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Abstract 
Every year kick incidents occur, maybe best remembered by the Macondo blowout in April 

2010 resulting in devastating oil spills throughout the Gulf of Mexico. Well control is one of 

the most important factors in any drilling operation, preventing disastrous blowouts where 

people and the environment will be affected. The development of new technologies has 

increased significantly, lowering the risks of blowouts, mostly because of the reliability of 

blowout preventers. Better hardware systems have been developed and better materials 

has increased the performance during critical parts of an operation.  

There are several causes why we encounter kicks; not keeping the hole full, lost circulation, 

swabbing, underbalanced pressures, trapped fluids/pressures and mechanical failures. 

Before an actual kick, there are warning signs that might occur and knowing how to interpret 

positive indicators of kick is very important. Pit gain, increase in return flow rate and 

abnormalities in drillpipe pressure are all signs that formation fluid has entered the well.  

When experiencing a kick, procedures to reduce the danger and the non productive time 

have to be started. Firstly the well has to be shut in by either the hard shut-in method or the 

soft shut-in method. Then the influx has to be circulated out of the well by the use of either 

the Driller’s Method or the Wait and Weight Method.  

To better understand and visualize the behavior of formation fluid entering the well, the 

simulation program Drillbench Kick has been used. The soft shut-in has been compared 

against the hard shut-in and the Driller’s Method has been run against the Wait & Weight 

Method. The simulations have been performed with both oil based mud and water based 

mud. 
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Sammendrag 
Hvert år opplever vi kick situasjoner, kanskje best husket ved Macondo ulykken i april 2010 

som resulterte i ødeleggende oljeutslipp i Mexicogulfen. Brønnkontroll er en av de viktigste 

faktorene i enhver boreoperasjon som forhindrer katastrofale utblåsninger hvor mennesker 

og miljø blir berørt. Utviklingen av nye teknologier har skutt fart, og dette har senket risikoen 

ved boreoperasjoner.  

Det er flere årsaker til at vi støter på kick; brønnhullet er ikke holdt fullt, tapt sirkulasjon, 

underbalansert trykk, fanget væske/trykk og mekaniske feil. Før et kick oppstår er det flere 

varselsignaler som kan oppstå og korrekt tolkning av disse signalene er viktig. Økt mud-tank 

volum, økning i tilbakestrøm og unormale borerørstrykk er alle tegn på at formasjonsvæske 

har trengt inn i brønnen. 

Det er prosedyrer for håndtering av kick som oppstår som reduserer både farer og ikke-

produktive-tiden som oppstår. Brønnen blir stengt inne av enten hard- eller soft shut-in 

metoden. Etter dette blir gassen sirkulert ut av brønnen ved hjelp av Driller’s Metoden eller 

Wait and Weight Metoden. 

For å bedre forstå hva som skjer når formasjonsvæske trenger inn i brønnen har 

simuleringsprogrammet Drillbench Kick blitt brukt. De forskjellige metodene har blitt 

sammenlignet med hverandre og både oljebasert- og vannbasert mud har blitt brukt.  
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1 Introduction 
The demand for energy is constantly increasing, forcing the petroleum industry to come up 

with innovative solutions to find and produce the remaining resources. The industry is forced 

to work in remote locations where high pressure and temperature reservoirs, deep water, 

narrow pressure margins and harsh weather are factors that hamper the operations.  

The awareness regarding well control in the drilling industry has always been one of the 

main focus areas. If formation fluid enter the well it can lead to disastrous blowouts where 

people on rigs can be injured, or in a worst case scenario; killed. The environment can also 

be harmed due to oil spills. Moving drilling locations to remote areas around the world 

demands the wells to be drilled in the safest possible way. 

The development of new technologies has increased significantly, lowering the risks of 

blowouts. This is most because of the reliability of the blowout preventers. Better hardware 

systems have been developed and better materials has increased the performance during 

critical parts of an operations. The downtime due to equipment failure has, because of this, 

been reduced. 

Even though the industry is changing, we have to be aware of the dangers we may 

encounter. Having the knowledge, but also be able to understand signs and warnings from 

the well while drilling can help in preventing blowouts, thus protecting both environment 

and personnel on the rig.  

The report will look at the theory about well control; what is causing a kick to occur and how 

the signs can be interpreted and understood. A kick simulator has been used to illustrate and 

understand how different methods change the well condition prior to the kick and during 

the closing and circulation. In the first part of the simulation the soft shut-in method has 

been tested against the hard shut-in method. Then the two most common circulation 

methods, Driller’s- and Wait & Weight Method, have been simulated. It has been used both 

oil based mud and water based mud to also understand how this affect the well control 

procedure. 
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2 Well Control Theory 
Primary well control 

Primary well control is defined as the prevention of formation fluid flow by maintaining a 

hydrostatic pressure equal to or greater than the pressure of the fluids in the formation, but 

less than formation fracture pressure. It is very important to make sure that primary well 

control is preserved at all times. This includes: 

- Drilling fluids with adequate density are used 

- Active system volumes are continuously monitored 

- Changes are detected immediately and correct actions are being performed 

Secondary well control 

If the pressure of our drilling fluid fails to prevent formation fluid to enter the wellbore, the 

well will flow. By the use of a blowout preventer, (BOP), we can prevent the fluids from 

escaping the well.   

Hydrostatic pressure 

The hydrostatic pressure depends on the density and vertical height of the fluid. 

Equation 1: Hydrostatic Pressure 

                                

Circulation pressure 

Circulation pressure is given by the rig pump and represents the total pressure required to 

transfer mud from the pump, through the surface lines, the drillstring, the bottomhole 

assembly,(BHA), the bit nozzles and up through the annulus back to the surface.  

The annular pressure, or friction loss, helps in preserving the pressure on the exposed 

formation and causes a slight increase in the total pressure as long as the pump is circulating 

mud. This in turn leads to an increase in the bottomhole pressure, (BHP), above the static 

BHP. We can call this increase annular pressure loss, (APL). 

Equation 2: Circulating Pressure 

                                         

Bottomhole pressure 

BHP is the sum of all pressures being exerted on a well by drilling personnel operations. This 

means the sum of hydrostatic pressures, APL plus any surface applied backpressures. 

Equivalent circulating density 

The Equivalent Circulating Density, (ECD), can be explained as an increase in pressure that 

occurs only when the mud is being circulated in the well. Due to the friction in the annulus, 

the BHP will be higher than when the mud is not being circulated. 
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Equation 3: Equivalent Circulating Density 

               
   

         
 

There are several factors affecting ECD 

- As the depth of the hole increases the total friction loss in the wellbore increase, 

hence greater ECD on the bottom of the wellbore. 

- Similar to the depth; the greater the circulation rate, the greater the frictional loss 

resulting in greater ECD. 

- A heavy mud weight will provide more resistance. 

- The amount of solids in the drilling fluid will increase the ECD. 

- The rheology of the mud also affects the ECD. If the viscosity or gel strength is too 

high, the drilling fluid will increase its resistance to flow. This leads to a higher 

frictional loss increasing the ECD. 

- The higher the flow area, the easier the mud will flow. If the annular clearance is 

small, the ECD will increase. 

(C.T.C Drilling and Well Control Department) 

Formation pressure 

‘Formation pressure, or pore pressure, is said to be normal when it is caused by the 

hydrostatic head of the subsurface water contained in the formations and there is pore to 

pore pressure communication with the atmosphere’, (Aberdeen Drilling Schools & Well 

Control Training Centre, 2002). 

By dividing this pressure with the true vertical depth, we find the average pressure gradient 

of the formation fluid. The North Sea area pore pressure averages 0.452 psi/ft, while in the 

Gulf of Mexico the pore pressure averages at 0.465 psi/ft. 

Normal formation pressure 

Normal formation pressure is the hydrostatic pressure of water extending from the surface 

to the subsurface formation. The hydrostatic pressure is affected by different factors. 

Increasing the dissolved solids (salt) increases the formation pressure gradient whilst an 

increase in the level of gases in solution will decrease the pressure gradient. The 

temperature also affects the hydrostatic pressure gradient, as a higher temperature will 

expand the fluid reducing the gradient.  

Abnormal pressure 

Abnormal pressure can be defined by every pressure which does not conform to the 

definition of normal pressure. There are several causes why experience abnormal pressures. 

Under-compaction in shale’s: if the balance between the rate of compaction and fluid 

expulsion is disturbed so the fluid removal is slowed down, the pressure will increase. This 

will result in a much higher porosity than expected for the depth of shale burial in that area.  
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Salt is totally impermeable to fluids and behave plastically. Its pressure transmission 

properties are more like fluids than solids and therefore it exerts pressure equal to the 

overburden load in all directions. Fluids from any underlying formation can’t escape, so the 

formation becomes over pressured.  

Formation slippage may bring permeable formation laterally against an impermeable 

formation preventing flow of fluids. This may allow fluids to flow from a deeper permeable 

formation to a shallower. If the shallower formation is sealed then it will be pressurized from 

the deeper zone. 

Other causes which can cause abnormal pressure are mineralization, tectonic causes, 

diapirism and the reservoir structure.  

Formation fracture pressure 
It is necessary to have some knowledge about the formation fracture pressure so we can 

drill a well safely. The maximum volume of any uncontrolled influx from formation depends 

on the fracture pressure of the exposed formation. 

