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Abstract

T HE WORK PRESENTED in this thesis attempts to improve our funda-
mental understanding of the interfacial properties of water drops in

crude-oil. Model fluids consisting of aliphatic oil with surfactants, as well
as real crude components such as asphaltenes, are considered. The case of a
single drop being deformed, either by an electric field or by a needle deflating
the drop, is studied in detail using simulations. Close comparisons with
experiments are made, in order to increase confidence in the simulations
as a faithful representation of the physical world. Combining methods
at different scales, namely the molecular and the continuum, a simple but
effective multi-scale method is developed to predict and explain the behaviour
of drops with complex interfaces, e.g. water drops in oil covered with
asphaltenes.

The first part of this study concerns systems with a deforming drop
of water in a model oil with surfactant, where one has a more-or-less
complete understanding of the physics and chemistry. These systems are
studied in detail using computational fluid dynamics simulations, and direct
comparison with experiments is performed. The effect of surfactants on
the transient deformation of drops, and in particular on the damping of
oscillations, is studied here for the first time. To enable future studies of larger
systems with several drops interacting, a 3D parallel version of the code has
been developed using a domain decomposition approach. The case of a single
falling drop in the presence of surfactants is also considered with a theoretical
approach, and exact solutions are obtained for this system.

The second part is the multiscale simulations of systems with a
water drop in crude oil. The developed multiscale method consists of
coarse-grained molecular dynamics simulations, using the SAFT-γ Mie
approach, which are used to provide interfacial properties for the continuum
simulations. At the continuum scale, a novel hybrid level-set/ghost-
fluid/immersed-boundary method has been developed for the simulation
of complex fluid-fluid interfaces. Together, these approaches enable a direct
link between the chemical composition of the crude oil and the interfacial
properties. The molecular structure of crude oil components, and its effect
on interfacial properties, is still under debate in the literature. The simulation
approach developed here will enable detailed hypothesis testing, which may
help settle the debate. A configuration of particular interest in this context is
the “crumpling drop”, a phenomenon observed when a water drop in crude
oil is drained by means of a pipette. This system is simulated, and good
agreement is found with experiments reported in the literature.

For the coarse-grained molecular dynamics approach used in the
multiscale approach, namely the SAFT-γ Mie force field, two computational
tools have been developed. They are called Bottled SAFT and raaSAFT.
Together they provide an unprecedented ease-of-use for obtaining models
for molecular simulation and for setting up and running these simula-
tions.
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CHAPTER 1
Introduction

§1.1 A brief history of the electrocoalescer

T HE ELECTROCOALESCER is a device used on- or offshore to
separate water from crude oil. When oil is extracted from

a reservoir, it usually comes together with water, either naturally
occurring or injected in order to increase reservoir pressure. When
this mixture flows to the surface, it passes reservoir formations and/or
pressure reduction valves where the flow is highly turbulent. This flow
forms an emulsion, much like the flow around a whisk may form an
emulsion of molten chocolate and hot cream in our kitchen. The oil-
water emulsion consists of water drops, typically ∼10 micrometres
in diameter, dispersed throughout the oil. These drops fall very
slowly through the viscous oil, and their interfaces may be stiffened by
some components of the oil, for instance molecules called asphaltenes.
These effects make it hard to remove the water from the oil.

To speed up the separation, several techniques are available. One
is to apply an electric field, as in the electrocoalescer, seen in Figure 1.1.

FIGURE 1.1: The author’s
impression of a three-phase
separator with an inline
electrocoalescer. Fluid flows
in from the left; gas rises and
goes out to the right. Oil and
water separate partially, with a
brown emulsion layer. The
applied electric field enhances
separation of this layer. Oil
and water are held apart by a
plate, and go out through
pipes at the bottom.

1
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Other techniques include heat-treating the emulsion, adding chemicals
to it, centrifugal devices etc. Applying an electric field induces a
dipole in all the tiny emulsion drops, which causes an attractive force
between them. As the drops coalesce, they become bigger and fall
much faster to the bottom where they separate into a clear water layer.
But this is not the only working mechanism of the electrocoalescer;
it also accelerates the very slow film drainage that may be blocking
coalescence of even very close drops.

The history of the electrocoalescer, as well as the history of the
chemical additives used to enhance separation, begins around 1905.
At the time, the oil boom had spread across the United States. Most
oil was very easy to produce, giving us the stereotypical image of the
oil well gushing a wide black stream into the air. But some oil was
problematic even then. Nicknamed “roily oil”, it was a brown sludgeEmulsions produced

in the ocean after oil
spills have earned the
nickname “chocolate
mousse” from clean
up workers.

that left hopeful oil producers disappointed. One quickly discovered
that the product was a mixture of oil and water, so a strategy was
devised to recover the oil within: the emulsion was pumped into big
trenches and left to sit there. Producers waited months for the mixture
to separate, but alas, nothing of the sort was to occur. In the end, the
emulsion was simply led out into nearby creeks and discharged into
the environment, or it was burned on-site. A photograph of a pool
of oil, believed to be an emulsion, is shown in Figure 1.2. This photo
is from Glenn Pool oilfield, which was among the more problematic
wells in the US.

The revolution came in two forms, the electrocoalescer and the
chemical demulsifiers. On the west coast of the US, Dr. James B.

FIGURE 1.2: A pool of oil
collected on the ground.

Believed to be an emulsion.
Postcard from Glenn Pool oil

field, Oklahoma, c. 1907.
(Postcard purchased and

scanned by the author; in
public domain due to age.)
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Cottrell and Frederick “Buckner” Speed invented the electrocoalescer.
The moment of invention is recounted by Speed [1] as inspired
by Cottrell’s work on removing smelter smoke from the air by
electrostatic means. Speed brought up the topic of removing water
from oil, and Cottrell replied:

“Why, it’s the same problem. For air put oil; for smoke
particles, the minute water particles,” and then his favourite
form of expression: “What will happen if we put a high
electrostatic stress on the oil?” Then in his characteristic
quick manner, in a few minutes there were thrown together
a beaker of oil, a spark coil, and two pieces of copper,
and lo, the de-emulsification of the California oils had been
solved. (Buckner Speed)

Their 1911 patent [2] is also an interesting read, particularly in how
similar it is to modern day introductions to papers on the topic. In
Figure 1.3 an extract from the drawings in the patent is shown, and
again the similarity to modern equipment is interesting. We quote
here from the patent introduction [2]:

FIGURE 1.3: The
first electrocoalescer
design. A voltage
is applied between
two concentric pipes
through which the oil
flows. (From [2].)

Much of the crude petroleum as it comes from the wells
contains drops of water (. . . ). In some cases this water
settles out upon standing (. . . ). But, at present, there still
remains a large class of oils that cannot be economically
freed from water without distillation. These are largely oils
in which the water is in very small globules often less than
one thousandth of an inch in diameter and behaving as if
surrounded with a membrane resisting coalescence of the
drops. (James Cottrell and Buckner Speed)

In 1910, Allen Wright, working with Cottrell and Speed, formed the
Petroleum Rectifying Corporation of California (PETRECO). By
1922 the company had 417 electrocoalescers in operation [3].

Meanwhile, on the other side of the country, a chemist named
William S. Barnickel was working on the same problem. Visiting the
Glenn Pool oil field (Figure 1.2) in 1907, and other fields in the area,
he witnessed the destruction of the problematic oil [4]:

At night (. . . ) bright plumes of fire spewed from the
ground, their intensity fueled by earthen pits of oil. During
the day, the apocalyptic nighttime display gave way to
billowing clouds of black smoke belching from the pits.

(William S. Barnickel)

It goes without saying that the handling of roily oil was an
environmental disaster. After four years of work, Barnickel discovered
in late 1911 that an iron sulphate additive was very effective. After

[2] Cottrell, F. G. et al. (1911) [3] Bitto, R. et al. (2007) [4] Grant, T. (1996)
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successful field trials in 1913, the patent was awarded in 1914. By
1922, the product named Tret-O-Lite was responsible for the yearly
recovery of 50 million barrels of oil, which would otherwise have
been disposed of [3]. In 1930, facing the threat of the great depression,
the Tret-O-Lite company merged with PETRECO and formed the
Petrolite Corporation, which remains today a major supplier to the
oil industry (now as part of Baker Hughes). Figure 1.4 shows Mr.
Barnickel standing with his foot on one of the first barrels of his
demulsifier.

§1.2 Scientific investigations of electrocoalescence

Published scientific investigations of the electrocoalescer and of
removing water from crude oil begin in the second half of the
20th century. A landmark is the very descriptive 1965 paper on
the electrocoalescer by Waterman [5], who had been working in
Petrolite Corp. from 1926. This paper contains detailed schematics
and explanations of the electrocoalescer. The year before, in 1964,

[3] Bitto, R. et al. (2007)

FIGURE 1.4: William S.
Barnickel (left) posing with a

barrel of the Tret-O-Lite
product, in 1917. (Picture
taken from Baker Hughes’

Pinterest page, cropped and
enhanced by the author, in
public domain due to age.)
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G. I. Taylor published a much more theoretical paper that helped lay
the foundations for our detailed understanding of the electrocoalescer.
Taylor [6] was concerned with a single drop, after experiments
performed by himself and others about forty years earlier [7] [8] [9]

on deformation and disintegration of drops in strong electric fields.
Taylor derived an analytical expression for the deformation of a
drop as a function of the dimensionless electric field strength, by
considering the balance between electrostatic surface pressure and
surface tension at the pole and at the equator of a drop. This formula The results by Taylor

on controlled drop
disintegration laid the
foundations for two
important industrial
processes, namely
electrospraying and
electrospinning. It
is somehow fitting
that electrospray
ionisation has
been used in mass
spectrometry studies
of the structural
properties of
asphaltenes.

is surprisingly accurate when compared to experimental results. The
formula also predicts the critical electric field strength, above which
drops disintegrate. Such disintegration produces many microdrops,
which is obviously undesirable for electrocoalescers. Thus Taylor’s
result, while theoretical in nature, is very relevant to the application.
Subsequent work by Brazier-Smith [10] improved on the Taylor result
by considering the force balance not just at the pole and the equator,
but on all the drop surface. The difference from Taylor’s result is
fairly small, and thus Taylor’s result is in use still today. For a review
of the then-nascent field of electrohydrodynamics, see Melcher et
al. [11].

Closer to the present time, a number of studies investigating
systems important for crude oil processing have appeared in the
literature. Among important contributions on removing water from
crude oil we find the series of papers on “Dewatering of crude oil
emulsions” [12] [13] [14] [15] from a collaboration between Imperial
College London and British Petroleum (BP) in the early 1990’s. In
the same period, the group of Sjöblom (at the same university as
the author) became, and still is, very active in the area. In a tour-de-
force, the group was to publish a series of 12 papers under the part-
title “Water-in-crude oil emulsions from the Norwegian Continental
Shelf” [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27]. The perspective
there is mainly from the chemistry point of view.

At my own department and at SINTEF Energy Research,
studies of the electrocoalescer have been going on since 2002, with
investigations of experimental and computational nature. In early

[7] Zeleny, J. (1917)
[8] Wilson, C. T. R. et al.

(1925)
[9] Macky, W. A. (1931)
[12] Mohammed, R. et al. (1993)

[13] Mohammed, R. et al. (1993)

[14] Mohammed, R. et al. (1994)

[15] Chen, T. et al. (1994)
[16] Johansen, E. J. et al. (1989)
[17] Sjöblom, J. et al. (1990)
[18] Sjöblom, J. et al. (1990)
[19] Nordli, K. G. et al. (1991)
[20] Børve, K. G. N. et al.

(1992)

[21] Mingyuan, L. et al. (1992)
[22] Sjöblom, J. et al. (1992)
[23] Urdahl, O. et al. (1993)
[24] Skodvin, T. et al. (1994)
[25] Sjöblom, J. et al. (1995)
[26] Rønningsen, H. P. et al.

(1995)
[27] Urdahl, O. et al. (1995)



6 CHAPTER 1. INTRODUCTION

papers the turbulent flow of oil with water drops in an electric field was
studied using Lagrangian particle tracking [28] [29], and the foundations
were laid for the currently used two-phase flow simulations [30] [31].
In subsequent investigations, the coalescence of drop pairs and of
a drop with a flat fluid interface was studied, both in experiments
using real crude oils [32] and with simplified models [33] [34]. The
simulation approach was concerned with the effect of electric fields
and of surfactants on drop coalescence [35] [36] [37] [38]. Even more
recently, studies have focused on single droplets and the interfacial
properties of these, as considered in this thesis and contemporary
experimental work.

Currently, many research groups are working on electrocoales-
cence in particular and crude oil emulsions in general, using different
approaches with theory, simulation and experiments. But one point of
interest is shared by essentially all groups, and that is the description
of the complex interfaces of water drops in crude oil. It remains a
major challenge to be able to size separator equipment based on pre-
production samples from an oil well. Modern equipment is typically
oversized by a significant factor. An improved understanding of how
the water/oil interfacial properties affect the coalescer performance
would lead to more compact and efficient electrocoalescers.

Even though the interfacial properties of water drops in oil
have been under intense scrutiny, our understanding is still far from
perfect. Recalling the patent application [2] by Cottrell and Speed
quoted earlier, it has been known for a hundred years that the
interface behaves in a qualitatively different way than typical fluid–
fluid interfaces. Many theories have been put forward, implicating
different chemical components of the crude oil. The asphaltenes have
often been touted as the main cause of interfacial behaviour. Others
have considered naphtenic acids, or that a particular subcomponent
of the asphaltenes is responsible. For reviews on the role of
crude oil components in emulsion stability, see e.g. [39] [40] [41] [42] [43].
Furthermore, there is the question of how these molecules arrange at
the interface, possibly in an amorphous configuration together with
other crude components such as resins.

[28] Chiesa, M. et al. (2005)
[29] Melheim, J. A. et al. (2006)
[30] Hansen, E. (2005)
[31] Bjørklund, E. (2009)
[32] Hellesø, S. et al. (2015)
[33] Atten, P. et al. (2006)

[34] Lundgaard, L. E. et al.
(2006)

[35] Teigen, K. E. et al. (2009)
[36] Teigen, K. E. et al. (2010)
[37] Teigen, K. E. et al. (2011)
[38] Teigen, K. (2010)

[39] Jones, T. et al. (1978)
[40] Gafonova, O. V. et al.

(2001)
[41] Sjöblom, J. (2001)
[42] Kokal, S. L. (2005)
[43] Kilpatrick, P. K. (2012)
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§1.3 Contributions of the present thesis

In this thesis, a multiscale simulation approach has been developed
to test some hypotheses regarding the effect of various crude oil
components on the interfacial properties. The approach combines
coarse-grained molecular dynamics simulations, using the SAFT-
γ Mie approach, with two-phase flow simulations using a hybrid
level-set/ghost-fluid/immersed-boundary method developed in this
thesis. At the nanoscale, molecular dynamics simulations are used
to obtain the interfacial tension γ and the elasticity Ka of oil-water
interfaces covered with asphaltenes. These properties are used
when computing the total tension in the macroscopic simulations.
A case of particular interest is the crumpling of drops which are
deflated by a needle. For this case, the simulation results show close
agreement with experiments, both for very small drops manipulated
with a micropipette and for larger drops attached to a pendant drop
tensiometer.

The simpler system of water drops in a model oil with added non-
ionic surfactant is also considered in this thesis. Using a combination
of experiments and detailed two-phase flow simulations, we study
water drops in oil being deformed by an electric field, and consider
the effect of surfactant concentration in this system. It is found that
the surfactant has an important effect on the damping of transient
deformations, also when the surfactant concentration is so low that it
does not significantly affect the interfacial tension.

Using theoretical considerations, we also investigate the system
of a single spherical drop falling at steady state in the presence of
surfactants. Eschewing the surfactant transport equation which is
typically used in studies of this system, and employing instead the
proper boundary conditions at the drop interface, we are able to
obtain simultaneous analytical solutions to the velocity field and
the interfacial tension profile along the drop. A simple model is
introduced for the surfactant effect on the drop velocity, and it is
shown that the predictions of this model match experimental results
in the literature.

To enable future simulations of drop coalescence, we have
developed a new curvature calculation method, called the LOLEX
method, for the level-set interface-capturing method. The LOLEX
method is robust to changes in the interfacial topology, for
instance when two drops coalesce. The problem of computing
the curvature e.g. at the moment when two drops are in close
contact has been discussed previously in the literature. The LOLEX
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method developed here is simpler and more general than previous
approaches, and we demonstrate that it is easily extendable to three
dimensions.

The two-phase flow simulations considered in this work are
mainly performed in an axisymmetric coordinate system. To enable
future simulations of fully three-dimensional flows, we have developed
an MPI-parallel 3D version of the two-phase flow solver. Using the
PETSc library for domain decomposition, the parallelised code shows
good weak and strong scaling.

Finally, two computational tools have been developed, in order to
increase the ease-of-use of molecular dynamics simulations with the
SAFT-γ Mie approach. Both of these tools are available as open source
software.

§1.4 Applications to other areas

Presently, it seems an inescapable fact that the production of crude oil
will be significantly reduced in the coming years. In light of this, one
might question the utility of scientific inquiry into processes related
to this production. Fortunately, the methods and results developed
in this thesis are transferable to studies in other fields. It is interesting
to compare the present work with the recently defended PhD thesis
of E. M. Kolahdouz [44], which also concerns the development of
methods for simulating electrohydrodynamic deformations of elastic
interfaces in two-phase incompressible flow. In contrast with the
present work, his work is motivated by understanding the membranes
of biological cells. Another example is the experimental technique
of droplet-on-demand generation, where several approaches use
electrohydrodynamic processes to create tiny droplets in a well-
controlled fashion. Thus, both biological and chemical processes
contain systems where phenomena arise similar to those seen in the
electrocoalescer.

Further away from home, molecules very similar to the as-
phaltenes which are important in this work, namely polycyclic
aromatic hydrocarbons, are important also in astrophysics [45]:

Polycyclic aromatic hydrocarbons are abundant, ubiquitous,
and a dominant force in the interstellar medium of galaxies.

(Alexander G.G.M. Tielens)

[44] Kolahdouz, E. M. (2015) [45] Tielens, A. G. (2008)
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These molecules have also been identified as the major source of
carbon in meteors [46], where they are found together with water ice.
Who knows; perhaps the knowledge of crude oil/water separation
gained over the past century will not become obsolete, but rather
become an enabling technology in space exploration in centuries to
come?

[46] Bernstein, M. P. et al. (1999)
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Because atomic behaviour is so
unlike ordinary experience, it is
very difficult to get used to
and it appears peculiar and
mysterious to everyone.

Richard Feynman

I N THIS CHAPTER we will discuss the theoretical understanding of
fluids, from the molecular forces, via the familiar partial differential

equations describing fluid flow at the continuum scale, to the complex
elastic interfaces. The history of the scientific and technological
developments will also be reviewed where relevant. To provide a
backdrop for the following sections, the incompressible Navier-Stokes
equations, which tell us how the fluid flows, are given as

∇ ·u= 0, (2.1)
∂ u
∂ t
+(u ·∇)u=−∇p

ρ
+
µ

ρ
∇2u+ f. (2.2)

In these equations, the velocity vector field is denoted by u, and the
pressure field is denoted by p. The vector f is the acceleration due to
any body force such as gravity, and it may be zero. The density and
dynamic viscosity of the fluid are denoted by ρ and µ, respectively,
and are assumed to be constant for each fluid.

§2.1 The molecular origin of fluid dynamics

H OW THE MACROSCOPIC BEHAVIOUR of a fluid arises from
the molecular forces has been a topic of scientific inquiry for

11
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centuries. On the scale observable in the laboratory, fluids behave
in agreement with equations that assume the fluid is a continuum.
Yet we know that the fluid is not a continuum on the tiniest scale,
where it is made up of molecules. Leucippus, Democritus and
other Greek philosophers believed that matter must be made up
by individual atoms (from Greek ατoµoν, “indivisible”), but this
remained a somewhat vague philosophical construction until Daniel
Bernoulli’s classic book Hydrodynamica [47] (which coined the term
“hydrodynamics”). Here Bernoulli advanced the idea that gases areA good German

translation exists
of Hydrodynamica,
due to Mikhailov et
al. [48]. An English
translation exists, by
Carmody et al. [49],
but it is not very
good [50].

made up of atoms bouncing rapidly around. After Bernoulli, the
atomic and molecular theories of matter in general, and fluids in
particular, were developed to a much further degree. The iterations
in the developments of the atomic and molecular theories are too
numerous to recount here, but we will sketch the outlines of the
derivation of the continuum equations from the molecular description
of liquids, after having briefly discussed the differences between gas
and liquid at the molecular scales, and the regimes of fluid flow
where the continuum assumption is stretched to (and beyond) its
limitations.

Depending on whether the fluid is gas or liquid, there are
important differences in the molecular nature, while the continuum
descriptions are more similar. As remarked by Maxwell in the
Bakerian lecture delivered to the Royal Society in 1866 concerning
his seminal work on the kinetic theory of gases [51] [52],

The gaseous form of matter is distinguished by the great
simplification which occurs in the expression of the properties
of matter when it passes into that state from the solid or
liquid form. (James Clerk Maxwell)

In contrast to this, a theoretical understanding of the nature of liquids
from the atomic perspective has been much more difficult to attain.
In addition to Maxwell’s lecture, there are two other interesting
Bakerian lectures that, taken together, shed light on this difference.
In 1797, seventy years before Maxwell delivered his, Vince [53] gave
the Bakerian lecture on “Experiments upon the resistance of bodies
moving in fluids”. In the introduction, he remarks that

In the doctrine of the resistances of fluids, we see strong
reasons to induce us to believe, that the theory cannot
generally lead us to any true conclusions. When a body
moves in a fluid, its particles strike the body; and, in our
theoretical considerations, after this action, the particles are
supposed to produce no further effect, but are conceived to
be, as it were, annihilated. (Rev. Samuel Vince)

[47] Bernoulli, D. (1738) [51] Maxwell, J. C. (1866) [52] Maxwell, J. C. (1867)
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In the Bakerian lecture delivered in 1962, almost a hundred years
after Maxwell gave his on the gases, and over 160 years after Vince
discards the theoretical approach as useless, Bernal [54] considers again
our understanding of liquids from the basis of the atomic building
blocks. In the introduction he remarks that

It is admitted even by those who work most in the field
that the study of the structure of liquids or any exposition of
their properties in atomic terms is still largely to be sought.
This is not for want of trying. (. . . ) It is evident that any
approach to a theory of liquids which aims at producing a
picture of their structure and properties, will have to use
very considerable approximations. (John D. Bernal)

In the half-century since then, progress from the theoretical side has
remained slow. Fortunately, the “third way” of science, numerical
simulation, has now become available to us, and has provided many
new insights into the connections between the atomic and the
continuum descriptions of fluids. Still to this day, simulations of
atoms and molecules provide us with new insights into the behaviour
of fluids; for instance in a very recently published paper, Nagata et
al. [55] demonstrated using simulations that when water evaporates,
there occurs a complicated dance involving three water molecules at
the interface, which leads to one of the molecules going from the liquid
to the gaseous state.

