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Summary
Non-regular designs have nice properties regarding run economy. However, standard

methods of analysing regular designs are not applicable as a results of possible non-

orthogonal contrast columns. We investigated three factor based methods of analysing

non-regular factorial fractional designs and also performed follow-up runs in identifying

the active factor subspace for an experiment. We studied the six factor 12-run PB and

16-run designs with some simulated models and also on a real data set from the metal

cutting experiment by Garzon (2000). In our investigation, the 16-run design displayed

a relatively significant performance in defining factor activities for models with four ac-

tive factors over the 12-run PB design. The methods studied in this thesis were found to

produce similar results in identifying one, two and three active factors. All the methods

performed very well in identifying models with at most three active factors. However, for

models with four active factors, the study revealed that the methods have shortcomings

in identifying the correct active subspace. The Box-Meyer search estimated variance was

lower compared to that of the other two methods. The projection based method is very

simple to use, with much less intuition and was robust under various conditions of model’s

variability. It is not appropriate to use the method alone whenever the results indicate that

three active factors are insufficient. However, follow-up experiments help to improve per-

formance of the method. This study recommend the use of the factor based methods in

defining factor activities for experiments.
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Chapter 1
Introduction

Experimentation has become the bedrock of understanding several phenomena of life and

processes. Design and analysis of experiments have been incorporated into the scientific

fields of enquiries, whereby processes of diverse complexities are simplified to promote ef-

ficiency and high production quality. Researchers are mostly interested in the influence of

a set of factors, measured at some specified levels, on the response during experimentation.

In the process industries, modeling and optimization (instead of the treatment comparison,

which is the main objective in agricultural experiments), may be the main focus.

Scientific investigations mostly study the effects of many factors simultaneously. How-

ever, when constrained with limited time and resources, it is important to identify the

factors that are highly influential. In many situations, several factors are presumed to in-

fluence both the location and dispersion of processes, but, normally a few of them are

really vital; a condition referred to as factor sparsity. When an experiment is conducted,
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Chapter 1. Introduction

the factors with a significant amount of impact on the response are called active, otherwise

inert. To identify these active factors requires efficient screening designs. A full facto-

rial experiment allows all factorial effects to be estimated independently and is commonly

used in practice. However, it is often too costly to perform this experiment when a large

number of factors are involved. For example, an experiment involving 8 factors will re-

quire 28 = 256 runs. As a results, interest in factorial designs with efficient properties of

investigating several factors with fewer runs is on the rise.

A group of saturated experimental designs that are known to investigate several factors

in fewer runs is the Plackett-Burman designs proposed by Plackett and Burman (1946),

hereafter called PB designs. A design with s-levels and k factors is called saturated if the

number of runs are equal to k(s − 1) + 1. For a two-level saturated design, this means

that k factors can be investigated in k + 1 runs. For instance, the 12-run PB design has

the ability to investigate eleven factors in twelve runs and is one example of a non-regular

factorial design employed in this thesis. The 12-run PB design is of projectivity, P = 3

and has the property that all
(

11
3

)
= 165 projections onto three factors are of just one

type, that is, all the projections give a full 23 design plus the very best half fraction of a

23 design (Tyssedal and Niemi, 2014). Also, any of the
(

11
4

)
= 330 projections onto four

factors can be obtained from an arbitrarily other selected projection onto four factors by

interchanging rows, columns, or signs in columns, and all of them allow all main effects

and two-factor interactions to be estimated. In particular, this means that for a model with

k factors, k ≤ 4, it is the same chance that these factors will be identified regardless of

which factors they are. This very fair treatment of any set of k factors, k ≤ 4, is a property

2



that no other PB design has. Hence, the 12-run PB design has very attractive screening

properties.

Statisticians are keenly interested in understanding the most efficient way of analysing

this PB design. Standard methods of analysing regular designs are not applicable as a

results of possible non-orthogonal contrast columns. This is because the problem of al-

locating individual effects to large contrast can easily occur without notice as a results of

aliasing of effects. Several methods have been proposed in literature and they are broadly

classified as factor-based or effect based search procedures. According to Tyssedal and

Niemi (2014) the goal of a factor-based search is to identify the subspace of active factors

of normally low dimension—typically 2, 3, or 4—within which most of the changes in

the measured response occur. Then the functional relationship between the response and

the factors may be investigated afterwards. The performance of such a procedure depends

heavily on the projective properties of the design used. Factor based methods are less

dependent on model assumptions. Examples of such methods can be found in Box and

Meyer (1993), Tyssedal and Samset (1997), and Kulachi and Box (2003). On the other

hand, the search for the most likely active main effects and two-factor interactions is the

main focus of effect-based procedures. Examples of effect-based procedures can be found

in the works of Hamada and Wu (1992) and Chipman et al. (1997). The assumptions of

effect sparsity and heredity are strong guidance in the search for active effects. The hered-

ity principle requires excluding an interaction to be in a model unless at least one (weak

heredity) or both (strong heredity) of the parent main effects also are included in the model.

3



Chapter 1. Introduction

This thesis aims at investigating factor based methods of analysing non-regular factorial

fractional designs and follow-up runs in identifying active factors in experiments. The

12-run PB and 16-run (by Jones and Montgomery (2010)) designs are the non-regular

designs employed for this study. Three factor based methods of analysing designs are

discussed and their analysis compared. The projective based approach by Tyssedal and

Samset (1997), which exploits the projective properties of designs is compared with the

Bayesian techniques proposed by Box and Meyer (1993) and the partial F approach in-

troduced by Kulachi and Box (2003). Simulated models and a six factor metal cutting

experiment conducted by Garzon (2000) are utilized in this thesis. The contribution of

this thesis is two-fold: a) to study and compare the performance of these factor based

techniques in analysing non-regular fractional factorial designs and b) to compare the per-

formance of the 12-run PB and the 16-run designs in identifying active subspace.

This thesis is composed of five chapters, references and appendices. Chapter one in-

troduces the research problem, research objectives and the significance of the research.

Chapter two covers the theories relevant for the development of the methods used and re-

views relevant literature. Chapter three presents the methods employed in this thesis. In

chapter four the results of the analysis are presented and discussed. The summary and

conclusions are presented in chapter five.

4



Chapter 2
Theory

2.1 Experimental Designs

Experimental design is a body of knowledge and techniques that enables an investigator

to conduct better experiments, analyze data efficiently, and make the connections between

the conclusions from the analysis and the original objectives of the investigation (Wu and

Hamada, 2000). According to Telford (2007), it is a series of tests in which purposeful

changes are made to the input variables of a system or process and the effects on response

variables are measured. It dates back to the work of R. A. Fisher in the 1920s and 1930s at

the Rothamsted Agricultural Experimental Station in the United Kingdom. Although the

experimental design method was first used in an agricultural context, the method has been

applied successfully in the military and in industry since the 1940s. To be mentioned is the

work of Besse Day, at the U.S. Naval Experimentation Laboratory. Experimental design

was employed there to establish the cause of bad welds at a naval shipyard during World

5



Chapter 2. Theory

War II. George Box developed experimental design procedures for optimizing chemical

processes. W. Edwards Deming taught statistical methods, including experimental design,

to Japanese scientists and engineers in the early 1950s at a time when “Made in Japan”

meant poor quality. Genichi Taguchi, the most well known of this group of Japanese

scientists, is famous for his quality improvement methods. One of the companies where

Taguchi first applied his methods was Toyota. Since the late 1970s, U.S. industry has

again become interested in quality improvement initiatives, now known as “Total Qual-

ity” and “Six Sigma” programs. Design of experiments is considered an advanced method

in the Six Sigma programs, which were pioneered at Motorola and General Electrics (GE).

Fisher (1935) demonstrated how valid conclusions could be drawn efficiently from ex-

periments with natural fluctuations such as temperature, soil conditions and rainfall. Such

variables are known as nuisance variables and could be known or unknown. The known

nuisance variables usually cause systematic bias (e.g., batch-to-batch variation) whiles the

unknown nuisance variables usually cause random variability in the results and are called

inherent variability or noise. The problems posed by the two types of nuisance factors

are addressed by the fundamental principles in design of experiments. The fundamental

principles are randomization, replication, blocking, orthogonality and factorial experimen-

tation. The randomization principle is a mean of protecting against unknown biases that

distort results of experiments. By replication, the sample size increases as a means of

improving the precision level of the experiment. Blocking is a method for increasing pre-

cision of an experiment by removing the effects of known nuisance factors. Orthogonal

in design columns results in factor effects being uncorrelated and therefore can be more

6



2.2 Factorial Experimental Designs at Two levels

easily interpreted.

2.2 Factorial Experimental Designs at Two levels

Factorial designs are mostly used to investigate the effects of two or more factors simul-

taneously. They are either regular or non-regular. Full factorial two-level designs require

2 × 2 × · · · × 2 = 2k runs, and thus are mostly referred to as 2k factorial designs. The

two factor levels are used to study first order and interaction effects of the response over

a range of chosen factor levels. Factor effects can be estimated independently, however,

many factors require that a large number of runs have to be performed. In some cases, it

may be sufficient to perform only a fraction of the experimental runs because some factors

may be assumed inert. The number of runs is then equal to 2k−p, where p is the fraction of

the design. When p equal to one, the design is referred to as a half fraction of the full fac-

torial. These designs are known as fractional factorial designs. In these designs, effects are

either estimated independently or fully aliased. However, the economy of run size makes

2k−p designs often preferred compared to the full factorial designs. For illustration, con-

sider a 2-level design with 5 factors. The full factorial design would require 25 = 32 runs,

whiles the half fraction, 25−1, would require 16 runs and are shown in Table 2.1 and Table

2.2 respectively.

The 2k−p fractional design is constructed using p generators. A generator is the rela-

tion where the aliased effects are set equal to each other. This ensures that the signs in the

design columns are equal. For instance, if the signs in the column for C are equal to the

7



Chapter 2. Theory

Table 2.1: A full factorial 25 design

Run A B C D E
1 - - - - -
2 + - - - -
3 - + - - -
4 + + - - -
5 - - + - -
6 + - + - -
7 - + + - -
8 + + + - -
9 - - - + -

10 + - - + -
11 - + - + -
12 + + - + -
13 - - + + -
14 + - + + -
15 - + + + -
16 + + + + -
17 - - - - +
18 + - - - +
19 - + - - +
20 + + - - +
21 - - + - +
22 + - + - +
23 - + + - +
24 + + + - +
25 - - - + +
26 + - - + +
27 - + - + +
28 + + - + +
29 - - + + +
30 + - + + +
31 - + + + +
32 + + + + +

8



2.2 Factorial Experimental Designs at Two levels

signs for DE, then C and DE are aliased, and C = DE is the generator for the design.

Multiplying both sides by C yields the defining relation I = CDE. Another property of

interest is the resolution, which is equal to R if all p-factor effects are aliased with effects

comprisingR−p factors or more. The resolution is in simple terms equal to the number of

letters in the shortest word in the defining relation. The design given in Table 2.2 has as its

generator the relation E = ABCD. The defining relation thus becomes I = ABCDE.

This design is a resolution V design.

Table 2.2: A 25−1 fractional factorial design

Run A B C D E
1 - - - + -
2 - - - - +
3 - - + + +
4 - - + - -
5 - + - + +
6 - + - - -
7 - + + + -
8 - + + - +
9 + - - + +

10 + - - - -
11 + - + + -
12 + - + - +
13 + + - + -
14 + + - - +
15 + + + + +
16 + + + - -

9



Chapter 2. Theory

The analysis of such designs relies more heavily on regression modelling. In the regression

model,

Y = Xβ + ε (2.1)

the design matrix X, plays a very important role in applications. For orthogonal columns

of the design, the vector of estimators for the coefficients is given by;

β̂ = (X ′X)−1X ′Y =



1
n 0 0 0

0 (x1
′x1)−1 0 0

0 0
. . . 0

0 0 0 (xk
′xk)−1





n∑
i=1

Yi

x1
′Y

...

xk
′Y





n∑
i=1

Yi

n

(x1
′x1)−1(x1

′Y )

...

(xk
′xk)−1(xk

′Y )


(2.2)

In an experiment, one chooses values for the explanatory variables (factors) x1, x2, · · · , xk

such that they are as favourable for the estimation as possible. In practice, factor levels are

mostly recoded as -1 and 1 during the analysis. The process at high level is represented by

1 and the low level is represented by -1. This formulation yields orthogonal factor columns

and computation of the coefficients for main effects and interaction effects are made easy.

Main effects and interactions are defined according to Tyssedal (2011). For two-level de-

signs the main effect of a factor is the expected average response when the factor is on the

high level minus the expected average response when the factor is at the low level. The

interaction between two factors is defined as half the main effect of a factor when the other

is on the high level minus half the main effect of a factor when the other factor is at its low

level. From the design presented in Table 2.2, we could formulate the design matrix, X as

follows;

10



2.2 Factorial Experimental Designs at Two levels

X =



1 −1 −1 −1 1 −1

1 −1 −1 −1 −1 1

1 −1 −1 1 1 1

1 −1 −1 1 −1 −1

1 −1 1 −1 1 1

1 −1 1 −1 −1 −1

1 −1 1 1 1 −1

1 −1 1 1 −1 1

1 1 −1 −1 1 1

1 1 −1 −1 −1 −1

1 1 −1 1 1 −1

1 1 −1 1 −1 1

1 1 1 −1 1 −1

1 1 1 −1 −1 1

1 1 1 1 1 1

1 1 1 1 −1 −1



2.2.1 Regular Designs

The class of 2k designs and 2k−p designs are called regular designs. A regular fractional

factorial design can be specified in terms of a set of defining contrasts. A 2k−p regular

fractional factorial design is constructed from the full factorial design generated from the

k − p basic factors. Its aliasing structure is explicitly described by the defining contrast

group (Wu and Hamada, 2000) generated by the p generators. Their alias structures are

relatively simple in which a particular alias term (main effect or interaction) appears only

once in association with a single data contrast, with a coefficient which is either 1 or -1.

The regular design can be used to screenN/2 factors at projectivity P = 3 (Tyssedal et al.,

2006). More discussion on projectivity in Section 3.3.

Suppose a two-level factorial design with 5 factors has to be performed in 8 runs. That is,

the design of interest is a 25−2 regular fractional factorial design. The 3 basic factors in

a 25−2 fractional factorial design are the three independent factors (A,B,C) of the base

11



Chapter 2. Theory

factorial design (a 23 full factorial design). The two added factors (D,E) are assigned

to columns chosen from the remaining columns of the model matrix for the base factorial

design. One possible assignment is D = AC and E = BC. That is, the level settings

of D and E are determined by the columns corresponding to AC and BC, respectively.

Let I be the identity element (or, the column of 1’s for the mean). Then, I = ACD and

I = BCE are called the fractional generators. From every p independently chosen frac-

tional generators, 2p − p − 1 more relations are derived. For example, I = ABDE is

derived from I = ACD and I = BCE. The entire set of 2p − 1 relations,

I = ACD = BCE = ABDE,

forms the defining contrast subgroup, and the terms ACD, BCE and ABDE are called

words. The number of factors in a word is called the length of a word (or word-length).

Two distinct sets of fractional generators (or equivalently, defining contrast subgroups)

generate distinct 2k−p fractions of a 2k full factorial design. That further introduces the

notion of ranking among different 2k−p fractions of a 2k full factorial design. The rank-

ing criteria are generally based on some operating assumptions that are common to many

experiments:

• The effect sparsity principle: only a few effects in a factorial experiment are likely

to be significant.

• The hierarchical ordering principle: lower order effects are more likely to be signif-

icant than higher order effects.
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2.2 Factorial Experimental Designs at Two levels

• The effect heredity principle: interactions involving significant main effects are

more likely to be active than other interactions.

• Minimum aberration: For any two 2k−p designs t1 and t2, letm be the smallest inte-

ger such that Bm(t1) 6= Bm(t2), where Bm(t1) is the number of defining words of

length m in the defining relation of design t1. Then t1 is said to have less aberration

than t2 if Bm(t1) < Bm(t2). If there is no design with less aberration than t1, then

t1 has minimum aberration.

The analysis of regular designs are straightforward and easy to perform. To identify active

contrasts in regular designs without replicated rows, standard methods such as normal and

half plot (Daniel, 1976) and Lenth’s method (Lenth, 1989) are commonly used. The basis

for the normal plot is that inert effects should normally be distributed with zero means and

equal variances. The drawback of regular designs is that they only exist for the number

of runs equal to a power of two. As a consequence, these designs are less economic and

time efficient compared to some of the members of the non-regular designs. Also,effects

are fully confounded, if the number of factors exceed p. However, their alias structure are

relatively short compared to their non-regular counterparts.

2.2.2 Non-regular Design

Two-level designs that are not a 2k−p design, are said to be non-regular. Li et al. (2003)

defined a non-regular design as the one whose columns do not form an elementary Abelian

group. An Abelian group, also called a commutative group, is a group in which the re-

sult of applying the group operation to two group elements does not depend on the order

in which they are written. Non-regular designs such as PB designs and other orthogo-
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nal arrays are widely used in various screening experiments for their run size economy

and flexibility (Wu and Hamada, 2000). Unlike regular designs, non-regular designs may

exhibit a complex aliasing structure, that is, a large number of effects may neither be

orthogonal nor fully aliased, which makes it difficult to interpret their significance. For

instance, the 12-run PB design has every main effect potentially partially aliased with 45

two-factor interactions and a single two-factor interaction appears in the alias pattern of all

main effect not involved with this two-factor interaction. For this reason, non-regular de-

signs were traditionally used to estimate factor main effects only, but not their interactions.

However, in many practical situations it is often questionable whether the interaction ef-

fects are negligible. Hamada and Wu (1992) demonstrated that some interactions could be

entertained and estimated through their complex aliasing structure. They argued and justi-

fied that ignoring interactions can result in important effects being missed, spurious effects

being detected, and estimated effects having reversed signs resulting in incorrectly recom-

mended factor levels. One advantage of non-regular designs is their projective properties

and that also they exist when the number of run, N , is a multiple of four.

2.3 Plackett-Burman Design

The evolution of non-regular designs came to light when Robin L. Plackett and J. P. Bur-

man in 1946 while working in the British Ministry of Supply with a goal of finding exper-

imental designs for investigating the dependence of some measured quantity on a number

of independent variables (factors), each taking s levels, in such a way as to minimize the

variance of the estimators of these dependencies using a limited number of experiments.
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Plackett and Burman (1946) gave a large collection of two-level and three-level designs

for multi-factorial experiments. These designs are often referred to as PB designs in the

literature.

PB designs are saturated orthogonal design (fractional factorial) constructed on the ba-

sis of fractional replicates of a full factorial design (Montgomery, 2001). Further they are

based on balanced incomplete blocks and can in N experiments (N number of runs) study

(k = N − 1) process variables, where N is a multiple of 4. For obtaining an orthogonal

design matrix, the following conditions are necessary and sufficient:

1. The number of times each factor is adjusted to each of its levels must be the same;

2. The number of times every two factors, each at any one of its levels are encountered,

must be the same;

3. The number of observations must be divisible by the square of the number of levels,

defined as: N = nl2

where n is an integer. When the above-stated conditions are available, the construction of

an orthogonal matrix (experimental design) requires combinatorial operations only.

The PB design is probably the most well known non-regular designs. Plackett and Bur-

man (1946) only included designs with N ≤ 100, and they also omitted the design where

N = 92. For PB designs where the number of runs is equal to a power of two the designs

coincide with the regular ones, and the rest of the PB designs are non-regular. The 12-run

PB design matrix is shown in Table 2.3.
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Table 2.3: The 12-run Plackett and Burman design

Run A B C D E F G H I J K Observation
1 + + - + + + - - - + - y1

2 + - + + + - - - + - + y2

3 - + + + - - - + - + + y3

4 + + + - - - + - + + - y4

5 + + - - - + - + + - + y5

6 + - - - + - + + - + + y6

7 - - - + - + + - + + + y7

8 - - + - + + - + + + - y8

9 - + - + + - + + + - - y9

10 + - + + - + + + - - - y10

11 - + + - + + + - - - + y11

12 - - - - - - - - - - - y12

There are three basic methods for constructing these Plackett and Burman designs (Lin

and Draper, 1992):

1. Cyclic Generation. Take a (specific) row of N − 1 plus and minus signs, pro-

vided by Plackett and Burman (1946). Construct N − 2 further rows by cyclicly

permuting the signs in the first row. Add a row of all minus signs. This gives

N rows (=runs) of ±1 levels for N − 1 variables or factors (= columns). The

N = 12 case, shown in 2.3, is developed in this manner. So are the designs for

N = 8, 16, 20, 24, 32, 36, 44, 48, 60, 68, 72, 80 and 84.

2. Doubling. A block of plus and minus signs which we denote by D is given. The

design is obtained by writing down;

 u D D

−u −D D


where u denotes a unit column of all plus signs. Design for N = 40, 56, 64, 88 and

96 are obtained in this manner from those of 20, 28, 32, 44 and 48 runs, respectively.
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2.3 Plackett-Burman Design

Note that this method can be applied for any N−run design when N is a multiple

of eight and an ( 1
2N)-run design is available.

3. Block Permutation. Several square blocks of plus and minus signs are given. Further

rows are obtained by cyclic permutation of the blocks. A row of minus signs is then

added. Designs for N = 28, 52, 76 and 100 are of this type.

2.3.1 Projection Properties of Plackett-Burman Designs

Box and Tyssedal (1996) defined a design to be of projectivity p if the projection onto

every subset of p factors contains a full factorial design in p factors, possibly with some

points replicated. It follows from these definitions that an orthogonal array of strength t

is of projectivity t. The determination of the projectivity of an orthogonal two-level array

were proven in three propositions by Box and Tyssedal (1996).

1. A saturated design obtained from a doubled n × n Hadamard matrix is always of

projectivity P = 2 and only 2.

2. A saturated design obtained from cyclic orthogonal array is either a geometric facto-

rial orthogonal array with P = 2 and only 2, or else has projectivity at least P = 3.

3. Any saturated two-level design obtained from an orthogonal array containing n =

4m runs, with m odd, is of projectivity at least P = 3.

PB designs are saturated orthogonal arrays of strength two and all degrees of freedom are

utilized to estimate main effects. An orthogonal array of N runs, m factors, s levels and

strength t, denoted by OA(N, sm, t), is an N × m matrix in which each column has s

symbols that appear equally often in the matrix. For example, the 12-run PB design in
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Table 2.3 is an OA(12, 211, 2). Orthogonal arrays of strength two allow all the main ef-

fects to be estimated independently and they are universally optimal for the main effects

model (Cheng, 1980). A necessary condition for the existence of an OA(N, sm, 2) is that

N − 1 ≥ m(s− 1). A design is called saturated if N − 1 = m(s− 1) and supersaturated

if N − 1 < m(s− 1).