If the wellbore pressure is equal to or greater than the fracture pressure, the formation will 

break down, mud will be lost, hydrostatic pressure will be reduced and we lose primary 

control. Fracture pressure is related to the weight of the formation matrix and the fluids 

occupying the pore space within the matrix, above the zone of interest. These two factors 

are known as the overburden pressure. 

If we assume an average density of a thick sedimentary sequence to be equivalent of 19.2 

ppg, then the overburden gradient is given by: 

              
   

  
 

Onshore the overburden gradient can be assumed close to 1.0 psi/ft, but when we are 

offshore we need to take into account the sea. As we see from Figure 1, the total 

overburden pressure will be considerably lower for an offshore rig. This makes surface casing 

sets very vulnerable, and the reason for never shutting in shallow gas kicks. (Aberdeen 

Drilling Schools & Well Control Training Centre, 2002) 
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Figure 1: Fracture Gradient Comparisons, (Aberdeen Drilling Schools & Well Control Training 
Centre, 2002) 
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3 Causes of Kicks 
A kick can be defined as an unwanted influx, or flow, of formation fluid into the well. When 

the flow is uncontrolled during completion, workover or production operations, the control 

of the well is threatened. If the kick is not handled correctly, it can lead to a blowout 

endangering rig personnel and the environment. (Chevron Petroleum Technology Company, 

1994) 

The main causes of kicks are: 

- Not keeping the hole full 

- Swabbing 

- Underbalanced pressure 

- Lost circulation 

- Shallow gas sands 

- Excessive drilling rate in gas bearing sands 

- Human error 

3.1 Not keeping the hole full 

As the fluid level in the borehole decrease, the hydrostatic pressure will sink and reduce the 

BHP. As the drill pipe and drill collars are pulled out of the hole, a mud volume equal to the 

steel must be added to keep the hole full. If this operation fails, the mud column will be 

reduced. If the BHP is reduced below the formation pressure a kick may occur if there’s a 

permeable formation in the borehole.  

If the mud volume required is less than the steel removed then either 

1. Formation fluid must have entered the hole 

2. Gas is already in the annulus and is migrating and expanding 

The steel volume of a drill collar can be up to ten times the volume of a drill pipe, thus 

increasing the needed mud volume and the potential mud column fall significantly. 

There are two possible ways to monitor the mud volume during tripping: 

1. Continuous monitoring the hole fill volume by an automated measuring system 

2. Continuously circulating on the trip tank 

The trip tank can be set to continuous gravity feed or pump feed. By using this method, the 

hole will be full at all times, and the volumes that have been used can be accurately 

maintained. The biggest problem is that there isn’t enough mud to permit a full trip without 

refilling. The drill crew will therefore need strict routines checking the mud level and refilling 

when needed. (C.T.C Drilling and Well Control Department) 
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3.2 Swabbing 

As the drillpipe is pulled out of the hole, the upward motion of the bit and bottomhole 

assembly can decrease the BHP resulting in a kick. 

There are several factors contributing to swabbing: 

- Pipe pulling speed; the faster the string is pulled out of the hole, the greater the 

pressure drop will be. 

- Small annular clearance will result in a greater pressure loss compared to a larger 

clearance. 

- High mud viscosity or gel strength creates a thick flowing mud resulting in greater 

pressure loss 

- Balled up bit or stabilizers; the BHA is surrounded by clay or sticky shale which is 

increasing the diameter of the bit or stabilizers making them act as pistons when they 

are pulled out of the hole. 

However, there are procedures that may reduce the likelihood of swabbing. These include: 

1. Circulating the hole before tripping 

2. Noting the pressure and position of tight-spots from previous trips 

3. Control the pipe-pulling speed 

The only reliable method of detecting a swabbed kick is proper hole fill procedures, carefully 

monitoring of the trip volumes are essential. (C.T.C Drilling and Well Control Department) 

3.3 Underbalanced pressure 

The mud column is providing the hydrostatic pressure in the wellbore and this is the primary 

means of preventing a kick. We can experience insufficient mud weight when encountering 

an unexpected high-pressure zone, but the mud can also have been diluted at either the 

surface or in the well. Fluids flowing from the formation may change the properties of our 

drilling fluid. Comparing the ingoing mud with the returning mud can help prevent dilution.  

As said earlier, we can also encounter abnormal pressure zones. If a zone has a higher 

formation pressure above the normal gradient for the area to be penetrated, light drilling 

fluid weight can cause a kick. Signs of high formation pressure may be seen in the form of 

‘sloughing’ or ‘heaving’ shale’s, excess hole fill, and elliptical hole sections or tight spots. 

(C.T.C Drilling and Well Control Department) 

3.4 Lost circulation 

Kick can occur when we experience lost circulation. The pressure in the well may become 

larger than the fracture pressure of the formation, due to a too high mud density, and the 

drilling fluid will flow into the exposed formation. We may also experience lost circulation 

when we have a too high surge pressure. As the drillstring is moved into the borehole, the 

BHP will increase and in combination with the hydrostatic pressure, the fracture pressure 

can be exceeded. (Chevron Petroleum Technology Company, 1994) 
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Other reasons for lost circulation can be naturally fractured or pressured depleted zones, 

annulus plugging due to BHA, packing-off or sloughing shale’s or excessive circulation 

breaking pressure when mud gel strength is too high, see Figure 2. 

The best way to handle this type of kick is to fill the annulus with lighter fluids to maintain 

the best possible hydrostatic pressure in the well. Since the mud, in most cases, only drops a 

few hundred feet, the addition of fluid will reduce the underbalanced pressure in the well to 

a minimum. If flow still exists, it is at a reduced rate, giving more time for emergency 

procedures or well control measures. (C.T.C Drilling and Well Control Department) 

 

Figure 2: Lost Circulation, (C.T.C Drilling and Well Control Department) 

 

3.5 Excessive drilling rate 

As a gas bearing formation is drilled, possible breakout of formation fluid will cause cuttings 

in the mud, explained in chapter 4.1. If a fast rate of penetration is made in such a 

formation, the percentage of formation fluid is likewise increased and problems may result.   
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3.6 Trapped fluids 

As work sometimes is being done on wells that are or were being produced, reservoir fluids 

may be trapped below tools. When determining the reservoir pressure and required fluid 

density, production data, flowing pressures and shut-in pressures are invaluable. 

Reservoir fluids can also be trapped in the tubing string. We can shut them off in several 

ways, including the surface production tree or by setting a plug in the tubing nipple. This 

trapped volume can be quite large, depending on where the tubing has been set. 

We can also have fluids trapped below the production packer in the tailpipe annulus. 

Usually, this doesn’t get noticed until the packer is removed.  

Minimizing the distance between perforations and the downhole tools will greatly 

reduce the risk of trapped fluids.  

3.7 Mechanical failures 

On the surface we have Christmas trees, tubing heads and blowout preventers protecting 

the rig and the personnel from kick turning into blowouts. Downhole equipments are of 

same importance, helping in the prevention of kicks to occur. As these are installed based on 

the well condition at the time, they will be exposed to various well conditions and the 

equipment will be weakened as time goes by, resulting in unwanted trapped fluids and 

pressures. 

A packer or tubing failure can cause fluid to be trapped inside the casing, Figure 3 a, resulting 

in extremely high pressures. These types of failure are typically detected by analyzing 

production data and regularly inspections of the casing and tubing pressures. There are also 

problems when formation fluids are highly corrosive. This can weaken, or worst case 

scenario, create holes in the casing. We can then experience crossflow between two zones, 

Figure 3 b, or trapped fluids as previously discussed.  

We can also experience failures in liner laps, Figure 3 c. Liner laps are usually sealed off from 

the well with cement. The small clearance area between the liner and the casing can make 

the bonding of cement difficult to obtain, and there often exists a communication channel. 

Failures of liner laps have a high potential risk, as the leak can enter the well several hundred 

feet above the interval depth, hence requiring an abnormally high killing fluid weight. 
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Figure 3: Mechanical failures, (Chevron Petroleum Technology Company, 1994) 
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4 Kick Indicators 
(Chevron Petroleum Technology Company, 1994) 

At the presence of a kick, there are a number of warning signs and indications which will 

alert the driller of what’s going on. As detection of these signals can prevent a disastrous 

blowout, it is important that all crew members understands and act accordingly to the 

situation.  

4.1 Possible indicators of a kick 

Precede a kick there are normally one or more warning signs. Experiencing any of these 

signals, the well should be checked. 

Gas/Oil/Water cuttings 

Gas, water or oil cuttings in the circulated drilling fluid are a good warning signal. The gas 

cuttings will appear foamy, while oil cuttings will lead to sheen of oil across the rig tank. For 

water, the fluid weight will become lighter and the chloride concentration will change. 

Incorrect fill-up volumes 

As discussed earlier, when removing the drillpipe from the well, equal volume of mud need 

to replace the steel removed. This also applies when we run into the well, only difference is 

now to monitor the returning mud volume. 

Decrease in pump pressure 

Pump pressure is as defined in Equation 2, a function between hydrostatic pressure and APL. 

If an influx enters the well, the hydrostatic pressure will decrease, hence the pump pressure 

decreases and the pump speed increases.  