For the gases, as a consequence of their rarified nature, an
important simplification comes from the existence of a well-defined
criterion that tells us whether the assumption of continuum is valid
for a particular system under study. This is the Knudsen number [56],
which is defined as

Kn =
λ

L
(2.3)

where λ is the mean free path for a molecule in the gas, about 70
nanometres for air at standard temperature and pressure, and L is some
characteristic length scale, e.g. the pore size when gas flows through
a permeable medium, or the distance between two colliding drops
surrounded by gas. If the Knudsen number is much smaller than 1,
the continuum hypothesis is valid. If we take as an example the case
of two colliding drops surrounded by gas, the Knudsen number must
become greater than 1 as the drops approach. If the time period in
which Kn � 1 is very brief compared to the other important time
scales, molecular effects are likely to be unimportant, whereas they
will be important if this time period is longer. We find an example of
this particular effect in the continuum simulations of drop collisions

[56] Knudsen, M. (1934)
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by Pan et al. [57], who report very good agreement with experiments
performed by Qian et al. [58], except for at very low Weber numbers
(defined in Equation (2.14) in the next chapter), i.e. a longer period
of Kn � 1, where the simulations predict behaviour qualitatively
different from that seen in experiments.

For the liquid systems, there is no immediate analogue to the
Knudsen number. Investigations of liquids at the molecular scale
give behaviour similar to the continuum description for remarkably
small-scale systems. E.g. in the study by Lau et al. [59], where
the surface tension of water drops as a function of drop radius is
calculated using molecular dynamics simulations, it is found that the
surface tension is unaffected by the drop size all the way down to a
drop radius of 1.5 nanometres (compared to the 0.28 nm diameter
of a water molecule). Another striking example is the study of the
capillary rise phenomenon at the molecular scale [60] [61], where it is
found that even for capillary tubes so small that the radius equals ten
molecular diameters, the capillary rise behaviour follows relatively
well the macroscopic Lucas-Washburn equation [62] [63]. A review
of the different regimes in gas and liquid at small scales is found
in [64].

We will now proceed to give a brief overview of the path from
the molecular to the continuum descriptions of fluid mechanics. We
will necessarily be brief, for further details the reader is referred to the
classic book by Chapman and Cowling [65].

At the scale of atoms and molecules, which we call the nanoscale,
the governing equations are very different from Equations (2.1)
and (2.2). At the nanoscale, atoms and molecules interact with each
other through short-ranged forces. For simplicity, we consider a fluid
that is made up of identical molecules, each consisting of a single atom.
The force on one atom from another atom is given by the gradient of aThis is not as theo-

retical as it sounds,
but physically realis-
able with liquid argon,
which has been a clas-
sic test for molecular
dynamics simulations,
and is well-described
by the Lennard-Jones
potential.

potential that depends just on the separation r between the two atoms.
An example of this is the Lennard-Jones potential VLJ (r ), illustrated
in Figure 2.1 and given by the expression

V (r ) = 4ε
�
�σ

r

�12−
�σ

r

�6�

. (2.4)

From this equation and from Figure 2.1, we see that the potential has
an energy well, and the two parameters ε and σ that enter into the
expression for VLJ (r ) determine the location and depth of this energy
well. r = σ is where the potential switches from being repulsive to

[60] Supple, S. et al. (2003)
[61] Dimitrov, D. I. et al. (2007)

[62] Lucas, R. (1918)
[63] Washburn, E. W. (1921)

[64] Gad-El-Hak, M. (2006)
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being attractive, and VLJ (r ) becomes large very quickly below r = σ ,
so σ is often taken to be the diameter of the particle for visualisation
purposes.

1 1.5 2 2.5 3

−200

0

200

400

r/σ

V
(r
)

r

σ

FIGURE 2.1: The
Lennard-Jones potential
plotted with ε= 200 as a
function of the dimensionless
distance r/σ . Note that
r/σ = 1 is where V (r ) = 0,
that V (r )→∞ as r → 0, and
that V (r ) quickly becomes
very close to zero for
increasing r . In the corner,
the distance r between
particles and the “diameter” σ
is illustrated.

Given a system with N such atoms in a three-dimensional space,
all interacting by the forces just described, the state of a system at a
given instant in time t is described by 3N numbers that specify the
positions xi of all the atoms and 3N numbers that specify the momenta
(i.e. mass × velocities) pi of all the atoms. We can identify these 6N
numbers as a single point in a 6N -dimensional space, which is called
phase space. To discuss how the system evolves in time, we can consider
the N -particle distribution function fN (x1, ..,xN ,p1, ..,pN , t )which is
defined such that fN d N xd N p is the probability density of the system
being in the infinitesimal phase-space volume element d N xd N p at the
instant t .

A celebrated result in classical mechanics is Liouville’s theorem [66],
which says that fN is constant along the trajectory that the system
follows in phase-space. This is equivalent to the conservation
of volume in phase-space, as expressed in the Liouville equation,

∂ fN
∂ t
+

N
∑

i=1

(∂xi
fN ) ·

∂ xi

∂ t
+

N
∑

i=1

(∂pi
fN ) ·Fi = 0 (2.5)

where ∂xi
is the derivative with respect to the i ’th atom’s position, etc.,

and Fi is the force on atom i from all the surrounding atoms. While it
[66] Liouville, J. (1838)
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is far from immediately obvious that this description is useful, it will
lead us on the path to Equations (2.1) and (2.2).

From the nanoscale, we must visit the intermediate mesoscale
before we can ascend to the continuum realm. Transforming
the nanoscale description of the fluid into the mesoscale is ac-
complished in two steps. In the first step we transform the
single equation by Liouville into a chain of N equations where
equation s in the chain connects the s -particle distribution function
to the s + 1 particle distribution function. This is called the
Bogoliubov–Born–Green–Kirkwood–Yvon (BBGKY) hierarchy, after
its authors [67] [68] [69] [70]. This transformation in itself does not make
the problem any easier to solve. But by a remarkable approximation
we can reduce the hierarchy of N equations to just the single equation
that relates the one-particle distribution function f to the two-particle
distribution function, replacing the two-particle distribution function
with a closure relation which is just a function of f .

This approximation is what Boltzmann called the Stoßzahlansatz,
introduced by Maxwell in the previously discussed work [52] on the
kinematic theory of gases. The Stoßzahlansatz postulates that the
initial velocities of two colliding atoms are uncorrelated. Boltzmann
used this assumption to show that the entropy of a gas is nondecreasing.
This approach was criticised by Loschmidt, who questioned how
Boltzmann was able to arrive at an irreversible process by using
equations and a formalism that was time-reversible. The resolution
of this apparent paradox lies in the Ansatz itself: after collision,
the velocities of the atoms must be correlated. By assuming
that they are uncorrelated before the collision, time-asymmetry is
introduced.

Notwithstanding the controversy, the Stoßzahlansatz can be used
to simplify the BBGKY hierarchy into the Boltzmann equation,

∂ f
∂ t
+(∂x f ) · ∂ x

∂ t
+(∂p f ) ·F=

∫ ∫

( f ′ f ′2 − f f2)|n ·
(p−p2)

m
|dndp2

(2.6)
where the term on the right-hand side represents collisions; thus it is
called the collision integral. In this term, f ′ and f ′2 denote f evaluated
at the momenta p, p2 of two atoms after a collision, and f , f2 denote
the same evaluated at the momenta of the atoms before a collision. m
denotes the atom mass. The collision angle vector n represents the

[67] Bogoliubov, N. N. (1946)
[68] Yvon, J. (1935)

[69] Kirkwood, J. G. (1946)
[70] Born, M. et al. (1946)

[52] Maxwell, J. C. (1867)
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relative orientation of the two momenta, such that if we imagine two
spherical atoms touching at the moment of collision, n points from
the centre of one atom to the centre of another atom. (The magnitude
of n is one and the sign is unimportant.)

From this we can proceed to the continuum description by the
Chapman-Enskog procedure [65]. In this procedure the density ρ and
the continuum velocity u are obtained as the the velocity moments
with respect to the mass and the momentum, respectively, of f . Thus,
multiplying both sides of Equation (2.6) by the molecular mass and
integrating over the velocity, one obtains

∂ ρ

∂ t
+∇ · (ρu) = 0 (2.7)

from which the Equation (2.1) is obtained by assuming incompressibil-
ity, i.e. ∇ ·u= 0. If we instead multiply both sides of Equation (2.6)
by the momentum, and then integrate over the velocity, one obtains

∂ (ρu)
∂ t

+∇ · (ρuu)−∇ ·T= 0 (2.8)

whereT is the (Cauchy) stress tensor. The second term is simplified to
ρ(u ·∇)u by using the incompressibility approximation. To arrive at
Equation (2.2) we must assume, in addition to incompressibility, that
the fluid is Newtonian, and that the dynamic viscosity µ is constant
throughout the fluid, which gives

∇ ·T=−∇p +µ∇2u, (2.9)

at which point we have arrived at the incompressible Navier-Stokes
equations. For a much more thorough derivation of the last expression,
see e.g. Chapter 3.3 in the book by Batchelor [71].

Higher-order approximations than the first moments of f ,
or equivalently approximations to higher than leading order in
Knudsen number, lead to the Burnett or super-Burnett equations,
as improvements over the Navier-Stokes equations. See e.g. the
review by Agarwal et al. [72]. These equations are more complicated
and have been investigated to a much more limited extent than the
Navier-Stokes equations. Partly this is because the regime where the
Burnett equations become important, Kn � 1, is important mostly
for a limited number of applications which have been introduced
by technological advances since the 1950’s. Examples include
the hypersonic flow around low-earth orbit spacecraft, analysis

[65] Chapman, S. et al. (1991)
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of the deposition on spacecraft of exhaust from low thrust ion
rocket engines, or rarified gas flow in micro-electro-mechanical
systems (MEMS). Another complication with the Burnett equations
is that stability issues arise when solving them numerically, so
there has been much research into stabilising and regularising the
Burnett equations [73] [74] [75] [76]. As pointed out by Comeaux et
al. [77], some of the origin of these difficulties lies in the fact that
the Burnett equations are incompatible with the second law of
thermodynamics.

We mention in closing that taking a separate path from the
Boltzmann equation (2.6), namely simplifying the collision integral by
using some collision model, leads to the numerical lattice-Boltzmann
method which has become very popular in recent years. A common
approach is the Bhatnagar-Gross-Krook (BGK) approximation [78]

which replaces the right-hand side of Equation (2.6) by the much
simpler term ν( f0− f ), where ν is the molecular collision frequency
and f0 is the Maxwell-Boltzmann distribution, which is an ana-
lytical function of the particle mass, velocity and the temperature
T .

§2.2 Incompressible fluid flow

T HE INCOMPRESSIBLE NAVIER-STOKES EQUATIONS, repeated
below in Equations (2.10) and (2.11), have garnered a large interest

by mathematicians and physicists alike for almost 200 years. They
offer the tantalising combination of physical and industrial relevance
(as they describe the motion of fluids) and a rich and complicated
mathematical structure. It is an open problem, to the tune of
$1 million from the Clay Mathematics Institute, to prove (or disprove)
that solutions to these equations always exist and that the solutions
have bounded kinetic energy. The equations are

∇ ·u= 0, (2.10)
∂ u
∂ t
+(u ·∇)u=−∇p

ρ
+
µ

ρ
∇2u+ f. (2.11)

Another problem, for which the reward for a solution is implicit but
significantly larger, is the efficient solution of these equations by a
computer program. As an example, the computational fluid dynamics

[73] Zhong, X. et al. (1993)
[74] Jin, S. et al. (2001)

[75] Struchtrup, H. (2005)
[76] Söderholm, L. H. (2007)

[78] Bhatnagar, P. L. et al. (1954)
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company CD-adapco, whose STAR-CCM+ software is among the
more popular in the field, was recently acquired by Siemens for a
price close to $1 billion. Computational methods used to solve these
equations are discussed in Chapter 3.1.

We will in general restrict ourselves here to flows where the ratio of
inertial to viscous forces is not too large. To be precise, we require that
the Reynolds number Re is smaller than some number,

Re =
ρ|u|∞L
µ

< Recrit, (2.12)

where L and |u|∞ are length- and velocity scales, respectively, which
are characteristic of the system we are studying. We call this laminar
flow. An example is the flow of honey poured onto your pancake
at breakfast. Recrit is the critical Reynolds number, at which the
transition from laminar to turbulent flow occurs. This number is
different for different system. We remark that our assumption of
incompressible flow, ∇ · u = 0, is valid for flow speeds |u|∞ < 0.3c ,
where c is the speed of sound. The number 0.3 is approximate, but
the fact that this limit is roughly 100 m/s for air and much larger for
most liquids indicates that incompressible flow is relevant for a large
number of situations.

In much of the work we are concerned with here, the Reynolds
number is so low that the flow is not only laminar, but indeed what
is called creeping, which occurs for Re� 1. This is generally the case
for drops in an emulsion, which are of a very small size and immersed
in a very viscous outer fluid, two factors which conspire to reduce the
Reynolds number. In this regime, some of our physical intuition with
fluids breaks down. Perhaps the best system to consider to increase
our intuition is when breaking eggs into a bowl (perhaps when making
the aforementioned pancakes): if a tiny piece of egg shell falls into the
bowl and settles at the bottom, picking it up can be very difficult. It
almost seems as if the egg shell moves away from one’s finger, but in
reality it is the fluid boundary layer around the finger which pushes
the shell away. The chance of success is greatly increased by moving
the finger at an excruciatingly slow speed; one has then lived, but for
a moment, in a situation governed by very low Reynolds number
flow.

Other organisms, much smaller than ourselves, spend their entire
lives at Re� 1. “Life at low Reynolds number” is the title of the very
interesting and pedagogical 1977 paper by Purcell [79], from which
we shall quote in the following. While turbulent flows are of great
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importance and visually very impressive, low Reynolds number flows
are now coming into their own. In the past decade there has been
an explosion of interest in swimming at low Reynolds numbers,Looking at the num-

ber of citations of Pur-
cell’s paper gives an
impression of the re-
cent rise in biological
fluid mechanics: up
until the year 2001,
the paper was cited
about 10 times every
year. Then from
2001 to 2009 the ci-
tation frequency in-
creases by a factor of
10, and has now re-
mained above 100 ci-
tations per year since
2009.

which is relevant for many biological systems and has coined the term
biological fluid mechanics. Purcell, recipient of the 1952 Nobel Prize
in physics for the discovery of nuclear magnetic resonance (NMR), was
in some of his later work inspired by his friendship with the physicist-
turned-biologist Howard Berg. Purcell had the prescience to anticipate
the recent development of biological fluid mechanics in the late 1970’s.

To further illustrate the situation in very low Reynolds number
flows, we quote here from Purcell’s paper [79], where he discusses
a ∼ 2µm particle (or bacteria) moving in water at a typical speed
of 30µm/s. This is quite similar to the situation for sedimenting
emulsion drops.

If I have to push that animal to move it, and suddenly I
stop pushing, how far will it coast before it slows down?
The answer is, about 0.01 nanometres. And it takes about
0.6 microseconds to slow down. I think this makes it clear
what low Reynolds number means. Inertia plays no role
whatsoever. If you are at very low Reynolds number, what
you are doing at the moment is entirely determined by the
forces that are exerted on you at that moment, and by
nothing in the past. (Edward M. Purcell)

In more mathematical language, very low Re simplifies Equa-
tion (2.2) to the Stokes equation,

µ

ρ
∇2u− ∇p

ρ
+ f= 0 (2.13)

which as Purcell notes has the property of instantaneity: the flow
at a single point in time does not depend upon the flow in the past.
However, we can produce a time-varying flow by having the body
force (or the boundary conditions) be a function of time. Even
in the presence of such time variations, the flow is instantaneous,
and therefore it is reversible. A striking visualisation of this is the
reversible “mixing” of dye drops in a cylindrical Couette flow, see e.g.
the video at http://youtu.be/_dbnH-BBSNo.

§2.3 Two-phase flow

T HE EQUATIONS (2.1) AND (2.2) above are valid for single-phase
flow. To extend this formulation to two-phase flow, we keep these

http://youtu.be/_dbnH-BBSNo
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equations in each of the two phases, where the densities, viscosities etc.
are constant in each phase. We will denote the properties of the fluid
in a drop with the subscript 1, and the properties of the surrounding
fluid with the subscript 2. Across the interface between the fluids, a
jump in e.g. pressure will arise mainly due to interfacial tension, and
this together with effects of the jump in density and viscosity must be
added to our equations. When interfacial tension is involved, a second
important nondimensional quantity is the Weber number,

W e =
ρ|u|2∞L
γ

(2.14)

where γ is the interfacial tension. The Weber number describes the
ratio of inertial to interfacial forces; at small We, the shape of a droplet
will remain close to spherical, while at large We its shape may become
arbitrarily distorted.

Since the work presented in this thesis is predominantly occupied
with droplets, droplets will also be the focus in this section. Good
references on droplet behaviour include the book by Clift et al. [80],
as well as several chapters in the book by Levich [81] (see also Leal [82]).
There are many other important categories of two-phase flow, for
instance waves at sea or the flow of two fluids in a pipe. For general
texts on two-phase flows, the reader may consult Levy [83] for gas-
liquid flows and Brauner [84] for liquid-liquid flows.

Coming back to our focus on droplets, there are two very
important phenomena to consider. One is the oscillation of a droplet
immersed in another fluid, and the other is the fall of a droplet
through another fluid. We begin by considering the oscillating fluid
drop.

The first published investigation of oscillating drops is by
Bidone [85] who in 1829 published the results of experiments with
the breakup of thin liquid jets, and who also considered the oscillating
drops that are formed after this breakup. Some of those results are
reproduced by Rayleigh [86] in his seminal study, where a theoretical
analysis is presented that explains the breakup phenomenon. This
instability is today known as the Rayleigh instability. The paper also
discusses the oscillations of the remaining drops, and a formula is
derived for the oscillation frequency, valid for small deformations and
neglecting the external fluid and the viscosity of the drop.

Later work by Lamb [87], Chandrasekhar [88], Miller et al. [89] and
Prosperetti [90] extended the result, first to a weakly viscous drop, then
to any drop viscosity, then to including also an external fluid, and
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finally to considering also the initial-value problem (as opposed to the
asymptotic oscillations). These theoretical results have been applied
to the measurement of interfacial tension and viscosity [91], but it is
important to note that, as shown by Prosperetti [90], the classical and
easily tractable results are only valid after at least one oscillation cycle
has passed. This is because the initial value problem of e.g. a stretched
drop at rest is not in the solution space of the classic results. The results
by Prosperetti give solutions to the initial value problem, but for them
to be useful a numerical inverse Laplace transform must be applied.
Thus these results are not much used in the literature.

Turning now to the falling drop, the story becomes even more
interesting. The simplest case to consider is the perfectly spherical
drop falling at terminal velocity, and where the drop is small enough
(relative to the external fluid viscosity) that Re � 1. As discussed
previously, this simplifies the Navier-Stokes equations significantly.
Thus for this important case, Hadamard [92] and Rybzynski [93] were
able in 1911 to obtain (independently) the analytical solution to the
entire flow field, both inside and around the drop. But alas, the
terminal velocity predicted by their result,

vT,HR =
(ρ1−ρ2)gD2(µ1+µ2)

6µ2(3µ1+ 2µ2)
, (2.15)

does not agree with experimental results for small falling drops. The
experiments rather appear to agree with the formula given earlier by
Stokes [94] for the terminal velocity of a falling solid sphere at low Re ,

vT,S =
(ρ1−ρ2)gD2

18µ2
. (2.16)

This disagreement is even pointed out by Hadamard himself in theTranslated: “The
formula (III) gives
notable disagreement
with experimental
results obtained
recently (and not yet
published). Presently
it appears that, for the
cases considered here,
the assumed classical
hypotheses require
modifications.”

concluding remarks in his 1911 paper:

La formule (III) présente, avec les résultats expérimentaux
obtenus quant à présent (et encore inédits), de notables
divergences. Il semble donc, jusqu’á nouvel ordre, que, dans
les cas étudiés, les hypothèses classiques dont nous sommes
parti doivent être modifiées. (Jacques S. Hadamard)

Explaining this discrepancy attracted considerable attention
during the 20th century. Many papers [95] [96] [97] [98] [99] presented
careful experiments showing the discrepancy for a number of different
fluid combinations; we mention among these air in water, mercury

[91] Ronay, M. (1978)
[95] Nordlund, I. (1913)

[96] Lebedev, A. (1916)
[97] Silvey, O. W. (1916)

[98] Bond, W. N. (1927)
[99] Bond, W. N. et al. (1928)
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in castor oil, water in castor oil, etc. Only by increasing the
droplet radius was one able to obtain the terminal velocity predicted
by Equation (2.15). An early hypothesis by Boussinesq [100] was
that a thin but macroscopic layer close to the interface has a
significantly enhanced viscosity, which retards the droplet motion.
This explanation was accepted for many years, but was eventually
discarded in favour of the currently prevailing notion [80] [81], namely
that trace contaminants present in one (or both) of the fluids act as
surfactants and modify the interfacial tension. When the droplet falls,
the flow transports the surfactants towards the upper stagnation point.
This causes a Marangoni force [101] [102] which attempts to restore
the uniform surfactant concentration. As a result, the velocity along
the interface vanishes (in the absence of surfactant diffusion). The
interfacial diffusion coefficient of surfactants is hard to estimate, but
it is in general a very low number, O(10−7) m/s2 [103], meaning one
can get very close to the terminal velocity of a hard sphere. To explain
that this effect vanishes for increasing droplet radii, the stagnant cap
model was introduced. This model posits that the rear cap of the
interface is immobile due to the surfactant, while the front cap (i.e.
the complement of the rear cap) is fully fluid. By specifying a criterion
that varies the cap angle as a function of the drop radius, one can obtain
good agreement with experimental results.

