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Summary and Conclusions

The Average Conditional Exceedance Rate and Peak Over Threshold Markov Chain Monte

Carlo are two extreme value statistical methods, compared in this work. They are tested

for both extrapolations and prediction intervals. The methods are compared for difference

scenarios concluding that the Peak Over Threshold Markov Chain Monte generally prefered

better for prediction intervals. It also seems to be preferable for extrapolation of independent

and identically distributed data, and data approximately so. There are some indications that

the Average Conditional Exceedance Rate method maybe favorable for capturing the data

dependencies and extrapolation for correlated observations, but more work is needed for a

conclusive result on that aspect.
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Chapter 1

Introduction

Extreme value statistics is the part of statistics dealing with extremely large or small events,

which deviates heavily from the distribution median. By the asymptotic theory, if there exists

a limiting distribution, the distribution converge towards the Gumbel, Fréchet or Weibull, or

the combined Generalized Extreme Value (GEV) distribution at the upper and lower limits

(Coles, 2001, p. 46). For parameter estimation the observations are required to be indepen-

dent and identically distributed (i.i.d). The observed data are often taken close in time, which

normally violate the assumption of independence. Hence filtrating methods like the block

maxima and r largest order statistics (Coles, 2001, p. 66) are commonly applied in an effort

to remove dependency. Unfortunately, both filtering methods are quite wasteful, resulting

in only a small number of observation being used for parameter estimation. The Peak Over

Threshold (POT) is an alternative statistical method developed from the GEV distribution.

The POT method only uses data above a given threshold, which normally makes the filtering

less wasteful resulting in an increased estimation accuracy. For the possibilities of implying

prior beliefs and physical knowledge, the Bayesian statistics calculated using the Adaptive

Markov Chain Monte Carlo (AMCMC) method is developed for the POT. The Bayesian ap-

proach also gives an opportunity for more freely inference for special cases, as PI estimation.

The POT MCMC method is compared to another alternative method called the Average Con-

ditional Exceedance Rate (ACER) introduced by Næss and Gaidai (2009). This method does

not rely on the assumption of independence. Hench enabling the possibilities of capturing

the data dependency without wasteful filtering. To a certain extent the ACER method also

have the capability of capturing the subasymptotic parts.

The development of the Bayesian statistics and MCMC method for the GEV distribution
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CHAPTER. 1

was presented in (Coles, 2001, p. 170), while no information was found for the POT AMCMC

method. The ACER method was applied for multiple scenarios in the paper by Næss et al.

(2013), and for wind speed data in Karpa and Næss (2012). Raw data and AR-GARCH fil-

trated data was evaluated at the VaR tails for the ACER, POT, normal and t-distribution by

Dahlen et al. (2015) and Dahlen (2010), with a resulting conclusion that both the ACER and

POT method outperform the normal and t-distribution at the tails. There were signs that the

ACER method overall performed better than the POT method, but not significantly better.

The papers by Giot and Laurent (2003), Aloui and Mabrouk (2010) and Steen et al. (2015),

presented methods for analyzing the VaR of commodity data at the tails. Giot and Laurent

(2003) concluded that the AP-APARCH skewed student t-distributed filtration for commodity

data was superior, compared to a number of different methods for heteroscedasticity filter-

ing.

As no comparison between the ACER and POT MCMC method, to date have been found,

the results can be beneficial for model selection of future analysis. The goal is to make suffi-

cient statistical evidence to suggest one of the two methods for different scenarios. The POT

MCMC and ACER methods are compared through the Value at Risk (VaR) extrapolation and

Prediction Interval (PI) of future extremes through different scenarios. The method for calcu-

lating PI of future extreme was developed in this work, as little information was found on the

subject. The POT MCMC and ACER method was tested on i.i.d synthetic Pareto distributed

data sets, dependent synthetic Autoregressive(AR) Asymmetric Power Autoregressive Con-

ditional Heteroscedasticity (APARCH) data, daily return of commodities and AR-APARCH

filtered daily return of commodities.
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Chapter 2

Theory

The following chapter gives an introduction to the theory behind this work. Some of the sec-

tions only gives a brief description of the theory, for additional details the reader is referred

to the suggested litterature.

2.1 Extreme value theory

The essence of extreme value theory is to analyze the maximum of a series of random vari-

ables X1, . . . , Xn . Defining Mn as the maximum of a sequence

Mn = max{X1, . . . , Xn},

the resulting distribution of Mn is

Pr(Mn ≤ z) = Pr(X1 ≤ z, . . . , Xn ≤ z). (2.1)

By assuming X1, . . . , Xn independent and identically distributed (i.i.d.) with common cumu-

lative distribution function F , equation (2.1) reduces to

Pr(Mn ≤ z) = Pr(X1 ≤ z)×·· ·×Pr(Xn ≤ z)

= [
F (z)

]n .
(2.2)

The distribution F is normally unknown, and a small error in the estimated distribution F

can escalate to a large error in the resulting F n .

As for the central limit theory for the normal distribution, extreme value theory also has
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2.1. EXTREME VALUE THEORY CHAPTER. 2

a limiting distribution by the Fisher–Tippett–Gnedenko theorem. If there exist values an > 0

and bn such that the

lim
n→∞Pr

[
(Mn −bn)/an ≤ z

]→G(z),

where G is a non-degenerating distribution function, then G is on one of the forms

G(z) = exp
{
−exp

[
−

(z −b

a

)]}
, −∞< z <∞; (2.3)

G(z) =


0,

exp
{− ( z−b

a

)−α}
,

z ≤ b,

z > b;
(2.4)

G(z) =


exp

{
−

[
−

(
z−b

a

)]α}
,

1,

z ≤ b,

z > b;
(2.5)

for parameters a > 0, b and α > 0. Here equation (2.3), (2.4) and (2.5) refers to Gumbel,

Fréchet and Weibull distribution respectively. The above equations can be combined into

the General Extreme Value (GEV) distribution

G(z) = exp

{
−

[
1+ξ

(z −µ
σ

)]− 1
ξ

}
(2.6)

where the location parameter is −∞ < µ < ∞, the scale parameter is σ > 0 and the shape

parameter is −∞< ξ<∞. For the expression to be valid, the requirement 1+ξ(z −µ)/σ> 0

must be fulfilled. It can easily be verified that the GEV equals equation (2.4) when ξ > 0,

equation(2.5) when ξ< 0 and converges towards equation(2.3) as z → 0.

For parameter estimation the observation is required to be i.i.d., as it was assumed for

the development of equation 2.2. Unfortunately, in practice observations are commonly de-

pendent. Block maxima and r largest order statistics are common methods for filtering the

dependent data points into an approximate i.i.d. dataset (Coles, 2001, p. 66). The basic prin-

ciple is to only use the largest, or r largest data within each block. Examples of block sizes

could be week, month, year etc. For a deeper description of extreme value theory, GEV or

block maxima, the book of (Coles, 2001, Chapter 3) is suggested.
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CHAPTER 2. THEORY CHAPTER. 2

2.1.1 Peak Over Threshold

One of the problems with the GEV method and the i.i.d. filtration of data points, is that

the block maxima and r largest order statistics are quite wasteful. Especially in situations

where some blocks contain a larger number of extremes than others. Large extremes will be

discarded from the set, which otherwise would have been accepted in other blocks.

The Peak Over Threshold (POT) method is suggesting a different method of tackling the

i.i.d. filtration. The POT method filters the data by only using points over a certain threshold

u, avoiding the problem of discarding large extremes in certain blocks. As long as u is chosen

sufficiently large, the resulting data will be i.i.d. It can be shown by the GEV distribution

equation (2.6), like was done by (Coles, 2001, p. 76), that

Pr(X > y +u|X > u) =
(
1+ ξy

σ̃

)− 1
ξ

, (2.7)

where y is the threshold excess, given by y = z −u for z > u. The resulting cumulative distri-

bution of X −u is called the Generalized Pareto Distribution (GPD)

H(y) =


1−

(
1+ ξy

σ̃

)− 1
ξ

if ξ 6= 0,

1−exp
(
− y
σ̃

)
if ξ= 0,

(2.8)

where ξ equals the GEV parameter, while σ̃ = σ+ ξ(u −µ). The conditional probability is

reduced since Pr(X > y +u, X > u) = Pr(X > y +u)

Pr(X > y +u|X > u) = Pr(X > y +u, X > u)

Pr(X > u)

= Pr(X > y +u)

Pr(X > u)
. (2.9)

By combining equation (2.7) and (2.9), the probability of a future event can be found by

Pr(X > z|ξ,σ) = Pr(X > y +u)

= Pr(X > u) ·P (X > y +u|X > u)

= Pr(X > u) ·
[

1+ξ
(z −u

σ̃

)]− 1
ξ

, (2.10)

where Pr(X > u) is the probability that a random point exceeds the threshold. For more
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2.1. EXTREME VALUE THEORY CHAPTER. 2

information about the POT method, see (Coles, 2001, Chapter 4).

Declustering

The number of threshold excesses y increases as the threshold u decreases. A larger num-

ber of threshold excesses will increase the accuracy and lower the variance of the parameter

estimation, which suggests using a low threshold. In practice, data are often correlated, het-

eroscedastic or nonstationary. For data without trend, a high enough threshold will ensure

close to i.i.d. property for the threshold excess. As the threshold decreases, clusters could

appear, and the threshold excesses will no longer be i.i.d. Violation of the i.i.d. property will

result in an estimation bias, which suggests using a high threshold. The selection of thresh-

old comes down to the trade-off between accuracy and bias. The goal is to get the lowest

variance without bias.

A declustering method can be applied to improve the i.i.d. property for low threshold.

The target is to localize clusters above the threshold and select the largest value within each

cluster. The method used here defines a cluster as the points above the threshold until r

consecutive points are observed below. Referring to figure 2.1 as an example on how the

method is used in practice. For r = 2 there are 7 clusters, while for r = 4 there are 3. For

the particular threshold used in the plot, r = 4 seems like the obvious choice. For the POT

where declustering is used, the only observation used for parameter estimation is cluster

maximum, hence the condition in equation (2.9), will become X is a cluster maximum. The

change will follow for the condition in equation (2.10) as well as Pr(X > u). For a more in

depth description of declustering, see (Coles, 2001, p. 100). The declustering R code can be

found in appendix B.

Threshold

As stated above, the goal when selecting threshold u is to find the smallest threshold u0, for

which the model is still unbiased, such that the highest accuracy is achieved. For this paper,

the combination of two methods for threshold selection are used.

The first method uses the fact that the mean of the GPD

E(Y ) = σ̃

1−ξ , (2.11)

6



CHAPTER 2. THEORY CHAPTER. 2

Figure 2.1: Portion of the crude oil daily return series, described in chapter 3.2. The hori-
zontal solid line is threshold, with u = 0.014. Clusters are localized between the vertical blue
dashed lines, with the largest value within each clusters shown as a blue square.

for ξ < 1, and infinite when ξ > 1. Thus the first method fails when ξ > 1, but in practice ξ

rarely exceeds 1. As shown above, the GPD ξ equals the GEV parameter which is independent

of threshold, while σ̃= σ+ξ(u −µ) is linear with respect to threshold. Here σ and µ are the

GEV parameters and are independent of the threshold. Thereby the mean of Y is also linear

proportional to the threshold. By plotting the mean of threshold excess against thresholds,

linear effect should be apparent from u0. A confidence interval can be added for a better

understanding of where the linearity starts. For larger values of thresholds, there will only

be a few number of threshold excesses, hence it is suggested using the t-distribution with

1 degree of freedom for the E(Y ) confidence intervals estimation. An example of the mean

excess plot can be seen in figure 4.8. For more information about the method, see (Coles,

2001, p. 79). The R code for mean excess plot, can be found in appendix B.

For the second method, estimates of ξ and σ̃ are taken for a variety of thresholds. The

parameters ξ and the reparametrized σ* = σ̃−ξu should both be constant from u0. For pin-

pointing u0, both ξ and σ* is plotted against u, with added confidence intervals. An example

plot of the shape and modified scale parameter against threshold can be seen in figure 4.9.

For more information about the method, see (Coles, 2001, p. 83). The R code for the param-

eter plot can be found in appendix B.

After threshold selection, σ̃ is simply estimated from the threshold excess and is required

7



2.1. EXTREME VALUE THEORY CHAPTER. 2

larger than zero. For simplicity, from here, the notation σ is used for the GPD parameter σ̃,

as long as otherwise is not specified.

2.1.2 Average Condition Exceedance Rate

The Average Conditional Exceedance Rate (ACER) is another extreme value method, first in-

troduced by Næss and Gaidai (2009). For a more in depth description of the ACER method

see Næss et al. (2013). Both the GEV and GPD distributions require the observations to

be i.i.d. When observations are not i.i.d., filtering methods such as threshold exceedance,

declustering, blocking etc., are used to achieve close to i.i.d. data. The problem with these

filtering methods is that they often discard most of the data, such that only a small amount

of the data can be used for parameter estimation. The advantage of the ACER method is that

the observations are not restricted to i.i.d. or even stationarity data as long as the data has

no trend. Another advantage is the ACER method’s ability to a certain extent capture the

subasymptotic parts, which also can improve estimation.

Without the i.i.d. assumption for X1, . . . , Xn , equation (2.1) can be written using time

dependency

Pr(Mn ≤ z) =
n∏

j=2
Pr(X j ≤ z, |X j−1 ≤ z, . . . , X1 ≤ z) ·Pr(X1 ≤ z). (2.12)

It is reasonable to assume that the data dependency with neighboring points decrease by

time, and is negligible after k ¿ n steps, such that

Pr(X j ≤ z, |X j−1 ≤ z, . . . , X1 ≤ z) ≈ Pr(X j ≤ z, |X j−1 ≤ z, . . . , X j−k+1 ≤ z), for every j = k, . . . ,n. Us-

ing this and Taylor expansion of the exponential function around zero, equation (2.12) re-

duces to

Pr(Mn ≤ z) ≈ exp

(
−

n∑
j=k

αk j (z)−
k−1∑
i=1

αi i (z)

)

≈ exp

(
−

n∑
j=k

αk j (z)

)
(2.13)

where αk j (z) = Pr(X j ≥ z|X j−1 ≤ z, . . . , X j−k+1 ≤ z) for k ≥ 2 and αk j (z) = Pr(X j ≥ z) for k = 1.

