline concentration falls in the cell.  

6.5.3.3  Alkaline effect on water-oil surface tension 

The effect of alkaline on the water-oil surface tension is modeled by a combination effect 

with surfactant. The modification is done by the water-oil surface tension which is given 

in Equation 24. 

wo wo surf st alkC A C   
(24) 

Where wo surfC is the surface tension at surfactant concentration as well as zero alkaline 

concentration and st alkA C is the surface tension multiplier at alkaline concentration.   

6.5.3.4   Alkaline effect on surfactant/polymer adsorption 

The alkaline can reduce the adsorption of both surfactant and polymer on the rock 

surface. This is modeled by modifying the mass of adsorbed surfactant or polymer which 

is given in Equation 25 where V is the pore volume of the cell, Φ is the porosity, ρr is the 

mass density of the rock, C
a
s,p is the surfactant/polymer adsorbed concentration and 

AadCalk is the adsorption multiplier at alkaline concentration. 

 

Mass of adsorbed surfactant ,

1a

r s p ad alkV C A C






  (25) 

6.6 Significant keywords to activate ASP Model in Eclipse 100 

There are some major keywords which are very fundamental to activate ASP Model in 

Eclipse 100, some are optional. The Polymer keyword as well as the Surfactant keyword 

should be active with alkaline keyword. The keyword has shown in Table 5, should 

include in the RUNSPEC section and SCHEDULE section to activate ASP model in the 

Norne E-segment data file which is obligatory. The keyword include in the RUNSPEC 
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section sets the concentration of surfactant, polymer and alkaline in a water injector. 

Table 6 shows the keywords are used in the PROPS section in the ASP model 
[36]

. 

Table 5: Important keyword for ASP model with Eclipse. 

RUNSPEC 
 

SCHEDULE 

 

POLYMER 

SURFACT 

ALKALINE 

 

WSURFACT 

WALKALIN 

WPOLYMER 

 

Table 6: ASP Keywords in the PROPS section . 

Keyword Description  

SURFST Water-oil surface tension in the presence of surfactant 

SURFVISC Modified water viscosity 

SURFCAPD Capillary de-saturation data 

SURFADS Adsorption isotherm 

SURFROCK Rock properties and adsorption model indicator 

PLYADS Polymer adsorption isotherms. 

ADSORP Analytical adsorption isotherms with salinity and permeability 

dependence. 

PLYMAX Polymer/salt concentrations for mixing calculations. 

PLYROCK Specifies the polymer-rock properties. 

PLYSHEAR Polymers shear thinning data. 

PLYVISC Polymer solution viscosity function. 

PLYVISCS Polymer/salt solution viscosity function. 

RPTPROPS Controls output from the PROPS section. 

SALTNODE Salt concentration nodes for polymer solution viscosity. 

TLMIXPAR Todd-Longstaff mixing parameter. 

ALSURFST Table of oil/water surface tension as a function of alkaline 

concentration 

ALSURFAD Table of surfactant adsorption as a function of alkaline 

concentration 

ALPOLADS Table of polymer adsorption as a function of alkaline concentration 

ALKADS Table of adsorption functions 

ALKROCK Specifies alkaline-rock properties 
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Chapter 7 

 

Result of Simulations 

 
7.1 ASP Synthetic Model in Eclipse 

A synthetic model of dimension 15, 15, 5 in I, J and K directions respectively, has been 

done by using Eclipse100. Two wells, one producer and one injector have been created 

in grids 15, 15, 5 and 1, 1, 5 respectively. This is a homogenous and flat reservoir which 

is shown in Figure 41. All properties such as fluid properties, rock properties and 

reservoir properties, have been used in this model is from Norne reservoir dataset. But 

the properties of surfactant, polymer and alkali is used from the previous thesis work 

which is done by Simulation has been run for 600 days starting from 1 Jan, 2011.  

The following cases were simulated;  

 Base case with only water flooding  

 Effect of Continuous ASP flooding.  

 Effect of ASP slug injection 

 Effect of Adsorption 

 Comparison between vertical and horizontal well; 

 

Figure 41: Synthetic model for ASP flooding 

simulation. 

 

 

Figure 42: Horizontal well placed for 

continuous ASP flooding. 
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Figure 42 shows the schematic of synthetic model when horizontal well was placed 

instead vertical well. It is obvious that, vertical well has perform better than horizontal 

well because few layers considered in this model. Therefore, It can be conclude that for 

few layers reservoir vertical well is sufficient than horizontal well. Figure 43 shows the 

effect of continuous ASP flooding into the synthetic model. The black line represents the 

ASP flooding whereas red line represents the base case. Figure 43 illustrates that the 

recovery factor goes to 94% for the ASP flooded reservoir where as base case with no 

alkaline-surfactant-polymer flooding (only water flooding) gives only 76% recovery 

factor. Thus, from the fore-going, it is obvious that the eclipse surfactant option works in 

recovery of residual oil. Thus this model will be applied to the Norne E segment. 

 

 
 

Figure 43: Effect of continuous ASP flooding on oil efficiency. 

 

Figure 44 through 48 shows the effect of ASP continuous flooding on oil production rate, 

oil production total, water production rate, water cut and pressure. 

Point of 

injection of 

ASP 

Base Case 

Increase in Oil recovery due to 

ASP 
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Figure 44: Effect of continuous ASP flooding on Oil Production. 

 

 

 

Figure 45: Effect of continuous ASP flooding on cumulative Oil Production. 
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Figure 46: Effect of continuous ASP flooding on Reservoir Pressure. 

 

 

Figure 47: Effect of continuous ASP flooding on Cumulative Water Production. 

 

 

Figure 48: Effect of continuous ASP flooding on Water Cut. 
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7.2 ASP Model at Norne E-segment 

The Norne data provided by Statoil ASA are made available through the Center for 

Integrated Operations in the Petroleum Industry (IO Center), which includes several 

research program with its center located at NTNU/SINTEF in Trondheim.  

As Norne field drive mechanism is water flooding and there is no study available of the 

properties of alkali, surfactant and polymer which are compatible with Norne reservoir. 

As a matter of fact the chemical (alkali, surfactant and polymer) properties used in this 

model are not the real data. It is assumed that the chemical properties are compatible 

with the reservoir and fluid properties. Also, all chemicals are injected with pure water 

and there is no salinity effect. 

Again modeling the injection of ASP into an oil reservoir should be a systematic process 

due to the high cost of chemical. For example, if slug injection of surfactant could give 

the same increased oil recovery as continuous injection, then the latter becomes 

unnecessary as this will give rise to increased expenditure. In this thesis, there is a step 

by step modeling of what method of ASP injection to use. Several cases were examined 

ranging from continuous surfactant injection with different periods of injection, to slug 

injection with different intervals. Also, the appropriate surfactant concentration was 

determined and the most profitable well configurations were examined. 

7.2.1 Continuous ASP Flooding  

In continuous ASP injection, two cases were considered; injection of ASP continuously 

for five years starting from 2010 and injection of ASP continuously for seven years, also 

starting in 2010. The concentration of alkali is 2 Kg/m
3
, polymer is 0.4 Kg/m

3
 and 

surfactant is 5 Kg/m
3
.The aim was to ascertain which would give a better recovery.   

A figure 49 shows the oil production rate for the two cases. All ASP cases gave better oil 

production rates compare with the base case. The next challenge was to examine which 

period is more viable: seven or five years. From the study it can be seen that it is rather 

wasteful to inject chemical (alkali, surfactant and polymer) for seven years because the 

incremental oil produced is not encouraging. Also, flooding for seven years led to a high 

quantity of chemical like surfactant injected into the reservoir, which resulted in very 

high quantities of surfactant, undermining the expensive nature of the chemical. From 

Figure 50, the total surfactant injected into the E-Segment is shown to be about 146 

million kg for 7 years and about 110 million kg for 5 years. Thus, injecting ASP for five 

years is better than seven years. As surfactant is expensive, here surfactant is only shown 

by the graph and consider for comparative study. It is required more polymer and alkali 

for injection into the reservoir for 7 years than 5 years. However, the volume and the cost 

of ASP needed for five years is still a considerable amount because chemicals are 

relatively expensive. 

Next, we looked at ASP slug injection and compared it with continuous ASP injection. 
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Figure 49: Oil production rate for continuous surfactant flooding for five and seven 

years. 