Orthogonal arrays include both regular and non-regular designs. For regular designs, the

concepts of strength and resolution is that a design of resolution R is an orthogonal ar-

ray of strength t = R − 1. Design resolution measures the interdependence in effects in

fractional factorial design. In other words, it describes how much the effects in a frac-

tional factorial design are aliased with other effects. For fractional factorial design, one

or more of the effects are confounded, meaning they cannot be estimated separately from

each other. Resolution III, IV, and V designs are most common. The usual practice has

been to use a fractional factorial design with the highest possible resolution. This is be-

cause higher resolution implies greater design strength. For example, it is usually better to

choose a design where main effects are confounded with 3-way interactions (Resolution

IV) instead of a design where main effects are confounded with 2-way interactions (Res-

olution III). For a regular design of resolution R, the projection onto any R factors must

be either a full factorial or copies of a half-replicate of a full factorial. The projections for

non-regular designs are more complicated.

PB designs are completely classified with respect to R = 3 and R = 4. Designs N =

68, 72, 80 and 84 are resolution IV . PB designs are of strength two, so the projection onto

18



2.3 Plackett-Burman Design

any two factors is a replicated full factorial. Lin and Draper (1992) studied the geomet-

rical projection properties of the PB designs onto three or more factors. Their computer

searches found all the projections of the 12−, 16−, 20−, 24−, 28−, 32− and 36−run PB

designs onto three factors. They found that these projections must have at least a copy

of the full 23 factorial or at least a copy of a 23−1 replicated or both. In particular, any

projection onto three factors must contain a copy of a full factorial except for the 16− and

32−run PB designs, which are regular designs. The important statistical implication of

this finding is that if only at most three factors are truly important, then after identifying

the active factors, all factorial effects among these active factors are estimable, regardless

which three factors are important.

The 12-run PB design projects onto six replicates of a 21 design in one dimension, three

replicates of a 22 design in every two dimensions and one-and-half replicate of a 23 design

in every three dimensions. The 12-run PB design is of projectivity three. Wang and Wu

(1995) found that its projection onto any four factors has the property that unbiased esti-

mates are available for all the main effects and two-factor interactions if the higher-order

interactions are negligible. If only a small subset of the factors are active it is of importance

to know how well a design projects onto such a small subset. Also, if a subset of factors

contains the only active factors, the difference between expected values in replicated runs

is equal to zero. Hence, estimates of the variance within each group of replicated runs

should be model independent.

Wang and Wu (1995) defined a design as having a hidden projection property if it al-
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lows some or all interactions to be estimated even when the projected design does not

have the right resolution or other geometrical design property for the same interactions to

be estimated. For the PB designs their hidden projection property is a result of complex

aliasing between interactions and main effects. For instance, the 12-run PB design has

any two-factor interaction, say CD to be orthogonal to main effects C and D, and par-

tially aliased with all other main effects with correlation 1
3 and − 1

3 . Thus, it is possible to

estimate four main effects and all six two-factor interaction among them together.

2.4 16-runs Designs

Johnson and Jones (2011) discussed a classical-type construction of the 16-run design

with 6, 7 and 8 factors for both regular and non-regular design with a 24 or a replicated

23 starting point. Additional factor columns were defined using familiar one term col-

umn generators or generators using weighted sums of effects. The construction was built

around a design scheme proposed by Jones and Montgomery (2010) and hereafter called

JM designs. For six factors, Jones and Montgomery (2010) compared the performance of

the regular and non-regular designs in 16-runs for the "Photoresist" experiment in Mont-

gomery (2001). This example established the superiority of the non-regular design in

Table 2.5 to the 26−2 resolution IV design (a regular design) in Table 2.4. Using the 26−2

fractional factorial design, Montgomery (2001) identified factors A, B, C and E as active

and one active two-factor interaction AB, CE or a combination of both, with additional

runs required in order to break this alias. The same situation in the context of a specific

non-regular design was considered by Jones and Montgomery (2010) through simulation.
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CE was considered as active two-factor interaction in their setup. Their analysis identified

the four active factors and the one and only active two-factor interaction CE.

The 26−2 design was constructed having A,B,C and D as base factors. Factors E and

F were set to E = ABC and F = BCD and thus the defining relation become I =

ABCE = BCDF = ADEF . The design is as presented in Table 2.4.

Table 2.4: Photoresist Design

Run A B C D E F Thickness
1 -1 -1 -1 -1 -1 -1 4524
2 1 -1 -1 -1 1 -1 4657
3 -1 1 -1 -1 1 1 4293
4 1 1 -1 -1 -1 1 4516
5 -1 -1 1 -1 1 1 4508
6 1 -1 1 -1 -1 1 4432
7 -1 1 1 -1 -1 -1 4197
8 1 1 1 -1 1 -1 4515
9 -1 -1 -1 1 -1 1 4521

10 1 -1 -1 1 1 1 4610
11 -1 1 -1 1 1 -1 4295
12 1 1 -1 1 -1 -1 4560
13 -1 -1 1 1 1 -1 4487
14 1 -1 1 1 -1 -1 4585
15 -1 1 1 1 -1 1 4195
16 1 1 1 1 1 1 4518

The non-regular design by Jones and Montgomery (2010) in Table 2.5 was constructed by

first considering all 16 possible combinations of A, B, C and D. Hence, their design is

a 24 full factorial design in A, B, C and D. Factors E and F were generated using the

weighted sums of effects.

E = 1/2(AC +BC +AD −BD);F = 1/2(−AC +BC +AD +BD)
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Johnson and Jones (2011) thought of this construction as a "principal" quarter fraction and

gave the other three quarters fractions as;

E = 1/2(AC +BC +AD −BD);F = −1/2(−AC +BC +AD +BD)

E = −1/2(AC +BC +AD −BD);F = 1/2(−AC +BC +AD +BD)

E = −1/2(AC +BC +AD −BD);F = −1/2(−AC +BC +AD +BD)

Table 2.5: Non-regular alternative

Run A B C D E F Thickness
1 1 1 1 1 1 1 4494
2 1 1 -1 -1 -1 -1 4592
3 -1 -1 1 1 -1 -1 4357
4 -1 -1 -1 -1 1 1 4489
5 1 1 1 -1 1 -1 4513
6 1 1 -1 1 -1 1 4483
7 -1 -1 1 -1 -1 1 4288
8 -1 -1 -1 1 1 -1 4448
9 1 -1 1 1 1 -1 4691

10 1 -1 -1 -1 -1 1 4671
11 -1 1 1 1 -1 1 4219
12 -1 1 -1 -1 1 -1 4271
13 1 -1 1 -1 -1 -1 4530
14 1 -1 -1 1 1 1 4632
15 -1 1 1 -1 1 1 4337
16 -1 1 -1 1 -1 -1 4319

2.4.1 Six-factor non-regular designs in 16 runs

Johnson and Jones (2011) from the JM design presented each of the 27 non-isomorphic

16-run, six-factor designs. Two or more designs are said to be isomorphic if one can

be obtained from the other by relabeling the factors having the same number of levels,

reordering the factor combinations and/or relabeling the levels of one or more factors.
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Otherwise they are non-isomorphic. With a 24 full factorial design in A,B,C and D as

the starting point, construction of 21 designs are possible. The construction schemes are

categorized into three.

1. Classical: Under this scheme the factors E and F are confounded with two-, three-,

or four-way interaction ofA,B,C andD. Designs constructed are presented in Table

2.6.

Table 2.6: Classical construction scheme

Design E F
1 BC ABC
2 AB CD
3 AB ACD
4 ABC ABD

2. Hybrid: This scheme considers the situation where factor E is confounded and F

correlated with two-, three-, or four-way interaction of A,B,C and D. Designs con-

structed are presented in Table 2.7.

Table 2.7: Hybrid construction scheme

Design E F
5 AB 1/2[CD +ACD +BCD −ABCD]
6 AC 1/2[CD +ACD +BCD −ABCD]
7 ABC 1/2[CD +ACD +BCD −ABCD]
8 AB 1/2[AD +BD + CD −ABCD]
9 AB 1/2[AC +BC +AD −BD]
10 BCD 1/2[BD +ABD + CD −ACD]
11 ABCD 1/2[BD +ABD + CD −ACD]
12 ABC 1/2[AD +BD +ABCD − CD]
13 ABD 1/2[AD +BD + CD −ABCD]
14 1/2[AC +BC +BCD +AD −BD] 1/2[AC +BC −AD +BD]
15 1/2[AC +BC +BCD +AD −BD] 1/2[−AC +BC +AD +BD]
16 1/2[BD +ABD +BCD −ABCD] 1/2[BD −ABD + CD +ACD]
17 1/2[AD +BD +ACD −BCD] 1/2[AD −BD + CD +ABCD]
18 1/2[AD +ABD − CD +BCD] 1/2[AD +BD +ACD −BCD]
19 1/2[AC +ABC +AD −ABD] 1/2[AC +BC −AD +BD]
20 1/2[AC +ABD − CD +BCD] 1/2[AD +BD +ACD −BCD]
21 1/2[AB +AC −BD + CD] 1/2[AC +BC −AD +BD]
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3. Correlated: Under this scheme factor E and F are correlated with two-, three-, or

four-way interaction of A,B,C and D. Designs constructed are presented in Table

2.7, elements 14 to 21.

The rest of the 6 cases of the construction start with a 23 full factorial design in A, B

and C with various replication options for each of the designs. Designs constructed are

presented in Table 2.8.

Table 2.8: Construction starting with a 23 full factorial design in A, B and C

Design D E Replication 1 Replication 2
22 AC ABC F = AB across both replicates
23 AB AC F = BC F = ABC
24 ABC E = AC;F = BC E = BC;F = AC
25 AB E = AB;F = BC E = ABC;F = AC
26 ABC E = AB;F = BC E = BC;F = AC
27 D = AB;E = AC;F = ABC D = AC;E = ABC;F = BC

In this thesis, the 16-run design used is as presented in Table 2.9. The hybrid construction

scheme is used in its construction with generators E = 1/2(AD − BD + AC + BC)

and F = ABCDE. This implies that I = 1/2(ADE − BDE + ACE + BCE) =

ABCDEF = 1/2(ADF + BDF − ACF + BCF ). From the design construction,

AB, CD and EF are free of aliasing with main effects. The alias structure for the main

effect is as presented in Table 2.10. The main effects are orthogonal and no aliasing

between two-factor interactions. As a results, three orthogonal subspaces can be inves-

tigated independently. The following linear relationships are important to be aware of;

A−B = DE − CF , A+B = CE +DF , C −D = BE −AF , C +D = BF +AE,

E − F = AC − BD and E + F = AD + BC. The classical construction alterna-

tive to this design is a design with generators, E = ABC and F = ABD which gives
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I = ABCE = ABDF = CDEF .

Table 2.9: The 16-run Design

Run A B C D E F
1 -1 -1 -1 -1 1 1
2 1 -1 -1 -1 -1 1
3 -1 1 -1 -1 1 -1
4 1 1 -1 -1 -1 -1
5 -1 -1 1 -1 -1 1
6 1 -1 1 -1 -1 -1
7 -1 1 1 -1 1 1
8 1 1 1 -1 1 -1
9 -1 -1 -1 1 1 -1
10 1 -1 -1 1 1 1
11 -1 1 -1 1 -1 -1
12 1 1 -1 1 -1 1
13 -1 -1 1 1 -1 -1
14 1 -1 1 1 1 -1
15 -1 1 1 1 -1 1
16 1 1 1 1 1 1

Table 2.10: Alias structure of the main effects of the 16-run design

Main effect Aliased interaction
A,B CE, DE, CF , DF
C,D AE, BE, AF , BF
E,F AC, AD, BC, BD

2.5 Data Analysis Methods for Factorial Designs

The methods of analysis of factorial designs can be classified as effect based or factor

based. Effect based methods aim at identifying significant effects. The principle of ef-

fect heredity is often a precept. However, Tyssedal and Kulachi (2005) proposed an effect

based method that does not depend on the heredity principle. Factor-based methods aim

at identifying active factors and they are less dependent on model assumptions. Methods

proposed by Box and Meyer (1993), Kulachi and Box (2003) and Tyssedal and Samset

(1997) are the subjects of interest of this thesis. Both the effect-based and factor-based

methods of analysis are viewed and applied from different perspectives. A sharp contrast
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can be made for the frequentist and the bayesian view. The typical approach to analysis is

to calculate a set of contrasts, one for each column of the full design. Then a variety of dif-

ferent methods may be applied: normal probability plots, Daniel (1976); Box et al. (1978);

Bayes plots, Box and Meyer (1986a); pseudo-standard error, Lenth (1989) to identify con-

trasts which are too large to attribute to noise alone. The strategy in analyzing factorial

design is to identify as active those factors whose main effects can be associated with large

contrasts, discounting the possibility of interactions.

2.5.1 Frequentist Approach

The probably best known frequentist approach is the one by Hamada and Wu (1992). It

consists of three steps.

1. Entertain all the main effects and interactions that are orthogonal to the main effects.

Use standard analysis methods such as ANOVA and half-normal plots to select sig-

nificant effects.

2. Entertain the significant effects identified in the previous step and the two-factor

interactions that consist of at least one significant effect. Identify significant effects

using a forward selection regression procedure.

3. Entertain the significant effects identified in the previous step and all the main ef-

fects. Identify significant effects using a forward selection regression procedure.

Iterate between Steps 2 and 3 until the selected model stops changing.
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This analysis strategy is based on two assumptions. The first assumption is the validity

of the effect sparsity principle (Box and Meyer, 1986a). The second assumption is the

validity of the weak effect heredity principle (Hamada and Wu, 1992). A motivational

precept for the weak heredity is that it is often difficult to provide a good physical inter-

pretation for a significant interaction AB without either A or B being significant.

2.5.2 Bayesian Approach

The Bayesian approach suggested by Box and Meyer (1993) considers all the possible

explanations (models including interactions) of the data from a screening experiment and

identifies those that fit the data well. The prior assumptions are as follows:

1. Effects calculated for inactive factors may be represented approximately as items

from a normal distribution with mean zero and standard deviation σ.

2. For a proportion π of active factors the resulting effects are represented as item from

a normal distribution with mean zero and a larger standard deviation γσ.

The prior information is represented in two parameters: γ, the ratio of the standard de-

viation of the active to the inactive effects, and π, the percentage of active factors. Box

et al. (2005) suggested to choose γ between 2 and 3 and π = 0.25, based on a survey of a

number of published analyses of factorial designs. Recent study has confirmed that the re-

sults are not very sensitive to moderate changes in γ and π when active factors are present.

A Bayesian framework is used to assign posterior probabilities to all models considered.

Then these posterior probabilities are accumulated to marginal posterior probabilities for

each factor. The technical details of the Bayesian analysis are complicated and given in
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(Box and Meyer, 1993) or (Box et al., 2005). In practice, one can use the BsProb function

in the R library BsMD, free downloadable from the R project homepage (http://www.R-

project.org/), for the calculation. Chipman et al. (1997) proposed an effect based Bayesian

approach that employs a Gibbs sampler to perform an efficient stochastic search of the

model space.

2.5.3 Other Techniques Developed

There are further sophisticated analysis strategies proposed for experiments with complex

aliasing. A projective based approach by Tyssedal and Samset (1997), which exploits

the projective properties of the 12-run PB design has been proposed. Many other recent

variable selection methods can also be used for similar purposes. For example, Yuan et al.

(2007) suggested an extension of the general-purpose LARS (least angle regression), first

proposed by Efron et al. (2004). Phoa et al. (2009) suggested the Dantzig Selector method,

first proposed by Candes and Tao (2007), for factor screening.

2.6 Estimation and Confounding

Estimation of effects (main and interactions) is a major component in the analysis of ex-

periments. When all interactions are assumed ’negligible’, the estimation of main-effects

is done as follows. For the i−th factor, attach to the entries in the response column the

sign in the i−th column and divide the total by the divisor N/2, which is the number of

plus signs in column i. For example, for the 12-run case of Table 2.3, the main effect of

factor A is lA = (y1 − y2 + y3 − y4 − y5 − y6 + y7 + y8 + y9 − y10 + y11 − y12)/6.
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The overall mean effect is obtained in a similar manner using the column u of plusses

and the divisor 12 (N , in general). The estimated effects can also be seen from fitting the

model yj = β0 +
11∑
i

βi + εj , j = 1, 2, ..., 12 by the standard least squares calculation

β̂ = (X ′X)−1X ′y = 1
12X

′y, where X is a 12× 12 matrix formed by a column of 1’s ad-

joined to the block of ±1 defined by Table 2.3, and y is a 12× 1 column of yi’s. The main

effect of factorA, lA, is double the value of β̂A, the (i+1)th element of β̂. This is because

β̂A measures a one unit effect, while lA measures the two-unit effect from xA = −1 to

xA = 1.

If we suppose that some interactions are not zero, the quantity β̂ = (X ′X)−1X ′y will

estimate the main-effect of factor A plus a linear combination of certain two-factor in-

teractions. The alias structure can be obtained using calculations suggested by Box and

Wilson (1951). Suppose we wish to fit the regression model,

E(y) = Xβ (2.3)

by least squares. If the model is correct, then the estimator β̂ = (X ′X)−1X ′y is unbiased.

However, if the model is not correct, the estimator is biased. If the correct model takes the

form;

E(y) = Xβ +XAβA (2.4)
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then the estimator of the regression coefficient vector is given by the estimator β̂ =

(X ′X)−1X ′y, and it follows that;

E(β̂) = β + CβA (2.5)

where C = (X ′X)−1X ′XA. C is called the alias matrix or bias matrix. XA is dependent

on the true model which in general is unknown. The β consists of all the main effects, βA

consists of all two-factor interactions, and the alias matrix C is an k× k(k− 1)/2 matrix,

where k is the number of factors. The size of C expands rapidly as k increases.

PB designs with power of two number of runs are 2k−pIII fractional factorial designs and

their alias relationships are easily obtained otherwise complex. For the 12-run PB design

presented in Table 2.3, we construct the C for the block of only factor A; (see Lin and

Draper (1992) for the complete alias structure).

Table 2.11: The first block of the alias matrix for the 12-run Plackett and Burman design

A B C D E F G H I J K
AB 0 0 -1/3 1/3 1/3 -1/3 -1/3 1/3 -1/3 -1/3 -1/3
AC 0 -1/3 0 -1/3 -1/3 1/3 -1/3 1/3 -1/3 -1/3 1/3
AD 0 1/3 -1/3 0 -1/3 -1/3 -1/3 -1/3 -1/3 1/3 1/3
AE 0 1/3 -1/3 -1/3 0 1/3 1/3 -1/3 -1/3 -1/3 -1/3
AF 0 -1/3 1/3 -1/3 1/3 0 -1/3 -1/3 -1/3 1/3 -1/3
AG 0 -1/3 -1/3 -1/3 1/3 -1/3 0 -1/3 1/3 -1/3 1/3
AH 0 1/3 1/3 -1/3 -1/3 -1/3 -1/3 0 1/3 -1/3 -1/3
AI 0 -1/3 -1/3 -1/3 -1/3 -1/3 1/3 1/3 0 1/3 -1/3
AJ 0 -1/3 -1/3 1/3 -1/3 1/3 -1/3 -1/3 1/3 0 -1/3
AK 0 -1/3 1/3 1/3 -1/3 -1/3 1/3 -1/3 -1/3 -1/3 0
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2.7 Follow-up Experiments

2.7 Follow-up Experiments

Design and analysis of experiments aim to arrive at valid conclusions. However, there

are instances where results obtained are inconclusive, as to which factors are active. To

resolve this ambiguity, additional runs are required. Also, some designs have complex

aliasing structure and some active effects especially interaction are not being identified as

such during analysis. Follow-up experiment is a technique for breaking the alias chain

in a design with complex aliasing structure. Some follow-up experiment plans ensure

that resolution IV designs are obtained from resolution III designs. Multiple techniques

exist for augmenting an experimental design. They include full foldover, semifolding, D-

optimal designs and Bayesian (MD-optimal). The choice of technique may be dependent

on the analysis of the initial experiment, experimental objectives, availability of resources

among others.

2.7.1 Full Foldover

According to Edwards et al. (2013), foldover is the most popular and classic approach

for design augmentation. This design is such that levels of all of the factors have been

reversed to form runs that are the mirror image of those in the original design in addition

to a column where the first n entries are +1 and the last n entries are −1. Let 1 be n × 1

vector of ones. The foldover, X̃, of a two-level design X is given by

 X 1

−X −1
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In general folding over a resolution III design produces a resolution IV design. To untan-

gle the main effects from the interactions in the initial resolution III design, one can run

a full foldover. Combining both blocks of runs produces a resolution IV design and all

the main effects will be free and clear of two-factor interactions (2fi’s). However, all the

2fi’s maintain their aliasing. Although, the complex aliasing among estimated effects can

be problematic, iterative procedures that exploit effect sparsity, hierarchy and heredity of

such designs have been developed to allow identification of one or two active two-factor

interactions (Wu and Hamada (2000), Miller and Sitter (2005)).

Consider the 25−2 design (a resolution III design). The full factorial is presented in Table

2.1. The fractional factorial can be achieved in 23 = 8 runs.

Table 2.12: A 25−2 fractional factorial design

Run A B C D E
1 - - - + +
2 + - - - -
3 - + - - +
4 + + - + -
5 - - + + -
6 + - + - +
7 - + + - -
8 + + + + +

We can increase the resolution of this design to IV if we augment the 8 original runs by

adding 8 reversed runs of the original runs as shown in Table 2.13. This is known as a

full foldover. The basic factors in a 25−2 fractional factorial design again are the three

independent factors (A,B,C) of the base factorial design (a 23 full factorial design). The

two added factors (D,E) are assigned to columns chosen from the remaining columns of

the model matrix for the base factorial design. The level settings of D and E are here

determined by the columns corresponding to AB and AC, respectively.

32



2.7 Follow-up Experiments

Table 2.13: Reversed runs of a 25−2 fractional factorial design

Run A B C D E
9 + + + - -

10 - + + + +
11 + - + + -
12 - - + - +
13 + + - - +
14 - + - + -
15 + - - + +
16 - - - - -

2.7.2 Semifolding

Another foldover technique is the semifolding (John (2000), Mee and Peralta (2000)), that

adds only half of a full foldover fraction. This is done by subsetting on a factorial effect.