The final step is justified since
∑k−1

i=1 αi i (z) is negligible compared to
∑n

j=k αk j (z) for k ¿ n,

while the Taylor expansion around zero is reasonable at the upper tail since for large z,αk j (z)

is close to zero.

8
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Considering the ACER as

εk (z) = 1

n −k +1

n∑
j=k

αk j (z). (2.14)

The ACER function can be estimated using

ε̂k (z) =
∑n

j=k 1(x j ≥ z, x j−1 ≤ z, . . . , x j−k+1 ≤ z)∑n
j=k 1(x j−1 ≤ z, . . . , x j−k+1 ≤ z)

. (2.15)

where 1(ω) is the indicator function for event ω. For nonstationary observations it is sug-

gested using n −k +1 as an approximation for the denominator. The approximation can be

justified since 1(x j−1 ≤ z, . . . , x j−k+1 ≤ z) → 1 in the upper tail where z is large.

It is assumed that the tail of the ACER function follows

εk (z|ak ,bk ,ck , qk ,ξk ) = qk
[
1+ξk

(
ak (z −bk )ck

)]−1/ξk , (2.16)

where the parameters ak , bk , ck , qk and ξk are approximately constant in the upper tail for

a certain k. The process of selecting k can be done by investigating the plot of ε̂k (z) against

z for a variety of k, k is set to the smallest value for which increasing k makes negligible

change to the tail. A k-plot example is shown in figure 4.5. The parameters can be estimated

by minimizing the weighted square error

F (a,b,c, q,ξ) =
N∑

i=1
wi

[
log(ε̂k (zi ))− log (q)+ξ−1 log

(
1+a(zi −b)c)]2

, (2.17)

using numerical methods. Selecting z1, . . . , zN is done by uniformly dividing the values from

where regular tail behavior of ε̂k (z) starts z1 to max
1≤i≤n

(Xi ) into N points. The weights wi is

calculated using

wi =
(
log

[
C+
α (zi )

]− log
[
C−
α (zi )

])−2 , (2.18)

where C+
α (zi ) and C−

α (zi ) is the upper and lower 100 ·α% confidence interval values respec-

tively for ε̂k (zi ). Organizing the observation into R similar realizations, like R years, the sam-

ple variance can be calculated as

ŝk (zi )2 = 1

R −1

R∑
r=1

(
ε̂(r )

k (zi )− ε̂k (zi )
)

(2.19)

9



2.2. BAYESIAN INFERENCE CHAPTER. 2

where ε̂(r )
k (zi ) is the estimated ACER function for the r realization at zi . Hence a 100 ·α%

confidence interval can be calculated using the student t-distribution

C±
α (zi ) = ε̂k (zi )± t(1−α)/2,R−1

ŝk (zi )p
R

(2.20)

where tp,ν is defined as Pr(T > tp,ν) = p for the standardized t-distribution with ν degrees of

freedom.

After parameter estimation a future prediction can be achieved using equation (2.16).

Confidence intervals can be added to the ACER function prediction by estimating the pa-

rameters to the upper and lower confidence curve. Using εk (zi |a,b,c, q,ξ)± t(1−α)/2,R−1
ŝk (zi )p

R

instead of ε̂k (zi ) in equation (2.17), where εk (zi |a,b,c, q,ξ) is given by equation (2.16), pa-

rameters for upper and lower confidence curves are estimated. These upper and lower con-

fidence parameters can be used in equation (2.16) for ACER function out of sample confi-

dence intervals. The majority of ACER calculation was achieved using the ACER R package

by Rødvei (2015).

2.2 Bayesian Inference

For the traditional frequentist statistics, the parameters θ = [θ1, . . . ,θm] are assumed fixed,

while observations x = [x1, . . . , xn] are random from the underlying distribution f (x |θ). Bayesian

statistics instead treats the parameters θ with a probability distribution, where it is possible

to make subjective beliefs about the distribution, independent of the data. These subjective

beliefs are used to construct a prior distribution f (θ) based on experience, information or

physical knowledge of the situation analyzed.

The posterior distribution of the parameters, dependent on the observed data becomes

f (θ|x) = f (θ) f (x |θ)∫
Θ f (θ) f (x |θ)dθ

, (2.21)

whereΘ is the domain over all possible parameters for which the integral is taken, and f (x |θ)

is the likelihood function. The likelihood function is constructed from the joint density func-

tion, which for independent data equals

f (x |θ) =
n∏

i=1
f (xi |θ). (2.22)

10
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The integral over parameters reduces to a constant, which makes

f (θ|x) ∼ c · f (θ) f (x |θ), (2.23)

where c = 1/
∫
Θ f (θ) f (x |θ)dθ is the normalizing constant.

A conjugate prior is a prior which combined with the likelihood function constructs a

posterior distribution in the same family as the prior. Conjugate priors are often preferred

because of the analytical luxury and computational simplicity.

Estimating a future point z which follows the distribution f (z|θ), can then be done us-

ing the posterior distribution f (θ|x). The predicted point then becomes dependent of the

observed data

f (z|x) =
∫
Θ

f (z|θ) f (θ|x)dθ. (2.24)

Since Bayesian inference accounts for the distribution of parameters, equation (2.10) can

be rewritten using Pr(Z > u) =ψ

Pr(Z > z|ξ,σ,ψ) =ψ
[

1+ξ
(z −u

σ

)]− 1
ξ

, (2.25)

where ψ, ξ and σ are the unknown parameters. Since ψ is the probability of a point being

larger than the threshold, ψ is independent of ξ and σ. Development of posterior distribu-

tions for independent parameters can be treated separately.

Starting with ξ and σ, by combining equation (2.22) and (2.8), the joint density function

for the POT method becomes

f (y |ξ,σ) =
n∏

i=1
h(yi |ξ,σ)

=σ−n
n∏

i=1

(
1+ ξyi

σ

)−(
1+ 1

ξ

)
, (2.26)

or f (y |σ) = σ−n exp
{−σ−1 ∑n

i=1 yi
}

when ξ= 0. Here h is the probability density function of

the GPD, y is a vector of observed threshold excess and n is the numbers of threshold excess.

The obvious start for investigating priors is the conjugate priors. but unfortunately, there

do not appear to be any conjugate priors for the joint GPD. This paper, will not go into depth
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on how to select Bayesian priors for the GPD, but instead use the suggestion proposed by

(Coles, 2001, p. 174). Note that there are potential improvements by deeper investigation

of GPD or GEV priors, especially for priors developed for specific situations where there are

physical knowledge or practical experiences about the parameters. Since σ> 0, the transfor-

mation φ = log(σ) ensures σ to be valid without restriction on φ. The suggested priors are

fφ(·) and fξ(·) to be normally distributed around zero with variance vφ = 104 and vξ = 100.

Considering the prior distribution of φ instead of σ, the change of variable for the joint

density function becomes

fy |ξ,φ(y |ξ,φ) = fy ,ξ,φ(y ,ξ,φ)

fξ,φ(ξ,φ)

=
fy ,ξ,σ

(
y ,ξ,exp(φ)

) · ∣∣∣ d
dφ exp(φ)

∣∣∣
fξ,σ

(
ξ,exp(φ)

) · ∣∣∣ d
dφ exp(φ)

∣∣∣
= fy |ξ,σ

(
y |ξ,exp(φ)

)
, (2.27)

where fX (·) indicates the probability distribution of X . The posterior distribution of the pa-

rameters can then be developed by the priors, (2.27) and (2.23)

fξ,φ|y (ξ,φ|y) ∼ c · fy |ξ,σ
(

y |ξ,exp(φ)
)

fξ(ξ) fφ(φ), (2.28)

where again c is the normalizing constant, fy |ξ,σ as in (2.26), fξ(ξ) ∼ N (0,100) and fφ(φ) ∼
N (0,104). Here N (µ,σ2) indicates the normal distribution with mean µ and variance σ2.

The development of ψ posterior distribution can be started with investigating priors.

Since ψ equals Pr(X > u), the range is limited within 0 and 1. For simplicity the prior is

set proportional to the uniform distribution on the interval (0,1), f (ψ) ∼ UNIF(0,1). It is

noted that in reality the distribution of ψ is not flat. Low valued ψ is more likely than high,

while the probability converges to zero for the endpoints. A well-tuned Beta distributed prior

could account for this and improve the result.

The joint density function can be created by the fact that ψ equals the probability that

a random event exceeds the threshold. This can be expressed using the binominal distri-

bution, where ki indicates the numbers of points exceeding the threshold and Ni indicates

the total numbers of points, each for a given period i . For a total m numbers of periods the

12
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posterior distribution equals

f (ψ|k1, . . . ,kn , N1, . . . , Nn) ∼ f (ψ) ·
m∏

i=1
f (ki |Ni ,ψ)

=
m∏

i=1

(
Ni

ki

)
ψki (1−ψ)Ni−ki

∼ψ
∑m

i=1 ki (1−ψ)
∑m

i=1 Ni−
∑m

i=1 ki . (2.29)

The resulting distribution is independent of period selection, the notation k and N can be

used for the total numbers of exceedance and the total numbers of observations respectively.

It is noted that the distribution is proportional to the Beta distribution. Since there only exist

one normalizing constant which satisfies the requirements for a probability distribution, the

posterior distribution is not only proportional, but equal to the Beta distribution. Rewriting

equation (2.29) gives

f (ψ|k, N ) ∼ BETA(k +1, N −k +1). (2.30)

For declustered data, the parameters ξ and σ is estimated as described above. Approach-

ing the ψ as above, k and N equals the number of cluster maximum and total number of

observations respectively.

2.3 Markov Chain Monte Carlo

Markov Chain Monte Carlo (MCMC) is a powerful iterative method used to sample from a

probability distributions, which analytically or through other simulation methods can be dif-

ficult and impractical to sample from. The algorithm is constructed by converging the target

distribution to an irreducible and aperiodic Markov Chain with limiting distribution equal

the target distribution. Independent of starting position the Markov Chain will then con-

verge towards the desired probability distribution in the limit as the numbers of iterations

goes to infinity. The first numbers of realizations of the Markov Chain until convergence is

called burn-in. These numbers are discarded for further analyses. More information about

burn-in can be found in (Givens and Hoeting, 2013, p.220). The remaining realizations ap-

proximately follow the target probability distribution, where the accuracy increases as the

numbers of realizations increases. The Monte Carlo method can then be used to calculate

the quantities of interest like mean, expected value, future prediction, credible interval, pre-

13
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diction interval etc. More in-depth description of the MCMC method can be found in the

books of Gamerman and Lopes (2006) and (Givens and Hoeting, 2013, Chapter 7,8).

2.3.1 Gibbs Sampling

In situations where it is difficult to sample from the joint distribution, but applicable from

the conditional distribution, Gibbs sampling is preferable. The theory behind Gibbs sam-

pling was first proposed in Geman and Geman (1984). The principle of Gibbs sampling is

to construct the Markov Chain by repeatedly sample each parameter with the rest of the pa-

rameters as the condition. The Gibbs sampler starts with an initial guess X 0 = [X 0
1 , · · · , X 0

n],

and is iteratively updated by the following scheme

X t+1
1 |· ∼ f (X1|X t

2 , . . . , X t
n),

X t+1
2 |· ∼ f (X2|X t+1

1 , X t
3 , . . . , X t

n),

...

X t+1
n |· ∼ f (Xn |X t+1

1 , . . . , X t+1
n−1),

(2.31)

where t is the iteration number, f is probability function of the parameter and |· symbolizes

that the function is conditional on the rest and recent parameters. In some cases it can be

beneficial to sample some of the parameters in blocks, such as (Xk , Xk+1)|· where 1 ≤ k ≤
n −1. This form of Gibbs sampling is called blocking. The iterative process is repeated until

enough realizations are generated for sufficient accuracy. More about Gibbs sampling can

be found in (Gamerman and Lopes, 2006, p. 141) and (Givens and Hoeting, 2013, p. 209)

2.3.2 Metropolis–Hastings Algorithm

The Metropolis-Hastings algorithm was first proposed by Metropolis et al. (1953), and is an-

other method for constructing a suitable Markov Chain. The algorithm is preferable for sit-

uations where a proportional distribution is simple to evaluate, while the target probability

distribution is difficult. Bayesian inference see chapter 2.2, often results in a distribution

where the normalizing constant cannot analytically be calculated. While possible numeri-

cally, the normalizing constant often becomes computationally expensive, which makes it

impractical for iterative simulations. Using the Metropolis–Hastings algorithm on a propor-

tional distribution without normalizing constant, results in samples from the target distri-
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butions.

The Metropolis–Hastings algorithm starts with an initial guess for the parameters. For

each iteration new parameters X * are suggested from a proposal distribution g (X *|X t ), given

the last accepted parameter X t . The new parameter is then evaluated against the last ac-

cepted by

R(X *, X t ) = f (X *)g (X t |X *)

f (X t )g (X *|X t )
(2.32)

where f (x) is the target distribution, or a distribution proportional to the target distribution.

The parameter X t+1 takes value X * with probability min{1,R(X *, X t )}, if rejected we then

get X t+1 = X t instead. The reason that the normalizing constant in the target distribution is

irrelevant is because they are both canceled out in f (X *)/ f (X t ).

A common proposal distribution is the random walk. The new parameters are gener-

ated from the last accepted realization with additional variance, X * = X t +ε where ε follows

a chosen probability distribution. Symmetric proposals implies that g (X t |X *) = g (X *|X t ).

This is referred to as Metropolis algorithm.

The Metropolis–Hastings algorithm can in situations be necessary for some of the steps

in the Gibbs sampler, equation (2.31). Such a combination of Metropolis-Hastings algorithm

and Gibbs sampler is referred to as a Hybrid Gibbs sampler, and was first introduced by

Müller (1991). For more information about the Metropolis-Hastings algorithm and Hybrid

Gibbs sampler see (Givens and Hoeting, 2013, p. 202), (Gamerman and Lopes, 2006, p. 191)

and (Givens and Hoeting, 2013, p. 216), (Gamerman and Lopes, 2006, p. 205) respectively.