In parallel to the Western investigations, Soviet researchers made
great (perhaps even greater) progress on understanding the problem.
Volarovich et al. [104]were the first to perform experiments where good
agreement with the Hadamard-Rybczynski result was observed. The
fluid combination was exotic to say the least, namely molten lead in
molten boron trioxide. One is perhaps not surprised that surfactants
were not present in this system; it is indeed difficult to envision a
surfactant molecule that would have an effect on these fluids. Later
experiments with slightly less exotic fluids include those by Frumkin
et al. [105] using mercury drops in highly purified glycerine. A detailed
study was made by Frumkin et al. [106] on the effect of surfactants on
falling drops. The discussion in the book by Levich [81] (who was
a student of Frumkin) is quite illuminating. Fortunately, Western
researchers (among them Acrivos) had realised that Levich’s research
was interesting, and put down a significant effort to translate the book
into English. One can but lament that this translated edition has not
been republished since 1962; and that yet other works remain available
only in Russian, e.g. the book “Coagulation and Dynamics of Thin

[80] Clift, R. et al. (2013)
[81] Levich, V. G. (1962)

[101] Marangoni, C. (1865)
[102] Marangoni, C. (1870)

[103] Sakata, E. et al. (1969)
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Films” by Dukhin et al. [107]. More easily available is the review paper
by Levich et al. [108] in the inaugural issue of Ann. Rev. Fluid Mech.,
which also provides a readable introduction to a wide array of surface
tension-related phenomena.

The case of the falling drop will be revisited in Chapter 5.5,
where a new model is presented as part of this work to explain
the transition in terminal velocity as the drop size increases. This
new model is an alternative to the currently accepted stagnant cap
model, and we highlight the main differences between the two. We
point out that the stagnant cap model as applied to surfactants is not
internally consistent, and discuss the situations where the two models
are applicable.

§2.4 The effect of surfactants on two-phase flow

H AVING CONSIDERED the oscillating and the falling drop cases,
we finally give some remarks on surfactants from the chemical

perspective. Surfactants have been the subject of much research, since
they are ubiquitous in nature, for instance in the processes in our
lungs, and important in chemical processes particularly in the food
and cosmetics industries. What is likely the first mention of the
intentional use of surface-active compounds to alter the interfacial
properties of liquids we find in the writings of Pliny the Elder. In
book two of his Naturalis Historia [109] [110], published in 77 AD, he
mentions among other facts about liquids the use of oil to calm the
sea:

Omne oleo tranquillari, et ob id urinantes ore spargere,
quoniam mitiget naturam asperam lucemque deportet.

J 9 j
All sea water is made smooth by oil, and so divers

sprinkle oil from their mouth because it calms the rough
element and carries light down with them.

(Pliny the Elder)

That oil calms the surface of the sea was rediscovered by Benjamin
Franklin, who had read Pliny’s account but failed to heed it. During
one of his voyages by ship, Franklin was scoffed at by the captain
when he expressed curiosity as to why the sea was calmer behind
some ships; evidently these had been discharging grease from the
galley out of the scuppers, which the captain thought any man
worth his salt should be able to surmise. Franklin [111] subsequently
undertook the first proper experiments with surface-active agents,

[109] Pliny the Elder (1906) [110] Pliny the Elder (1949)
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conducting his experiments on the pond in Clapham Common, a
park in south London. An interesting popular account is given in the
book by Tanford [112]. Later work by Rayleigh [113] [114], Pockels [115],
Plateau [116] and Marangoni [117], to mention but a few, expanded our
understanding of surfactants acting on liquid interfaces.

Of particular note here is the German chemist Agnes Pockels
(1862–1935), who never received any formal scientific training (being a
woman), but nevertheless became a pioneer in the study of surfactants
and fluid interfaces. When cleaning dishes (!) Pockels observed some
curious effects of soaps and greases, and over the course of a few
years invented a first version of the instrument we today know as
the Langmuir-Blodgett trough. With this she measured not only the
surface tension of the films she observed, but she also studied the
effect of stretching and compressing the films, the effects of the type
of contaminant, the effect of additives to the bulk phase, and made
deductions about the amount of material adsorbed at the interface.
In later works she also estimated the thickness of these films with
remarkable precision. Through her brother, the physicist Friedrich
Pockels, she was able to obtain Lord Rayleigh’s writings on oil films
on water, and subsequently wrote letters to him on the phenomena
she herself had observed. Rayleigh was so impressed with these
results that he assisted Pockels in publishing them in Nature [115]. She
subsequently published several important results in surface chemistry:
she was the first to plot quantitative surface pressure isotherms [118],
and she made significant improvements to the ring tensiometer [119].
In 1931 she received the Laura-Leonard prize of the German Kolloid-
Gesellschaft, and when she turned 70 the year later she received an
honorary doctorate from the University of Braunschweig. Building
on (and acknowledging) Pockels’ work, Langmuir and Blodgett made
improvements to the trough apparatus, and Langmuir’s research on
the properties of surface films earned him the 1932 Nobel Prize in
chemistry. In the same year, Pockels was quoted by Ostwald in his
Festschrift in her honor [120], saying

I learned to my great joy that my work is being used by
others for their investigations. (Agnes Pockels)

The interested reader is referred to the book by Roberts [121] for further
historical details and descriptions of the trough techniques.

In the 20th century, a large body of research on surfactants
has been produced, not in the least by the group at the Unilever
research laboratory in the Netherlands, starting in 1960 with van
den Tempel [122]. Subsequent work up to the present day by van den

[114] Rayleigh, L. (1890)
[115] Pockels, A. (1891)

[118] Pockels, A. (1893)
[119] Pockels, A. (1926)

[120] Ostwald, W. (1932)
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Tempel, Lucassen-Reynders et al. [123], Lucassen [124] and others has
significantly improved our understanding of the effects of surfactants
on fluid interfaces in general and on emulsions in particular. In this
context, elasticity as defined by Gibbs [125] is very important for the
emulsion stability. Methods such as the previously discussed troughs,
or the Wilhelmy plate, have traditionally been used to investigate
elasticity. But in recent years the pendant drop tensiometer has
become the preferred instrument. An overview of such measurement
techniques is found in the recent review by Fuller et al. [126].

We remark that the static conditions in such tensiometers are
very different from the flow in an emulsion being separated. As
an example, while the diffusion boundary layer for a surfactant can
easily become comparable to the drop radius in the absence of flow,
leading to time scales of hours or even days to obtain equilibrium,
the same equilibrium can be reached in a matter of seconds for a
falling drop due to the accelerating factor given by the Schmidt number
Sc = ν/D. Here, ν = µ/ρ is the kinematic viscosity of the fluid and
D is the diffusion coefficient of the surfactant, typically O(10−10), so
the Schmidt number can quickly be of the order of 106. With this in
mind, some care should be taken when comparing the equilibrium
situations in these two systems, since in the former case there is ample
time for reorientation processes at the interface to take place, which
may not be true in the latter case.

As another point to note, it is questionable whether the same
mechanisms (i.e. a Gibbs-type of elasticity) are responsible for
emulsion stability in water-crude oil emulsions. For instance it has
been noted for the Gibbs elasticity found in surfactant-stabilised
systems that [127]

The characteristic maximum in the elasticity is not caused by
any molecular interactions in the surface, but purely by the
effect of surfactant supply to the surface from the solution at
higher concentration. Molecular interactions could not play
a part in this, in any case, because Langmuir adsorption
presupposes ideal surface behaviour.

(Emmi H. Lucassen-Reynders)

Thus the emulsion stability mechanism discussed in the context
of surfactant-stabilised emulsions is qualitatively different from the
stabilising mechanism of crude oil components like asphaltenes,
which are believed to adsorb essentially irreversibly at the interface,
and which have a decidedly non-ideal surface behaviour.

[127] Lucassen-Reynders, E. (1996)



2.5. THE ASPHALTENES 27

§2.5 The asphaltenes

W ITH THESE DIFFERENCES IN MIND, let us then consider the
hitherto-elusive asphaltenes, whose fundamental properties are

debated still today. Crude oil is a complex mixture of hydrocarbons,
ranging from the simplest that exist (methane, CH4) to the complex
and heavy asphaltenes, having a molecular weight roughly 50 times
that of methane. These components are separated from each other
by depressurisation, distillation and other refinement processes. The
only workable definition that exists of asphaltenes is as a solubility
class; for instance as codified in the ASTM D 6560 – 00 standard where
it is defined as the component of crude oil that is soluble in toluene
but insoluble in heptane. So we know how to isolate asphaltenes,
but precisely what they are is still up for debate. Mullins quips in the
preface to the detailed overview given in Asphaltenes, Heavy Oil and
Petroleomics:

To all those scientists and technologists who have and
will become enthralled and enchanted by the wiles of the
asphaltenes and heavy oils, and to the families and friends
of our fold who at least feign enthusiasm when subjected
to renderings of the mysterious objects of our study.

(Oliver C. Mullins)

In addition to being enigmatic, asphaltenes are also highly
problematic. Their mischief begins in the reservoir, where they may
be deposited on the walls of the porous rock around the wellhead,
decreasing the permeability and with it the flow of oil. Further
downstream, they can also be deposited on pipeline walls and cause
complete blockage of pipelines tens of centimetres in diameter; this has
earned them a reputation as the “cholesterol of crude oil”. As the flow
proceeds to the topsides, it comes to the separator, where asphaltenes
cause problems by significantly increasing emulsion stability and
increasing the water content of the final produced oil, necessitating
larger and more complicated separation facilities. When finally the
crude oil has been processed such that it is of export quality, it is
pumped into ships or pipelines and transported to onshore refineries
where the oil is converted into useful products. Here again the
asphaltenes rear their heads, fouling up heat exchangers and causing
problems if oils with too different properties are mixed. Yet in the
end, the asphaltenes are also useful to us, since they are (as the name
suggests) used in the production of the asphalt used to pave our
roads.

It is in the context of adhesion materials that we first encounter the
asphaltenes. The term was coined by Boussingault [128] in 1836. In a
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striking similarity to the modern operational definition, Boussingault
noted that the asphaltenes, which he had produced as the remainder
after distilling bitumen, were insoluble in alcohol and soluble in
turpentine (an aromatic solvent). Hoepfner [129] has a delightful
historical review of the asphaltenes in Chapter 1.1 of his thesis. It
is interesting to note that the asphaltenes have been the subject of
(at times heated) debate in the literature since 1893. Still today
there are many questions about the asphaltenes that have not been
fully resolved: How do the molecules themselves typically look?
How do they aggregate at different concentrations, temperatures
and pressures? Are different subfractions of the asphaltenes more
or less responsible for different phenomena? How do they interact
with other crude fractions such as resins? Insofar as there exists a
consensus in the literature today, it is represented by the Yen-Mullins
model [130] [131] [132] [133]. While this thesis was going through final
preparations for printing, a paper by Evdokimov et al. [134] appeared in
the literature, claiming that the Yen-Mullins model is “fundamentally
wrong”. It appears likely that the debate on asphaltene structure and
behaviour will continue for years to come.

In the Yen-Mullins model, the individual asphaltene molecules
are of the “continental” type, i.e. a central core is made up of
aromatic rings, and on the periphery there are attached aliphatic
chains, with heteroatom substitution being common. Beyond this
overall picture there is great uncertainty. The most advancedIt is interesting to

note that analysis
of crude oils is
claimed [135] to
have directly caused
mass spectrometry
techniques to become
the popular tool
they are today in all
areas of analytical
chemistry.

experimental techniques available to modern physicists and chemists
have been applied to the study of the asphaltenes, such as neutron
scattering from the highest intensity sources, or high-resolution
mass spectrometry using increasingly sophisticated techniques. Very
recently, state-of-the-art atomic force microscopy (AFM) and scanning
tunneling microscopy (STM) methods from the IBM Research group
in Zürich have given us the first directmolecular images of asphaltene
molecules [136]. Images of one such molecule are reproduced in
Figure 2.2 on the next page. Taken together, these investigations have
provided us with a picture of asphaltenes as one of the most complex
materials ever studied [129].

In a given sample of asphaltenes, experiments indicate that there
are thousands of different empirical chemical formulas. Each of these
represents a huge class of molecules; take for instance the formula
C6H12O6, which is not an asphaltene, but a more familiar simple
sugar molecule that forms a single pentagonal or hexagonal ring. This

[130] Dickie, J. P. et al. (1967)
[131] Mullins, O. C. (2010)

[132] Mullins, O. C. (2011)
[133] Mullins, O. C. et al. (2012)

[136] Schuler, B. et al. (2015)
[129] Hoepfner, M. P. (2013)
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FIGURE 2.2: An asphaltene
molecule imaged with AFM
(top row) showing the
molecular structure, and with
STM (bottom row) showing
molecular orbital isosurfaces.
The top half of the molecule is
an aromatic core and the
bottom half appears to be two
aliphatic tails. (Reprinted from
Schuler, B., Meyer, G., Peña, D.,
Mullins, O. C. & Gross, L.
Unraveling the Molecular
Structures of Asphaltenes by
Atomic Force Microscopy.
Journal of the American Chemical
Society, 137, 9870–9876.
doi:10.1021/jacs.5b04056
(2015). Copyright (2015)
American Chemical Society.)

formula may refer to any one of tens of different monosaccharids
like fructose, glucose, galactose, mannose, sorbose etc. Since the
asphaltenes have not six but of the order of 50 carbon atoms, forming
not one but typically six or seven rings with aliphatic tails attached,
and with heteroatoms like nitrogen, sulfur or oxygen occasionally
substituted in the ring structures [137] [132] [133] [138] [139] [136] [140], we
understand that the number of isomers for a given empirical formula is
in the trillions. A good analogy to asphaltene molecules is snowflakes;
according to the old adage, no two are exactly the same.

As alluded to above, the effect of asphaltenes on liquid-liquid
interfaces (and thus on separation processes) is also complicated.
There are many reviews in the literature on the stability of water-crude
oil emulsions [39] [40] [41] [42] [43]. The interfacial properties of drops
covered with asphaltenes produce curious phenomena, such as the
crumpled drops seen in experiments by Yeung et al. [141].

In the present work, it is attempted to obtain the mechanical prop-
erties of asphaltene-covered liquid-liquid interfaces from molecular
dynamics simulations, and the implications of these properties are
then studied using continuum simulations of two-phase flow with

[137] Goual, L. et al. (2002)
[132] Mullins, O. C. (2011)
[133] Mullins, O. C. et al. (2012)
[138] McKenna, A. M. et al.

(2013)

[139] Podgorski, D. C. et al.
(2013)

[136] Schuler, B. et al. (2015)
[140] Tang, W. et al. (2015)
[39] Jones, T. et al. (1978)

[40] Gafonova, O. V. et al.
(2001)

[41] Sjöblom, J. (2001)
[42] Kokal, S. L. (2005)
[43] Kilpatrick, P. K. (2012)

http://dx.doi.org/10.1021/jacs.5b04056


30 CHAPTER 2. BACKGROUND

corresponding properties. A significant advantage of the molecular
dynamics approach over an experimental approach is the possibility of
detailed hypothesis testing with regards to e.g. the asphaltene structure
and the effect of other crude components. Another advantage is that
it gives direct insight into how the molecules behave at the interface.
The main disadvantage is, as with any simulation tool, that one does
not know a priori that the simulation is representative of reality. With
this in mind, we proceed to consider the computational methods used
in the present work.
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Wind tunnels won’t go away
– we’ll need them to store the
printouts from our CFD
solutions!

Dean R. Chapman (joking)

§3.1 Methods for incompressible flow

When solving partial differential equations (PDEs) using the discrete
memory of a computer, our solution will be given as a set of values
on a finite number of points in space-time. The way we move
our continuous problem over to a discrete space-time is called a
discretisation. For the spatial discretisation we consider here finite
difference methods; a simple example is the central difference formula:

∂ u(x)
∂ x

≈ u(x + 1
2∆x)− u(x − 1

2∆x)
∆x

. (3.1)

Several advanced schemes are readily available, see e.g. Jiang et
al. [142] [143] for the popular WENO schemes.

Given the Navier-Stokes equations (2.1) and (2.2), several schemes
have been devised to solve these on a computer in a fast manner, for
various definitions of “fast”. Our basis here will be finite difference
methods on a structured rectangular uniform grid. It is common to
employ a staggered grid to avoid checkerboarding of the pressure field;
this means that the pressure and other scalars “live” at cell centres,
while the velocities “live” at the cell faces. To be more precise, if we
have a pressure at one point pi , j ,k , the velocities around this point

31
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are (taking u= [uvw]T ) ui±1/2, j ,k , vi , j±1/2,k , wi , j ,k±1/2 located at the
6 cell faces. See Figure 3.1 for a schematic of a staggered grid in two
dimensions. A technical detail regarding the staggered grid, which can
be seen in Figure 3.1, is that one has a choice of the number of points
used to discretise e.g. the u-component in the x-direction. If there are
Nx points used to discretise the pressure (and other scalars) in the x-
direction, there must be either Nx+1 or Nx−1 points used to discretise
u in the x-direction (and similarly for other vectors). In the present
work we choose to use Nx − 1. This is illustrated in Figure 3.1, where
5 pressure values are given in the x-direction, while 4 velocity values
(together with two ghost values at the boundaries, shown in red) are
given. Note that no ghost points are needed for the pressure, since the
pressure boundary condition is zero Neumann, as will be discussed
in the following. Note also that instead of a staggered grid, one could
use a colocated grid together with some form of interpolation, as
popularised by Rhie and Chow [144].

y j

xi

FIGURE 3.1: Illustration of
the staggered grid in two

dimensions. The pressure is
given at the cell centres (black
points). The u and v velocity
components are offset in the

x- and y-directions,
respectively. Boundary

conditions are shown in red
for the u component and

green for the v component.
No boundary conditions are

given for the pressure.

Incompressibility is both a blessing and a curse. Physically, no
material can be absolutely incompressible, so it is an approximation.
In many cases, and particularly for liquids, it is a very good
approximation. In an incompressible fluid, the speed of sound is
infinite, so there are no sound waves. This is beneficial, since sound
waves are typically not relevant for the phenomena we are interested
in. For compressible flows, much research has gone into making good
numerical methods for low Mach number flows, i.e. in the case where
the sound waves are not of interest but may obscure the phenomena



3.1. METHODS FOR INCOMPRESSIBLE FLOW 33

under study, and also make the simulations slow since one has to
resolve waves that are much faster than the phenomena under study.
In this sense, incompressibility makes life easier.

The back side of the coin is that, since sound speed is infinite for an
incompressible fluid, all points in the simulation domain are affected
by all other points in each time step. This puts limitations on how
well the method scales to many CPU cores, since communication
must occur between all grid cells, and communication between cores
is a bottleneck.

As a concrete example, we consider here the widely used
projection method due to Chorin [145]. This is a form of splitting
method. Mathematically, it relies on the Helmholtz-Hodge
decomposition theorem; while interesting in its own right, we will
not discuss the theorem and its application to the projection method
here. The interested reader is referred to the survey by Bhatia et
al. [146].

Starting with Equation (2.2), we replace the time derivative ∂ u
∂ t

by (un+1 − un)/h, as in Euler’s method with a discrete time step h.
Next we introduce an intermediate velocity field, u∗, which will be a
solution in between the two time-steps,

ρ
un+1−u∗+u∗−un

h
= a(un)−∇pn+1. (3.2)

Here a(un) contains all terms apart from the time derivative and
the pressure gradient in Equation (2.2). We are free to choose u∗
in Equation (3.2), and we may in particular choose it such that

ρ
u∗−un

h
= a(un), (3.3)

ρ
un+1−u∗

h
=−∇pn+1. (3.4)

With this choice we calculate ρ
h u∗ from Equation (3.3), and it only

depends on the values at time step n,

ρ

h
u∗ = a(un)+

ρ

h
un (3.5)
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If we take the divergence of Equation (3.4) and use that∇·un+1 should
be 0,

ρ
∇ ·un+1−∇ ·u∗

h
=−∇2 pn+1

ρ
−∇ ·u∗

h
=−∇2 pn+1

ρ

h
∇ ·u∗ =∇2 pn+1 (3.6)

we have a solution at the next time step which fulfils Equations (2.1)
and (2.2). This is not the case for the intermediate velocity field u∗.
In summary, we compute the intermediate velocity field, and then
Equation (3.6) must be solved for pn+1. Having solved for this, we
can calculate un+1. If we replace a(u) by the appropriate terms from
Equation (2.2), the algorithm consists in these three steps, where we
calculate three quantities successively, namely u∗, p, un+1:

u∗−un

h
=− (un · ∇)un + ν∇2un + fn (3.7)

∇2 pn+1 =
ρ

h
∇ ·u∗ (3.8)

un+1 = u∗− h
ρ
∇pn+1 (3.9)

The observant reader may have noticed that Equation (3.8) is a
Poisson equation, which is an elliptic PDE. In other words, this
step is the specific part of the algorithm where all parts of the
computational domain interact at each time step. Thus the solution
of Equation (3.8) accounts for the bulk of the computation time in
a typical Navier-Stokes solver, so a vast amount of research has gone
into developing fast solvers for this equation. For two-phase flows
with large density differences, the condition number of the matrix that
results when Equation (3.8) is discretised will be much larger than for
the single-phase problem [147]. Since this matrix is no longer constant
for the two-phase flow problem, much effort has also gone into
developing fast preconditioners. The current state-of-the-art seems
to be combining a (geometric or algebraic) multigrid preconditioner
with a conjugate gradient method (often BiCGStab [148] ) for solving
the resulting sparse linear system. In the simulations performed here,

[147] Duffy, A. et al. (2002) [148] van der Vorst, H. (1992)
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the BoomerAMG [149] algebraic multigrid preconditioner from the
Hypre library [150] is used together with BiCGStab as implemented
in the PETSc library [151] [152] to solve the linear system.

To be specific, we write the discretised Poisson problem with
Neumann boundary conditions in matrix form, Ax = b , where A is a
sparse N×N matrix representing the discretised Laplacian operator, x
is the solution vector with N elements, and b is the vector holding the
right-hand side of Equation (3.8). Note that here we use the language
common in linear algebra texts and in numerical libraries such as
PETSc, calling x and b vectors, even though they correspond to two-
or three-dimensional data stored on the grid. Note also that N is the
total number of grid points, i.e. for a 200× 400 grid, N = 80000. The
matrix A represents the discrete Laplacian. A good way to think of
it is as coming from the convolution with a kernel D2

xy (for the two-
dimensional case). Using second-order finite differences, this kernel is
given by

D2
xy =

1
∆2





0 1 0
1 −4 1
0 1 0



 , (3.10)

where the grid spacing ∆ is assumed to be equal in the x- and y-
directions. We note that the boundary conditions for Equation (3.8)
are typically of zero Neumann type, which results in a singular
matrix. This can be understood when considering D2

xy e.g. at the
left boundary x = 0:

D2
xy =

1
∆2





0 1 0
0 −3 1
0 1 0



 , (3.11)

meaning that no value is specified at the left boundary. When this
applies to all sides on the domain, no boundary conditions are
given for the pressure field at all, which means the pressure is only
determined up to an additive constant.