A common practice is to subset on a desirable level of an important active factor revealed

in the initial experiment. The problem of multi-collinearity among main effects and two-

factor interaction effects is avoided by subsetting on a main effect. Consider the 25−2

design in Table 2.12. Suppose factor A is identified as an important active effect and the

experimenter wishes to subset on the factor. When the fraction is semifolded on A (with

desirable level as high), the points that were at the low level ofA in the original fraction are

repeated at the high level ofA; the points that were at the high level are not repeated. Then

the follow-up runs will be as presented in Table 2.14. According to John (2000), when the

original fraction has resolution IV, then semifolding on A will result in the estimation of

all two-factor interactions involved with A.

Table 2.14: Semifolding on A of 25−2 fractional factorial design

Run A B C D E
9 + - - + +

10 + + - - +
11 + - + + -
12 + + + - -
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2.7.3 D-Optimal Designs

D-optimal designs are model specific designs. When used for augmentation it is driven

by the best model(s) identified in the initial experiment. It is an iterative search algorithm

that minimizes the covariance of the parameter estimates for a specified model. This is

equivalent to maximizing the determinant D = |XTX|, where X is the design matrix of

model terms (the columns) evaluated at specific treatments in the design space (the rows).

D-optimal designs do not require orthogonal design matrices, and as a result, parameter

estimates may be correlated. Also, D-optimal suffers the setback of being subjective, in

that follow-up runs are chosen solely on the account of improving estimation for a single

model.

2.7.4 MD-Optimal Design

A Bayesian approach for follow-up design in the context of model discrimination based

on predictive densities for competing models was proposed by Meyer et al. (1996). Let

Mi represent a model with 0 ≤ mi ≤ k active factors and all interactions involving these

factors up to a desired order. For some prior probability, π, that a factor is active, the prior

probability of models, Mi, is given by P (Mi) = πmi(1− π)k−mi . The main effects and

interactions in each model are assigned N(0, γ2σ2) priors where γ is a scale factor. The

intercept and error variance are assigned noninformative priors. After observing the data

Y , one can obtain the posterior probability P (Mi|Y ) for each Mi. Thus, for l competing
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2.7 Follow-up Experiments

models, Meyer et al. (1996) define their model discrimination critirion as;

MD =
∑

0≤i 6=j≤l

P (Mi|Y )P (Mj |Y )I(fi, fj)

, where fi denotes the predictive density conditional on Y and Mi, and I(fi, fj) =

∞∫
−∞

fiIn(fi/fj) is the Kullback-Leibler information. Follow-up experimental runs are se-

lected that maximize MD. The MD criterion is implemented in the BsMD package in

the R software.
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Chapter 3
Methods for Analysis

3.1 The Box-Meyer Method

When determining active factors and interactions among a set of factors in an experiment,

various hypotheses might be considered. For instance, with five factors, V,W,X, Y and

Z, one hypothesis is that a single factor is responsible for most of what is happening, in

which case one need only to consider the five main effects. Assuming that two factors are

responsible, 10 possible subsets can be considered; the subset of main effects X and Y

with interaction XY , the subset of X and Z with interaction XZ, etc., are possibilities.

Also, on the hypothesis that three factors, say X,Y and Z, may be active, the subset of

main effects X,Y and Z with interactions XY , XZ and Y Z and XY Z are considered

together and so on. Box and Meyer (1993) considered an approach to consider all the

possible explanations (including interactions) of the data from a screening experiment and

identify the factors which fit the data well. The Bayesian framework is used to give an
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appropriate measure of fit to each model considered (posterior probability) that can be ac-

cumulated in various ways (marginal posterior probability).

Consider a set of m + 1 models, M0, ...,Mm. Each model Mi has an associated vec-

tor of parameters θi so that the sampling distribution of data y, given the model Mi, is

described by the probability density p(y|Mi, θi). The prior probability of the model Mi

is p(Mi), and the prior probability density of θi is p(θi|Mi). The predictive density of y,

given model Mi, is written p(y|Mi), and is given by the expression;

p(y|Mi) =

∫
Θi

p(y|Mi, θi)p(θi|Mi)dθi (3.1)

Here Θi is the set on which p(θi|Mi) is defined. The posterior probability of the model

Mi given the data y is then,

p(Mi|y) =
p(Mi)p(y|Mi)

m∑
h=0

p(Mh)p(y|Mh)
(3.2)

The posterior probabilities p(Mi|y) provide a basis for model identification, tentatively

plausible models are identified by their large posterior probability. For each model, Mi,

we calculate p(Mi)p(y|Mi) and then scale these quantities to sum to unity.

For the screening design situation with k factors, let Mi denote the model that a par-

ticular combination of fi factors is active 0 ≤ fi ≤ k. There are 2k models Mi starting

from i = 0 (no active factors) to i = 2k − 1 (k active factors). To model the condition of
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3.1 The Box-Meyer Method

factor sparsity, let π be the prior probability that any one factor is active. For a screening

experiment in which we typically expect to identify just a few (less than half) of the fac-

tors as important, appropriate values for π would be in the range from 0 and 1
2 . A nominal

value of π = 0.25 has given sensible results in practice, and the individual experimenter

can specify a different value based on the circumstances of a particular experiment (Box

and Meyer, 1993). The prior probability p(Mi) of the model Mi is then πfi(1− π)k−fi .

Let Xi be the matrix with columns for each effect under the model Mi using the con-

vention of coded values−1 and +1 for two-level factors. Xi includes a columns of 1’s for

the mean and interaction columns up to any order desired. Let ti be the number of such

effects, excluding the mean. The dimensions of Xi are n × (1 + ti). Likewise, let βi be

the (1 + ti) × 1 vector of true (regression) effects under Mi, and let y denote the n × 1

vector of responses. The predictive density p(y|Mi) is obtained by integrating;

p(y|Mi) =

∞∫
0

∞∫
−∞

· · ·
∞∫
−∞

p(y|Mi, βi, σ)p(βi|Mi, σ)p(σ|Mi)dβidσ (3.3)

where the probability density of y given Mi is assumed to be the usual normal linear

model;

p(y|Mi, σ, βi) ∝ σ−nexp

(
−(y −Xiβi)

′(y −Xiβi)

2σ2

)
(3.4)

p(βi|Mi, σ) ∝ γ−tiσ−tiexp

(
−βi′Γiβi

2σ2

)
(3.5)

p(σ|Mi) = p(σ) ∝ 1

σ
(3.6)
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Γi =
1

γ2

0 0

0 Iti

 (3.7)

The elements of βi are assigned independent prior normal distribution with mean 0 and

variance γ2σ2. A non-informative prior distribution is employed for the overall mean β0

and log(σ) so that p(β0, σ) ∝ 1/σ where the likelihood is appreciable and negligible else-

where.

Performing the integration with respect to βi yields;

p(y|Mi, σ) ∝
∞∫
−∞

· · ·
∞∫
−∞

γ−tiσ−(n+ti)exp

{
−((y −Xiβi)

′(y −Xiβi) + βi
′Γiβi)

2σ2

}
dβi

= γ−tiσ−(n+ti |Γi +Xi
′Xi|

−1/2
exp{−(y′(I −Xi(Γi +Xi

′Xi)
−1Xi

′)y}/2σ2

×
∞∫
−∞

· · ·
∞∫
−∞

σ−(ti+1)|Γi +Xi
′Xi|

1/2
exp{−(βi − β̂i)

′
(Γi +Xi

′Xi)(βi − β̂i)/2σ2}

where

β̂i = (Γi +Xi
′Xi)

−1Xi
′y

The expression inside the integral is proportional to the density of a multivariate normal

distribution with mean β̂i and covariance matrix σ2(Γi + Xi
′Xi)

−1 and so integrate to a

constant leaving;

p(y|Mi, σ) ∝ γ−tiσ−(n+ti)|Γi +Xi
′Xi|

−1/2
exp{−(y′(I −Xi(Γi +Xi

′Xi)
−1Xi

′)y}/2σ2 (3.8)
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Integrating out σ yields,

p(y|Mi) ∝
∞∫
0

γ−tiσ−(n−1)−1|Γi +Xi
′Xi|

−1/2 × exp

{
− (y′(I−Xi(Γi+Xi

′Xi)
−1Xi

′)y
2σ2

}
dσ

and making a change of variables,

u =
(y′(I −Xi(Γi +Xi

′Xi)
−1Xi

′)y

2σ2

results;

p(y|Mi) ∝ γ−ti |Γi +Xi
′Xi|

−1/2
(y′(I −Xi(Γi +Xi

′Xi)
−1Xi

′)y)
−(n−1)/2 ×

∞∫
0

u(n−1)/2−1exp− {u}du

The latter integral is a gamma function (Γ((n− 1)/2)) and thus constant, leaving;

p(y|Mi) ∝ γ−ti |Γi +Xi
′Xi|

−1/2
(y′(I −Xi(Γi +Xi

′Xi)
−1Xi

′)y)
−(n−1)/2 (3.9)

Having observed the data vector y, the posterior probability of the model Mi can then be

written, see [(Box and Meyer, 1986a)]

p(Mi|y) ≈ C
(

π

1− π

)fi
γ−ti

|X0
′X0|1/2

|Γi +Xi
′Xi|1/2

×

(
S(β̂i) + β̂′iΓiβ̂i

S(β̂0)

)−(n−1)/2

(3.10)

where

S(β̂i) = (y −Xiβ̂i)
′(y −Xiβ̂i)
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X0 is design matrix of the active subspace under consideration and C is the normalization

constant which forces all probabilities to sum to one and Iti is the ti × ti identity matrix.

The probabilities p(Mi|y) can be accumulated to compute the marginal posterior prob-

ability Pj that factor j is active;

Pj =
∑

Mi:factorjactive

p(Mi|y). (3.11)

The probability Pj is just the sum of the posterior probabilities of all the distinct models in

which the factor j is active. The probabilities Pj are thus calculated by direct enumeration

over the 2k possible models Mi. A large value for Pj would indicate that the factor j was

active, and similarly, a value of Pj close to zero would indicate that the factor j was inert.

After examining the Pj , the individual probabilities p(Mi|y) may further identify specific

combinations of factors that are most likely active.

3.2 Partial F Method

3.2.1 Motivation

According to Kulachi and Box (2003), experimentation in industry and engineering differ

in three ways from the paradigm implied by statistics courses:

1. Data are frequently available in days, hours or sometimes even in minutes. There-

fore, appropriate methods of statistical design and analysis must be used to exploit

the advantage of such immediacy by using sequential experimentation to point the
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trial to development and discovery.

2. Even for complicated methods of analysis, the computer is available to help to do

this by facilitating fast analyses, hence, the experimenter’s ability to perform itera-

tive analysis of data and to see what it might imply in the light of alternative models

and assumptions is greatly enhanced.

3. In many applications, it is true that not one but a number of responses are simulta-

neously available and that at any given stage of an investigation, the question whose

answers will help the investigator the most is, "which factors affect which responses

and in what ways?"

Most statistical methods has been based on one-shot assumption. A process is said to be

a one-shot process, if all the important variables are supposed known at the beginning and

after appropriate analysis, specific conclusions are drawn. However, in many engineering

and industrial settings, this one-shot assumption does not hold and serve as a premise for

the development of this method of analysis. A process of iterative investigation, which

follows a trial often not predictable in advance. Engineering experimentation is described

as an iterative with alternatives for a subsequent set of runs dependent on the results from

a previous set. Figure 3.1 describes Kulachi and Box (2003) notion of iterative experimen-

tation.
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Figure 3.1: Iterative experimentation with alternatives for a subsequent set of runs depending on
results from a previous set.

3.2.2 The Partial Analysis

This method aims at partitioning total variability in the data into its component parts.

Data are generated through experimentation, and thus the concept of ANOVA is closely

connected to design of experiments. ANOVA estimates three(3) sample variances: a total

variance based on all the observation deviations from the grand mean, that is, the total sum

of square, SSTotal, an error variance based on all the observation deviations from their
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corresponding treatment means, that is, the error sum of square, SSError and a treatment

variance based on the deviations of treatment means from the grand mean, the result being

multiplied by the number of observations in each treatment, that is, treatment sum of

square, SSTreatment. Therefore, we have SSTotal = SSError + SSTreatment. The

overall variability in the data is obtained by:

SST =

a∑
i=1

n∑
j=1

(yij − ȳ..)2

and can be evaluated as;

a∑
i=1

n∑
j=1

(yij − ȳ..)2 =

a∑
i=1

n∑
j=1

(ȳi. − ȳ..)2 +

a∑
i=1

n∑
j=1

(yij − ȳi.)2 (3.12)

where yij is the response variable; i, the number of factors, and j, the number of repli-

cations (runs) for the factors. The total variability in the data, as measured by the total

sum of squares, can be partitioned into a sum of squares of the difference between and

within treatment averages. The statistical significance of the experiment is determined by

ratio of two variances which are independent of constant bias and scaling errors, as well

as, the units used in measuring responses. There are an = N total observations, thus

SSTotal has N − 1 degrees of freedom. There are a factors, so SSTreatment has a − 1

degrees of freedom. Finally, for each factor, there are n replicates providing n− 1 degrees

of freedom. In performing statistical analysis, the assumption of normal errors implies

that the SSTotal is a normally distributed random variable; consequently SSTotal/σ2 is

distributed as chi-square with N − 1 degrees of freedom; SSError/σ2 is chi-square with

N−a degrees of freedom and that SSTreatment/σ2 is also chi-square with a−1 degrees of
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freedom. The SSTreatment/σ2 and SSError/σ2 are independently distributed chi-square

random variables. This follows from Cochran’s theorem, since the degrees of freedom for

SSTreatment and SSError add to N − 1, the total number of freedom. Therefore, the

ratio,

F0 =
(SSTreatment/σ

2)/(a− 1)

(SSError/σ2)/(N − a)
=
MSTreatment
MSError

(3.13)

is distributed as F with a− 1 and N − a degrees of freedom.

Kulachi and Box (2003) proposed a simplified and more intuitive version of the method

of analysis of Box and Meyer (1993) (discussed in section 3.1), an approach they refered

to as the partial analysis. Their approach of analysis is a mixture of the frequentist and the

bayesian way of thinking. They argue that the posterior probabilities obtained using Box

and Meyer method (1993) may be divided into two parts:

1. a penalty factor associated with the order of the model

2. a function depending only on the sums of squared errors.

Therefore, for a model of the same complexity, the evaluation of the sums of the squared

error alone should produce similar results as the full analysis. Kulachi and Box (2003) in

comparing models involving equal subset of factors among a set of factors, considered the

use of the following two modified simple criteria.

SSRES =

n∑
i=1

(yi − ŷi)2 (3.14)
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F =

n∑
i=1

(ŷi − ȳ)2/a

n∑
i=1

(yi − ŷi)2/n− a− 1
(3.15)

where yi is the observed response for the i− th run, ŷi is the predicted response, ȳ is the

overall response mean.

3.3 Projection-based Method of Analysis

The properties of a factorial design when restricted to a subset of experimental factors

is known as projective properties. Projective properties of a design enable the identifica-

tion of active subspaces of factors without necessarily imposing restrictive assumptions on

the underlying model. Further investigation of the functional relationship between design

factors and responses can be undertaken on the active subspace identified. Non-regular

designs have very favourable projective properties. For instance, the 12-run PB design

projects onto six replicates of a 21 design in one dimension, three replicates of a 22 design

in every two dimensions and one-and-half replicate of a 23 design in every three dimen-

sions.

Tyssedal and Samset (1997) proposed a projective-based method of analysing factorial

designs. They established that if the candidate set of factors under investigation contains

the true active factors space, then replicated runs will have the same expected value. Thus,

a model independent estimate of the error variance may be obtained regardless of any

functional relationship. The ability of the subset of factors to explain the variation in the

response may be evaluated with rather weak assumptions on the underlying model.
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Consider the 12-run PB design with one active factor. Then for each of the eleven factors,

there are six replicated runs on the high level and six likewise runs on the low level. From

the two groups of points, two estimates of σ2 with 5 degrees of freedom may be calculated

and pooled to get an estimate of σ2 with ten degrees of freedom. Altogether, 11 estimates

of σ2 will be obtained, one for each factor, and the factor associated with the lowest σ̂2

would be judged most capable of explaining the variation in the data. Similarly, for two

active factors we have for each of the
(

11
5

)
= 55 possibilities, 3 replicates for each of the

four level combinations of the factors. Four estimates of σ2 may be pooled to give a σ̂2

with 8 degrees of freedom. The two factors associated with the smallest σ̂2 would be con-

sidered to be the most capable of explaining the variation in the data. Similar explanation

can be made for other active factors.

Implementation of an algorithm to calculate these estimates of σ2 is easier for the 12-run

PB design because of its cyclic nature of construction. Written codes for the projection

based method in Wiik (2014) were sligthly modified in dimensions and was implemented

in the R software for the analysis. For instance, if the design is as given in Table 2.3,

the six pluses in column 1 is in run number 1, 3, 7, 8, 9 and 11. Increasing each of these

numbers by m, the new numbers modulus 11 gives us the position of pluses in column

number m+ 1(modulus 11). Hence only the vector of response values and the position of

pluses in the first column is needed in order to create the 11 estimates of σ2, assuming only

one factor is active. The same idea may be exploited in investigating more than one active

factor. In particular run s for any set of k factors will be identical to run s + m(modulus

11) in a different set of k factors if this set is obtained from the first one by shifting each
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factor to the right an equal amount m.

For three active factors only eight of the level combinations are needed. For the three

first columns the four repeated runs are as given in Table 3.1.

Table 3.1: Run numbers for repeated runs in the three first columns in Table 2.3

(+ + -) (+ - +) (- + +) (- - -)
1 3 2 6
8 11 10 12

Once the four replicated runs are detected for any set of three columns, we also get the

position of the replicated runs for any three columns shifted to the right with the same

amount. The following must be true;

n∑
i=1

(yi − ŷi)2 =
∑

i:unrepeated

(yi − ŷi)2 +
∑

i:repeated

(yi − ŷi)2

=
∑

i:unrepeated

(yi − ŷi)2 +
m∑
i=1

mi∑
j=1

(yij − ŷi)2

(3.16)

where ŷi is the fitted value for yi, m is the number of repeated runs and mi is the number

of observations at each repeated run. From this it follows that
n∑
i=1

(yi − ŷi)2 is minimized

when ŷi is chosen equal to yi for all runs that are unrepeated and equal to ȳi, the average

over the mi observations at each repeated run, otherwise.

For the 12-run PB design, it is equivalent to successively assume that the design matrix in

the regression model;

y = Xβ + ε,
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contains in addition to the intercept,

i) only one main effect column

ii) two main effect columns and their interaction column

iii) three main effects columns, their three two-factor interaction columns and their three-

factor interaction column.

This method forces all interactions into the model. For orthogonal columns are satisfied

(i) and (iii). Box and Tyssedal (1996) discussed the non-orthogonality of columns for (iii).

For three main effect columns, say A, B and C, having defining generator I = ±ABC for

eight experiments and ∓ABC for the four others. This means that three-factor interaction

columns is correlated with the column of only +1’s and also have that each main effect

column is correlated with the two-factor interaction column for which it is not involved. It

follows that each column in X is correlated with exactly one other column with an equal

amount of either 1
3 or − 1

3 .
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The first design we use is the six-factor PB design matrix given in Table 4.1. According

to Edwards et al. (2013), this six-factor PB design is ranked best based on the generalized

minimum aberration criterion of Deng and Tang (1999). Its alias structure, assuming no

three or higher order interaction, is as given in Table 4.2.

Table 4.1: Six-factor PB design

Run A B C D E F
1 -1 -1 -1 1 -1 1
2 -1 -1 1 -1 -1 1
3 -1 -1 1 -1 1 -1
4 -1 1 -1 -1 1 -1
5 -1 1 -1 1 1 1
6 -1 1 1 1 -1 -1
7 1 -1 -1 -1 1 1
8 1 -1 -1 1 -1 -1
9 1 -1 1 1 1 -1

10 1 1 -1 -1 -1 -1
11 1 1 1 -1 -1 1
12 1 1 1 1 1 1
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Table 4.2: Alias structure of the six-factor PB design

E(Â) = A+ 1
3BC −

1
3BD −

1
3BE + 1

3BF + 1
3CD + 1

3CE + 1
3CF + 1

3DE −
1
3DF + 1

3EF

E(B̂) = B + 1
3AC −

1
3AD −

1
3AE + 1

3AF + 1
3CD −

1
3CE + 1

3CF + 1
3DE + 1

3DF + 1
3EF

E(Ĉ) = C + 1
3AB + 1

3AD + 1
3AE + 1

3AF + 1
3BD −

1
3BE + 1

3BF + 1
3DE −

1
3DF −

1
3EF

E(D̂) = D − 1
3AB + 1

3AC + 1
3AE −

1
3AF + 1

3BC + 1
3BE + 1

3BF + 1
3CE −

1
3CF + 1

3EF

E(Ê) = E − 1
3AB + 1

3AC + 1
3AD + 1

3AF −
1
3BC + 1

3BD + 1
3BF + 1

3CD −
1
3CF + 1

3DF

E(F̂ ) = F + 1
3AB + 1

3AC −
1
3AD + 1

3AE + 1
3BC + 1

3BD + 1
3BE −

1
3CD −

1
3CE + 1

3DE

4.1 Simulated Models

In investigating the robustness of the methods described in Chapter 3, data were generated

from model 4.1.

y = 2A+ 0.8B +
2

0.4B +ABC + 2
+ ε (4.1)

The data was generated from this non-regular model with noise that was assumed to be

normally distributed with zero mean and equal variance. Tyssedal (2008b) used this func-

tional relationship to study a 12 run PB design using the projective based method, with

noise from a normally distributed error term with mean 0 and standard deviation, σ = 0.3.

The active subspace of the design in Table 4.1 was investigated using simulated responses

from model 4.1 with σ at 0.6, 0.8 and 1.0. The response values are given in Appendix. The

active factors were identified using the factor based methods considered. For one active

factor subspace, six models were compared, for two active factor subspace, fifteen mod-

els were compared and twenty models for three active factor subspace. Table 4.3 display

in chronological order the best five active factors. The Box-Meyer search was conducted

with p = 0.6 and variance inflation factor, g = 2.49. The choice of p was motivated by

the quest to be able to discriminate among models with up to four active factors and g

was set to the default in the BsMD package. In the tables, models with zero probabilities
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are omitted. The residual standard error (σ̂) of the partial F-test for one, two and three

active factors were evaluated at 10, 8 and 4 degrees of freedom respectively. The variance

estimate from the projective based search were computed from the replicated runs. For

one active factor, there are six replicated runs, for two active factors there are four runs

that are replicated two times and for three active factors there are four runs replicated twice.