 
Time (Years) 

Figure 50: Total surfactant injected for five and seven years continuous flooding. 

 

7.2.2 ASP Slug Injection 

ASP slug injection involves injecting a certain volume of alkali, surfactant and polymer 

for a period of time followed by water. Two cases were modeled; injecting with four 

month intervals and injection with two month interval (Figures 51 – 55). The 

concentration of alkali is 2 Kg/m
3
, polymer is 0.4 Kg/m

3
 and surfactant is 5 Kg/m

3
. 

Again as surfactant is an expensive chemical rather than polymer and alkali, surfactant 

injection is compared to take the discussion which would give the better result. 
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Figure 51 : Bottom hole pressure vs. time for the base case against the four month 

interval case and the two month interval case. 

 

 

 

Time (Years) 

Figure 52 : Oil production rate vs. time for the base case against the four month interval case and 

the two month interval case. 

 

Figure 51 show the bottom hole pressure variations for ASP slug compared to the base 

case. Pressure is increasing with ASP injection into the reservoir. Using 4 month 

intervals gave a better pressure increase that using 2 month intervals. 
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Figure 53 : Total oil production vs. time for the base case, four month interval case and two 

month interval case. 

 

 

Figure 54: Well water cut vs. time for the base case, four month interval case and two months 

interval case. 

 

Figure 55: Total surfactant injected for 4 month intervals and 2 month intervals. 

Figures 52 and 53 describe the oil production rate and the total oil production for ASP 

slug injection at four months and two months interval compared to the base case (with a 
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two months break for both cases). After injection of ASP in 2010 followed by water, 

there is a significant increase in oil production rate compared to base case at first, but 

with a subsequent decrease. The same scenario can be observed from the total oil 

production. 

Two month intervals give a better result than the other case. Looking at the total mass of 

surfactant needed for both 4 months injection period and 2 months injection period, it 

can be seen that about 95 million kg is required for 2 months while about 35 million kg 

is required for 4 months intervals.  

Figure 54 show the water cut with the time. As expected the water cut decreases with 

increasing oil production. This is because some of the injected water is displacing the oil, 

and therefore reduces the amount of water produced. 

From all studies, it was discovered that injecting ASP every four months is the better 

solution than every two months, and injecting every 6 months is not necessarily better 

than injecting every 4 months. 

The next step is to compare the continuous ASP injection of five years with the slug 

injection of two months interval over a period of five years. 

7.2.3 Comparison Between Continuous and Slug Injection 

Figure 56 and 57 show the comparison between ASP slug and continuous ASP injection 

over a five year period. Figure 56 show the production rate for the cyclic to be about 

1190 Sm3/day in 2010 while for continuous ASP flooding the production rate is about 

1400 Sm3/day at the same period. Though continuous injection shows to give the best 

increase in oil production, cyclic will be a better economical choice because total 

chemical needed for cyclic injection is less than for continuous injection in the same 

period of time. As an example surfactant needed for continuous flooding is about 47 

million Kg and 29 million Kg for Cyclic. Therefore, by all analysis, the option of ASP 

slug for injection into the reservoir for a five year period at intervals of four months is 

the most appropriate. 

The next step was to model for different concentration. 
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Figure 56: Oil production rate vs. time for the cyclic and continuous case. 

 

Figure 57: Total surfactant injected over a five year period in a continuous and a cyclic process. 

7.2.4 Appropriate ASP concentration 

From modeling in the previous sections, it was discovered that flooding pattern should 

be for 5 months Interval for 5 years. The chemical concentration used during the 

modeling was: alkali-2 kg/m3, polymer-0.4 Kg/m
3
 and surfactant-5Kg/m

3
. However, it is 

not certain if this are the best chemical concentration that would reduce residual oil to the 

barest minimum while ensuring that maximum profit is obtained.  
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Figure 58: Production rate in relation to the base case for different concentrations. 

Based on previous studies, several concentrations were tested on Norne E-segment by 

trial and error method in order to come up with the right amount of chemical that would 

give a profitable recovery and thereby reducing residual oil saturation to the possible 

minimum. For this reason, chemical concentration is optimized. For the optimization, 

different concentration is used. As an example: concentration of alkali was 2 Kg/m
3
 and 

5 Kg/m
3
 while polymer concentration was 0.2 Kg/m

3
, 0.4 Kg/m

3
, 0.5 Kg/m

3
, 0.7 Kg/m

3
 

and 1 Kg/m
3
 and surfactant concentration is used 0.5 Kg/m

3
, 1 Kg/m

3
, 2 Kg/m

3
, 5 Kg/m

3
 

and 10 Kg/m
3
. Finally by fixing alkali and polymer concentration, surfactant 

concentration is changed. Concentration of alkali is used here 2 Kg/m
3
, while polymer 

concentration is 0.5 Kg/m
3
. Figure 60 shows the production rate in relation to the base 

case with time when the injection starts in 2010 and lasts for five years. It can be seen 

that increasing surfactant concentrations led to increase in the production rate. 0.5 kg/m
3
, 

1 kg/m
3
, 2 kg/m

3
, 5 kg/m

3
 and 10 kg/m

3
 were the concentrations considered and 

modeled, WOPR, WOPT among other plots made indicated 1 kg/m
3
 as good 

concentration. Figure 58 show the production rate in relation to the base case 

7.2.5 Effect of No. of Well 

In the beginning of this project, one of the scenarios we wanted to look at was what 

difference it would make to inject in only one well compared to injecting in both wells. 

We know that injecting in one well would be problematic due to the use of seabed 

templates in the Norne field. Since we didn’t know enough about the practical 

circumstances of ASP injection, we want to include the result, which we suspected 

would give a more profitable result. We compared injection in one well vs. both wells 

using 4 month interval injections for five years (Figure 59). 
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Figure 59: Oil production rate vs. time for the one and two well case. 

 

ASP injection in only F-3H gave a better economic result. We observed the highest 

recovery using both injectors, but this was less profitable considering the amount of 

chemical needed for both wells. We carried out optimization on the injection rate and 

noted that 8000 Sm3/day was good for F-1H while 5000 Sm3/day was good for F-3H. 

7.3 Effect of Additional Well in the Norne E-segment 

To see the effect of additional well with the existing into the reservoir, a new well which 

is named by E-1H (Figure 61) is taken into consideration and optimized the rate, location 

etc. Then further investigate the various cases to get the better one. Figure 60 shows the 

total field production with and without new oil. 

 

 

Figure 60: Total field production rate for base case and new well case. 
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Figure 61: Schematic of Norne E-segment with new oil. 

7.3.1 Effect of ASP flooding on new well 

Injecting ASP for the new well case has the same injectors as the old case. Several 

scenarios were tried out, both continuous and cyclic injection. Figure 62 shows the oil 

production rate for new well to see the effect of the new oil. 

 

 

Figure 62: Production rate for new well, E-1H. 

7.3.2 Continuous ASP injection in new well 

In continuous ASP injection for the new well only one scenario was considered, four 

year injection, starting in 2010. Figure 63 shows four year continuous injection for 

four different concentrations, alkali-2 Kg/m
3
, polymer-0.2 Kg/m

3
 and surfactant- 0.3 

Kg/m
3
; alkali-2 Kg/m

3
, polymer-0.2 Kg/m

3
 and surfactant- 0.5 Kg/m

3
; alkali-2 Kg/m

3
, 

polymer-0.2 Kg/m
3
 and surfactant- 1 Kg/m

3
; alkali-2 Kg/m

3
, polymer-0.2 Kg/m

3
 and 

surfactant- 5 Kg/m
3 

. All rates are compared to a base case for the same period of time 

New Well 

E-1H 
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without ASP injection. As you see from the figure, injecting 5 kg/m
3
 may not be any 

better solution than injecting 1 kg/m
3
 or 0.5 kg/m

3
. Since surfactant is expensive and 

doubling concentrations does not double the production rate. Therefore it is not required 

to consider the high concentration of chemical. From Figure 64, it is obvious that the 

total amount of surfactant injected in well F-1H is about 147 million kg for a 

concentration of 1 kg/m
3
 and 80 million Kg for a concentration of 0.5 Kg/m

3
. 

 

 

Figure 63: Production rates in relation to base case when injection starts in 2010 and 

last for four years. 

 

 

Figure 64: Total amount of surfactant injected in well F-1H for the four different injection cases 

in 2010. 