The common “engineering” approach to fixing the singularity,
simply setting the pressure at some point in the domain, is not the best
approach as it may pollute the spectrum of the preconditioner. Instead,
projecting the discretised singular equation into the orthogonal
complement of the null space of the singular matrix is a good
solution [153]. To be specific, we construct a N×N projection operator

[149] Henson, V. E. et al. (2000)
[150] Falgout, R. et al. (2006)

[151] Balay, S. et al. (1997)
[152] Balay, S. et al. (2012)

[153] Zhuang, Y. et al. (2001)
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P , which is applied to the right-hand side vector b , as

P = I− 1
N
1, (3.12)

where 1 is the matrix having all elements equal to 1 and I is the identity
matrix, i.e. explicitly removing the constant part of the solution. In
the PETSc library that we employ here, this is achieved using the
MatSetNullSpace() routine (along with others, see e.g. KSP Example
34 in PETSc [154] ).

Having discussed the solution of Equation (3.8), we now turn
our attention to Equation (3.7), which is a time-integration step.
In this equation, a forward Euler step is used. Note that in the
problems we are considering, where the flow is laminar and perhaps
even creeping, the diffusion of momentum represented by the second
term in Equation (3.7) will dominate the convection of momentum
represented by the first term.

The forward Euler method is first order in time. What can be
gained by using a higher-order time integration method? As a test
we employ the four-stage strong stability-preserving (SSP) Runge-
Kutta (RK) method of order 3, hereafter known as SSP-RK3()4, a
common choice in the literature. A key point of SSP methods is that
they can handle solutions which have spatial discontinuities without
introducing oscillations close to the discontinuities. We note however
that the practical importance of the SSP property is debated [155]. We
also note that Godunov [156] proved the following no-go theorem:
a linear scheme which does not introduce new oscillations (i.e. is
monotonicity preserving) can be at most first order. Our use of
this time-integration scheme was inspired by the article by Kang et
al. [157], which uses the SSP-RK3()3 method, implemented as a convex
combination of Euler steps, and employed for solving the two-phase
Navier-Stokes equations.

To verify that the numerical methods indeed have the claimed
order, they were tested on the van der Pol equations

ẋ = y (3.13)

ẏ =µ(1− x2)y − x (3.14)

with initial value (0.5,0.5) at t = 0 and the parameter µ = 1. These
equations were solved up to t = 40 for decreasing h from 10−2

to 10−5, and the results were compared to the result obtained by

[154] Yang, J. (2012) [155] Ketcheson, D. I. et al. (2005)
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using Dormand and Prince’s RK 5(4)7 using a much smaller h =
10−7. It is seen that the Euler method has order 1 and the SSP-
RK3()4 method has order 3; to within machine accuracy, which is
ultimately reached here for the SSP-RK3()4 method. For a readable
introduction to floating-point precision and machine accuracy, the
reader is referred to the first part of the classic paper by von Neumann
and Goldstine [158]. Another classic which the reader may consult is
the very detailed paper “What every computer scientist should know
about floating point arithmetic” by Goldberg [159], who remarks
that

Floating-point arithmetic is considered an esoteric subject
by many people. This is rather surprising, because floating-
point is ubiquitous in computer systems.

(David Goldberg)

FIGURE 3.2: Order test for
the van der Pol equations. It is
seen that the Euler method
has order 1 and that the
SSP-RK3()4 method has order
3.

In order to test these methods on the Navier-Stokes equations, we
need a good case to consider. Following Chorin [145], we may attempt
to use the analytical 2D solution known as the Taylor-Green vortex
case,

u = sin x cos y F (t ) (3.15)
v =−cos x sin y F (t ) (3.16)

p =
ρ

4
(cos2x + sin2x)F 2(t ) (3.17)

F (t ) = e−2ν t (3.18)

See also Figure 3.3 where the velocity and pressure fields are plotted
for this case. Alas, using this test case does not give us much insight
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FIGURE 3.3: The
Taylor-Green vortex case

showing four vortices in a
2π× 2π box. The velocity

field is indicated with vectors
and the pressure field is
indicated with colours.

into the time integration method, since the spatial error dominates
unless the grid size is impractically large, above 2048×2048 for the
spatial discretisations used here.

We may instead use the method of manufactured solutions
(MMS). This allows us to construct flow fields that have pretty
much whatever properties we want, e.g. giving low error for the
spatial discretisation. The construction gives an exact solution to the
Navier-Stokes equations which we can use as a boundary condition
and initial condition, and for computing the error at different time
steps.

The construction is fairly simple. Consider u= [uv], we invent
some u = u(y, t ) and v = v(x, t ) where ∂ u

∂ x = 0 and ∂ v
∂ y = 0, i.e.

the divergence-free constraint is automatically fulfilled. Then given
this u and some p = p(x, y, t ) we insert u, p into Equation (2.2) and
get an expression for the body force f. Using this body force in the
simulations, along with the exact initial and boundary conditions, we
can compare our results to the exact solution.

Following John et al. [160]we consider a choice for which the spatial
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discretisation error will be low, namely

u = t 3y2 (3.19)

v = t 2x2 (3.20)
p = x + y (3.21)

One may compute the body force with the computer algebra system
Maple, in order to avoid calculus errors:� �
1 with(VectorCalculus ):

SetCoordinates(cartesian[x,y]):
3 u := t^(3)y^(2);

v := t^(2)*x^(2);
5 V:= VectorField(<u,v>);

p(x,y,t) :=x+ y;
7 NavierStokes := rho*(diff(V,t) +

(V . Nabla)(V)) +
9 Gradient(p(x,y,t)) -

mu*Laplacian(V)� �
and the result may be obtained from Maple in Fortran code, to avoid
errors when converting the syntax.

We consider this case starting at t = 1.0s. Using the Euler method
and the SSP-RK3()4 method we solve the flow up to t = 1.1s using
successively smaller time steps. We are mainly interested in problems
which are viscosity dominated, so we have chosen ρ= 1kg/m3, µ=
1kg/(m s) giving ν = 1m2/s. We employ a 64×64 grid. The largest time
step used is h = 32 · 10−6 which is within the stability restriction, and
we divide this time step by a factor of 2 until we reach h = 1 ·10−6. For
discussion of the stability conditions used in this work, for both single-
and two-phase flow, the reader is referred to Kang et al. [157].

The result is plotted in Figure 3.4 and is rather disappointing: we
gain absolutely nothing by using the RK method, even though it has
4 times longer runtime. Studying the review article by Guermond et
al. [161], this is actually as expected, as Chorin’s projection method has
an irreducible splitting error of O (h). Many authors simply employ a
higher-order RK method without ever discussing the temporal error
of the solution, as indeed Kang et al. [157] do.

One legitimate reason for using a higher order RK method is
the increased stability. Another reason is that checking the actual
temporal order of an implementation is very complicated for a large
code with many features, and the approach we use here (method of
manufactured solutions) has only recently been extended to two-phase
flow. Although methods for higher-order solutions of the Navier-
Stokes equations had certainly been published before the work of
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FIGURE 3.4: Order test for
the Navier-Stokes equations

using the method of
manufactured solutions. It is
seen that both methods have

order 1.

Kang et al., these methods have not been adopted to a large extent
in the multiphase flow community. See e.g. Pijl et al. [162] for a
remarkable example. These authors cite the paper by van Kan [163]

which popularised a second-order modification of Chorin’s method,
but they do not seem to employ the van Kan method and instead use
the plain Chorin method.

The previously mentioned review article by Guermond et al. is
highly informative with regards to order reduction for the Navier-
Stokes equations. They discuss different modifications to Chorin’s
original scheme which allow a higher temporal order. They do,
however, limit themselves to multi-step methods (BDFs in particular),
but Johnston et al. [164] consider the case of RK methods.

One of the main topics of the article by Guermond et al. is the
modification of Chorin’s projection method to enable higher order.
The simplest such improvement is to add∇pn to the right-hand side
of Equation (3.7), i.e. an old value of the pressure gradient. This
then transforms the Poisson equation, such that it computes not the
pressure field, but the difference in the pressure field from the previous
one. The boundary condition on the Poisson equation is still a
zero Neumann BC. This method was popularised by van Kan [163].
See Shen [165] for a proof that this method is second order. This is
called the incremental pressure projection method, and the scheme
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becomes

u†−un

h
=− (un · ∇)un + ν∇2un + fn − ∇pn

ρ
(3.22)

∇2(qn+1) =
ρ

h
∇ ·u† (3.23)

pn+1 = pn + qn+1 (3.24)

un+1 = u†− h
ρ
∇qn+1 (3.25)

Noting that u† = u∗ − (h/ρ)∇pn where u∗ is the intermediate
field in the original method, this form can be easily understood by
subtracting ∇2 pn from both sides of Equation (3.8) in the Chorin
method:

∇2 �pn+1− pn�=
ρ

h
∇ ·u∗−∇2 pn (3.26)

∇2 �qn+1�=
ρ

h
∇ ·

�

u∗− h
ρ
∇pn

�

(3.27)

∇2 �qn+1�=
ρ

h
∇ ·u† (3.28)

Further extensions of this method are given in the review article by
Guermond et al.. Suffice it to say here that the reason the incremental
pressure form is limited to second order is that the zero Neumann
BC on the pressure difference implies that the pressure gradient at the
boundaries remains unchanged from the initial time. While better
than the standard Chorin method, this is clearly still not entirely
correct. Further improvements are made by extending this idea of
redefining the variable which is solved for by the Poisson equation,
so that the zero Neumann condition no longer implies unphysical
conditions on the pressure field.

In the article by Kang et al. [157] which we follow in general here,
the RK method is constructed as a convex composition of Euler steps.
In each such Euler step, an update for the intermediate field u∗ is
performed followed by a projection. Since we only care about the
velocity field at the end of the time integration having∇ · u = 0, this
seems perhaps a bit excessive. An improvement to the method is to
only perform the projection at each proper time step. This has not
been considered here.

As an initial task in his MSc work, Lysgaard was suggested by the
author to implement the incremental projection method, hoping that
this would give a second order method. Yet again, disappointment
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was to be had [166]. What was thought to be simply adding a term
to the right-hand side of an equation, and some minor adjustments
elsewhere in the code, turned out to be a difficult and fruitless venture.
After more studies of the literature, it became apparent that no-one has
published results with an explicit projection method of order higher
than one. To the best knowledge of the author, it is an open question
(that is not discussed in the literature) whether such a method can
be constructed, or whether the opposite can be proven. Shen [165],
Guermond et al. [161] and other references cited in these works all limit
the discussion to implicit time stepping schemes.

§3.2 Methods for two-phase flow

As described in Chapter 2.3 there are several additional phenomena
that must be incorporated when wanting to simulate two liquids.
Some of these are rather obvious: we must take into account the
different densities and viscosities of the two fluids, as well as the
interfacial tension, and naturally we must know where the interface
is located. Let us begin by considering how to represent the location
of the interface.

Many methods have been presented in the literature for this
purpose. They include volume of fluid [167], level set [168], front
tracking [169], phase field [170] etc. We employ here the level-set
method, which is a very popular method not just for two-phase flow
simulations, but also in other applications where material interfaces
are important. There is a vast body of literature on the level-
set method; the reader is referred to the book by Osher et al. [171]

for an overview. At the 2013 “Short course on multiphase flow”
given annually at ETH Zurich, I heard Tryggvason, of front-tracking
method fame, give a remark along the lines of

If you invent something like the level-set method, which
is easy to code and has much room for being improved in
various ways, a large number of people will implement and
improve upon your method and cite your papers. If you
invent a more complicated method that does not need so
many improvements, this is not the case.

(Gretar Tryggvason)

In the level-set method, the interface is represented implicitly by a
scalar field that is defined on the usual simulation grid. At each point,
this field φ stores the signed distance to the interface. This, in turn,
means that the interface is given by the zero level set {x |φ(x) = 0},

[166] Lysgaard, M. O. (2014)
[167] Hirt, C. W. et al. (1981)

[168] Osher, S. et al. (1988)
[169] Unverdi, S. O. et al. (1992)

[170] Karma, A. et al. (1996)
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which gives the method its name. All operations on the interface, such
as advecting it or calculating its curvature, are performed directly on
the field φ. In particular, advection is done by solving the equation

∂ φ

∂ τ
=−u ·∇φ. (3.29)

where u is the flow field and τ is a pseudo-time (not the physical
simulation time). An often-cited strength of the implicit formulation
is that the method easily handles situations where the interface
topology changes, such as the coalescence of two drops.

To visualise the level-set method, it is common to construct a φ-
surface embedded in three-dimensional space. This is also done here,
in Figure 3.5, for the two-dimensional flow of a drop next to a flat
interface (shown in gray) immersed in another fluid (shown in white)
on the right-hand side of Figure 3.5). We illustrate the distance as
isocontours on this figure. On the left-hand side we show the surface
that corresponds to an elevation equal toφ. There is a striking parallel
here to a map describing an island rising out of the water. Only in
this case, the “map” is reality and the “island” is the tool for describing
reality.

FIGURE 3.5: Illustration of
the level-set method. Right: in
2D, a fluid drop (dark gray)
seen next to a fluid film (dark
gray), both immersed in a
different fluid (white). Left:
the signed-distance function
representing these two fluid
bodies, the drop and the film.
(Figure produced by the
author for Paper 2.)

Knowing the field φ, and thus the location of the interface, the
normal vector and curvature, n and κ, can be computed directly from
φ;

n=
∇φ
|∇φ| , (3.30)

κ=∇ ·n=∇ ·
�

∇φ
|∇φ|

�

. (3.31)
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In this context, Smereka [172] noted that

One of the major advantages of level-set methods is their
ability to easily handle topological changes. However for
this problem of computing the curvature we have found
this not to be the case. (Peter Smereka)

Indeed, when for instance two drops come close together, the result
calculated by Equation (3.31) will be highly oscillatory, and can give
rise to a numerical prevention of coalescence. A way around this
problem is offered by the LOLEX method presented as part of this
work [173].

One of the issues alluded to by Tryggvason in the quote above is
the need for reinitialisation (or redistancing) in the level-set method.
When advecting the interface according to Equation (3.29), the fieldφ
is typically distorted such thatφ is no longer a signed distance function.
This is because the velocity a small distance away from the interface
will be different from that at the interface. This distortion causes a loss
of accuracy. To combat this, reinitialisation was introduced, whereby
one periodically solves the equation

∂ φ

∂ τ
+ sgn(φ)(|∇φ| − 1) = 0. (3.32)

This will restore φ to being a signed distance function. While a
good solution, standard reinitialisation is not perfect due to numerical
errors. To combat this, we further make use of the the high-ordered
constrained reinitialisation method [174].

We recently pointed out [175] that the frequency at which this
equation is solved should be chosen with some care; in particular
for flows at low Reynolds number, where usual choices like solving
it every 10 time steps will degrade the accuracy of the solution.
This is because when using the stability condition (following again
Kang et al. [157] here), the time step will be restricted by the viscous
contribution to this stability condition. Neglecting the viscous
contribution, one may use the stability condition to compute a
convective time step, which can be orders of magnitude greater. The
reinitialisation of φ is introduced to combat errors which arise due
to the convection of φ. It thus stands to reason that the convective
time step, which is directly related to the speed at which the interface
is convected (and thus deformed), is the correct time step to use as the
basis for the reinitialisation frequency.

[173] Ervik, Å. et al. (2014) [175] Ervik, Å. (2015)
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Another popular technique to reduce the distortion of φ is that
of velocity extrapolation, as introduced by Adalsteinsson et al. [176].
In this method, φ is advected using Equation (3.29) but with u
replaced by a velocity field that is extrapolated from the velocity
at the interface. There appears to be some confusion regarding
this point in the literature; when applying velocity extrapolation,
one should in theory no longer need the reinitialisation procedure.
However, in practice one finds that it is still needed. The reason for
this is that numerical errors are introduced when extrapolating the
velocity, and reinitialisation is necessary to correct the effect of these
errors.

While velocity extrapolation increases the accuracy of the solution,
it is computationally costly due to the need for computing the
extrapolated velocity field. Recently, Sabelnikov et al. [177] presented
an interesting method which can be used as a substitute for velocity
extrapolation at a much lower computational cost. This method has
not been implemented in the present work, but appears promising for
use in future work.

Having then a method for capturing the interface position,
we proceed to take into account the effects of having different
densities and viscosities of the two fluids, and an interfacial tension
between them. Numerically, we implement this using the ghost-
fluid method [178, 157], which is a sharp-interface method. This
means the jumps in various quantities across the interface, as given
for instance by Equations (3.34) to (3.35) below, are incorporated
into the numerical stencil as jumps from one grid point to the next,
as opposed to smearing out the jumps using e.g. the continuum
surface force method [179]. The jump conditions at the interface
read [35] [38] [180]

¹uº= 0, (3.33)
¹pº= 2¹ηºn ·∇u ·n− γκ, (3.34)

¹η∇uº= ¹ηº
�

(n ·∇u ·n)nn+(n ·∇u · t)nt

− (n ·∇u · t)tn+(t ·∇u · t)tt
�

(3.35)

− (t ·∇ιγ )tn,

Here n, t are the normal and tangent vectors at the interface, and we
denote tensors formed by the outer product as e.g. ∇u. We take the

[179] Brackbill, J. et al. (1992)
[35] Teigen, K. E. et al. (2009)

[38] Teigen, K. (2010) [180] Lervåg, K. Y. (2013)
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normal vector to be pointing outwards from a drop, and then the
jump ¹·º is the difference between the external and internal values,
e.g. ¹ηº = η2 − η1. It should be noted that these expression have
been written in a form that gives faster code when implemented,
since the second and third terms in the parenthesis in Equation (3.35)
contain the same product. See Lervåg [180] for a derivation and for
a more thorough description of the ghost-fluid method. Note that
these expressions take into account the Marangoni force created by
gradients in the interfacial tension, as∇ιγ denotes the gradient along
the interface of γ . Note also that when electric fields are applied,
as in some of the work considered here, more terms and equations
enter into these jump conditions. More details of this are given in
Paper 4.

So far, we have assumed that the simulation domain is rectangular.
This may be appropriate for some cases, such as a falling drop. In other
cases, a more complex domain plays an essential role. A specific case
which is important in this work is the drop being drained by a needle.
In this case we want to simulate both the solid walls of the needle
and the suction within the needle. To accomplish this we employ a
standard L2 penalisation method [181]. This method is chosen becauseThe author was

introduced to
the penalisation
method at the 2014
CarteLS workshop
in Bordeaux, and
the method was
implemented into
the code employed
here in one evening.
The author is grateful
to Chloé Mimeau
for her assistance in
explaining the details
of the method.

it is very easy to implement, taking just twenty lines of code. The
method can be used to simulate the effect of a solid body, and also
for specifying a flow field in part of the domain, such as the needle
suction. With this method, the flow field is defined in all the domain,
but in the parts where the penalisation is active, the flow is forced
to be approximately equal to the specified flow uspec (which is equal
to zero inside a solid body). The method consists in adding a term
(1/η)χ (uspec−u) to the right-hand side of the Navier-Stokes equations.
In this expression, 1/η is the strength of the penalisation and χ is a
scalar marker function, being 1 inside a body and 0 outside it. One may
think of this as a body force which is proportional to the difference
between the actual flow field and the desired flow field. Proofs of the
existence and uniqueness of solutions when this method is used are
found in [181]. Error estimates are also given; the error is O (η). At first
sight one might thus use a very small η, but the time step required for
stability is proportional to η, so there is a trade off between speed and
accuracy, as usual.

[181] Angot, P. et al. (1999)



3.3. METHODS FOR ELASTIC INTERFACES 47

§3.3 Methods for elastic interfaces

When it comes to the elastic interfaces, we are entering uncharted
territory. It was far from immediately clear whether interfacial
elasticity could be incorporated into the level-set/ghost-fluid method
described previously. However, another method offered clear evidence
of being able to implement this, namely the immersed boundary
method [182] [183]. Moreover, this method has proven capable of
simulating crumpling of red blood cells [184], reminiscent of the
crumpled asphaltene-covered drops observed by Yeung et al. [141]. For
these reasons, it was decided that one should try to construct a hybrid
level-set/ghost-fluid/immersed-boundary method. In this work, I
had invaluable assistance in M. O. Lysgaard who completed his MSc
thesis [185] on this topic in 2015. The reader is referred to his thesis
for the full details of the hybrid method in the two-dimensional case,
as well as a good overview of the immersed boundary method and its
foundations.

This method forms part of a multiscale approach, which is
illustrated in Figure 3.6. The velocity field and the interface
representation are stored on the Eulerian grid. The Lagrangian points
from the immersed boundary method, and the tensions acting on these
points, are illustrated as orange points and red/green lines, respectively.
The varying color of these lines indicate the varying tensions. In the
corner, a snapshot from molecular dynamics simulations indicates
the use of these to estimate the properties Ka and γ of the interface.
Molecular simulations are discussed in the next chapter. The proposed
hybrid level-set/ghost-fluid/immersed-boundary method is validated
extensively in Paper 8 and in the MSc thesis by Lysgaard [185], and the
results of simulations using this method are also discussed in those
works.

The immersed boundary method is concerned with Lagrangian
points that represent the interface, in a break from all the methods
considered so far which are based on Eulerian descriptions. In the
immersed boundary method, we imagine the interface to be described
by a continuum of elastic fibres, which serve only as an abstraction,
having no mass and no volume. The fibres are parametrised by three
coordinates, and we consider here the axisymmetric coordinate system
(φ, r, s); see Figure 3.6. If one fixes two coordinates, this uniquely
determines a fibre, and the remaining coordinate is a parametrisation
along this fibre. For the case of an interface with no thickness, one of

[182] Peskin, C. (1977)
[183] Peskin, C. et al. (1995)

[184] Fai, T. G. et al. (2013) [185] Lysgaard, M. O. (2015)
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FIGURE 3.6: Illustration of
the proposed method. On the

Eulerian (r, z) grid, the flow
field u (vectors) and the

level-set function ϕ
representing the green-shaded

portion of the droplet are
shown. Some of the

Lagrangian
immersed-boundary points
are shown in orange, with

lines indicating the tensions
Ts and Tφ in green and red,

with varying color denoting
varying tension. For a tiny
patch on the interface, we

compute the interfacial
properties Ka and γ using

molecular dynamics
simulations (lower right

corner). These properties are
used in the calculations of the

tensions. (From Paper 8.)

the coordinates is superfluous, e.g. r = r (φ, s). Furthermore, in the
axisymmetric case, no properties depend on the angle φ, so r = r (s).
Thus we are only concerned with the discretisation of a single fibre in
the meridional direction on the drop.

