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Abstract

In this thesis the Natural Language Processing (NLP) problems of
predicting the negative or positive sentiment of a movie review
(sentiment analysis) and Automated Essay Grading (AES) were
analyzed. The data set used for the movie review part is from
the IMDB database and the essays were published by the Hewlett
foundation. Features were retrieved by using both conventional
methods, such as Bag of Words, and newer methods, such as word
vectors. These features were used to train both conventional statis-
tical methods and more computational demanding Deep Learning
models. The results shows that the conventional methods still per-
form quite well relative to the new "hot" methods on the problems
tested in this thesis. However, a significant increase in available
data observations might change this.
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Sammendrag (Abstract in Norwegian)

I denne oppgaven blir "Naturlig Språk Prosessering" (Natural Lan-
guage Processing (NLP)) problemene å predikere om en filman-
meldelse er negative eller positive (sentiment analyse) og automa-
tisk stilretting analysert. Datasettet brukt for filmanmeldelse delen
er fra IMDB sin database og stilene brukt har blitt publisert av
Hewlett stiftelsen. Dataen ble representert både med tradisjonelle
metoder, som "Bag of Words", og nyere metoder, som ord vek-
torer. Disse datarepresentasjonene ble brukt til å trene både van-
lige statistiske metoder og mer beregningskrevende "Deep Learn-
ing" metoder. Resultatene viser at tradisjonelle metoder fortsatt
presterer ganske bra relativt til de nye populære metodene testet i
denne oppgaven. Denne oppførelsene kan imidlertid endres om
datastørrelsen økes signifikant.
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1 Introduction

1 Introduction

Natural Language Programming (NLP) is a challenging machine learning subject
faced by statisticians and data scientists. Language can express emotion that is
obscured by sarcasm, plays of word, ambiguity, etc. which can be not just misleading
to a human not familiar with the context, but especially to statistical models which
aren’t trained on problem/domain specific features. Adding information from a
domain expert would make the matter much easier, but this is not always feasible
due to the size of data and features available. As part of the "Big Data" era the
interest in Deep learning models, especially deep neural networks inspired by the
architecture of the human brain, have been rekindled and with enough computing
power these models have been shown to perform well on many challenging problems
including NLP problems, even without some level of domain knowledge.

This thesis focuses on extracting information from text data. The focus is on how to
best represent the data and how to model it with both common statistical models
and deep learning models. The data sets analyzed in this thesis are the relatively
large scale IMDB dataset, analyzed through sentiment analysis, and the relatively
complex Hewlett Foundations Automated Essay Scoring dataset.

The thesis is split into chapters. Chapter 2 introduces the datasets and framework
used in the text analysis. Chapter 3 introduces Natural Language Processing (NLP)
theory. Chapter 4 introduces Deep Learning models relevant for text analysis.
Chapter 5 presents the results obtained from the analysis of the text datasets. And
Chapter 6 contains the conclusion of the work and mention possibilities of further
work on the subject.
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2 Dataset and framework used

In this chapter the framework, used to train some of the text representations and
Deep Learning models, and the datasets, that are used to motivate theory and are
experimented on in this thesis, are introduced.

2.1 Framework
The python library Keras11 is the framework used for modelling some of the deep
learning models used in this thesis. Keras is meant to be a minimalistic library with
a focus on fast experimentation. It can be run on top of either TensorFlow or Theano,
both enables running computations on GPU’s. In this thesis the combination of
Keras and Theano22 is used. The python package Gensim33 is used for handling the
word vector models used.

Keras, Theano and Gensim are currently only available as beta versions. The used
versions are the developer versions 0.2.0 of Keras and 0.8.0 of Theano and the
general beta version 0.12.1 of Gensim (these developer versions are updated from
day to day without changing version number as they are bleeding edge). This implies
algorithms could be changed and that the toolbox currently available is not written
in stone.

2.2 IMDB - Bag ofWordsMeets Bags of Popcorn
A data set of IMDB movie reviews specifically selected for sentiment analysis
was collected in association with the publication Maas et al. (20112011). The data set
consists of a labeled data set of 50,000 IMDB movie reviews. The sentiment is binary,
meaning the IMDB rating below 5 results in a sentiment score of 0, and ratings
above 6 has a sentiment score of 1. This means that reviews with ratings 5 and 6
are not part of this dataset, this is to make the sentiments clearly separated in their
respective part of the "negative/positive"-scale. No movie has more than 30 reviews.
The labeled dataset is split 50/50 into a training set and test set, each set contains
25,000 movie reviews. The training and test set does not contain any of the same
movies. In addition there is also another 50,000 (unlabeled) IMDB reviews provided
without any rating labels, which can be used for training relevant word vectors for
example.

1Keras: http://keras.iohttp://keras.io
2http://deeplearning.net/software/theano/http://deeplearning.net/software/theano/
3https://radimrehurek.com/gensim/https://radimrehurek.com/gensim/

http://keras.io
http://deeplearning.net/software/theano/
https://radimrehurek.com/gensim/
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The dataset44 can be found at Kaggle55 and is described in greater detail there. Kaggle
is a platform where companies and researchers can post their data in form of
predictive modelling and analytics competitions. Statisticians and data scientists
from all over the world participate in these competitions. This crowd-sourcing
approach motivates varied problem solving approaches.

2.3 Hewlett Foundation: Automated Essay Scoring - Dataset
The Hewlett Foundation66 released a dataset of essays for the Automated Essay
Scoring competition77 at Kaggle. The dataset contains eight essay sets, each essay
set contains around 1,800 essays (except the 8th one which contains around 700
essays). These essays sets length range from an average length of 150 to 350 words
(except the 8th one which has an average length of 650 words). All of these essays
were hand graded by two different graders. And each of these eight essay sets has
their own unique characteristics. This variability was intended to test the limits of
participants algorithms scoring capabilities. The grade levels of the essays range
from grade 7 to 10.

All the essay sets are graded over one domain, except for essay set 2 which is graded
over two domains ("Writing Applications" and "Language Conventions"). The final
domain score is a function of the two different graders. This function varies in the
different essay sets. This variation in scoring is ignored and only the final domain
score is used for training and observing the validity of the models used in this thesis.
The range of the domain scores varies in the different essay sets.

A more detailed description of the dataset can be found at Kaggle88.

4IMDB Dataset: https://www.kaggle.com/c/word2vec-nlp-tutorial/datahttps://www.kaggle.com/c/word2vec-nlp-tutorial/data
5Kaggle: https://www.kaggle.com/https://www.kaggle.com/
6Hewlett Foundation: http://www.hewlett.org/http://www.hewlett.org/
7Automated Essay Scoring - Dataset: https://www.kaggle.com/c/asap-aeshttps://www.kaggle.com/c/asap-aes
8https://www.kaggle.com/c/asap-aes/datahttps://www.kaggle.com/c/asap-aes/data

https://www.kaggle.com/c/word2vec-nlp-tutorial/data
https://www.kaggle.com/
http://www.hewlett.org/
https://www.kaggle.com/c/asap-aes
https://www.kaggle.com/c/asap-aes/data
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3 Natural Language Processing (NLP)

Natural Language Processing (NLP) is a field of computer science concerned with
interactions between computers and human natural languages. The main concern
is enabling computers to retrieve meaning from human languages. This can be
achieved by modelling the text data using handmade rules or features, or by letting
an algorithm construct abstract features which model the data well. The latter
approach is the main concern of the deep learning community and this thesis.

3.1 Sentiment analysis
Sentiment analysis is a common NLP task which aims to identify polarity of a
text document. This is usually done on consumer reviews for market analysis, for
example. The simplest case where one only discriminate between positive and
negative sentiment can be modelled as a binary classification problem. The IMDB
datasets classification task is an example of this.

3.2 Input types
The input types used to represent the text data in this thesis are non-sequential input,
defined in Section 3.2.23.2.2, and sequential input, defined in Section 3.2.33.2.3. Transforming
the text data into these representations requires some pre-processing of the text.

3.2.1 Text pre-processing
The text can be pre-processed by creating a dictionary (or using a predefined
one) which contains a unique identification key for each word in the text corpus11

(unknown words and words or characters deemed insignificant are usually given
a predefined "dump"-key, usually 0). Usually different grammatical versions of a
word is viewed as different words. Non-word objects are usually removed from the
document if they have no specific significance for the objective domain. Different
capitalized variations of words may appear (e.g. New York, NEW YORK), but this
problem can be avoided by ignoring the difference between upper and lower case.

It is convenient to numerate a word with the value according to how frequent it
occurs in the corpus or by it’s importance as calculated in a TF-IDF representation
(this representation will be introduced in section 3.2.2.23.2.2.2). Meaning that the 4th most

1A text corpus is a set of texts, for example a collection of text documents.
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frequent or important word is encoded with the key "4". Often the most frequent
and infrequent words are removed as they are deemed insignificant (i.e. they do not
contain any information of enough significance and may contribute to making the
model too complex, resulting in overfitting).

3.2.2 Non-sequential input
Non-sequential input is the simplest input variant which ignore the placement of
words and as such ignore any spatial correlation between words (i.e. the significance
of the words placement according to each other). Among these input types Bag of
Words and TF-IDF (term frequency–inverse document frequency) are quite popular
and will be introduced here.

3.2.2.1 Bag ofWords
Bag of Words is a simple approach which uses a dictionary G to create a counting
vector v of the length |G|, where each element vi refers to the number of occur-
rences of the word Gi in a document. This approach is often used for document
classification.

An example of a Bag of Words representation:
Here we view the whole text corpus as the two "documents" listed below.

1. Ron eats potatoes. His sister stole a potato.

2. Ron ate a potato. His sister still stole a potato.

The corresponding dictionary becomes (here in the order as observed):
[ "Ron", "eats", "potatoes", "His", "sister", "stole", "a", "potato", "ate", "still" ]
, which contains 10 distinct words. And using the indexes as given in the dictionary
both documents can be represented as vectors of length 10. These vectors becomes:

1. [1,1,1,1,1,1,1,1,0,0]

2. [1,0,0,1,1,1,2,2,1,1]

3.2.2.2 TF-IDF
TF-IDF (often written as tf-idf) stands for "term frequency–inverse document fre-
quency", which is a more advanced non-sequential representation form than Bag of
Words. This statistic is intended to imply how important a word is to a document
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based on the text corpus. The approximated importance of a word increases propor-
tionally to the number of times the word appears in the document and decreases
based on how often it appears in the rest of the text corpus. Variations of TF-IDF
are often used in search engines as a tool for ranking the relevance of a document
based on a search query. The TF-IDF weight is composed of the two terms Term
frequency (TF) and the Inverse Document Frequency (IDF).

Term Frequency (TF) measures how frequent a term appears in a given document.
Because of the variability of document lengths it is possible that a term appears
more often in a longer document than a shorter more relevant document. This
is incorporated by normalizing the number of appearances of a word by the total
number of words in the document. The Term Frequency is defined as

T F(t,d) =
N (t,d)∑
tN (t,d)

,

whereN (t,d) is the number of times the word with index t, in the dictionary, appears
in document d. T F(t,d) is then the frequency that the word with index t, in the
dictionary, appears in document d.

Inverse Document Frequency (IDF) measures how important a term is. This is
done by penalizing frequent terms (e.g. "is", "of", "that", etc.) and scaling up the
importance of infrequent terms. One variant of the IDF is defined as

IDF(t) = log
(

|D |∑
d∈D (N (t,d)! = 0)

)
= log

(
|D |

|D | − [
∑
d∈D (N (t,d) == 0)]

)

where D is the set of documents and |D | gives the total number of documents.

The simplest TF-IDF method is defined as

TF-IDF(t,d) = T F(t,d) · IDF(t). (3.1)

A common modification of this is

TF-IDF(t,d) = T F(t,d) · (1 + IDF(t)), (3.2)

which effectively gives a word that occurs in every document the TF-IDF(t,d) value
equal to T F(t,d) instead of zero. This modification is used for the TF-IDF modelling
in this thesis.
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An example of a TF-IDF representation:
The text corpus is the same as in the Bag of Words example. Here we view the whole
text corpus as the two "documents" listed below.