7.3.3 Time of injection 

Injecting 0.5 kg/m
3
 surfactant for a two year period in 2006, 2010 and 2015 gave 

different production rates and cumulative production for the new well. Since Norne field  



 Department of Petroleum Engineering and Applied Geophysics 

 

Evaluation of alkaline, surfactant and polymer flooding for enhanced oil recovery in the Norne E-segment 

based on applied reservoir simulation”  60 
 

 

Figure 65: Production rate in relation to base case with different start time for injection 

of 2 year slug. 

is scheduled to be shut down in 2022 it is most profitable to inject ASP earlier such as in 

2006. As we see from Figure 65 the production rate will be highest for injection in 2006, 

followed by 2010 and 2015 as the least good result. 

 

7.3.4 Effect of No.of Well 

In Norne E-segment both F-1H and F-3H are injection wells. Looking at the effect of 

injecting ASP followed by water flooding in only F-3H, indicates a decrease in oil 

production rate as seen in Figure 66. Injector F-3H was chosen since this is the well with 

best communication to the new producer E-1H. By removing F-1H as an injector for 

ASP injection, which has a high injection rate, an extensive use of chemicals could be 

neglected. This implies that chemical should only inject in well F-3H for this scenario 

may be a good option for the most profitable solution. 
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Figure 66: Effect of production rate in relation to base case by only using F-3H or both 

injectors. 

7.3.5 Cyclic vs. continuous injection 

By using cycles when injecting you may not decrease the production rate significantly, 

but save the amount of chemical used drastically. Using a cyclic rate of two months of 

injection with ASP and two months of injection without will reduce the amount of 

chemical used by half. As you see from Figure 67 the decrease in production rate is not 

significant for a cyclic injection process. The difference in total oil produced will be 

about 160000 bbl, while amount saved surfactant will be about 47 million kg for a cycle 

of two years. Therefore it will not be profitable to inject continuous compared with 

cyclic injection. 

 

Figure 67: The effect of using continuous injection or cyclic injection in relation to base 

Case. 

We therefore chose to look at injection in only well F-3H from 2006 with cyclic 

injection. The lengths of cycles were set to be either two or four years; the concentration 

of alkaline to be 2 kg/m
3
, polymer 0.2 kg/m

3
 and surfactant 0.5 kg/m

3
 or alkaline 2 
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kg/m
3
, polymer 0.2 kg/m

3
 and surfactant 1 kg/m

3
. Four simulation cases have studied for 

this purpose  

 

 

Figure 68: Different cyclic injection scenarios in relation to base case. 

 

with different amount of chemicals injected over various periods of time. As from Figure 

68, it can be observe that the case with four year injection gave the highest oil production 

rate for the longest time period. But injection 1 kg/m3 over a period of four years with an 

injection rate of 5000 Sm3/day will lead to large amount of chemical injected compared 

to the increase in oil recovered. 

The difference of injecting surfactant for a two or four year period does not show 

significant increase in total oil produced. For a concentration of 1 kg/m
3
 over two and 

four years the difference in total oil recovered is about 80000 bbl, while for a 

concentration of 0.5 kg/m
3
 over difference is about 67000 bbl. 

In comparison with the base case the most profitable solution for the new well case 

seems to be a two year cyclic injection period with a concentration of 1 kg/m3. In this 

case the increase from the base case is 211.000 bbl. This case is also the case which 

demands the least amount of chemicals such as the total surfactant consumption of about 

19 million kg. 
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Chapter 8 

 

Economic Evaluation 

 

8.1 Prediction of oil price 

 

The price of a barrel of oil is the result of a number of competing factors; how much oil 

is available; how much oil is demanded by consumers; how much it costs to get oil from 

the ground to the consumer; the price of dollars and the potential that oil speculators see 

for the price to rise or fall. 

Many of the long-term global trends point to steady increases in the price of oil. Reserves 

are finite so the commodity is slowly becoming scarcer, something that pushes the price 

up. The explosion of development in countries like China and India has created more 

demand as those and other developing regions industrialize. They build more roads and 

increase manufacturing, all of which requires oil. 

 

 
Figure 69: The future for oil production, expectations in 2005 

 

The bearish argument is that technological new energy developments (solar, wind, etc.) 

should begin to reduce the world’s dependence on oil. Supply is fettered by the countries 
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that export it. The Organization of the Petroleum Exporting Countries (OPEC) meets 

regularly to set the amount they are willing to release onto the market. OPEC oil 

accounts for approximately 35 million of the 80 million barrels released onto the global 

market each day. 

OPEC can reduce output as a means to push prices higher and can increase it to meet 

greater demand. It is tempting to think that all the producers are motivated simply by a 

high price. In fact, for some countries it may be beneficial to have a lower price if it 

means they can maintain, or increase, the volumes they sell. Oil is priced in dollars so 

movements in that currency also impacts on crude. The weaker the dollar, the higher the 

dollar price of oil because it takes more dollars to buy a barrel. 

8.2 Reserves and production 

The long term ability of the oil market to meet demand depends on the magnitude of 

available reserves. An important category of reserves are proved reserves. Proved 

reserves are those quantities that geological and engineering analysis suggests can be 

recovered with high probability under existing technological and economic conditions.  

 

 
 

Figure 70: Oil price history 1987–2011. 

 

 

Proved reserves can be augmented through exploration and development of new 

discoveries, through technological improvements, as well as through the existence of 

more favorable economic conditions. In the past, all of these factors have contributed to 

augmenting the proved reserve base. Whether the proved reserve base grows over time or 

not depends in part on the level of production. As production proceeds, the level of 

proved reserves declines. Before new reserves are fully considered, the recovery methods 
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in declining reserves are being enhanced such as polymer, surfactant and foam flooding. 

As new oil discoveries are made, recovery technologies improve, or as the price of oil 

rises, the stock of proved reserves increases. 

8.3 Economy Evaluation 

To make an economical evaluation of the surfactant injection a simple NPV evaluation 

was made. NPV of a time series of cash flows, both incoming and outgoing, is defined as 

the sum of the present values of the individual cash flows (Equation 26) 
[59]

.  

NPV compares the value of a dollar today to the value of the same dollar in the future, 

taking inflation and returns into account. If the NPV of a project is positive, it should be 

accepted. However, if the NPV is negative, the project should probably be rejected 

because cash flow will also be negative. Many oil companies work with high discount 

rates, and a rate between 5-10 % is reasonable. 8% discount rate is used in the calculation 

of NPV.  

 

1 (1 )

t
t

ot
i

R
NPV R

r

 


  (26) 

 

This implies that the oil price, alkali chemical cost (alkali, surfactant and polymer) and 

discount rate play a very important role in the economical evaluation. In addition, 

operational cost and surfactant facilities costs must be considered. An economical 

evaluation of injection of ASP shows that long injection periods are not the best solution. 

High volumes of chemicals over a long time does not increase the oil production with a 

significantly amount compared to shorter time periods. As seen from the economic 

evaluation even five year periods are highly dependent on chemical costs and oil price. 

Very few cases will be profitable with a surfactant price of 3 $/kg, Alkaline price 1.5 

$/kg and polymer price 4 $/kg unless the oil price is correspondingly high. If the oil price 

is about 100 $/bbl and chemical like surfactant would be 1 $/Kg and polymer price 

decrease to 2 $/Kg then both 0.5 kg/m3 and 1 kg/m3 concentrations for 5 years will 

result in a positive NPV. But reducing the oil price to 60 $/bbl only gives a positive NPV 

for 5 year injection with 1 kg/m3. For the new well case the best surfactant results came 

when injecting high amounts of surfactant in both wells over a four year period. This 

however, will not be the best economical solution when chemical are very expensive. 

The cases where cyclic injection is in only well F-3H will give the lowest chemical cost, 

and still a good increase in oil recovery. For the case where 1 kg/m3 is injected in a two 

month cycle for two years it will give positive results for a low chemical price and high 

oil price. For injection in 2006 this gave a positive NPV result of $ 5.39 million. While 

injecting same amount in 2010 gave a positive NPV of $ 4,36 million. It seems the price 

of chemical plays a more important role than the oil price. Reducing the oil price to $ 
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60/bbl still gives positive results for NPV calculations, while increasing the chemical 

cost requires a oil price of $ 130/bbl, the oil price exceeds 100 $/bbl. 