To have an accurate representation of this single fibre, cubic splines
are used. These generate a smooth analytic parametrisation, and have
the further advantage that the curvature, tangent vector and normal
vector are all given by analytical expressions. This is illustrated in
detail in Paper 8 and by Lysgaard [185].

The tension in this fibre, in both the meridional and azimuthal
directions, gives rise to forces acting on the surrounding fluids. The
tensions may be just an ordinary interfacial tension, or they may
originate from a more complicated expression. Note in particular that
the tension in these two directions may be anisotropic.

In general, we may write down a tension T at the interface, and in
the two-dimensional case with both interfacial tension and elasticity,
assuming a Hookean material, one obtains

T =Ka

�
�

�

�

�

∂ X
∂ s

�

�

�

�

− 1
�

+ γ . (3.36)
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In this equation the parameter Ka is the elastic modulus, and ∂ X
∂ s

(following the notation of Peskin) is the relative deformation of an
interfacial element. It is instructive to think of the instantaneous
values of T as an effective interfacial tension. However there are
important differences between T and γ even in the case where the
interfacial tension varies e.g. due to some surfactant. Perhaps the most
striking thing to note is that if Ka > γ and

�

�

�

∂ X
∂ s

�

�

� becomes small, this
generalised tension can become zero or even negative. In the present
work, we demonstrate that this is what causes the crumpled drops as
observed by Yeung et al. [141].

Once this tension is given, a force must be computed that acts from
the interfacial elements on the fluid. Following Knoche et al. [186] we
have that the force acting in both the normal and tangential directions
to the interface is given as

f=
∂ T
∂ s

t+T
�

�

�

�

∂ X
∂ s

�

�

�

�

κn, (3.37)

where we observe that the tangential force is analogous to the
Marangoni force for variable interfacial tension.

Extending this to the axisymmetric case is covered in Paper 8.
Following again Knoche et al. [186], we extended the tension to have
also a component pointing in the azimuthal direction, i.e. around
the symmetry axis. The two tensions are given by the symmetric
expressions

Ts =
Ka

�

�

�

∂ X
∂ φ

�

�

� (1− ν2)

�

�

�

�

�

∂ X
∂ s

�

�

�

�

+ ν

�

�

�

�

�

∂ X
∂ φ

�

�

�

�

�

− (1+ ν)
�

+ γ , (3.38)

Tφ =
Ka

�

�

�

∂ X
∂ s
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� (1− ν2)
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+ ν
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�

∂ X
∂ s

�

�

�

�

− (1+ ν)
�

+ γ , (3.39)

where ∂ X
∂ φ represents the deformation in the azimuthal direction,

which is induced by the coordinate system as the distance from the
symmetry axis varies. ν here represents not the kinematic viscosity,
but the Poisson ratio of the material. We consider ν = 1/3 here, which
is a reasonable guess for a material like asphaltenes in the absence
of experimental data [187]. The force computed from these tensions
is still confined to just the normal and tangential directions to the
interface, since a force in the azimuthal direction would have to come

[187] Knoche, S. et al. (2013)
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from an azimuthal derivative of the azimuthal tension Tφ. Under the
assumption of axisymmetry, this derivative is by definition zero, as is
the azimuthal derivative of any quantity. The force is then given as

f=
∂ Ts

∂ s
t+Ts
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κφn (3.40)

where κs ,κφ are the curvatures in the (r, z) plane and in the azimuthal
directions, respectively.

To compute the tensions using Equations (3.38) and (3.39) requires
knowledge of the interfacial deformations. In Paper 8 we demonstrate
that the level-set function, or any similar scalar marker function, does
not contain the information required to compute the deformations.
Equivalently, the marker function does not contain information about
compression or stretching of the interface. To store information
about interfacial compression or stretching in an interface capturing
method which uses an Eulerian marker function, one would have
to resort to additional data structures to represent interfacial strain.
As we discuss in Paper 8, the hybrid level-set/ghost-fluid/immersed-
boundary method is a more suitable method, since it allows the
interface representation to be refined at a much lower computational
cost.

The immersed-boundary method provides the required informa-
tion about compression or stretching of the interface. Moreover, it
has been widely used to simulate situations with a combination of
elasticity and interfacial tension, such as the case of interest here. The
method was originally developed for simulating the blood flow trough
the heart [182], and has been a popular choice for the simulation of
elastic membranes in a flow, such as red blood cells [184].

One might consider switching completely to the immersed-
boundary method, but this would mean losing the sharp-interface
handling of the jumps in density and viscosity. Moreover, retaining
the level-set representation leaves the door open to having a changing
interfacial topology in future simulations, such as for the study of drop
coalescence.

Discretising the interfacial force given by Equation (3.40) is
done using standard second-order central differences. Note that the
Lagrangian points cannot be further apart than half the width of
an Eulerian grid cell. If this happens, the discretised interfacial
forces are no longer computed correctly, and the simulation becomes
unstable.

[182] Peskin, C. (1977) [184] Fai, T. G. et al. (2013)
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The discretised forces enter the right-hand side of the discretised
Navier-Stokes equations on the Eulerian grid points close to the
interface. A mollified delta function is used to smear the interfacial
force out to the Eulerian grid points. This delta function is the
product of one-dimensional delta functions. In a break from the
typical situation with smeared-interface methods, the delta function
for use with the immersed-boundary method is uniquely determined
by six conditions on its properties. The reader is referred to [188,
sec. 6] for details of these requirements; the resulting one-dimensional
delta function is given by

δ(r ) =
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where r is the distance from a Lagrangian point to the Eulerian grid
point which one is smearing out to.

At this point we may assemble the proposed multiscale method
in its entirety. At the nanoscale, a tiny patch of the interface, of
the order of 300 nm2, is simulated using coarse-grained molecular
dynamics. In this simulation, the (three-dimensional) simulation
domain is elongated in the direction normal to the interface. From
the diagonal elements of the stress tensor, the interfacial tension
γ can be computed, and by using volume-preserving deformations
of the simulation domain, the elasticity Ka of the interface can
be estimated. The complex effect of asphaltene molecules at the
interface is considered, using several different models based on a group-
contribution approach. Details of the molecular simulations are given
in the next chapter.

At the macroscale, an axisymmetric drop is simulated using a
combination of Eulerian and Lagrangian descriptions. The flow is
governed by the incompressible Navier-Stokes equations, which are
solved on a structured grid using finite differences, a Runge-Kutta
time integration and the Chorin projection method. The density and
viscosity differences are handled using a standard level-set/ghost-fluid
approach, where e.g. the jump in the pressure across the interface is
enforced in a sharp manner. The generalised tension on the interface,
resulting from the combination of interfacial tension and elasticity, is
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implemented using the immersed-boundary method. The Lagrangian
points which discretise the interface in the immersed-boundary
method give the interfacial deformations required to compute the
tensions. The force resulting from the tensions is distributed to the
Eulerian grid and enters into the discretised Navier-Stokes equations.
The level-set function, stored at the Eulerian grid points, is computed
from the Lagrangian interface representation in each time step.
In summary, we have at the macroscale a hybrid level-set/ghost-
fluid/immersed-boundary method having both sharp and smooth
interface discretisations.

§3.4 Methods for molecular simulation

Molecular dynamics is, on the face of it, a very simple method. N
particles are placed in a virtual box, typically with periodic boundary
conditions. Commonly, these particles are taken to be atoms, and the
forces between atoms are taken to be fully classical forces (though they
are quantum-mechanical in origin). The force field which is prescribed
gives the acceleration on each particle as a function of the locations
of all the particles. Then one simply does numerical integration of
Newton’s second law of motion for all the particles, and the system
evolves in time. If we denote the position of each particle by xi , with
mass mi , the equations of motion are

∂ 2xi

∂ t 2
=
∑

j 6=i

F (|x j − xi |)
mi

x j − xi

|x j − xi |
(3.42)

where we assume that the forces are conservative, and that the forces
between two particles only depend on the distance r between them,
such that F (r ) =−∂ V (r )/∂ r . One must then specify the potential
V (r ). The force field is short-ranged, typically decaying like r−6, so
a cut-off is employed such that only the closest neighbours contribute
to the force on a particle.

To proceed, since only the two-body problem has an analytical
solution, these equations of motion must be integrated numerically.
A symplectic integration method is typically used, to ensure that the
energy drift is very small and that simulations are stable over very
long times. A popular example is the velocity Verlet method, which
given the velocities vn

i and positions xn
i at the time step n computes
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the positions and velocities at the next time step n+ 1 as

vn+1/2
i = vn

i +
∑

j∈N(i ,n)

∆t
2m

F (|xn
j − xn

i |)
xn

j − xn
i

|xn
j − xn

i |
(3.43)

xn+1
i = xn

i + vn+1/2
i ∆t (3.44)

vn+1
i = vn+1/2

i +
∑

j∈N(i ,n+1)

∆t
2m

F (|xn+1
j − xn+1

i |)
xn+1

j − xn+1
i

|xn+1
j − xn

i |
(3.45)

Here∆t is the time step, and N(i , n) is the neighbour-list, i.e. the list
of all particles which are within the cutoff distance rcut of particle i
at time step n. rcut is chosen such that the potential is approximately
zero for r > rcut. The use of a neighbour-list dramatically speeds
up molecular dynamics simulations, at the cost of increased memory
use.

First developed around 1955, molecular dynamics was found (in
spite of predictions made in the statistical mechanics community)
to be a very powerful method even with the computers at the time.
Molecular dynamics results presented by Alder et al. [189] gave the
world an unprecedented view of the microscopic world, and helped It is noteworthy (and

sad) that the early
female programmers,
like Mary Ann
Mansigh who wrote
the first molecular
dynamics code, or
Mary Tsingou who
wrote the code for
the Fermi-Pasta-Ulam
model in 1954, were
not included as
authors on the papers
describing the results.

solve important open problems such as the hypothesised existence
of a solid-liquid phase transition in a system of hard spheres [190].
In Figure 3.7, Berni Alder is seen standing behind Mary Ann
Mansigh and Tom Wainwright, studying some of the first images
produced by molecular dynamics simulations. Alder and Wainwright
wrote an early introduction to molecular dynamics [191]. Good
textbooks on the subject include [192] [193]. Care has to be taken when
programming a molecular dynamics code; both in order to obtain
the correct dynamics (such as energy conservation) and to have a fast
implementation. The reader is referred to the mentioned textbooks
for details.

In the 60 years after its introduction, molecular dynamics has
undoubtedly come of age. Simulations have been performed with
hundreds of billions of atoms [194]. Others have simulated entire HIV
virus capsule structures [195]. Yet there remains a fundamental speed
limit to how fast fully atomistic simulations can go. Once the number
of atoms per CPU core becomes too small, strong scaling of the system
levels out, and throwing more cores at the problem does not reduce
the time-to-solution.

[190] Alder, B. J. et al. (1957)
[191] Alder, B. J. et al. (1959)

[192] Allen, M. P. et al. (1989)
[193] Frenkel, D. et al. (2001)

[194] Kadau, K. et al. (2006)
[195] Zhao, G. et al. (2013)
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FIGURE 3.7: Berni Alder
stands behind Mary Ann

Mansigh (who wrote the first
molecular dynamics code) and

Tom Wainwright. They are
studying oscillograph traces

from the simulations. (Image
courtesy of the AIP Emilio

Segre Visual Archives.)

One way around this conundrum is to employ coarse-grained
molecular dynamics. Here, the particles being simulated are no longer
atoms, but “beads” representing two to four atoms (not counting
hydrogen). This has a multitude of advantages: the total number of
particles is reduced. Sticky interactions such as hydrogen bonding that
may keep the system in a local quasi-equilibrium state are averaged
out. And electrostatic effects, which are long ranged and thus costly
to simulate, also disappear. All in all, studies in the literature have
reported speedups of three orders of magnitude or more. Combined
with the recent development of GPU hardware to accelerate the
simulations, coarse-grained simulations can probe complex systems,
such as the mixture of oil with asphaltenes and water, at temporal and
spatial scales that are (and will likely remain) unavailable to studies
using atomistically detailed approaches.

Several coarse-graining procedures exist in the literature. It is
common to distinguish between bottom-up approaches, that attempt
to tune the coarse-grained models to atomistic ones, and top-down
approaches, that start with thermophysical properties of the fluids in
question and build models based on those. See e.g. Brini et al. [196] for a
review of coarse-graining methods. The particular method employed
here, namely the SAFT-γ Mie approach [197], is of the latter type.
SAFT stands for Statistical Associating Fluid Theory, γ indicates that

[197] Müller, E. A. et al. (2014)
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this is the third “version” of the approach, and Mie refers to the Mie
potential [198] that is employed, viz.

V (r ) =C (n, m) ε
h�σ

r

�n −
�σ

r

�mi

, (3.46)

C (n, m) =
� n

n−m

�
� n

m

�m/(n−m)
.

This potential strongly resembles the Lennard-Jones potential It may be verified by
simple algebra that
the Mie potential is
invariant under the
interchange of n and
m, since both the
prefactor C (n, m)
and the term in the
square parenthesis in
Equation (3.46) are
antisymmetric under
this interchange.

discussed previously, except that the two exponents are no longer
fixed to the values 12 and 6. The normalisation factor C (n, m) ensures
that the well depth remains equal to ε for any n, m. In the n →∞
limit the “width” of the potential well goes to zero. Note also that
the limit limn→m C (n, m) does not exist, but the one-sided limits do
exist: limn↘m =+∞ and limn↗m =−∞.

Since it has been shown [199] that the two exponents n and m are
not independent, but rather intimately related, we fix m = 6 and let
n vary. The effect of varying n is illustrated in Figure 3.8, where we
plot the potential with n going from 8 to 24 in steps of 2, for ε= 200,
normalising r by σ . Alternatively, we may plot the potential with
r normalised by the location of the potential minimum, r0. This is
shown in Figure 3.9. One easily obtains r0 as a function of σ and n
by finding the zero of the derivative of the potential, viz.

r0 = σ
� n

m

�
1

n−m
. (3.47)

From these figures is seen that a lower n corresponds to a more long-
ranged or “softer” potential, while in the limit n→∞ the potential
becomes equal to that of a hard sphere with radius σ . The n = 8
potential is the softest considered in this work, used in the models of
water created by Lobanova et al. [200].

In the SAFT-γ Mie approach, there is a one-to-one correspondence
between the parameters of the SAFT Equation of State (EoS) and those
of the intermolecular potential used in the simulations. By fitting the
EoS to thermophysical properties, e.g. the vapor and liquid densities as
a function of temperature, one fixes the parameters of the EoS and the
potential. The key point of the approach is that molecular dynamics
simulations using the potential with these parameters give the same
thermophysical properties as the EoS and the experimental data used
to fit the EoS. Furthermore, when simulations are performed to
predict properties not used in the original fit, the agreement with

[198] Mie, G. (1903) [199] Ramrattan, N. et al. (2015)
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FIGURE 3.8: The Mie (n,6)
potential shown for n varying

from 8 to 24. The Lennard
Jones (12,6) potential is shown

in a stronger colour.
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FIGURE 3.9: Same as the
previous figure, but

normalising the radial
coordinate by the potential

minimum r0 instead of σ .

experimental data is very good. There is a large body of work in the
literature that has used this approach to study a wide range of simple as
well as complex fluid systems [201] [202] [203] [204] [205] [206] [200] [207] [208].
Also noteworthy is the correlation presented by Mejía et al. [209],
which instead of fitting the EoS to experimental data uses the critical
properties of the fluid to compute the force field parameters. This is
significant, since running the correlation is much quicker and requires
less input data from experiments.

[201] Avendaño, C. et al. (2011)
[202] Avendaño, C. et al. (2013)
[203] Lafitte, T. et al. (2012)
[204] Müller, E. A. et al. (2014)

[205] Herdes, C. et al. (2015)
[206] Herdes, C. et al. (2015)
[200] Lobanova, O. et al. (2015)

[207] Lobanova, O. et al. (2016)
[208] Theodorakis, P. E. et al.

(2015)
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The link between a thermodynamic equation of state and an
intermolecular potential goes back to the van der Waals equation [210].
This may serve as an illustration of the link between the Mie potential
and the equation of state for the SAFT-γ Mie approach. The van der
Waals equation of state is

P =
RTρ

1− bρ
− aρ2 (3.48)

where P is the pressure and ρ is the density, R is the universal gas
constant and T is the temperature, and finally there are two parameters
a and b . The equation of state is fitted to experimental data for some
fluid by determining values for a and b . It can be shown that this
equation of state is linked to a Sutherland pair potential,

V (r ) =−ε
�σ

r

�6
(3.49)

and the two parameters ε and σ here are directly related to the
parameters a and b by the formulae

a =
2
3

N 2
Avπεσ

3 (3.50)

b =
2
3

NAvπσ
3 (3.51)

where NAv is Avogadro’s number. In the same way, an explicit link
is obtained between the equation of state and the Mie potential in
the SAFT-γ Mie approach; then there are four parameters and the
underlying equations are more complicated, so the expressions are
more involved. The reader is referred to Mejía et al. [209] for the full
details.

As part of the present work, two computational tools have been
developed for working with the SAFT-γ Mie approach, presented
in Paper 6 and Paper 7. These are discussed in further detail in
Chapter 4.2.

The Mie potential in this approach gives the force between two
identical coarse-grained beads. We will consider now first molecular
models which are homonuclear, i.e. that a model for some molecule is
made up of several beads which are tangentially bonded together in a
linear shape, like pearls on a necklace.

When a mixture of different compounds is considered, a mixing
rule must be used to obtain the potential (and thus the force) which acts

[210] van der Waals, J. D. (1873)
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between beads of different types. With the SAFT-γ Mie approach it is
common to use the Lafitte mixing rules [202]. These rules, given below,
specify the parameters marked by † for the Mie potential between
beads of two different types i and j .

σ† =
σi +σ j

2
(3.52)

n† = 3+
q

(ni − 3)(n j − 3) (3.53)

ε† = (1.0− ki j )
�p

σiσ j

σ†

�3
p

εiε j (3.54)

In these mixing rules there is one free parameter ki j . This parameter
may be tuned to obtain the correct interaction between two beads
of different type, by comparing computed results for some physical
property such as interfacial tension or solubility to experimental
values.

To extend this to more complicated molecules, such as surfactants
and asphaltenes, it will no longer be sufficient to have molecular
models where all beads are of the same type. This means we will
require a heteronuclear model, where several different beads are
tangentially bonded together in the same molecule. To construct
these models, a group-contribution approach is used. This means
that one constructs the models for individual beads based on the
thermophysical properties of that that subgroup of the molecule, as
if it were a separate molecule.

For instance, if one wants to model octanol, an alcohol with a long
tail, we might construct one bead to represent the part containing the
hydroxyl group and two methyl groups. This part of the molecule
corresponds to ethanol, so we would use ethanol’s physical properties
to obtain the force field parameters for this bead. The remaining part
of the molecule is a linear alkane, namely hexane, and we would use
the properties of hexane to construct the force field parameters for
this. Finally, one must put these beads together in a combination
which resembles the original molecule. In this case, using one ethanol
bead and two hexane beads together in a linear chain gives a good
correspondence. This is illustrated in Figure 3.10, where the blue
circle represents the ethanol bead and the green circles represent the
hexane beads.

When considering a mixture of fluids which are immiscible, such
as oil and water, we are typically interested in computing the interfacial

[202] Avendaño, C. et al. (2013)
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FIGURE 3.10: Illustration of how one might construct a coarse-grained model for
octanol using the group-contribution approach.

tension. To achieve this, it is necessary to have well-defined and flat
interfaces in the simulation box. This is achieved by using an elongated
box, Lx = Ly < Lz , where the tendency for interfaces to attain the
minimum energy configuration ensures that the interfaces will be
perpendicular to the elongated direction. Since periodic boundary
conditions are used, there must always be an even number of interfaces
in the system.

Assuming the system has two interfaces, one may compute the
interfacial tension from the diagonal elements of the stress tensor, σi i ,
as

γ = 1
2

∫ Lz

0

�

−σz z +
1
2
(σx x +σyy )

�

d z. (3.55)

This is known as the mechanical route for computing the interfacial
tension, and was introduced by Kirkwood et al. [211]. Since this integral
may be split into three parts, it is typical for molecular dynamics
software to compute the “pressure tensor” elements px x (and similarly
for the y and z directions) as

px x =
∫

−σx x d x, (3.56)

From these quantities we may compute γ using Equation (3.55). The
value of γ computed at a single instant in time using this method
will fluctuate significantly from one time step to the next. Thus time
averages are employed to obtain a reliable estimate of γ .

The elasticity of the interface may be computed as the change
in γ when the interfacial area is changed in such a way that the
volume of the simulation domain remains constant. This means
changing the box dimensions from their original values Lx , Ly , Lz to
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new values

L′x =
Lxp

a
(3.57)

L′y =
Lyp

a
(3.58)

L′z = a Lz (3.59)

where a is the desired scaling factor. Following den Otter et al. [212],
Boek et al. [213], denoting the change in tension by ∆γ and changing
the interfacial area from A0 to A, the elasticity is given by

Ka =
∆γ

A/A0− 1
. (3.60)

As a concluding remark, it is noteworthy how molecularFirst discussed by
Lord Kelvin in
1874 [214], popularised
by Johann Loschmidt
in his critique
of Boltzmann’s
work proposing
that the entropy is
non-decreasing.

dynamics conjures up that age-old conundrum of statistical physics,
namely Loschmidt’s paradox (previously discussed in Chapter 2.1).
This is the question of how the second law of thermodynamics
(which is time-irreversible) can arise from time-reversible dynamics.
How do our simulations of time-reversible equations of motion,
using numerical methods that are also time-reversible, give rise to

The fidelity of
molecular dynamics
as a simulation
tool was never in
question, but many
(including Kirkwood
and Edward Teller)
doubted it would
be fast enough to
be competitive
with Monte Carlo
methods.

irreversible processes such as the aggregation of asphaltenes and their
adsorption at the interface? This is intimately related to questions
of ergodicity. The unprovenness of the ergodic hypothesis, i.e. that
time-averages and ensemble-averages give the same answers, caused a
great deal of uncertainty in the early development of the Monte Carlo
method. John Kirkwood was reportedly among those expressing
doubt [215]. The relief was great when his former student, Berni Alder,
demonstrated that molecular dynamics and Monte Carlo simulations
gave the same answers. Today one has great faith in the ergodic
hypothesis being true, yet a rigorous proof remains elusive. One
should also note that there is a concept of ergodicity breaking which
occurs in macroscopic physical systems, giving rise e.g. to the
observable magnetisation in ferromagnetic materials.