1. Ron eats potatoes. His sister stole a potato.

2. Ron ate a potato. His sister still stole a potato.

The corresponding dictionary becomes (here in the order as observed):
[ "Ron", "eats", "potatoes", "His", "sister", "stole", "a", "potato", "ate", "still" ]
, which contains 10 distinct words. Using the indexes as given in the dictionary both
documents can be represented as vectors of length 10. There are two documents
so |D | = 2, and the first sentence contains 8 words and the second 10 words. The
T F(t,1) and T F(t,2) vectors are then equal to the corresponding Bag of words vectors
divided by the number of words in each sentence:

1. 1
8 × [1,1,1,1,1,1,1,1,0,0]

2. 1
10 × [1,0,0,1,1,1,2,2,1,1]

The how many documents each word appears in is given by the vector

[2,1,1,2,2,2,2,2,1,1,1], (3.3)

and since log(1) = 0 and log(2) ≈ 0.69 the IDF vector becomes

0.69× [0,1,1,0,0,0,0,0,1,1]. (3.4)

Using the TF-IDF modification TF-IDF(t,d) = T F(t,d) · (1 + IDF(t)) we get

1. 1
8 × [1,1.69,1.69,1,1,1,1,1,0,0]

2. 1
10 × [1,0,0,1,1,1,2,2,1.69,1.69]

3.2.3 Sequential input
As the previous text representations methods does not retain word order a more
advanced representation method is desirable. One approach is to represent the
text data as a sequence, this retains the word order and results in insight of word
placement correlation. This is done by creating a vector of smaller or equal length
to the document and transforming the document into a sequence of numbers where
each word is enumerated in accordance to a dictionary. Usually it is desired that
all the vectors are of the same length. This is done by choosing a desired length
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and cutting the vectors that are too long (and removing the redundant parts, an
example is removing the end of the documents that are too long) and padding 0’s to
the vectors that are too short so that they all are of the same length.

A word sequence example:
Assume the text corpus contain the two documents:

1. Leonardo was amazing in Inception.

2. Leonardo needs an Oscar.

Using the dictionary:

• Leonardo: 1

• was: 2

• amazing: 3

• in: 4

• Inception: 5

• needs: 6

• an: 7

• Oscar: 8

And creating word sequences of length 5 this results in the word sequences:

1. [1,2,3,4,5]

2. [1,6,7,8,0]

Utilizing this representation one can represent each word as a vector (popularly
called a word vector) and not blindly assume that the worth of a word in a sentence
is most effectively represented by a scalar value.

3.2.4 Word vectors
Representing each word as a vector will incorporate more complex information into
the representation, which can be used to retrieve even more information from the
interactions of each word and their placement relative to each other. One can either
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train one’s own representations of each word or use pre-trained representations
such as GloVe 22 and Googles word2vec 33. The GloVe representation is introduced by
Pennington, Socher, and Manning (20142014). The word2vec representation is based
on the papers Mikolov et al. (2013b2013b), Mikolov et al. (2013a2013a) and Mikolov, Yih,
and Zweig (20132013) which introduce, evaluate and improve the Continuous Bag-of-
Words Model (CBOW) and the Continuous Skip-gram Model (popularly called the
Skip-gram model).

The TF-IDF approach give us some idea of a word’s relative importance in a given
corpus, it however does not give any insight into the words semantic meaning. Word
vectors have been shown to capture syntactic and semantic linguistic regularities
well (Mikolov, Yih, and Zweig 20132013). These word vectors are quite useful as features
in NLP problems.

A popular example showing that word vectors are able to capture semantic sim-
ilarities between words:
Assume that the words {"king", "queen", "man", "woman"} are represented by the
vectors vking,vqueen,vman,vwoman. Then the relationship

vking − vman + vwoman ≈ vqueen (3.5)

holds (this behaviour is the result of a huge training set such as the Google News
dataset of about 100 billion words). Another example is the relationship:

vParis − vFrance + vItaly ≈ vRome (3.6)

Note: These results were reported by Mikolov et al. (2013b2013b).

Asymptotically it is intuitive that one would get better theoretical results if one
train domain specific word vectors instead of using pre-defined ones. Of course in
many circumstances one would need lot of training data and training time to get
the domain specific word vectors to outperform the pre-trained vectors (which has
been trained on extremely large datasets).

2Pre-trained GloVe word vectors: http://nlp.stanford.edu/projects/glove/http://nlp.stanford.edu/projects/glove/
3Pre-trained word2vec word vectors: https://code.google.com/p/word2vec/https://code.google.com/p/word2vec/

http://nlp.stanford.edu/projects/glove/
https://code.google.com/p/word2vec/


11

A word sequence example with word vectors:
Assume one has a weight matrix W and the following sequence vectors:

1. [1,2,3]

2. [2,1,0]

Assume W is given as:

W T =
( {0} {1} {2} {3}

0 1 1 2
0 1 2 2

)
(3.7)

Each number in the sequence vectors refers to a row in the weight matrixW which is
the corresponding word vector. The initial row with id 0 models all unknown words
(usually a zero vector) and the 3 other rows contains the known word representations.
Using this weight matrix the word sequences can be modelled as matrices:

1.
[
1 1 2
1 2 2

]

2.
[
1 1 0
2 1 0

]
Here each word in the sequence is replaced by the corresponding word vector, as a
column (eg. the first word in a sequence is represented by column 1 and the n’th
word in a sequence is represented by column n).

The weight matrix is kept for efficient representations as it would take too much
memory to at all times represent each occurrence of a word as a vector when the
vectors become large.

Methods for computing word vectors are described in section 4.64.6.

3.2.5 More advanced non-sequential input
More advanced non-sequential input representations like document vectors and
word clusters use the word vector representations to compute their values. These
representations are introduced here.

3.2.5.1 Document Vectors -More advanced non-sequential input
Le and Mikolov (20142014) introduced the concept of computing the average of the
word vectors representing a sentence or document and use it as the input to a
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classification/regression model. This averaged vector is dubbed a Document vector
and can be used to represent documents in a more semantically rich way than
standard BoW and TF-IDF representations and is much cheaper to use for training
than sequential input. Iyyer et al. (20152015) used Document vectors as the input neural
network models and efficiently trained a model with good results.

3.2.5.2 Word clusters - Bag of Clusters
In word clusters the most similar words are paired together in clusters. Meaning that
instead of counting words the Bag of Clusters representation counts occurrences of
each cluster. Word clusters can easily be trained by using Support vector clustering
(SVC) (a clustering method using support vector machines introduced by Ben-Hur

et al. (20022002)) to create word clusters (dubbed Bag of Clusters). Bekkerman et al.
(20032003) report good results from using word clusters for classification.

3.3 Methods to extend the vocabulary
Ways of extending the vocabulary, such as N-grams and Skip-grams, are introduced
in this section.

3.3.1 N-grams
N-grams can be useful to represent phrases with unique meaning as single items.
An example would be "Air Canada", as its meaning cannot easily be combined from
the meanings of the separate items "Canada" and "Air". n-gram’s are continuous
sequences of n items from a given sequence (usually from text or speech) which can
be used to extract such phrases.

A n-gram example:
Assume the sentence:

"The Shawshank Redemption is quite excellent."

The 1-gram and 2-gram representations of the sentence:

• 1-grams (uni-grams):
{ The, Shawshank, Redemption, is, quite, excellent }

• 2-grams (bi-grams):
{ The Shawshank, Shawshank Redemption, Redemption is, is quite, quite
excellent }
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3.3.1.1 N-grams and tf-idf
N-grams are especially nice to use to boost a tf-idf representation as it can weigh
important phrases with high values and unimportant phrases with low values.
Any redundant phrases can be removed by only keeping the values over a certain
threshold or the vocabulary with the k-highest values.

3.3.2 Skip-gram
Skip-gram modelling is a generalization of n-grams which handles data sparsity
better than classic n-grams as shown by Guthrie et al. (20062006) (i.e. in cases where the
vocabulary is too small it can be extended with skip-grams to improve performance
of the models used). Skip-grams gives the ability to skip words (items) in a sequence.
A k-skip-n-gram contains all the sub-sequences of n words where each word is a
distance k or less from the previous one.

An skip-gram example:
Assume the sentence:

"The potatoes are the real victims here!"

The resulting 1-skip-2-gram representation:

{ The potatoes, The are, potatoes are, potatoes the, are the, are real, the
real, the victims, real victims, real here, victims here }





15 Deep Learning for Text Analysis

4 Deep Learning for Text Analysis

In this chapter Deep Learning models that are relevant to the Natural Language
Processing problems dealt with in this thesis are introduced. Neural networks are
some interesting Deep Learning models, as Hornik, Stinchcombe, and White (19891989)
established that a Multilayer perceptron (MLP), a simple Neural Network, is able
to approximate any real valued function. The MLP and the other Deep Learning
models introduced in this section can be seen as models extracting features from
the available data, which are used in the final classification/regression layer of the
model.

This Chapter introduces the Single Neuron Model, which is the basis of the Neu-
ral Network family; the Multilayer Perceptron (MLP) model; Back-propagation,
the method used for training neural networks; Dropout, a regularization method
specialized for neural networks; Word vector models, used to train word vector
representations, such as GloVe, the Continuous Bag of Words (CBoW) model and
the Skip-gram model; the Convolutional Neural Network model; the Recurrent
Neural Network (RNN) family, with mentions of the LSTM and GRU.

4.1 The Single NeuronModel
Neural networks consists of multiple neurons in multiple layers, each neuron is
modelled in the same way, usually with the same parameters in each layer. Each
neuron is activated to a certain degree based on the input given. A single neuron
model is illustrated in Figure 4.14.1. The neuron activation function is defined as

y = f (x) = σ

 K∑
i

wixi

 = σ
(
wT x

)
, (4.1)

where x is the input vector and w is the weight vector. f is usually a non-linear
activation function that maps the vector x to the scalar output y. Often a bias is
added by setting x0 = 1 (where the corresponding w0 acts as the bias).

4.2 Activation functions
An activation function is said to be activated if its output is non-zero. It is also
said to have a strong activation if the output is relatively high and have a weak
activation if its output is relatively small. An activation function is desired to be
non-linear, continuously differentiable and monotonic, it is further desired that
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Figure 4.1: This figure shows an illustration of a single neuron model. (Source:
http://alexminnaar.com/tag/deep-learning.htmlhttp://alexminnaar.com/tag/deep-learning.html)

the function f (x) ≈ x when x approaches 0. The activation functions are desired to
be non-linear as this is a feature needed for the neural network to be an universal
approximator (Chen and Chen 19951995). Continuously differentiable activation func-
tions are necessary for gradient-based optimization methods. Monotone activation
functions guarantees a convex error surface of a single-layer model (Wu 20092009). And
if f (x) ≈ x when x approaches 0 the networks can train more efficiently (if this
is not satisfied weights must be initialized with care (Sussillo 20142014)). There are
many activation functions to choose from. The sigmoid, hyperbolic tangent and
the ReLU activation functions are introduced and defined in this section. Some
classification and regression functions used in the final layer of neural networks are
also introduced.

4.2.1 Sigmoidal functions
The most common form of activation functions are the sigmoidal functions which
are monotonically increasing functions that asymptotically approaches some value
as the input approaches ±∞. The most common sigmoidal functions are the standard
logistic function (usually referred to as the sigmoid function) and the hyperbolic
tangent. The logistic sigmoid, motivated somewhat by the biological neurons, is
defined as

f (x) =
1

1 + e−x
∈ [0,1). (4.2)

http://alexminnaar.com/tag/deep-learning.html
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Figure 4.2: Plots of the standard logistic function f (x) = 1/(1 + e−x), the hyperbolic
tangent f (x) = tanh(x) and the rectifier function (ReLU) f (x) = max(0,x).

The hyperbolic tangent which approximates the logistic sigmoids behaviour and
normalize the data between -1 and 1 is defined as

f (x) = tanh(x) ∈ (−1,1). (4.3)

Both sigmoidal functions are plotted in the figure 4.24.2.

The hyperbolic tanget is better for training models efficiently with back-propagation
(this is an optimization method used for neural networks and which will be intro-
duced in section 4.44.4). LeCun et al. (20122012) motivates that sigmoidal functions that
are symmetric around the origin are preferred because they on average produce
outputs close to zero which results in a faster convergence. Both sigmoidal functions
however face the vanishing gradient problem.

The vanishing gradient problem comes from how neural networks are trained
with back-propagation. The error signal computed in an n-layer model consists
of n gradients in the range of (−1,1)11 multiplied together, this results in a small
(vanishing) error signal and in turn results in slow training of the model.