2.3.3 Effective Sample Size

The realizations of the simulated Markov Chain will often be correlated, and dependent on

the future and past iterations. The correlation implies that the information gained by each

iteration is less than the suggested run length. The effective sample size gives a method of

calculating the theoretical size of an equally informative i.i.d. realization set. The effective

sample size is estimated as

Leff =
L

1+2
∑K

k=1 ρ̂(k)
, (2.33)

where L is the sample size of the simulated realizations, ρ̂(k) is the estimated k step autocor-

relation between realizations and K is chosen as the first k where ρ̂(k) < 0.1. The effective

sample size is a quantification of the information held by the simulated realization set. The

15



2.3. MARKOV CHAIN MONTE CARLO CHAPTER. 2

R code for calculating the effective sample size, can be found in appendix B.

2.3.4 Adaptive Metropolis Algorithm

A challenge with constructing an MCMC is to ensure that the series converges to the station-

ary target distribution relatively quickly, and that the samples give points in the whole range

of the target distribution. This is referred to as good mixing.

If a large percentage of the Metropolis-Hastings proposals X * is accepted, the proposal

distribution is too narrow. High acceptance rate will delay convergence, and cause higher

correlation between points. The result is poor mixing and a decrease in effective sample size.

On the other hand, if only a small percentage of the proposals are accepted, the proposal

distribution is to wide. Low acceptance rate will also increase correlation, which gives poor

mixing and decreased effective sample size. A large number of generated realizations by the

Markov chain will be equal, which will harm future Monte Carlo simulation.

To maximize the effective sample size and ensure good mixing, the acceptance rate should

be somewhere in between. For a Metropolis-Hastings algorithm, Gelman et al. (1996) sug-

gested a 44% acceptance rate for single dimensional normal target distribution and 23.4%

for high dimensional multivariate normal target distribution. Commonly the user would

run the Metropolis-Hastings algorithm, calculate acceptance rate, tune variance and then

rerun the process until sufficient acceptance rate is achieved.

For this work, MCMC simulation will be used for a large number of different situations,

and it would become extremely time-consuming to tune each variance. This inconvenience

can be handled by using an Adaptive Markov Chain Monte Carlo (AMCMC) which adapt the

MCMC algorithm while running. This is achievable using a normal random walk proposal

where the next suggested realization X * ∼ N (X t ,λΣt ). Between iterations Σt is adjusted

to improve mixing and efficient sample size. The acceptance rate is set by λ, and with a

p dimensional multivariate normal target distribution, it has been shown that a constant

λ = 2.382/p is optimal when Σ equals the real variance of the target distribution (Gelman

et al., 1996). The adaptive Metropolis algorithm is not constrained to the normal target dis-

tributions, but the suggested λ seems like a good starting value. The ability of an adjustable

λ between future iteration seems beneficial, because of the unknown target distribution and

the following acceptance rate. The additional adaptive parameter µt is necessary since the

covariance is proportional to µ. The initial guess is chosen as µ0 = 0 and Σ0 = I. The nor-
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mal random walk proposal distribution is symmetric, which result in an adaptive Metropolis

algorithm, where (2.32) is reduced to

R(X *, X t ) = f (X *)

f (X t )
. (2.34)

For each iteration µt+1 and Σt+1 is updated as follows

µt+1 =µt +γt+1(X t+1 −µt ) (2.35)

Σt+1 =Σt +γt+1 [
(X t+1 −µt )(X t+1 −µt )T −Σt ] , (2.36)

where γ is a decreasing parameter which provide the Markov chain property described in the

beginning of chapter 2.3. The details of γt , to ensure an irreducible and aperiodic Markov

chain can be found in Roberts and Rosenthal (2007) and Atchadé et al. (2011). It is noted that

limt−>∞γt = 0, while not necessary bounded for
∑∞

t=1γ=∞. Repeated trails concluded that

γt = 0.5exp(t/τ) was a sufficient choice, where τ = 0.1 · N /log(10) and N is the predefined

realization length. The γ is constructed to be 1/20 at t = 0.1 ·N .

As described above an adaptive λt can be beneficial. By using

log(λt+1) = log(λt )+γt+1 (
R(X *, X t )−a

)
, (2.37)

the series acceptance rate will converge towards a (Givens and Hoeting, 2013, p. 248).

A more detailed description of the adaptive metropolis algorithm can be found in (Givens

and Hoeting, 2013, p. 247).

2.3.5 Applying Markov Chain Monte Carlo to Peak Over Threshold

In chapter 2.2, the two equation (2.28) and (2.30) construct the basis for the blocking Gibbs

sampler

ξt+1,φt+1|· ∼ c · fy |ξ,σ
(

y |ξ,exp(φ)
)

fξ(ξ) fφ(φ)

ψt+1|· ∼ BETA(k +1, N −k +1),

where the parameters and functions are described in chapter 2.2. After the Markov chain

sampling is complete, the transformationσ= exp(φ) ensure correct parameter for the Monte
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Carlo simulations. Sampling from ψ is straight forward since it is simply realizations of the

Beta distribution, while ξ andσ are more complex and cannot directly be sampled. The chal-

lenge of calculating the computationally heavy c for each iteration favors the implementa-

tion of the Metropolis-Hastings algorithm.

The algorithm independency of the user for tuning and improved convergence speed

makes the adaptive Metropolis-Hasting algorithm, described in chapter 2.3.4, favorable for

ξ,σ. The posterior distribution often results in extremely small values, which in some cases

could get disrupted by the violation of the smallest floating number for the software. To

account for this, the logarithm of equation (2.34) is used. The resulting log Metropolis ratio

becomes,

log
[
R(X *, X t )

]= log
[

fξ,φ|y (ξ*,φ*|y)
]− log

[
fξ,φ|y (ξt ,φt |y)

]
= log

[
fy |ξ,σ

(
y |ξ*,exp(φ*)

)]− log
[

fy |ξ,σ
(

y |ξt ,exp(φt )
)]+

log
[

fξ(ξ*)
]+ log

[
fφ(φ*)

]− log
[

fξ(ξt )
]− log

[
fφ(φt )

]
,

(2.38)

where equation (2.26) gives,

log
[

fy |ξ,σ
(

y |ξ,exp(φ)
)]=


−nφ−exp(−φ)

∑n
i=1 yi , ξ= 0,

−nφ−
(
1+ 1

ξ

)∑n
i=1 log

(
1+ξexp(−φ)yi

)
, ξ 6= 0.

(2.39)

After inserting mean and variance of the priors from chapter 2.2, the remaining parts reduces

to

log
[

fξ(ξ*)
]+ log

[
fφ(φ*)

]− log
[

fξ(ξt )
]− log

[
fφ(φt )

]=− (ξ*)2 − (ξt )2

200
− (φ*)2 − (φt )2

2 ·104
. (2.40)

For the equations, t indicate the parameter iteration number, * indicate the proposed pa-

rameter value to be evaluated, ξ and σ are GPD parameters where φ = log(σ) and y is a

vector containing the observed data of size n.

The remaining construction of the AMCMC simulator is as described above in chapter

2.3.4. The result is a hybrid Gibbs AMCMC simulator for the POT method. The Markov chain

is valid since both Gibbs steps are irreducible and aperiodic. Irreducible because each sam-

pler within their restricted range can sample any realization with probability larger than zero,

from any state. Aperiodic since both Gibbs steps can return to their state in a single iteration,
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with probability larger than zero.

To limit the possibility of the adaptive Metropolis-Hastings algorithm getting stuck in a

slowly converging area before reaching the target distribution, multiple independent MCMC

simulations with different starting values for ξ0 andφ0 are used. After convergence the latest

value of ξt andφt between the MCMC simulations with the highest fy |ξ,σ(y |ξt ,exp(φt )) f (ξt ) f (φt )

are selected for future realization generation. All points generated prior to this point for each

starting value are discarded as burn-in.

Estimation and credible interval can simply be added through Monte Carlo simulation.

For a parameter realization of size T , after burn-in is removed and the effective sample size

is sufficient, equation (2.24) is estimated as

P̂r(Z > z|y) = 1

T

T∑
t=1

Pr(Z > z|ξt ,σt ,ψt ). (2.41)

The estimation is unbiased since (ξt ,σt ,ψt ) ∼ f (ξ,σ,ψ|y). The 100 ·α% credible interval for

a specific z = s can be added to the P̂r(Z > s|y) estimation by sorting the result of Pr(Z >
s|ξt ,σt ,ψt ) for every realization, and selecting lower and upper limits for where 100 ·α%

of the results are contained. The narrowest interval is chosen for this work and is called

the highest posterior density interval. Example of the use of such interval can be seen in

figure 4.3, where the credible interval has been estimated on multiple z values for the MCMC

method. The complete R and C++ code for calculating the AMCMC for the POT method, can

be found in appendix B.

2.3.6 Multivariate Random Normal Generator

Most of the coding for this work was done in R. Since the MCMC accuracy increase with the

numbers of iteration generated, parts of the AMCMC algorithm was coded in C++, through

the Rcpp package by Eddelbuettel et al. (2016), for speed optimization. The AMCMC for ξ

and φ uses a bivariate random normal generator, but this is not natively supported in C++.

Since no additional packages tested were satisfactory for the purpose, the bivariate random

normal generator was constructed.

The Box-Muller transformation, see Box and Muller (1958), states that for two indepen-
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dent random variables U1,U2 ∼U N I F (0,1), the transformation

Z1 =
√

−2log(U1) cos(2πU2)

Z2 =
√
−2log(U1) sin(2πU2)

results in Z1 and Z2 to be independent and standard normally distributed. Combined in a

vector z = [Z1, Z2]T , where T is the transpose, the bivariate random normal x ∼ N (µ,Σ) can

be generated by

x =µ+ Az , (2.42)

where Σ = A AT . Here A is chosen as the Cholesky decomposition of Σ. The C++ code can

be found in appendix B.

2.4 Forecasting Extreme

Two methods were used for prediction and forecasting of future extreme.

2.4.1 Value at Risk

Value at risk (VaR) for confidence α is defined as the smallest value l where the loss L of the

portfolio will exceed with probability α, over a given time period h

Pr(Lh ≥ lh,α) =α. (2.43)

As this work only considers one day VaR the simplified notation VaRα = lα is used.

By inverting equation (2.16), VaR of the ACER method for a given k is calculated as

VaRα = b +
[

1

aξ

( q

α

)ξ
−1

]1/c

. (2.44)

For the POT MCMC method, equation (2.25) is inverted, for which the VaR follows

VaRt
α = u + σt

ξt

[(
ψt

α

)ξt

−1

]
, (2.45)

where t indicates the sampled realization number from the MCMC. As the reasoning for

equation (2.41), the estimated VaR becomes VaRα = 1/T
∑T

t=1 VaRt
α, where T is the total num-
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ber of realizations generated after burn-in is removed.

Dependent if the portfolio is on buy or sell, the value at risk make sense for both increase

and decrease of daily return respectively. For VaR on decreasing data, the extreme of the

negative dataset −X1, . . . ,−Xn is analyzed instead.

2.4.2 Forecasting Prediction Interval of Extreme

The VaR gives an approach for testing how well the ACER and POT MCMC methods estimates

the underlying distribution. The VaR estimation does not reflect how well the ACER and POT

MCMC captures the estimation variability. By analyzing the maximum of a future time series,

a method for testing variability is developed.

As stated earlier in chapter 2.1.1, for time series with no trend, the most extreme events

are approximately i.i.d, thus at the tails, equation (2.1) can be approximated as (2.2). The

estimated cumulative distribution F̂ (z) can thereby be used for estimating the maximum of

a future long time series by

Pr(Mn < z) ≈ [
F̂ (z)

]n
, (2.46)

where n is the number of points in the time series, as in chapter 4.2. Both the ACER and

POT MCMC method are developed for P̂r(X > z) = 1− F̂ (z), see equation (2.16) and (2.25)

respectively. The 100 ·α% Prediction Interval (PI) of the most extreme of n points, or nth

extreme, can be found by

α= Pr(mn,p1 ≤ Mn ≤ mn,p2 ), (2.47)

where Pr(Mn < mn,p1 ) = p1, Pr(Mn < mn,p2 ) = p2, p2−p1 =α, and both p1 and p2 is between

0 and 1. Using equation (2.46), the value of mn,p for a given n and p can be estimated by

inverting (2.16), resulting in

m̂n,p = b +
[

1

aξ

(
q

1−p1/n

)ξ
−1

]1/c

. (2.48)

for the ACER method. By computing m̂n,p1 and m̂n,p2 for a variety of p1, p2 satisfying α =
p2 −p1, the highest posterior density interval is chosen as PI.

The PI for the POT MCMC method is calculated by generating realizations of the nth

extreme zn , using various parameter realizations generated by the MCMC method. Values of

the estimated zn can be generated using the probability integral transform approach, where
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Pr(X < x) ∼ UNIF(0,1), combined with equation (2.25) and (2.46), this gives

ẑi
n = u + σt

ξt

(
ψt

1− y1/n
i

)ξt

−1

 , (2.49)

where yi ∼ UNIF(0,1), i is the i th realization of ẑn and t is the parameter realization number.

For a high number of realizations, the 100 ·α% highest posterior density interval is chosen

by sorting ẑi
n by values and selecting the narrowest continous interval which holds 100 ·α%

of the data. The POT MCMC PI also captures the parameter variation. Unfortunately this is

not the case for the PI generated by the ACER method and therefore probably will result in a

too narrow PI.

2.5 Test and Evaluation

2.5.1 Ljung–Box test

The Ljung-Box test is a method for test if data in a time series is independently distributed.

The test is given by

Q = n(n +2)
h∑

k=1

ρ̂2
k

n −k
, (2.50)

were ρ̂k is the sample autocorrelation function for lag k, n is the data length and h is the

upper limits of the numbers of lags included in the test. For testing purposes Q ∼χ2 with h−
p degrees of freedom, where p represent the degrees of freedom lost in the filtering method.

For non-filtered data p = 0. The filtering method used in this work is the ARMA-APARCH

described below.

2.5.2 Likelihood Ratio Test

Likelihood ratio test is a method of comparing the goodness of fit for different models. The

test required a null model θ0, and an alternative model θa , where the null model is a nested

subset of the alternative. The test statistics is approximately chi-square distributed, with

d fa −d f0 degrees of freedom, where d fa and d f0 is the alternative and null models num-

ber of free parameters respectively. The log likelihood ratio test statistics have the following

relationship

χ2
(d fa−d f0) ∼−2log

[
f (x |θ0)

f (x |θa )

]
(2.51)
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where f (x |θ) is the likelihood, as seen in equation (2.22) and χ2 is the chi-square distribu-

tion.