Another scenario that was discussed and simulated was the effect of doing cyclic 

injection compared with continuous injection. By using cyclic injections of i.e. two 

months instead of continuous flooding, surfactant required will be reduced. This is a 

good alternative since it did not reduce the production drasticly, but reduced the need of 

chemicals. This allows a higher chemical cost. For a two year injection period in 2006 

both two weeks and two months cycles gave a positive NPV result. 

 

Figure 71: Plot of NPV for different scenario. 

 

Figure 71 shows the plot of NPV for various scenario. It can be shown from the figure 

that chemical flooding like ASP is the good option for the trapped oil and it would be 

economical. As alkali reduces the amount of surfactant, therefore the chemical cost 

drastically reduces. So, ASP flooding is a good option rather than surfactant flooding 

though ASP flooding is a very complex process. 

It is important to note that this is a simple economic analysis and that some costs are 

excluded. We have not calculated with tax on income and depreciation of investments, 

which in Norway are set to 78 % for both cases. This analysis therefore only give an idea 

of potential revenue and not profit by surfactant flooding. 
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Chapter 9 

 

Discussion and Conclusion 

 
9.1 Discussion 

Chemical EOR technology is dramatically better than 30 years ago due to more 

experience, better understanding, better modeling, better enabling technologies and better 

chemicals at lower cost adjusted for inflation. However, Chemical EOR, especially ASP, 

is a complex technology requiring a high level of expertise and experience to 

successfully implement in the field 

In this project, the effect of chemical flooding which is ASP (alkali, surfactant and 

polymer) flooding in the Norne E-segment for various scenario was investigate. Though 

the results were good but not as expected, and this deviation was traced to fairly good 

reservoir model. 

Injecting different concentrations in both F-1H and F-3H showed that an increase in 

amount of chemical did not necessarily give a corresponding increase in oil production. 

Higher concentrations gave higher oil production rate and higher cumulative oil 

production, but it did not prove to be profitable due to the cost of chemicals (alkali, 

surfactant and polymer). Applying a concentration between 0.5–10 kg/m
3
 seems to be the 

best alternative for ASP injection. 

Using both injectors also lead to a much higher total injection rate. In case of this, it 

would therefore be a good alternative to only inject in one well, and F-3H is the best 

alternative. This is because F-1H is set at a higher injection rate in an area with low oil 

saturation. More chemicals (alkali, surfactant and polymer) will therefore spread out into 

the aquifer instead of attacking the residual oil. 

Furthermore, an attempt was made to compare continuous flooding with cyclic flooding. 

But before this, duration of injection was looked into, two cases were considered; 

injection of ASP continuously for five years starting from 2010 and injection of ASP 

continuously for seven years also starting at 2010. The results showed, as expected, zero 

deviation between the two cases the first five years. Further, the increase in oil 

production for the seven year case was not noticeable in relation to the five year case. 
 

The five year injection was therefore selected as the best option of these two. 

Furthermore, comparison between continuous and cyclic was done. By using cyclic 

injection, It is given more time to attack the residual oil to the chemicals and a more 

precise amount of chemicals can be injected. Another advantage with cyclic injection is 

that the total amount of chemicals would be reduced. Cyclic injection will therefore be a 
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much better alternative, even though it does not produce equally high amount of oil as 

continuous. 

In addition of a new well also increase the field oil production total with a great amount. 

The results presented a good effect of oil production due to the ASP flooding, with an 

increase in oil production rate between 20–30 m
3
/day for the best cases. And F-3H also 

showed up as a better alternative for injection than F-1H. Different injection times were 

also tried out, and there were indications that ASP injection should be commenced at an 

early stage for an increased in oil production rate over longer time period. Injection at a 

later stage will not give the chemicals sufficient time to attack the residual oil, and the 

rise in oil production rate will affect the total production by a minimum. 

From the economic evaluation it is seen that ASP cost and oil price are very important by 

taking consideration of the chemicals. The cases with high chemicals concentration was 

not profitable. 

Shorter time periods, and also cyclic injection were much more beneficial than 

continuous and long period injections. It is also important to note that this is a simple 

evaluation, and that very few cases will show up to be profitable when all development 

and operational costs have been taken into account. 

As this project has completed from Bangladesh, therefore limitation of software 

availability and the scarcity of expertise was the main barrier and made it difficult to 

complete the project. Therefore recompletion of existing well has not done in this 

project. It may be the good option to get the good oil recovery. Also ASP flooding 

followed by polymer also be the good choice to get the higher recovery. 

There was no laboratory data available for the chemicals which would be compatible 

with the Norne Field. Therefore, the properties of the chemicals were assumed for the 

simulation.  

9.2 Conclusion 

Continuous simulation gave the best recovery, but it was far from the most profitable 

solution. Longer injection periods did not prove to be significant better than shorter 

periods, and cyclic slug injection will be the best solution for ASP (Alkaline, Surfactant, 

Polymer) flooding. From the simulation studies, using both injectors is not the best 

solution. If using one well for ASP flooding, injector F-3H is a better choice than F-1H. 

But in reality, the constraint of using subsea templates makes using only one well for 

ASP flooding impossible. 

Introducing a new producer well is the good option for getting the higher recovery. 

The economic evaluation indicates that profitability is highly dependent on oil price and 

chemicals (alkali, surfactant and polymer) cost. With reasonably high oil price and not 

unrealistic chemical costs, ASP flooding may be a good alternative for enhanced oil 

recovery in the Norne E-segment. 
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Due to the work on ASP flooding in the E-segment, some further options would be 

recommended. 

The best option to inject ASP would be in the layers where residual oil can be found, and 

not in the aquifer. As injection wells are not re-completed, much of the chemicals will be 

spread out in the aquifer. Further investigation of ASP flooding in the Norne E-segment 

is recommended, and also in other fields, to inject the ASP so it attacks a more specific 

target area. 

Further, more ASP injections can be done to sweep most of the oil in new target areas. 

Since time is needed for the surfactant bank to be formed, ASP flooding is recommended 

to commence as early as possible for a better sweep efficiency. 

Extra costs associated to ASP injection such as boat rental (and other transportation 

costs) should be considered in the NPV analysis. 

ASP Flood can start at any time in the life of the field and good engineering design is 

vital to success. 

At current oil prices, oil companies operating in WY can make a high rate of return using 

chemical EOR methods. Many of the mature oil fields in WY appear to be suitable 

candidates for chemical flooding but operators should screen reservoirs by doing 

SWCTT to measure SOR and test process in-situ. 

Many ASP floods made money even at $20/Bbl oil but were under designed for current 

oil prices 

Operators can both increase oil recovery and make more profit by using 

-larger amounts of surfactant and polymer; 

-better geological characterization; 

-better reservoir modeling and engineering design; 

-better well technologies; 

-better monitoring and control similar to what evolved over many decades   

with steam drives and CO2 floods. 

9.3 Uncertainties 

 Reservoir model and history matching of reservoir model; 

 The ASP Model; 

 The chemicals (alkali, surfactant and polymer) properties; 

 Consideration of operation costs as sunk costs; 

 Oil and chemicals (alkali, surfactant and polymer) prices; 

 Total unrecoverable reserves; 

 Laboratory data of crude and reservoir rock under reservoir conditions. 
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9.4 Recommendation 

It is recommended to build a good chemical EOR laboratory to provide the support to 

small independent operators as well as doing research. It is necessary to study reservoir 

data to identify good candidates and also ask for crude oil samples to do chemical 

screening.  

Simulations must be done by students and/or staff who have done chemical EOR 

experiments and who will integrate geology, petrophysics, process engineering and 

reservoir engineering with the simulation and design. 

It is necessary to send the students to the field to work with the operators for better 

understanding. 

It is also recommended to do more research regarding the ASP flooding followed by 

polymer. Better result may come.  

It is also recommended to form a working team with the field engineers for each specific 

field after doing the screening studies 
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Nomenclature  
ϕ  porosity  

σ interfacial tension between the displaced and the displacing fluids  

ρr mass density of the rock formation  

υ pore velocity  

μa,eff effective viscosity of the water (a=w), polymer (a=p) and salt (a=s).  