In Table 4.3, the results from the analysis of the 12-run design for model 4.1 with

σ = {0.6, 0.8, 1.0} are given. The three methods revealed similarities in identifying the

active subspaces. The methods at various values of σ in most cases clearly discriminated

the top ranked active subspace from the others. It was observed the Box-Meyer method

in searching for one and two active factors performed extremely well in discriminating

among models. However, in searching for three active factors, the Box-Meyer method

displayed weak discriminatory power between the two topmost models, although in all

cases it ranked the correct active subspace as the best. The low posterior probabilities

assigned to the best active subspace for three factors indicate that the factor activity for

factor C is very weak. This is because, the posterior probabilities for factors A and B (as

active subspace) is very high at various σ, indicating very strong factor activity for these

two factors. Tyssedal (2008b) reporting on this model at σ = 0.3 using the projection

based search concluded on factors A,B and C as the active factors. The performance of

the projective based and partial F methods from this study does not suggest the need for

follow-up studies.
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Table 4.3: A comparison between factor based methods for identifying one, two and three active
factor(s) in the six-factor 12-run PB design with responses from model 4.1 with σ equal to 0.6, 0.8
and 1.0.

AF Projective based search Box-Meyer Partial F
Factor σ̂2 Factor σ̂2 Post. Prob. Factor σ̂ F

σ = 0.6

1 B 5.19 B 5.18 1.0 B 2.279 73.66
A 39.62 A 6.294 0.970
E 42.87 E 6.548 0.137
F 43.38 F 6.586 0.020
D 43.44 D 6.591 0.005

2 A, B 1.63 A, B 1.69 0.886 A, B 1.277 86.18
B, F 4.53 B, F 3.77 0.011 B, F 2.127 29.34
B, E 5.65 B, E 4.58 0.004 B, E 2.376 22.99
B, C 6.11 B, C 4.91 0.003 B, C 2.472 21.04
B, D 6.45 B, D 5.16 0.002 B, D 2.541 19.78

3 A, B, C 0.45 A, B, C 0.682 0.041 A, B, C 0.667 138.8
A, B, E 1.05 A, B, E 0.888 0.01 A, B, E 1.023 58.7
A, B, F 1.24 A, B, F 0.938 0.007 A, B, F 1.112 49.6
A, B, D 1.59 A, B, D 1.131 0.003 A, B, D 1.261 38.44
B, E, F 3.45 B, E, F 1.858 17.42

σ = 0.8

1 B 4.86 B 4.9 1.0 B 2.204 83.19
A 41.38 A 6.433 0.936
D 45.21 D 6.724 0.107
E 45.24 F 6.726 0.005
F 45.24 E 6.726 0.004

2 A, B 1.18 A, B 1.39 0.945 A, B 1.087 1.25
B, C 4.77 B, C 3.97 0.003 B, C 2.184 28.95
B, F 4.96 B, F 4.11 0.002 B, F 2.227 27.75
B, D 5.67 B, D 4.61 0.001 B, D 2.381 23.95
B, E 5.79 B, E 4.70 0.001 B, E 2.407 23.37

3 A, B, C 0.32 A, B, C 0.659 0.019 A, B, C 0.570 198.6
A, B, F 1.21 A, B, F 0.947 0.003 A, B, F 1.101 52.78
A, B, E 1.64 A, B, E 1.116 0.001 A, B, E 1.279 38.92
A, B, D 1.92 A, B, D 1.248 0.001 A, B, D 1.386 33.1
B, E, F 2.70 B, E, F 1.643 23.38

σ = 1.0

1 B 4.67 B 4.72 1.0 B 2.161 83.81
A 40.01 A 6.326 0.952
D 43.73 D 6.613 0.022
E 43.79 E 6.617 0.009
C 43.80 C 6.618 0.005

2 A, B 0.98 A, B 1.23 0.966 A, B 0.999 146.5
B, C 4.80 B, C 3.98 0.002 B, C 2.191 27.75
B, E 5.09 B, E 4.18 0.001 B, E 2.255 26.06
B, F 5.39 B, F 4.40 0.001 B, F 2.322 24.43
B, D 5.55 B, D 4.51 0.001 B, D 2.355 23.67

3 A, B, C 0.54 A, B, C 0.743 0.005 A, B, C 0.738 114.4
A, B, D 1.17 A, B, D 0.952 0.001 A, B, D 1.080 53.09
A, B, F 1.51 A, B, F 1.051 0.001 A, B, F 1.227 40.98
A, B, E 1.63 A, B, E 1.108 0.001 A, B, E 1.278 37.76
B, E, F 3.18 B, E, F 1.782 19.15
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Further studies of the three factor-based methods using the panel of models suggested

by Tyssedal and Hussain (2016) was carried out. The search for the active subspace of the

design in Table 4.1 using simulated responses from panel of models at various variability

levels, that is, σ = {0.6, 0.8, 1.0} was undertaken. The panel of models accounts for some

possible model situations, such as, the number of active factors, number of terms, number

of interaction, type of interactions, size of the terms and whether model obeys the heredity

principles.

Model 1: y1=A+ 2AB + 2AC+ ε, ε ∼ N(0,σ2)

Model 2: y2=A+ 1.5B + 2C +AB + 1.5AC+ ε, ε ∼ N(0,σ2)

Model 3: y3=A+ 1.5B + 2C + 1.5ABC+ ε, ε ∼ N(0,σ2)

Model 4: y4=2A+BC+ ε, ε ∼ N(0,σ2)

Model 5: y5=A+ C +BC + CD+ ε, ε ∼ N(0,σ2)

Model 6: y6=2A+ 3B + 2C +D + 3CD+ ε, ε ∼ N(0,σ2)

Model 7: y7=4A+B + C +D + 2AD+ ε, ε ∼ N(0,σ2)

Model 8: y8=2A+ 4C + 2BC + 2CD+ ε, ε ∼ N(0,σ2)

One, two and three active factor(s) subspaces respectively were identified using the fac-

tor based methods considered. Tables 4.4, 4.5, and 4.6 display in chronological order the

best five subspaces with one, two and three active factors when σ = {0.6, 0.8, 1.0} re-

spectively. From the analysis, the methods displayed similar results. For the models in

the panel with three active factors, the methods in most models identified the correct ac-

tive subspace (A,B,C), and ranked it as the best among the five topmost subspaces. A

surprising results for model 4 simulated at σ = 0.8 is that all the three methods ranked

A,C,E instead of A,B,C as the most important active subspace, meanwhile factor E
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was inert. Amidst that, the methods in most cases discriminated well among the models at

the levels of σ studied.

Models 5 to 8 involved four factors, the methods’ performance in identifying four ac-

tive factor subspace for a six-factor 12-run PB design has been minimally exploited in

literature. Table 4.7 presents the best three four active factors models identified by the

methods studied. Three factor interactions were assumed negligible and thus for the par-

tial F search, the residual standard error (σ̂) was evaluated with one degree of freedom

for the 12-run PB design. Thus, the model has an intercept, four main effects and six

two-factor interaction. For each four active subspace there exist one replicated run and

thus the projective based search was implemented by comparing the variance for the repli-

cated runs for all fifteen possible models. From the analysis, the methods with σ = 0.6,

except for model 5, identified and ranked the correct active subspace (A,B,C,D) as the

most important. However, with increased variability, the methods in most cases failed to

identify the correct active subspace and also some slight disparity in model preference was

observed among the methods, for instance the results for model 8 at σ = 1.0. The meth-

ods’ did not display enough discriminatory powers among models and the results suggest

a need for follow-up studies.
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Table 4.4: A comparison between factor based methods for identifying one, two and three active
factor(s) in the six-factor 12-run PB design with responses from the panel of models with ε ∼
N(0, (0.6)2)

Mod AF Projective based search Box-Meyer search Partial F search Mod AF Projective based search Box-Meyer search Partial F search
Factor σ̂2 Factor σ̂2 Pos. Prob. Factor σ̂ F Factor σ̂2 Factor σ̂2 Pos. Prob. Factor σ̂ F

1 1 F 8.01 F 7.33 0.393 F 2.831 4.706 5 1 A 2.46 A 2.27 0.823 A 1.5688 11.24
C 10.59 C 9.64 0.087 C 3.255 1.124 C 4.56 C 4.15 0.030 C 2.134 1.463
A 10.97 A 9.98 0.072 A 3.312 0.743 B 4.95 B 4.51 0.019 B 2.226 0.541
B 11.25 B 10.23 0.063 B 3.353 0.477 D 5.08 D 4.62 0.016 D 2.254 0.282
D 11.54 D 10.49 0.055 D 3.397 0.211 F 5.16 F 4.69 0.015 F 2.272 0.119

2 A, B 5.25 A, B 3.91 0.171 A, B 2.292 4.809 2 A, F 1.60 A, F 1.21 0.295 A, F 1.263 8.241
C, F 7.08 C, F 5.22 0.035 C, F 2.66 2.884 A, C 2.22 A, C 1.65 0.052 A, C 1.489 5.182
A, C 7.12 A, C 5.25 0.034 A, C 2.6691 2.848 A, E 2.36 A, E 1.76 0.038 A, E 1.536 4.71
E, F 7.97 E, F 2,824 2.259 A, B 2.71 A, B 2.01 0.018 A, B 1.647 3.747
B, F 8.71 B, F 2.952 1.84 C, D 2.86 C, D 2.12 0.014 C, D 1.691 3.418

3 A, B, C 1.27 A, B, C 0.59 0.643 A, B, C 1.127 12.67 3 A, E, F 0.63 A, E, F 0.464 0.121 A, E, F 0.794 11.27
B, C, F 3.17 B, C, F 1.781 4.734 A, D, F 0.81 A, C, D 0.582 0.035 A, D, F 0.901 8.624
A, B, E 4.48 A, B, E 2.116 3.187 A, B, E 0.93 A, D, F 0.606 0.028 A, B, E 0.967 7.408
A, B, F 5.16 A, B, F 2.272 2.69 A, C, D 0.99 B, C, D 0.674 0.016 A, C, D 0.993 6.992
A, C, D 6.37 A, C, D 2.523 2.073 B, C, D 1.32 B, C, D 1.148 5.089

2 1 C 10.12 C 9.29 0.555 C 3.18 7.605 6 1 B 21.34 B 19.6 0.677 B 4.62 8.838
B 12.71 B 11.61 0.163 B 3.565 4.015 A 32.07 A 29.2 0.076 A 5.663 2.536
A 16.82 A 15.08 0.039 A 4.071 0.745 C 35.56 C 32.4 0.043 C 5.963 1.306
F 16.82 F 15.08 0.036 F 4.101 0.586 E 39.02 E 35.5 0.026 E 6.247 0.302
D 17.43 D 15.85 0.029 D 4.175 0.217 F 39.11 F 35.6 0.026 F 6.254 0.278

2 A, C 4.64 A, C 3.55 0.533 A, C 2.155 10.12 2 C, D 14.36 C, D 10.8 0.209 C, D 3.789 6.668
B, C 5.66 B, C 4.28 0.190 B, C 2.38 7.817 A, B 15.99 A, B 12.0 0.119 A, B 3.998 5.716
C, F 9.76 C, F 7.22 0.011 C, F 3.124 3.415 B, C 20.05 B, C 14.9 0.036 B, C 4.478 4.016
A, B 10.41 A, B 7.68 0.008 A, B 3.226 3.036 B, E 20.95 B, E 15.5 0.028 B, E 4.577 3.729
B, F 11.06 B, F 3.325 2.702 B, F 24.99 B, D 19.3 0.013 B, F 4.999 2.695

3 A, B, C 0.60 A, B, C 0.385 0.971 A,B, C 0.774 41.86 3 B, C, D 6.06 B, C, D 2.73 0.5 B, C, D 2.461 8.908
B, C, F 3.35 B, C, F 1.391 0.001 B, C, F 1.83 7.027 A, B, E 8.33 A, B, E 4.90 0.02 A, B, E 2.886 6.325
A, C, F 3.64 A, C, F 1.498 0.001 A, C, F 1.907 6.427 A, B, C 13.15 A, B, C 3.626 3.796
B, C, E 6.39 B, C, E 2.528 3.408 C, D, F 16.01 C, D, F 4.001 3.016
A, C, D 7.47 A, C, D 2.733 2.834 A, C, D 16.65 A, C, D 4.081 2.877

3 1 C 8.42 C 7.72 0.496 C 2.901 6.487 7 1 A 8.88 A 8.28 0.959 A 2.98 18.96
B 10.80 B 9.85 0.130 B 3.286 2.853 C 21.86 C 19.92 0.008 C 4.675 1.767
A 12.63 A 11.49 0.056 A 3.553 0.993 D 24.53 D 22.32 0.004 D 4.953 0.485
F 13.29 F 12.09 0.042 F 3.646 0.442 E 24.87 E 22.62 0.004 E 4.987 0.343
E 13.30 E 12.10 0.042 E 3.647 0.437 F 25.36 F 23.06 0.003 F 5.036 0.141

2 B, C 6.54 B, C 4.86 0.092 B, C 2.558 4.405 2 A, D 3.01 A, D 2.47 0.885 A, D 1.736 25.77
C, F 7.29 C, F 5.40 0.052 C, F 2.699 3.684 A, C 5.40 A, C 4.18 0.049 A, C 2.324 13.21
B, F 8.02 B, F 5.92 0.031 B, F 2.832 3.103 A, E 9.66 A, E 7.24 0.002 A, E 3.108 6.21
C, E 8.53 C, E 2.920 2.758 A, F 10.47 A, F 7.82 0.002 A, F 3.235 5.524
A, C 8.61 A, C 2.934 2.708 A, B 11.06 A, B 8.25 0.001 A, B 3.326 5.084

3 A, B, C 0.41 A, B, C 0.322 0.989 A, B, C 0.640 47.82 3 A, C, D 0.88 A, C, D 0.632 0.769 A, C, D 0.939 41.07
B, D, F 3.84 B, D, F 1.96 4.591 A, B, D 2.33 A, B, D 1.278 0.017 A, B, D 1.525 15.23
C, E, F 5.11 C, E, F 2.26 3.31 A, D, E 2.77 A, D, E 1.758 0.003 A, D, E 1.664 12.7
A, C, E 5.46 A, C, E 2.337 3.058 A, C, E 2.99 A, D, F 1.877 0.002 A, C, E 1.729 11.72
B, C, F 6.03 B, C, F 2.456 2.716 A, D, F 3.26 A, D, F 1.806 10.69

4 1 A 1.15 A 1.12 1.0 A 1.074 50.43 8 1 C 21.67 C 19.9 0.517 C 4.655 8.126
E 6.70 E 2.588 0.404 A 24.35 A 22.3 0.276 A 4.935 6.129
F 6.74 F 2.596 0.341 B 38.77 B 35.7 0.121 B 6.226 0.131
D 6.87 D 2.622 0.138 D 38.97 D 35.4 0.022 D 6.242 0.08
C 6.96 C 2.638 0.011 E 39.28 F 35.7 0.021 E 6.267 0.000

2 A, E 0.90 A, E 0.73 0.146 A, E 0.949 23.15 2 A, C 8.43 A, C 6.25 0.763 A, C 2.903 12.87
A, D 1.07 A, D 0.850 0.063 A, D 1.033 19.08 B, C 15.11 B, C 11.31 0.037 B, C 3.887 6.00
A, F 1.09 A, F 0.864 0.058 A, F 1.043 18.70 C, D 17.19 C, D 12.81 0.019 C, D 4.146 4.948
A, C 1.43 A, C 1.109 0.015 A, C 1.195 13.59 A, F 19.28 A, F 14.31 0.010 A, F 4.391 4.123
A, B 1.44 A, B 1.118 0.014 A, B 1.2 13.45 A, E 22.15 A, E 16.37 0.005 A, E 4.706 3.245

3 A, B, C 0.19 A, B, C 0.134 0.355 A, B, C 0.434 52.38 3 A, B, C 5.04 A, B, C 2.27 0.075 A, B, C 2.246 10.55
A, E, F 0.81 A, E, F 0.372 0.001 A, E, F 0.902 11.66 A, C, D 6.31 A, C, D 2.72 0.027 A, C, D 2.512 8.323
A, D, E 0.95 A, D, E 0.432 0.001 A, D, E 0.974 9.917 B, C, D 7.94 B, C, D 3.37 0.008 B, C, D 2.817 6.499
A, C, E 1.14 A, C, E 1.067 8.175 A, C, F 9.54 A, C, F 3.089 5.31
A, D, F 1.14 A, D, F 1.067 8.176 A, D, F 10.87 A, E, F 3.339 4.461
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Table 4.5: A comparison between factor based methods for identifying one, two and three active
factor(s) in the six-factor 12-run PB design with responses from the panel of models with ε ∼
N(0, (0.8)2)

Mod AF Projective based search Box-Meyer search Partial F search Mod AF Projective based search Box-Meyer search Partial F search
Factor σ̂2 Factor σ̂2 Pos. Prob. Factor σ̂ F Factor σ̂2 Factor σ̂2 Pos. Prob. Factor σ̂ F

1 1 F 9.37 F 8.54 0.208 F 3.061 2.479 5 1 A 4.55 A 4.18 0.645 A 2.133 7.876
A 10.12 A 9.22 0.137 A 3.182 1.546 C 6.76 C 6.17 0.076 C 2.601 2.019
B 10.82 B 9.85 0.095 B 3.29 0.72 D 8.02 D 7.29 0.003 D 2.831 0.142
C 11.52 C 10.48 0.068 C 3.395 0.145 B 8.06 B 7.33 0.029 B 2.839 0.085
D 11.59 D 10.53 0.066 D 3.404 0.091 F 8.06 F 7.33 0.029 F 2.839 0.084

2 A, B 4.15 A, B 3.08 0.144 C, F 2.576 1.969 2 A, E 2.57 A, E 1.94 0.402 A, E 1.603 7.881
A, C 4.50 A, C 3.33 0.095 B, F 2.629 1.708 A, F 3.86 A, F 2.87 0.047 A, F 1.964 4.356
B, F 6.41 B, F 4.70 0.014 A, F 2.642 1.647 A, C 3.96 A, C 2.94 0.041 A, C 1.99 4.176
C, F 6.88 D, F 2.747 1.186 C, D 4.51 C, D 3.34 0.02 C, D 2.125 3.337
E, F 7.26 E, F 2.747 1.185 B, C 5.30 B, C 2.302 2.449

3 A, B, C 0.29 A, B, C 0.999 0.204 B, C, F 2.597 1.576 3 A, B, E 0.89 A, B, E 0.426 0.306 A, B, E 0.942 12.53
A, C, E 4.20 A, C, F 2.612 1.528 A, E, F 1.09 A, E, F 0.492 0.139 A, E, F 1.043 10.10
A, B, F 4.26 A, B, F 2.671 1.344 A, D, F 2.29 A, D, F 1.513 4.501
A, C, F 4.56 C, D, F 2.731 1.17 B, C, E 2.62 B, C, E 1.617 3.869
B, C, F 4.71 C, E, F 2.731 1.169 B, C, D 2.74 B, C, D 1.655 3.67

2 1 C 9.35 C 8.58 0.01 C 3.058 6.652 6 1 B 27.61 B 25.4 0.596 B 5.254 7.742
B 11.62 B 10.61 0.156 B 3.409 3.407 A 38.62 A 35.2 0.097 A 6.215 2.681
A 14.12 A 12.86 0.054 A 3.758 1.031 C 42.16 C 38.4 0.061 C 6.493 1.617
F 14.84 F 13.50 0.041 F 3.853 0.493 F 47.48 F 43.2 0.032 F 6.891 0.315
D 15.50 D 14.10 0.033 D 3.937 0.047 D 48.03 D 43.7 0.03 D 6.931 0.197

2 A, C 3.92 A,C 3.00 0.684 A, C 1.98 10.58 2 C, D 16.78 C, D 12.6 0.283 C, D 4.097 7.061
B, C 6.12 B, C 4.58 0.067 B, C 2.475 5.813 A, B 20.75 A, B 15.5 0.093 A, B 4.555 5.202
C, F 8.40 C, F 6.22 0.012 C, F 2.898 3.515 B, C 23.71 B, C 17.6 0.046 B, C 4.87 4.219
A, B 8.54 A, B 6.32 0.011 A, B 2.922 3.935 B, E 25.97 B, E 19.2 0.028 B, E 5.096 3.62
B, F 10.71 B, F 3.272 2.183 B, F 32.29 B, F 5.685 2.39

3 A, B, C 0.31 A, B, C 0.259 0.993 A, B, C 0.56 70.28 3 B, C, D 3.93 B, C, D 1.91 0.736 B, C, D 1.983 17.23
A, C, F 2.22 A, C, F 0.966 0.001 A, C, F 1.491 9.443 A, B, E 9.34 A, B, E 4.05 0.012 A, B, E 3.057 6.918
B, C, F 2.95 B, C, F 1.718 6.966 A, B, C 10.95 A, B, C 3.309 5.818
A, B, F 4.94 A, B, F 2.222 3.935 A, C, D 11.97 A, C, D 3.459 5.276
A, C, E 5.75 A, C, E 2.397 3.30 C, D, F 21.66 C, D, F 4.654 2.658

3 1 C 7.51 C 6.89 0.569 C 2.744 7.534 7 1 A 10.74 A 9.98 0.939 A 3.276 16.73
B 10.16 B 9.28 0.111 B 3.188 2.957 C 24.44 C 22.27 0.011 C 4.943 1.741
A 11.30 A 10.30 0.063 A 3.362 1.648 D 26.86 D 24.44 0.007 D 5.183 0.6812
F 12.05 F 10.97 0.044 F 3.472 0.925 F 27.53 F 25.04 0.006 F 5.247 0.422
D 13.16 E 11.96 0.027 E 3.628 0.005 E 28.42 E 25.84 0.005 E 5.331 0.096

2 B, C 3.70 B, C 2.81 0.525 B, C 1.923 9.208 2 A, D 3.96 A, D 3.19 0.864 A, D 1.991 21.46
C, F 5.28 C, F 3.95 0.081 C, F 2.298 5.648 A, C 7.27 A, C 5.56 0.041 A, C 2.696 10.49
A, C 6.41 A, C 4.760 0.029 A, C 2.532 4.18 A, F 11.88 A, F 8.87 0.003 A, F 3.446 5.386
B, F 8.19 B, F 2.862 2.69 A, E 12.95 A, E 9.64 0.002 A, E 3.598 4.721
A, F 8.63 A, F 2.938 2.418 A, B 13.25 A, B 9.86 0.002 A, B 3.64 4.551