2.5.3 Evaluating Forecasts

The out of sample VaR and the max of a future nth event prediction interval, is evaluated by

the test of Kupiec (1995) and Christoffersen (1998). These tests can be developed from the

likelihood ratio test statistics described above, but are only presented here. Both test define

an indication variable It as

It =


1, ifyt ∈

[
Lt |t−1(p),Ut |t−1(p)

]
,

0, ifyt ∉
[
Lt |t−1(p),Ut |t−1(p)

]
,

(2.52)

for 1 ≤ t ≤ n, where Lt |t−1(p) and Ut |t−1(p) is the lower and upper prediction limits respec-

tively for time t conditioned on the previous data and probability p, and yt is the corre-

sponding observed data.

The Kupiec (1995) tests the unconditional coverage of the model, by testing the hypoth-

esis that E [It ] = p against the alternative E [It ] 6= p. The test statistics is calculated by

LRUC =−2log

[
(1−p)n0 pn1

(1− π̂)n0π̂n1

]
, (2.53)

where n1 = ∑n
i=t It , n0 = n −n1 and π̂ = n1/n. The test statistics is proportional to the chi-

square distribution LRUC ∼ χ2
1 with 1 degree of freedom, and is used for hypotheses evalua-

tion.

The Christoffersen (1998) also tests the conditional coverage of the model, by testing the

hypothesis that E [It ] = p against the alternative E [It ] 6= p. In contrast with the above test,

the Christoffersen (1998) accounts for dependency. The test statistics is calculated by

LRCC =−2log

[
(1−p)n0 pn1

(1− π̂01)n00π̂
n01
01 (1− π̂11)n10π̂

n11
11

]
, (2.54)

where ni j is the numbers of It going from i to j and π̂i j = ni j /ni . The test statistics is pro-

portional to the chi-square distribution LRCC ∼ χ2
2 with 2 degree of freedom, and is used for

hypotheses evaluation.

For VaR evaluation, the upper limit Ut |t−1(p) is set to infinity, which result in Lt |t−1(p) =
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VaRp , where VaRp is calculated using the previous observations.

2.6 ARMA-APARCH

The Autoregressive Moving Average (ARMA) model is a method of analyzing time series. The

ARMA(p, q) model for a time series Z1, . . . , ZT , where Żt = Zt −µ and µ is the intercept of Z ,

is given by

Żt =
p∑

i=1
φi Żt−i

q∑
j=1

θ j et− j +et , (2.55)

where φ is the Autoregressive (AR) parameters, θ is the Moving Average (MA) parameters

and e is the error term. The p indicates the highest AR order while q indicates the highest

MA order in the model. For q = 0 or p = 0 the ARMA(p, q) model is referred to as AR(p) or

MA(q) respectively.

In situations where the error term is heteroscedastic, an Asymmetric Power Autoregres-

sive Conditional Heteroscedasticity (APARCH) model can be included. For the time series

above, the APARCH(k, l ) model is

σδt =ω+
r∑

k=1
αk

(|et−k |−γk et−k
)δ+ s∑

l=1
βl (σt−l )δ, (2.56)

whereα, β,ω, γ and δ is the parameters while et =σtεt , r is the highestα or g amma order, s

is the highestβ order and εt is a homoscedastic standardized error term. The APARCH model

equals the Autoregressive Conditional Heteroscedasticity (ARCH) for δ= 2, γ= 0, β= 0, the

Generalized Autoregressive Conditional Heteroscedasticity (GARCH) for δ= 2, γ= 0 and the

Glosten Jagannathan Runkle (GJR) GARCH for δ= 2. The APARCH model has shown to work

well for fat tails, excess kurtosis and leverage effects. For the data analyzed in this work, the

standardized error term εt is assumed to follow a skewed student t-distribution. Thus

εt ∼ SKEW(µ∗ = 0,σ∗ = 1,ν,ξ), where µ∗ is location, σ∗ is scale, ν is shape and ξ is the skew-

ness parameter of the skewed student t-distribution. The theory behind the skewed student

t-distribution is not presented here, as the fGarch R package by Wuertz et al. (2013) handles

it automatically, but a detailed description can be found in Fernandez and Steel (1998).
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Chapter 3

Data

The following chapter introduce the different types of data analyzed. Synthetic data are gen-

erated an analyzed, for better control of behavior and result verification of the ACER and

POT MCMC method before the methods are applied for a variety of commodity times series.

3.1 Synthetic Data

Two synthetic data series are generated. Both attempts to test the methods on different as-

pects which are important for real life daily return commodity analysis. The first is the thick

tail Pareto distribution, since commodity data have shown signs of fat tail distribution, as

the study by Aloui and Mabrouk (2010) presented. The Pareto distribution can generate i.i.d.

data which are easy to control and where exact analytic inference can be achieved.

The second, numerically generates a time series with approximately the same distribu-

tion characteristics as the return of crude oil commodity data. Since it is a numeric method,

the data can be generated as large as desired, and much larger than is practical achievable in

real life. Thus more accurate test result is achieved compared to limited real life data.

3.1.1 Pareto Distribution

The Pareto distribution has the following cumulative distribution function

Pr(X < x) =


1− 1

xβ
if x > 1

0 if x < 1
(3.1)
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Figure 3.1: Generated Pareto distributed points with 9125 realization using β= 3. The i axis
represent time in days, while xi is the realized data point for that day.

where β is a shape parameter. A cumulative distribution function is said to have fat tail if

Pr(X > x) ∼ x−β, as x →∞, for β> 0. By the definition, the Pareto distribution clearly follow

the property of fat tail distribution. Using the probability integral transform approach, a data

point xi is generated by

xi = 1

u1/β
i

, (3.2)

where ui ∼ UNIF(0,1).

A practical data size could come from having a daily return each day for 25 years. Without

considering leap year, roll-over returns, and weekend, that corresponds in a 25 times 365

data series. Multiple data series of that size was generated using 1 <β< 5.

Figure 3.1 shows a generated Pareto distributed time series for β = 3, where the size of

realizations range from 1.000 to 23.384.

3.1.2 ARMA-APARCH Generated Data

Since the Pareto distribution above generated i.i.d. data points, it seems logical to simulate

dependent and homoscedastic data to reveal any performance difference on that aspect of

the methods. This work focus on the ACER and POT MCMC methods ability to capture the
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tail effect of commodity data, hence the ability to generating data with close to the same

behaviors as real life commodity is desired.

Table 3.1: Estimated AR(3) - APARCH(1,1) parameters and p-values for the crude oil daily
return (CL1). The parameter notation is as described in chapter 2.6.

Estimate p-value
µ 4.13 ·10−4 0.134
φ1 −2.55 ·10−2 9.87 ·10−2

φ2 −4.34 ·10−2 2.45 ·10−3

φ3 −1.72 ·10−2 0.228
ω 9.77 ·10−5 2.21 ·10−3

α1 5.55 ·10−2 < 2 ·10−16

γ1 2.33 ·10−1 2.61 ·10−3

β1 9.50 ·10−1 < 2 ·10−16

δ 1.13 2.07 ·10−7

ξ 9.62 ·10−1 < 2 ·10−16

ν 7.34 < 2 ·10−16

It was suggested by Giot and Laurent (2003), that the return of commodity time series ap-

proximately follows AR(3)-APARCH(1,1), with the standardize error term following a skewed

student t distribution. Using the observed crude oil daily return (CL1) described below in

chapter 3.2, the parameters of AR(3)-APARCH(1,1) with p-values is presented in table 3.1.

All parameters except µ and φ3 are significantly different from zero. The likelihood-ratio

test statistics of multiple reduced models all performed significantly worse than the AR(3)-

APARCH(1,1).

A generated time series from the AR(3)- APARCH(1,1) model with parameters as in table

3.1, can be seen in figure 3.2. The generated AR(3)- APARCH(1,1) heteroscedastic behavior

seems comparable to the real commodity data sets described below.

3.2 Commodity Data

The daily return commodity data sets was provided by Sjur Westgaard. The daily return was

calculated by

rt = xt −xt−1

xt
(3.3)

where rt is daily return and xt is the value of the commodity for day t . The data often ex-

periences extreme changes between contract expiration and new contracts, these roll-over

effects are accounted for by removing the specific daily return. For simplicity, any missing
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Figure 3.2: Generated AR(3)- APARCH(1,1) distributed points of length 4 469. The t axis
represent time in days, while zt is the realized data point for that day.

daily return for a commodity is also removed for other commodities. The data removal result

in 10 commodity data series, with 4 469 daily return each spanning from August 3rd 1992 to

November 12th 2013. A plot of each of the daily return series can be seen in figure 3.3. The

plot reveals the non-stationarity in variance for each of the data series. Some of the increased

variance clusters spans over multiple years.

Descriptive statistics for each of the commodities can be found in table 3.2. Except wheat

(W1), soybean (S1) and Soyabean oil (BO1), the data independency hypothesis is rejected for

the Ljung-box test statistic at a 5% significance level.

In an effect to accommodate for the non-stationarity in variance, each data series was

filtered using the AR(3)- APARCH(1,1) model with skewed student t-distributed errors, as

was described above for the crude oil data. The filtered standardized residuals from each of

the commodity data series can be seen in figure 3.4, with corresponding descriptive statistics

in table 3.2 noted F. for filtered. For each of the filtered data, the Ljung-box test was not

rejected on a 5% significance level.
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Figure 3.3: Plots of daily returns against time in years for each of the commodity data series.

29



3.2. COMMODITY DATA CHAPTER. 3

Figure 3.4: Plots of the standardized residuals against time in years for each of the AR(3)-
APARCH(1,1) filtered data series.
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Table 3.2: Descriptive statistics for the commodities data and standardized residuals of the
AR(3)- APARCH(1,1) filtered commodities.

Symbol Marked Mean SD Q(0.05) Q(0.95) Skew Kurtosis
CL1 Crude Oil 0.00 0.02 −0.04 0.03 0.14 7.98
HO1 Heating Oil 0.00 0.02 −0.03 0.03 −0.24 6.45
NG1 Natural Gas 0.00 0.04 −0.05 0.06 0.69 11.51
CT1 Cotton 0.00 0.02 −0.03 0.03 −0.06 5.73
C1 Corn 0.00 0.02 −0.03 0.03 0.05 5.61
W1 Wheat 0.00 0.02 −0.03 0.03 0.08 5.11
S1 Soybean 0.00 0.02 −0.02 0.02 0.61 16.24
RR1 Rough Rice 0.00 0.02 −0.03 0.03 0.12 5.75
SM1 Soyabean Mean 0.00 0.02 −0.02 0.03 0.00 5.28
BO1 Soyabean Oil 0.00 0.01 −0.02 0.02 0.19 5.00
fCL1 F. Crude Oil 0.01 1.01 −1.65 1.61 0.00 2.37
fHO1 F. Heating Oil 0.00 1.00 −1.60 1.63 −0.05 1.53
fNG1 F. Natural Gas 0.01 1.03 −1.49 1.65 0.77 6.28
fCT1 F. Cotton 0.00 1.02 −1.68 1.61 −0.47 5.31
fC1 F. Corn 0.00 1.03 −1.57 1.61 −0.16 4.74
fW1 F. Wheat 0.00 1.00 −1.54 1.65 0.17 0.79
fS1 F. Soybean 0.01 1.07 −1.60 1.57 0.26 3.94
fRR1 F. Rough rice 0.00 1.01 −1.61 1.62 0.13 2.17
fSM1 F. Soyabean mean 0.01 1.07 −1.54 1.65 0.14 2.62
fBO1 F. Soyabean oil 0.00 1.00 −1.56 1.69 0.26 1.20
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Chapter 4

Analysis and Results

The following chapter contains the analysis of the data presented in chapter 3. First is the

analysis of the two computer generated synthetic data, before the methods are applied to

the real life commodity data and corresponding standardized residuals.

As described in chapter 2.3.4, the POT MCMC method optimal acceptance rate for a sin-

gle dimensional normal target distribution is 44% while it is 23.4% for higher dimensional

multivariate normal target distribution. The parameters ξ and φ probably does not follow

a bivariate normal target distribution, and they are only two dimensional, hence the opti-

mal acceptance rate is unknown. Calculating the effective sample size for multiple different

MCMC simulations on different data sets, using a variety of acceptance rate between 20%

and 50%, shows a trend suggesting 30% ≤ a ≤ 40%. For the rest of this work a is set to 0.35,

which will converge the AMCMC towards an acceptance rate of 35%, by the theory in chapter

2.3.4.

4.1 Analysis of Syntetic data

The goal of this section is to use the ACER and POT MCMC method to analyze controlled data

for better conformation of prediction, test reliability and performance difference. The Pareto

distribution is i.i.d. while the simulated AR(3)-APARCH(1,1) is dependent by the Ljung-box

test statistic.
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4.1.1 Pareto Distirbution

An advantage of the Pareto distribution is that the theoretical distribution is known, hence

the exact analytical values can be achieved even for extreme events. For testing, the yearly,

decadal, centennial and millennial event or in probability 1/365, 1/3650, 1/36500 and 1/3650000

respectively, are estimated and compared with the exact values.

Given the definition of VaR equation (2.43), the exact VaR for the Pareto distribution can

be found by

VaRα = 1

α1/β
.

For the estimated PI, the exact probability for a future nth maximum to arrive whiten that

limit is developed by combining equation (2.2) and (3.1), which result in

Pr
(
m(−)

n ≤ Mn ≤ m(+)
n

)= (
1−m(+)

n
−β)n

−
(
1−m(−)

n
−β)n

,

where m(+)
n and m(−)

n is the upper and lower PI limits respectively.

The Pareto data from figure 3.1, withβ= 3 is analyzed for a walkthrough of how the meth-

ods are used, and result interpretation. The exact VaR for each case are represented in table

4.1.

Table 4.1: The exact VaR for each event with the corresponding probability α, for the Pareto
distribution with β= 3.