μs,eff effective viscosity of salt  

μw Water viscosity  

μws Water-surfactant solution viscosity  

μs Surfactant viscosity  

μw,eff effective water viscosity  

μsh shear viscosity of the polymer solution (water + polymer)  

μ displaced fluid viscosity  

T transmissibility  

Sdpv dead pore space within each grid cell  

Rk relative permeability reduction factor for the aqueous phase due to polymer retention  

λ Mobility  

Qw water production rate 

ω Todd-Longstaff mixing parameter  

Dx cell center depth  

CP
a 

polymer adsorption concentration  

Ca
 

alkaline concentrations  

C
a
s,p surfactant/polymer adsorbed concentration  

CPCn polymer and salt concentrations respectively in the aqueous phase  

Ca
a
 alkaline adsorption concentration  

 adsorption multiplier at alkaline concentration 

  pore volume 

ASP Alkaline, surfactant and polymer 

CDC Capillary Desaturation Curve  

CMC Critical Micelle Concentration 

Cunit A unit constant 

CA(Csurf) Adsorption as a function of local surfactant concentration 

EOR Enhanced oil recovery 

IEA International Energy Agency 

IFT Interfacial Tension 

K Permeability 

MD Mass Density 

NC Capillary Number 

NPD Norwegian Petroleum Directory 

NPV Net Present Value 

P Potential 

Pcow Capillary pressure 

Pcow(Sw) Capillary pressure from the initially immiscible curve scaled according to the end points 

Pref Reference pressure 

PORV Pore volume in a cell 

Sorw Residual oil saturation after water flooding 

ST Surface tension 

ST(Csurf) Surface tension with present surfactant concentration 

ST(Csurf)=0 Surface tension with no surfactant present 
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Appendices 

A   ASP Model with Eclipse100 

A.1 ASP Data Input File 

-- water injection rate of F-1, F-2, and F-3 by 50 

---------------------------------------------------------------------------- 

-- Ny model July 2004 build by marsp/oddhu 

-- New grid with sloping faults based on geomodel xxx 

------------------------------------- 

RUNSPEC 

--LICENSES 

--'NETWORKS' / 

--/ 

DIMENS 

 46 112 22   / 

--NOSIM 

-- 

-- Allow for multregt, etc. Maximum number of regions 20. 

-- 

GRIDOPTS 

 'YES' 0 / 

OIL 

WATER 

GAS 

SURFACT 

POLYMER 

ALKALINE 

DISGAS 

VAPOIL 

METRIC 

-- use either hysteresis or not hysteresis 

--NOHYST 

HYST 

START 

 06  'NOV' 1997 / 

EQLDIMS 

 5  100  20 / 

EQLOPTS 

 'THPRES'  /   no fine equilibration if swatinit is being used 

REGDIMS 

-- ntfip  nmfipr  nrfreg  ntfreg 

    22      4      1*      20    / 

TRACERS 

--  oil  water  gas  env 

    1*    10    1*    1*   / 
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WELLDIMS 

--ML  40  36  15  15 / 

 130  36  15  84 / 

--WSEGDIMS 

-- 3  30  3 / 

LGR 

-- maxlgr maxcls mcoars mamalg mxlalg lstack interp 

2*   693 / 

TABDIMS 

--ntsfun ntpvt nssfun nppvt ntfip nrpvt ntendp 

     110     2     33     60   16    60 / 

-- WI_VFP_TABLES_080905.INC = 10-20 

VFPIDIMS 

 30    20   20 / 

-- Table no. 

-- DevNew.VFP        = 1 

-- E1h.VFP           = 2 

-- AlmostVertNew.VFP = 3 

-- GasProd.VFP       = 4 

-- NEW_D2_GAS_0.00003.VFP = 5 

-- GAS_PD2.VFP = 6 

-- pd2.VFP           = 8 (flowline south) 

-- pe2.VFP           = 9 (flowline north) 

-- PB1.PIPE.Ecl  = 31 

-- PB2.PIPE.Ecl  = 32   

-- PD1.PIPE.Ecl  = 33   

-- PD2.PIPE.Ecl  = 34  

-- PE1.PIPE.Ecl  = 35 

-- PE2.PIPE.Ecl  = 36 

-- B1BH.Ecl = 37 

-- B2H.Ecl  = 38 

-- B3H.Ecl  = 39 

-- B4DH. Ecl= 40 

-- D1CH.Ecl = 41 

-- D2H.Ecl  = 42 

-- D3BH.Ecl = 43 

-- E1H.Ecl  = 45  

-- E3CH.Ecl = 47 

-- K3H.Ecl  = 48 

VFPPDIMS 

 19  10  10  10  0  50 / 

FAULTDIM 

10000 / 

PIMTDIMS 

1  51 / 

NSTACK 

 30 / 

UNIFIN 
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UNIFOUT 

--RPTRUNSPEC 

OPTIONS 

77* 1 / 

--------------------------------------------------------- 

-- 

-- Input of grid geometry 

-- 

--------------------------------------------------------- 

GRID 

NEWTRAN 

GRIDFILE 

  2  / 

-- optional for postprocessing of GRID 

MAPAXES 

 0.  100.  0.  0.  100.  0.  / 

GRIDUNIT 

METRES  / 

-- do not output GRID geometry file 

--NOGGF 

-- requests output of INIT file 

INIT 

MESSAGES 

 8*10000  20000 10000 1000 1* / 

PINCH 

 0.001 GAP  1* TOPBOT TOP/ 

NOECHO 

-------------------------------------------------------- 

-- 

--   Grid and faults 

-- 

-------------------------------------------------------- 

-- 

-- Simulation grid, with slooping faults: 

-- 

-- file in UTM coordinate system, for importing to DecisionSpace 

INCLUDE 

 './INCLUDE/GRID/IRAP_1005.GRDECL' /  

--  '/project/norne6/res/INCLUDE/GRID/IRAP_0704.GRDECL' / 

-- 

INCLUDE 

 './INCLUDE/GRID/ACTNUM_0704.prop' /  

-- 

-- Faults 

-- 

-- 

INCLUDE 

 './INCLUDE/FAULT/FAULT_JUN_05.INC' /  
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-- Alteration of transmiscibility by use of the 'MULTFLT' keyword 

-- 

INCLUDE 

 './INCLUDE/FAULT/FAULTMULT_AUG-2006.INC' /  

--  '/project/norne6/res/INCLUDE/FAULT/FAULTMULT_JUN_05.INC' / 

-- Additional faults 

--Nord for C-3 (forlengelse av C_10) 

EQUALS 

  MULTY  0.01   6  6 22 22  1 22  / 

/ 

-- B-3 water 

EQUALS 

  'MULTX'  0.001  9 11 39 39  1 22 / 

  'MULTY'  0.001  9 11 39 39  1 22 / 

  'MULTX'  0.001  9  9 37 39  1 22 / 

  'MULTY'  0.001  9  9 37 39  1 22 / 

/ 

-- C-1H 

EQUALS 

  'MULTY'  0.001     26 29 39 39  1 22 / 

/ 

-------------------------------------------------------- 

-- 

--   Input of grid parametres 

-- 

-------------------------------------------------------- 

INCLUDE 

 './INCLUDE/PETRO/PORO_0704.prop' /  

-- 

INCLUDE 

 './INCLUDE/PETRO/NTG_0704.prop' /  

-- 

INCLUDE 

 './INCLUDE/PETRO/PERM_0704.prop' /  

-- G segment north 

EQUALS 

  PERMX  220  32  32  94  94   2   2 / 

  PERMX  220  33  33  95  99   2   2 / 

  PERMX  220  34  34  95  97   2   2 / 

  PERMX  220  35  35  95  98   2   2 / 

  PERMX  220  36  36  95  99   2   2 / 

  PERMX  220  37  37  95  99   2   2 / 

  PERMX  220  38  38  95 100   2   2 / 

  PERMX  220  39  39  95 102   2   2 / 

  PERMX  220  40  40  95 102   2   2 / 

  PERMX  220  41  41  95 102   2   2 / 

/ 

-- C-1H 
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MULTIPLY 

  PERMX    4  21  29  39  49  16  18 / 

  PERMX  100  21  29  39  49  19  20 / 

/  

COPY 

   PERMX PERMY / 

   PERMX PERMZ / 

/ 

-- Permz reduction is based on input from PSK 

-- based on same kv/kh factor 

-- ****************************************** 

-- CHECK! (esp. Ile & Tofte) 