4.2.2 Rectifier (ReLU)
Another activation function of interest is the rectifier function, also known as the
ramp function, which as of 2015 is the most popular activation function for deep
neural network according to LeCun, Bengio, and Hinton (20152015). A unit using the
rectifier activation function is called a rectifier linear unit, ReLU. The activation
function is often referenced as ReLU in deep learning applications/programming.
The rectifier function is defined as

f (x) = max(0,x). (4.4)

1Hyperbolic tangent: (−1,1); Sigmoid: [0,1)
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The rectifier function is plotted in figure 4.24.2. Glorot, Bordes, and Bengio (20112011)
argues that it is more biologically plausible than the logistic sigmoid and that it is
more efficient to train than the hyperbolic tangent. Glorot, Bordes, and Bengio

(20112011) also shows that the rectifier function is "remarkably" adapted to sentiment
analysis in text-based tasks. Further motivations for the Rectifier functions is that
it results in sparse activations (on an average only about 50 % of the ReLU units
are activated) and that it isn’t afflicted by the vanishing gradient. It is however
not differentiable close to 0, a way around this is the smooth approximation of the
rectifier function called the softplus function. The softplus function is defined as

f (x) = ln(1 + ex). (4.5)

The softplus function however doesn’t induce the sparsity that the ReLU function
does. Other variants of the Rectifier have been tailored for various specific deep
learning tasks, as for example the Leaky ReLU used in Maas, Hannun, and Ng

(20132013) and the Parametric ReLU used in He et al. (20152015).

4.2.3 Final layer
For the final layer in the neural networks probabilistic classification functions,
such as the softmax function, or regression functions, such as the linear activation
function, are preferred depending on if it is a classification or regression problem.
The softmax and linear activation functions are described in this section, along with
a mention about how support vector machines might surpass their performance.

4.2.3.1 Softmax
When the classification problem isn’t binary but contains multiple class the softmax
function is usually used, it is however also viable for the binary case. This is a
generalization of the logistic function and is just another name for a multinomial
classification model when one assumes that there exists no hierarchy among the
classes. The softmax function is nice as it gives an approximation of the probability
that a class is the correct one. The simplest approach is to simply choose the
class with the highest probability, and ignore the rest. But since it is a probabilistic
function it can also be used for a generative model. The softmax scores (probabilities)
are computed by the normalizing function

σj = P (y = j |x) =
exT wj

K∑
k

exT wk

, (4.6)

j ∈ {0,1, ...,K} and K is the number of classes. P (y = j |x) is the probability of class j
being the correct class of the K classes given the observations x, and the weights wj .
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4.2.3.2 Linear
The linear activation layer is just a simple linear regression model trained on the
incoming features. Given input features xi ∈ X and weights wi ∈W where i ∈ 1, ...,n
the output of the linear layer is given as

y = f (x) = XTW =
n∑
i

wixi (4.7)

4.2.3.3 SVM
However Tang (20132013) demonstrate a small but consistent advantage in classification
problems of replacing the final softmax layer with a linear support vector machine
(SVM). These findings could also imply that the SVM extension for regression,
the Support Vector Regression (SVR) model (Smola and Vapnik (19971997)), could
outperform the final linear activation layer in regression problems. This behavior
could also be motivated by the results in the experiment chapter (Chapter 55), where
SVM classification outperforms Logistic Regression and SVR regression outperforms
Linear Regression on representations of the datasets.

The current version of the Keras framework used to train the Deep Learning models
in this thesis does not support SVM and SVR activation layers in the current version.
So these activation functions were not tested.

4.2.4 Weight initialization
At initialization it is desirable that the weights are close to the center of the possible
values of it’s domain, so that the activation function operates in the domain where
it is approximately linear and the gradients are close to their potential maximums.
Glorot and Bengio (20102010) recommends drawing the initial weights from the uni-
form distribution. The width of the uniform distribution sampled from depends
on the activation function and the variable n, which is the sum of nin, the number
of input values given to the hidden layer that the weights belong to, and nout, the
number of hidden units in the hidden layer. This normalizing of the uniform dis-
tribution is meant to fulfill the objective of maintaining activation variances and
back-propagated gradient variances.

For the standard logistic function draw from:

U [−4×
√

6
√
n
,4×
√

6
√
n

] (4.8)

For the hyperbolic tangent draw from:

U [−6×
√

6
√
n
,6×
√

6
√
n

] (4.9)
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The scaling values 4 and 6 corresponds to the width of the area that the standard
logistic and hyperbolic tangents haven’t yet reached their maximum values, as |x|
values greater than 4 (logistic function) and 6 (hyperbolic tangent) results in f (x)
reaching it’s min or max value. For the rectifier function, ReLU, He et al. (20152015)
recommends sampling the weights from the normal distribution N (0,σ2), with
variance 0.01. If the layer is very large (wide) using a variance of 0.001 may induce
better performance/results.

4.3 Multilayer Perceptron (MLP)
The Multilayer perceptron (MLP) model is a basic neural network that consists of
multiple neurons. The MLP model with 1 hidden layer is illustrated in Figure 4.34.3
and consists of an input layer, a hidden layer and an output layer. The input layer
consists of the input vector x = {x1, ...,xK }, with K input variables. The hidden layer
consists of the hidden vector h = {h1, ...,hN }, with N neurons (where each neuron
behave just as the single neuron model). And the output layer consists of the output
vector y = {y1, ..., yM}, withM neurons. Every element in the input layer is connected
to every element in the hidden layer, where element wki of weight matrix W (K ×N )
indicates the weight associated with input element k and hidden element i. The
same connection structure is also present between the hidden layer and the output
layer (i.e. that every element in the hidden layer is connected to every element
in the output layer), and here element w′ij of weight matrix W ′ (N ×M) indicates
the weight associated with hidden element i and output element j. The output of
hidden element hi is given by the equation

hi = f (ui) = f

 K∑
k=1

wkixk

 ∀i ∈ {1,2, ...,N },
where ui is the input of the activation function of hidden element hi . And the output
values yj of the output layer y are given by the equation

yj = g(vj ) = g

 N∑
i=1

w′ijhi

 ∀j ∈ {1,2, ...,M},
where vj is the input sent to some activation function g that computes the value for
yj . The weights W , W ′ are trained by using Stochastic Gradient Descent as it is a
computationally efficient alternative to standard optimization methods. The full
optimization method is called back-propagation.
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Figure 4.3: The MLP model with one hidden layer. (Source:
http://alexminnaar.com/tag/deep-learning.htmlhttp://alexminnaar.com/tag/deep-learning.html)

4.4 Back-Propagation
Back-propagation is the method used to train neural networks. Back-propagation is
an abbreviation of "backward propagation errors", i.e. the final classification/value
error gets propagated backwards in the network in order to update the weights.

An example of using back-propagation on the MLP model with one hidden layer:
We want to train the MLP model by updating the weights W and W ′. We first find
the gradient of the chosen loss function E with respect to W ′. Using the chain rule
we get

∂E

∂w′ij
=
∂E
∂vj

∂vj
∂w′ij

,

where
∂vj
∂w′ij

= hi .

http://alexminnaar.com/tag/deep-learning.html
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∂E
∂w′ij

can be rewritten to

∂E
∂vj

=
∂E
∂yj

∂yj
∂vj

which makes it easier to compute the gradient when the loss and activation functions
are known. Thus the gradient can be written as

∂E

∂w′ij
=
∂E
∂yj

∂yj
∂vj

hi ∀w′ij ∈W
′ (4.10)

Next we find the gradient of the loss function E with respect to W . Using the chain
rule we get

∂E
∂wki

=
∂E
∂hi

∂hi
∂ui

∂ui
∂wki

,

where
∂ui
∂wki

= xk

and
∂E
∂hi

=
M∑
j

(
∂E
∂yj

∂yj
∂vj

∂vj
∂hi

)
=

M∑
j

(
∂E
∂yj

∂yj
∂vj

w′ij

)
where ∂E

∂yj
and

∂yj
∂vj

have already been computed for the weightsw′ij . Thus the gradient

can be written as

∂E
∂wki

=
M∑
j

(
∂E
∂yj

∂yj
∂vj

w′ij

)
∂hi
∂ui

xk ∀wki ∈W (4.11)

Using the gradients defined in equations 4.104.10 and 4.114.11 the update algorithm of
each set of weights respectively is given by the SGD-algorithm (this is the simplest
approach with a momentum parameter of 0):

w′ij ← w′ij − η
∂E

∂w′ij
= w′ij − η

∂E
∂yj

∂yj
∂vj

hi ∀w′ij ∈W
′ (4.12)

wki ← wki − η
∂E
∂wki

= wki − η
M∑
j

(
∂E
∂yj

∂yj
∂vj

w′ij

)
∂hi
∂ui

xk ∀wki ∈W (4.13)

4.5 Regularization
Regularization is a method commonly used to prevent overfitting on the training
data, which occurs when the model describes noise instead of the underlying re-
lationship of the data. The desired effect of a model is a good generalization for
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all observed and unobserved data in the domain it predicts in. There exists many
regularization approaches such as adding regularization terms to the loss function,
ensemble methods and early stopping. Regularization terms such as L1 (Lasso)
and L2 (Ridge Regression) adds a constraint function to the weights, this adds
extra terms to optimize and gets quite costly as a neural network usually has many
weights, thus this isn’t always feasible or preferred. Ensemble methods trains a lot of
models and averages the output and this is not efficient for deep neural networks as
it is quite costly to train a neural network and it would be extremely costly to train
enough models for a good ensemble. Early stopping depends on a validation set
(which is not part of the training set) and stops training when accuracy (or another
evaluation metric) on the validation set stops improving. Early stopping is more
of an intuitive method and isn’t very theoretically backed. Another regularization
method is needed as common ensemble methods and regularization terms are to
costly and inefficient when used for deep neural networks (further early stopping is
poorly theoretically motivated and more than a little luck based).

4.5.1 Dropout
Dropout is a regularization method introduced by Srivastava et al. (20142014) and
tailored specifically for deep neural networks. It effectively approximate model
combination, prevents overfitting and approximates exponentially many neural
nets efficiently. The idea is to prevent the model from being too specialized on the
training data (i.e. overfit) by at random removing (hidden and input) units from the
model temporarily. The units are present with probability p as illustrated in Figure
4.44.4. p = 0.5 seems to be close to the optimal value for a wide range of networks and
tasks. The input nodes seems to have an optimal p closer to 1 (a typical value is 0.8)
(Srivastava et al. 20142014).

Since it is not feasible to average the prediction of many thinned models at test
time an approximate averaging method is used. The final prediction model is one
neural net where the weights are scaled by the dropout probability p, as shown in
Figure 4.54.5. This ensurers that the output at test time is the same as the expected
output at training time. Dropout leads to significantly lower generalization error
compared to other regularization methods on a wide variety of task including object
classification, digit recognition, speech recognition, document classification and
analysis of computational biology data (Srivastava et al. 20142014).

A drawback of droput is that it increases training time (p = 0.5 results in a approxi-
mately 2-3 times longer training time than the basis model). This is mainly because
the parameter updates becomes very noisy. However this stochasticity is likely the
factor that prevents overfitting. This results in a trade-off between overfitting and
training time (i.e. with more training time, one can use higher dropout and suffer
less overfitting).
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There exists many modifications of dropout both general and for specific tasks, such
as DropConnect, DropPart, Standout and Maxout. Dropconnect proposed by Wan

et al. (20132013) is meant to be a generalization of dropout, however it only achieves
better results through much more expensive training. And Smirnov, Timoshenko,
and Andrianov (20142014) show empirically that Dropout works better than DropCon-
nect on the ImageNet22 dataset, this is not a proof but more of an indication that
Dropconnect might not outperform dropout even if the extra computational cost is
within bounds. DropPart proposed by Tomczak (20132013) is a further generalization
of DropConnect. Standout proposed by Ba and Frey (20132013) is meant to be a more
adaptive dropout method. Maxout proposed by Goodfellow et al. (20132013) is a deep
learning model designed to exploit how optimization works with dropout.

Figure 4.4: The Dropout Neural Network model. Left: A standard neural net with
2 hidden layers. Right: An example of a thinned network produced by applying
dropout to the network on the left. Crossed units have been dropped. (Source:
Srivastava et al. (20142014))

4.6 Word vector models
This section explains how the word vectors introduced in section 3.2.43.2.4 are trained.
Creating vector representations of words and phrases that retain semantic meanings
requires appropriate models. The most popular models for training word vectors
are context-counting and context-predicting model types.