Event α VaRα
Yearly 1/365 7.147
Decadal 1/3650 15.397
Centennial 1/36500 33.171
Millennial 1/365000 71.466

Since the data are i.i.d., the ACER methods will use k = 1, and the POT MCMC method

will not need any declustering setting or threshold analysis. In theory the point for where

regular tail behavior starts for the ACER method, and the threshold for the MCMC method

could be selected to 1, which would make use of the entire data set without removing lower

data. In real life such a situation is unrealistically, thus both is selected to 1.5. Consequently,

out of the total 9 125 Pareto distributed points, 2 728 exceeds 1.5 and is used for parameter

estimation.

The POT MCMC method is set to generate 100 000 realizations. In figure 4.1 the first

3 000 realizations of ξ and σ is shown for starting conditions set to [ξ0,σ0] = [1,1]. The plot
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Figure 4.1: The first 3 000 realizations of the POT MCMC method for ξ and σ.

converges within a few numbers of steps, while the variance of the points is adapting for

more iterations. Points generated after convergence, does follow the correct distribution,

the variance only affects the effective sample size, even though it has not settled in yet. Data

between 1st and 500th realization is selected as burn-in and is discarded for future analysis,

resulting in an effective sample size of 13 580 for ξ and 14 746 forσ. The realized distribution

of ξ, σ and β for the POT MCMC method can be seen in figure 4.2

For the ACER method, the estimates, together with the upper and lower confidence limits

can be seen in table 4.2, with corresponding lines plotted in figure 4.3.

Table 4.2: The estimated ACER parameters together with the upper and lower 95% confi-
dence interval line parameters.

a b c q ξ

Upper 95% CI line 2.824 1.029 1.626 0.577 0.769
Estimated line 2.756 1.000 1.356 0.690 0.545
Lower 95% CI lien 3.105 1.000 0.652 1.747 0.110

Comparison of the ACER and POT MCMC estimated probability functions with the exact

Pareto distribution can be seen in figure 4.3. Defining loss as an increase in value, the plot

can also be interpreted as α against VaRα. It is noted that the estimates for the POT MCMC

are closer to the real distribution, with slimmer confidence interval.

Using the theory from chapter 4.2 for multiple probabilities, a numerical prediction dis-
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Figure 4.2: The estimated posterior density of the POT MCMC parameters ξ, σ and β.

Figure 4.3: A plot visualizing the estimated ACER and POT MCMC probabilities, together
with the exact Pareto distribution. The estimates are shown in solid lines while the upper
and lower 95% confidence and credible interval are dashed.
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Figure 4.4: The estimated ACER and POT MCMC future year, decade, century and millen-
nium predicted probability functions together with the true distribution. Solid line shows
the probability distribution functions while dashed lines mark each methods 90% PI.

tribution for the maximum event of the upcoming year, decade, century and millennium is

estimated for the two methods. Figure 4.4 shows the distribution of the exact Pareto predic-

tion together with the estimated ACER and POT MCMC, with PI.

An approach for validating the methods PI, comes from calculating how much of the

exact distribution was contained within the PI. See table 4.3 for the corresponding values.

The table shows that both methods for each event predict reasonable close to 90% interval,

Table 4.3: The amount of the exact distribution contained in the 90% PI, with interval length
in brackets, for the ACER and POT MCMC method.

Yearly Decadal Centennial Millennial
ACER 0.935 (13.9) 0.948 (34.8) 0.936 (87.58) 0.851 (220.9)
POT MCMC 0.920 (12.7) 0.928 (28.9) 0.941 (67.6) 0.954 (159.9)

while the POT MCMC method perform better with respect to interval width for this particular
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case.

A better understanding of the performance difference for the two method is achieved

by repeating the above analysis for multiple scenarios. The 9 125 points Pareto distribution

start series is regenerating 100 times using a random β between 1 and 5. The point for where

regular tail behavior starts z1 for the ACER, and threshold u for the POT MCMC method

are both set to the 0.33 quantile of the generated points. As described above, the ACER k

is set to 1 while no declustering is applied for the POT MCMC. A summary of the result for

the 100 data series can be found in table 4.4. The column name #Best VaR refers to the

number of times the corresponding method VaR estimation falls closer to the exact VaR than

the competing method. The #in CI refers to the number of times the exact VaR falls within

the 95% ACER confidence or POT MCMC credible interval. The #Best CI is defined as the

number of times the corresponding method confidence or credible interval is narrower than

the competing method, while achieving the Best VaR estimation. As in table 4.3, the amount

of the exact distribution contained within the 90% PI is calculated for each of the 100 data

series. The resulting mean and standard deviation can be seen in table 4.4. The #Best PI is

defined as the number of times the corresponding method PI is narrower than the competing

method, while the amount of the exact distribution contained within the PI is higher.

Table 4.4: A summary of the combined result for the 100 generated Pareto distributed data
series.

Estimated VaR 90% Prediction Interval
#Best VaR #in CI #Best CI Mean SD #Best PI

Yearly
ACER 44 99 0 0.90 0.03 0
POT MCMC 56 95 56 0.90 0.02 0

Decadal
ACER 34 99 0 0.89 0.05 1
POT MCMC 66 94 66 0.90 0.03 4

Centennial
ACER 30 99 0 0.87 0.08 1
POT MCMC 70 93 70 0.90 0.04 24

Millennial
ACER 29 97 0 0.81 0.14 1
POT MCMC 71 93 70 0.90 0.06 30

From table 4.4, the VaR estimation for the POT MCMC methods seems to consistently

outperform the ACER method in accuracy and interval width. The #in CI show signs that the

ACER methods 95% confidence interval is overestimated for the i.i.d. Pareto data. Consider-

ing the PI, the POT MCMC method also achieve a mean closer to the desired 0.90 exact in-

terval while having lower variation. The #Best CI and #Best PI indicates that the POT MCMC

more frequently result in slimmer PI and credible interval than the ACER methods PI and
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confidence interval. Noting that the theory of confidence interval differs from credible inter-

val, the comparison is not fully conclusive, but gives an indication of the difference methods

estimation variation. As the POT MCMC method is constructed on the i.i.d. assumption,

the better performance was expected for the i.i.d. data series. The ACER methods capabil-

ity of capturing data dependency is not necessary for the generated Pareto distributed data.

There are strong evidence suggesting that the POT MCMC method is preferable over the

ACER method for i.i.d. observation.

4.1.2 AR(3)-APARCH(1,1) Generated Data

The AR(3)-APARCH(1,1) generated data are clearly dependent and non-stationary. Com-

pared to the generated Pareto distributed points, the data also lack the ability of extracting

exact analytical values from the extreme, hence making test and method comparison more

challenging. Test verification of the ACER and POT MCMC method for the generated data is

achieved by numerically analysing a test set.

The AR(3)-APARCH(1,1) with parameters as described in chapter 3.1.2 is used to gener-

ate a data set of size 9 134 125. The data is divided such that the first 9 125 data is used as

training set, whereas the remaining 9 125 000 is used as test set. As for the Pareto distribution

above, the correspond size could come from having a daily observation for 25 years as train-

ing, while a daily observation for 25 000 years as test set. The large test set is for increased

evaluation accuracy for the different methods.

The 1−α quantile of the test set is used as VaRα estimation. The amount of the future data

falling within the PI is estimated by extracting every nth extreme of the test set, for a chosen

n, and calculating the number within the PI divided by total number of nth extremes. The

extracted nth extreme is by the definition in chapter 4.2 and 4.2 chosen as the largest value

of every continues interval of length n.

As for the Pareto distributed data, a walk-through analyzing an example is presented for

a better understanding of the methods and result interpretation. Starting with the ACER

method, k is no longer equal to 1 as the data is dependent. A k-plot is necessary for k se-

lection, see figure 4.5. From the plot, the ACER function for k = 4 coincides with the ACER

functions for higher k values at the tails, hence k = 4 is selected for further analysis. For

lower k values, the ACER functions differs noticeably in the region for yearly maximum. The

4th ACER function with confidence lines can be seen in figure 4.6. The point where regu-
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Figure 4.5: The AR(3)-APARCH(1,1) corresponding k-plot, where the ACER function is plot-
ted against exceedance level for multiple k-dependencies.

Figure 4.6: The empirical ACER function with 95% confidence interval lines, for k = 4. Solid
black line indicate the empirical ACER function, while the dashed blue line is the corre-
sponding confidence lines.

40



CHAPTER 4. ANALYSIS AND RESULTS CHAPTER. 4

Figure 4.7: The extrapolation of the ACER function shown in solid black line with dashed
blue 95% confidence line. A transparent plot of the empirical function as in figure 4.6 is also
contained in the plot for estimation validation.

lar tail behavior starts is set to z1 = 0.03, since the bend until z = 0.025 shows sign that the

regular tail behavior have not settled in yet. Figure 4.7 shows the estimated ACER function

with estimated 95% confidence interval lines, together with the empirical plot figure 4.6. The

empirical lines fits well with the extrapolation.

Declustering is necessary for the POT MCMC method as the data is dependent. The mean

excess plot shown in figure 4.8 was plotted for multiple r values. The behavior of r = 3 seems

beneficial as the threshold can be selected low, while the point for where the graph change

to liner behavior is apparent. The change to linearity can be seen around u = 0.035, from

where a linear line can be drawn right without crossing the confidence lines, suggesting a

threshold at 0.035. Validating the suggested threshold is done through the parameter plot,

see figure 4.9. Considering the confidence intervals, both parameters seems constant from

0.035, supporting the suggested threshold, consequently the threshold is set to u = 0.035.

For the chosen r and u, the POT MCMC method was set to generate 100 000 realizations.

In figure 4.10 the first 3 000 realizations of ξ and σ is shown for starting condition set to

[ξ0,σ0] = [1,1]. The series converge within a few hundred iterations. Data between 1st and

500th realization is selected as burn-in and discarded, resulting in an effective sample size of
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Figure 4.8: Plot of mean excess against threshold u for r = 3 in solid line, with 95% confidence
interval in dashed blue lines.

13 693 for ξ and 13893 for σ. The POT MCMC method corresponding extrapolation plot can

be seen in figure 4.11. The two method achieve similar extrapolation plots, while the POT

MCMC credible interval lines are slightly narrower than the ACER confidence interval lines.

For a better understanding of the performance difference, the two methods were applied

to 25 AR(3)-APARCH(1,1) generated time series with training and test set as described above.

For each training set the predefined values were hold at z1 = 0.03, k = 4, r = 3 and u = 0.035.

A summary of the resulting ACER and POT MCMC estimation of the training set is compared

in table 4.5. The table layout is equivalent to table 4.4, where the numerically estimated

VaR and PI for the test set, is used for judgment instead of the exact values. Referring to

the description in chapter 4.1.1, for table interpretation and column names. For estimation

of yearly VaR the methods seems to preform close to equally well, while the POT MCMC

method is beneficial for more extreme cases. The ACER method 95% confidence interval,

captures the numerically estimated VaR an average of 81% of the times, while 66% of the

times for the POT MCMC method. Either the variance of the POT MCMC method is heavily

underestimated for the AR(3)-APARCH(1,1) dependent data, or the variance of the numeri-

cal estimated VaR for the test set is not negligible although the test set is quite large. Future
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Figure 4.9: Plot of estimated shape and modified scale parameters against threshold. The
corresponding 95% credible interval are included in blue.
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Figure 4.10: The first 3 000 realizations of the POT MCMC method for ξ and σ.

Figure 4.11: The POT MCMC extrapolation plot, with mean in black solid line and credible
interval in dashed blue lines.
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Table 4.5: A summary of the combined result for the 25 AR(3)-APARCH(1,1) generated time
series.

Estimated VaR 90% Prediction Interval
#Best VaR #in CI #Best CI Mean SD #Best PI

Yearly
ACER 12 21 0 0.73 0.07 0
POT MCMC 13 14 13 0.73 0.06 2

Decadal
ACER 6 20 0 0.73 0.12 1
POT MCMC 19 16 18 0.76 0.12 8

Centennial
ACER 8 20 2 0.61 0.25 4
POT MCMC 17 19 13 0.80 0.20 10

Millennial
ACER 8 20 2 0.42 0.34 4
POT MCMC 17 17 12 0.79 0.29 10

analysis can be necessary for better understanding the indication of underestimated confi-

dence and credible interval for dependent time series. The #Best CI becomes invalid as the

reliability of the interval width is uncertain. The POT MCMC PI generally captures a higher

percentage of the future values than the ACER method, while the variance in performance is

lower. The #Best PI also favors the POT MCMC method as more accurate and better tuned

for predicting future events.

4.2 Commodity Data

The following section presents the analysis of the observed daily return of the commodity

data and the standardized residuals of the corresponding AR(3)-APARCH(1,1) filtered data,

presented in chapter 3.2. The Kupiec and Christoffersens test statistics described in 2.5.3

is used for evaluating future VaR estimation, as well as future PI. For a chosen data set, the

test statistics is applied by calculating the VaR, and PI using the first 15 years of data, and

evaluating them against the upcoming day. The I1 defined in chapter 2.5.3 is evaluated, and

the upcoming day is included in the training set for the next evaluation I2. The full I vector is

calculated by incrementally repeating the process until the test set is empty. The first training

set archive a length of 2 818, while there are a total of 1 651 evaluations for each test of the

commodity.

The process of manually finding the predefined values of k, z1, r and u becomes unrea-

sonable slow for each training set of the commodity. Instead the predefined values achieved

by the full commodity data series of 4 469 observation is selected, and used for each of the

training set for that commodity. The predefined values for each commodity and filtered
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commodity can be found in table 4.6. The numbers of POT MCMC iteration is reduced to

Table 4.6: Predefined k and z1 for the ACER method, with the predefined r and u for the POT
MCMC method.

ACER POT MCMC
Data k z1 r u
CL1 4 0.020 2 0.030
-CL1 3 0.018 2 0.035
HO1 3 0.016 1 0.037
-HO1 2 0.023 1 0.020
NG1 4 0.035 2 0.020
-NG1 4 0.014 1 0.020
CT1 4 0.020 6 0.025
-CT1 4 0.018 2 0.02
C1 5 0.018 3 0.018
-C1 4 0.016 3 0.017
W1 4 0.022 3 0.024
-W1 4 0.020 1 0.030
S1 3 0.015 0 0.014
-S1 4 0.017 1 0.020
RR1 5 0.018 3 0.024
-RR1 4 0.019 2 0.022
SM1 4 0.020 3 0.020
BO1 4 0.016 1 0.020
-BO1 4 0.016 1 0.020
fCL1 1 1.00 0 1.50
fHO1 1 1.50 0 1.80
fNG1 2 1.60 0 1.90
fCT1 2 1.00 0 1.50
fC1 1 1.00 0 1.80
fW1 2 1.00 0 1.40
fS1 1 1.00 0 1.50
fRR1 2 1.00 0 1.25
fSM1 2 1.00 0 1.25
fBO1 1 1.00 0 1.80

32 000 because of the computational intensity. For reliability purposes, the first 2 000 itera-

tion are discarded as burn in, compared to the 500 for the synthetic analysis. The resulting

effective sample size for multiple commodity data sets, were close to 4 200. The last param-

eter realization from the POT MCMC method is passed to the next training set for improved

convergence speed. For the daily return commodity data series, both the upper and lower

tail are evaluated. The lower tail results are presented with a minus sign in front of the com-

modity name for the different tables.