-- ****************************************** 

MULTIPLY 

   'PERMZ' 0.2    1 46 1 112  1  1 /    Garn 3 

   'PERMZ' 0.04   1 46 1 112  2  2 /    Garn 2 

   'PERMZ' 0.25   1 46 1 112  3  3 /    Garn 1 

   'PERMZ' 0.0    1 46 1 112  4  4 /    Not  (inactive anyway) 

   'PERMZ' 0.13   1 46 1 112  5  5 /    Ile 2.2 

   'PERMZ' 0.13   1 46 1 112  6  6 /    Ile 2.1.3 

   'PERMZ' 0.13   1 46 1 112  7  7 /    Ile 2.1.2 

   'PERMZ' 0.13   1 46 1 112  8  8 /    Ile 2.1.1 

   'PERMZ' 0.09   1 46 1 112  9  9 /    Ile 1.3 

   'PERMZ' 0.07   1 46 1 112 10 10 /    Ile 1.2 

   'PERMZ' 0.19   1 46 1 112 11 11 /    Ile 1.1 

   'PERMZ' 0.13   1 46 1 112 12 12 /    Tofte 2.2 

   'PERMZ' 0.64   1 46 1 112 13 13 / Tofte 2.1.3 

   'PERMZ' 0.64   1 46 1 112 14 14 / Tofte 2.1.2 

   'PERMZ' 0.64   1 46 1 112 15 15 / Tofte 2.1.1 

   'PERMZ' 0.64   1 46 1 112 16 16 / Tofte 1.2.2 

   'PERMZ' 0.64   1 46 1 112 17 17 / Tofte 1.2.1 

   'PERMZ' 0.016  1 46 1 112 18 18 / Tofte 1.1 

   'PERMZ' 0.004  1 46 1 112 19 19 / Tilje 4 

   'PERMZ' 0.004  1 46 1 112 20 20 / Tilje 3 

   'PERMZ' 1.0    1 46 1 112 21 21 / Tilje 2 

   'PERMZ' 1.0    1 46 1 112 22 22 / Tilje 1 

/ 

-------------------------------------------------------- 

-- 

--      Barriers 

-- 

-------------------------------------------------------- 

-- MULTZ multiplies the transmissibility between blocks 

-- (I, J, K) and (I, J, K+1), thus the barriers are at the 

-- bottom of the given layer. 

-- Region barriers 

-- 

-- 
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INCLUDE 

 './INCLUDE/PETRO/MULTZ_HM_1.INC' /  

-- 

-- Field-wide barriers 

-- 

EQUALS 

  'MULTZ'    1.0      1  46  1 112   1   1  / Garn3       - Garn 2 

  'MULTZ'    0.05     1  46  1 112  15  15  / Tofte 2.1.1 - Tofte 1.2.2 

  'MULTZ'    0.001    1  46  1 112  18  18  / Tofte 1.1   - Tilje 4 

  'MULTZ'    0.00001  1  46  1 112  20  20  / Tilje 3     - Tilje 2 

-- The Top Tilje 2 barrier is included as MULTREGT = 0.0 

/ 

-- Local barriers 

-- 

INCLUDE 

 './INCLUDE/PETRO/MULTZ_JUN_05_MOD.INC' /   

-- 20 flux regions generated by the script Xfluxnum 

-- 

INCLUDE 

 './INCLUDE/PETRO/FLUXNUM_0704.prop' /  

-- modify transmissibilites between fluxnum using MULTREGT 

-- 

INCLUDE 

 './INCLUDE/PETRO/MULTREGT_D_27.prop' /  

NOECHO 

MINPV 

  500 / 

EQUALS 

'MULTZ'   0.00125  26  29  30  37  10  10  /  better WCT match for B-2H 

'MULTZ'   0.015    19  29  11  30  8  8    /  better WCT match for D-1CH 

'MULTZ'   1        6   12  16  22  8  11  / for better WCT match for K-3H 

'MULTZ'   .1       6   12  16  22  15 15  / for better WCT match for K-3H 

/ 

COARSEN 

-- I1 I2 J1 J2 K1 K2 NX NY NZ 

 6 29 11 44  1  3 1 1  3/ 

 6 29 11 44  5 22 1 1 18 / 

16 19 45 67  1  3 1 1  3 / 

16 19 45 67  5 22 1 1 18 / 

20 25 45 67  1  3 1 1  3 / 

20 25 45 67  5 22 1 1 18 / 

26 29 45 67  1  3 1 1  3 / 

26 29 45 67  5 22 1 1 18 / 

30 41 63 75  1  3 1 1  1 / 

30 41 63 75  5 20 1 1 16 / 

30 41 63 75 22 22 1 1  1 / 

30 41 76 93  1  3 1 1  1 / 

30 41 76 93  5  9 1 1  5 / 
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30 41 76 93 12 20 1 1  9 / 

30 41 76 93 22 22 1 1  1 / 

30 37 58 62  1  3 1 1  1 / 

30 37 58 62  5 22 1 1 18 / 

30 34 54 57  1  3 1 1  1 / 

30 34 54 57  5 18 1 1 14 / 

30 34 54 57 20 22 1 1  3 / 

30 32 51 53  1  3 1 1  1 / 

30 32 51 53  5 22 1 1 18 / 

30 30 48 48  1  3 1 1  1 / 

30 30 50 50  1  3 1 1  1 / 

30 30 48 48  5 22 1 1 18 / 

30 30 50 50  5 22 1 1 18 / 

33 33 52 53  1  3 1 1  1 / 

33 33 52 53  5 22 1 1 18 / 

35 36 57 57  1  3 1 1  1 / 

35 36 57 57  5 22 1 1 18 / 

38 38 59 60  1  3 1 1  1 / 

38 38 59 60  5 22 1 1 18 / 

38 39 61 62  1  3 1 1  1 / 

38 39 61 62  5 22 1 1 18 / 

17 19 68 85  1  3 1 1  1 / 

17 19 68 85  5 22 1 1 18 / 

17 19 86 89  1  3 1 1  1 / 

17 19 86 89  5 22 1 1 18 / 

22 25 68 70  1  3 1 1  1 / 

26 29 68 70  1  3 1 1  1 / 

20 21 68 70  5 22 1 1 18 / 

20 21 68 69  1  3 1 1  1 / 

22 25 68 69  5 22 1 1 18 / 

26 29 68 69  5 22 1 1 18 / 

10 15 45 51  1  3 1 1  3 / 

10 15 45 51  5 22 1 1 18 / 

13 15 52 57  1  3 1 1  3 / 

13 15 52 57  5 22 1 1 18 / 

11 12 52 54  1  3 1 1  3 / 

11 12 52 54  5 22 1 1 18 / 

12 12 55 56  1  3 1 1  3 / 

12 12 55 56  5 22 1 1 18 / 

10 10 52 53  1  3 1 1  3 / 

10 10 52 53  5 22 1 1 18 / 

13 15 58 59  1  3 1 1  3 / 

13 15 58 59  5 22 1 1 18 / 

14 15 60 61  1  3 1 1  3 / 

14 15 60 61  5 22 1 1 18 / 

15 15 62 64  1  3 1 1  3 / 

15 15 62 64  5 22 1 1 18 / 

16 16 68 69  1  3 1 1  3 / 
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16 16 68 69  5 22 1 1 18 / 

 8  9 45 46  1  3 1 1  3 / 

 8  9 45 46  5 22 1 1 18 / 

 9  9 47 48  1  3 1 1  3 / 

 9  9 47 48  5 22 1 1 18 / 

31 41 94 95  1  3 1 1  1 / 

31 41 94 95  5 22 1 1 18 / 

34 41 96 97  1  3 1 1  1 / 

34 41 96 97  5 22 1 1 18 / 

36 41 98 99  1  3 1 1  1 / 

36 41 98 99  5 22 1 1 18 / 

39 41 100 102  1  3 1 1  1 / 

39 41 100 102  5 22 1 1 18 / 

/ 

RPTGRID 

/ 

EDIT 

-------------------------------------------------------------------------------- 

-- modification related to HM of G-segment aug-2006 

MULTIPLY 

'TRANX' 0.1 30 46 72 112 2 2 / 

'TRANX'  0.1 30 46 72 112 3 3 / 

'TRANY' 5 30 46 72 112 2 2 / 

'TRANY'  10 30 46 72 112 3 3 / 

-- 

'TRANX' 10 29 29 67  70 1 3 / 

'TRANY' 10 30 41 67  67 1 3 / 

-- 

'TRANX' 0.05 34 34 76  95 1 3 / 

'TRANY' 0.001 30 41 67 67 1 3 / Open against the main field 

-- 

'TRANY' 0.5 30 30 90 93 1 3 / Increase TRANY against the well 

'TRANY' 0.5 31 32 94 94 1 3 / Increase TRANY against the well  

-- 

-- 

'TRANY' 0.5 31 31 87 93 1 3 /  

-- 

-- 

'TRANY' 0.5 30 30 85 89 1 1 / 

'TRANY' 2 30 30 72 82 1 3 /  

'TRANY' 0.8 30 30 82 93 1 3 / 

-- 

-- 

'TRANX' 10 34 34 92 95 1 3 / Increase TRANX trough the fault against the well 

'TRANX' 0 34 34 90 91 1 3 / 

'TRANX' 2 34 38 88 89 1 3/ 

--'TRANX' 2 35 36 93 95 1 3 / 

'TRANX' 0.1 35 36 90 91 1 3 / 
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'TRANX' 10 35 38 95 98 1 3 / 