2http://image-net.org/http://image-net.org/

http://image-net.org/
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Figure 4.5: Left: At training time, the unit is present with probability p and is
connected to units in the next layer with weights w. Right: At test time, the unit is
always present and the weights are scaled by a factor of p. The output at test time
is then the same as the expected output at training time. (Source: Srivastava et al.
(20142014))

4.6.1 Count-basedmodels - GloVe
Count-based models are trained by doing dimensionality reduction on a co-occurrence
counts matrix. The co-occurrence count matrix C (words × context) counts the co-
occurrence of words and context. Context could for example be retrieved from
document tags, for example a sports article or a deep learning paper. Since this
matrix is extremely large one factorizes this matrix into (word × features) matrix U
and (context × features) matrix V . The relation can be represented as

C =UV T . (4.14)

These matrices U and V are trained by minimizing the "reconstruction loss", while
trying to use low dimensional representations. The aim is to be able to explain most
of the variance of the data given these matrices. The (word × features) matrix U is
used to represent the words, each row represents a word (or a class of words if one
combines certain similar words like "is" and "are").

GloVe (Global Vectors for Word Representation) is a new and popular Count-based
model out of Stanford. The model was introduced by Pennington, Socher, and
Manning (20142014) and is an unsupervised algorithm for training word vectors. Pre-
trained GloVe vectors are available at the GloVe project site33.

4.6.2 Predictivemodels - word2vec
Predictive models are trained by minimizing a loss function. The Skip-Gram model
and the Continuous Bag-of-Words (CBOW) model are two popular predictive models
from Google. These models are introduced and evaluated by Mikolov et al. (2013b2013b),

3http://nlp.stanford.edu/projects/glove/http://nlp.stanford.edu/projects/glove/

http://nlp.stanford.edu/projects/glove/
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Mikolov et al. (2013a2013a) and Mikolov, Yih, and Zweig (20132013). These models are
usually referred to as word2vec and pre-trained word vectors are available at the
word2vec project site44. A more comprehensive and detailed literature is presented
by Rong (20142014). Both of these models are modelled by a simple neural network
with one hidden layer and they are trained using back-propagation.

The Continuous Bag of Words (CBoW) model aims to predict a word given the
context it is surrounded by. While the Skip-gram model tries to predict the context
given the target word, it also creates more training cases by creating skip-grams of
the word context (as shown in section 3.3.23.3.2). The skip-grams may create context
examples of words that are far away from each other which together can give
significant context information. A simple example of both models is illustrated in
Figure 4.64.6, wherew(t) represents the target word andw(t−2),w(t−1),w(t+1),w(t+2)
represents the context of the word. This could represent the sentence:

"Nobles dislike potato eating peasants."

Which could be split up into the word set { "Nobles", "dislike", "potato", "eating",
"peasants" } . Thus if the window size is 4 and the context is given as { "Nobles",
"dislike", "eating", "peasants" } the target word is in this instance "potato".

Figure 4.6: A simple example for comparison of the Continuous bag of words model
and Skip-gram model. w(t) represents the target word and w(t − 2),w(t − 1),w(t +
1),w(t + 2) represents the word context. (Source: Mikolov et al. (2013b2013b))

4https://code.google.com/archive/p/word2vec/https://code.google.com/archive/p/word2vec/

https://code.google.com/archive/p/word2vec/
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According to Mikolov55 the Skip-gram model works well with small amounts of
training data and represents even rare words and phrases well, while the CBoW
model is much faster to train and has a slightly better accuracy for frequent words.

4.6.2.1 Short on how themodels are trained
This section will give a short description on how the Skip-gram and CBoW mod-
els are trained. These models are as mentioned trained with back-propagation
(described in section 4.44.4).

Initial definitions:

• C is the context size.

• V is the size of the vocabulary used.

• N is the number of features in the word vector representations.

• J = {1,2, ...V }

• I = {1,2, ...,C}

• Hot-encoded vectors: zero-vectors with the value 1 in the cell j ∈ J which
corresponds to the word in the vocabulary it represents.

• Weight matrix W (V ×N )

• Weight matrix W ′(N ×V )

How the Continuous Bag of Word (CBoW) model is trained is illustrated in Figure
4.74.7. As mentioned, given the word context x1,x2, ...xC the model tries to predict
which word the context surrounds. These vectors xi (i ∈ I) are hot-encoded. The
model can be simplified by summing the context vectors into a context vector X
(X =

∑C
i xi). This context vector is connected to a weight matrix W and through it

the hidden layer h. The hidden layer is further connected to the weight matrix W ′

and through it the output layer. The output layer computes a vector y(1×V ) and the
highest value yj (j ∈ J) corresponds to the word in the vocabulary the model predict
that the context X surrounds.

How the Skip-gram model is trained is illustrated in Figure 4.84.8. As mentioned, the
only difference from the CBoW model is that the Skip-gram model tries to predict
the context y1, y2, ...yC surrounding the word x. The model can be simplified by
summing the context vectors into a context vector Y (Y =

∑C
i Yi). The hot-encoded

5Mikolov’s post in a Google Groups thread:
https://groups.google.com/forum/#!msg/word2vec-toolkit/NLvYXU99cAM/E5ld8LcDxlAJhttps://groups.google.com/forum/#!msg/word2vec-toolkit/NLvYXU99cAM/E5ld8LcDxlAJ

https://groups.google.com/forum/#!msg/word2vec-toolkit/NLvYXU99cAM/E5ld8LcDxlAJ
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vector x is connected to a weight matrix W and hidden layer h. The hidden layer is
further connected to the weight matrix W ′ and the output layer. The output layer
computes a vector y, where the cells with the C strongest activations refers to which
words the model predicts that surrounds the word represented by x.

For both the models (after they have been trained) the rows in either W or (W ′)T

can be used to represent the words in the vocabulary as word vectors, it is usually
W that is used. Meaning that row j ∈ J in W represents the word vector for word j
in the vocabulary.

Input layer

Hidden layer
Output layer

WV×N

WV×N

WV×N

W'N×V yjhi
x2k

x1k

xCk

C×V-dim

N-dim

V-dim

Figure 4.7: The Continuous bag-of-word model. (Source: Rong (20142014))

4.6.3 Count-basedmodels vs. Predictivemodels
Baroni, Dinu, and Kruszewski (20142014) report that training word vectors using
predictive (context-predicting) models outperform or perform as well as when using
count-based (context-counting) models. While Pennington, Socher, and Manning
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Figure 4.8: The skip-gram model. (Source: Rong (20142014))

(20142014) and Lebret and Collobert (20152015) motivates that count-based models are
more efficient to train, more easily parallelized and able to infer unseen words
and phrases, which is an advantage over predictive models (which has to train
representations of any new words if one wants to gain any relevant information
from the word).

4.7 Convolutional Neural Network
The Convolutional Neural Network (CNN) is a neural network model inspired by
how living creatures process natural image data. It is based on the work on the cat’s
visual cortex by Hubel and Wiesel (19681968) which found that there exists cells that
acts as local filters which search the natural images for patterns. These cells are
ideal for exploiting the strong local correlation which is present in natural images.
There exist many CNN models for image processing inspired by the visual cortex, a
few of those are Fukushima (19801980), Serre et al. (20072007), LeCun et al. (19981998) (LeNet-
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5) and Krizhevsky, Sutskever, and Hinton (20122012). Krizhevsky, Sutskever, and
Hinton (20122012) achieved "state-of-the-art" performance on the ImageNet66 dataset
using a CNN model, which further supports that the CNN model is well-suited for
processing images that have a 2D structure with strong spatial correlation.

It has in recent years been motivated that the CNN is a viable model for NLP
tasks, as there exists a 1D structure with strong local spatial correlation in natural
languages. The effectiveness of CNN model on NLP tasks in comparison to "state-of-
the-art" methods has been demonstrated by Johnson and Zhang (20142014), Kim (20142014),
Kalchbrenner, Grefenstette, and Blunsom (20142014), Shen et al. (20142014) and Gao

et al. (20152015), implying that it is able to exploit the correlated 1D structure of text
quite well. Johnson and Zhang (20142014) used a CNN model with hot-encoded input
to train domain specific word vectors in the same model which did the main task
of classifying documents. Kim (20142014) used the publicly available word2vec word
vectors to encode the input of their CNN variants. Kalchbrenner, Grefenstette,
and Blunsom (20142014) introduced the Dynamic CNN which use dynamic k-max
pooling. Further Shen et al. (20142014) presents the Convolutional Latent Semantic
Model (CLSM) and Gao et al. (20152015) presents the Deep Semantic Similarity Model
(DSSM), both models learn semantic representations of sentences for Information
Retrieval (these models were trained to recommend documents to users based on
what they are currently reading or have been reading).

4.7.1 Themodel
The CNN model consists of an input layer, a convolution layer, a pooling layer, fully
connected nodes and a final prediction layer. It can consist of multiple convolution
and pooling layers, but these are usually used in order (i.e. a convolution layer is
always preceded by an input layer or pooling layer, while a pooling layer is always
preceded by a convolution layer). Deeper CNN models with multiple convolution
and pooling layers are usually reserved for extremely large datasets. In the text case
the input is given as word sequences (defined in Section 3.2.33.2.3) where each word is
encoded as a word vector. The word vectors can be static or be trained with the rest
of the model. An example of a CNN model with text input is illustrated in Figure 4.94.9.
The CNN model is like the other neural networks trained using back-propagation.

4.7.1.1 Convolution
Each convolution node got one unique filter, which searches the input for a unique
pattern. The convolution nodes computes a vector (a matrix in the image case) of
the length equal to possible placements of the filter, each cell refers to how strongly
the pattern was observed in a the unique location connected to that cell. A simple

6http://image-net.org/http://image-net.org/

http://image-net.org/
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Figure 4.9: A graphical depiction of a CNN model using 1-max-pooling with text
input. (Source: Zhang and Wallace (20152015))

convolution on an image matrix is illustrated in figure 4.104.10, in the example the
matrix represents a black and white image, where black is represented by 0 and
white by 1. The 3× 3 yellow window is a filter which slides over the image. In this
example the filter multiplies its values element-wise with the part of the image it
covers, and sends that value to the "Convolved Feature", which is the matrix it will
send to the convolution node it is connected to. The step-wise convolution update
given the filters iteration over the image is shown in figure 4.114.11. In the common text
case the height of the filters is set to be the same length as the number of features
in the word vectors. While the filters width, called the window size, which decides
how many words fits in the filter is a hyper-parameter chosen through tuning (eg.
line-search).
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Figure 4.10: Simple 2D convolutional layer example: The matrix represents a
black and white image, where black is represented by 0 and white by 1. The
3 × 3 yellow window is a filter which slides over the image. In this example
the filter multiplies its values element-wise with the part of the image it cov-
ers, and sends that sum to the "Convolved Feature", which is the matrix it will
send to the convolution node it is connected to. The step-wise convolution up-
date given the filters iteration over the image is shown in Figure 4.114.11. (Source:

http://deeplearning.stanford.edu/wiki/index.php/Feature_extraction_using_convolution#Convolutionshttp://deeplearning.stanford.edu/wiki/index.php/Feature_extraction_using_convolution#Convolutions)

4.7.1.2 Pooling

Each convolution node is connected to a unique pooling node. These pooling nodes
looks for the most significant information retrieved by the convolution nodes by
following different pooling schemes. The simplest pooling scheme is 1-max-pooling,
which simply means that the pooling node retrieves the highest value from the filter.
Pooling reduces dimensionality while retaining the most important information, this
makes the model more computationally effective compared to just using convolution
layers and fully connected layers. A max-pooling example is shown in Figure 4.124.12,
where each colored area refers to a separate convolution node. The input matrix
consists of 4 convolution nodes which are processed by 4 pooling nodes using

http://deeplearning.stanford.edu/wiki/index.php/Feature_extraction_using_convolution#Convolutions
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(a) Step 1 (b) Step 2

(c) Step 3 (d) Step 4

(e) Step 5 (f) Step 6

(g) Step 7 (h) Step 8

Figure 4.11: The stepwise convolution update given the filters itera-
tion over the image is shown in this figure, see image 4.104.10. (Source:

http://deeplearning.stanford.edu/wiki/index.php/Feature_extraction_using_convolution#Convolutionshttp://deeplearning.stanford.edu/wiki/index.php/Feature_extraction_using_convolution#Convolutions)

http://deeplearning.stanford.edu/wiki/index.php/Feature_extraction_using_convolution#Convolutions
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max-pooling.