Increase in flow line temperature 

Temperature gradients in the transition between normal and abnormal pressure zones can 

often increase around twice the rate of the normal temperature gradient. An increase in the 

flow line temperature can indicate the top of an over pressured section. (C.T.C Drilling and 

Well Control Department) 

4.2 Positive indicators of a kick 

When recognizing positive kick indicators, actions must be taken to control the well. 

Pit gain 

As the influx from the formation enters the 

well, it leads to an expulsion of mud resulting 

in an increase of the surface volume which we 

can think of as a close circulating system. It can 

be very hard to detect an increase of the 

volume, as other factors can hide the change. 

Surface additions and withdrawals must be 

done with the driller’s knowledge. Also the 

Figure 4: Pit gain (C.T.C Drilling and Well 
Control Department) 
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addition of materials, i.e. barite, can change the total mud volume. 

Visual observations of the mud pit level with regular recordings are a valuable tool to keep 

control. On floating drilling rigs the heave motion produce problems regarding accurate 

measurements. Here, use of several floats or other sensors can help and reduce the 

problems. Figure 4 shows an example of how pit gain may be monitored.  (C.T.C Drilling and 

Well Control Department) 

Increase in return flow rate 

As mentioned, we think of the circulating system as a closed system; same amount of mud 

that goes into the well should come out of the well. As an influx enters the well, the volume 

of the return flow rate will increase. 

Drillpipe pressure 

Due to fluids inside the drillpipe, there will be a hydrostatic pressure which should remain 

constant as the pumps are shut off. The pressure will be positive if we have lighter mud 

inside, and heavier mud outside of the drillpipe. As we initiate circulation, the different fluid 

densities and friction will cause a change in the density. The pressure should be decreased 

by the lighter fluids being pumped down while the heavier mud is being pushed out. To use 

the drillpipe pressure as a kick indicator can be difficult, but if experiencing abnormalities 

the driller should stop and check that everything is as it should be. (Erikson, 2011) 
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5 Minimizing the influx 
Early recognition and action upon a kick will minimize the flow of formation fluid into the 

well. This in turn leads to a lower casing pressure both when the well is shut-in and when the 

kick is circulated out.  

 

Figure 5: Effect of influx volume on casing pressure, (Chevron Petroleum Technology Company, 
1994) 

As seen from Figure 5, a large influx will lead to a high casing pressure both at shut-in and 

when circulating. 

Another factor affecting the casing pressure is the type of influx flowing into our well. Gas is 

much lighter than i.e. saltwater, and a kick that is pure gas will, in comparison with oil or 

saltwater, create a much higher casing pressure. Well geometry is also a factor, as a kick in a 

5 ½” production casing will result in a higher casing pressure than for a 7” production casing. 

A kick of the same volume will have a greater height in the 5 ½” production casing. 

Obviously a great formation pressure will produce a high casing pressure. The higher the 

formation pressure, the higher the casing pressure, initial shut-in tubing pressure and fluid 

densities will be. The last factor affecting the casing pressure is the fluid density. A light fluid 

density will create a higher pressure than a heavier fluid, even thought the killing fluid 

density required is the same.  

For the drilling crew, they can only control the size of an influx. So proper training in 

detecting warning signals, understanding and recognition of positive indicators and correct 
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shut-in procedures will greatly affect the minimization of the influx. (Chevron Petroleum 

Technology Company, 1994)  
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6 Shut-In Procedures 
When a positive indicator of a kick is observed, and a flow check verifies that the well is 

flowing, it should be shut in immediately. If only the surface casing has been set, the kick 

should be diverted rather than attempting shut-in.  

Early recognition of warning signals and a quick shut-in is the key to effective well control. 

Acting fast and correct minimizes the volume of formation fluid entering the wellbore and 

the drilling fluid expelled from the annulus. 

The size and severity of the kick depends upon: 

- The degree of under balance 

- The formation permeability 

- The length of time the well remains under balance 

(C.T.C Drilling and Well Control Department) 

Different contractors and operators have procedures for how to handle kicks by the use of 

either a soft shut-in or hard shut-in. 

6.1 Soft Shut-In 

When using the soft shut-in procedure, a choke is left open at all times except during a well 

control operation. The choke line valves are set up so that the flow path is open through the 

choking system, with the exception of one choke line valve near the BOP. When the soft 

shut-in procedure has been chosen, the choke line valve is opened. The BOP is then closed 

and finally the choke is closed. By doing so, we can control and monitor the casing pressure 

build up while closing in the well. This is of great importance when formation fracturing and 

broaching to the surface is likely to happen if the well has been closed in without regarding 

the possibility of excessive initial closing pressure.  

6.2 Hard Shut-In 

When using the hard shut-in method, the choke remains closed at all times other than 

during a well control operation. Except for the choke(s) and a choke line valve located near 

the BOP, choke line valves are aligned to allow flow through the choking system. The BOP is 

closed and the casing pressured is measured. If this can’t be measured at the wellhead, the 

choke line valve is opened with the choke or a nearby high pressure valve remaining closed 

so the pressure can be measured at the choke manifold. The hard shut-in procedure closes 

the well at the shortest amount of time, reducing the flow of formation fluid into the well. 

Limitation is defined by the well conditions; the maximum allowable casing pressure is 

greater than the anticipated initial close in pressure and a well fracture isn’t expected to 

broach the surface on initial closure. 

(Aberdeen Drilling Schools & Well Control Training Centre, 2002) 
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7 Mud 
In the start, mud was originally designed to remove the drilled cuttings away from the well 

to the surface, but as the drilling industry has modified, the drilling fluid has now several 

important tasks. 

When making the hole, drilling fluids assists by removing the cuttings, cool and lubricate the 

bit and drillstring, and it also helps in transmitting power to the bit nozzles or turbines. 

When it comes to hole preservation, it supports and stabilizes the borehole wall. Other areas 

where the drilling fluids help to reach the objective are; 

- Produces sufficient pressure within the borehole to prevent the inflow of 

formation fluids 

- Supports the pipe and casing weight 

- Serves as a medium for formation logging 

Even though drilling fluids is designed to help drill the holes, it might sometimes cause 

problems. It is important that the mud don’t corrode the bit, drillstring, casing or surface 

equipment, damage the productivity of our reservoir or pollute the environment. (EP 

Learning and Development, 1998) 

The most common drilling fluids used today are Oil Based Mud, (OBM), and Water Based 

Mud, (WBM). 

OBM is suitable when drilling slim and deviated holes, depleted zones and water sensitive 

formation. There are two different types of OBM: 

- Pure oil base fluid 

- Invert oil emulsion fluids, (IOEM) 

Pure oil base fluid contains less than 3% volume water. The water is considered inescapable 

contaminant, and by adding chemicals the wanted drilling fluids properties is obtained. 

Invert oil emulsion fluids has 5 – 40% volume water. The water is replacing expensive oil and 

becomes a part of the drilling fluid properties. (EP Learning and Development, 1998) 

WBM is basic water where clay and other chemicals are added to obtain wanted properties, 

i.e. viscosity control, shale stability, enhance drilling ROP, and cooling and lubrication of the 

system. The most common additive is bentonite. 

Well control considerations 

When a substance is dissolved in a solvent, it is called solute and it may be solid, liquid or 

gas. Due to its polar orientation, water is a good solvent. Ionic compounds are highly soluble 

in water due to the attractive forces between oppositely charged ions are being weakened 

by polar water. The same ionic compounds are not soluble in non-polar liquids like oil. 

(Skalle, 2009) 
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We experience several advantages when drilling with OBM compared to other drilling fluids. 

It can withstand high temperatures, it doesn’t react with clay causing clay instability, the 

mud cake created is thin, preventing stuck pipe, and it is a good lubricant, hence reducing 

the drilling torque. (Erikson, 2011) 

When experiencing kick while using OBM, it may be difficult to detect due to the serious 

problems created by gas solubility in mud. Instead of migrating towards the surface, as we 

see happens for WBM, the gas may dissolve into the solution. Unless the formation becomes 

considerably underbalanced when using OBM, there might not be any changes in the pit 

level until the gas influx has been pumped a considerably height up the annulus, see Figure 

6. Here the hydrostatic pressure will decrease and fall below the bubble point for the gas. 

This leads to a rapid expansion of the gas, and the mud flow will increase. This can, in some 

cases, unload the annulus resulting in full pits and a high annular pressure.  

 

Figure 6: Volumetric behavior of methane dissolved in OBM, (Skalle, 2009) 
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8 Kill Methods 
The purpose of the various kill methods is to circulate out any formation fluids from the 

wellbore, and replace existing mud with a heavier kill mud which won’t allow any further 

influx from the formation. This must be done with minimum damage to the well. If this 

operation is successful, the well may be re-opened and the work can continue.  

As the well has been shut-in the pressures in the well will be in balance, providing no 

equipment failure. The hydrostatic pressure has been reduced, but surface applied pressure 

on the annulus and on the drillpipe makes up for the losses. We can use this information to 

determine the formation pressure and therefore the weight of our kill mud required to 

balance and kill the well. 

Equation 4: Formation Pressure from the Drillpipe 

                                                   

Equation 5: Formation Pressure from the Annulus 

                                                 

As the mud in the annulus contains a mixture of mud, cuttings and formation fluid, it will be 

impossible to be able to determine the formation pressure from Equation 5. But since the 

drillpipe has clean mud with known density the formation pressure can be calculated.  