For the ACER and POT MCMC method, the Kupiec and Christoffersens test statistics are
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applied to the VaRα for each of the α values 0.05, 0.01, 0.005 and 0.001. Following the defini-

tion of nth extreme as in chapter and , the evaluation of the corresponding It of the PI is only

calculated if the upcoming day is the maximum of the next nth values. Hence the It for the

PI are commonly separated by a large number of points, making the dependency analysis for

the Christoffersens test unnecessary. Consequently only the Kupiec test is applied in the PI

evaluation.

Since there are 1 651 test, the expected number of VaR exceedances for a given α is

1651 ·α. In table 4.7, the number of one step out of sample exceedances of the estimated

VaRα for the ACER and POT MCMC method are given for each of the data sets. For table

4.7, 4.8 and 4.9 each cell gives the corresponding ACER and POT MCMC value separated by

a backslash (ACER\POT MCMC). In situations where the test favored the ACER method the

cell is colored green, and red when the POT MCMC method is favored. The cell is white when

the test is rejected on a 5% significance level for both, inconclusive or the methods perform

equally well. Table 4.8 present the corresponding p-values of the Kupiec and Christoffersen

test statistics for the number of VaR exceedances. Multiple of the 0.05 VaR test where re-

jected, indicating that both the ACER and POT MCMC methods perform poorly at this level.

The 0.05 VaR often fall close to or even below the ACER z1 and the POT MCMC u for the com-

modity data series. Hence multiple of the 0.05 VaR are below the lower limits for where the

extreme value statistics are preferable compared to other statistical method. Both the POT

MCMC and ACER method preformed poorly for the wheat (W1) and corn (C1) data series.

Referring to figure 3.3 it is noted that the whole test period for both data sets falls within a

higher variance cluster than the majority of the training intervals. This is probably the rea-

son for the poor test result for the two data series. Generally both the ACER and POT MCMC

method performed well for the filtered data, where only a few of the test results are rejected

on a 5% significant level.

Table 4.9 present the p-value of the Kupiec test statistics for future nth extreme PI in-

terval. The table have some cells where the test statistics were inconclusive represented by

NaN. The test becomes inconclusive where no 1 000 days extreme is observed before the last

999 days, as the remaining test set is too short to define the value as a nth extreme.

Without considering dependency for the VaR, the Kupiec test presented in table 4.8 indi-

cate that the ACER method was preferable 10 times compared to the POT MCMC method 12

times for the commodity daily returns, while 9 and 14 times respectively for the filtered data.
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Considering the data dependency, the Christoffersen test presented in table 4.8 indicate that

the ACER method was preferable 10 times compared to the POT MCMC method 8 times for

the commodity daily returns, while 6 and 14 times respectively for the filtered data Consid-

ering the Kupiec test for the estimation of PI presented in table 4.9, the ACER method was

preferable 10 times compared to the POT MCMC method 12 times for the commodity daily

returns, while 1 and 3 times respectively for the filtered data.
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Table 4.7: The number of one step out of sample exceedances for the estimated VaR by the
ACER\POT MCMC methods.

α 0.05 0.01 0.005 0.001
Expected 83 17 8 2

CL1 109\96 26\23 17\17 11\7
-CL1 100\87 30\30 18\17 2\2
HO1 67\67 15\12 7\7 2\2

-HO1 78\80 13\11 7\6 1\0
NG1 89\90 17\14 9\8 2\2

-NG1 73\63 4\2 1\1 0\0
CT1 172\150 32\27 12\11 1\2

-CT1 153\143 31\28 12\12 2\2
C1 360\272 64\69 35\36 3\3

-C1 230\228 57\61 31\34 8\10
W1 224\223 68\68 36\32 7\8

-W1 218\189 64\61 41\29 13\4
S1 158\132 28\27 15\12 3\2

-S1 159\123 32\30 16\16 3\3
RR1 185\139 5\5 1\1 0\1

-RR1 115\106 16\12 9\9 0\0
SM1 185\178 27\30 14\15 1\1

-SM1 161\147 32\33 16\17 3\4
BO1 145\116 24\23 14\14 4\4
-Bo1 139\129 28\28 14\14 4\4
fCL1 67\71 13\13 7\8 2\2

fHO1 68\70 12\12 8\9 2\2
fNG1 76\69 13\14 7\8 2\2
fCT1 84\79 15\15 3\3 0\0

fC1 95\92 13\14 6\6 1\1
fW1 101\93 26\26 10\12 1\2
fS1 93\95 14\13 9\8 2\2

fRR1 95\78 12\11 7\7 1\1
fSM1 77\78 10\10 3\4 1\2
fBO1 83\85 8\8 5\4 1\1
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Table 4.8: The p-values for the number of VaR exceedances using the LRUC and LRCC tests.
LRUC LRCC

Data\α 0.05 0.01 0.005 0.001 0.05 0.01 0.005 0.001
CL1 0.00\0.14 0.03\0.13 0.01\0.01 0.00\0.00 0.00\0.00 0.02\0.04 0.03\0.03 0.00\0.01

-CL1 0.06\0.61 0.00\0.00 0.00\0.00 0.79\0.79 0.00\0.00 0.00\0.00 0.00\0.00 0.97\0.97
HO1 0.07\0.07 0.70\0.24 0.65\0.65 0.79\0.79 0.00\0.00 0.93\0.50 0.90\0.90 0.97\0.97

-HO1 0.60\0.77 0.37\0.15 0.65\0.41 0.58\0.07 0.00\0.00 0.67\0.35 0.90\0.71 0.86\0.19
NG1 0.47\0.41 0.90\0.52 0.80\0.93 0.79\0.79 0.44\0.43 0.38\0.22 0.97\1.00 0.97\0.97

-NG1 0.27\0.02 0.00\0.00 0.00\0.00 0.07\0.07 0.01\0.00 0.00\0.00 0.01\0.01 0.19\0.19
CT1 0.00\0.00 0.00\0.02 0.22\0.36 0.58\0.79 0.00\0.00 0.00\0.00 0.10\0.11 0.86\0.97

-CT1 0.00\0.00 0.00\0.01 0.22\0.22 0.79\0.79 0.00\0.00 0.00\0.00 0.47\0.10 0.97\0.97
C1 0.00\0.00 0.00\0.00 0.00\0.00 0.35\0.35 0.00\0.00 0.00\0.00 0.00\0.00 0.64\0.64

-C1 0.00\0.00 0.00\0.00 0.00\0.00 0.00\0.00 0.00\0.00 0.00\0.00 0.00\0.00 0.00\0.00
W1 0.00\0.00 0.00\0.00 0.00\0.00 0.00\0.00 0.00\0.00 0.00\0.00 0.00\0.00 0.01\0.00

-W1 0.00\0.00 0.00\0.00 0.00\0.00 0.00\0.12 0.00\0.00 0.00\0.00 0.00\0.00 0.00\0.00
S1 0.00\0.00 0.01\0.02 0.03\0.22 0.35\0.58 0.00\0.00 0.03\0.04 0.11\0.47 0.64\0.86

-S1 0.00\0.00 0.00\0.00 0.02\0.02 0.35\0.35 0.00\0.00 0.00\0.00 0.02\0.02 0.64\0.64
RR1 0.00\0.00 0.00\0.00 0.00\0.00 0.07\0.58 0.00\0.00 0.00\0.00 0.00\0.00 0.19\0.86

-RR1 0.00\0.01 0.90\0.24 0.80\0.80 0.07\0.07 0.00\0.00 0.99\0.50 0.97\0.97 0.19\0.19
SM1 0.00\0.00 0.02\0.00 0.07\0.03 0.58\0.58 0.00\0.00 0.01\0.00 0.05\0.03 0.86\0.86

-SM1 0.00\0.00 0.00\0.00 0.02\0.01 0.34\0.12 0.00\0.00 0.00\0.00 0.00\0.00 0.64\0.30
BO1 0.00\0.00 0.08\0.13 0.07\0.07 0.12\0.12 0.00\0.00 0.22\0.32 0.19\0.19 0.30\0.30

-BO1 0.00\0.00 0.01\0.01 0.07\0.07 0.12\0.12 0.00\0.00 0.00\0.00 0.00\0.00 0.30\0.30
fCL1 0.07\0.18 0.37\0.37 0.65\0.93 0.79\0.79 0.18\0.39 0.67\0.67 0.97\1.00 0.97\0.97

fHO1 0.09\0.15 0.24\0.24 0.93\0.80 0.79\0.79 0.23\0.33 0.50\0.50 1.00\0.97 0.97\0.97
fNG1 0.45\0.12 0.37\0.52 0.65\0.93 0.79\0.79 0.69\0.28 0.67\0.82 0.90\1.00 0.97\0.97
fCT1 0.87\0.60 0.70\0.70 0.03\0.03 0.07\0.07 0.01\0.00 0.93\0.93 0.11\0.11 0.19\0.19

fC1 0.17\0.29 0.37\0.52 0.41\0.41 0.58\0.58 0.29\0.47 0.67\0.82 0.71\0.71 0.86\0.86
fW1 0.04\0.25 0.03\0.03 0.56\0.22 0.58\0.79 0.09\0.36 0.07\0.07 0.84\0.47 0.86\0.97
fS1 0.25\0.17 0.52\0.37 0.80\0.93 0.79\0.79 0.03\0.02 0.82\0.67 0.97\1.00 0.97\0.97

fRR1 0.17\0.60 0.24\0.15 0.65\0.65 0.58\0.58 0.36\0.82 0.50\0.35 0.90\0.90 0.86\0.86
fSM1 0.53\0.60 0.08\0.08 0.03\0.10 0.58\0.79 0.49\0.50 0.22\0.22 0.11\0.26 0.86\0.97
fBO1 0.96\0.78 0.02\0.02 0.22\0.10 0.58\0.58 0.04\0.04 0.06\0.06 0.47\0.26 0.86\0.86
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Table 4.9: The p-value of the Kupiec test statistics for future nth extremes PI interval.
Data\n 100 200 1000

CL1 0.69\0.69 0.04\0.04 0.02\0.43
-CL1 0.74\0.74 0.11\0.11 0.52\0.52
HO1 0.02\0.02 0.19\0.82 0.65\0.65

-HO1 0.43\0.94 0.14\0.14 0.52\0.52
NG1 0.94\0.54 0.06\0.06 NaN\NaN

-NG1 0.18\0.18 0.62\0.62 0.65\0.65
CT1 0.10\0.77 0.17\0.17 0.52\0.52

-CT1 0.28\0.31 1.00\1.00 NaN\NaN
C1 0.38\0.38 0.06\0.91 NaN\NaN

-C1 0.01\0.01 0.82\0.04 NaN\NaN
W1 0.68\0.07 0.35\1.00 NaN\NaN

-W1 0.00\0.07 0.00\0.72 NaN\NaN
S1 0.65\0.65 0.82\0.82 0.03\0.03

-S1 0.38\0.13 0.22\0.04 NaN\NaN
RR1 0.45\0.43 1.00\1.00 0.65\0.65

-RR1 0.60\0.90 0.09\0.71 0.43\0.43
SM1 0.41\0.41 0.84\0.84 0.36\0.36

-SM1 0.65\0.68 0.22\0.17 NaN\NaN
BO1 0.43\0.15 0.02\0.02 0.65\0.03
BO1 0.61\0.05 0.12\0.12 0.52\0.52
fCL1 0.81\0.81 0.22\0.22 0.64\0.64

fHO1 0.61\0.61 0.36\0.36 0.65\0.65
fNG1 0.81\0.81 0.22\0.22 0.65\0.65
fCT1 0.09\0.09 0.17\0.17 NaN\NaN

fC1 0.64\0.64 0.82\0.82 NaN\NaN
fW1 0.77\0.77 0.19\0.19 NaN\NaN
fS1 0.75\0.75 0.51\0.51 0.03\0.03

fRR1 0.59\0.59 0.22\0.22 0.27\0.43
fSM1 0.50\0.88 0.22\0.72 0.65\0.65
fBO1 0.94\0.94 0.28\0.28 0.65\0.03
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Chapter 5

Conclusion

Through this work, an AMCMC method for the POT extreme value statistics have been de-

veloped. The ACER method was evaluated against the POT MCMC method through syn-

thetically generated points, observed commodity daily returns and filter commodity daily

returns. The methods were tested for the accuracy of the extrapolated VaR as well as the PI

for the maximum of n future observations.

Generally, the POT MCMC method seems beneficial over the ACER method for forecast-

ing PI. For the synthetic i.i.d. Pareto distributed data, the POT MCMC method performed

significantly better with respect to VaR estimation and forecasting of nth extreme PI. For the

generated AR(3)- APARCH(1,1) skewed student t-distributed data the ACER VaR extrapola-

tion and PI forecasting fall short compared to POT MCMC method, while possible perform-

ing better with respect to the extrapolated VaR confidence interval. The POT MCMC method

seems to perform better for the AR(3)- APARCH(1,1) filtered commodity data with respect

to VaR and PI. Since none of the filtered commodity data was rejected by the Ljung-Box test

statistics with respect to i.i.d., the filtered data has close to i.i.d. behavior. Hench suggest-

ing that the POT MCMC method is superior over the ACER method for i.i.d. observation, or

close to i.i.d. While not conclusive, there are signs that the extrapolated VaR for the ACER

method might captures the VaR dependencies better than the POT MCMC method for the

nonfiltered commodity daily returns.
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5.1 Recommendations for Further Work

Future analysis within the field is needed for more conclusive results. Analysis using addi-

tional commodity data will reduce the variability in the overall result, such that more defini-

tive conclusions can be made. Future work for constructing an approach that captures the

parameter variability of the ACER method could potentially improve the extrapolated confi-

dence interval as well as the PI. A deeper investigation of the POT prior distribution for the

MCMC method can probably improve the POT MCMC method, as the priors for this work

was unnecessary wide.
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Acronyms

i.i.d. independent and identically distributed

GEV Generalized Extreme Value

GPD Generalized Pareto Distribution

POT Peak Over Threshold

ACER Average Conditional Exceedance Rate

MCMC Markov Chain Monte Carlo Method

AMCMC Adaptive Markov Chain Monte Carlo Method

VaR Value at Risk

PI Prediction Interval

AR Autoregressive

MA Moving Average

ARMA Autoregressive Moving Average

ARCH Autoregressive Conditional Heteroscedasticity

GARCH Generalized Autoregressive Conditional Heteroscedasticity

APARCH Asymmetric Power Autoregressive Conditional Heteroscedasticity

GJR Glosten Jagannathan Runkle
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Appendix B

C++ and R Code

The appendix contains the developed C++ and R codes necessary for this work.