Coming back to the question of how time-irreversibility arises,
statistical physicists speak of this in the language of symmetry
breaking. For systems like molecular dynamics, where one speaks of
exploring the phase space, recent work by Hoover et al. [216] [217] [218] on
model non-equilibrium systems provides a fascinating insight into this.

[215] Battimelli, G. et al. (1990)
[216] Patra, P. K. et al. (2015)

[217] Hoover, W. G. et al. (2015) [218] Hoover, W. G. (2015)
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In these systems, the phase space contains two emergent structures
called an attractor and a repellor. Such structures are a recurring theme
in nonlinear dynamics (colloquially known as chaos theory); see e.g.
the book by Strogatz [219] for a good introduction.

When time proceeds in the normal direction, the point in
phase space corresponding to the system state “flows” from the
repellor towards the attractor. When time is reversed, the flow
goes the other way. The interesting thing is that for the model
non-equilibrium systems considered by Hoover et al. [216] [217] [218],
it is found that these two structures in phase space are qualitatively
different: the repellor is a fractal structure with measure zero, The measure is

a mathematical
concept that may
be foreign to the
reader. If we imagine
the fractal as some
three-dimensional
structure, for instance
like the branches of
a bush, the measure
is analogous to
the volume of the
branches.

while the attractor is a fractal structure with measure one. This
“volumetric” difference causes the symmetry breaking in a very neat
fashion. While this result is obtained for systems with a very low-
dimensional phase space as compared to the typical case in molecular
dynamics (where the dimension of phase space becomes of the order
of millions), the explanation holds a certain elegance that makes it
attractive as an explanation of the behaviour observed in molecular
dynamics.
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An article about computational
science in a scientific
publication is not the
scholarship itself, it is merely
advertising of the scholarship.

David Donoho

§4.1 Reproducibility and open science

Reproducibility has become a hot topic lately, not just in the exper-
imental sciences and the social sciences, but also for computational
research. The concept of open source software is widespread in
many fields, and major scientific codes are open-sourced both in the
field of molecular dynamics and in the field of computational fluid So it only took 20

years for the idea
of reproducible
computational
research to catch
on. At least we
are in a better state
than psychology,
where the recently
“discovered”
reproducibility
crisis has been
apparent to the keen
observer at least since
Feynman’s “cargo
cult science” speech
in 1974.

dynamics. The idea of reproducible computational research traces
back to Buckheit and Donoho [220] and their influential 1995 book
about the WaveLab software and reproducible research, and to Jon
Claerbout who championed the concept in geophysics in the early
1990’s. The latter stated [221]

I discovered reproducibility in computational research when
I learned about makefile syntax and how to use it to
incorporate figures in documents. (Jon Claerbout)

Both Claerbout and Donoho lamented that their ideas were not taken
up into the mainstream. Today, we are hopefully on the road to getting
there.

One improvement that has helped this cause immensely is modern
distributed version control systems such as git [222]. When you update
your code today, perhaps with a new model or to fix a bug, and this
code is hosted at a public repository like Github or Bitbucket, anyone

[220] Buckheit, J. B. et al. (1995) [222] Torvalds, L. et al. (2005)
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in the world can obtain the update quickly and effortlessly. This
has inspired the concept of social coding, where workflows are now
available that let anyone submit pull requests with fixes or new features
to your code. You and your team can then review the pull request,
comment on it, and (potentially after a few rounds of correction)
you can merge the request into your code. The reader has probably
noticed the strong parallels with the peer review process in science.
Such workflows have been or are being adopted by many, if not most,
of the widely used open-source scientific codes and libraries available
today. The tools developed in the present work have also adopted this
open-source and git-based model.

§4.2 Tools developed in the present work

As stated previously, two computational tools have been developed
as part of the present work. These tools work together to give
an unprecedented ease-of-use of coarse-grained molecular dynamics
simulations, from the process of obtaining force field parameters
representing the fluid in question, to the point where the simulation
is running on your computer. The tools have been named raaSAFT
(Paper 6) and Bottled SAFT (Paper 7), both names being wordplay
on the fact that SAFT means “fruit juice” in the author’s native
tongue.

Let us begin by discussing Bottled SAFT (Paper 7). This tool
originated from the observation that one should be able to combine
the correlation given by Mejía et al. [209], colloquially known as the
M&M correlation, with the large tables of experimentally measured
critical properties that exist in the literature. In building Bottled SAFT,
we have taken the book by Yaws [223], containing critical properties
of more than 7800 fluids, and applied the M&M correlation to this
large data set. By employing the excellent Pandas library [224] [225], the
data could be managed in an automated fashion. The data set was
filtered to exclude results that were outside the range of application
of the correlation. In the end, results for more than 6000 fluids were
obtained. Using the equally excellent Flask framework [226], a web
application was constructed where users may search the database for
the desired fluid, by inputting the CAS number, chemical formula, or
name. The force field parameters are then given as a table. They are
also given as a script implementing this particular fluid into raaSAFT,
which we will discuss next. This script can be saved to one’s computer

[224] McKinney, W. (2010) [225] McKinney, W. (2015) [226] Ronacher, A. (2015)
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and the model used directly in molecular dynamics simulations. The
website is fully operational athttp://www.bottledsaft.org, and the
code implementing the website as well as the database of force field
parameters is freely available at Bitbucket (http://www.bitbucket.
org/asmunder/bottledsaft).

raaSAFT (Paper 6) is the other tool built during this thesis. It, too,
is fully open source and available at http://www.bitbucket.org/
asmunder/raasaft. Being a Python code, it can be installed on any
computer with the single command pip install raasaft thanks to
distribution on PyPI [227]. It does, however, depend on another piece
of software that takes slightly more effort to install, namely HOOMD-
blue [228] [229]. HOOMD-blue is a modern molecular dynamics code
written to run on GPUs, which is fast and highly scalable. It is also
easily scriptable since the user interface takes the form of Python
scripts. HOOMD-blue does not implement any particular force
fields, but can be used to simulate any kind of atomistic or coarse-
grained molecular dynamics, as well as other particle-based methods
like dissipative particle dynamics. The purpose of raaSAFT, then, is
to implement the SAFT-γ Mie approach on top of HOOMD-blue. By
leveraging the best features of Python, a language that borrows both
from object-oriented and from functional programming paradigms,
raaSAFT makes the implementation of different simple or complex
fluids a matter of few lines with no repetitive coding. Implementing
the wide range of models published with the SAFT-γ Mie approach,
raaSAFT makes it easy for anyone to replicate the results in these
works.

A noteworthy feature of raaSAFT is that it explicitly encourages
users to send in jobscripts used to run simulations for their publica-
tions, such that these simulations are easily reproducible by others. A
dedicated folder in the git repository holds reproduction jobscripts
for various papers. For the molecular simulations considered here in
Papers 5, 6 and 8, jobscripts will be uploaded to this folder when the
papers are published.

To illustrate how simple the syntax is for adding models even for
complex molecules, we reproduce on the next page a code listing from
Paper 6 that contains the implementation of a polystyrene model. This
model can be used in user jobscripts by calling the constructor at a
single line in the jobscript. Note that both the number of polystyrene
molecules and the number of monomers making up each molecule are
given as arguments to the constructor. This lets the user easily perform

[227] Jones, R. (2002)
[228] Anderson, J. A. et al. (2008)

[229] Glaser, J. et al. (2015)

http://www.bottledsaft.org
http://www.bitbucket.org/asmunder/bottledsaft
http://www.bitbucket.org/asmunder/bottledsaft
http://www.bitbucket.org/asmunder/raasaft
http://www.bitbucket.org/asmunder/raasaft
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parameter studies e.g. of the effect of polystyrene concentration and
size for a given solvent system. It also makes it very simple to study
polydisperse systems containing polymer molecules of different size,
to study different solvents or mixtures of solvents, etc.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

class Polystyrene(MieCGHet):
def __init__(self,count,monomers):

self.BBN = BackbonePS(count=1)
self.BCH = BenzenePS(count=1)
self.Components=[self.BBN, self.BCH]
self.Name = "Polystyrene"
self.ShortName = "PS"
self.Segments = 2*monomers
self.Def = ([self.BBN]+[self.BCH])*monomers
MieCGHet.__init__(self,count)
self.NrBondTypes = 2
bt1, bt2, = self.getBondNames()
self.Bonds = []
for m in range(monomers-1):

self.Bonds.extend( [ (2*m,2*m+1,bt1), (2*m,2*m+2,bt2) ] )
self.Bonds.append((2*(m+1),2*(m+1)+1,bt1))
self.createBondSpec([10000,6309.5])
self.Citation = "DOI: unpublished"

To briefly explain this script: the first two lines specify the building
blocks of the molecule, an aliphatic and an aromatic bead. Together
these form a styrene monomer. They are implemented by two other
classes, each being eight lines of code specifying the Mie parameters,
molar mass etc. In line 5 these two building blocks are put into the
list of components forming the polystyrene model. The model is then
given a name, a short name, and the number of beads (or segments) is
specified. The self.Def structure in line 9 numbers the beads in each
molecule, here in an alternating sequence of aliphatic and aromatic
beads. Lines 11-17 specify the bonds, of which there are two types in
this model: aliphatic-aliphatic bonds forming the molecule backbone,
and aliphatic-aromatic bonds connecting the aromatic beads hanging
off the backbone. These bonds are specified in the for loop in
lines 14-15, except for the final bond which is set in line 16 (since
this bead has no bond to the next aromatic bead). Finally, the two
bond constants are set, along with the DOI (this model is not yet
published).

§4.3 Tools used in the present work

In addition to raaSAFT and Bottled SAFT, many computational tools
have been used in this work. The previously mentioned HOOMD-
blue molecular dynamics code [228] is one of these, which is used
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together with raaSAFT for all the molecular simulations performed
as part of this work.

FIGURE 4.1: A
drop is stretched
by the electric field
caused by a voltage
applied across two
electrodes. (From
Paper 4.)

FIGURE 4.2: An
asphaltene-covered
drop is deflated by
a needle, causing
the interface to
become tensionless
and crumple near the
neck. (From Paper 8.)

Other tools include the Tecplot [230] and VisIt [231] scientific
visualisation softwares, as well as the general-purpose open-source 3D
graphics software Blender [232]. The latter is a particularly interesting
tool since it is primarily built for movie and game designers. This
means it can be used to achieve photorealistic renderings both for
illustrations (cf. Figures 1.1 and 3.5) and for rendering representations
of fluid interfaces which have been produced from simulations, as in
Figures 4.1 and 4.2 shown in the margin (reproduced from Paper 4
and Paper 8, respectively).

For creating line plots in a self-documenting and reproducible
fashion, RMarkdown has been the tool of choice. This combination
of the statistical programming language R [233], which has the excellent
plotting library ggplot [234], with Markdown documents where one
can write mathematical symbols and equations using LATEX and
cite the scientific literature using DOI strings, is very powerful.
An RMarkdown document typically takes input data, performs
calculations on the data, and plots or tabulates the results, all
intertwined with text that describes the data. This is an example of
literate programming, a paradigm introduced in the eponymous paper
by Knuth [235]. Also noteworthy in RMarkdown is that the text can
contain expressions computed directly from the data, e.g. the code
$\xi$ = ‘r xi_val‘ renders as ξ = 0.245 where “0.245” is inserted
as the result of some R computation, e.g. a parameter obtained by
fitting an expression to experimental data.

Finally, a tool which has been very important in this work is the in-
house two-phase incompressible Navier-Stokes solver called “levelZ”.
This code uses the previously discussed numerical methods such as
the Chorin projection method, the level-set and ghost-fluid methods,
etc. Development started in 2006, and the code is written in modern
Fortran, making use of the PETSc [151] library for solving the pressure
Poisson equation, as discussed in Chapter 3.1.

Results from the code have been used in many publications con-
cerning two-phase flow phenomena [35] [36] [236] [237] [238] [173] [239] [240]

[241] [242]. The code can be used to simulate two-phase flow in two

[230] The Tecplot Team (2016)
[231] Childs, H. et al. (2005)
[232] Blender Community (2015)

[233] R Core Team (2013)
[234] Wickham, H. (2009)

[151] Balay, S. et al. (1997)
[35] Teigen, K. E. et al. (2009)
[36] Teigen, K. E. et al. (2010)
[236] Teigen, K. E. et al. (2010)
[237] Lervåg, K. Y. et al. (2013)
[238] Brunsvold, A. L. et al.

(2013)
[173] Ervik, Å. et al. (2014)
[239] Ervik, Å. et al. (2014)
[240] Gjennestad, M. et al. (2015)
[241] Ervik, Å. et al. (2016)
[242] Ervik, Å. et al. (2016)
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dimensions and in axisymmetric configurations. The hybrid level-
set/ghost-fluid/immersed-boundary method developed for Paper 8
is implemented in this code. From previous work by Teigen et
al. [35] [36] [236], the code can be used to simulate the effects of an electric
field on drops, as well as the effect of insoluble surfactants at the drop
interface. These capabilities are used in Papers 3 and 4.

Paper 2 reports on the initial work to parallelise a three-
dimensional version of the code. This lays the foundations for future
3D parallel simulations of electrocoalescence and other two-phase
flow phenomena. After Paper 2 was presented at the CFD 2014
conference, some additional work was done to test the code, which
is reported here. In particular, the code was tested on the standard
three-dimensional Taylor-Green vortex test case. This is a Direct
Numerical Simulation (DNS) of a single-phase flow that develops
turbulent structures. These simulations were done on the vsl176
cluster at SINTEF Energy Research, and later also on the Vilje cluster
at NTNU. The specific case considered was the Taylor-Green vortex
with parameters given in Test Case C3.3 of the 3rd International
Workshop on High-Order CFD Methods. The flow is solved with
periodic boundary conditions and a domain spanning [0,2π] in each
direction, and the initial condition is

u =V0 sin(x)cos(x)cos(z), (4.1)
v =−V0 cos(x) sin(y)cos(z), (4.2)
w = 0, (4.3)

p =
ρV 2

0

16
(cos(2x)+ cos(2y)) (cos(2z)+ 2) . (4.4)

(4.5)

The parameters ρ, µ and V0 are chosen to give a Reynolds number
Re = ρV0L/µ = 1600, where L = 1m. Plots of the initial condition
(left) and close to the moment of highest turbulent intensity (right)
are shown in Figure 4.3. The right plot is at t = 9tc , where tc = L/V0
is the convective time scale.

The strategies used in the paper proved useful also to others. This
prompted the author to write a short note, titled “Domain decom-
position without the agonising pain” [243]. The code accompanying
this note was submitted for review by the PETSc team (as a git
pull request) and is now incorporated in PETSc as DMDA Tutorial
13 [244].

[243] Ervik, Å. (2015) [244] Ervik, Å. (2015)
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FIGURE 4.3: On the left,
the initial condition, shown as
two isosurfaces of the
z-vorticity. On the right,
x-vorticity isosurfaces
coloured by vorticity
magnitude. Note periodic
boundary conditions.

One aspect of parallelisation which several people at the CFD
2014 conference expressed surprise about is the topic of memory
bandwidth limitations. Memory bandwidth is the speed at which
data in RAM can be loaded into the CPU. While the evolution in
memory bandwidth over the years has been extensively documented
by McCalpin [245], and the fact that memory bandwidth (rather than
CPU core count) is the bottleneck for many algorithms has been
popularised by the “seven dwarves” of Colella [246], it appears that
many CFD practitioners are unaware of these facts. CPU manufacturers

are arguably part of
the reason for this,
since increasing core
counts are heavily
advertised, while
memory bandwidth
developments are
relegated to tables in
obscure specification
documents.

People who are aware of the memory bandwidth problem talk
about “scaling around” it. This is illustrated in Figure 4.4, where two
benchmarks from the SINTEF cluster vsl176 are shown. On the left
side of Figure 4.4, the memory bandwidth (tested with McCalpin’s
STREAM Triad benchmark) on a single dual-socket node is shown
as a function of the CPU cores used. It is seen that for a memory-
bandwidth limited simulation, there is no point in using more than
∼2 cores per node. The memory bandwidth on one node can be
saturated by using two CPU cores. But N nodes will have N times
the bandwidth of one node. On the right side of Figure 4.4, the same
benchmark is shown for an increasing number of nodes using 4 cores
per node; note that this is a log-log plot. In this figure the scaling is
very linear with a slope of 0.88, illustrating that running a memory-
bandwidth limited simulation on several nodes will scale around the
limitation. This is provided the (InfiniBand) interconnect between
nodes is as fast as the memory bandwidth, which cluster designers
usually make sure is the case.
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FIGURE 4.4: Comparison
of memory bandwidth scaling
on a single compute node, left,

with the scaling across many
nodes using 4 cores per node,

right.
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The best way to have a good
idea is to have a lot of ideas.

Linus Pauling

§5.1 Paper 1
Ervik, Å., Lervåg, K. Y. & Munkejord, S. T. A robust method for
calculating interface curvature and normal vectors using an extracted
local level set. Journal of Computational Physics, 257, 259–277.
doi:10.1016/j.jcp.2013.09.053 (2014)

This paper presents the local level-set extraction (or LOLEX) method
for the robust calculation of interfacial curvature when using the
level-set method. As discussed in Chapter 3.2 and highlighted by
the quote from Smereka [172], curvature can easily be calculated from
the level-set function, except during a situation where the interface
topology changes. This happens e.g. when two drops coalesce, or
when a drop coalesces with a flat interface. Using the standard method,
the curvature develops large unphysical oscillations in the moments
before coalescence, as it is not possible forϕ to remain a signed distance
function in the region between the drops. Since these curvature
oscillations cause oscillations in the pressure difference across the
interface, these numerical errors will lead to incorrect results. In

71
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the most serious cases, the errors lead to an unphysical prevention
of coalescence [247].

The LOLEX method is designed to solve this problem. It builds
on the previous method by Salac et al. [248], and extends this method
to considering only a local region of the interface. This locality has
several important benefits: it means the method handles the entire
class of cases where curvature calculation errors occur, as opposed to
the method presented in Salac et al. [248] which assumes the curvature
errors occur in the region between two separate bodies of fluid. The
locality also means the method has low computational cost, since one
can easily calculate the areas where the standard curvature calculation
will give errors from the deviation ofϕ from a signed distance function.
Furthermore, the locality means the method is compatible with
common parallelisation strategies. Finally, since the LOLEX method
does not make use of curve fitting, in contrast to some methods
developed to handle this problem [249] [237], the LOLEX method is
easily extended to three-dimensional simulations, as demonstrated
with a proof-of-concept in the paper.

In Figure 5.1 the advantage of the method over the standard
curvature calculation is demonstrated. In this case, a water drop
falls through a polybutene-decane mixture, and is about to merge
with a pool of water. The colour in this figure indicates the pressure
field. It is seen that with the standard method, significant pressure
oscillations are present, while these are eliminated when using the
LOLEX method.

p [Pa]

LOLEX Standard

FIGURE 5.1: Water droplet
falling through a mixture of

polybutene and decane, about
to merge with a water pool.

The colours show the pressure
field using the LOLEX

method and the standard
method at t = 0.007 s.

(Reproduced from Paper 1.)

[247] Lervåg, K. Y. et al. (2013) [249] Macklin, P. et al. (2006) [237] Lervåg, K. Y. et al. (2013)
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Contributions to Paper 1
The manuscript was written by me. The new method was developed
and implemented into our in-house finite difference code by me, and
most of the numerical results are due to me. Lervåg contributed with
discussions during the development of the new method, designed the
test case in Section 4.1, ran simulations for Section 5.2, created some
of the result figures, and gave feedback on the manuscript. Lervåg
also assisted in some of the programming efforts for initialising the
test cases in Section 5. Munkejord contributed with discussions of the
manuscript and some code testing.

Most of the work with the LOLEX method was done before
starting the PhD project; the paper is an extension of my Master’s
thesis [250]. After completion of the Master’s thesis, the method was
tested on additional cases, some refinements of the method were
undertaken, and the paper was written and submitted.

[250] Ervik, Å. (2012)
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§5.2 Paper 2
Ervik, Å., Munkejord, S. T. & Müller, B. Extending a serial 3D two-phase
CFD code to parallel execution over MPI by using the PETSc library for
domain decomposition in Proceedings of the 10th International Conference
on Computational Fluid Dynamics In the Oil & Gas, Metallurgical and
Process Industries (Trondheim, Norway, June 2014). arXiv: 1405.3805

In this paper we discuss the initial results with the code that I
parallelised, which is an MPI-parallel 3D incompressible Navier-Stokes
solver with single-phase and two-phase flow capabilities. This paper
lays the foundations for extending the two-phase flow simulations in
the present work, which are mainly performed in axisymmetry, to full
three-dimensional configurations. This will allow the study of much
more general cases, including the interactions of multiple droplets,
or the effect of high-shear and turbulent flows on the deformations
of a drop. In the paper, both weak and strong scaling are discussed.
In a strong scaling study one measures the speedup when using
more processes to solve a given problem, while in a weak scaling
study one measures the time it takes to complete a simulation when
both the number of processes and the amount of work are increased
proportionally.

The strategy taken to parallelise the code was domain decomposi-
tion using MPI. This strategy is well-proven in the literature, and is
expected to give good scaling results. As the name suggests, domain
decomposition means that the computational domain is divided into
smaller domains, which are then distributed to a set of processes each
running the computations on its part. Several processes can run
simultaneously on one multi-core CPU, but in general the processes
will be distributed across many CPUs, to gain a larger memory
bandwidth, as discussed in Chapter 4.3. This is illustrated in Figure 5.2,
where a computational domain is divided into eight blocks. The
colour indicates the pressure field, and the streamlines indicate the
flow. The case here is a manufactured solution, so it has no physical
meaning.

As discussed in Chapter 3.1, strong scaling will be limited
(regardless of the parallelisation strategy) due to the elliptic nature
of the pressure Poisson equation. The reported strong scaling in
Paper 2 is in accord with this limitation: using 32 processes gives
a speedup of 13 times faster than using just one process, which is
good, but significantly below the ideal speedup of 32. The weak
scaling is, however, much better. Again this is as expected from
the literature. The weak scaling is measured by running a case on
one process with N = Nx × Ny × Nz total grid points, and then

http://arxiv.org/abs/1405.3805
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FIGURE 5.2: The computed
solution after 0.031 s (100

time steps) on a 1283 grid run
on 8 processors. The blocks
show the decomposition of

the domain, the pressure field
is shown superimposed on

these blocks, and the
streamlines illustrate the flow.

(From Paper 2.)

running a case with 2N total grid points on two processes, etc. and
comparing the total runtime. It is found that while the total runtime
increases when going from one to two processes, after this the total
runtime stays fairly constant when increasing to four and then to eight
processes.