3 A, B, C 0.71 A, B, C 0.406 0.871 A, B, C 0.8413 26.00 3 A, C, D 1.77 A, C, D 0.945 0.177 A, C, D 1.331 22.55
B, C, F 2.24 B, C, F 0.930 0.009 B, C, F 1.496 7.835 A, B, D 2.48 A, B, D 1.274 0.034 A, B, D 1.574 15.97
A, C, F 1.491 A, C, F 2.002 4.12 A, D, E 3.16 A, D, E 1.683 0.007 A, D, E 1.778 12.4
C, E, F 4.09 C, E, F 2.022 4.03 A, C, E 3.80 A, D, F 2.01 0.003 A, C, E 1.949 10.22
B, C, E 4.77 B, C, E 2.185 3.37 A, D, F 4.63 A, D, F 2.152 8.282

4 1 A 1.03 A 1.03 1.0 A 1.017 71.74 8 1 C 19.02 C 17.5 0.678 C 4.362 9.182
E 8.16 E 2.856 0.364 A 26.31 A 24.00 0.118 A 5.129 3.872
F 8.41 F 2.903 0.048 D 35.42 D 32.2 0.024 D 5.951 0.303
C 8.43 C 2.903 0.029 B 35.65 B 32.4 0.023 B 5.971 0.235
B 8.44 B 2.903 0.018 F 36.47 F 33.2 0.02 F 6.039 0.005

2 A, E 0.92 A, E 0.763 0.084 A, E 0.960 27.91 2 A, C 11.04 A, C 8.36 0.28 A, C 3.322 8.353
A, D 1.05 A, D 0.855 0.045 A, D 1.025 24.18 C, D 11.73 C, D 8.86 0.204 C, D 3.425 7.705
A, F 1.17 A, F 0.945 0.026 A, F 1.084 21.32 B, C 12.81 B, C 9.63 0.129 B, C 3.579 6.829
A, C 1.26 A, C 1.008 0.018 A, C 1.123 19.66 A, E 20.79 A, E 15.36 0.01 A, E 4.559 3.185
A, B 1.27 A, B 1.015 0.017 A, B 1.128 19.48 C, F 23.15 C, F 4.811 2.587

3 A, C, E 0.56 A, C, E 0.312 0.004 A, C, E 0.751 20.84 3 B, C, D 4.48 B, C, D 2.06 0.152 B, C, D 2.116 11.08
A, D, E 0.93 A, D, E 0.447 0.001 A, D, E 0.963 12.45 A, C, D 5.98 A, C, D 2.58 0.045 A, C, D 2.445 8.147
A, C, D 0.98 A, C, D 0.991 11.72 A, B, C 6.57 A, B, C 2.80 0.028 A, B, C 2.563 7.365
A, B, C 1.09 A, B, C 1.043 10.52 C, D, F 6.93 C, D, F 2.92 0.022 C, D, F 2.633 6.948
A, E, F 1.13 A, E, F 1.062 10.14 A, D, F 10.44 A, D, F 3.231 4.423
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4.1 Simulated Models

Table 4.6: A comparison between factor based methods for identifying one, two and three active
factor(s) in the six-factor 12-run PB design with responses from the panel of models with ε ∼
N(0, (1.0)2)

Mod AF Projective based search Box-Meyer search Partial F search Mod AF Projective based search Box-Meyer search Partial F search
Factor σ̂2 Factor σ̂2 Pos. Prob. Factor σ̂ F Factor σ̂2 Factor σ̂2 Pos. Prob. Factor σ̂ F

1 1 F 11.41 F 10.4 0.354 F 3.378 4.219 5 1 A 4.14 A 3.80 0.415 A 2.037 4.911
A 14.63 A 13.3 0.092 A 3.825 1.093 C 5.44 C 4.96 0.096 C 2.333 1.371
C 14.68 C 13.4 0.091 C 3.831 1.058 E 5.89 E 5.36 0.062 E 2.427 0.508
E 16.21 E 14.7 0.053 E 4.027 0.01 B 6.11 B 5.56 0.051 B 2.473 0.120
B 16.22 D 14.7 0.053 B 4.028 0.004 F 6.12 F 5.57 0.051 F 2.474 0.109

2 A, B 7.30 A, B 5.44 0.180 A, B 2.702 4.741 2 A, E 1.598 A, E 1.91 0.237 A, E 1.598 5.411
A, C 10.25 A, C 7.55 0.03 A, C 3.202 2.609 B, C 3.61 B, C 2.67 0.038 B, C 1.9 3.045
C, F 11.27 C, F 8.28 0.018 C, F 3.357 2.134 A, F 4.04 A, F 2.97 0.021 A, F 2.009 2.441
E, F 11.37 E, F 3.372 2.09 A, C 4.22 A, C 2.053 2.226
B, F 11.91 B, F 3.451 1.875 A, B 4.52 A, B 2.125 1.9

3 A, B, C 0.34 A, B, C 0.319 0.997 A, B, C 0.586 68.33 3 A, E, F 1.28 A, E, F 0.545 0.069 A, E, F 1.132 6.329
A, B, F 6.01 A, B, F 2.451 3.289 A, B, E 1.74 A, B, E 1.318 4.52
C, E, F 6.41 C, E, F 2.531 3.047 B, C, D 1.96 B, C, D 1.401 3.931
B, C, F 6.68 B, C, F 2.585 2.897 B, C, E 2.23 B, C, E 1.493 3.395
A, C, E 8.92 A, C, E 2.986 2.078 A, D, E 2.39 A, D, E 1.546 3.126

2 1 C 9.68 C 8.91 0.707 C 3.112 9.107 6 1 B 29.06 B 26.7 0.588 B 5.391 7.697
B 15.14 B 13.8 0.064 B 3.891 2.221 A 40.54 A 37.0 0.098 A 6.3671 2.686
A 16.98 A 15.46 0.034 A 4.121 0.894 C 43.49 C 39.6 0.067 C 6.595 1.826
D 17.99 D 16.36 0.025 D 4.241 0.285 E 49.67 E 45.2 0.032 E 7.048 0.353
E 18.22 E 16.56 0.023 E 4.268 0.155 F 50.16 F 45.6 0.031 F 7.083 0.252

2 A, C 3.97 A, C 3.08 0.794 A, C 1.994 12.85 2 C, D 18.30 C, D 13.8 0.242 C, D 4.278 6.702
B, C 7.84 B, C 5.85 0.023 B, C 2.8 5.197 A, B 22.36 A, B 16.7 0.084 A, B 4.729 5.00
C, D 10.32 C, D 7.63 0.005 C, D 3.212 3.311 B, E 23.39 B, E 17.4 0.066 B, E 4.837 4.662
C, E 10.35 C, E 7.65 0.005 C, E 3.217 3.292 B, C 26.0 B, C 19.3 0.038 B, C 5.099 3.926
C, F 10.60 C, F 7.83 0.005 C, F 3.255 3.153 B, F 33.70 B, F 5.805 2.42

3 A, B, C 1.89 A, B, C 0.866 0.217 A, B, C 1.376 13.39 3 B, C, D 6.67 B, C, D 2.92 0.271 B, C, D 2.582 10.45
A, C, F 4.20 A, C, F 1.73 0.005 A, C, F 2.05 5.715 A, B, E 9.82 A, B, E 4.24 0.035 A, B, E 3.134 6.91
A, C, E 5.62 A, C, E 2.371 4.13 A, B, C 11.10 A, B, C 3.331 6.05
B, C, F 5.88 B, C, F 2.425 3.923 A, C, D 17.46 A, C, D 4.178 3.637
B, C, E 6.35 B, C, E 2.519 3.593 C, D, E 18.48 C, D, E 4.299 3.403

3 1 C 10.13 C 9.31 0.678 C 3.182 8.643 7 1 A 12.39 A 11.6 0.974 A 3.521 21.49
A 15.65 A 17.16 0.136 A 3.956 2.061 C 33.70 C 30.7 0.005 C 5.805 1.581
B 16.70 B 15.21 0.046 B 4.086 1.304 F 37.63 F 34.2 0.003 F 6.134 0.372
E 18.37 E 16.70 0.027 E 4.286 0.277 E 37.73 E 34.3 0.002 E 6.142 0.345
F 18.74 F 17.04 0.024 F 4.33 0.07 D 38.00 D 34.6 0.002 D 6.164 0.270

2 A, C 8.54 A, C 6.36 0.082 A, C 2.922 4.701 2 A, D 6.27 A, D 4.97 0.580 A, D 2.504 18.08
C, F 8.94 C, F 6.65 0.064 C, F 2.991 4.368 A, C 8.79 A, C 6.78 0.105 A, C 2.965 12.13
B, C 9.20 B, C 6.83 0.055 B, C 3.033 4.175 A, F 12.97 A, F 9.78 0.014 A, F 3.601 7.365
B, F 11.73 B, F 3.425 2.698 A, E 13.78 A, E 10.36 0.01 A, E 3.712 6.776
C, E 12.01 C, E 3.466 2.571 A, B 15.20 A, B 11.38 0.006 A, B 3.899 5.89

3 A, B, C 2.20 A, B, C 1.025 0.385 A, B, C 1.485 11.66 3 A, B, D 2.12 A, B, D 1.32 0.21 A, B, D 1.456 25.73
B, C, F 6.00 B, C, F 2.45 3.921 A, C, E 4.55 A, C, E 2.10 0.016 A, C, E 2.134 11.67
C, E, F 6.55 C, E, F 2.559 3.545 A, C, D 4.77 A, C, D 2.14 0.015 A, C, D 2.184 11.12
A, C, F 6.66 A, C, F 2.58 3.478 A, D, F 5.86 A, D, F 2.56 0.006 A, D, F 2.421 8.942
A, B, F 8.90 A, B, F 2.983 2.46 A, B, C 10.71 A, B, C 3.272 4.636

4 1 A 1.99 A 1.88 0.992 A 1.411 29.16 8 1 C 20.4 C 18.7 0.5 C 4.517 7.344
D 7.31 D 6.65 0.001 D 2.704 0.661 A 23.34 A 21.4 0.243 A 4.831 5.163
B 7.69 B 7.00 0.001 B 2.774 0.131 D 34.56 D 31.4 0.029 D 5.879 0.237
C 7.71 C 7.01 0.001 C 2.776 0.113 B 34.61 B 31.5 0.029 B 5.883 0.223
F 7.74 F 7.04 0.001 F 2.783 0.065 E 35.25 E 32.0 0.026 E 5.937 0.037

2 A, F 1.79 A, F 1.38 0.083 A, F 1.339 11.83 2 A, C 10.44 A, C 7.92 0.397 A, C 3.231 8.629
A, D 1.85 A, D 1.42 0.07 A, D 1.361 11.36 C, D 12.46 C, D 9.37 0.157 C, D 3.53 6.799
A, C 2.12 A, C 1.62 0.035 A, C 1.456 9.584 B, C 15.43 B, C 11.50 0.051 B, C 3.928 4.976
A, B 2.30 A, B 1.74 0.023 A, B 1.516 8.643 A, E 19.29 A, E 14.27 0.016 A, E 4.392 3.448
A, E 2.45 A, E 1.85 0.016 A, E 1.566 7.922 A, F 19.49 A, F 14.41 0.015 A, F 4.415 3.385

3 A, B, C 0.76 A, B, C 0.352 0.047 A, B, C 0.875 13.99 3 A, C, D 4.30 A, C, D 1.96 0.187 A, C, D 2.074 11.18
A, D, F 0.89 A, D, F 0.420 0.018 A, D, F 0.943 11.96 B, C, D 5.00 B, C, D 2.24 0.09 B, C, D 2.236 9.536
A, B, F 1.29 A, B, F 0.548 0.004 A, B, F 1.137 8.036 A, B, C 6.29 A, B, C 2.69 0.033 A, B, C 2.507 7.47
A, C, D 2.10 A, C, D 1.449 4.732 A, E, F 7.58 A, E, F 3.19 0.013 A, E, F 2.753 6.10
A, B, E 2.16 A, B, E 1.47 4.579 A, B, E 8.71 A, B, E 2.951 5.231
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Chapter 4. Analysis and Results

Table 4.7: A comparison between factor based methods in identifying four active factors in the
six-factor 12-run PB design with responses from the panel of models (model 5 to 8).

Model Projective based search Box-Meyer search Partial F search
Factor σ̂2 Factor σ̂2 Pos. Prob. Factor σ̂ F

σ = 0.6

5 A, D, E, F 0.03 A, C, E, F 0.083 0.341 A, D, E, F 0.184 153.6
A, C, E, F 0.11 A, D, E, F 0.069 0.253 A, C, E, F 0.327 48.63
A, B, E, F 0.70 A, B, E, F 0.135 0.024 A, B, E, F 0.834 7.409

6 A, B, C, D 0.50 A, B, C, D 0.408 0.887 A, B, C, D 0.703 81.24
A, B, D, E 0.66 B, C, D, F 0.767 0.027 A, B, D, E 1.564 16.34
B, C, D, F 3.98 A, B, D, E 0.995 0.007 B, C, D, F 1.998 9.966

7 A, B, C, D 0.005 A, B, C, D 0.30 0.03 A, B, C, D 0.069 5411
A, D, E, F 0.044 A, D, E, F 0.312 0.024 A, D, E, F 0.209 589.8
A, C, D, E 1.110 A, C, D, F 0.432 0.004 A, C, D, E 1.054 23.05

8 A, B, C, D 0.024 A, B, C, D 0.398 0.617 A, B, C, D 0.155 1630
A, C, E, F 0.704 A, C, E, F 0.484 0.212 A, C, E, F 0.839 55.72
A, B, C, F 4.960 A, C, D, F 0.935 0.006 A, B, C, F 2.227 7.819

σ = 0.8

5 A, B, E, F 0.030 A, D, E, F 0.079 0.344 A, B, E, F 0.178 256.9
A, D, E, F 0.041 A, B, E, F 0.087 0.207 A, D, E, F 0.202 198.7
A, B, D, E 0.211 A, B, C, D 0.094 0.131 A, B, D, E 0.459 38.54

6 A, B, D, E 0.046 A, B, C, D 0.425 0.522 A, B, D, E 0.214 1069
A, B, C, D 0.268 A, B, D, E 0.558 0.118 A, B, C, D 0.518 182.5
A, B, E, F 4.060 B, C, D, F 0.880 0.010 A, B, E, F 2.015 11.97

7 A, D, E, F 0.022 A, B, C, D 0.307 0.039 A, D, E, F 0.147 1334
A, B, C, D 0.120 A, D, E, F 0.311 0.036 A, B, C, D 0.34 248.1
A, C, D, F 0.681 A, C, D, F 0.312 0.036 A, C, D, F 0.825 42.01

8 A, C, E, F 0.120 A, C, E, F 0.348 0.516 A, C, E, F 0.347 302.8
A, D, E, F 1.949 A, D, E, F 0.505 0.067 A, D, E, F 1.396 18.63
B, C, D, F 4.024 A, B, C, D 0.508 0.031 B, C, D, F 2.006 8.969

σ = 1.0

5 A, B, D, E 0.053 B, C, D, E 0.133 0.190 A, B, D, E 0.230 117.4
A, D, E, F 0.075 A, B, E, F 0.138 0.160 A, D, E, F 0.273 83.2
B, C, D, E 0.25 A, D, E, F 0.138 0.160 B, C, D, E 0.50 24.7

6 A, B, C, D 0.163 A, B, C, D 0.501 0.885 A, B, C, D 0.404 314.4
A, B, D, E 1.782 B, C, D, E 0.879 0.040 A, B, D, E 1.335 28.74
A, B, C, E 3.00 A, B, D, E 1.022 0.018 A, B, C, E 1.733 17.03

7 A, B, C, E 0.046 A, B, D, F 0.525 0.144 A, B, C, E 0.215 841.7
A, B, D, F 0.573 A, C, D, E 0.688 0.032 A, B, D, F 0.757 68
A, B, D, E 1.418 A, B, C, E 0.695 0.031 A, B, D, E 1.191 27.4

8 A, C, E, F 0.168 A, B, C, D 0.383 0.459 A, C, E, F 0.410 210.2
A, B, C, D 0.235 A, C, E, F 0.425 0.259 A, B, C, D 0.485 150.4
A, C, D, F 1.520 A, C, D, F 0.479 0.135 A, C, D, F 1.233 23.15

60



4.1 Simulated Models

The 16-run design of Johnson and Jones (2011) for six-factors displayed in Table 2.9

was also investigated in order to compare the search performance of the three factor-

based methods considered for this thesis. Using simulated responses from model 4.1 at

σ = {0.6, 0.8, 1.0} given in Appendix, one, two and three active factor(s) respectively

were identified. The residual standard error (σ̂) of the partial F-test for one, two and three

active factors were evaluated at 14, 12 and 8 degrees of freedom respectively. The variance

estimate from the projective based search were computed from the replicated runs. For one

active factor, there are eight replicated runs, for two active factors there are four runs that

are replicated four times and for three active factors there are eight runs replicated twice.

Table 4.8 displays in chronological order the best five one active factor, two and three

active factors with σ = {0.6, 0.8, 1.0} respectively. The results from the analysis of the

16-run design also reveal that for model 4.1 the three methods performed similar in identi-

fying active subspaces. The methods at various values of σ in most cases clearly discrimi-

nated the top ranked active subspace from the others. It was observed that all the methods

in searching for one and two active factors performed extremely well in discriminating

among models. However, in searching for three active factors, the methods displayed

relatively weak discriminatory power between the two topmost models, although in all

cases each ranked the correct active subspace as the best. The low posterior probabilities

assigned by the Box-Meyer search to most of the best active subspaces for three factors

indicate that the factor activity for factor C is quite weak. This is because, the posterior

probabilities for factors A and B (as active subspace) is very high at various σ, indicating

strong factor activity for these two factors.
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Table 4.8: A comparison between factor based methods for identifying one, two and three active
factor(s) in the six-factor 16-run design with responses from model 4.1 with σ equal to 0.6, 0.8 and
1.0.

AF Projective based search Box-Meyer Partial F
Factor σ̂2 Factor σ̂2 Pos. Prob. Factor σ̂ F

σ = 0.6

1 B 6.66 B 6.558 1.0 B 2.58 75.36
A 37.33 A 6.11 1.935
D 42.45 D 6.515 0.017
E 42.47 E 6.586 0.020
F 42.48 F 6.518 0.002

2 A, B 1.60 A, B 1.67 0.998 A, B 1.266 119.6
B, E 7.32 B, E 6.60 0.000 B, E 2.706 23.07
B, F 7.69 4 B, F 2.773 21.79
B, D 7.71 B, D 2.776 21.74
B, C 7.75 B, C 2.784 21.58

3 A, B, C 0.31 A, B, C 0.55 0.358 A, B, C 0.55 279.8
A, B, F 1.20 A, B, F 1.029 0.004 A, B, F 1.095 69.69
A, B, E 1.24 A, B, E 1.051 0.003 A, B, E 1.114 67.31
A, B, D 2.14 A, B, D 1.462 38.59
B, C, E 7.24 B, C, E 2.69 10.6

σ = 0.8

1 B 5.73 B 5.69 1.0 B 2.393 91.44
A 39.46 A 6.282 1.297
C 42.78 C 6.541 0.109
E 42.97 E 6.555 0.050
F 42.99 F 6.557 0.040

2 A, B 2.40 A, B 2.30 0.922 A, B 1.549 79.86
B, E 5.69 B, E 4.91 0.003 B, E 2.386 31.34
B, C 6.12 B, C 5.24 0.002 B, C 2.473 28.91
B, F 6.13 B, F 5.26 0.002 B, F 2.476 28.83
B, D 6.54 B, D 5.58 0.001 B, D 2.558 26.76

3 A, B, C 0.67 A, B, C 0.755 0.329 A, B, C 0.818 127.6
A, B, E 0.89 A, B, E 0.874 0.110 A, B, E 0.945 95.31
A, B, F 2.76 A, B, F 1.66 30.17
A, B, D 2.98 A, B, D 1.726 27.81
B, C, F 4.76 B, C, F 2.182 16.98

σ = 1.0

1 B 5.68 B 5.63 1.0 B 2.383 88.18
A 37.82 A 6.15 1.349
F 41.18 F 6.417 0.098
E 41.34 E 6.434 0.021
D 41.42 D 6.436 0.014

2 A, B 2.25 A, B 2.17 0.947 A, B 1.5 81.95
B, F 6.16 B, F 5.26 0.001 B, F 2.481 27.44
B, E 6.39 B, E 5.44 0.001 B, E 2.527 26.3
B, F 6.43 B, F 5.48 0.001 B, C 2.536 26.09
B, D 6.47 B, D 5.51 0.001 B, D 2.544 25.89

3 A, B, C 1.17 A, B, C 1.0 0.044 A, B, C 1.081 69.82
A, B, F 1.99 A, B, D 1.44 0.003 A, B, F 1.411 40.48
A, B, E 2.30 A, B, E 1.60 0.001 A, B, E 1.515 35
A, B, D 3.12 A, B, D 1.766 25.45
B, C, F 4.32 B, C, F 2.078 18.05
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4.1 Simulated Models

Using the panel of models suggested by Tyssedal and Hussain (2016), further studies on

the search performance of the three factor based methods in identifying the active sub-

space of the design in Table 2.9 using simulated responses at σ = {0.6, 0.8, 1.0} were

performed. Tables 4.9, 4.10 and 4.11 display in chronological order the best five sub-

spaces with one, two and three active factors with σ = {0.6, 0.8, 1.0} respectively. From

the analysis, the methods displayed similar results. For the models in the panel with three

active factors, the methods in most cases identified the correct active subspace (A,B,C),

and ranked it as best among the five topmost subspaces. For model 3 with σ = 1.0, all the

three methods ranked A,C,E instead of A,B,C as the most important active subspace,

meanwhile factor E was inert, however, the methods weakly discriminated among the two

topmost models, an exception could be made for the Box-Meyer search for the high poste-

rior probability (0.854) assigned to subspace A,C,E compared to 0.146 for A,B,C. In

general, the methods in most cases discriminated well among the models at the levels of σ

studied.
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Table 4.9: A comparison between factor based methods for identifying one, two and three active fac-
tor(s) in the six-factor 16-run design with responses from the panel of models with ε ∼ N(0, (0.6)2)