B.1 POT MCMC

Object-oriented programing was used for the mcmc.gdp program, such that the function

could be applied to raw data as well as adding realizations to an existing MCMC class.

The internal C++ code, for increased speed.

1 #include <Rcpp.h>

2 #include <ctime >

3 #include <iostream >

4 #include <vector >

5 #include <math.h>

6 #include <float.h>

7 #include <limits >

8 using namespace Rcpp;

9

10 const double epsilon = std:: numeric_limits <double >::min();

11 const double two_pi = 2.0*3.14159265358979323846;

12 const double CPPMIN= -std:: numeric_limits <float >:: infinity ();

13

14 double * mvrnormC(double mu0 , double mu1 , double sigma [4]) {

15 static double mrn [2];

16 double r[2];
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17 double l[3];

18 // Cholesky decomposition sigma=l%%t(l)

19 l[0] = sqrt(sigma [0]);

20 l[1] = sigma [1] / l[0];

21 l[2] = sqrt(sigma [3] - l[1] * l[1]);

22

23 // u1,u2 ~ runif [0,1]

24 double u1, u2;

25 do

26 {

27 u1 = rand()*(1.0 / RAND_MAX);

28 u2 = rand()*(1.0 / RAND_MAX);

29 } while (u1 <= epsilon);

30 // Box Muller transform r1,r2 proportionalt to rnorm01

31 r[0] = sqrt (-2.0 * log(u1)) * cos(two_pi * u2);

32 r[1] = sqrt (-2.0 * log(u1)) * sin(two_pi * u2);

33 // mrn=mu+l%*%r

34 mrn[0] = mu0 + l[0] * r[0];

35 mrn[1] = mu1 + l[1] * r[0] + l[2] * r[1];

36 return(mrn);

37 }

38

39 // should work

40 double lnRGdp(double *y, int yn,double ymax , double Xtemp1 , double

Xtemp2 , double X1, double X2) {

41 if (Xtemp1 < (-exp(Xtemp2) / ymax)) {

42 return(CPPMIN);

43 }

44 double logLikeXtemp = 0;

45 double logLikeX = 0;

46 double invExpXtemp2 = exp(-Xtemp2);

47 double invExpX2 = exp(-X2);

48 // logNormalPdf=log(f(Xtemp1)*f(Xtemp2)/(f(X1)*f(X2))), where f is

normal
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49 //var(x1)=100, var(x2)=1000 =>0.01 and 0.0001 , mu(x1)=mu(x2)=0

50 double logNormalPdf = -0.5*(( Xtemp1 - X1)*( Xtemp1 + X1)*0.01 + (

Xtemp2 - X2)*( Xtemp2 + X2)*0.0001);

51 // xi=0: l(sigma)=-k*log(sigma)-sigma ^(-1)*sum(yi) p80 , Stuart

Coles , An Introduction ...

52 // xi!=0: l(sigma)=-k*log(sigma) -(1+1/xi)*sum(log(1+xi*yi/sigma))

p80 , Stuart Coles , An Introduction ...

53 if (Xtemp1 == 0) {

54 for (int i = 0; i < yn; i++) {

55 logLikeXtemp += y[i];

56 }

57 logLikeXtemp = -logLikeXtemp * invExpXtemp2;

58 logLikeXtemp -= yn*Xtemp2;

59 }

60 else {

61 for (int i = 0; i < yn; i++) {

62 logLikeXtemp += log(1 + Xtemp1*y[i] * invExpXtemp2);

63 }

64 logLikeXtemp = -logLikeXtemp * (1 + 1 / Xtemp1);

65 logLikeXtemp -= yn*Xtemp2;

66 }

67 if (X1 == 0) {

68 for (int i = 0; i < yn; i++) {

69 logLikeX += y[i];

70 }

71 logLikeX = -logLikeX * invExpX2;

72 logLikeX -= yn*X2;

73 }

74 else {

75 for (int i = 0; i < yn; i++) {

76 logLikeX += log(1 + X1*y[i] * invExpX2);

77 }

78 logLikeX = -logLikeX * (1 + 1 / X1);

79 logLikeX -= yn*X2;
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80 }

81 return(logLikeXtemp - logLikeX + logNormalPdf);

82 }

83

84 // [[Rcpp:: export ]]

85 Rcpp::List mcmcGpdC(NumericVector y, int nstart , int n,

NumericVector start , NumericVector muR , NumericMatrix varR ,

double tau , double a, double gam , double lamda)

86 {

87 srand(( unsigned)time(NULL));

88 // double total1 , total2;

89 double mu[2], var [4];

90 double lamdaxVar [4];

91 double R;

92 double gamC = gam;

93 double uni;

94 double *Xtemp;

95 double ymax= -DBL_MAX;

96 int yn = y.size();

97 double yC[yn];

98 // vector (y) to array (yC)

99 std::copy(y.begin(), y.end(), yC);

100 std::copy(muR.begin(), muR.end(), mu);

101 std::copy(varR.begin(), varR.end(), var);

102 // double *mrn;

103 std::vector <double > thetaXi(n), thetaPhi(n);

104 thetaXi [0]= start[0], thetaPhi [0] = start [1];

105 //find largest y (ymax)

106 for (int j = 0; j < yn; j++) {

107 if (ymax < yC[j]) {

108 ymax = yC[j];

109 }

110 }

111 if (lamda == 0) {
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112 lamda = pow(2.38, 2.0) / 2;

113 }

114 for (int i = 1; i <n; i++) {

115 if (tau != 0) {

116 gamC = 0.5* exp(-(i + nstart) / tau);

117 }

118 for (int k = 0; k < 4; k++) lamdaxVar[k] = var[k] * lamda;

119 Xtemp = mvrnormC(thetaXi[i - 1], thetaPhi[i - 1], lamdaxVar);

120

121 R = lnRGdp(yC, yn, ymax , *(Xtemp), *(Xtemp + 1), thetaXi[i -

1], thetaPhi[i - 1]);

122 //R = -0.3566;

123 uni = log(rand()*(1.0 / RAND_MAX));

124 if (uni < R) {

125 thetaXi[i] = *(Xtemp);

126 thetaPhi[i] = *(Xtemp +1);

127 }

128 else {

129 thetaXi[i] = thetaXi[i-1];

130 thetaPhi[i] = thetaPhi[i-1];

131 }

132 if (gamC > DBL_EPSILON) {

133 if (a != 0) {

134 if (R >= 0) {

135 R = 1;

136 }

137 else {

138 R = exp(R);

139 }

140 lamda = lamda*exp(gamC*(R - a));

141 }

142 // Matrix calculation: var=var+gam*(( theta[,i]-mu)%*%t(theta

[,i]-mu)-var)

143 var[0] = var[0] + gamC *(( thetaXi[i] - mu[0])*( thetaXi[i] - mu
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[0]) -var [0]);

144 var[1] = var[1] + gamC *(( thetaXi[i] - mu[0])*( thetaPhi[i] -

mu[1]) - var [1]);

145 var[3] = var[3] + gamC *(( thetaPhi[i] - mu[1])*( thetaPhi[i] -

mu[1]) - var [3]);

146 var[2] = var [1];

147 // Matrix calculation: mu<-mu+gam*(theta[,i]-mu)

148 mu[0] = mu[0] + gamC*( thetaXi[i] - mu[0]);

149 mu[1] = mu[1] + gamC*( thetaPhi[i] - mu[1]);

150 }

151 }

152 std::vector <double > muC(mu, mu + 2);

153 std::vector <double > varC(var , var + 4);

154 return Rcpp::List:: create(Rcpp::Named("data")= NAN , Rcpp::Named("

data") = NAN , Rcpp::Named("theta") = NAN ,

155 Rcpp::Named("thetaXi") = thetaXi , Rcpp::Named("thetaPhi") =

thetaPhi , Rcpp::Named("mu") = muC ,

156 Rcpp::Named("var") = varC , Rcpp::Named("n") = n, Rcpp::Named("

burnin") = NAN , Rcpp::Named("aRate") = NAN ,

157 Rcpp::Named("MLE") = NAN , Rcpp::Named("MLEest") = NAN , Rcpp::

Named("tau") = tau , Rcpp::Named("a") = a,

158 Rcpp::Named("gam") = gam , Rcpp::Named("lamda") = lamda);

159 }

Main and internal R functions.

1 # Include the C++ function

2 library(Rcpp)

3 sourceCpp("Cpp/MCMC_GPD_CPP.cpp")

4

5 # data is matrix/vector of data (X), u aka thershold , start is

starting values ([type ,number ])

6 # type is xi and sigma (=exp(phi)), start=c(xi,sigma) or matrix

which xi and sigma are row

7 # mu and var is mean and variance for the random walk starting

distribution (g(x*|x)),
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8 # gam (gamma) is the adaptive paramter (exp(-x/t)),

9 # a is the optimal accaptance rate.

10 # tau=c(gam size , at what n) default tau=c(1/20,0.1*n)

11

12 # For numerical input

13 mcmc.gpd <- function(X, ...) UseMethod("mcmc.gpd",X)

14 mcmc.gpd.numeric <-function(X,u,n=1000,start=NULL ,r=0,mu=NULL ,var=

NULL ,a=NULL ,gam=NULL ,cpp=TRUE ,...){

15 require(MASS)

16

17 if(is.matrix(X)){

18 X=as.vector(t(X))

19 X=X[!is.na(X)]

20 }

21 ny<-length(X)

22 y<-ufilt(X=X,u=u,r=r)

23 k=length(y)

24

25 #old method without filt

26 #y<-X-u

27 #ny<-length(y)

28 #k<-sum(y>0)

29 #y=y[y>0]

30

31 # Fix starting values

32 if(is.null(start)){

33 start <-matrix(rep(NA,10),2)

34 start[,1]<-rep(. Machine$double.eps*100,2)#c(0,1)

35 start[,2]<-c(1.5,0.3)

36 start[,3]<-c(0.5,3)

37 start[,4]<-c(-0.1,0.3)

38 start[,5]<-c(-0.5,3)

39 # c(xi,sigma), in "Choose starting value" sigma ->log(sigma)

40 }else if(all(start==0)){
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41 start <-c(. Machine$double.eps*100,log(. Machine$double.eps*100))

42 }else{

43 if(length(start)==2){

44 if(start[2]≤0){stop('sigma must be > 0')}

45 start <-c(start[1],log(start[2]))

46 }else if(is.matrix(start)){

47 if(any(start[2 ,])<0){stop('sigma must be > 0')}

48 }else{

49 stop('start must be vector or matrix ')

50 }

51 }

52 # here start=c(xi, phi) where phi=log(sigma)

53

54 # Starting mu and var for MCMC

55 if(is.null(mu)){mu=c(0,0)}

56 if(is.null(var)){var <-matrix(c(1,0,0,1),2,2)}

57

58 # Choose starting value

59 if(length(start)>2){

60 startBest <-c(0,0)

61 lnBest <--Inf

62 temp <-NA

63 for(i in 1:length(start[1 ,])){

64 if(start[1,i]< (-start[2,i]/max(y))){

65 start[1,i]<- 0.9*(-start[2,i]/max(y))

66 }

67 temp <-mcmc.gpd(X=X,u=u,start=start[,i],mu=mu,var=var ,n=500,

gam=0.1,cpp=cpp)

68 lnTemp <-lnGpd(y,temp$theta[c(1:2),500])

69 if(lnTemp >lnBest){

70 lnBest <-lnTemp

71 startBest <-c(temp$theta[1,500],log(temp$theta[2,500]))

72 mu<-temp$mu

73 var <-temp$var
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74 }

75 }

76 start <-startBest

77 }

78 ################### MCMC ########################

79 lamda <-2.38^2/2

80 gamInd <-gam

81 if(is.null(gam)){

82 tau <-0.1*n/log(10)

83 gam=0

84 }else{

85 tau <-0

86 }

87 if(is.null(a)){a=0}

88

89 if(cpp==TRUE){

90 MCMC <-mcmcGpdC(y=y,nstart=1,n=n,start=start ,muR=mu,varR=var ,

tau=tau ,a=a, gam=gam ,lamda=lamda)

91 MCMC$theta <-rbind(MCMC$thetaXi ,exp(MCMC$thetaPhi))

92 MCMC$thetaXi <-NULL

93 MCMC$thetaPhi <-NULL

94 MCMC$var <-matrix(MCMC$var ,2,2)

95 }else{

96 MCMC <-mcmcGpd.internal(y=y,nstart=1,n=n,start=start ,mu=mu,var=

var ,tau=tau ,a=a,gam=gam ,lamda=lamda)

97 }

98 ###############################

99 MCMC$theta <-rbind(MCMC$theta ,rbeta(n,k+1,ny-k+1))

100 MCMC$data <-X

101 MCMC$u<-u

102 class(MCMC)<-'mcmc'

103 return(MCMC)

104 }

105
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106 # Adding point to existing mcmc. Has the mcmc object as input

107 mcmc.gpd.mcmc <-function(X,n=1000,r=0,a=NULL ,gam=NULL ,cpp=TRUE ,...){

108 require(MASS)

109 if(!is.null(gam)){X$gam <-gam}

110 if(!is.null(a)){X$a<-a}

111

112 ny<-length(X$data)

113 y<-ufilt(X=X$data ,u=X$u,r=r)

114 k=length(y)

115 ################# MCMC ##############

116 var <-X$var

117 mu<-X$mu

118 lamda <-X$lamda

119 a<-X$a

120 gam <-X$gam

121 tau <-X$tau

122 start <-c(X$theta[1,X$n],log(X$theta[2,X$n]))

123 if(cpp==TRUE){

124 MCMC <-mcmcGpdC(y=y,nstart=X$n,n=(n+1),start=start ,muR=mu,varR=

var , tau=tau ,a=a, gam=gam ,lamda=lamda)

125 MCMC$theta <-rbind(MCMC$thetaXi ,exp(MCMC$thetaPhi))

126 MCMC$thetaXi <-NULL

127 MCMC$thetaPhi <-NULL

128 MCMC$var <-matrix(MCMC$var ,2,2)

129 }else{

130 MCMC <-mcmcGpd.internal(y=y,nstart=X$n,n=(n+1),start=start ,mu=mu

,var=var ,tau=tau ,a=a,gam=gam ,lamda=lamda)

131 }

132 ##################################

133 X$theta <-cbind(X$theta ,rbind(MCMC$theta[c(1,2),2:MCMC$n],rbeta(

MCMC$n-1,k+1,(ny-k+1))))

134 X$var <-MCMC$var

135 X$mu<-MCMC$mu

136 X$n<-X$n+n
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137 X$lamda <-MCMC$lamda

138 return(X)

139 }

140

141 # Internal R mcmc program. An alternative to the C++ function , but

slower.