Contributions to Paper 2
The manuscript was written by me. I wrote the code, which is based
on a previous 3D serial code written by Munkejord and others. I
performed the simulations and analysis reported in the manuscript.
Munkejord contributed with discussions around the details of the
staggered grid implementation, and with general discussions of the
manuscript and the reported results. Müller contributed with
discussions of the manuscript and the reported results.
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§5.3 Paper 3
Ervik, Å., Hellesø, S. M., Munkejord, S. T. & Müller, B. Experimental
and computational studies of water drops falling through model oil with
surfactant and subjected to an electric field in Proceedings of the IEEE 18th
International Conference on Dielectric Liquids (Bled, Slovenia, July 2014).
doi:10.1109/ICDL.2014.6893172

In this paper we discuss the results of experiments and axisymmetric
two-phase flow simulations of five cases of electrohydrodynamic two-
phase flow, and direct comparisons of these results. We consider
a single salt-water drop immersed in a pure alkane-based oil with
added surfactants and subjected to a strong electric field. To be
specific, the drop phase contained Milli-Q purified water with 3.5
% (by weight) NaCl, and the oil phase consisted of Marcol 52
(ExxonMobil) to which Span 80 surfactant (Sigma Aldrich) was
added at concentrations from 0.001 to 0.02 % (by weight). This
particular surfactant is chosen because it is non-ionic (thus does
not increase the oil-phase conductivity) and because it has emulsion
stabilising properties similar to those of crude oil components [252].
The interfacial tension as a function of concentration was measured
with a DuNüoy ring tensiometer, and a Langmuir equation of state
was fitted to these measurements. This equation of state was then used
in the simulations.

In the experiments, drops were produced with a syringe, and
allowed to fall between two horizontal electrodes, to which a potential
difference was applied in the form of square pulses. See Figure 1 in the
paper for a schematic. The applied voltages produce a high strength
electric field of the order of 500 V/mm, and the drop diameters are
between 0.5 and 1 mm. A high-speed near-infrared camera was used
to record videos of the drop deformations, and from these the drop
deformations were extracted as the quantitiy a/b , where a is the length
of the vertical droplet axis and b the horizontal droplet axis (see Figure
2 in the paper).

The exact same cases were then simulated using the axisymmetric
two-phase flow code discussed in Chapter 4.3, and a/b was computed
also from the simulations. An example of the comparison in shown in
Figure 5.3. In this figure, the simulation results are shown both with
and without surfactants, and the theoretical expression by Taylor [6]

for the equilibrium deformation is also shown at the right-hand side.
It is seen that the simulation with surfactants is in good agreement
with the experimental result, while the simulation without surfactant
predicts a larger deformation, and is in agreement with the result by
Taylor.

[252] Santini, E. et al. (2007)

http://dx.doi.org/10.1109/ICDL.2014.6893172
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FIGURE 5.3: Case 1:
Simulation and experimental

results for the 958 µm
diameter water drop falling
through Marcol with 0.015
wt% Span 80 subjected to a

400.0 V/mm field. (From
Paper 3.)

Contributions to Paper 3
The manuscript was written by me. I performed the numerical
simulations and created the plots, except for the experimental
schematic (Fig. 1) and the plot of drag coefficient vs. Reynolds
number (Fig. 3) which were created by Hellesø. Hellesø performed the
experiments and the post-processing of the high-speed camera footage,
and contributed to the description of the experimental technique.
Hellesø, Munkejord and I discussed the selection of experimental
parameters and fluid combination. Munkejord performed the fit
of the Frumkin equation to the experimental data, and contributed
with testing and improvement of the code. Munkejord and Müller
contributed with discussions of the manuscript and the reported
results.
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§5.4 Paper 4
Ervik, Å., Penne, T. E., Hellesø, S. M., Munkejord, S. T. & Müller, B.
Influence of surfactants on the electrohydrodynamic stretching of water
drops in oil. Submitted to Physical Review Fluids, (2016)

This paper is a significant extension of Paper 3 (where five
representative cases were studied). In Paper 4 we perform a parameter
study covering a much wider range, using 44 cases in the simulations
and almost 300 cases in the experiments. We study the effects of drop
radius, surfactant concentration and electric field strength on the drop
deformations. The fluids, experimental and numerical techniques are
the same as in Paper 3. The fitting of the Langmuir equation of state to
measurements of interfacial tension versus surfactant concentration
was redone, and an improved fit was obtained.

In this paper, increasing and decreasing
voltage pulses were used in the experiments. This is the only way in
experiments to study the effect of the electric field strength at constant
drop diameter, since no two drops produced will have the exact same
diameter. Also, a moving stage setup was used to maintain the drops
in the camera field-of-view while they fell through the oil, allowing
for longer voltage pulses to be studied. Up to ten deformations of the
same drop were possible with this setup. By using both increasing
and decreasing pulses, it was possible to study the possible influence
of previous deformations, i.e. a hysteresis effect as reported e.g. by
Peltonen et al. [253] for flat fluid interfaces with essentially the same
fluid combination. The observation from experiments was that at high
surfactant concentrations, drop deformations increasing in magnitude
from small to large caused a significant hysteresis effect, while
with deformations decreasing in magnitude from large to small, no
hysteresis was observed. This goes against the hypothesis put forward
by Peltonen et al. [253], who proposed that earlier deformations cause
some surfactants to detach into the water phase. If this were the case,
hysteresis should be stronger for the decreasing deformations. The
observations here find the opposite to be true, which suggests that
alternative explanations, in particular rearrangement of the surfactants
at the interface by the initial small deformations, are a more likely
explanation.

Using the larger data set obtained in this study, an analysis was
performed of the influence of the surfactants on the damping of the
initial oscillations after the electric field is applied. This damping was
characterised by the parameter

Ω=
(a− b )peak− (a− b )static

(a− b )static
, (5.1)
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where (a − b )static refers to the static deformations observed e.g. in
Figure 5.3 after 20 ms, while (a−b )peak refers to the peak deformation
observed after 5 ms. It is important to note, however, that here the
difference between the two axes, (a − b ), is used (as opposed to the
ratio (a/b ) discussed previously). This is because (a − b ) is directly
proportional to the amplitude of the second spherical harmonic,
assuming this is the dominant mode of oscillation. Accordingly, if
one assumes the classic results by e.g. Lamb [87] for the damping of
such oscillations to hold in this case, (a− b ) can be directly related to
the damping ratio of a harmonic oscillator, λ, as

λ=

√

√

√
ln(Ω)2

π2+ ln(Ω)2
, (5.2)

using here standard results from control theory; see e.g. the derivation
on p. 172 of the book by Ogata [254].

This damping ratio λwas computed from both the simulation and
experimental results. We plot λ versus the dimensionless electric field
strength given by

ζ = Ē
Æ

εε0D/γ =
p

C aE , (5.3)

i.e. the square root of the electric capillary number, which was
introduced by Taylor to describe the drop deformations. In this
expression Ē is the electric field strength far away from the drop, D is
the drop diameter, γ is the equilibrium interfacial tension, and εε0 is
the electric permittivity of the oil. The plot for the simulation results
is shown in Figure 5.4, the experimental plot is similar. In this figure,
the surfactant concentration, drop radius and electric field strength
are indicated by point shape, point size, and point colour, respectively.
Cases with identical drop size and electric field strength, but varying
surfactant concentration, are connected with lines. It is seen that the
effect of surfactants is two-fold: addition of small concentration of
surfactants increases the dampingλ significantly, but has little effect on
the equilibrium interfacial tension on the drop (which enters into the
expression for ζ ). But when increasing the surfactant concentration
to a value of 0.016 wt%, closer to the critical micelle concentration
of 0.020 wt%, the damping does not increase much further, while the
interfacial tension is significantly decreased, causing an increase in ζ
and in the drop deformation.

To further support this hypothesis, detailed snapshots from the
simulations were considered for four cases with identical drop size
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FIGURE 5.4: The damping
ratio of oscillations, λ, versus
dimensionless electric field
strength, ζ . Dashed line:
static deformation limit.
(From Paper 4.)

D = 500µm and electric field strength Ē = 700 V/mm, but increasing
surfactant concentration. The values of ζ are 0.39, 0.40, 0.44 and
0.59 in order of increasing surfactant concentration. These snapshots
are shown as the four quadrants in Figure 5.5. In this plot, the
increase in Marangoni force when going from zero to low surfactant
concentration, illustrated by the tangential component of the black
vectors at the interface, is clearly seen. One can also see the decrease
in interfacial tension at the highest surfactant concentration (lower
left quadrant), and that this allows for a stronger flow field and thus
larger deformation. These snapshots are all taken at t = 1 ms, which
corresponds to half-way to the first peak of deformation.

Contributions to Paper 4
The manuscript was written mainly by me. I performed the numerical
simulations and analysis of numerical and experimental results, and
created the plots, again except for the experimental schematic which
was created by Hellesø. Penne performed the experiments and
the post-processing of the high-speed camera footage. Penne also
contributed to the description of the experimental technique in
the manuscript. Hellesø, Munkejord and Müller contributed with
discussions of the manuscript and the reported results.
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FIGURE 5.5: The effect of
surfactant concentration on

normal and tangential
interfacial stress. Comparison

of the pressure field
(blue/green), the vector

γκn− 100∇ιγ (black vectors),
the flow field (sky-blue

vectors) and the surfactant
concentration at the interface
(black for zero concentration,

redness indicating
concentration). The

quadrants show the four
different bulk concentrations

considered. (From Paper 4.)
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§5.5 Paper 5
Ervik, Å. & Bjørklund, E. The admissible surfactant distributions and
velocities for small falling drops. Submitted to Journal of Fluid Mechanics,
(2016)

This paper discusses the effects of surfactants on a single falling drop at
low Reynolds- and Weber-numbers from the theoretical perspective.
The purpose of this work is to present a new approach which explains
the transition from drops falling like hard spheres, to drops falling
according to the Hadamard-Rybzynski solution, as the drop size is
increased. Extending the derivation by Chang et al. [256] to include
also the normal interfacial stresses as boundary conditions for the
Stokes equation at the drop interface, we are able to circumvent the
need to solve a transport equation for the surfactant in order to obtain
a solution for the interfacial tension profile and the flow field. As
pointed out e.g. by Leal [82], this has been a major hurdle in previous
work which led to the stagnant-cap model:

It is not generally possible to obtain analytic solutions of the
resulting problem because of the complexity of the surfactant
transport phenomenon and the coupling between surfactant
transport and fluid motion. (L. Gary Leal)

Another, perhaps even more important difficulty with using the
surfactant transport equation as a starting point is that the expression
includes the tangential velocity along the interface. However, this
velocity must be zero for drops that fall like hard spheres. This leads to
paradoxes and inconsistencies in the typical approach in the literature.
Consider e.g. Equation 7-270 on page 497 in the book by Leal [82],
which is derived assuming the surfactant is insoluble and that the
interfacial Péclet number is Pes = 2R|us |/Ds � 1, where R is the
drop radius, us is the velocity field on the interface, and Ds is the
surface diffusivity of the surfactant. The equation in Leal’s book reads

∇s · (usΓ )≈ 0 (5.4)

where Γ is the surfactant concentration. From this the classic stagnant
cap result is obtained, namely that a part of the interface has us = 0
and another part has Γ = 0. Here comes the paradox: if us = 0 in
the region where surfactants are found, then Pes = 0! This clearly
violates the initial assumption Pes � 1, so the result is not self-
consistent.

In the work in Paper 5, these difficulties are circumvented by
not considering any transport equation or surfactant concentration

[82] Leal, L. G. (2007)
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at all, but merely applying the appropriate boundary conditions at
the interface. Interestingly, this gives an analytical solution where
the expression for the interfacial tension along the interface has the
same form as that obtained e.g. by Levich [81], who solves a transport
equation under some simplifications, e.g. the assumption that the
variation in surfactant concentration along the drop is small. Unlike
these classic derivations of the stagnant-cap model, our approach
makes fewer assumptions and is self-consistent.

We further consider the problems with assuming a surfactant
transport equation, by tracing this equation back to its roots, the
Langevin equation. Considering the link between this equation and
the transport equation, we show that results obtained assuming a
surfactant transport equation can give either a non-zero force from
the interface (acting to slow the fall of the drop), or a zero tangential
velocity at the interface (as when the drop falls like a hard sphere), but
not both of these simultaneously. This leads to the observation that the
assumption of a surfactant transport equation cannot generally lead
us to any true conclusions (to paraphrase the previous quotation by
the reverend Samuel Vince).

To proceed from the Langevin equation, we discard the notion
that the force on the surfactant molecules can be determined from a
Stokesian friction, and instead consider the surfactants to interact as if
they were an ideal gas. Such an assumption may seem odd, but it is in
fact a classical approach when it comes to surfactants, going back to the
work which earned Langmuir [257] the 1932 Nobel Prize in Chemistry.
Assuming ideal gas behaviour, we derive an expression which allows
for both a force from the interface acting to slow down the drop,
and an interfacial velocity which is simultaneously zero. This leads
to the result that the critical radius Rc , below which drops fall like
hard spheres, is directly proportional to the interfacial surfactant
concentration.

Using this alternative approach, which we dub the continuous-
interface model, we consider the experimental results obtained by
Griffith [258] for the transition between hard-sphere and fully-fluid
interfacial behaviour at different surfactant concentrations. Griffith
considers ethylene glycol drops falling in mineral oil to which Aerosol
C61 surfactant is added. By non-linear curve fitting, the critical radius
Rc is determined for each bulk concentration, as shown on the left of
Figure 5.6.

As mentioned, the continuous-interface model predicts that the
critical radius is directly proportional to the interfacial surfactant
concentration. To test this prediction, we plot the critical radii versus
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FIGURE 5.6: Left:
nonlinear curvefit to the raw
data by Griffith [258].
Corresponding values for Rc
shown in the caption. Right:
Rc , obtained from the left
plot, plotted against bulk
concentration of surfactants.
The line is a Langmuir
isotherm fitted to these points,
with excellent agreement.
(From Paper 5.)

the bulk surfactant concentration, and demonstrate that these points
collapse perfectly onto a Langmuir equation of state, shown on the
right of Figure 5.6. Since such an equation of state gives the relation
between the interfacial and the bulk surfactant concentration, this
confirms the prediction by the continuous-interface model. Note
that the equation of state here does not go to zero at zero bulk
concentration, since the results by Griffith indicate that the oil
contains some surfactants even when none are explicitly added. This
is as expected, cf. the discussion in Chapter 2.3.

Finally, it is noted that the relation between critical radius and
interfacial surfactant concentration may have applications to the direct
experimental measurement of this quantity, which otherwise requires
complicated and expensive techniques such as small-angle neutron
scattering [259].

Contributions to Paper 5
The manuscript was written mainly by me. I performed the literature
study. Bjørklund performed the theoretical analysis and created the
plots of the analytical solutions. I contributed with discussion of the
theoretical analysis, including the underlying assumptions and the
implications of the results.

[259] Verruto, V. J. et al. (2008)
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§5.6 Paper 6
Ervik, Å., Serratos, M. G. J. & Müller, E. A. raaSAFT: a framework
enabling coarse-grained molecular dynamics simulations based on the
SAFT-γ Mie force field. Submitted to Computer Physics Communications,
(2016)

In this “Computer Programs in Physics” paper we present raaSAFT,
a framework for running molecular dynamics simulations using the
SAFT-γ Mie approach. The paper briefly introduces the theory be-
hind the approach, with references to earlier publications [201] [202] [203]

[204] [205] [206] [200] [207] [208]. We then review the physical unit
convention used in raaSAFT, describe how the software is installed,
and give a detailed walkthrough of the user interface for running a
simulation. Thorough descriptions are also given of how models
for chemical compounds are implemented, first in the simple
homonuclear case, and subsequently for the more complicated case of
a heteronuclear model, such as for a surfactant where the head and tail
are constructed from different beads. We give a brief description of
how raaSAFT interacts with Bottled SAFT (Paper 7).

Finally, we present several case studies of simulations performed
using raaSAFT. The simplest cases include liquid-liquid equilibrium
between octane and water, and the simulation of liquid toluene for
the weak scaling study. To fully demonstrate how raaSAFT enables
large simulations of highly complex systems with few lines of code,
we consider the phase behaviour of polystyrene in heptane at high
pressure (30 bar) and varying temperature (310, 420 and 530 K). Using
simulations with 300 polystyrene molecules and 42 700 molecules of
the explicit solvent heptane, corresponding to 1.2 million atoms, we
reproduce the experimentally observed [261] temperature-dependent
solubility of polystyrene in this system. To reach equilibrium, the
simulation at the lowest temperature has to run for 400 nanoseconds
(or 40 million timesteps). We argue that if this system were to be
studied using atomistic simulations, even with parallelisation and
using multiple GPUs, it would take more than a year from simulation
start to finish. With raaSAFT, running on four Nvidia Tesla K20
GPUs, the runtime is 135 hours. A snapshot of this system is shown
in Figure 5.7, for 310 K where the polystyrene is insoluble (top) and
for 420 K where the polystyrene is soluble (bottom).

[201] Avendaño, C. et al. (2011)
[202] Avendaño, C. et al. (2013)
[203] Lafitte, T. et al. (2012)
[204] Müller, E. A. et al. (2014)

[205] Herdes, C. et al. (2015)
[206] Herdes, C. et al. (2015)
[200] Lobanova, O. et al. (2015)
[207] Lobanova, O. et al. (2016)

[208] Theodorakis, P. E. et al.
(2015)

[261] Cowie, J. et al. (1983)
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FIGURE 5.7: Snapshots of
equilibrated configurations

from a simulation of
polystyrene in heptane at 310

K (top) and 420 K (bottom).
The blue and purple beads
represent the polystyrene

molecules. Heptane
molecules are not shown for
clarity. It is seen clearly that

the polystyrene is dissolved at
420 K while it is clustered at

310 K. At the top of the figure,
individual polymers can be
seen. The individual beads

seen close to the edges are due
to the periodic boundary

conditions. (From Paper 6.)
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Contributions to Paper 6
I wrote the manuscript and the code and performed the simulations.
Jiménez-Serratos developed the polystyrene model and the code
to analyse the simulations using this model, and contributed with
discussions of the paper. Müller contributed with discussions of the
manuscript and the reported results.
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§5.7 Paper 7
Ervik, Å., Mejía, A. & Müller, E. A. Bottled SAFT: a web app providing
SAFT-γ Mie force field parameters for thousands of molecular fluids.
Submitted to Journal of Chemical Information and Modelling, (2016)

In this paper we present Bottled SAFT, a web application which
provides force field parameters for more than 6000 molecular fluids,
from the simple linear alkanes, to molecules important in the
pharmaceutical industry such as aspirin and ibuprofen. The database
is searchable by name, chemical formula, or CAS number.

In the paper, we give again a brief review of the SAFT-
γ Mie approach, as well as an overview of the tools used to
implement Bottled SAFT. We proceed to present the details of
the implementation, including how the data from Yaws [223] was
run through the correlation and results outside the scope of the
correlation were discarded. We also present the components which
make up the web application, including code which shows how
the Flask framework enables the implementation in a simple and
understandable fashion.

Using the Locust framework the performance of Bottled SAFT
is tested. It is found that the application can sustain a load of 70 000
database lookups per hour, as well as 800 000 views of the front page
per hour, which should be more than sufficient for a web application
serving the molecular modelling community.

To demonstrate the power of Bottled SAFT as a tool, we consider
the case of ternary liquid-liquid equilibrium between octane, benzene
and sulfolane. This system is very important in the chemical
processing industry, where sulfolane is used to separate aromatic
compounds, such as benzene and toluene, from the aliphatic-aromatic
mixture that comes from petroleum distillation. Using the force
field parameters provided by Bottled SAFT, we first tune the cross-
interaction between octane and sulfolane to obtain agreement with
the experimentally measured mutual solubilities of these two liquids
at a temperature of 373.15 K. We then study the full ternary system
at a temperature of 403.15 K, for which experimental measurements
are available due to Lee et al. [263]. Starting at a molar composition of
20/40/40 benzene/octane/sulfolane, we obtain a liquid-liquid split
where the molar fractions in both phases match the experimental
measurements extremely well. This is shown in Figure 5.8.

Contributions to Paper 7
I wrote the web application and the manuscript and ran the
simulations. Mejia contributed with testing of the application and
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FIGURE 5.8: The ternary
diagram for the

octane-benzene-sulfolane
system. Black points and grey
lines: experimental results by
Lee et al. [263]. Blue points and

blue line: simulation results.
(From Paper 7.)

provided the codes for the M&M correlation. Müller conceived of the
original idea and guided the implementation.
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§5.8 Paper 8
Ervik, Å., Lysgaard, M. O., Herdes, C., Jiménez-Serratos, G.,
Müller, E. A., Munkejord, S. & Müller, B. A multiscale method for
simulating fluid interfaces contaminated by large molecules such as
asphaltenes. Submitted to Journal of Computational Physics, (2016)

In this paper the multiscale method developed here for the simulation
of asphaltene-covered interfaces is presented. Preliminary results from
this work were selected for an oral presentation at the 2015 PetroPhase
conference [264].

We review the properties and modelling of fluid interfaces, and
highlight the significant departures from surfactant-covered interfaces
which occur when one considers asphaltene-covered interfaces. We
then proceed to present the theory and numerical methods used
as parts of the multiscale approach, in particular the hybrid
level-set/ghost-fluid/immersed-boundary method. The multiscale
approach is then summarised, using Figure 5.9.

FIGURE 5.9: Illustration of
the multiscale method. On
the Eulerian (r, z) grid, the
flow field u (vectors) and the
level-set function ϕ
representing the green-shaded
portion of the droplet are
shown. Some of the
Lagrangian
immersed-boundary points
are shown in orange, with
lines indicating the tensions
Ts and Tφ. For a tiny patch on
the interface, we compute the
interfacial properties Ka and γ
using molecular dynamics
simulations (lower right
corner). These properties are
used in the calculations of the
tensions. (From Paper 8.)

Using the SAFT-γ Mie approach at the nanoscale, the effect
of asphaltenes at the interface is studied for two different model

[264] Ervik, Å. et al. (2015)
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asphaltenes. These differ in the force field and coarse-graining level
for the beads which make up the aromatic core of the molecules.
The second model asphaltene, dubbed the APCE model, is developed
partly in this work. We demonstrate that this APCE model gives an
interfacial behaviour in contact with water which is consistent with
experimental results using sum frequency generation spectroscopy;
i.e. that the aromatic cores align with the water interface, while the
aliphatic tails point into the oil phase. To our knowledge, this is the
first model asphaltene in the literature which shows this behaviour
in molecular dynamics simulations. The interfacial tension γ as
well as the interfacial elasticity Ka are computed from the molecular
simulations.