The kill mud has to produce a hydrostatic pressure equal to the formation pressure over a 

length equal to the TVD of the hole. We can also describe the kill mud weight as the original 

mud weight increased by an amount that will provide a hydrostatic pressure equal to the 

amount of the shut in drillpipe pressure, (SIDPP), over the vertical length of the hole, see 

Equation 6.  

Equation 6: Kill Mud Weight 

               
           

             
                    

In the next two chapters, two kill methods will be discussed; Driller’s Method and Wait & 

Weight Method, (W&W Method). Both of these methods keep a constant BHP, and they 

only differ in the process of pumping the kill mud down into the well. (Aberdeen Drilling 

Schools & Well Control Training Centre, 2002) 
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8.1 Driller’s Method 

The Driller’s Method obtains well control with two separate circulations. The kick is 

circulated out of the hole using the existing mud weight, before circulating the well with the 

heavier kill mud. It is considered to be the simplest killing method, since it deals separately 

with the removal of the kick and the addition of kill mud. It also requires less arithmetic. 

 

Figure 7: Driller's Method, (Aberdeen Drilling Schools & Well Control Training Centre, 2002) 

Figure 7 and the following steps describe the Driller’s Method in detail: 

1. When the kick is detected, the well is shut in. 

2. The Shut-in Drillpipe Pressure, (SIDPP), and the Shut-in Casing Pressure, (SICP), are 

both recorded before the pumps are started. As the decreasing well pressure can 

lead cause more influx from the formation, this operation can be difficult. The choke 

needs to be opened slowly so the flow rate steadily reaches the Slow Circulation 

Rate, (SCR). 

3. The gas is being circulated out of the well, and the choke pressure should be equal to 

SICP at the start. As the gas expands towards the surface, the SICP value will reach its 

top value just before the kick reaches the surface, before decreasing to a value equal 

to SIDPP. 

4. By using Equation 6, the kill weight mud is calculated. 

5. As the drillpipe is filled with kill weight mud, SIDPP is reduced to zero. As the heavier 

mud will increase the friction pressure, the Initial Circulation Pressure, (ICP), will 

decrease to Final Circulation Pressure, (FCP). 

6. When the well has been filled with the heavy mud, the well is closed and SIDPP and 

SICP are controlled. If the well is killed, these values should be zero. If not, then: 
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a. There may be trapped pressure in the well 

b. There may be an additional influx remaining in the well 

c. There may not be dense enough kill weight fluid in the well 

(Erikson, 2011) 

 

Figure 8: Circulating out kick, Driller's Method, (Aberdeen Drilling Schools & Well Control Training 
Centre, 2002) 

The circulating and annular pressure has been illustrated in Figure 8. For the first circulation, 

we can see the circulating pressure is constant, before it decreases and stabilize at the FCP. 

The reason for this is that the heavier kill mud is replacing the lighter. The FCP is obtained as 

the kill mud reaches the bit.  

For the annular pressure, the gas is expanding as it travels towards the surface, hence the 

pressure is increased. As the gas is circulated out of the well at the surface the pressure 

decreases. When the kill mud is circulated into the well, the annular pressure is constant 

until the mud reaches the bit. As the mud travels from the bit to the surface, the pressure 

will decrease as the choke is opened to maintain FCP. 

(Aberdeen Drilling Schools & Well Control Training Centre, 2002) 
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8.2 Wait & Weight Method 

The Wait & Weight Method, (W&W Method), is also known as the Engineers Method. 

Compared to the Driller’s Method, the W&W Method, in theory, only needs one circulation 

to kill the well. As the well has been shut-in and the pressure is stabilized, the SIDPP is used 

to calculate the kill weight mud.  

As the mud is being pumped down the string, the choke is adjusted to reduce the drillpipe 

pressure. The static head of mud is balancing the formation pressure when the mud reaches 

the bit. When finalizing the circulation, the influx, drillpipe content and kill mud is being 

circulated to the surface, the drillpipe pressure is kept constant at the circulation pressure by 

choke adjustments.  

 

Figure 9: Wait and Weight Method, (Aberdeen Drilling Schools & Well Control Training Centre, 
2002) 

Figure 9 and the follow steps describe the W&W Method in detail: 

1. The kick is detected and the well is shut in. 

2. After determining the SIDPP and SICP, the kill mud weight should be calculated using 

Equation 6. As the calculations are being made, gas might migrate up the annulus 

causing an increase in the SICP, so attention needs to be paid to the monitors. 

3. When the kill mud is ready to be circulated, the pumps are brought up to speed 

reaching SCR, while the choke is being opened so that the casing pressure is 

maintained constant.  

4. When the kill weight mud reaches the bit, the drillpipe pressure is equal to the FCP. 

5. The kill weight mud is circulated to the surface while keeping a constant FCP. 
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6. After the kill mud has performed a circulation, the pumps are stopped and the well is 

shut in. Now, both the casing and drillpipe pressure should be zero. In not, the mud 

density was too low and another calculation and circulation has to be done. 

(Aberdeen Drilling Schools & Well Control Training Centre, 2002) 

 

Figure 10: Circulating out kick by the Wait & Weight Method, (Aberdeen Drilling Schools & Well 
Control Training Centre, 2002) 

Also for the W&W Method, Figure 10 shows the circulating and annular pressure when the 

kick is being circulated out of the well. As the kill mud is entering the drillstring, the 

circulating pressure is decreasing until it reaches the bit. It is then kept constant as long as 

the pump rate is constant. 

For the annulus, the pressure is increasing to a maximum during phase 1 and 2. As 

mentioned before, the pressure will be greatest as the influx reaches the surface due to 

expansion. As the kick is being circulated out of the hole the pressure decreases. The annular 
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pressure won’t reach zero until all of the lighter mud has been replaced by the kill weight 

mud. 

 

Comparison of the two methods will be discussed by showing to theory and results in 

chapter 12.   
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9 Kick tolerance 
‘Kick tolerance may be defined as the maximum kick size which can be tolerated without 

fracturing the previous casing shoe. Kick tolerance may also be defined in the terms of the 

maximum allowable pore pressure at next true depth, (TD), or maximum allowable mud 

weight which can be tolerated without fracturing the previous casing shoe.’ (Rabia, 2001) 

There are several variables affecting the kick tolerance; 

- Formation strength, fracture pressure or fracture gradient 

- Mud density or gradient 

- Gas influx density or gradient 

- Formation pore pressure, gradient or SIDPP 

- Drill string and wellbore geometries 

Listed in Table 1 is typical kick tolerance values shown. If the well cannot handle a kick size 

defined by the volumes specified, the last casing shoe has to set deeper. (Aberdeen Drilling 

Schools & Well Control Training Centre, 2002) 

Hole size (inch) Kick volume (bbl) 

6” and smaller 10-25 

8,5” 25-50 

12,25” 50-100 

17,5” 100-150 

23” 250 

Table 1: Typical values of kick tolerance, (Rabia, 2001) 
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10 Simulation 
As projects in the oil industry is heading towards deeper wells, higher temperatures and 

pressures, remote locations etc. it becomes more crucial to be able to foresee unwanted 

incidents that may occur during operations. When using a simulator in the well planning 

phase, it can help us eliminate unwanted well situations by analyzing and evaluate different 

scenarios.  

10.1 Drillbench kick 

The simulator used is made by the SPT Group. The software program is applicable for all 

conventional drilling operations and has several individual applications focusing on the 

challenges encountered regarding the different operations.  

‘The Dynamic Well Control application in Drillbench is a unique tool for engineering, decision 

making support and risk evaluation. The software is based on the R&D activities in 

multiphase flow modeling, laboratory and full scale experiments, and extensive verification. 

The simulator uses advanced mathematical models to simulate the flow process in the well.’ 

(SPT Group, 2012)  

Key features; 

- Well control procedures 

- Kick tolerance studies 

- Casing design 

- Design of surface equipment 

- Effect of well geometry, mud density etc. 

- Horizontal kicks 

- Well kill operations 
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Figure 11: User simulation interface, Kick module, (SPT Group, 2012) 

As shown in Figure 11, the simulator offers a user-friendly graphical interface, where the 

process can be monitored and actions can be done anytime during the simulation. (SPT 

Group, 2012) 

10.2 Simulation process 

The simulator has built-in samples which have been used for the simulations, see Appendix, 

1. Input parameters in simulator. Different simulations have been done for both OBM and 

WBM. The differences between soft- and hard shut-in have been examined and then both 

Driller’s Method and W&W Method have been simulated.  

When simulating the shut-in process, the procedure of the kick simulation is as followed: 

1. Start drilling 

2. When kick is detected shut of the pump 

3. Continue simulation. The simulation runs until the program register that the pump is 

shut down. 

4. Hard shut-in: Close BOP. The simulation runs until the program register that the BOP 

is closed.  

Soft shut-in: Open the choke and close the BOP. Close choke. 

5. Simulate until influx ends 

6. Open pump and choke 

7. Circulate the gas out of the well 
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When simulating the circulation methods, the simulator do the whole procedure 

automatically.  