Figure 4.12: A pooling example where each colored area refers to a sepa-
rate convolution node. The input matrix consists of 4 convolution nodes
which are processed by 4 pooling nodes using max-pooling. (Source:
http://cs231n.github.io/convolutional-networks/#poolhttp://cs231n.github.io/convolutional-networks/#pool)

4.8 Recurrent Neural Network
The Recurrent Neural Network (RNN) is a neural network which isn’t an acyclic
graph like the previous neural networks. The RNN uses directed cycles to model
temporal behaviour. Mikolov et al. (20102010), Mikolov et al. (20112011), Yao et al. (20132013)
and Mesnil et al. (20142014) have gotten good results using RNN-LM (Recurrent Neural
Network Language Models) models on NLP tasks. Chung et al. (20142014) motivates
that the LSTM and GRU variants of the RNN perform best.

4.8.1 Long Short-TermMemory (LSTM)

Long Short-Term Memory (LSTM) is an old and popular RNN variant introduced by
Hochreiter and Schmidhuber (19971997). LSTM doesn’t have the vanishing gradient
problem and have shown good results on NLP tasks77.

7
Gers and Schmidhuber 20012001.

http://cs231n.github.io/convolutional-networks/#pool
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4.8.2 Gated Recurrent Unit
The Gated Recurrent Unit (GRU) is a new RNN variant introduced by Cho et al.
(20142014). The GRU automatically learns the grammatical structure of a sentence.
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5 Experiments

This chapter presents the results obtained from the analysis of the complete IMDB
dataset and the Hewlett Foundations Automated Essay Scoring (AES) dataset. The
IMDB dataset is big relative to the essay dataset (labelled training data 25.000 docu-
ments, test data 25.000 documents and unlabelled training data 50.000 documents),
but not very complex (as reviews are either positive or negative). While the essay
dataset is quite small in comparison (8 essay sets of around 1800 essays each), but
very complex due to its nature. These datasets are both ideal for testing text analysis
models.

Note that there are restrictions concerning memory and available disk space with
respect to personal hardware, university hardware and the python packages used
for modelling the data. A Tesla C205011 GPU is used for parallel training the neural
networks to keep the training time within practical bounds. The disk space is a
concern on the server with the GPU, which makes the use of domain word vectors
with more than 300 features infeasible. This is a pity since word vectors of size 5000
have been shown to give good results on the IMDB dataset22,33.

5.1 General information about the experiments
This section contains general information about the experiments such as information
about the features used, models used, training time and general observations.

5.1.1 Features
The features used in the different experiments, as well as their abbreviations, are
listed and described here.

• Word vectors used (defined in Section 3.2.43.2.4):

– w2v: Googles pre-trained word vectors44 with 300 features trained on
part of the Google News dataset containing about 100 billion words. The
full w2v vocabulary contains about 3 million words and phrases.

1http://www.nvidia.com/docs/IO/43395/NV_DS_Tesla_C2050_C2070_jul10_lores.pdfhttp://www.nvidia.com/docs/IO/43395/NV_DS_Tesla_C2050_C2070_jul10_lores.pdf
2https://github.com/smartinsightsfromdata/kaggle-word2vec-movie-reviewshttps://github.com/smartinsightsfromdata/kaggle-word2vec-movie-reviews
3https://github.com/smartinsightsfromdata/kaggle-sentiment-popcornhttps://github.com/smartinsightsfromdata/kaggle-sentiment-popcorn

4https://code.google.com/archive/p/word2vec/https://code.google.com/archive/p/word2vec/

http://www.nvidia.com/docs/IO/43395/NV_DS_Tesla_C2050_C2070_jul10_lores.pdf
https://github.com/smartinsightsfromdata/kaggle-word2vec-movie-reviews
https://github.com/smartinsightsfromdata/kaggle-sentiment-popcorn
https://code.google.com/archive/p/word2vec/
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– domain: Domain word vectors with 300 or 5000 features trained on the
IMDB labelled training, unlabelled training and test data.

– Abbreviations: w2v (w2v-300), domain-300 and domain-5000 denotes
the different word vector representations.

– Note: The word vectors gave very good performance if the dataset was
big enough for them to be effective.

• Bag of Words (defined in Section 3.2.2.13.2.2.1)

– Ex: BoW500 is a Bag of Words representation containing the top 500
most frequent words.

– Ex: BoW-max is a Bag of Words representation containing all the words
in the vocabulary.

– Note: The Bag of Words representation gave a good baseline and per-
formed very well compared to the other features even if the dataset was
relatively big. And in the small case of the AES dataset it was the most
important feature.

• tf-idf (defined in Section 3.2.2.23.2.2.2)

– Ex: tfidf(1,2) is a tf-idf representations of the vocabulary extended by
2-grams (i.e. from range 1 to 2, bi-grams) (defined in section 3.3.13.3.1).

– Ex: tfidf500(1,3) is a tf-idf representation of the vocabulary extended by
3-grams containing the 500 highest weights.

– Note: The feature was the most expressive feature of the non-sequential
representations of the data in the IMDB case. And in the AES case it
gave a significant boost to the Bag of Words representation, but did not
perform exceptionally well alone.

• Bag of Clusters: Word clusters where words that are closer to each other
according to the word vectors (w2v or domain) are in the same cluster (defined
in Section 3.2.5.23.2.5.2).

– Ex: BoC(domain) is a cluster representation using the domain vectors
(with 500 features/clusters).

• Document vectors (d2v): the average of all the word vectors in a document
(defined in section 3.2.5.13.2.5.1).

– Ex: d2v(w2v) is a document vector created using the w2v word vectors
with 300 features.

– Note: A d2v representation without the word vector type defined uses
w2v word vectors.
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• Negative and Positive words:

– The Count of Positive words and the Count of Negative words:

* Ex: BoW500NP is a BoW500 representation combined with the count
of positive words and the count of negative words.

– Positive and Negative word ratio in the document:

* Ex: BoW500NP-ratio is a BoW500 representation combined with the
negative-positive word ratio.

• Number of words in the document

– Ex: BoW300-nbWords is a BoW300 representation combined with the
number of words in each document.

• Number of sentences in the document

– Ex: BoW300-nbSent is an BoW300 representation combined with the
number of sentences in each document.

• Average sentence length in a document.

– Ex: BoW300-avSent is an BoW300 representation combined with the
average sentence length in each document.

• Bag of Word Classes: A vector containing the number or ratio that each word
class appears (e.g. the number of nouns, verbs, etc...)

– Ex: BoW500-WC is a BoW500 representation combined with the count
that each word class appears.

– Ex: BoW500-WR is a BoW500 representation combined with the ratio
that each word class appears.

• Number of stop words in the document. Stop words are high-frequency words
such as "to" and "from".

– Ex: BoW300-Stop is a BoW300 representation combined with a the
number of stop words in each document.

The importance of each feature is described in detail in the experiment sections
they are used in (IMDB section 5.2.55.2.5 and AES section 5.3.25.3.2). An interesting note
is that the BoW and tf-idf representations are only able to gain information from
the training data, while the models trained on word vectors are also able to gain
information from the vocabulary of the test data, this makes them more flexible to
new observations.
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The list of words used to classify a word as positive or negative is available on the
net55. The list was developed as part of the papers Hu and Liu (20042004) and Liu, Hu,
and Cheng (20052005). The word classes were extracted by using the NLTK (Natural
Language Toolkit66 which is available as a python package. The NLTK package was
also used to determine the list of stop words.

5.1.2 Models used
The models used in the experiments, as well as their abbreviations, are listed here:

• Random Forest Classifier

– Ex: RF100 is a random forest classifier with 100 trees.

• Naive-Bayes Classifier

– Short: NB

• Logistic Regression

– Short: LR or LogReg

• Linear Regression

– Short: LinR or LinReg

• Linear Support Vector Machine Classifier

– Short: SVM

– Note: This model performed best of the common statistical methods
tested on the classification problem (IMDB).

• Support Vector Regression

– Short: SVR

– Note: This model performed best of the common statistical methods
tested on the regression problem (AES).

• Multilayer Perceptron (MLP)

– Ex: MLP-2-2 is a MLP with 1 hidden layer consisting of 2 nodes and a
final softmax layer with 2 nodes.

5http://www.cs.uic.edu/~liub/FBS/sentiment-analysis.htmlhttp://www.cs.uic.edu/~liub/FBS/sentiment-analysis.html
6http://www.nltk.org/http://www.nltk.org/

http://www.cs.uic.edu/~liub/FBS/sentiment-analysis.html
http://www.nltk.org/
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Table 5.1: Models and their approximated training time

Models Training time CPU Training time GPU
RF100, NB, LogR, LinR, SVM, SVR 1-5 min -
MLP, RF1000 5-60 min 1-15 min
CNN 1-5 hour 20-30 min

– Ex: MLP-512-32-2 is a MLP with one hidden layer of 512 nodes connected
to another hidden layer of 32 nodes, which is connected to a softmax
layer of 2 nodes.

– Ex: MLP-2-1 is a MLP with 1 hidden layer with 2 nodes and a final linear
regression layer computing one value (1 final node).

• Convolutional Neural Network (CNN)

– Ex: CNN-300f-8d is a CNN with 300 filters and a window size of 8
cells/words.

5.1.2.1 MLP
The MLP’s were trained with dropout p0 = 0.8 in the initial feature layer and p = 0.5
in any additional layers (except for the final layer). The final layer was a softmax
layer for the IMDB dataset and a linear regression layer for the AES dataset. Using
SVM and SVR (currently unavailable for the Keras framework used) for the final
layers could increase performance.

5.1.2.2 CNN
The CNN was trained with Relu activations and without any dropout as it seemed
to interfere with the Relu activations. As with the MLP’s final layer; the final layer
was a softmax layer for the IMDB dataset and a linear regression layer for the AES
dataset. Using SVM and SVR (currently unavailable for the Keras framework used)
for the final layers could increase performance.

5.1.3 Training time
Approximated training times of the models used in the experiment section is shown
in Table 5.15.1.

5.1.4 Observations
This section contains a few general observations done through the experiments.
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5.1.4.1 CNN vs. dropout
An interesting observation is that the rectifier performed better without dropout
in the CNN case. This effect could be due to the fact that the rectifier and the
dropout method both impose sparseness and combined they could introduce too
much sparseness in the model, leading to increased model bias.

5.1.4.2 Removing Stopwords
Removing stop words is a common practice when pre-processing a text dataset, but
removing them from the documents gave poorer results for both datasets. For the
IMDB dataset this is probably because some stop words, such as "against" and "into",
can contain semantic meaning (i.e. positive/negative meaning). In the essay set case
it might be because they are needed to observe good sentence structures.

5.1.4.3 Vocabulary size
The performance of models trained on Bag of Words and tf-idf representations
seems to be a convex function of the vocabulary size. This function does not appear
to be strictly increasing, meaning that too big a vocabulary could hurt the models
by causing overfitting.

5.2 IMDB Full Data set
The results obtained from the analysis of the full IMDB dataset, described earlier
in Section 2.22.2, will be presented here. The dataset was released as part of a com-
petition where the "prize" was learning. The goal of the competition was to get
the best predictions on the test data given the Area Under the Receiver Operating
Characteristic curve (AUROC) evaluation metric (defined in 5.2.25.2.2). The scores of
the competition can be found at the competitions leaderboard77.

The AUROC metric, to be defined in Section 5.2.25.2.2, is in these experiments computed
by submitting the predictions generated by the models to the Kaggle competition
page88 (note that the competition is over so any new submissions will not be recorded,
but the corresponding AUROC value will still be computed for anyone wanting to
evaluate their models). The accuracy is computed by rounding the predictions to
binary values and submitting them (since the AUROC value of binary predictions is
equal to the accuracy).

7https://www.kaggle.com/c/word2vec-nlp-tutorial/leaderboardhttps://www.kaggle.com/c/word2vec-nlp-tutorial/leaderboard
8https://www.kaggle.com/c/word2vec-nlp-tutorial/submissions/attachhttps://www.kaggle.com/c/word2vec-nlp-tutorial/submissions/attach

https://www.kaggle.com/c/word2vec-nlp-tutorial/leaderboard
https://www.kaggle.com/c/word2vec-nlp-tutorial/submissions/attach
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5.2.1 Classification task
The task of predicting a review’s positive or negative sentiment is a standard binary
classification problem, however it is the computed probabilities that are most
interesting when computing the AUROC value. In some cases a model with the
higher AUROC value might not have the highest accuracy, which could be something
noteworthy, but the values are usually highly correlated.