Mod AF Projective based search Box-Meyer search Partial F search Mod AF Projective based search Box-Meyer search Partial F search
Factor σ̂2 Factor σ̂2 Pos. Prob. Factor σ̂ F Factor σ̂2 Factor σ̂2 Pos. Prob. Factor σ̂ F

1 1 A 9.26 A 8.66 0.188 A 3.043 2.534 5 1 C 2.62 C 2.46 0.481 C 1.62 6.151
F 9.41 F 8.80 0.087 F 3.068 2.266 A 3.09 A 2.90 0.141 A 1.759 3.079
E 9.87 E 9.22 0.117 E 3.141 0.743 E 3.56 E 3.32 0.050 E 1.886 0.859
D 10.92 D 10.20 0.055 D 3.305 0.011 F 3.63 F 3.38 0.044 F 1.904 0.581
B 10.94 B 10.20 0.055 B 3.307 0.001 D 3.75 D 3.50 0.034 D 1.936 0.102

2 A, C 4.91 A, C 3.99 0.434 A, C 2.215 6.398 2 C, D 1.95 C, D 1.58 0.135 C, D 1.397 5.027
A, B 6.14 A, B 4.96 0.084 A, B 2.478 4.311 B, C 2.07 B, C 1.67 0.088 B, C 1.438 4.517
A, F 8.99 A, F 7.22 0.005 A, F 2.998 1.677 A, C 2.27 A, C 1.83 0.045 A, C 1.505 3.783
A, E 9.55 A, E 3.091 1.339 C, E 2.68 C, E 1.636 2.585
A, D 10.79 A, D 3.284 0.732 C, F 2.69 C, F 1.641 2.544

3 A, B, C 0.23 A, B, C 0.222 1.0 A, B, C 0.477 94.69 3 B, C, D 1.43 B, C, D 0.795 0.033 B, C, D 1.194 4.154
A, B, F 4.22 A, B, F 2.055 4.036 C, D, E 1.44 C, D, E 1.199 4.115
A, C, E 5.01 A, C, E 2.238 3.225 B, C, E 1.69 B, C, E 1.3 3.323
A, B, E 5.13 A, B, E 2.265 3.121 C, D, F 1.71 C, D, F 1.309 3.266
A, C, F 5.31 A, C, F 2.305 2.974 A, C, D 1.72 A, C, D 1.313 3.239

2 1 C 9.14 C 8.58 0.567 C 3.024 7.774 6 1 B 20.94 B 19.6 0.525 B 4.576 6.81
B 10.84 B 10.14 0.162 B 3.292 4.38 A 25.60 A 24.0 0.116 A 5.068 2.967
A 12.91 A 12.06 0.044 A 3.593 1.427 C 27.16 C 25.4 0.076 C 5.212 2.043
E 13.59 E 12.70 0.030 E 3.687 0.649 D 29.47 D 27.5 0.042 D 5.429 0.788
F 13.61 F 12.71 0.030 F 3.689 0.634 E 31.13 E 29.0 0.028 E 5.579 0.005

2 A, C 5.99 A, C 4.87 0.283 A, C 2.447 7.09 2 A, B 18.08 A, B 14.6 0.057 A, B 4.252 4.034
B, C 6.70 B, C 5.44 0.125 B, C 2.588 5.913 C, D 18.44 C, D 14.9 0.050 C, D 4.294 3.879
C, E 7.16 C, E 5.80 0.076 C, E 2.676 5.271 B, C 19.79 B, C 16.0 0.029 B, C 4.449 3.339
A, B 9.29 A, B 7.46 0.011 A, B 3.048 3.146 C, E 22.21 C, E 4.713 2.54
C, F 9.82 C, F 3.134 2.76 B, F 20.79 B, F 4.56 2.988

3 A, B, C 0.21 A, B, C 0.245 1.0 A,B, C 0.463 131.8 3 B, C, D 9.72 B, C, D 5.42 0.124 B, C, D 3.117 5.266
A, C, E 5.77 A, C, E 2.402 3.733 C, D, E 13.20 C, D, E 3.633 3.575
A, C, F 5.84 A, C, F 2.416 3.733 C, D, F 14.58 C, D, F 3.818 3.128
A, B, F 6.53 A, B, F 2.555 3.215 A, C, D 18.06 A, C, D 4.25 2.304
B, C, F 6.80 B, C, F 2.608 3.038 B, C, E 18.88 B, C, E 4.345 2.155

3 1 C 6.73 C 6.63 0.731 C 2.595 9.429 7 1 A 6.94 A 6.64 0.999 A 2.634 36.47
B 9.32 B 8.71 0.066 B 3.052 2.932 E 23.59 E 4.857 0.843
A 9.78 A 9.41 0.046 A 3.127 2.136 D 23.87 D 4.886 0.670
F 11.22 F 10.47 0.017 F 3.350 0.060 F 24.07 F 4.906 0.547
D 11.26 D 10.51 0.042 D 3.356 0.011 B 24.09 B 4.908 0.535

2 B, C 5.56 B, C 4.51 0.099 B, C 2.358 5.458 2 A, D 2.12 A, D 1.91 0.992 A, D 1.455 51.12
C, E 5.85 C, E 4.74 0.068 C, E 2.418 4.991 A, E 5.33 A, E 4.46 0.002 A, E 2.309 17.88
A, C 6.09 A, C 4.93 0.051 A, C 2.468 4.635 A, F 6.95 A, F 2.636 12.79
B, E 6.59 B, E 5.32 0.028 B, E 2.567 3.98 A, B 7.02 A, B 2.649 12.63
A, E 6.84 A, E 5.52 0.022 A, E 2.615 2.708 A, C 7.38 A, C 2.717 11.82

3 A, B, C 0.12 A, B, C 0.166 0.964 A, B, C 0.341 192.7 3 A, B, D 1.55 A, B, D 1.05 0.106 A, B, D 1.363 25.78
A, B, E 0.29 A, B, E 0.258 0.036 A, B, E 0.538 76.86 A, D, F 1.86 A, D, F 1.20 0.059 A, D, F 1.363 25.78
B, C, F 5.57 B, C, F 2.36 2.904 A, C, D 2.00 A, C, D 1.29 0.023 A, C, D 1.414 23.88
B, C, E 5.74 B, C, E 2.396 2.782 A, D, E 2.45 A, D, E 1.55 0.009 A, D, E 1.566 19.25
B, D, E 6.56 B, D, E 2.562 2.29 A, E, F 5.98 A, E, F 2.446 7.219

4 1 A 2.11 A 2.02 0.998 A 1.453 32.42 8 1 C 13.18 C 12.5 0.970 C 3.63 18.44
E 6.37 E 2.524 1.39 A 25.36 A 23.7 0.008 A 5.036 2.853
F 6.74 F 2.597 0.535 E 29.39 E 27.4 0.003 E 5.421 0.545
C 6.85 C 2.617 0.315 F 29.88 F 27.9 0.002 F 5.466 0.308
D 7.00 D 2.646 0.006 D 30.50 D 28.5 0.002 D 5.523 0.014

2 A, E 1.65 A, E 1.38 0.193 A, E 1.286 15.76 2 A, C 9.22 A, C 7.59 0.287 A, C 3.036 12.00
A, F 2.12 A, F 1.750 0.032 A, F 1.456 11.41 B, C 10.82 B, C 8.85 0.090 B, C 3.289 9.171
A, C 2.22 A, C 1.83 0.023 A, C 1.491 10.70 C, D 10.85 C, D 8.88 0.088 C, D 3.294 9.133
A, B 2.46 A, B 2.01 0.011 A, B 1.568 9.29 C, E 12.33 C, E 10.05 0.035 C, E 3.511 7.56
A, D 2.462 A, D 2.018 0.011 A, D 1.569 9.284 C, F 13.05 C, F 10.62 0.023 C, F 3.612 6.921

3 A, B, C 0.23 A, B, C 0.189 0.988 A, B, C 0.484 58.69 3 A, B, C 6.91 A, B, C 3.93 0.052 A, B, C 2.629 7.695
A, B, E 1.35 A, B, E 1.162 9.24 A, C, D 6.99 A, C, D 4.00 0.046 A, C, D 2.643 7.600
A, E, F 1.85 A, E, F 1.361 6.414 C, D, E 7.88 C, D, E 5.09 0.007 B, C, D 2.808 6.602
A, D, E 1.92 A, D, E 1.385 6.155 C, D, F 8.52 B, C, D 5.27 0.006 C, D, F 2.919 6.025
A, C, E 2.17 A, C, E 1.474 5.303 B, C, D 9.42 B, C, D 3.069 5.340
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4.1 Simulated Models

Table 4.10: A comparison between factor based methods for identifying one, two and three
active factor(s) in the six-factor 16-run design with responses from the panel of models with
ε ∼ N(0, (0.8)2)

Mod AF Projective based search Box-Meyer search Partial F search Mod AF Projective based search Box-Meyer search Partial F search
Factor σ̂2 Factor σ̂2 Pos. Prob. Factor σ̂ F Factor σ̂2 Factor σ̂2 Pos. Prob. Factor σ̂ F

1 1 F 9.52 F 8.90 0.135 F 3.086 1.444 5 1 C 3.68 C 3.45 0.440 C 1.919 5.945
A 9.65 A 9.02 0.122 A 3.107 1.238 A 4.22 A 3.95 0.161 A 2.055 3.407
E 9.91 E 9.26 0.100 E 3.148 0.837 E 4.80 E 4.48 0.062 E 2.191 1.31
B 10.38 B 9.68 0.072 B 3.221 0.176 F 4.85 F 4.53 0.057 F 2.203 1.144
C 10.43 C 9.73 0.069 C 3.229 0.108 B 5.21 B 4.86 0.034 B 2.282 0.114

2 A, B 3.88 A, B 3.17 0.814 A, B 1.969 8.637 2 B, C 2.41 B, C 1.96 6.277 B, C 1.553 6.154
A, C 7.68 A, C 6.18 0.005 A, C 2.771 2.382 B, C 3.10 A, C 2.50 0.044 A, C 1.76 3.911
A, F 9.95 A, F 7.98 0.001 A, F 3.154 0.927 C, D 3.30 C, D 2.66 0.028 C, D 1.816 3.431
E, F 10.38 E, F 3.222 0.721 C, F 3.51 C, F 1.873 2.980
A, E 10.54 A, E 3.247 0.649 C, E 3.73 C, E 1.930 2.579

3 A, B, C 0.44 A, B, C 0.328 1.0 A, B, C 0.660 47.12 3 A, B, C 1.73 A, B, C 0.994 0.061 A, B, C 1.316 4.916
A, B, F 2.91 A, B, F 1.706 6.079 B, C, D 1.97 B, C, D 1.158 0.019 B, C, D 1.403 4.192
A, B, E 3.13 A, B, E 1.768 5.576 C, D, E 2.45 C, D, E 1.564 3.151
A, B, D 5.60 A, B, D 2.366 2.608 C, D, F 2.64 C, D, F 1.624 2.836
A, C, F 6.70 A, C, F 2.645 1.861 B, C, E 2.61 B, C, E 1.616 2.877

2 1 C 7.73 C 7.28 0.825 C 2.781 11.38 6 1 B 19.62 B 18.4 0.565 B 4.429 7.118
B 11.34 B 10.61 0.049 B 3.368 3.298 A 25.33 A 23.7 0.085 A 5.033 2.352
A 12.44 A 11.62 0.025 A 3.527 1.773 C 25.62 C 24.0 0.078 C 5.062 2.165
E 13.66 E 12.76 0.012 E 3.696 0.360 D 28.42 D 26.5 0.036 D 5.331 0.575
F 13.76 F 12.84 0.012 F 3.709 0.263 E 29.33 E 27.4 0.029 E 5.416 0.122

2 A, C 4.67 A, C 3.83 0.477 A, C 2.16 10.02 2 C, D 17.47 C, D 14.1 0.050 C, D 4.180 3.903
C, E 5.70 C, E 4.64 0.112 C, E 2.387 7.484 A, B 17.89 A, B 14.4 0.042 A, B 4.230 3.718
B, C 5.90 B, C 4.80 0.086 B, C 2.429 7.083 B, C 18.20 B, E 14.7 0.037 B, E 4.266 3.589
C, F 8.65 C, F 6.98 0.005 C, F 2.941 3.564 B, F 20.47 B, C 4.524 2.748
C, D 8.82 C, D 7.11 0.005 C, D 2.969 3.422 C, E 20.75 C, E 4.524 2.748

3 A, B, C 0.81 A, B, C 0.559 0.992 A, B, C 0.901 33.3 3 B, C, D 8.09 B, C, D 4.61 0.242 B, C, D 2.844 6.176
A, C, E 4.15 A, C, E 2.036 5.622 C, D, E 11.61 C, D, E 6.46 0.019 C, D, E 3.408 3.952
A, C, F 4.96 A, C, F 2.228 4.504 C, D, F 14.88 C, D, F 3.858 2.832
B, C, E 6.13 B, C, E 2.475 3.434 B, C, F 16.03 B, C, F 4.004 2.549
B, C, F 6.19 B, C, F 2.488 3.385 B, C, E 18.16 B, C, E 4.261 2.117

3 1 C 7.05 C 6.64 0.896 C 2.655 13.39 7 1 A 7.78 A 7.44 0.998 A 2.790 34.17
B 11.10 B 10.38 0.032 B 3.331 3.407 F 25.31 C 5.031 0.818
A 12.67 A 11.33 0.012 A 3.559 1.248 C 25.58 C 5.058 0.664
E 13.71 E 12.80 0.007 E 3.703 0.086 D 25.72 D 5.071 0.586
D 13.76 D 12.84 0.006 D 3.709 0.037 B 25.89 B 5.088 0.488

2 B, C 5.06 B, C 4.13 0.0269 B, C 2.249 8.729 2 A, D 3.29 A, D 2.86 0.937 A, D 1.815 33.96
C, E 5.83 C, E 4.74 0.096 C, E 2.414 7.051 A, E 6.72 A, E 5.58 0.005 A, E 2.593 14.59
A, C 6.87 A, C 5.58 0.029 A, C 2.622 5.361 A, C 7.24 A, C 5.98 0.004 A, C 2.690 13.27
B, E 7.82 B, E 6.33 0.011 B, E 2.797 4.227 A, F 7.36 A, F 6.08 0.003 A, F 2.712 12.99
C, F 8.00 C, F 6.47 0.009 C, F 2.829 4.046 A, B 8.00 A, B 6.598 0.002 A, B 2.829 11.62

3 A, B, C 0.27 A, B, C 0.271 0.996 A, B, C 0.520 101 3 A, C, D 1.91 A, C, D 1.32 0.289 A, C, D 1.383 26.86
A, B, E 0.84 A, B, E 0.571 0.004 A, B, E 0.916 31.75 A, D, E 2.73 A, D, F 1.850 0.036 A, D, E 1.652 18.48
B, C, F 5.70 B, C, F 2.388 3.696 A, D, F 3.07 A, D, E 1.89 0.030 A, D, F 1.753 16.3
B, C, E 5.21 B, C, E 2.282 4.157 A, C, E 7.05 A, B, D 1.99 0.014 A, C, E 2.656 6.452
B, D, E 7.17 B, D, E 2.677 2.706 A, B, F 7.24 A, B, F 2.691 6.255

4 1 A 2.16 A 2.07 0.999 A 1.470 37.10 8 1 C 15.46 C 14.6 0.953 C 3.932 16.13
E 7.32 E 2.705 1.107 A 29.17 A 27.3 0.009 A 5.401 1.968
F 7.63 F 2.762 0.480 E 31.89 E 29.8 0.005 E 5.647 0.610
B 7.78 C 2.7906 0.193 F 32.01 F 29.9 0.004 F 5.658 0.549
C 7.89 C 2.809 0.008 B 33.12 B 30.9 0.003 B 5.755 0.065

2 A, E 1.62 A, E 1.35 0.245 A, E 1.272 18.76 2 C, D 11.48 C, D 9.14 0.237 C, D 3.388 9.932
A, F 2.21 A, F 1.82 0.027 A, F 1.485 12.70 B, C 11.98 B, C 9.80 0.140 B, C 3.461 8.965
A, C 2.30 A, C 1.89 0.020 A, C 1.515 12.04 A, C 13.25 A, C 10.80 0.067 A, C 3.640 7.722
A, B 2.36 A, B 1.94 0.016 A, B 1.537 11.60 C, F 14.46 C, F 11.76 0.036 C, F 3.803 6.739
A, D 2.49 A, D 2.04 0.011 A, D 1.578 10.79 C, E 15.26 C, E 12.39 0.024 C, E 3.906 6.176

3 A, B, C 0.65 A, B, C 0.416 0.196 A, B, C 0.805 23.21 3 B, C, D 7.46 B, C, D 4.34 0.082 B, C, D 2.731 7.782
A, B, E 0.82 A, B, E 0.5090 0.043 A, B, E 0.908 18.00 C, D, F 8.42 A, C, D 5.34 0.017 C, D, F 2.901 6.766
A, E, F 1.81 A, E, F 1.347 7.559 C, D, E 8.57 C, D, E 5.87 0.008 C, D, E 2.927 6.624
A, D, E 1.93 A, D, E 1.390 7.027 A, C, D 9.52 A, C, D 3.086 5.843
A, C, E 2.15 A, C, E 1.465 6.208 B, C, E 11.66 B, C, E 3.414 4.566
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Chapter 4. Analysis and Results

Table 4.11: A comparison between factor based methods for identifying one, two and three
active factor(s) in the six-factor 16-run design with responses from the panel of models with
ε ∼ N(0, (1.0)2)

Mod AF Projective based search Box-Meyer search Partial F search Mod AF Projective based search Box-Meyer search Partial F search
Factor σ̂2 Factor σ̂2 Pos. Prob. Factor σ̂ F Factor σ̂2 Factor σ̂2 Pos. Prob. Factor σ̂ F

1 1 F 9.02 F 8.44 0.249 F 3.004 3.537 5 1 A 4.55 A 4.26 0.313 A 2.132 4.564
A 9.19 A 8.60 0.216 A 3.032 3.210 C 4.81 C 4.50 0.207 C 2.193 3.558
E 10.71 E 10.00 0.070 E 3.272 0.786 B 5.52 B 5.16 0.074 B 2.349 1.291
D 11.02 D 10.28 0.057 D 3.319 0.368 F 5.69 F 5.32 0.059 F 2.386 0.821
B 11.25 B 10.50 0.049 B 3.354 0.072 E 5.90 E 5.50 0.046 E 2.428 0.318

2 A, C 5.57 A, C 4.52 0.244 A, C 2.360 5.472 2 A, C 3.87 A, C 3.12 0.040 A, C 1.967 3.271
A, B 6.17 A, B 4.98 0.115 A, B 2.484 4.550 B, C 4.02 B, C 3.24 0.030 B, C 2.006 2.99
A, F 8.07 A, F 6.49 0.016 A, F 2.84 2.541 C, D 4.16 C, D 3.35 0.023 C, D 2.04 2.758
C, F 9.21 C, F 3.034 1.731 A, F 4.40 A, F 2.098 2.394
D, F 9.85 D, F 3.139 1.353 A, E 4.70 A, E 2.167 1.989

3 A, B, C 1.27 A, B, C 0.778 0.950 A, B, C 1.128 16.16 3 B, C, F 2.31 B, C, F 1.521 4.066
A, B, F 3.60 A, B, F 1.898 5.133 C, D, F 2.51 C, D, F 1.584 3.661
A, C, F 4.58 A, C, F 2.139 3.801 A, B, C 2.69 A, B, C 1.639 4.501
A, C, E 5.57 A, C, E 2.361 2.913 A, C, D 3.48 A, C, D 1.866 2.320
A, B, E 5.92 A, B, E 2.433 2.676 B, C, D 3.71 B, C, D 1.926 2.108

2 1 C 10.52 C 9.85 0.405 C 3.243 5.782 6 1 B 23.07 B 21.6 0.240 B 4.803 3.484
B 11.59 B 10.84 0.198 B 3.404 3.955 C 24.44 C 22.9 0.157 C 4.944 2.506
A 13.26 A 12.39 0.073 A 3.641 1.690 A 25.46 A 23.8 0.115 A 5.046 1.839
E 14.30 E 13.25 0.041 E 3.782 0.544 D 26.50 D 24.8 0.086 D 5.148 1.219
F 14.33 F 13.37 0.041 F 3.785 0.521 E 28.66 E 26.7 0.048 E 5.353 0.078

2 A, C 7.43 A,C 6.02 0.157 A, C 2.725 5.339 2 C, D 12.12 C, D 9.87 0.536 C, D 3.481 7.096
C, E 8.26 C, E 6.68 0.072 C, E 2.874 4.395 C, E 20.50 C, E 16.50 0.011 C, E 4.528 2.559
B, C 8.45 B, C 6.83 0.061 B, C 2.906 4.211 B, C 21.58 B, C 17.37 0.008 B, C 4.646 2.229
A, B 9.13 A, B 7.37 0.034 A, B 3.022 3.591 A, B 22.66 A, B 4.760 1.860
B, E 10.84 B, E 3.292 2.398 B, F 24.03 B, F 4.902 1.596

3 A, B, C 1.62 A, B, C 0.994 0.944 A, B, C 1.273 17.19 3 C, D, E 5.777 C, D, E 3.49 0.568 C, D, E 2.403 8.838
A, C, E 5.24 A, C, E 2.289 4.527 B, C, D 7.28 B, C, D 4.24 0.132 B, C, D 2.698 6.775
A, B, F 7.18 A, B, F 2.680 2.994 A, C, D 11.71 A, C, D 3.422 3.778
B, C, F 7.29 B, C, F 2.700 2.933 C, D, F 13.21 C, D, F 3.635 3.218
A, B, E 7.76 A, B, E 2.785 2.688 B, C, E 18.22 B, C, E 4.269 2.019

3 1 C 8.40 C 7.88 0.560 C 2.898 7.412 7 1 A 11.03 A 10.4 0.982 A 3.321 20.63
B 10.13 B 9.48 0.140 B 3.182 3.756 B 24.97 B 23.3 0.002 B 4.997 1.291
A 11.31 A 10.57 0.062 A 3.363 1.898 F 25.03 F 23.4 0.002 F 5.003 1.257
F 12.67 F 11.83 0.027 F 3.559 0.192 C 25.27 C 23.6 0.002 C 5.027 1.111
D 12.67 D 11.83 0.027 D 3.560 0.189 D 26.52 D 24.8 0.002 D 5.150 0.395