W&W Method: 

1. Pre-kick circulation period 

2. Taking in kick 

3. Turning off pump 

4. Closing BOP 

5. Shut in time 

6. Opening choke 

7. Turning on pump 

8. Circulating out kick 

Driller’s Method 

1. Pre-kick circulation 

2. Taking in kick 

3. Turning off pump 

4. Closing BOP 

5. Shut in time 

6. Opening choke 

7. Turning on pump 

8. Circulating out kick 

9. Circulating kill mud  
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11 Results 
When simulating soft- and hard shut-in, parameters shown in Table 2 have been used: 

Rate of penetration 10,8 m/hr 

Pit alarm level 1,00 m3 

Pump rate 3000 l/min 

Circulation rate 600 l/min 

Circulation mode Constant bottomhole pressure 

Dynamic safety margin 10,00 bar 

Table 2: Simulation parameters, soft- & hard shut-in 

11.1 Soft Shut-In 

11.1.1 OBM 

 

Figure 12: Pit gain 

Figure 12 shows the pit gain. Since the choke is open when we close the BOP, a small portion 

of the drilling fluid will flow into the chokeline. We can see from the graph as the pump 

starts again, we have a small increase in the pit gain due to this mud volume. The gas will be 

compressed because of the hydrostatic pressure and some will be solved into the mud; we 

will therefore experience a decrease in the pit gain. As the pressure is sinking, the gas will 

expand hence more mud will be expelled from the well. The pit gain reaches a maximum 

value of 4,756m3. The kick is circulated out after 2 hours and 53 minutes. 
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Figure 13: Bottomhole pressure 

In Figure 13 the bottomhole pressure is illustrated. Due to the soft shut-in, the pressure will, 

after the kick is taken, vary before increasing as the well is shut in. To make sure we won’t 

experience more influx from the formation, the pressure is increased during the shut-in time 

of the well. During this period the pressure increases to 241,925 bars, and when the 

circulation starts the pressure is increased to 251,914 bars. 

 

Figure 14: Pump pressure 

The pump pressure is shown in Feil! Fant ikke referansekilden.. It is illustrating the force 

needed to make sure the mud is flowing through the well at wanted rate. When the gas 

enters the well the pressure will decrease; the gas is lighter then the mud expelled from the 

well, hence it will be easier for the pumps to maintain flow rate. When the gas is being 

circulated out of the well, the pressure is constant at a value of 34,230 bars. 
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Figure 15: Choke opening 

For the soft shut-in method, the coke is open when the BOP is closed. It is then closed to 

obtain a higher well pressure than formation pressure stopping formation fluid from 

entering the well. The choke opening varies to keep the bottomhole pressure constant 

during the circulation, Figure 15. 

 

Figure 16: Free gas 

To see how the gas behaves during its travel towards the surface, the illustration in Figure 16 

have been used. 5 different reference points have been chosen; 1800m, 1400m, 1000m, 

500m and 174m. At 1800 m we are at the bottom of the well, so here we can see how the 

gas flows freely into the well before it is affected by the pressure and type of mud. When the 

influx is stopped the pressure compresses the gas, and since we have OBM some of the gas 

will also mix into the mud. Due to this, the volume fraction decreases. When the gas reaches 

its bubble point, the gas will free itself from the mud increasing the free gas fraction. The 
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hydrostatic pressure is decreasing at the same time, and the gas will expand the closer it 

gets to the surface. In Figure 17 below, the dissolved gas mass fraction is shown.   

 

Figure 17: Dissolved gas 

11.1.2 WBM 

 

Figure 18: Pit gain 

Figure 18 illustrates the pit gain when we use WBM. We can clearly see the same trends and 

behavior as we did when we were using OBM. In comparison when we used OBM, we see 

that after we start to circulate the kick, the pit gain doesn’t decrease. This is due to the fact 

that the gas isn’t soluble with the WBM and is free at all times. We experience a maximum 

pit gain of 4,599m3, and the gas is circulated out after 2 hours and 39 minutes.  
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Figure 19: Choke pressure 

Figure 19 illustrates the choke pressure. As the gas flows upwards entering the chokeline, 

the pressure increases until it reaches the surface. Due to the gas expansion the mud above 

the kick will be expelled from the well, so the choke pressure needs to be increased in order 

to keep constant bottomhole pressure. Figure 20 below shows the choke opening. 

 

Figure 20: Choke opening 
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Figure 21: Free gas 

Even though we have WBM, we can see the same results for the free gas, Figure 21. Since 

the gas isn’t soluble in WBM, the volume fraction is larger compared to when we have OBM. 

The pressure is, nevertheless, compressing the gas in the deeper regions, before it expands 

due to the hydrostatic pressure reduction.  
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11.2 Hard Shut-In 

11.2.1 OBM 

 

Figure 22: Pit gain 

Figure 22 shows the pit gain when we use hard shut-in method. It is very similar to when we 

used the soft shut-in procedure; the gas is mixing with the OBM, hence decreasing the pit 

gain before expanding and separating from the drilling fluid. Again we have the maximum pit 

gain when the gas reaches the surface, 4,413m3. It takes 2 hours and 51 minutes to circulate 

the gas out of the well. 

 

Figure 23: Bottomhole pressure 

Figure 23 illustrates the bottomhole pressure. The pressure rises to a value of 242,042 bars 

during the shut-in time. As the kill mud is being circulated into the well, the pressure 

increases to 252,004 bars. 
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Figure 24: Pump pressure 

We see the same trends for hard shut-in as when we used soft shut-in, Figure 24. As the gas 

is circulated out of the well, the pressure is constant at 34,134 bars. 

 

Figure 25: Choke opening 

When we use the hard shut-in method, the choke isn’t opened until the circulation starts. 

When it is opened, it stabilizes, but has small high and lows. Since the gas is constantly 

expanding and separating from the mud, the choke opening varies to keep the bottomhole 

pressure constant, Figure 25. 
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Figure 26: Free gas 

When we use the hard shut-in method, we see the free gas volume fraction at 1400m and 

1000m are almost zero, Figure 26. The time we have free gas at the bottom is also shorter 

then when we used the soft shut-in method, resulting in a smaller kick. In Figure 27 below is 

the dissolved gas shown. 

 

Figure 27: Dissolved gas 
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11.2.2 WBM 

 

Figure 28: Pit gain 

Also for the hard shut-in method, we see similarities between WBM and OBM, Figure 28. 

The maximum pit gain is 4,287m3 and the time spent circulating out the gas is 2 hours and 38 

minutes. 

 

Figure 29: Choke pressure 

The choke pressure, Figure 29, increases until the gas reaches the surface. When the gas in 

the well is reduced, the pressure and opening is reduced until the gas has been fully 

circulated out. The choke opening is shown in Figure 30 below. 
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Figure 30: Choke opening 

 

Figure 31: Free gas 

Compared to the soft shut-in method the free gas volume fraction in the well is lower when 

we use the hard shut-in method, Figure 31.  
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11.3 Driller’s Method 

For the Driller’s Method, the parameters shown in Table 3: Simulation parameters, Driller's 

Method have been used: 

Pre-kick circulation 10,00 minutes 3000 l/min 

Kick intensity 0,01 bar/m  

Pit alarm level 1,00 m3  

Shut in period Until influx is stopped  

Circulation rate 600 l/min  

Kill mud circulation rate 600 l/min  

Dynamic safety margin 10,0 bar  

Static safety margin 4,0 bar  

Table 3: Simulation parameters, Driller's Method 

11.3.1 OBM 

 

Figure 32: Pit gain 

The pit gain is illustrated in Figure 32. In the simulator, a pre-kick circulation time of 10 

minutes have been set. When this is finished the kick is taken, increasing the pit gain to 

8,004m3. As explained before, the gas influences the pit gain. After 1 hour and 40 minutes 

the gas reaches the surface and the pit gain is at a value of 10,399m3. The gas has been 

circulated out of the well after 3 hours and 10 minutes. The kill mud has been circulated 

through the well after 6 hours and 42 minutes. 
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Figure 33: Choke opening 

The choke opening is shown in Figure 33. When the gas is being circulated out of the hole, 

the choke opening increases slightly until the gas reaches the surface. The opening is from 

here almost stabile until the gas has been circulated out. As the kill mud is pushed down 

towards the bit, the value is constant at 15,644%. To keep constant bottomhole pressure, 

the choke is opened as the kill mud is circulated up through the annulus. The heavier mud 

will increase the hydrostatic pressure, and the counter action is to increase the choke 

opening to a maximum value of 31,286%. 

 

 

Figure 34: Choke pressure 

When the well is closed in, the choke pressure is increased to a value of 42,895 bars, Figure 

34. When the circulation is started, the pressure is increasing and reaches a maximum value 

of 60,338 bars. The pressure is decreasing as the gas is being circulated out, and then 
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stabilizes as the kill mud is circulated down to the bit. Because of the pressure changes in the 

well described earlier, the choke pressure will continue to decrease until the kill mud has 

completed one circulation.  

 

 

Figure 35: Bottomhole pressure 

The bottomhole pressure is shown in Figure 35. After the pre-kick circulation is finished, the 

pressure drops as the gas enters the well. When the well is shut in the pressure is stabilized 

at 251,162 bars. When the circulation starts the pressure increases to 261.325 bars. This is 

the kept constant throughout the circulation of the kill mud. 

 

Figure 36: Pump pressure 

Figure 36 illustrates the pump pressure. The pressure is constant as the gas is being 

circulated out, 43,624 bars. After the gas has been circulated out the pump pressure 
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decreases, since the heavier mud is helping the pumps ‘pushing’ out the lighter drilling mud. 

The pump pressure is stabilized at 16,415 bars as the kill mud is pumped up the annulus. 