142 mcmcGpd.internal <-function(y,nstart ,n,start ,mu,var ,tau ,a,gam ,lamda)

{

143 if(lamda==0){lamda <-2.38^2/2}

144 theta <-matrix(rep(NA,2*n),2)

145 theta[,1]<-start

146 uni <-log(runif(n-1))

147 R<-NA

148 Xtemp <-NA

149 gamInd <-gam

150 if(tau!=0){

151 gam <-0.5*exp(-(nstart :( nstart+n-1))/tau)

152 }else{

153 gam <-rep(gam ,n)

154 }

155 for(i in 2:n){

156 Xtemp <-mvrnorm(n=1,theta[,(i-1)],lamda*var)

157 R=lnRGdp(y,Xtemp ,theta[,(i-1)])

158 if(uni[i-1]<R){

159 theta[,i]<-Xtemp

160 }else{

161 theta[,i]<-theta[,(i-1)]

162 }

163

164 if(gam[i]>.Machine$double.eps){

165 if(a!=0){

166 if(R>=0){R=1

167 }else{R=exp(R)}

168 lamda <-lamda*exp(gam[i]*(R-a))
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169 }

170 var <-var+gam[i]*((theta[,i]-mu)%*%t(theta[,i]-mu)-var)

171 mu<-mu+gam[i]*(theta[,i]-mu)

172 }

173 }

174 theta <-rbind(theta[1,],exp(theta[2 ,]))

175 MCMC <-list(data=NA,u=NA,theta=theta , mu=mu, var=var , n=n, burnin=

NA,aRate=NA, MLE=NA,

176 MLEest=NA,tau=tau , a=a, gam=gamInd ,lamda=lamda)

177

178 return(MCMC)

179 }

180

181 # l(xi,si)=n*phi -(1+1/xi)*sum(log(1+xi*y/exp(phi)))) # phi=log(si)

182 lnRGdp <-function(data ,Xtemp ,X){

183 dataLength <-length(data)

184 if(Xtemp[1]< (-exp(Xtemp[2])/max(data))){return(-Inf)}

185 lnGPNtemp <--dataLength*Xtemp[2]-(1+1/Xtemp[1])*sum(log(1+Xtemp[1]

*data/exp(Xtemp[2])))

186 lnpxitemp <-dnorm(Xtemp[1], mean = 0, sd = sqrt(100), log = TRUE)

187 lnpphitemp <-dnorm(Xtemp[2], mean = 0, sd = sqrt(10000), log =

TRUE)

188 lnGPN <--dataLength*X[2]-(1+1/X[1])*sum(log(1+X[1]*data/exp(X[2]))

)

189 lnpxi <-dnorm(X[1], mean = 0, sd = sqrt(100), log = TRUE)

190 lnpphi <-dnorm(X[2], mean = 0, sd = sqrt(10000), log = TRUE)

191 return(lnGPNtemp+lnpxitemp+lnpphitemp -lnGPN -lnpxi -lnpphi)

192 }

193

194 # X is parameters (aka theta) matrix of thetas or single theta(c(xi

,sigma)), data is a vector.

195 lnGpd <-function(data ,X){

196 if(X[1]<(-X[2]/max(data))){return(-Inf)}

197 if(is.matrix(X)){
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198 temp <-rep(NA,length(X[1 ,]))

199 for(i in 1:length(X[1 ,])){

200 temp[i]<-sum(log(1+X[1,i]*data/X[2,i]))

201 }

202 return( -length(data)*log(X[2 ,]) -(1+1/X[1 ,])*temp)

203 }else if(is.numeric(X)){

204 return(-length(data)*log(X[2]) -(1+1/X[1])*sum(log(1+X[1]*data/X

[2])))

205 }

206 }

B.2 Effective Sample Size and Acceptance rate

The functions for calculating the Effective Sample Size and acceptance rate.

1 # Effective sample size

2 # class(X)= sim of xi, sigma or alpha after burnin

3 effsampSize <-function(X){

4 p<-acf(X,plot=FALSE)[[1]]

5 pleng <-which(p<0.1)[1]

6 if(pleng==2){

7 return(length(X))

8 }else{

9 return(length(X)/(sum(p[2:pleng])*2+1))

10 }

11 }

12

13 #acceptance (a) rate

14 aRate <-function(X){

15 a<-sum(diff(X)!=0)

16 return(a/length(X))

17 }
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B.3 Mean Excess and Parameter plot

The mean excess (uplot) and parameter (paraplot) plot with internal functions.

1 # plot mean exceedance vs u (thresholds) with confidence lines.

2 # For valid u's, need linearity.

3 # X=data set

4 # r=numbers of data below threshold , before defined as new cluster.

5 # k=plot ends when only k extreme is left

6 # iid Independent and Identical Distributed => r=0

7 # numPoint= number of points used in plot

8 uplot <-function(X,k=3,r=1,xlim=NULL , CI=0.95,numPoint=100 ,...){

9

10 if(CI>1||CI<0){stop("CI should be 0 < CI < 1")}

11 if(is.matrix(X)){

12 X=as.vector(t(X))

13 X=X[!is.na(X)]

14 }

15 if(!(is.vector(xlim)&&length(xlim)==2)){

16 Xsort <-sort(X,na.last = NA)

17 if(is.null(xlim)){

18 xlim=c(Xsort[floor(length(Xsort)*0.75)],NA)

19 }else{

20 xlim <-c(xlim ,NA)

21 }

22 if(r==0){

23 xlim[2]<-Xsort[length(Xsort)-k+1]

24 }else{

25 xlim[2]<-umax(X,k=k,r=r)

26 }

27 }

28 uStep <-seq(from=xlim[1],to=xlim[2], length=numPoint)

29 ymean <-rep(NA,numPoint)

30 tSD <-rep(NA,numPoint)

31 #the variable is tSD=t*sd
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32 lowCI <-rep(NA,numPoint)

33 pb <- txtProgressBar(min = 0, max = numPoint , style = 3)

34 for(i in 1:numPoint){

35 ytemp <-ufilt(X,uStep[i],r=r)

36 ymean[i]=mean(ytemp)

37 tSD[i]=qt(p=(1-CI)/2, df=length(ytemp)-1, lower.tail = FALSE)*

sd(ytemp)/sqrt(length(ytemp))

38 setTxtProgressBar(pb, i)

39 }

40 close(pb)

41 plot(uStep ,ymean ,type='l',xlim=xlim ,ylim=c(min(ymean -tSD),max(

ymean+tSD)),xlab = "u", ylab = "Mean Excess")

42 lines(uStep , ymean+tSD , col='blue', lty=2)

43 lines(uStep , ymean -tSD , col='blue', lty=2)

44 }

45

46 # parameter plot (xi vs u and sigma*=sigma -xi*u \sim const vs u)

47 # maxtime= maximum time calculating at each u (by defualt 5 seconds

)

48 # numPoint= number of points used in plot

49 parplot <-function(X,k=3,r=1,xlim=NULL ,CI=0.95,maxtime=5,burnin=500,

numPoint=15 ,...){

50 if(CI>1||CI<0){stop("CI should be 0 < CI < 1")}

51 if(is.matrix(X)){

52 X=as.vector(t(X))

53 X=X[!is.na(X)]

54 }

55 if(!(is.vector(xlim)&&length(xlim)==2)){

56 Xsort <-sort(X,na.last = NA)

57 if(is.null(xlim)){

58 xlim=c(Xsort[floor(length(Xsort)*0.75)],NA)

59 }else{

60 xlim <-c(xlim ,NA)

61 }
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62 if(r==0){

63 xlim[2]<-Xsort[length(Xsort)-k+1]

64 }else{

65 xlim[2]<-umax(X,k=k,r=r)

66 }

67 }

68

69 names <-c(expression(paste("shape (", xi,")")), expression(paste("

Modified Scale (", sigma ,"*)")))

70 uStep <-seq(from=xlim[2],to=xlim[1], length=numPoint)

71 para <-matrix(NA,2,numPoint) # para[1 ,]=xi while para[2 ,]=sigma*

72 upCI <-matrix(NA,2,numPoint)

73 lowCI <-matrix(NA,2,numPoint)

74

75

76 tempmcmc <-NA

77 tempstart <-rep(NA,2)

78 tempdata <-matrix(NA,2,9000)

79 burnintemp=burnin

80

81 pb <- txtProgressBar(min = 0, max = numPoint , style = 3)

82 for(j in 1:numPoint){

83 if(j==1){

84 tempmcmc <-mcmc.gpd(X,u=uStep[j],n=10000)

85 }else{

86 if((sum(X>uStep[j]) >(maxtime*1200))&&(sum(X>uStep[j-1])>30)){

87 timescale <-maxtime*1200/(sum(X>uStep[j]))

88 tempmcmc <-mcmc.gpd(X=X,u=uStep[j],start=tempstart ,n=floor(

timescale*10000),mu=tempmcmc$mu,var=tempmcmc$var)

89 burnintemp=floor(0.2*(timescale*10000))

90 }else if(sum(X>uStep[j-1])>30){

91 tempmcmc <-mcmc.gpd(X=X,u=uStep[j],start=tempstart ,n=10000,

mu=tempmcmc$mu,var=tempmcmc$var)

92 burnintemp=burnin
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93 }else{

94 tempmcmc <-mcmc.gpd(X=X,u=uStep[j],n=10000)

95 burnintemp=burnin

96 }

97 }

98

99 tempstart <-tempmcmc$theta[1:2,tempmcmc$n]

100 tempsort <-rbind(sort(tempmcmc$theta[1,burnintemp:tempmcmc$n]),

sort(tempmcmc$theta[2,burnintemp:tempmcmc$n]-tempmcmc$theta[1,

burnintemp:tempmcmc$n]*uStep[j]))

101

102 para[1:2,j]<-c(mean(tempsort[1 ,]),mean(tempsort[2 ,]))

103 upCI[1:2,j]<-c(tempsort[1,floor(( tempmcmc$n-burnintemp)*(1+CI)/

2)],tempsort[2,floor(( tempmcmc$n-burnintemp)*(1+CI)/2)])

104 lowCI[1:2,j]<-c(tempsort[1,floor(( tempmcmc$n-burnintemp)*(1-CI)

/2)],tempsort[2,floor(( tempmcmc$n-burnintemp)*(1-CI)/2)])

105 setTxtProgressBar(pb, j)

106 }

107 close(pb)

108 oldpar <- par(mfrow = c(2, 1))

109 for(i in 1:2){

110 plot(uStep ,para[i,], xlab='u', ylab=names[i],ylim=c(min(lowCI[i

,]),max(upCI[i,])),pch=16,type='b',mgp=c(2,0.5,0))

111 arrows(uStep ,lowCI[i,],uStep ,upCI[i,],code=3,length=0.1,angle=9

0,col='blue')

112 }

113 par(oldpar)

114 }

115

116

117 # Filtering out threshold exceedance y, which is the max of each

cluster exceeding the treshold.

118 # Cluster is define where r value is below the threshold (

repeatedly)
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119 # x=data set (vector)

120 # u=Threshold

121 # r=numbers of data below , before defined as new cluster

122 # y=return x-u

123 ufilt <-function(X,u,r=1){

124 if(is.matrix(X)){

125 X=as.vector(t(X))

126 X=X[!is.na(X)]

127 }

128 if(r==0){

129 y<-X[X>=u]-u

130 }else{

131 y<-rep(NA,sum(X>=u))

132 max <-u*(1-2*.Machine$double.eps)

133 rcount <-0

134 clust <-FALSE

135 j<-1

136 for(i in 1:length(X)){

137 if(X[i]>=u){

138 rcount <-0

139 clust <-TRUE

140 if(X[i]>max){

141 max <-X[i]

142 }

143 }else if(X[i]<u&&clust){

144 rcount <-rcount+1

145 }

146 if(rcount >=r&&max >=u){

147 y[j]<-max

148 clust <-FALSE

149 rcount <-0

150 max <-u*(1-2*.Machine$double.eps)

151 j<-j+1

152 }
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153 }

154 if(max >=u){

155 y[j]<-max

156 }

157 y=y[!is.na(y)]-u

158 }

159 return(y)

160 }

161

162 # find u-max which gives only

163 # k block exceedance

164 # r=numbers of data below threshold , before defined as new cluster.

165 # return u-max

166 umax <-function(X,k,r){

167 Xmean <-mean(X)

168 uLeng <-0

169 Xsort <-sort(X)

170 n <- length(Xsort)

171 i=-2

172 while(uLeng <k&&Xsort[n-k-i]>Xmean){

173 i=i+1

174 uLeng <-length(ufilt(X,u=Xsort[n-k-i],r))

175 }

176 if(uLeng >=k){

177 return ((Xsort[n-k-i]+Xsort[n-k-i-1])/2)

178 }else{

179 return(umax(X,k-1,r))

180 }

181 }
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