5.2.2 EvaluationMetric - Area Under the Receiver Operating Characteristic
curve (AUROC)

The submissions at Kaggle are evaluated using the Area Under the Receiver Op-
erating Characteristic curve (AUROC) metric, also referred to as the Area Under
the Curve (AUC), although the latter name is a little ambiguous. This evaluation
statistic is nice as it supports not just binary class predictions but also probability
predictions. Probability predictions actually always get a higher or the same score
as the rounded binary predictions.

The ROC curve (which the AUROC is the sum of the area under) plots the False
positive rate (FPR) against the True positive rate (T PR), which both are defined as

T PR =
T P

T P +FN

FPR =
FP

FP + TN

where T P , FP , TN , FN are the number of True positives, False positives, True
negatives and False negatives. The T PR is plotted against FPR at many different
thresholds (for example 0.00, 0.01, 0.02, ..., 1.00) which decides when a prediction
is assumed to be true (e.g. at a threshold of 0.90 a prediction is assumed to be true
if the computed probability is equal or higher than 90% and any prediction with
a lower probability is assumed to be untrue). A random prediction will result in
an AUROC value close to 0.5, which is usually used as a threshold. And if all the
predictions are wrong the AUROC value is 0 and if they are all correct the value is 1.
In the case of binary predictions the AUROC value is the same as the accuracy.

5.2.3 Validation set
The neural networks are validated during training by a valiation set which is created
by splitting the training data into a 80-20 training/validation-set
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5.2.4 Vocabulary
After pre-processing the training dataset contains a vocabulary of 74436 words.
While the training and test sets combined contains of a vocabulary of 112540 words.

5.2.5 Features
The features used in the IMDB dataset experiments are listed here:

• Word vectors: w2v, domain-300, domain-5000

– Feature importance: In the IMDB experiments the word vectors were
the most important features as they were used as word encodings for the
CNN model which gave the best performance of all the non-ensemble
methods tested.

* Note: For the CNN the w2v word vectors were used, although there
were indications that the domain word vectors also would perform
on the same level, if not significantly better in the case of the domain-
5000 word vectors.

• Bag of Words (BoW)

– Feature importance: The Bag of Word representations gave a good base-
line for the experiments and performed relatively well compared to the
other representations in the IMDB experiments.

• tf-idf

– Feature importance: The tf-idf representation was the most important
feature for the non-sequential models in the IMDB experiments.

• Bag of Clusters (BoC)

– Feature importance: With the tested number of clusters (500) the rep-
resentation did not give very good performance and was deemed unim-
portant. Increasing the cluster size might however increase the perfor-
mance/importance. It could also have a potential for boosting other
feature representations.

• Document vectors (d2v)

– Feature importance: The document vectors tested did not give very good
results alone, it could have a potential for boosting other representations.
Increasing the feature size of the d2v representations might also improve
the performance/importance of the feature.
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• Count of Positive words and count of Negative words (NP) and Negative-
positive word ratio (NP-ratio)

– Feature importance: The NP and NP-ratio features gave little gain and
were deemed insignificant.

The positive and negative gain from using the document vectors (d2v) and NP/NP-
ratio features to boost the other representations seemed to vary stochasticly around
(or if not slightly below) 0, implying that they only introduced bias to the modelling
and had no real benefit.

5.2.6 BoW
The performance of the models trained with the BoW representation are show in
Figure 5.15.1. The Logistic Regression model had the best performance on the BoW
representation of the IMDB data as shown in figure 5.1a5.1a. The Random Forest model
performed very close to the Logistic Regression with 100 trees, but increasing the
trees to a size of 1000 was too memory costly so it was only tested on a vocabulary
size of 5000 (at which it did not outperform the Logistic Regression). Results from
testing with 10, 100 and 1000 trees can be seen in figure 5.1b5.1b (the RF trains extremely
inefficiently as every tree refers to a separate model). The Naive-Bayes performed
moderately while the SVM performed the worst on the BoW representation. The
Logistic Regressions performance boosted by the NP and/or NP-ratio features is
shown in figure 5.1c5.1c, which shows that the extra features boost the model a little bit.
And the best performance of all the classifiers and the boosted Logistic Regression
model is shown in figure 5.1d5.1d.

5.2.7 tf-idf
The models performance on the tf-idf representation of the IMDB data is visualized
in figure 5.25.2. The SVM outperformed the Logistic Regression as can be seen in
Figure 5.2a5.2a, which shows the models trained on different tf-idf representations
based on different N-grams of size g. The best results seemed to be with N-grams
of range 1 to 2. And it seemed uniform that all the models perform best when
the full vocabulary was used and no words were removed. Neither the SVM nor
the Logistic Regression did well when combining the NP and NP-ratio features to
the tf-idf representations, the performance of the boosted Logistic Regression is
shown in figure 5.2b5.2b (the SVM didn’t do any better). The Naive-Bayes and Random
Forest didn’t perform significantly well on the tf-idf representation compared to the
Logistic Regression and the SVM, and their performance are only shown in figure
5.2c5.2c which shows the best performance of each classifier.
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(a) The performance of the models plotted
against the vocabulary size of the BoW repre-
sentation.

(b) The performance of the RF plot-
ted against the number of trees used
in the ensemble.

(c) The Logistic Regression trained
on BoW combined with the count of
Negative and Positive words and the
ratio.

(d) The best performance of the dif-
ferent classifiers on the BoW repre-
sentation and the boosted LogReg.

Figure 5.1: The plots showing the performance of the NB, RF, SVM and LogReg
Classifiers on the BoW representation of the IMDB dataset.
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(a) The performance of the Logistic
Regression and SVM models plotted
against the N-gram size used to cre-
ate features for the tf-idf representa-
tion.

(b) The Logistic Regression boosted
with the NP and NP-ratio features.

(c) The best performance of each clas-
sifier tested on the tf-idf representa-
tion.

Figure 5.2: The plots showing the performance of the NB, RF, SVM and LogReg
Classifiers on the tf-idf representation of the IMDB dataset.



IMDB Full Data set 48

5.2.8 w2v vs.domain specific
In this experiment section the performance of Googles pre-trained w2v word vectors
and domain specific word vectors are compared. The word vectors used in these
experiments are listed here:

• w2v-300

• domain-300

• domain-5000

Googles w2v word vectors contains 300 features and were pre-trained on part of the
Google News dataset (containing about 100 billion words). The full w2v vocabulary
contains about 3 million words and phrases. While the domain-300 and domain-
5000 word vectors were trained on the reviews of the IMDB dataset. The vectors
were trained using both the available labelled and unlabelled (training and test)
reviews. These domain specific word vectors were trained using the skip-gram
model (as introduced in section 4.6.24.6.2) in the Word2vec function, which is a part of
the gensim python package. The number of features were set to be 300 (the same
number that Google’s pre-trained word vectors have). Words occurring less than 40
times were ignored and a context size of 10 was used for training. Another set of
word vectors with 5000 features (with the other hyper-parameters held constant)
were also trained, but the size of the created data matrix was too big for training in
reasonable time with respect to neural networks. These domain word vectors were
created with a vocabulary of the 16490 most frequent words, to make testing easy.
The w2v vocabulary was also reduced to the same vocabulary as the domain vectors
in this section so that the word vectors performance could be compared. These word
vectors were tested on BoC, d2v and sequential representations of the IMDB dataset.
The results of analysis of Googles pre-trained w2v word vectors and domain specific
trained word vectors are shown in figure 5.35.3.

The Bag of Clusters (BoC) representation was created by finding the 500 most
representative clusters based on the word vectors and the document vector (d2v)
representation were created by computing the mean over all the word vectors in each
document. Figure 5.3a5.3a and 5.3b5.3b shows the performance of the Logistic Regression
Classifier on the Bag of Cluster representations and the Document vector (d2v)
representations of the IMDB data based on w2v and domain vectors. The results
show that the domain vectors with 5000 features outperforms both the w2v vectors
and the domain-300 vectors. The BoC and d2v results are poor, but they imply that
the word vectors indeed have benefit and also that BoC and d2v representations with
more features could give interesting results. BoC and d2v representations could
also have potential to boost other representations. This analysis was constrained
by hardware capabilities. Training clusters of a greater size than 500 demanded
memory usage which exceeded the available in memory and was thus not done.
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A CNN model with 300 filters (convolution nodes) and a window size of 8 was
trained on the w2v-300 and domain-300 word representations. Figure 5.3c5.3c shows
that the CNN (experiment specifics defined in Section 5.2.105.2.10) performed best on
the domain-300 vectors. The domain vectors with 5000 features couldn’t be used as
input to the CNN as this would be too demanding on both memory and available
disk space connected to the GPU.

The w2v (w2v-300) and domain-300 vectors didn’t give significantly different results,
this implies that the w2v vectors are good generalizations which works well globally
(atleast in the case of the IMDB dataset). As a result the w2v vectors will be used
with the full vocabulary on the rest of the experiments.

5.2.9 MLP
In this section MLP models trained on representations of the IMDB dataset are
experimented on. The MLP’s are trained with an initial dropout of 0.8 for the input
layer and a dropout of 0.5 for any additional layers (except for the final classification
layer). The Relu activations were used in all the layers, since it outperformed the
hyperbolic tangent in the IMDB MLP experiments. The Relu was not used in the
final layer, here the softmax was used to calculate the probability distribution of
the two classes {0,1}. The experiments are illustrated in Figure 5.45.4 and Figure 5.55.5.
In the figures the MLP’s performance is plotted against the number of nodes n of a
specific layer, for readability the binary logarithm of n, k = log2(n), is used to scale
the the x-axis. Further k = −1 is defined to mean n = 0 (i.e. that the hidden layer is
removed from the model).

The MLP experiments on BoW representations of the IMDB dataset are illustrated in
figure 5.45.4. Figure 5.4a5.4a shows the MLP-2 model plotted against the BoW of varying
vocabulary sizes. It shows that a vocabulary of the 5000 most frequent words is
optimal for a MLP-2 model. Figure 5.4b5.4b shows the MLP-n-2 model plotted against
varying number of nodes at different BoW vocabulary sizes. It shows that the
best model is a MLP-n-2 with n = 2−1 = 0 (which in this case as mentioned above is
defined as 0) trained on the BoW5000 representation. Meaning the MLP-2-BoW5000
is the best MLP model on the BoW representation. Figure 5.4c5.4c shows the MLP-2
being boosted by the NP/NP-ratio features, it shows that the BoW5000 is slightly
boosted by only adding the NP-ratio features. This is notable, since the selling
point of the MLP and other Deep Learning models is that one shouldn’t have to do
feature selection and just feed all the available data into the model (as long as one
has enough computing power). The MLP is supposed to do the feature selection
for you, this performance could be due to the data set still being relatively "small"
compared to the data sizes which Deep Learning models are motivated for. Further
the MLP(BoW) became too complex when using hidden layers and had problems
doing good generalizations, this could also be due to the lack of data/observations.
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(a) The performance of the Logistic
Regression on Bag of Clusters repre-
sentations with 500 cluster/features
based on w2v and domain vectors.

(b) The performance of Logistic Re-
gression trained on d2v representa-
tions based on w2v and domain vec-
tors.

(c) The performance a CNN model
with 300 filters and a window size of
8 cells/words trained on sequential
data represented by domain and w2v
vectors.

Figure 5.3: The plots shows the performance of Googles w2v word vectors vs.
domain specific trained word vectors in different input representations.
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The best generalizations were given by MLP’s without any hidden layers as the
results show.

The MLP experiments on tf-idf representations of the IMDB dataset are illustrated
in figure 5.55.5. The MLP-n-2-tf-idf(C)(1,2) was trained against varying number of
nodes n at different vocabulary sizes C, these experiments are illustrated in Figure
5.5a5.5a. The optimal size of the vocabulary was found to be around the 60.000 highest
weighted words and the optimal number of hidden nodes n converges to 2 as
the vocabulary size increases (i.e. the MLP-2-2-tfidf-60k(1,2) model gave the best
performance). The MLP-2-2-tf-idf60k(1,g) model was trained at varying N-gram
sizes g , the results are illustrated in Figure 5.5b5.5b. The optimal N-gram size was
found to be g = 2. Boosting the model MLP-2-2-tfidf(1,2)-60k with a BoW5000
representation and/or NP/NP-ratio features was attempted, but it did not improve
the performance, these findings are illustrated in Figure 5.5c5.5c.

The best MLP trained on the tf-idf representation outperformed the MLP trained on
the Bag of Words representation. This best MLP model outperformed the non-neural
net models on the non-sequential data which is illustrated in Figure 5.7b5.7b.