 

 

Figure 37: Gas flow rate out 

The gas flow rate is shown in Figure 37. After 100 minutes the gas starts to flow out of the 

well at the surface. The flowrate reaches a maximum value of 0,874m3/s. 

 

Figure 38: Mud flow rate 

When the formation fluid enters the well, we see a large increase in the mud flowrate out of 

the well before it is closed, Figure 38. When the kick is being circulated, the flowrate out is 

increasing and above the mudflow in, due to the expansion and separation of the gas from 

the OBM. 
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Figure 39: Free gas 

The free gas in the well has been illustrated in Figure 39, and the dissolved gas is shown in 

Figure 40 below.  

 

Figure 40: Dissolved gas 
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Figure 41: Pressure at observation points 

From Figure 41 we can see how the pressure varies in the well at our observation points. The 

depths of the points are 174m, 500m, 1000m, 1400m and 1800m. At 1800 meters, the 

pressure is the same as the bottomhole pressure. When the gas has passed our point of 

interest, the pressures keeps stabile during the circulating of the gas. When the kill mud 

reaches the bit, the pressures starts to decrease, then once again stabilize as it passes our 

observation points 

11.3.2 WBM 

 

Figure 42: Pit gain 

Compared to when using OBM, the shut-in time of the well when using WBM is very short, 

Figure 42. The pit gain has a value of 3,44m3 when the well is being shut in. After 54 minutes 

the gas reaches the surface increasing the pit gain to 7,801m3. After 2 hours and 35 minutes 
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the gas has been removed from the well. The kill mud has been circulated through the well 

after 6 hours and 11 minutes. 

 

Figure 43: Choke opening 

Again, when the gas is being circulated the choke opening increases to keep the bottomhole 

pressure constant, but after the gas reaches the surface, the opening is reduced more linear 

than with OBM, Figure 43. It stabilizes at 15,644% and increase to 47,738% as the kill mud 

reaches the surface. 

 

Figure 44: Choke pressure 

The choke pressure at closure of the well is 43,224 bars, Figure 44. It increases until the gas 

reaches the surface, gaining a maximum value of 53,968 bars. From here on it decreases 

until the kill mud is being pumped into the well. When the kill mud is at the bottom, the 

choke pressure is reduced due to the choke opening is increased.  
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Figure 45: Bottomhole pressure 

Due to the short shut-in time when using WBM, the pressure is increasing rapidly after the 

kick detection, Figure 45. The pressure rises to 252,961 bars during the shut-in time, before 

stabilizing at 263,181 bars. 

 

Figure 46: Pump pressure 

The pump pressure is very similar when using WBM as it were when we used OBM, Figure 

46. When the circulation starts the pressure stabilize at 44,002 bars, before decreasing to 

15,260 bars where it is kept constant during until the end of the simulation. 
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Figure 47: Gas flow rate out 

After 54 minutes the gas reaches the surface, flowing out with a maximum value of 

0,819m3/s, Figure 47.  

 

Figure 48: Mud flowrate 

From the mud flow rate in Figure 48 we see how the mud rate is in correlation with the gas 

flow rate. After the kick is being circulated the mud out increases due to the gas expansion. 

When the gas reaches the surface most of the flow out of the well is the gas, hence the mud 

flow is reduced until the gas is fully circulated out of the well. 
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Figure 49: Free gas 

The free gas in the well is illustrated in Figure 49. 

 

Figure 50: Pressure at observation points 

The pressures at our observation points are shown in Figure 50.  
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11.4 Wait & Weight Method 

For the W&W Method, the parameters shown in Table 4 have been used: 

Pre-kick circulation 10,00 minutes 3000 l/min 

Kick intensity 0,01 bar/m  

Pit alarm level 1,00 m3  

Shut in period Until influx is stopped  

Circulation rate 600 l/min  

Static safety margin 10,0 bar  

Table 4: Simulation parameters, W&W Method 

11.4.1 OBM 

 

Figure 51: Pit gain 

Until the circulation of the kick starts, we have the same results as for the Driller’s Method; 

pit gain has a value of 8,044m3, Figure 51. The gas is circulated out by circulating the kill mud 

from the start, and after 1 hours and 41 minutes the gas reaches the surface. The pit gain 

has now increased to 10,523m3. The gas has been circulated out after 3 hours and 12 

minutes.  
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Figure 52: Choke opening 

Figure 52 shows the choke opening. The choke remains closed at all times until the kick is 

due to be circulated out of the well. When the kill mud is being circulated, the choke is 

opened and stabilizes at an opening value around 14%. We can see again when we have 

OBM how the choke opening varies during the circulation. 

 

Figure 53: Choke pressure 

Figure 53 shows the choke pressure. As the well is shut in, the pressure increases to a value 

of 42,895 bars. During the close in time the pressure stabilize, before increasing to 52,052 

bars when the choke is opened and the kill mud is being circulated. The choke pressure 

reaches its maximum when the gas reaches the surface, 60,312 bars. From this point, the 

pressure in the choke reduces until the kick has been circulated out of the well. 
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Figure 54: Bottomhole pressure 

From Figure 54 we can see the bottomhole pressure development. We see the difference 

from the Driller’s Method when we start the circulation as explained earlier. The pressure is 

stabile at a value of 266,032 bars until the kill mud reaches the bit and the pressure drops 

down to 265,616 bars. 

 

Figure 55: Pump pressure 

As the gas flows into the well, the pressure falls to around 25 bars, Figure 55. When the 

circulation starts, the pump pressure is increased to 45,068 bars. We have a steady decline 

in the pressure as the kill mud is being circulated down to the bit, before it stabilizes at 

14,779 bars.  
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Figure 56: Gas flow rate out 

Figure 56 shows the gas flow rate out of the well. The gas starts to flow out of the well after 

100 minutes, reaching a maximum flow rate of 0,925m3/s. We notice the small peaks in the 

graph; the gas is constantly separated from the mud increasing the flow rate out of the well.  

 

Figure 57: Mud flowrate 

From Figure 57, we can see how the mud flowrate increases as the formation fluid flows into 

the well for a short period before the well is shut in. When the well is opened for circulation, 

we see the mud flow out is greater than the flow in, as the gas is expanding when travelling 

towards the surface. As the kick is being circulated out, the mud flowrate falls below the 

flowrate in, as a percentage of the expelled fluid is gas.   
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Figure 58: Free gas 

The free gas in the well has been illustrated in Figure 58, and the dissolved gas is shown in 

Figure 59 below.   
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Figure 59: Dissolved gas 

 

Figure 60: Pressure at observation points 

Figure 60 shows pressures at five fixed observation points. As the influx flows in at the 

bottom of the well, the gas will decrease the pressure at the bottom, but increase the 

pressure in nearby areas in the well. As the BOP is closed, the pressure throughout the well 

will stabilize as the influx is stopped due to the pressure increase during the shut-in time. As 

the well is opened and the kill mud is being circulated, the well pressure increases. When the 

kill mud reaches the observation points, the pressure at the respective points stabilize.  
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11.4.2 WBM 

 
Figure 61: Pit gain 

The pit gain at the shut-in time is 3,44m3, and after 56 minutes the gas reaches the surface 

at a pit gain value of 7,379m3. The kick has been circulated out of the well after 2 hours and 

42 minutes, Figure 61. 

 

Figure 62: Choke opening 

Figure 62 shows the choke opening. As the kill mud is being circulated the choke opening 

slightly increase from around 15% opening until the gas reaches the surface and it reaches a 

maximum of 20,673%. As the gas is being pumped out of the well by the kill mud, the choke 

opening increases until the kick has been circulated out.  
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Figure 63: Choke pressure 

The choke pressure is shown in Figure 63. As the well is shut in, the pressure increases to a 

value of 32,877 bars. Due to the short shut-in time of the well, the pressure increases to a 

value of 50,677 bars as the choke is opened and the pumps start to circulate the kill mud. As 

the kick reaches the surface, the choke pressure reaches the maximum value of 58,937 bars. 

The pressure then steadily decreases until the gas has been circulated out of the well.  

 

Figure 64: Bottomhole pressure 

The pressure rises to 250,339 bars during the shut-in time, before rising to 265,467 bars. As 

the kill mud is pumped down towards the bit the pressure is slightly increasing, but when it 

reaches the bottom of the well, the pressure is constant at 266,071 bars, Figure 64. 
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Figure 65: Pump pressure 

The pump pressure is shown in Figure 65. As the kill mud circulation starts, the pump 

pressure reaches a value of 49,176 bars, before decreasing to a stabile value of 15,382 bars. 

 

Figure 66: Gas flowrate 

Figure 66 illustrates the gas flow rate out of the well. After 56 minutes, the gas starts to flow 

out of the well, with a maximum rate of 0,826m3/s. 



 

58 
 

 

Figure 67: Mud flowrate 

After 10 minutes, the mud flowrate out increases as the kick enters the well, Figure 67. 

When the well is opened after the shut-in time the mud rate increases as the gas expands 

due to the pressure reduction in the annulus. The flow rate is reduced as the gas reaches the 

surface.  