'TRANX' 5 31 31 91 92 1 3 / Increase TRANX against the well 

-- 

-- 

'TRANX' 2 31 33 92 95 1 3 / 

-- 

'TRANY' 2 30 31 79 86 3 3 / 

'TRANY' 3 30 30 86 86 2 2 / 

-- 

-- 

'TRANY' 0.7 34 41 72 80 1 3 / 

'TRANX' 2 31 31 87 94 1 3 /  

-- 

'TRANY' 0.0004 37 41 71 71 1 3 /  

'TRANY' 2 30 31 87 93 2 3 /  

'TRANX' 5 34 34 88 90 1 3 /  

-- 

'TRANY' 1.5 33 35 94 96 2 3 / 

-- 

'TRANX' 2 30 41 68 70 1 3 /  Increase trans around F-4H 

-- 

/ 

EQUALS 

'TRANY' 20 31 31 85 85 1 3 /  SET TRANY ulik 0 trougth the fault 

'TRANY' 30 30 30 93 93 2 2 / 

'TRANY' 30 32 32 84 84 1 3 /  

'TRANY' 30 30 30 93 93 3 3 / 

-- 

-- 

'TRANY' 30 31 32 95 95 2 3 / 

'TRANY' 30 31 32 94 94 1 1 / 

'TRANY' 20 33 33 96 96 2 3 / 

'TRANY' 20 34 34 97 97 2 3 / 

-- 

-- 

'TRANX' 0 33 33 71 81 1 3 / set the fault tight 

'TRANX' 0 34 34 76 85 1 3 /   

-- 

'TRANY' 0 33 33 71 81 1 3 / Set the fault tigt 

'TRANY' 0 34 34 76 85 1 3 /  

-- 

'TRANY' 0 33 36 71 71 1 3 /  

'TRANX' 0 34 41 71 71 1 3 /  

-- 

'TRANY' 0 33 33 71 72 1 3 / Decrease TRANY trougth the fault 

-- 

'TRANX' 0 34 34 73 75 1 3 / Set the fault tight 

'TRANY' 0 34 34 71 75 1 3 / 
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-- 

/ 

-------------------------------------------------------------------------------- 

PROPS 

-------------------------------------------------------------------------------- 

-- 

--    Input of fluid properties and relative permeability 

-- 

--------------------------------------------------------- 

NOECHO 

-- Input of PVT data for the model 

-- Total 2 PVT regions (region 1 C,D,E segment, region 2 Gsegment) 

-- 

INCLUDE 

 './INCLUDE/PVT/PVT-WET-GAS.DATA' /  

 

TRACER 

  'SEA'  'WAT'  / 

  'HTO'  'WAT'  / 

  'S36'  'WAT'  / 

  '2FB'  'WAT'  / 

  '4FB'  'WAT'  / 

  'DFB'  'WAT'  / 

  'TFB'  'WAT'  / 

/ 

---------------------------------------------------------- 

-- 

-- initialization and relperm curves: see report blabla 

-- 

---------------------------------------------------------- 

-- rel. perm and cap. pressure tables -- 

-- 

INCLUDE 

 './INCLUDE/RELPERM/HYST/swof_mod4Gseg_aug-2006.inc' /  

--  '/project/norne6/res/INCLUDE/RELPERM/HYST/swof.inc' / 

--Sgc=10 0.000000or g-segment 

-- 

INCLUDE 

 './INCLUDE/RELPERM/HYST/sgof_sgc10_mod4Gseg_aug-2006.inc' /  

--  '/project/norne6/res/INCLUDE/RELPERM/HYST/sgof_sgc10.inc' / 

-- 

--INCLUDE 

--'./INCLUDE/RELPERM/HYST/waghystr_mod4Gseg_aug-2006.inc' /  

--  '/project/norne6/res/INCLUDE/RELPERM/HYST/waghystr.inc' / 

INCLUDE 

'./INCLUDE/ASP.inc' / 

--RPTPROPS 

-- 1 1 1 5*0 0 / 
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-------------------------------------------------------------------------------- 

REGIONS 

-- 

INCLUDE 

 './INCLUDE/PETRO/FIPNUM_0704.prop' /  

-- 

INCLUDE 

 './INCLUDE/PETRO/SATNUM_0704.prop' /  

SURFNUM 

113344*89 / 

--113344*88 / 

MISCNUM 

113344*1 / 

EQUALS 

'SATNUM'  102  30 41  76 112  1 1 / 

'SATNUM'  103  30 41  76 112  2 2 / 

'SATNUM'  104  30 41  76 112  3 3 / 

/ 

-- 

INCLUDE 

 './INCLUDE/PETRO/IMBNUM_0704.prop' /  

EQUALS 

'IMBNUM'  102  30 41  76 112  1 1 / 

'IMBNUM'  103  30 41  76 112  2 2 / 

'IMBNUM'  104  30 41  76 112  3 3 / 

/ 

-- 

INCLUDE 

 './INCLUDE/PETRO/PVTNUM_0704.prop' /  

EQUALS 

'PVTNUM'  1  1 46   1 112    1 22  / 

/ 

-- 

INCLUDE 

 './INCLUDE/PETRO/EQLNUM_0704.prop' /  

-- extra regions for geological formations and numerical layers  

INCLUDE 

 './INCLUDE/PETRO/EXTRA_REG.inc' /  

RPTREGS 

'FIPNUM' 'SATNUM' 'SURFNUM'   / 

--------------------------------------------------------------------------------- 

SOLUTION 

RPTRST 

BASIC=2 / 

RPTSOL 

'FIP=3' 'SURFBLK' 'SURFADS' 'FIPTR=2' 'TBLK' 'PBLK' 'FIPSURF=2' 'FIPPLY=2' 

'PLYADS' /  

--------------------------------------------------------------------------------- 
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-- equilibrium data: do not include this file in case of RESTART 

-- 

-- 

--INCLUDE 

--'./INCLUDE/PETRO/E3.prop' /  

-- restart date: only used in case of a RESTART, remember to use SKIPREST 

RESTART 

'../BASE_CASE_NORNE/BASE_CASE_NORNE' 196    /   AT TIME 2552.0 DAYS    ( 

1-NOV-2004) 

THPRES 

  1 2 0.588031 / 

  1 3 0.787619 / 

  1 4 7.00083  / 

/ 

-- initialise injected tracers to zero 

TVDPFSEA 

1000   0.0 

5000   0.0 / 

TVDPFHTO 

1000   0.0 

5000   0.0 / 

TVDPFS36 

1000   0.0 

5000   0.0 / 

TVDPF2FB 

1000   0.0 

5000   0.0 / 

TVDPF4FB 

1000   0.0 

5000   0.0 / 

TVDPFDFB 

1000   0.0 

5000   0.0 / 

TVDPFTFB 

1000   0.0 

5000   0.0 / 

------------------------------------------------------------------------------- 

SUMMARY 

RUNSUM 

SEPARATE 

EXCEL 

-- 

INCLUDE 

 './INCLUDE/SUMMARY/summary.data' /  

RPTSMRY 

1 / 

-------------------------------------------------------------------------------- 

SCHEDULE 
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NOWARN 

-- use SKIPREST in case of RESTART 

SKIPREST 

-- No increase in the solution gas-oil ratio?! 