2 B, E 5.73 B, E 4.66 0.243 B, E 2.394 6.458 2 A, D 5.62 A, D 4.71 0.818 A, D 2.371 18.63
B, C 6.62 B, C 5.36 0.085 B, C 2.573 5.056 A, F 10.13 A, F 8.28 0.012 A, F 3.183 8.565
C, E 6.92 C, E 5.60 0.061 C, E 2.631 4.658 A, B 10.14 A, B 8.29 0.012 A, B 3.185 8.544
A, C 7.99 A, C 6.45 0.021 A, C 2.827 3.499 A, C 10.31 A, C 8.42 0.010 A, C 3.311 8.347
C, F 9.54 C, F 3.088 2.287 A, E 11.20 A, E 9.12 0.006 A, E 3.346 7.369

3 A, B, E 0.56 A, B, E 0.417 0.854 A, B, E 0.751 44.43 3 A, B, D 4.08 A, B, D 2.42 0.136 A, C, D 2.019 12.24
A, B, C 0.77 A, B, C 0.528 0.146 A, B, C 0.880 32.04 A, C, D 4.51 A, C, D 2.65 0.070 A, C, D 2.123 10.96
B, C, E 5.07 B, C, E 2.251 3.928 A, D, F 5.92 A, D, F 3.35 0.018 A, D, F 2.433 8.074
B, C, F 5.91 B, C, F 2.432 3.199 A, D, E 5.84 A, D, E 3.40 0.016 A, D, E 2.416 8.201
B, D, E 6.11 B, D, E 2.472 3.060 A, B, F 5.55 A, B, F 2.356 8.186

4 1 A 2.70 A 2.56 0.988 A 1.643 22.15 8 1 C 14.36 C 13.6 0.975 C 3.79 19.46
F 6.68 F 2.584 0.612 A 27.93 A 36.1 0.007 A 5.285 3.207
B 6.73 B 2.594 0.491 F 33.27 F 31.1 0.002 F 5.768 0.446
E 6.82 E 2.612 0.296 E 33.66 E 31.4 0.002 E 5.802 0.277
C 6.83 C 2.614 0.280 B 34.30 B 32.0 0.002 B 5.857 0.012

2 A, F 2.72 A, F 2.22 0.038 A, F 1.648 7.973 2 A, C 9.30 A, C 7.68 0.435 A, C 3.049 13.24
A, B 2.82 A, B 2.30 0.029 A, B 1.679 7.535 C, D 12.19 C, D 9.97 0.061 C, D 3.491 9.143
A, D 2.84 A, D 2.31 0.027 A, D 1.684 7.469 B, C 12.43 B, C 10.17 0.053 B, C 3.526 8.888
A, E 2.91 A, E 2.37 0.023 A, E 1.705 7.184 C, F 14.03 C, F 11.44 0.022 C, F 3.746 7.416
A, C 2.98 A, C 2.43 0.019 A, C 1.727 6.907 C, E 14.77 C, E 12.01 0.015 C, E 3.843 6.851

3 A, B, C 0.67 A, B, C 0.42 0.596 A, B, C 0.820 19.600 3 A, C, D 6.94 A, C, D 4.06 0.068 A, C, D 2.634 8.754
A, B, E 1.92 A, B, E 1.08 0.001 A, B, E 1.384 6.128 C, D, F 7.25 A, B, C 4.24 0.049 C, D, F 2.693 8.326
A, B, F 2.37 A, B, F 1.538 4.745 A, B, C 7.42 C, D, F 5.20 0.010 A, B, C 2.723 8.12
A, C, F 3.35 A, C, F 1.830 3.016 A, C, E 9.00 A, C, E 3.000 9.143
A, D, E 3.35 A, D, E 1.831 3.014 A, C, F 9.43 A, C, F 3.071 6.139
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4.1 Simulated Models

The models 5 to 8 involved four factors, the methods’ performance in identifying four

active factor subspace for a six-factor 16-run design were studied. The 16-run design has

a special projection properties. Studying its aliasing structure, factors AB, CD, and EF

are free of aliasing with main effects. The subspaces ABCD, ABEF and CDEF form

a full 24 factorial design and can be studied using standard methods. Table 4.7 presents

the best three four active factors models identified by the methods studied. Models with

all four main effects and six two-factor interactions were investigated and thus the partial

F search evaluated the residual standard error (σ̂) with five degrees of freedom. From the

analysis, all the methods correctly identified the most important active subspace for the

simulated models except for model 6 with σ = 0.8 and σ = 1.0. The methods appreciably

discriminated between the models compared, however, for model 6, all the methods only

weakly discriminated among the models. The results from model 6 suggest the need for

follow-up studies.
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Chapter 4. Analysis and Results

Table 4.12: A comparison between factor based methods in identifying four active factors in the
six-factor 16-run design with responses from the panel of models (model 5 to 8).

Model Projective based search Box-Meyer search Partial F search
Factor σ̂2 Factor σ̂2 Pos. Prob. Factor σ̂ F

σ = 0.6

5 A, B, C, D 0.30 A, B, C, D 0.134 0.755 A, B, C, D 0.548 17.120
B, C, D, E 1.08 B, C, D, E 1.04 4.384
B, C, D, F 2.31 B, C, D, F 1.40 3.286

6 A, B, C, D 0.25 A, B, C, D 0.373 0.57 A, B, C, D 0.502 172.3
C, D, E, F 0.30 C, D, E, F 0.387 0.43 C, D, E, F 0.543 147.1
B, C, D, E 6.90 B, C, D, E 2.626 5.85

7 A, B, C, D 0.52 A, C, D, F 0.410 0.047 A, B, C, D 0.720 67.0
A, C, D, F 0.54 A, B, C, D 0.404 0.019 A, C, D, F 0.732 64.9
A, B, D, E 0.99 A, B, D, E 0.542 0.006 A, B, D, E 0.994 34.9

8 A, B, C, D 0.17 A, B, C, D 0.339 0.999 A, B, C, D 0.407 258
A, C, D, F 5.26 A, C, D, F 2.294 7.626
A, C, D, E 6.07 A, C, D, E 2.464 6.540

σ = 0.8

5 A, B, C, D 0.43 A, B, C, D 0.191 0.681 A, B, C, D 0.656 16.570
B, C, D, F 1.21 B, C, D, F 1.101 5.557
A, C, D, E 1.99 A, C, D, E 1.406 3.218

6 C, D, E, F 0.49 C, D, E, F 0.436 0.64 C, D, E, F 0.698 84.49
A, B, C, D 0.59 A, B, C, D 0.471 0.36 A, B, C, D 0.770 69.34
B, C, D, F 0.59 B, C, D, F 2.561 5.817

7 A, B, C, D 0.60 A, B, C, D 0.448 0.124 A, B, C, D 0.775 61.99
A, C, D, F 1.37 A, C, D, F 1.170 26.89
A, C, D, E 2.01 A, C, D, E 1.418 18.15

8 A, B, C, D 0.57 A, B, C, D 0.498 0.993 A, B, C, D 0.754 81.40
B, C, D, E 5.75 B, C, D, E 2.397 7.61
B, C, D, F 6.33 B, C, D, F 2.515 6.86

σ = 1.0

5 A, B, C, D 0.81 A, B, C, D 0.322 0.180 A, B, C, D 0.897 9.985
A, C, D, F 2.50 A, C, D, F 1.582 2.873
C, D, E, F 2.62 C, D, E, F 1.62 2.715

6 C, D, E, F 1.76 C, D, E, F 0.848 0.591 C, D, E, F 1.326 22.46
A, B, C, D 2.48 B, C, D, E 1.172 0.144 A, B, C, D 1.574 15.79
B, C, D, E 2.75 A, B, C, D 1.086 0.093 B, C, D, E 1.659 14.15

7 A, B, C, D 0.26 A, B, C, D 0.338 0.981 A, B, C, D 0.505 149.5
A, B, D, F 2.69 A, B, D, F 1.639 13.71
A, C, D, E 2.93 A, C, D, E 1.711 12.55

8 A, B, C, D 0.80 A, B, C, D 0.583 0.954 A, B, C, D 0.893 59.8
A, C, D, F 4.49 A, C, D, F 2.118 10.22
C, D, E, F 5.65 C, D, E, F 2.378 8.002
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4.2 Real data-Metal cutting experiment

One of the motivations for this thesis was to explore data which were originally collected

as part of an investigation to compare the techniques of a full factorial design in six fac-

tors (Garzon, 2000). In this case study, the objective was the optimisation of the milling

operation as a typical metal cutting process through DoE. The aim of the optimization was

to define the best machining conditions in a manufacturing environment. The full factorial

experiment involved six factors, each set at two levels. Table 4.13 displays the factors

and their levels. Eight repetitions of each factor combination were performed. Note that

repeated measurements and not replications were carried out. The mean and standard devi-

ation of the repetitions were calculated. Mønness et al. (2007) determined that a reciprocal

transformation of the original response (surface roughness) is necessary, because a high

correlation was identified between the mean and standard deviation. This transformation

is employed for this study.

Table 4.13: Metal Cutting factors and levels

Factor Low (-) High (+)
Tool Speed (A) 2700 rpm 3200 rpm

Workpiece speed (B) 203 mm/min 330 mm/min
Depth of cut (C) 0.5 mm 1.0 mm

Coolant (D) off On
Direction of cut (E) Conventional Climbing
Number of cut (F) 1 2

Edwards et al. (2013) used Lenth’s method to analyze the unreplicated 64-run data, and

obtained a pseudo standard error of 0.01338. Controlling the individual error rate of

α = 0.05, a critical value of 2.014 was found. Eleven effects: D, E, F , CD, CE,

CF , DE, EF , BCD and DEF were found significant. The final model is presented in
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Table 4.14.

Table 4.14: Final Model from full factorial (R2 = 95%)

Intercept Estimate t-ratio
Constant 0.825 76.33

D 0.216 20.04
E 0.137 12.68
F -0.062 -5.71

CD 0.032 2.98
CE 0.037 3.4
CF 0.036 3.37
DE -0.190 -17.62
DF 0.056 5.21
EF 0.029 2.67

BCD 0.028 2.66
DEF -0.051 -4.75

The search performance of the factor based methods in identifying active factors with the

metal cutting data was explored. The transformed data is as presented in Table 4.15 for

the six-factor 12 run PB design. Edwards et al. (2013) study revealed factor activity for

C − F , however the posterior probabilities for the two topmost models suggested some

ambiguity as to which factors are active. Using a particular fraction and follow-up runs,

they fitted a 2fi model in C − F , and found D and DE as significant. Mønness et al.

(2007) employed two disjoint PB design in analyzing this experiment found that none of

the two designs yielded a significant results, as measured by the F -test. However, one of

the designs revealed factorD as significant, assuming only model with main effects. Table

4.16 presents the results from the analysis employing the factor based methods. From the

analysis, all the methods performed well in identifying the important active subspaces for

one, two, three and four active factors. All the three methods reported factor activity for

factors C − F . The projection based and partial F could not discriminate well among the

five top models in both cases. This results seems to suggest that a follow-up experiment

appear to be necessary. However, the Box-Meyer methods performed relatively well in
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discriminating among the two topmost models.

Table 4.15: Six-factor 12-run PB design with response for the metal cutting experiment

Run A B C D E F Response
11 -1 -1 -1 1 -1 1 1.1
60 -1 -1 1 -1 -1 1 0.08
17 -1 -1 1 -1 1 -1 1.02
53 -1 1 -1 -1 1 -1 0.96
19 -1 1 -1 1 1 1 0.82
5 -1 1 1 1 -1 -1 1.1
59 1 -1 -1 -1 1 1 0.76
54 1 -1 -1 1 -1 -1 1.16
29 1 -1 1 1 1 -1 0.93
36 1 1 -1 -1 -1 -1 0.75
34 1 1 1 -1 -1 1 0.05
28 1 1 1 1 1 1 1.06

Table 4.16: A comparison between factor based methods for identifying one, two, three and four
active factor(s) in the six-factor 12-run design with responses from the metal cutting experiment

AF Projective based search Box-Meyer search Partial F search
Factor σ̂2 Factor σ̂2 Pos. Prob. Factor σ F

1 D 0.10 D 0.092 0.402 D 0.318 5.372
F 0.12 F 0.110 0.157 F 0.3465 2.918
C 0.14 E 0.128 0.066 E 0.3752 1.016
E 0.14 C 0.128 0.066 C 0.3752 1.016
A 0.15 A 0.140 0.041 A 0.3927 0.074

2 D, E 0.05 D, E 0.036 0.433 D, E 0.218 8.168
D, F 0.05 D, F 0.041 0.213 D, F 0.234 6.795
C, D 0.09 C, D 0.066 0.015 C, D 0.300 3.09
C, F 0.10 C, F 0.321 2.346
C, E 0.11 C, E 0.325 2.240

3 C, D, E 0.01 D, E, F 0.007 0.818 C, D, E 0.088 28.29
D, E, F 0.01 C, D, E 0.010 0.095 D, E, F 0.091 26.4
C, D, F 0.02 C, D, F 0.138 11.06
C, E, F 0.02 C, E, F 0.150 9.235
A, D, E 0.06 A, D, E 0.253 2.900

4 C, D, E, F 0.0004 C, D, E, F 0.001 0.732 C, D, E, F 0.021 344.5
B, C, D, E 0.002 A, D, E, F 0.002 0.097 A, D, E, F 0.042 86.04
A, D, E, F 0.002 B, C, D, E 0.002 0.038 B, C, D, E 0.042 86.04
B, C, E, F 0.004 A, C, D, E 0.003 0.015 B, C, E, F 0.064 38.18
A, C, D, E 0.009 B, C, E, F 0.003 0.005 A, C, D, F 0.092 18.25

The 16-run six factor design was also used in investigating the performance of the meth-

ods in active factors identification. The transformed data is as presented in Table 4.17.

Table 4.18 presents the results from the analysis. From the analysis, the methods in iden-

tifying one, two, and three active factors mostly agreed in their choice especially for the

top ranked model. For three active factors, B,D,E was ranked the most important by
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the 16-run design compared toD,E, F by the 12-run design. Model discrimination by the

methods is not obvious. For four active factor subspace, the methods identifiedB,D,E, F

as the most active subspace compared to C,D,E, F by the 12-run design.

Table 4.17: Six-factor 16-run design and response for the metal cutting experiment

Run A B C D E F Response
7 -1 -1 -1 -1 1 1 0.94
40 1 -1 -1 -1 -1 1 0.08
53 -1 1 -1 -1 1 -1 0.96
36 1 1 -1 -1 -1 -1 0.75
60 -1 -1 1 -1 -1 1 0.08
38 1 -1 1 -1 -1 -1 0.35
27 -1 1 1 -1 1 1 0.96
37 1 1 1 -1 1 -1 0.96
23 -1 -1 -1 1 1 -1 1.02
47 1 -1 -1 1 1 1 1.03
48 -1 1 -1 1 -1 -1 0.90
54 1 1 -1 1 -1 1 0.98
63 -1 -1 1 1 -1 -1 0.95
29 1 -1 1 1 1 -1 0.93
22 -1 1 1 1 -1 1 1.15
28 1 1 1 1 1 1 1.06

Table 4.18: A comparison between factor based methods for identifying one, two, three and four
active factor(s) in the six-factor 16-run design with responses from the metal cutting experiment

AF Projective based search box-Meyer search Partial F search
Factor σ̂2 Factor σ̂2 Pos. Prob. Factor σ F

1 D 0.08 D 0.078 0.414 D 0.2885 6.489
E 0.09 E 0.085 0.211 E 0.3024 4.704
B 0.10 B 0.091 0.130 B 0.3121 3.514
A 0.11 A 0.111 0.030 A 0.3447 0.354
F 0.12 F 0.113 0.027 F 0.3472 0.151

2 D, E 0.03 D, E 0.024 0.935 D, E 0.1698 15.73
B, D 0.05 B, D 0.039 0.026 B, D 0.2176 8.006
B, E 0.05 B, E 0.041 0.017 B, E 0.2243 7.298
A, D 0.09 D, F 0.2927 2.635
D, F 0.09 E, F 0.3189 1.590

3 B, D, E 0.01 B, D, E 0.011 0.450 B, D, E 0.1044 10.04
D, E, F 0.01 D, E, F 0.012 0.089 D, E, F 0.1120 5.197
B, E, F 0.03 A, D, E 0.021 0.003 B, E, F 0.1654 7.767
A, D, E 0.03 A, D, E 0.1843 6.03
C, D, E 0.04 C, D, E 0.1913 5.515

4 B, D, E, F 0.009 B, D, E, F 0.004 0.221 B, D, E, F 0.095 18.47
B, C, E, D 0.02 B, C, D, E 0.006 0.005 B, C, E, D 0.128 9.933
A, D, E, F 0.02 A, D, E, F 0.007 0.002 A, D, E, F 0.129 9.813
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4.3 Follow-up runs

The gains in models’ discriminatory powers of the methods through follow-up runs was

explored. The full foldover and the semi-foldover designs for both 12- and 16-run designs

for the metal cutting experiment were considered. The semi-foldover design is constructed

by subsetting on the most active factor identified in the initial analysis using the original

design. From the initial analysis of the metal cutting experiment for the 12- and 16-run

designs in Tables 4.16 and 4.18 respectively, we conducted the follow-up schemes for both

designs. We performed subsetting on the high level of factor D based on the initial analysis

for the 12- and 16-run designs in the semi-foldover scheme. Tables 4.19 and 4.20 present

the additional runs for the 12- and 16-run respectively.

Table 4.19: Additional runs for the follow-up schemes for the six-factor 12-run PB design with
response for the metal cutting experiment

Full Foldover Semi foldover
Run A B C D E F Response Run A B C D E F Response
37 1 1 1 -1 1 -1 0.96 9 -1 -1 1 1 -1 1 1.03
57 1 1 -1 1 1 -1 1.03 25 -1 -1 1 1 1 -1 1.02
52 1 1 -1 1 -1 1 0.98 55 -1 1 -1 1 1 -1 0.96
26 1 -1 1 1 -1 1 1.29 47 1 -1 -1 1 1 1 1.03
38 1 -1 1 -1 -1 -1 0.35 42 1 1 -1 1 -1 -1 1.19
59 1 -1 -1 -1 1 1 0.76 10 1 1 1 1 -1 1 1.09
5 -1 1 1 1 -1 -1 1.1

27 -1 1 1 -1 1 1 0.96
24 -1 1 -1 -1 -1 1 0.2
3 -1 -1 1 1 1 1 1.06

23 -1 -1 -1 1 1 -1 1.02
14 -1 -1 -1 -1 -1 -1 0.64

Table 4.20: Additional runs for the follow-up schemes for the six-factor 16-run design with response
for the metal cutting experiment

Full Foldover Semi foldover
Run A B C D E F Response Run A B C D E F Response
50 1 1 1 1 -1 -1 1.21 10 1 1 1 1 -1 1 1.09
58 -1 1 1 1 1 -1 1.15 5 -1 1 1 1 -1 -1 1.10
26 1 -1 1 1 -1 1 1.29 15 1 -1 1 1 1 1 0.98
3 -1 -1 1 1 1 1 1.06 25 -1 -1 1 1 1 -1 1.02
57 1 1 -1 1 1 -1 1.03 35 1 1 -1 1 1 1 0.90
19 -1 1 -1 1 1 1 0.82 13 -1 1 -1 1 -1 1 1.05
54 1 -1 -1 1 -1 -1 1.16 20 1 -1 -1 1 1 -1 0.99
11 -1 -1 -1 1 -1 1 1.10 12 -1 -1 -1 1 -1 -1 1.15
34 1 1 1 -1 -1 1 0.05
64 -1 1 1 -1 -1 -1 0.25
6 1 -1 1 -1 1 1 0.85
17 -1 -1 1 -1 1 -1 1.02
32 1 1 -1 -1 1 1 0.84
24 -1 1 -1 -1 -1 1 0.20
44 1 -1 -1 -1 1 -1 1.07
14 -1 -1 -1 -1 -1 -1 0.64
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Tables 4.21 and 4.22 respectively display the results for the analysis from the follow-up

experiment for the 12- and 16-run designs respectively. The follow-up schemes could

not appreciably improve the discriminatory powers for the factor based methods. Similar

to the initial analysis of the 12-run PB design, all the methods revealed for both the full

foldover and the semi-foldover that C,D,E, F is the most important active subspace. Ed-

wards et al. (2013) analysis of the full foldover indicated factor activity for D − F and

weakly for C. Also, they reported for the semi-foldover (subset on the high level of D)

that a factor activity is shown in D − F .