 

Figure 68: Free gas 

The free gas in the well is illustrated in Figure 68. 
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Figure 69: Pressure at observation points 

Figure 69 shows us again the pressures at our observation points. When we experience the 

kick, the pressure at 174 meters is not affected, but as the well is shut-in the pressure at all 

of our observation point’s increase. As we saw when we used OBM, also here the pressure 

stabilizes after the kill mud has past our points of interests. 
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12 Discussion 

12.1 Soft vs. Hard shut-in 

In Table 5 and Table 6 results from the simulation is shown. 

 Soft shut-in Hard shut-in 

Max pit gain [m3] 4,756 4,413 
Max bottomhole pressure [bar] 251,914 251,818 
Max pressure casing shoe [bar] 207,636 206,895 
Total influx [kg] 871,977 805,084 
Total simulation time 2 hours & 53 minutes 2 hours & 51 minutes 

Table 5: Soft vs. Hard shut in, OBM 

 Soft shut-in Hard shut-in 

Max pit gain [m3] 4,599 4,287 
Max bottomhole pressure [bar] 252,342 252,536 
Max pressure casing shoe [bar] 205,175 205,068 
Total influx [kg] 375,297 345,701 
Total simulation time 2 hours & 39 minutes 2 hours & 38 minutes 

Table 6: Soft vs. Hard shut-in, WBM 

Before choosing which shut-in method to use, there are different issues and problems one 

needs to be aware of. Both contractors and operators may have different procedures dealing 

with kicks, and it is important before any drilling operation to have a clear set of rules and 

procedures if anything happens.  

Creating an underground blowout due to a pressure pulse, or water hammer, is one of the 

main concerns when using the hard shut-in method. When the well is shut-in, the rapid 

closure of the pipes can generate a pressure wave which propagates through liquids in pipes 

and pipe networks.  

Rapid closure of the BOP in a flowing well causes a pressure wave propagating down the 

well. The pressure rise, ΔP, when instant closure causes the flow to stop is: 

Equation 7: Pressure rise 

          

Where ρ is the mud density, c is the wave speed and u1 is the initial mud velocity. Obviously, 

if the choke is open, the pressure jump is reduced. Though in reality, the BOP isn’t closed 

immediately; it is expected that the pressure wave amplitude will be reduced significantly if 

the effective BOP closing time exceeds the travelling wave round trip. This is due to the 

upward reflected pressure wave and can be assumed applicable for most field situations. 

However, there is a chance to obtain BOP closure where the effective pressure drop occurs 

on a short time scale compared to the wave round trip, so if this is the case there will be 

produced a water hammer pulse.  
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Because of this, some operators choose to use the soft shut-in method. The major 

disadvantage with the soft shut-in method is the time spent closing in the kick. This in turn 

will lead to a larger influx volume entering the well. Due to this, we might end up with a 

higher casing pressure than with the hard shut-in method. The soft shut-in method is also 

more complex due to the requirement of ensuring valve alignment before closing BOP. 

(Jardine, Johnson, White, & Stibbs, 1993) 

From the simulation results we can clearly see differences between the soft- and hard shut-

in method. The soft shut-in allows more influx into the well since the choke is open when the 

BOP is closed, allowing more gas to flow into the annulus before the well pressure is above 

the reservoir pressure. The soft shut-in results, due to the higher reservoir influx, in both 

higher choke pressure and casing shoe pressure.  

Looking at the results, we can also draw conclusions regarding the use of OBM or WBM. As 

described in chapter 7, the two types will react different when formation fluid enters the 

well. The total pit gain is of much larger size when using OBM for both the shut-in methods. 

This can be explained by the solubility of gas into the drilling mud. As the gas is mixed with 

the mud, the volume is ‘hidden’ until the bubble point for the gas is reached. It will then 

separate, and make an impact on the measurements on the surface. But again, described in 

chapter 7, the OBM can withstand high temperatures, it doesn’t react with clay causing clay 

instability, the mud cake created is thin thus preventing stuck pipe, and it is a good lubricant, 

hence reducing the drilling torque. 

These results all favor the hard shut-in; the formation is exposed to lower net pressure, we 

experience less influx volume, the annular pressure is lower and the safety towards 

personnel and equipment is maintained without risk to the well. 

12.2 Driller’s Method vs. W&W Method 

In Table 7 and Table 8 results from the simulation is shown. 

W&W Method WBM OBM 

Max pit gain [m3] 7,379 10,523 
Max bottomhole pressure [bar] 270,833 266,426 
Max pressure casing shoe [bar] 227,506 224,878 
Total influx [kg] 758,129 2095,111 
Total simulation time 2 hours & 42 minutes 3 hours & 12 minutes 
Calculated simulation time 3 hours & 26 minutes 3 hours & 54 minutes 

Table 7: W&W Method results 

Driller’s Method WBM OBM 

Max pit gain [m3] 7,801 10,399 
Max bottomhole pressure [bar] 263,180 261,324 
Max pressure casing shoe [bar] 220,081 223,462 
Total influx [kg] 758,129 2095,111 
Total simulation time 6 hours & 11 minutes 6 hours & 42 minutes 

Table 8: Driller's Method results 
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Comment to the simulator: This is an ideal environment where nothing goes wrong, and the 

simulation procedures start without any pauses or human errors. 

Comment to the W&W Method results: The simulator stops simulating as soon as the gas 

has been circulated out of the hole. The calculated simulation time has been found by 

extracting the mud front position graph till it reaches the surface. The graph is linear since 

we have a constant pump rate, but a small deviation from the ‘true’ simulation time must be 

taken into consideration. 

 

There are still discussions regarding which of the circulation methods are best. The basic 

principle for both of the methods is to keep a constant bottomhole pressure while 

circulating out the gas. Regarding the oil industry, organizations or companies can adapt one 

of the well control methods, leading to a well known understanding of procedures, avoiding 

confusions that may lead to catastrophic events.  

There are several situations we may encounter when drilling wells and the circulation 

methods have both advantages and disadvantages regarding the type and geometry of the 

well.  

When drilling, we may come across areas with significant hole instability problems. The 

drillstring can get stuck if it is left standing still with no mud circulation due to pack-off 

problems. If it is decided to use the W&W Method, the time spent mixing the kill mud may 

cause problems due to the non-circulation time. For the Driller’s Method this problem is 

solved as the circulation starts as soon as the SIDPP or SICP are stabilized, reducing the non-

circulation time to a minimum. 

When drilling deepwater wells, the low temperature increase the possibility of hydrates 

forming in the BOP’s or choke/kill lines. Again we see how the non-circulating time when 

using the W&W Method can cause problems due to more favorable hydrate forming 

conditions.  

When the gas reaches the surface the casing pressure is at its maximum. At the same time, 

the gas flow rate out of the well peaks. When using W&W Method, the maximum casing 

pressure and gas flow rate will be lower, compared to the Driller’s Method, as long as the kill 

mud enters the annulus before the gas reaches the surface.  

 

From Table 7 and Table 8 we can see the most significant difference between the two 

methods is the simulation time. The Driller’s Method has two separate circulations, 

compared to the W&W Method which only needs, in theory, one circulation. Other factors 

need to be evaluated though; the time to mix the sufficient kill weight mud may not reduce 

the circulation time as wanted. Another thing to keep in mind regarding W&W Method is 
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that one circulation might not be enough. There can be gas remaining in high pockets of the 

well and poor hole cleaning together with bad mud properties can cause problems.  

When we use the W&W Method in the simulator, we experience a higher bottomhole 

pressure for both OBM and WBM. If the pressure exceeds the fracture pressure it can cause 

damage to the formation and loss of mud hence reducing the hydrostatic pressure and loss 

of primary well control. 

When the gas reaches the casing shoe, this often tends to maximize the pressure at this 

point. When circulating the gas the hydrostatic pressure in the well will decrease due to the 

gas expansion, and to keep constant bottomhole pressure the casing pressure will increase 

to balance the hydrostatic pressure loss. When the gas passes the casing shoe, the 

hydrostatic pressure in the open hole will increase because new mud is being pumped into 

the annulus and the casing shoe pressure will be reduced. As the circulation continues and 

the gas is over the shoe, the pressure will be kept at the same value since the hydrostatic 

pressure in the open hole is constant. 

The casing shoe pressure can be reduced when using the W&W Method if the kill mud 

enters the annulus before the top of the bubble is at the shoe. If this is to happen, the 

drillstring volume has to be less than the open-hole volume minus the bubble size at the 

shoe. 

Another factor affecting the shoe pressure is gas migration. While waiting for the kill mud to 

be mixed, the gas might migrate upwards in the annulus. When controlling bottomhole 

pressure before pumping, applications of surface pressure safety factors can be used. These 

procedures can exceed the benefit an early kill mud delivery to an open hole is intended to 

provide.  

 

The results obtained have shown both advantages and disadvantages with shut-in- and 

circulation methods. By the use of simulators we can gain knowledge of dangers and 

outcomes before they happen. It is important to use these types of tool in the training of rig 

personnel, both before and as they are working on rigs. Well control is of great importance, 

and the new drilling era the oil industry is heading towards need more advanced techniques 

and higher competence regarding well control situations. Even though these are well 

documented facts, the use of standard well control preparations, i.e. kill sheets and SCR’s, 

must be continued by the rig crew during drilling operations. Clear instructions and 

procedures about which methods to use before a drilling operation begins is a must. 

Together with good communication and understanding between the crew members and 

involved parties regarding procedures and routines the drilling operations will favor 

everybody. 