5.2.10 CNN

In this experiment section CNN models were trained on a sequential representa-
tion of the IMDB dataset. The CNN’s were modelled with a convolutional layer
connected to a max-pooling layer which was connected to a final softmax layer.
The model was trained on sequential data represented by w2v word vectors. The
CNN contained a number of filters f which looks for 2D-patterns in the documents
which is represented as a matrix (words × word-features). The 2D window searched
through was of size d × 300 (where 300 is the number of features each word is
represented by and not to be confused with the number of filters). For the CNN
model relu activations were used as it outperformed hyperbolic tangent activations
and no dropout was used since it degraded the performance. The CNN was trained
with a varying numbers of filters f and varying windows sizes d, these experiments
are illustrated in Figure 5.65.6. The optimal numbers of filters f was found to be 300,
while the optimal window size d was found to be 8. These values were as high as the
memory restrictions allowed, thus better results could be found with more filters
and a wider window size.

The CNN gives good results compared to the models trained on non-sequential
representations of the data, as can be seen in Figure 5.7b5.7b which compares the
models.
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(a) The MLP-2 model is plotted
against the BoW with varying vocab-
ulary size.

(b) The MLP-n-2-BoW model with
varying number of hidden nodes n is
plotted with BoW vocabulary sizes
5000 and 74436(max).

(c) The MLP-2-BoW5000 boosted
with NP and/or NP-ratio features.

Figure 5.4: The performance of the MLP on the BoW representation of the IMDB
dataset is illustrated in this figure.
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(a) This figure illustrates the perfor-
mance of MLP-n-2 trained on spe-
cific vocabulary sizes of tf-idf(1,2)
plotted against the number of hid-
den nodes n.

(b) This figure plots the MLP-2-2-
tfidf(1, g)-60k against the N-gram
size g.

(c) This figure shows the best MLP
model trained on the tf-idf represen-
tation boosted with BoW5000, NP
and/or NP-ratio features.

Figure 5.5: An illustration of the performance of the MLP on the tf-idf representation
of the IMDB dataset.
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Figure 5.6: This figure illustrates the performance of the CNN model with varying
number of filters f and window size d trained on sequential data represented by
w2v word vectors.

5.2.11 Ensembles
In this experiment section some ensembles were trained by uniformly weighting
the best performance of various models. The LR, SVM and MLP models used were
the ones that gave the best AUROC performance by themselves. The AUROC and
accuracy scores of the ensembles are listed in table 5.25.2 along with some notable
single models. And the AUROC performance of the all the ensembles (except for
the LR-SVM-ensemble) is also illustrated in Figure 5.7a5.7a, the best performance of
the CNN model is also added as a reference point (since it was the best of the non-
ensemble methods tested). Two ensembles, the GRU-ensemble and WA-ensemble,
that are available on the net and which gave very good results are also added to the
illustration as reference points. The GRU-ensemble generated the results which
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garnered the 3rd best result in the competition. Both these ensembles used the
NB-SVM (Naive Bayes Support Vector Machine) classification model (Wang and
Manning (20122012)). Many of the ensembles did significantly better than many of the
single models and some outperformed them all, which is part of the motivation for
ensembles, the fact that they should be able to outperform good complex models.

5.2.11.1 WA-ensemble
The WA-ensemble is a weighted-average ensemble training logistic functions on
BoW, d2v and NB-SVM (Wang and Manning (20122012)). The code for the WA-ensemble
is available on the net99.

5.2.11.2 GRU-ensemble
The GRU-ensemble is an ensemble of a NB-SVM, a MLP trained on d2v represen-
tations and a GRU trained on sequential data represented by word vectors. This
ensemble is based on Mesnil et al. (20142014) and garnered the 3rd best result in the
competition. The code for the ensemble is available on the net 1010.

5.2.12 Result Summary
This section summarizes the results of the experiments on the IMDB dataset. Table
5.25.2 contains the best AUROC results gained in the experiments, the accuracy of these
results is also included. The performance of the best models is also illustrated in
figure 5.7b5.7b. Of the common statistical methods used the Logistic Regression model
did best on the Bag of Words representation, it also outperformed the best MLP
performance on this representation. While of the common statistical methods SVM
did best on the tf-idf representation of the data, it was however outperformed by
the MLP model on the same representation. While on the sequential data the CNN
performed quite well and outperformed the other non-ensemble methods trained on
the non-sequential data representations. While ensembles of the previously trained
models were able to outperform the CNN.

LR-SVM-MLP-CNN-ensemble and SVM-MLP-CNN-ensemble did significantly worse
on the AUROC score than the CNN, but it is noteworthy to mention that they both
significantly outperformed the CNN on the accuracy score. While the MLP-CNN-
ensemble, LR-CNN-ensemble and the LR-MLP-CNN significantly outperformed the
CNN on both the AUROC and accuracy score.

9https://github.com/smartinsightsfromdata/kaggle-word2vec-movie-reviewshttps://github.com/smartinsightsfromdata/kaggle-word2vec-movie-reviews
10https://github.com/smartinsightsfromdata/kaggle-sentiment-popcornhttps://github.com/smartinsightsfromdata/kaggle-sentiment-popcorn

https://github.com/smartinsightsfromdata/kaggle-word2vec-movie-reviews
https://github.com/smartinsightsfromdata/kaggle-sentiment-popcorn
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Table 5.2: The accuracy and AUROC results of some noteworthy models on the full
IMDB dataset.

Model Input Accuracy AUC
LR-SVM - 0.77580 0.89195
LR BoW-74436-NP-NPratio 0.86756 0.93683
SVM-MLP - 0.86416 0.93903
LR-SVM-MLP - 0.87692 0.94749
MLP-2 BoW5000NPratio 0.88492 0.95088
SVM-CNN - 0.89392 0.95370
LR tfidf(1,3;0) 0.87372 0.95667
LR-MLP - 0.89856 0.96246
SVM tfidf(1,2;0) 0.90008 0.96359
MLP-2-2 tfidf60k(1,2) 0.90320 0.96636
LR-SVM-MLP-CNN - 0.91336 0.96851
SVM-MLP-CNN - 0.91648 0.96866
CNN w2v (300f-8d) 0.90812 0.96992
LR-MLP-CNN - 0.91880 0.97421
LR-CNN - 0.91620 0.97245
MLP-CNN - 0.92108 0.97566
WA-ensemble - - 0.97568
GRU-ensemble - 0.92384 0.97634

The MLP-CNN-ensemble was the model which was closest to of the WA- and GRU-
ensembles performance, which performed very well on the IMDB contest. It per-
formed about the same as the WA-ensemble, but there is still a minor gap between
its performance and the GRU-ensembles performance. It is however interesting to
see that the MLP-CNN model is so close.

5.3 Automated Essay Scoring Task
The results obtained from the analysis of the Automated Essay Scoring dataset,
described earlier in Section 2.32.3, will be presented here. The dataset was released
as part of a competition with cash prizes at Kaggle. The goal of the prediction was
to get the best predictions on a test dataset given the Quadratic Weighted Kappa
(QWK) evaluation metric (defined in section 5.3.15.3.1). The scores of the competition
can be found at the competitions leaderboard1111 (scores below a benchmark score
around 0.5 seems to have been set to 0). None of the winning teams have published
their models (atleast not in direct link to Kaggle).

11https://www.kaggle.com/c/asap-aes/leaderboardhttps://www.kaggle.com/c/asap-aes/leaderboard

https://www.kaggle.com/c/asap-aes/leaderboard


57

(a) This figure illustrates the performance
of various ensembles trained on the IMDB
dataset.

(b) This figure illustrates the performance of
the models that were among the best.

Figure 5.7: This figure illustrates the performance of various ensembles and the best
models in general on the IMDB dataset.

Since the Kaggle competition is finished and is not open to post-competition sub-
missions (unlike the IMDB competition) the models performance are evaluated on a
subset of the training data used as a validation set.

All essay sets combined contains a vocabulary of 39056 words. The essay sets are
divided into two types of essays, on type asks the writer to narrate an essay given
a short problem statement and the other type asks the writer to read a medium
size (1-4 pages) text source and asks the write to give a response given a problem



Automated Essay Scoring Task 58

Table 5.3: Table showing different specifics of the essay sets.

Essay type Number of essays Average essay length Vocabulary size Score Range
Essay set 1 Narrative 1783 essays 350 words 15905 [2,12]
Essay set 2 Narrative 1800 essays 350 words 14412 [1,6], [1,4]
Essay set 3 Source Dependent 1726 essays 150 words 6434 [0,3]
Essay set 4 Source Dependent 1772 essays 150 words 4899 [0,3]
Essay set 5 Source Dependent 1805 essays 150 words 4894 [0,4]
Essay set 6 Source Dependent 1800 essays 150 words 5343 [0,4]
Essay set 7 Narrative 1569 essays 250 words 10303 [0,30]
Essay set 8 Narrative 723 essays 650 words 12123 [0.60]

statement. Specifics about each dataset is shown in table 5.35.3.

5.3.1 Evaluationmetric - QuadraticWeighted Kappa error metric
The predictions are evaluated using the Quadratic Weighted Kappa (QWK) error
metric which measures the agreement between the predicted grades and the true
grades. The metric’s max value is 1, which implies complete agreement between the
predicted grades and the true grades. If there is no agreement except for what is
expected by chance the value is close to 0, and if there is even less agreement the
value goes below 0.

In the Kaggle competition the average kappa value was computed over all the essay
sets, this will also be done here.

5.3.1.1 Themethod
Given a set of essays withN possible grades and a two graders, Grader A and Grader
B. Each essay grade E can be seen as a pair of both graders response e, (ea, eb).

The Quadratic Weighted Kappa is computed using a weight matrix w and two
histogram matrices O and E.

The histogram matrix O is a N ×N matrix where Oi,j corresponds to the number of
essays that received a grading i by Grader A and a grading j by Grader B.

The weight matrix w is a N ×N weight matrix where each element j, i ∈ [1,N ] is
defined by the equation

wi,j =
(i − j)2

(N − 1)2 (5.1)

The histogram vector E is a N ×N matrix of the expected gradings assuming there
is no correlation between the graders. This computed as the outer product of Ea and
Eb:

E = EaE
T
b , (5.2)
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where Ea and Eb are histogram vectors of length N . Where cell g ∈N in vector Eh
(h ∈ {a,b}) reflects the number of essays the corresponding grader has given grade g.
E is normalized so that it has the same sum as O.

Given these matrices the quadratic weighted kappa is defined as

κ = 1−
∑
i,jwi,jOi,j∑
i,jwi,jEi,j

(5.3)

To get the average of all the QWK of all the essay sets the fisher transformation
defined here is used:

z =
1
2

ln
1 +κ
1−κ

(5.4)

This transformation approaches infinity as the κ value approaches 1, so the κ values
are capped at 0.999. The mean of the z value of each essay set is computed (essay
set 2 contains two scores that each are weighted by a weight of 0.5).

The final reverse transformation to get the quadratic kappa value is given as

κ =
e2z − 1
e2z + 1

(5.5)

5.3.2 Features
The features used in the Automated Essay Scoring experiments are listed here:

• Bag of Words (BoW)

– Feature importance: In the AES experiments it gave the most impact on
the performance and was deemed the most important feature tested.

• tf-idf

– Feature importance: In the AES experiments the representation alone
didn’t give significantly good performance, but it did significantly boost
the Bag of Words representation, which gives it some significant impor-
tance.

• Document vectors (d2v)

– Feature importance: The document vectors tested did not give very
good results alone. The d2v(w2v-300) representation was tested for
boosting models, it was deemed unimportant, an increase in features
might however improve the performance.

• nbSent: Number of sentences in a document
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– Feature importance: This feature seemed to boost other representations
well and was deemed important.

• Bag of WordClasses: The number and/or ratio that each word class appears
(e.g. the number of nouns, verbs, etc...)

– WC: Word class count

– WR: Word class ratio

– Feature importance: The WC and WR features gave good boosting results
and were deemed important. But using both at the same time gave poorer
results and the WR feature were preferred as it gave the best performance.

• Stop: The number of stop words in a document

– Feature importance: This feature was deemed unimportant.

• avSent: Average sentence length

– Feature importance: This feature was deemed unimportant.

• nbWords: Number of words in a document

– Feature importance: This feature was deemed unimportant.