DRSDT 

 0  / 

-- Use of WRFT in order to report well perssure data after first 

-- opening of the well. The wells are perforated in the entire reservoir 

-- produce with a small rate and are squeesed after 1 day. This pressure 

-- data can sen be copmared with the MDT pressure points collected in the 

-- well. 

NOECHO 

-------------------------------------------- 

--=======Production Wells========-- 

--------------------------------------------  

-- 

INCLUDE 

 './INCLUDE/VFP/DevNew.VFP' /  

-- 

INCLUDE 

 './INCLUDE/VFP/E1h.VFP' /  

-- 

INCLUDE 

 './INCLUDE/VFP/NEW_D2_GAS_0.00003.VFP' /  

-- 

INCLUDE 

 './INCLUDE/VFP/GAS_PD2.VFP' /  

-- 

INCLUDE 

 './INCLUDE/VFP/AlmostVertNew.VFP' /  

-- 

INCLUDE 

 './INCLUDE/VFP/GasProd.VFP' /  

-- 01.01.07 new VFP curves for producing wells, matched with the latest well tests in 

Prosper. lmarr 

-- 

INCLUDE 

 './INCLUDE/VFP/B1BH.Ecl' /  

-- 

INCLUDE 

 './INCLUDE/VFP/B2H.Ecl' /  

-- 

INCLUDE 

 './INCLUDE/VFP/B3H.Ecl' /  

-- 

INCLUDE 

 './INCLUDE/VFP/B4DH.Ecl' /  

-- 
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INCLUDE 

 './INCLUDE/VFP/D1CH.Ecl' /  

-- 

INCLUDE 

 './INCLUDE/VFP/D2H.Ecl' /  

-- 

INCLUDE 

 './INCLUDE/VFP/D3BH.Ecl' /  

-- 

INCLUDE 

 './INCLUDE/VFP/E1H.Ecl' /  

-- 

INCLUDE 

 './INCLUDE/VFP/E3CH.Ecl' /  

-- 

INCLUDE 

 './INCLUDE/VFP/K3H.Ecl' /  

-------------------------------------------- 

--=======Production Flowlines========-- 

--------------------------------------------  

-- 

-- 16.5.02 new VFP curves for southgoing PD1,PD2,PB1,PB2 flowlines -> pd2.VFP 

-- 

INCLUDE 

 './INCLUDE/VFP/pd2.VFP' /  

-- 

-- 16.5.02 new VFP curves for northgoing PE1,PE2 flowlines -> pe2.VFP 

-- 

INCLUDE 

 './INCLUDE/VFP/pe2.VFP' /  

-- 24.11.06 new matched VLP curves for PB1 valid from 01.07.06 

-- 

INCLUDE 

 './INCLUDE/VFP/PB1.PIPE.Ecl' /  

--24.11.06 new matched VLP curves for PB2 valid from 01.07.06 

-- 

INCLUDE 

 './INCLUDE/VFP/PB2.PIPE.Ecl' /  

--24.11.06 new matched VLP curves for PD1 valid from 01.07.06 

-- 

INCLUDE 

 './INCLUDE/VFP/PD1.PIPE.Ecl' /  

--24.11.06 new matched VLP curves for PD2 valid from 01.07.06 

-- 

INCLUDE 

 './INCLUDE/VFP/PD2.PIPE.Ecl' /  

--24.11.06 new matched VLP curves for PE1 valid from 01.07.06 

-- 



 Department of Petroleum Engineering and Applied Geophysics 

 

Evaluation of alkaline, surfactant and polymer flooding for enhanced oil recovery in the Norne E-segment 

based on applied reservoir simulation”  89 
 

INCLUDE 

 './INCLUDE/VFP/PE1.PIPE.Ecl' /  

--24.11.06 new matched VLP curves for PE2 valid from 01.07.06 

-- 

INCLUDE 

 './INCLUDE/VFP/PE2.PIPE.Ecl' /  

 -------------------------------------------- 

--=======INJECTION FLOWLINES 08.09.2005     ========-- 

-------------------------------------------- 

-- VFPINJ nr. 10 Water injection flowline WIC  

-- 

INCLUDE 

 './INCLUDE/VFP/WIC.PIPE.Ecl' /  

-- VFPINJ nr. 11 Water injection flowline WIF  

-- 

INCLUDE 

 './INCLUDE/VFP/WIF.PIPE.Ecl' /  

-------------------------------------------- 

--=======   INJECTION Wells 08.09.2005       ========-- 

-------------------------------------------- 

-- VFPINJ nr. 12 Water injection wellbore Norne C-1H  

-- 

INCLUDE 

 './INCLUDE/VFP/C1H.Ecl' /  

-- VFPINJ nr. 13 Water injection wellbore Norne C-2H  

-- 

INCLUDE 

 './INCLUDE/VFP/C2H.Ecl' /  

-- VFPINJ nr. 14 Water injection wellbore Norne C-3H  

-- 

INCLUDE 

 './INCLUDE/VFP/C3H.Ecl' /  

-- VFPINJ nr. 15 Water injection wellbore Norne C-4H  

-- 

INCLUDE 

 './INCLUDE/VFP/C4H.Ecl' /  

-- VFPINJ nr. 16 Water injection wellbore Norne C-4AH  

-- 

INCLUDE 

 './INCLUDE/VFP/C4AH.Ecl' /  

-- VFPINJ nr. 17 Water injection wellbore Norne F-1H  

-- 

INCLUDE 

 './INCLUDE/VFP/F1H.Ecl' /  

-- VFPINJ nr. 18 Water injection wellbore Norne F-2H  

-- 

INCLUDE 

 './INCLUDE/VFP/F2H.Ecl' /  
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-- VFPINJ nr. 19 Water injection wellbore Norne F-3 H 

-- 

INCLUDE 

 './INCLUDE/VFP/F3H.Ecl' /  

-- VFPINJ nr. 20 Water injection wellbore Norne F-4H  

-- 

INCLUDE 

 './INCLUDE/VFP/F4H.Ecl' /  

TUNING 

1 10  0.1  0.15  3  0.3  0.3  1.20  / 

5*   0.1   0.0001   0.02  0.02  / 

--2* 40 1* 15 / 

/ 

-- only possible for ECL 2006.2+ version 

ZIPPY2 

'SIM=4.2' 'MINSTEP=1E-6' / 

/ 

--WSEGITER 

--/ 

-- PI reduction in case of water cut 

-- 

INCLUDE 

 './INCLUDE/PI/pimultab_low-high_aug-2006.inc' /  

-- History and prediction -- 

-- 

INCLUDE 

'./INCLUDE/BC0407_ASP.SCH'/   

END 

A.2 ASP Include File 

--ALKALINE KEYWORDS 

--Water/oil surface tension multipliers as a function of alkaline --concentration 

ALSURFST 

--Alkaline  Water/oil Surface  

--conc  Tension Multiplier 

--Kg/m3   

0.0   1.0 

6.0   0.5 

15.0   0.3 

20.0   0.1 

30.0   0.0 / 

/ 

--Alkaline multipliers for polymer adsorption  

ALPOLADS 

--Alkaline  Adsorption  

--conc  Multiplier 

--Kg/m3   

0.0   1.0 
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6.0   0.5 

9.0   0.3 / 

0.0   1.0 

3.0   0.7 

6.0   0.5 

9.0   0.3 / 

0.0   1.0 

3.0   0.7 

6.0   0.5 

9.0   0.3 / 

0.0   1.0 

3.0   0.7 

6.0   0.5 
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0.0   1.0 
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9.0   0.3 / --10 

0.0   1.0 

3.0   0.7 

6.0   0.5 

9.0   0.3 / 

0.0   1.0 

3.0   0.7 

6.0   0.5 

9.0   0.3 / 

0.0   1.0 
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--Alkaline multipliers for surfactant adsorption  

ALSURFAD 
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-- Polymer-Salt concentration for mixing  

-- maximum polymer and salt concentration 
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-- Ply conc.  Salt conc. 

-- kg/m3             kg/m3 
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--Polymer-Rock Properties 

PLYROCK 

--dead   residual   mass  Ads.   max. 

--pore  resistance  density Index  Polymer 

--space  factor        adsorption 
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B  Economic Model 

B.1 Continuous Injection 

 

B.2 Cyclic injection in existing well 
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B.3 Cyclic injection in a new well 
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