(Roy, Nini, Sonnemann, & Gillis, 2007)  
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Nomenclature 
APL - Annular Pressure Loss 
BHA - Bottomhole Assembly 
BHP - Bottomhole pressure 
BOP - Blowout Preventer 
ECD - Equivalent Circulating Density 
FCP - Final Circulation Pressure 
ICP - Initial Circulation Pressure 
ID - Inner Diameter 
IOEM - Invert Oil Emulsion Fluids 
OBM - Oil Based Mud 
OD - Outer Diameter 
SCR - Slow Circulation Rate 
SICP - Shut In Casing Pressure 
SIDPP - Shut In Drillpipe Pressure 
TD - True Depth 
TVD - True Vertical Depth 
WBM - Water Based Mud 

W&W - Wait and Weight 
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Appendix 

1. Input parameters in simulator 

Soft- & hard shut-in, WBM 

Survey section    

MD [m] Inclination [deg] Azimuth [deg ] Vertical depth [m] 

0 0 0 0 

1000 10,00 0 994,931 

1100 20,00 0 1091,401 

1500 10,00 0 1477,281 

1700 5,00 0 1675,507 

 

Riser    

 Length[m] ID [in] OD [in] 

21” Riser 174,00 19,00 21,00 

 

Casing program     

 Hanger depth [m] Setting depth [m] ID [in] OD [in] 

13 5/8 Q125 88.2 lbs/ft 174,00 1400,00 12,374 13,626 

 

String     

Component Type Section length 
[m] 

ID [in] OD [in] 

DC 8” NC 56-80 Drill collar 175,00 3,000 8,000 

DP 6 5/8”  Drill pipe 1625,00 5,965 6,626 

 

Bit OD [in] Bit nozzles [1/32 in] 

12 ¼ TriCone 12,252 3*18 + 1*16 

 

Surface equipment 

 Length [m] ID [in] Duration of 
closure [min] 

Pressure after 
choke [bar] 

Chokeline 174,00 3,642 0,17 1 

 Liquid pump rate 
change 
[USGal/min2] 

Volumetric 
output [l/stroke] 

Delay until pump 
shutdown [min] 

 

Pump 792,20 15,00 0,17  

 Duration of 
closure [min] 

Delay until BOP 
closure [min] 

  

BOP 0,25 0,17   
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Fracture pressure 

Measured 
depth [m] 

Vertical depth 
[m] 

Fracture 
pressure 
gradient 
[bar/m] 

Fracture 
pressure [bar] 

Initiation 
pressure [bar] 

Closing 
pressure [bar] 

1400,00 1379,21 0,1624 225,0 247,2 188,8 

 

 Base oil density 
[sg] 

Solids density [sg] Density [sg] Oil/water ratio 

OBM 0,875 4,2001 1,30 0/100 

 

Lithology 

 Top [m] Bottom [m] Flow model Top pressure 
[bar] 

Temperature 
[Kelvin] 

Reservoir 1800,00 1810,00 Reservoir model 242,0 330,85 

 

Soft- & hard shut-in, OBM 

Survey section    

MD [m] Inclination [deg] Azimuth [deg ] Vertical depth [m] 

0 0 0 0 

1000 10,00 0 994,931 

1100 20,00 0 1091,401 

1500 10,00 0 1477,281 

1700 5,00 0 1675,507 

 

Riser    

 Length[m] ID [in] OD [in] 

21” Riser 174,00 19,00 21,00 

 

Casing program     

 Hanger depth [m] Setting depth [m] ID [in] OD [in] 

13 3/8 P110 61.0 lbs/ft 174,00 1400,00 12,516 13,374 

 

String     

Component Type Section length 
[m] 

ID [in] OD [in] 

DC 8” NC 56-80 Drill collar 175,00 3,000 8,000 

DP 6 5/8”  Drill pipe 1625,00 5,902 6,626 

 

Bit OD [in] Bit nozzles [1/32 in] 

12 ¼ TriCone 12,252 3*18 + 1*16 
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Surface equipment 

 Length [m] ID [in] Duration of 
closure [min] 

Pressure after 
choke [bar] 

Chokeline 174,00 3,642 0,17 1 

 Liquid pump rate 
change 
[USGal/min2] 

Volumetric 
output [l/stroke] 

Delay until pump 
shutdown [min] 

 

Pump 528,77 15,00 0,17  

 Duration of 
closure [min] 

Delay until BOP 
closure [min] 

  

BOP 0,25 0,17   

 

Fracture pressure 

Measured 
depth [m] 

Vertical depth 
[m] 

Fracture 
pressure 
gradient 
[bar/m] 

Fracture 
pressure [bar] 

Initiation 
pressure [bar] 

Closing 
pressure [bar] 

1400,00 1379,21 0,1697 235,0 247,2 188,8 

 

 Base oil density 
[sg] 

Solids density [sg] Density [sg] Oil/water ratio 

OBM 0,875 4,2001 1,30 80/20 

 

Lithology 

 Top [m] Bottom [m] Flow model Top pressure 
[bar] 

Temperature 
[Kelvin] 

Reservoir 1800,00 1810,00 Reservoir 
model 

242,0 330,85 

 

Driller’s Method & W&W Method, OBM 

Survey section    

MD [m] Inclination [deg] Azimuth [deg ] Vertical depth [m] 

0 0 0 0 

1000 10,00 0 994,931 

1100 20,00 0 1091,401 

1500 10,00 0 1477,281 

1700 5,00 0 1675,507 

 

Riser    

 Length[m] ID [in] OD [in] 

21” Riser 174,00 19,00 21,00 

 



 

4 
 

Casing program     

 Hanger depth [m] Setting depth [m] ID [in] OD [in] 

13 3/8 P110 61.0 lbs/ft 174,00 1400,00 12,516 13,374 

 

String     

Component Type Section length 
[m] 

ID [in] OD [in] 

DC 8” NC 56-80 Drill collar 175,00 3,000 8,000 

DP 6 5/8”  Drill pipe 1625,00 5,902 6,626 

 

Bit OD [in] Bit nozzles [1/32 in] 

12 ¼ TriCone 12,252 3*18 + 1*16 

 

Surface equipment 

 Length [m] ID [in] Duration of 
closure [min] 

Pressure after 
choke [bar] 

Chokeline 174,00 3,642 0,17 1 

 Liquid pump rate 
change 
[USGal/min2] 

Volumetric 
output [l/stroke] 

Delay until pump 
shutdown [min] 

 

Pump 528,77 15,00 0,17  

 Duration of 
closure [min] 

Delay until BOP 
closure [min] 

  

BOP 0,25 0,17   

 

Fracture pressure 

Measured 
depth [m] 

Vertical depth 
[m] 

Fracture 
pressure 
gradient 
[bar/m] 

Fracture 
pressure [bar] 

Initiation 
pressure [bar] 

Closing 
pressure [bar] 

1400,00 1379,21 0,1697 235,0 247,2 188,8 

 

 Base oil density 
[sg] 

Solids density [sg] Density [sg] Oil/water ratio 

OBM 0,875 4,2001 1,30 80/20 

 

Lithology 

 Top [m] Bottom [m] Flow model Top pressure 
[bar] 

Temperature 
[Kelvin] 

Reservoir 1800,00 1810,00 Reservoir 
model 

242,0 330,85 
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Driller’s method & W&W Method, WBM 

Survey section    

MD [m] Inclination [deg] Azimuth [deg ] Vertical depth [m] 

0 0 0 0 

1000 10,00 0 994,931 

1100 20,00 0 1091,401 

1500 10,00 0 1477,281 

1700 5,00 0 1675,507 

 

Riser    

 Length[m] ID [in] OD [in] 

21” Riser 174,00 19,00 21,00 

 

Casing program     

 Hanger depth [m] Setting depth [m] ID [in] OD [in] 

13 5/8 Q125 88,2 lbs/ft 174,00 1400,00 12,374 13,626 

 

String     

Component Type Section length 
[m] 

ID [in] OD [in] 

DC 8” NC 56-80 Drill collar 175,00 3,000 8,000 

DP 6 5/8”  Drill pipe 1625,00 5,965 6,626 

 

Bit OD [in] Bit nozzles [1/32 in] 

12 ¼ TriCone 12,252 3*18 + 1*16 

 

Surface equipment 

 Length [m] ID [in] Duration of 
closure [min] 

Pressure after 
choke [bar] 

Chokeline 174,00 3,642 0,17 1 

 Liquid pump rate 
change 
[USGal/min2] 

Volumetric 
output [l/stroke] 

Delay until pump 
shutdown [min] 

 

Pump 792,20 15,00 0,17  

 Duration of 
closure [min] 

Delay until BOP 
closure [min] 

  

BOP 0,25 0,17   
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Fracture pressure 

Measured 
depth [m] 

Vertical depth 
[m] 

Fracture 
pressure 
gradient 
[bar/m] 

Fracture 
pressure [bar] 

Initiation 
pressure [bar] 

Closing 
pressure [bar] 

1400,00 1379,21 0,1624 228,0 247,2 188,8 

 

 Base oil density 
[sg] 

Solids density [sg] Density [sg] Oil/water ratio 

WBM 0,875 4,2001 1,30 0/100 

 

Lithology 

 Top [m] Bottom [m] Flow model Top pressure 
[bar] 

Temperature 
[Kelvin] 

Reservoir 1800,00 1810,00 Reservoir 
model 

242,0 330,85 
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