The positive and negative gain from using the document vectors (d2v), number of
words, average sentence length and the number of stop words features to boost the
other representations seemed to vary stochasticly around 0, implying that they only
introduced bias to the modelling of the data and had no real benefit.

5.3.3 Training and validation set
Since the test data labels (grades) are not available the training data has been split
into a training set and a validation set with a 70/30 ratio. Due to the relative
small size of the training data this validation set might not be representative of
the test data, but a larger validation set would decrease the training data too much
(especially in the case of essay set 8 with only 723 essays). This decision was done to
enable model performance evaluation as best as possible.

5.3.4 Linear Regression
This experiment section the Linear Regression model was trained on representations
of the AES dataset. Linear Regression with both Lasso (l1) and Ridge Regression (l2)
was used (i.e. Elastic Net). The Linear Regression experiments on the essay data set
are illustrated in Figure 5.85.8. Figure 5.8a5.8a plots the Linear Regression model against
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BoW representations with varying vocabulary size. It shows that a vocabulary of 200
is optimal. Figure 5.8b5.8b shows the Linear Regression model with a BoW vocabulary
of 200 boosted by the various other features, it also shows the "best" model found
through line search.

Figure 5.8c5.8c shows the Linear Regression model trained on various N-grams of the
tf-idf(1,g) representation with varying vocabulary sizes n. It shows that a tf-idf
representation of size 300 consisting of N-grams of size g = 2 (i.e. 2-gram/bi-grams)
is optimal. Figure 5.8d5.8d shows the Linear Regression model trained on tf-idf(1,2)-300
boosted by the various extra features. The "best" model found through line search is
also shown.

Figure 5.8e5.8e shows the best Linear Regression models based on BoW and tf-idf
representations and a better combination of the representations found through line
search.

5.3.5 SVR
In this experiment section the SVR model trained on representations of the AES
dataset. The SVR experiments on the essay dataset are illustrated in Figure 5.95.9.
Figure 5.9a5.9a shows the performance of the SVR model plotted against the vocabulary
size of the BoW representation. It shows that the optimal BoW vocabulary size
is 1000. Figure 5.9b5.9b shows the performance of the SVR model plotted against
varying vocabulary sizes of the tf-idf representations with varying N-gram sizes.
It shows that the a vocabulary size of 50 and N-gram of size 1 is optimal for the
tf-idf representations. The model trained on the tf-idf representations alone gave
poor results compared to the other models trained on the essay dataset. Boosting
the BoW representation with tf-idf subsets were tested, this increased performance
slightly. The best boosted model was found through line search and the performance
compared to a the best model trained on both BoW and the extra features are
illustrated in Figure 5.9c5.9c.

5.3.6 MLP
In this experiment section the MLP model is trained on representations of the AES
dataset. The MLP’s were trained with the Hyperbolic Tangent activation function
(as it outperformed the ReLU activation function) and the final layer is a linear
regression layer. A dropout parameter of 0.8 was used for the initial input layer and
a parameter of 0.5 was used for the additional layers, except the final regression
layer. There seems to be too many features and too few observations making it hard
for the MLP to converge and generalize well. The performance of the MLP on the
essay data is illustrated in Figure 5.105.10.
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(a) The performance of the Linear Re-
gression model plotted against the
vocabulary size of the BoW represen-
tation.

(b) The performance of the LinR-
BoW200 model boosted by the vari-
ous extra features.

(c) The performance of the Linear
Regression model plotted against tf-
idf(1, g) with various N-gram sizes g
and varying vocabulary size n.

(d) The performance of the LinR-
tfidf(1,2)-300 model boosted by the
various extra features.

(e) The best Linear Regression mod-
els trained on BoW or tf-idf represen-
tations and a better model trained on
a combination of BoW and tf-idf.

Figure 5.8: This Figure illustrates the Linear Regression models performance on the
essay dataset.
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(a) The performance of the SVR
model plotted against the vocabulary
size of the BoW representation.

(b) The performance of the SVR
model plotted against the vocabulary
size n of the tfidf(1, g) representation
with different N-gram sizes g.

(c) The performance of boosted SVR
models trained on both tf-idf, BoW
and the extra features available.

Figure 5.9: This figure illustrates the performance of the SVR model on the essay
dataset.
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At first all the features are fed into the MLP for itself to decide which are important
or not (which is the strong argument that the MLP should be able to do). These
experiments with different number of layers and nodes are illustrated in Figure
5.10a5.10a. In this figure the MLP’s performance is plotted against the number of nodes
n of a specific layer, for readability the binary logarithm of n, k = log2(n) is used to
scale the the x-axis. Further k = −1 is defined to mean n = 0 (i.e. that the hidden
layer is removed from the model). The MLP-n-1 performed the best and the optimal
number of nodes seem to be met at n = 256 (k = 8) (n > 512 was not tested due to
memory limitations). The non-convex performance of the MLP-n-1 model could
be due to the small data size, impact the MLP’s ability to generalize well. It does
however look like one could approximate a convex function which seems to increase
atleast until 256 or 512 nodes n.

However since using both the complete BoW and tf-idf representations at the same
time can seem a little bit redundant and since the number of observations are so
low, which can hinder the MLP’s performance when faced with too many redundant
features it was also tested separately on tf-idf and BoW representations. The MLP
trained on the BoW representation outperformed both the one trained on the tf-idf
representation and the one trained on both representations. The best performance
on both sets found through line search are illustrated in Figure 5.10b5.10b. It could be
assumed that through line search there is the potential to find an optimal size of the
tf-idf representation which could boost the MLP trained on the BoW representation,
as was the case for both the Linear Regression and SVR models. This was however
not tested.

5.3.7 CNN
This section briefly discuss CNN modelling on the AES dataset. CNN models trained
on the essay dataset generalized poorly. This poor performance could be due to
the relatively small amount of observations available relative to the data sizes most
Deep Learning models are motivated for.

5.3.8 Result Summary
This section summarizes the results of the experiments on the IMDB dataset. Table
5.45.4 lists the best results of each of the models trained on the essay text data, this
data is also illustrated in Figure 5.115.11. The best MLP model did not outperform both
the common statistical methods used, this is could be due to the relatively small
size of essays in each set. The Linear Regression model performed slightly worse
than the MLP model, and this performance (of the Linear Regression model) was
only obtained after carefully changing the features through line search. The SVM
performed a little bit better than the MLP, so small it is up to chance which performs
the best. And this was after doing line search for the SVM with all the available
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(a) The plots showing the performance of the MLP
model with various layers and node combinations
trained on all features available, including both the
BoW and the tf-idf representations.

(b) This plot shows the MLP’s best performance on
the BoW, the tfidf(1,2) and the BoW-tfidf(1,2) rep-
resentations. In this experiments all the extra fea-
tures (nbWords-nbSent-avSent-WC-WR-Stop-d2v) were
added to the feature set trained on.

Figure 5.10: This figure illustrates the performance of the MLP on the essay data.
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Table 5.4: The QWK results of best models on the essay dataset.

Model Input QWK
mlp256 tfidf-max(1, 2)-nbWords-nbSent-avSent-WC-WR-Stop-d2v 0.6790
mlp256 bow-max-tfidf-max(1, 2)-nbWords-nbSent-avSent-WC-WR-Stop-d2v 0.7330
LinR bow20tfidf200(1, 2)-nbWords-nbSent-WR-d2v 0.7337
mlp512 bowNone-nbWords-nbSent-avSent-WC-WR-Stop-d2v 0.7445
SVR bow1000tfidf50(1, 1)-nbSent-WR 0.7460

features. But the MLP also had to be tinkered for this performance as it would not
perform on all the available features. Of course all these results are very close and
since the validation set is so small it can be kind of random which models performs
the best based on both initializations and the subset from available training data
used for validation.

5.3.8.1 Specific essays
This section summarizes the performance of the models on each of the essay sets.
The performance on each essay set is listed in Table 5.55.5 and illustrated in Figure 5.125.12,
for the MLP, Linear Regression and SVR models that gave the best performance.
The different specifics are as previously mentioned displayed in Table 5.35.3. As the
results shows the hardest sets to model were set 2 (both domains), set 3 and set
8. They penalized the final QWK score quite significantly. While being one of the
longest essays and having a sizable vocabulary, essay set 2 could be hard to model
as it needs to model two separate scores ("Writing Applications" and "Language
Conventions"). Another interesting note about essay set 2 is that it is the only essay
set in which the final score (determined by the first grader) isn’t corrected if the
second grader finds it to deviate too much. This could make the modelling much
harder as personal traits of the grader could influence the final scores significantly.
This could make the scores of an essay deemed to be on a specific level to not be
ideally normal distributed around that levels appropriate score, possibly with a
skewed or very wide distribution. Essay set 3 is not significantly different from the
other essay sets, other than having a bit 20% bigger vocabulary size than the other
essay sets of similar length. The difficulty with essay set 8 i probably due to the few
(732) essays available and the fact that they had an average length of 650 words,
which is more than double the average length of most of the other essay sets.

As the results of the different models on each essay set shows an ensemble model or
a method of using specific models for each essay set could boost the performance, a
combination of these two methods could also give a further boost to the performance.
This would however be more interesting to analyze with more data available to test
on.
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Table 5.5: The QWK results of best models on the essay dataset with the score of
each separate essay set included. The best result on each essay set is highlighted.

Model Set 1 Set 2-1 Set 2-2 Set 3 Set 4 Set 5 Set 6 Set 7 Set 8 Final QWK
MLP-tfidf 0.731 0.692 0.605 0.498 0.755 0.7356 0.717 0.713 0.568 0.6790
MLP-BoW-tfidf 0.752 0.679 0.623 0.575 0.782 0.804 0.788 0.775 0.671 0.7330
LinR 0.779 0.628 0.526 0.577 0.794 0.820 0.796 0.782 0.615 0.7337
MLP-BoW 0.834 0.695 0.589 0.614 0.800 0.776 0.729 0.800 0.688 0.7445
SVR 0.779 0.662 0.628 0.624 0.817 0.828 0.794 0.774 0.621 0.7460

Figure 5.11: This figure illustrates the performance of the best models on the essay
dataset.
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Figure 5.12: This figure illustrates the best models performance on each essay set.
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6 Conclusion

The results of the analysis in this thesis shows that while Deep Learning models
can outperform or perform close to regular classification and regression methods,
the common classification and regression methods can still perform quite well on
complex text data. Common classification and regression methods also take very
little time to train while Deep Learning methods can take significantly longer to
train even with powerful CPU/GPU’s.

With enough computing power Deep Learning models are feasible for the data sizes
tested on in this thesis if one wants a to increase the performance even by just some
small percent. This boost in performance is assumed to scale with the data size. This
implies that Deep Learning models can be extremely rewarding for big companies
such a Yahoo! and Google which have access to much bigger data sets and much
more computing power than used in this thesis. For these companies features and
models that only improve the performance by a small percentage are still valuable
even with a potential significant increase in computing power needed.

6.1 Further work
There are still many relevant interesting things left to test, some of them are men-
tioned here. Further interesting things to test include GloVe vectors, more testing
on ensembles of both models and input, generate and use domain vectors with a sig-
nificant greater number of features than 300. Testing on domain vectors of smaller
sizes would also be interesting, to analyze the information gained through scaling
the vector/feature size. Testing the performance of common statistical methods
vs. Deep Learning models on different subsets sizes of the data sets would also be
interesting to see how the performance of the models scale. Testing recurrent neural
networks (RNN), such as LSTM and GRU, is also of high interest. And the next step
in form of data sets to test on would be to test models (especially deep learning
models) on data sets that are both large scale and complex.

With respect to the Automated Essay Scoring (AES) problem extra features express-
ing the complexity of words (where each word is given a complexity level by a
complexity-dictionary) and features counting spelling errors could improve the
performance of the models (spelling errors can be found using the PyEnchant11

Python library). The Stanford Parser22 could also be interesting to try out, it is a
statistical tool that works out the grammatical structure of sentences. Testing with

1http://pythonhosted.org/pyenchant/http://pythonhosted.org/pyenchant/
2http://nlp.stanford.edu/software/lex-parser.shtmlhttp://nlp.stanford.edu/software/lex-parser.shtml

http://pythonhosted.org/pyenchant/
http://nlp.stanford.edu/software/lex-parser.shtml
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domain word vectors on the AES dataset could also show interesting results, as
these domain vectors could be more expressive than the IMDB word vectors, as the
AES problem is a more complex text problem than the IMDB problem (on which
the global w2v vectors generalized relatively similarly to the domain vectors).
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