The analysis of the follow-up plans for the 16-run design however, identified factor ac-

tivity for B,D,E and F . Although, Mønness et al. (2007) and Edwards et al. (2013) both

found main effects of factors B and C as insignificant in the full factorial results. The 12-

run weakly identified a factor activity for factor C. On the contrary, the 16-run identified a

weakly factor activity for factor B. Mønness et al. (2007) investigated a 26−2
IV design with

generators E = BCD and F = ACD, found D,E, F as significant.
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Table 4.21: A comparison between factor based methods for identifying one, two, and three and
four active factor(s) in the follow-up schemes for the six-factor 12-run design for the metal cutting
experiment

Plan AF Projective based search Box-Meyer search Partial F search
Factor σ̂2 Factor σ̂2 Pos. Prob. Factor σ F

Full Foldover 1 D 0.07 D 0.069 0.963 D 0.268 15.45
E 0.11 E 0.105 0.007 E 0.3317 2.444
F 0.12 F 0.110 0.004 F 0.3397 1.304
C 0.12 C 0.117 0.002 C 0.3495 0.0165
B 0.12 B 0.3495 0.014

2 D, E 0.03 D, E 0.026 0.998 D, E 0.1717 23.73
D, F 0.06 D, F 0.056 0.001 D, F 0.2538 7.25
C, D 0.08 C, D 0.2765 5.058
B, D 0.08 B, D 0.2788 4.861
A, D 0.08 A, D 0.2802 4.752

3 D, E, F 0.01 D, E, F 0.012 0.843 D, E, F 0.1180 25.3
C, D, F 0.02 C, D, E 0.02 0.003 C, D, E 0.1443 16.16
A, D, E 0.03 A, D, E 0.1838 9.088
B, D, E 0.03 B, D, E 0.1846 8.989
B, D, F 0.07 B, D, F 0.2657 3.155

4 C, D, E, F 0.01 C, D, E, F 0.001 0.682 C, D, E, F 0.0913 30.62
A, D, E, F 0.02 A, D, E, F 0.002 0.007 A, D, E, F 0.1263 15.26
B, D, E, F 0.08 B, C, D, E 0.002 0.0018 B, D, E, F 0.2828 6.543

Semi-foldover 1 D 0.05 D 0.062 0.876 D 0.2251 11.76
F 0.10 F 0.092 0.027 F 0.3131 2.428
C 0.11 C 0.10 0.013 C 0.3265 0.950
A 0.11 E 0.103 0.011 E 0.3308 0.518
B 0.11 B 0.106 0.008 B 0.336 0.011

2 D, E 0.03 D, E 0.025 0.756 D, E 0.170 16.18
D, F 0.03 D, F 0.029 0.213 D, F 0.1838 13.17
A, D 0.05 C, D 0.045 0.005 C, D 0.2314 6.583
B, D 0.07 A, D 0.058 0.001 A, D 0.2672 3.769
B, D 0.07 B, D 0.2725 3.445

3 D, E, F 0.005 D, E, F 0.006 0.993 D, E, F 0.0691 52.67
C, D, E 0.006 C, D, E 0.011 0.004 C, D, E 0.0784 40.52
C, D, F 0.01 C, D, F 0.1094 20.14
A, D, E 0.03 A, D, E 0.1712 7.381
B, D, E 0.03 B, D, E 0.1812 6.431

4 C, D, E, F 0.003 C, D, E, F 0.001 0.612 C, D, E, F 0.075 31.03
B, C, D, E 0.008 A, D, E, F 0.002 0.057 A, D, E, F 0.083 25.30
A, D, E, F 0.018 B, C, D, E 0.002 0.018 B, D, E, F 0.094 19.81
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Table 4.22: A comparison between factor based methods for identifying one, two, and three and
four active factor(s) in the follow-up schemes for the six-factor 16-run design for the metal cutting
experiment

Plan AF Projective based search Box-Meyer search Partial F search
Factor σ̂2 Factor σ̂2 Pos. Prob. Factor σ F

Full Foldover 1 D 0.08 D 0.079 0.978 D 0.2857 17.91
E 0.11 E 0.105 0.012 E 0.3297 5.978
F 0.13 F 0.123 0.001 F 0.3560 0.853
A 0.13 A 0.3608 0.046
B 0.13 B 0.3609 0.022

2 D, E 0.03 D, E 0.024 1.0 D, E 0.1618 40.47
D, F 0.08 D, F 0.2801 7.277
C, D 0.08 C, D 0.2900 6.166
A, D 0.09 A, D 0.2946 5.689
B, D 0.09 B, D 0.2955 5.596

3 D, E, F 0.02 D, E, F 0.013 0.367 D, E, F 0.1265 31.46
C, D, E 0.02 C, D, E 0.019 0.001 C, D, E 0.1561 19.50
A, D, E 0.03 A, D, E 0.1699 15.92
B, D, E 0.03 B, D, E 0.1732 15.19
C, D, F 0.09 C, D, F 0.2927 3.094

4 C, D, E, F 0.02 C, D, E, F 0.016 0.001 C, D, E, F 0.1528 16.14
A, D, E, F 0.03 A, D, E, F 0.175 11.81
B, D, E, F 1.39 B, D, E, F 0.178 11.39

Semi-foldover 1 D 0.06 D 0.053 0.943 D O.2349 14.23
B 0.08 B 0.077 0.012 B 0.2837 2.834
F 0.08 E 0.079 0.009 E 0.2870 2.274
E 0.09 A 0.084 0.004 A 0.2971 0.658
C 0.09 F 0.086 0.004 F 0.2995 0.283

2 D, E 0.02 D, E 0.017 0.995 D, E 0.1383 28.17
B, D 0.03 B, D 0.027 0.005 B, D 0.1758 14.89
D, F 0.05 D, F 0.2342 5.487
A, D 0.06 A, D 0.2372 6.679
B, E 0.06 B, E 0.2384 5.060

3 B, D, E 0.008 B, D, E 0.006 0.902 B, D, E 0.090 32.95
D, E, F 0.009 D, E, F 0.008 0.048 D, E, F 0.099 26.63
A, D, E 0.02 A, D, E 0.1384 12.63
C, D, E 0.02 C, D, E 0.1450 11.29
B, E, F 0.03 B, E, F 0.1670 7.96

4 B, D, E, F 0.008 B, D, E, F 0.005 0.111 B, D, E, F 0.089 24.17
A, D, E, F 0.01 A, D, E, F 0.007 0.001 A, D, E, F 0.108 16.00
B, C, D, E 0.01 B, C, D, E 0.114 13.97
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5.1 Discussion

This thesis aimed at investigating three factor based methods of analysing some non-

regular factorial fractional designs and follow-up runs in identifying active factors in ex-

periments. The 12-run PB and 16-run (by Jones and Montgomery (2010)) designs for six

factors were the non-regular designs employed for this study. Factor based methods of

analysing designs are discussed and their analysis compared.

The projection based search method by Tyssedal and Samset (1997) was investigated.

According to Tyssedal and Samset (1997), taking advantage of the projection properties of

a design may increase the efficiency of the all subset selections procedure and even further

improvement gained if the design is cyclically constructed. This method has often been

reported in literature (Tyssedal et al. (2006), Tyssedal (2008b), Wiik (2014), Tyssedal and
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Hussain (2016)). The results from this study suggest the projection based search as a use-

ful tool in the analysis of fractional factorial non-regular design. In our simulation studies,

we chose σ = {0.6, 0.8, 1.0} and the method in all cases studied correctly identified the

active subspace for models with at most three active factors. For both the six-factor 12-run

and 16-run designs, it was observed that the projection based method was able to identify

the correct factors for both low and the high level of variability in model 4.1 and the panel

of models. In the follow-up design, the projection based search improved significantly

in discriminating among the two topmost model. The problem of ambiguity in model

selection is solved when follow-up techniques are employed. The full foldover and semi-

foldover for both the 12-run and 16-run designs performed well in distinguishing the most

active subspace from the others for the metal cutting experiment. From our search, we

observed that the projection based method is less affected by increasing the error variance.

The findings in this thesis agrees with Wiik (2014) that a major setback of this method is

that it may provide no sign of error whenever three active factors are not enough. As a

results, whenever the method indicates that three active factors are insufficient, the results

cannot be trusted without support from other methods. The fact that the projection based

method does not assume any particular form of the model except for sparsity, it may point

to models that were not identified by other methods, in particular, the Box-Meyer method.

The Box-Meyer search by Box and Meyer (1993) has problem of overfitting as the number

of active factors become large due to the high p, however, it has the ability to appreciably

reduce the models to be investigated under satisfactorily conditions. In our search allow-

ing for the number of interactions in the simulated models and p = 0.6 for both the 12-
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and 16-run designs, the method performed appreciably well in identifying the correct ac-

tive space for models with three active factors, for instance, in the case of model 4.1 and

models 1 to 4 in the panel of models even for data with high variability. However, very

low posterior probabilities were assigned to the correct subspace for model 4.1 and model

4 in the panel of models. This could be attributed to the inclusion of factors with weak

factor activity. For models with four active factors, the method in most case failed to rank

the models’ active subspaces as the most important, but in some cases where the correct

active subspaces were identified, a high posterior probability was assigned. The method

in the case of models with four active factors tends to favour parsimonious models more

than the correct model. The additional parameter in the posterior probability were in some

cases helpful in explaining the ambiguities in top ranked models.

In the metal cutting experiment, although there seems to be ambiguity in model discrim-

ination using the variance estimate for both designs, however, the posterior probabilities

assigned to the topmost model were significantly high compared to the top five models for

one, two and three active factors. However, in the 16-run design the posterior probabili-

ties for the topmost model for two and three active factors were distinct from the others

and were appreciably large. But for four active factor the posterior probability for the top

ranked model were very low.

The partial F search by Kulachi and Box (2003) uses a simple F criterion in defining

active subspace. The method produced results very similar to that of the projection based

search. From the analysis of the 12- and 16-run designs, the method in all cases studied

79



Chapter 5. Discussion and Conclusion

correctly identified the active subspace. The method was able to identify the correct factors

for both low and the high level of variability in model 4.1 and the panel of models. In the

metal cutting experiment, the method performed very well agreeing with the results from

the other methods. Although, models were not clearly discriminated in the initial design,

the method identified the active subspace reported in literature as the most important. The

method significantly improved in discriminating among models in the follow-up schemes.

5.2 Conclusion

The methods studied in this thesis were found to produce similar results in identifying

one, two and three active factors in the 12- and 16-run experiments. In this investiga-

tion, the 16-run design, with runs advantage did not display any significant performance in

defining factor activities for experiments over the 12-run PB design for models with three

active factors. However, for models with four active factors, the 16-run design having five

degrees of freedom for the error, relatively performed better compared to the 12-run with

one degree of freedom for the error. All the methods performed very well in identifying

models with at most three active factors. However, for models with four active factors, the

study revealed that the methods have shortcomings in identifying the correct active sub-

space. It was found that the projection based search and the partial F search produced very

similar results. There was no clear sign of which of the two methods to generally prefer

for identifying three active subspace. The Box-Meyer search estimated variances were

lower compared to that of the other two methods. The dilemma in using the Box-Meyer

search will always be the choice of the p and g parameters. Based on the study conducted
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5.2 Conclusion

in this thesis, it is concluded that the factor based methods performed reasonably well in

defining factor activities in experiments with at most three active factors. The projection

based method is very simple to use, with much less intuition and was robust under various

conditions of model’s variability. However, it is not appropriate to use the method alone

whenever the results indicate that three active factors are insufficient. This is due to the

fact that it may provide wrong results with no sign of error in cases where more than three

factors are active. However, follow-up experiments help to improve performance of the

method. This study recommend the use of the factor based methods in defining factor

activities for experiments.
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Appendix

Data generation

Six factors in 12-runs

A = (-1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1)

B = (-1, -1, -1, 1, 1, 1, -1, -1, -1, 1, 1, 1)

C = (-1, 1, 1, -1, -1, 1, -1, -1, 1, -1, 1, 1)

D = (1, -1, -1, -1, 1, 1, -1, 1, 1, -1, -1, 1)

Responses from Model 4.1

y12(0.6) = (-6.69, -5.09, -3.98, 6.83, 7.62, 4.88, -0.56, -0.93, -2.33, 8.25, 9.68, 10.94)

y12(0.8) = (-5.96, -5.41, -4.64, 7.29, 6.44, 6.12, -0.87, -0.33, -2.98, 8.35, 11.11, 10.12)

y12(1.0) = (-6.75, -4.42, -5.54, 6.22, 5.94, 6.94, -0.82, -0.96, -2.71, 8.66, 10.66, 8.93)

Simulation codes for responses from the panel of models.

for (i in 1:12){ y[i] <- A[i]+2*A[i]*B[i]+2*A[i]*C[i]+ rnorm(1,0,sd)}

for (i in 1:12){ y[i] <- A[i]+1.5*B[i]+2*C[i]+A[i]*B[i]+1.5*A[i]*C[i]+rnorm(1,0,sd)}

for (i in 1:12){ y[i] <- A[i]+1.5*B[i]+2*C[i]+1.5*A[i]*B[i]*C[i]+ rnorm(1,0,sd)}

for (i in 1:12){ y[i] <- 2*A[i]+B[i]*C[i]+ rnorm(1,0,sd)}

for (i in 1:12){ y[i] <- A[i]+C[i]+B[i]*C[i]+C[i]*D[i]+ rnorm(1,0,sd)}
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for (i in 1:12){ y[i] <- 2*A[i]+3*B[i]+2*C[i]+D[i]+3*C[i]*D[i]+ rnorm(1,0,sd)}

for (i in 1:12){ y[i] <- 4*A[i]+B[i]+C[i]+D[i]+2*A[i]*D[i]+ rnorm(1,0,sd)}

for (i in 1:12){ y[i] <- 2*A[i]+4*C[i]+2*B[i]*C[i]+2*C[i]*D[i]+ rnorm(1,0,sd)}

Responses from the panel of models

y12(1,0.6) = (2.72, 0.39, -0.92, -1.21, -1.60, -4.66, -1.90, -4.75, 0.13, 0.45, 5.56, 5.14)

y12(2,0.6) = (-1.86, -1.38, -1.33, -1.46, -1.29, 0.84, -5.07, -5.15, 2.02, -0.76, 6.23, 8.42)

y12(3,0.6) = (-6.92, 1.09, 1.76, -0.30, 0.96, 0.80, -0.45, -1.19, -0.37, -1.37, 6.94, 6.11)

y12(4,0.6) = (-0.97, -2.47, -3.62, -3.04, -2.92, -1.07, 2.88, 2.79, 0.56, 0.86, 2.82 2.41)

y12(5,0.6) = (-1.98, -3.16, -1.71, -1.45, -3.48, 1.69, 1.43, -0.22, 1.81, 0.25, 1.59, 3.27)

y12(6,0.6) = (-9.60, -5.29, -6.28, 1.98, -2.70, 6.88, -0.95, -4.72, 3.66, 4.80, 2.59, 10.84)

y12(7,0.6) = (-6.62, -2.40, -2.50, -2.80, -4.68, -3.01, -0.83, 4.42, 7.42, 0.21, 2.81, 8.91)

y12(8,0.6) = (-6.77, -2.51, -2.29, -5.86, -10.32, 4.95, 2.00, -1.24, 5.26, -2.43, 6.39, 9.54)

y12(1,0.8) = (3.25, -1.37, -2.15, 0.22, -1.26, -5.01, -2.02, -3.29, 1.02, 1.40, 6.23, 4.06)

y12(2,0.8) = (-1.51, -1.46, -1.57, -0.98, -2.45, -0.20, -5.09, -4.54, 1.70, -0.66, 6.71, 6.92)

y12(3,0.8) = (-4.99, 0.93, -1.08, -1.54, -0.55, 2.16, -0.92, -0.75, -0.29, -1.88, 6.47, 7.25)

y12(4,0.8) = (-1.11, -2.99, -3.01, -2.48, -3.51, -1.96, 3.06, 3.15, 1.44, 1.61, 4.14, 1.38)

y12(5,0.8) = (-1.85, -1.60, -2.32, -2.61, -4.94, 1.57, 2.48, -0.95, 1.41, 0.08, 0.73, 5.22)

y12(6,0.8) = (-9.70, -6.85, -7.58, 1.20, -4.17, 8.57, -1.36, -5.51, 4.78, 4.34, 4.03, 10.44)

y12(7,0.8) = (-6.93, -3.45, -2.97, -3.18, -5.76, -2.62, -2.79, 5.15, 7.31, 0.52, 2.77, 8.57)

y12(8,0.8) = (-5.81, -1.05, -3.37, -5.35, -8.79, 6.91, 1.60, -2.02, 5.66, -2.51, 5.03, 9.74)
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y12(1,1.0) = (3.81, -0.82, -0.49, -3.80, -2.77, -6.71, -2.89, -4.08, 0.16, -0.96, 5.59, 5.25)

y12(2,1.0) = (-1.88, -1.67, -0.13, -1.54, -2.30, 0.10, -6.07, -4.94, 3.98, -0.19, 5.01, 8.31)

y12(3,1.0) = (-7.41, 0.27, 3.17, -2.06, -1.06, 0.81, -1.47, 0.62, 0.29, -1.27, 6.63, 8.59)

y12(4,1.0) = (-2.25, -4.00, -2.65, -2.23, -2.49, -1.19, 1.45, 3.15, 0.94, -0.87, 2.87, 4.03)

y12(5,1.0) = (0.41, -0.51, -1.92, -1.54, -4.87, 2.14, 1.86, -0.30, 0.51, 1.23, 1.56, 4.49)

y12(6,1.0) = (-10.90, -7.11, -6.54, -0.22, -2.67, 7.17, -1.63, -7.70, 5.76, 5.49, 3.60, 10.35)

y12(7,1.0) = (-10.77, -3.53, -1.55, -4.96, -5.27, -2.26, 0.74, 6.56, 7.63, 1.00, 2.69, 9.60)

y12(8,1.0) = (-10.77, -3.53, -1.55, -4.96, -5.27, -2.26, 0.74, 6.56, 7.63, 1.00, 2.69, 9.60)

Six factors in 16-runs

A = c(-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1)

B = c(-1,-1,1,1,-1,-1,1,1,-1,-1,1,1,-1,-1,1,1)

C = c(-1,-1,-1,-1,1,1,1,1,-1,-1,-1,-1,1,1,1,1)

D = c(-1,-1,-1,-1,-1,-1,-1,-1,1,1,1,1,1,1,1,1)

Responses from Model 4.1

y16(0.6) = (-6.63, -0.58, 6.16, 8.30, -5.12, -2.66, 4.46, 11.12, -5.55, -1.04, 6.41, 9.39, -3.91,

-2.55, 3.94, 11.78)

y16(0.8) = (-6.90, -1.63, 6.25, 9.50, -3.46, -1.92, 4.86, 11.74, -7.98, -2.03, 6.87, 7.52, -3.34,

-2.59, 5.30, 9.64)

y16(1.0) = (-4.96, -2.62, 7.84, 8.26, -5.52, -2.50, 3.85, 11.49, -6.58, -1.32, 6.76, 9.45, -2.56,

-1.35, 4.24, 10.24)
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Responses from the panel of models

y16(1,0.6) = (2.32, -3.70, -1.27, 1.49, -1.29, 1.69, -5.67, 4.88, 3.17, -2.81, -1.09, 1.02, -2.12,

1.62, -4.60, 4.63)

y16(2,0.6) = (-1.81, -5.27, -1.66, 0.53, -1.55, 2.08, 0.38, 7.50, -2.47, -6.33, -1.67, -0.25,

-1.72, 1.22, -0.15, 7.04)

y16(3,0.6) = (-6.10, 0.002, -0.39, -1.77, 1.06, 0.56, 1.22, 5.93, -6.33, 0.32, 0.33, -0.79, 1.15,

0.09, 1.13, 6.00)

y16(4,0.6) = (-0.06, 3.31, -3.06, 0.60, -4.33, 1.05, -0.78, 3.51, -0.13, 3.70, -2.36, 1.60, -3.57,

0.82, -1.59, 2.61)

y16(5,0.6) = (-0.09, 1.70, -1.67, -0.14, -1.45, 0.38, 0.12, 1.59, -1.55, -0.60, -4.02, -2.45,

-0.58, 2.301, 2.28, 2.61)

y16(6,0.6) = (-5.59, -0.25, 0.27, 4.48, -7.55, -2.97, -1.61, 2.64, -8.32, -5.33, -2.83, 1.71,

0.29, 4.89, 6.93, 11.35)

y16(7,0.6) = (-5.03, -0.83, -2.46, 1.50, -3.58, 0.63, -2.20, 2.31, -6.25, 5.39, -5.47, 5.67,

-5.48, 6.26, -3.04, 9.22)

y16(8,0.6) = (-2.02, 1.80, -6.49, -2.09, -2.20, 2.50, 1.31, 6.10, -5.13, -2.37, -9.13, -5.53,

2.15, 6.25, 4.73, 10.58)

y16(1,0.8) = (3.05, -2.60, -1.40, 1.65, -0.68, 0.84, -5.89, 3.79, 4.08, -2.22, -1.78, 1.12, 0.64,

-0.63, -5.16, 4.75)

y16(2,0.8) = (-3.31, -4.88, -2.56, -1.27, -0.16, 1.91, -0.16, 7.02, -2.49, -5.14, -0.65, 0.69,

-1.81, 2.80, 0.88, 7.42)

y16(3,0.8) = (-6.85, -1.46, -1.18, -1.30, 2.26, 0.09, 0.91, 5.81, -6.50, -1.68, 0.06, -0.83, 1.66,
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-0.12, 1.39, 7.13)

y16(4,0.8) = (-0.55, 2.39, -3.30, 0.51, -3.26, 0.04, -2.40, 4.86, -1.84, 2.67, -2.21, 1.21, -4.20,

1.68, -0.79, 3.94)

y16(5,0.8) = (0.08, 2.12, -1.62, -0.27, -1.36, 1.17, 0.86, 2.19, -1.08, 0.62, -5.09, -2.22, -0.15,

2.05, 2.68, 3.82)

y16(6,0.8) = -4.84, -1.27, 1.24, 4.51, -8.56, -3.48, -0.56, 4.09, -8.40, -4.26, -2.01, -0.66,

1.29, 5.10, 5.62, 10.62)

y16(7,0.8) = (-6.37, -0.92, -3.73, 1.07, -2.01, 0.45, -1.57, 3.58, -7.20, 5.93, -6.28, 7.51,

-4.60, 5.87, -2.60, 7.39)

y16(8,0.8) = (-0.93, 3.01, -6.17, -2.81, -1.77, 0.98, 1.30, 6.00, -6.06, -2.31, -10.33, -6.70,

3.13, 6.17, 4.97, 10.10)

y16(1,1.0) = 2.73, -1.35, -0.50, 1.97, -1.92, 2.91, -4.97, 5.42, 2.00, -3.55, -1.49, 0.82, 0.13,

1.12, -6.59, 3.80)

y16(2,1.0) = (-2.43, -3.94, -0.48, -0.25, -0.32, 1.13, -0.44, 8.23, -1.77, -7.25, -2.44, 1.83,

-2.05, 1.97, -0.66, 6.62)

y16(3,1.0) = -5.74, 0.34, -0.08, -1.37, 2.02, 0.12, 1.39, 6.09, -7.30, -1.19, -0.01, -0.76, 0.12,

-1.03, 0.002, 6.73)

y16(4,1.0) = (0.05, 5.70, -2.71, 0.25, -3.19, 1.83, -1.75, 3.16, -0.49, 3.40, -2.41, -0.05, -2.61,

-0.09, -1.39, 2.24)

y16(5,1.0) = (-0.66, 0.52, -1.99, -0.15, -4.20, 0.60, 0.17, 1.30, -4.32, -0.19, -2.67, -1.40,

-1.52, 1.85, 3.49, 4.00)

y16(6,1.0) = (-3.47, -0.37, -1.24, 4.81, -6.39, -5.47, -1.31, 2.92, -6.53, -4.36, -2.83, -0.82,
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1.90, 7.60, 7.03, 10.22)

y16(7,1.0) = (-5.37, -0.84, -2.84, 1.00, -1.46, 1.43, 1.34, 2.76, -8.06, 3.97, -4.48, 8.50, -5.24,

6.70, -1.57, 9.13)

y16(8,1.0) = (-3.52, 1.34, -5.96, -2.01, -1.65, 3.02, 0.56, 6.55, -6.51, -2.00, -10.82, -4.95,

1.54, 5.48, 6.43, 10.50)
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