Using the developed hybrid method at the continuum scale, two
cases of drop deflation are simulated using representative values of
the interfacial tension and elasticity. Drop deflation is interesting
because of the “crumpled drop” phenomenon which occurs. This
phenomenon is not observed in water-oil-surfactant systems, but
occurs for asphaltene-covered interfaces. It is thus useful for qualitative
comparisons with experiments. We consider two cases which have
been studied in the experimental literature, namely the micropipette
case and the pendant drop case. We point out that in the former
situation the Eötvös number is negligible, meaning that buoyancy is
negligible, while in the latter situation the Eötvös number is Eo ≈ 0.5,
meaning that the effect of tension in the interface and the effect
of buoyancy are approximately in balance. Using axisymmetric
simulations, we demonstrate that the characteristic crumpling around
the neck, observed in pendant drop experiments, is due to an
anisotropic total tension caused by the interfacial elasticity. The
simulation and experimental results are compared in Figure 5.10.
Using two-dimensional simulations, we demonstrate that the uniform
crumpling seen in the micropipette case, where buoyancy is negligible,
is caused by the tension being equal across the drop. The simulation
and experimental results are compared in Figure 5.11.

Contributions:
I wrote most of the manuscript, performed the molecular dynamics
simulations and analysis of these, and performed some of the
continuum simulations. Lysgaard and myself jointly developed
the hybrid continuum method. Lysgaard wrote the code for this
method, performed most of the simulations with this method,
and contributed with most of the description of this method in
the manuscript. Herdes and Jiménez-Serratos and E. A. Müller
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FIGURE 5.10: Right:
raytrace of the drop profile
from simulations, revolved
around the symmetry axis and
with crumples inserted into
the region where Tφ = 0. Left:
experimental result showing a
deflated asphaltene-stabilised
water drop in oil. (Left figure
reprinted with permission from:
V. Pauchard, J. P. Rane, S.
Banerjee, Asphaltene-laden
interfaces form soft glassy layers
in contraction experiments: A
mechanism for coalescence
blocking, Langmuir 30 (2014)
12795–12803. Copyright (2014)
American Chemical Society.)

FIGURE 5.11: Right:
two-dimensional simulation,
with red and blue colours
indicating interfacial
curvature. Velocities are
plotted for every 5th grid
point and every 10th
Lagrangian point is plotted.
Left: experimental result
showing the crumpled drop
attached to a micropipette.
(Left figure reprinted with
permission from: A. Yeung, T.
Dabros, J. Czarnecki, J. Masliyah,
On the interfacial properties of
micrometre–sized water droplets
in crude oil, Proceedings of the
Royal Society of London A
(1999) 3709–3723.

contributed with the development of the SAFT force fields and
molecular model for asphaltene molecules. Herdes, Jiménez-Serratos,
Lysgaard, Munkejord and B. Müller contributed with discussions of
the manuscript and the reported results.
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Three-dimensional
hydrodynamics can eat up an
arbitrary capacity on any
computer we’re ever likely to
see. So you have to be clever.

Berni Alder

§6.1 Conclusions

The separation of water from crude oil initially sounds like a simple
task; as children we are taught that water and oil do not mix. While
indeed these fluids are immiscible, they can still form emulsions,
in which tiny water drops are scattered throughout the oil phase,
and chemicals adsorbed at the interface prevent drop coalescence
and thus stabilise the emulsion. As reviewed in Chapter 1, much
effort has gone into improving techniques for the removal of water
from crude oil during the last century, and yet there are still open
questions.

Using the multiscale approach developed in this thesis, it is
attempted to answer at least some questions regarding water drops
in crude oil. In this approach, coarse-grained molecular dynamics
simulations using the SAFT-γ Mie force field are used to estimate
the properties of oil-water interfaces covered with asphaltenes. In
particular, the interfacial tension γ and the elasticity Ka are computed.
These properties are subsequently used in two-phase flow simulations,
using a hybrid level-set/ghost-fluid/immersed-boundary method
developed in this work to handle the complex interface.

In particular the crumpled drop phenomenon is considered, and
the physical mechanisms underlying this phenomenon are revealed,

97
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both for tiny emulsion drops and for the larger pendant drops. The
multiscale approach holds promise for use in future studies, since it
offers the possibility of detailed hypothesis testing with regards to the
effect of crude oil composition, the effect of asphaltene architecture
and polydispersity, the effect of resins or of demulsifiers, and so
forth.

Using existing numerical methods, together with experimental
results, the effects of electric field on drops in the surfactant/oil/water
model system is considered. Building on a large parameter
study, the effect of surfactants on the transient damping of the
electrohydrodynamic drop deformations is analysed in detail. At high
surfactant concentration, hysteresis in the deformations is observed in
the experiments, but only for deformations of increasing magnitude.
It is suggested that rearrangement at the interface is responsible for
this effect.

While the coalescence blocking properties of surfactants and other
interfacially active molecules are essential for emulsion stability, the
reduced terminal velocity of contaminated drops is also an important
effect. Theoretical work presented in this thesis proposes a new model
which explains the observed transition in terminal velocity as drops
increase in size. This model is an improvement over the existing
stagnant cap model in the literature, which has been the status quo for
sixty years. These results may also have interesting implications for
the measurement of interfacial surfactant concentrations.

Molecular simulations using the SAFT-γ Mie approach form an
essential part of the multiscale approach. Two computational tools
for molecular dynamics simulations have been developed as part of
this work, namely raaSAFT and Bottled SAFT. Together, these enable
the study of a wide range of fluid systems, by providing accurate force
field parameters for 6000+ fluids (Bottled SAFT) and an easy-to-use
implementation of the SAFT-γ Mie approach, which also leverages
the computational power of GPUs (raaSAFT).

Taken together, the tools and methods developed and the results
obtained in this work bring us closer to a detailed understanding of the
physical phenomena which govern the process of water-oil emulsion
separation, be it using electric fields or other means.

§6.2 Future outlook

Working on this thesis I have learned many things, not the least of
which is that there is still a very great deal to learn, investigate and
discover. Here I provide some ideas, hints and speculations about
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future research directions, in the hope that they may be useful to
others.

Suggestions for incompressible flow simulations
There are many interesting avenues of investigation for incompressible
flow. An interesting open question (as far as the author is aware) even
for single phase flow is whether it is possible to construct a second
order projection method using an explicit RK method. Another
path to a higher-order method is by building on a very interesting
recent paper by Lalanne et al. [265], which has paved the way for a fully
implicit projection method also for two-phase flows using the ghost-
fluid method. Previous approaches have been limited to using the
less accurate continuous surface force method for the viscous term in
order to obtain a fully implicit method.

Combining the approach by Lalanne with for instance the BDF2
time integration method and the level-set/ghost-fluid method would
give an overall method with highly desirable properties: implicit
time integration allowing large time steps (particularly important
for low Reynolds number flows), second-order in time (at least for
single-phase flow), excellent stability properties, sharp handling of the
interface, and only one pressure Poisson equation to solve per time
step.

As mentioned in Chapter 3.1, and demonstrated in Paper 2,
strong scaling is an issue when solving the pressure Poisson equation.
Much research has gone into fast solvers and preconditioners for this
equation. A very interesting recent development is the work by
Patil et al. [266], where the lattice Boltzmann method is employed
together with a multigrid method to solve the two-dimensional
Poisson equation with excellent scaling results. It is well known that
the lattice Boltzmann method is very amenable to acceleration using
GPUs. On the other hand, it is the author’s understanding of the
consensus in the literature that GPUs are unable to provide significant
speedups for the incompressible Navier-Stokes equations, due to the
fundamental architecture of the GPU hardware being unsuited for
elliptic problems where communication patterns are non-local. If one
were to apply the multigrid-lattice Boltzmann method running on
GPUs as a solver for the pressure Poisson equation coming from the
incompressible Navier-Stokes equations, one would likely obtain very
good scaling and speedup results. This is perhaps the only way GPUs
will be useful for incompressible flow solvers.

Other interesting recent developments in the level-set literature
include the work by Della Rocca et al. [267] on boundary conditions
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for the level-set function. In the code employed here, the simple choice
of mirroring the level-set function at the boundaries is employed. For
axisymmetry this is the correct choice, but for e.g. a drop sliding
down a wall it will not give the correct behaviour. The method by
della Rocca et al. gives correct behaviour for this case and others,
and is not difficult to implement. Another interesting development
is the previously mentioned work by Sabelnikov et al. [177], who
present a new algorithm which replaces the need for velocity
extrapolation before the level-set function is advected. This new
algorithm has significantly lower computational cost than velocity
extrapolation, and again it appears to be relatively straightforward to
implement.

Towards the physical modelling end of the spectrum, there is
also work to be done. In particular, modelling of soluble surfactants
is an interesting topic. The transport, adsorption and desorption
equations for soluble surfactants have been widely studied, and it is
well-understood at this point how to implement this into a code such
as that used here. An interesting application for soluble surfactants is
to study the situation of a falling drop for diffusion-limited adsorption.
In this case, it is known from the theory [81] that the drop will
not be spherical. Simulations of this case would require a very
large computational domain, and low Reynolds number, thus it is
likely that such studies would require an implicit time integration
method such as those discussed previously. Perhaps the best approach
would be to solve the Stokes equation, rather than the Navier-Stokes
equations. In any case, results which quantified the degree of non-
sphericity in a significant region of the parameter space would surely
be interesting.

When it comes to the theoretical results presented in Paper 5,
further simulations could also further strengthen these. But perhaps
the most interesting approach would be to use nuclear magnetic
resonance velocity measurements, e.g. as in the work by Han et al. [268],
to obtain directly the velocity field inside drops falling at velocity
between the Stokes and the Hadamard-Rybzynski results. This would
allow a direct test of the stagnant-cap model and of the continuous-
interface model presented in Paper 5. It could also determine whether
the tracer particles used for flow visualisation in experimental studies
are the real cause of the observed stagnant cap, a hypothesis put
forward in Paper 5.

With the hybrid level-set/ghost-fluid/immersed-boundary method
developed here for Paper 8, an obvious next step is to switch from

[81] Levich, V. G. (1962)
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the immersed-boundary to the immersed-interface method, since
this would mean the overall method would be a sharp-interface
method.

Suggestions for the molecular simulations
One issue to which a satisfactory solution should be found is the large
cutoffs currently used in simulations. Since the amount of work grows
with the cutoff to the third power, having as large a cutoff as possible
would obviously be beneficial. A systematic study of the effect of the
cutoff size in different systems (liquid-liquid, liquid-vapor, with a third
dispersed phase, etc.) should be undertaken.

In a similar spirit, it would be a fruitful venture to construct an
“autotuner” for the binary interaction parameter ki j used in cross-
interactions. Using raaSAFT this would be relatively straight-forward,
based on the combination of two things which must be added to the
code: a built-in estimator for the physical property to which one is
tuning (e.g. interfacial tension), and a Newton-Rhapson method for
obtaining the next guess for the ki j . Both the first in itself and the
combination of both are useful and low-hanging fruit.

When it comes to Bottled SAFT, several topics are interesting
for future investigations. One is simply to study the vast number of
chemical compounds available in this database; as an example, several
small molecule drugs like aspirin and ibuprofen have models in Bottled
SAFT. Another topic for future work is to predict physicochemical
properties, such as pure-component surface tension, directly from
the model parameters without having to run a molecular dynamics
simulation.

Suggestions for investigations of the asphaltenes
When it comes to the asphaltenes, there are of course also many
things to be studied in the future. An interesting topic (suggested
to the author by M. Hoepfner) is that of ergodicity in these systems,
i.e. whether the time evolution of a system samples from the entire
configuration space, both for asphaltenes in the bulk and at the
interface. When studying ergodicity in the simulations, it is natural
to also consider the topic of ergodicity breaking in the physical
system.

As remarked several times already, truly taking polydispersity
into account will likely fuel the next significant improvement in
molecular models for asphaltenes. To accomplish this, there are
several interesting approaches to consider. Regardless of which one
chooses, it is highly likely that coarse-grained methods will continue
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to hold a decisive advantage over atomistic simulations. Thus one
is brought to consider the construction of a coarse-grained QMR
approach, whereby one can obtain many (of the order of 10, perhaps
even 100) different model asphaltene molecules representative of real-
life experimental data.

A second approach would be enabled if analytical chemistry
techniques keep improving at the current pace. If in the future
one is able to actually measure the molecular structure of all the
different asphaltene molecules in a given sample, putting these into a
simulation would be a small challenge in comparison. Such a brute
force approach would however require an extremely large simulation,
and thus would also require runtime on the largest GPU-clusters in
the world.

When considering such a brute force approach, an interesting
recent paper by Jacobs et al. [269] comes to mind. In this theoretical
approach, the self-assembly of many pieces, each one different from all
the others, is considered. While the application in that paper is nano-
engineering or DNA assembly, the mind is brought to consider how
this approach could be applied to the topic of asphaltenes.

In addition to these matters, there is also the effect of the
remaining components of crude oil to consider. The effect of crude oil
composition, in particular the effect of resins, as well as the simulation
of chemical demulsifiers, are all interesting topics for future study.
As remarked in Paper 8, the parameter space for the crude oil/water
system is discouragingly large, so one has to be very clever when
undertaking such studies.

Furthermore, when it comes to the topic of electrocoalescence, the
effect of the electric field on the asphaltene molecules at the interface
has not previously been studied using molecular simulations. A very
interesting question in this regard is how localised the change in
direction of the electric field at the interface is on the nanoscale. If it
is sufficiently localised, is the field strong enough to exert a significant
force on the asphaltenes, which are known to contain polar groups?
How does this change the interfacial behaviour of the asphaltenes?
It should be noted that the electric field, varying typically with a
frequency of 50 Hz, can be assumed to be constant at the molecular
scale.

Having but limited experience with experimental work, we end
this section with a more speculative suggestion. The atomic force
microscopy studies presented by Schuler et al. [136], which show
detailed images of individual asphaltene molecules such as the one
reproduced in Figure 2.2, are extremely impressive. However, these
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asphaltenes under study are isolated and then deposited on a metal
surface, a situation very different from their natural environment.
Imagine if, instead, one was to put an extremely low API (i.e. high
density) crude oil in a box, put water over the crude, wait for
some time, and then very quickly freeze the system. If the ice was
subsequently sublimated away at a low pressure, one would be left
with just the imprint of the crude oil interface in its natural state
when it contacts water (if no extreme changes occur in the interface
during freezing, which may of course not be true). Assuming this is
physically realisable; if one was then to study the surface of this block
of frozen oil using the same atomic force microscopy, what would one
see? Would it be like looking at the crude oil interface from within the
water at the molecular scale, as is done in the simulations presented in
Paper 8? What does this interface really look like? One can but hope
that future studies may be able to unravel these mysteries.
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The level-set method is a popular interface tracking method in two-phase flow simulations.
An often-cited reason for using it is that the method naturally handles topological changes
in the interface, e.g. merging drops, due to the implicit formulation. It is also said that the
interface curvature and normal vectors are easily calculated. This last point is not, however,
the case in the moments during a topological change, as several authors have already
pointed out. Various methods have been employed to circumvent the problem. In this
paper, we present a new such method which retains the implicit level-set representation
of the surface and handles general interface configurations. It is demonstrated that the
method extends easily to 3D. The method is validated on static interface configurations,
and then applied to two-phase flow simulations where the method outperforms the
standard method and the results agree well with experiments.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

Investigations of droplet collision phenomena have a long tradition in the study of multiphase flow, dating back to Lord
Rayleigh [1] who in 1878 noted that raindrops can bounce off each other, and to Worthington [2] who in 1876 studied
among other things the central jet that now bears his name. The early work predates the rise of computational studies,
and consists of experimental studies that enabled a separation of the flow patterns into various regimes characterized by
e.g. the Weber number and Ohnesorge number. A case which has long been the focus of study is that of a single droplet
of one liquid, immersed in some other gas or liquid, and which collides with a deep pool of the first liquid. This could be
e.g. a raindrop falling onto a pond, or a droplet of liquefied natural gas (LNG) merging with a pool of LNG in a liquefaction
heat exchanger, so the case is interesting also from an industry point of view. Such a system may seem simple at first, but
experimental and numerical studies have shown that varied phenomena such as coalescence, bouncing, jetting and partial
merging occur. The system is also not fully understood yet; as an example, Thoroddsen et al. [3] have recently shown that
for high impact velocities a turbulent boundary layer forms between the droplet and the pool after they merge.

In order to study such a case using computer simulations, it is necessary to use a precise interface tracking method
to capture the physics before, during and after the collision. The level-set method (LSM) is a popular choice for interface
tracking in studies of collisions, since its implicit formulation means that the method can handle the topological change
which occurs when two interfaces merge. The LSM is very general, and apart from fluid dynamics it has been used for
modeling such diverse phenomena as tumor growth [4], wildland fire propagation [5] and computer RAM production [6].
For a good introduction to the LSM, see e.g. [7]. The LSM originated from the seminal article by Osher and Sethian [8].

* Corresponding author at: NTNU, Department of Energy and Process Engineering, Kolbjørn Hejes v 1B, NO-7491 Trondheim, Norway.
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In two-phase flow simulations using the LSM, accurate interface curvature and normal vector information is vital in
order to get good results. Standard methods exist for calculating these geometric quantities, but they fail when the interface
topology changes, e.g. when two drops collide and merge. Several approaches have been used to remedy this flaw. The first
approach to this problem is described by Smereka in [9]. He describes the problem briefly, and increases the numerical
smoothing in the curvature discretization to lessen the effect. This is not an optimal solution, and Smereka notes on one of
the simulations with merging interfaces that “most of the area loss occurs at the topology change”. Several non-smearing
approaches have subsequently been developed, by Macklin and Lowengrub [4,10], by Salac and Lu [11] and by Lervåg
[12,13]. The methods by Macklin and Lowengrub and by Lervåg use curve fitting to obtain an accurate representation of the
interface, while the method by Salac and Lu extracts several level-set functions each representing only a single body, and
uses these to calculate the curvature.

The present work proposes a new method, which is an extension of previous methods, for calculating the curvature
and normal vectors. The proposed method is based on the method by Salac and Lu, but it handles more general interface
configurations and topological changes, as it considers only the local area around a point. The quality function introduced
by Macklin and Lowengrub is used to restrict the use of the proposed method to those areas where it is needed, thus
reducing the computational cost. As the proposed method uses no curve fitting, it extends easily to three dimensions, as
demonstrated here. The proposed method is compared to the standard method for demanding cases where the analytical
curvature is known; for such a case the proposed method gives errors of 1–2% where the standard method gives errors of
O(1/�x) > 100%. The proposed method is based on the work of Ervik [14].

The outline of this work is as follows: In Section 2, the theory of two-phase incompressible flow, the LSM and numerical
methods are briefly reviewed. In Section 3, the proposed method is presented in detail. In Section 4, the method is validated
on geometric test cases, and the results are compared to other methods. In Section 5, the results of two-phase flow simu-
lations using the current method are reported and compared to experimental results. Finally, in Section 6, some concluding
remarks are offered.

2. The level-set method and two-phase flow

The LSM is one of the more successful interface-capturing methods used in computational physics. Since its introduction
by Osher and Sethian in [8], it has been used for numerous physical applications, as well as in computer graphics. Perhaps
the main virtue of the LSM is how intuitive it is; in 2D it can easily be explained to anyone with a basic knowledge of
multivariate calculus. This simplicity stems from the implicitness of the LSM, making the numerical implementation of
the LSM relatively easy. The implicit formulation also means that changes in the interface topology are handled naturally.
When comparing the LSM to other interface-tracking methods, such as the front-tracking method [15] where the interface
is represented by piecewise continuous functions, the simplicity becomes especially clear.

The main disadvantage of the LSM, on the other hand, is that it is not a conservative method. During the course of a
simulation, a fraction of fluid 1 may be converted to fluid 2 in an unphysical fashion. Various methods have been invented
to circumvent this, e.g. the HCR-2 reinitialization method [16], so it is only a small effect presently. Interface-tracking
methods may be conservative; an example of this is the volume-of-fluid (VOF) method, but then they typically have other
disadvantages. In the VOF method, for instance, the advection equation cannot easily be solved, necessitating the use of
interface-reconstruction methods [17]. Recent efforts have attempted to join the LSM and VOF in order to get the benefits
of both methods; this approach seems to be fairly successful [18]. In a similar spirit, recent hybrid level-set/front-tracking
methods have been developed [19] that retain the implicit definition of the interface while utilizing the front-tracking
method to improve mass conservation and to compute the surface-tension forces in an accurate and robust manner.

We give here the formal definition of the level-set function used in the LSM. Let Γ be the interface between two fluids,
e.g. air and water, and S be the computational domain where the fluids are confined. To represent this interface, we define
a level-set function φ : S → R with the property

Γ = {
x

∣∣ φ(x) = 0
}
. (1)

This only defines the value of φ at the interface Γ , and not elsewhere. The common choice here is a signed distance
function. Thus φ is fully specified by

φ(x) =
{−dist(x,Γ ) if x is inside Γ,

dist(x,Γ ) if x is outside Γ.
(2)

Here, the function dist(x,Γ ) is the shortest distance from the point x ∈ S to the interface Γ . With this definition of the
level-set function, the normal vector to the interface is given by

n = ∇φ

|∇φ| . (3)

From this, the curvature is calculated by the well-known formula

κ = ∇ · n = ∇ ·
( ∇φ

|∇φ|
)

. (4)
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With suitable discretizations of the derivatives involved, these quantities are easy to calculate numerically. This is often
quoted as one of the nice features of the LSM, along with e.g. the very natural way the method handles topological
changes [20]. In 2D, the standard discretization of the curvature is (see e.g. [21])

κ = φxx + φyy

(φ2
x + φ2

y + ε)1/2
− φ2

x φxx + φ2
yφyy + 2φxφyφxy

(φ2
x + φ2

y + ε)3/2
. (5)

Here, e.g. φx denotes the first derivative of φ in x-direction, calculated using standard central differences. However, when
curvature and normal vector calculations are done during a change in the interface topology, this approach fails; the error
in curvature is of the order O(1/�x) [4]. In [9], Smereka notes that “One of the major advantages of level-set methods is
their ability to easily handle topological changes. However for this problem we have found this not to be the case.” It is this
that the present method attempts to solve.

From the defining Eq. (2), φ is initialized at the start of a simulation. For a given velocity field u, φ should be transported
so that the interface follows the flow. This is done by solving the advection equation,

∂φ

∂t
= v|∇φ| = −u · ∇φ. (6)

Here v is the velocity normal to the interface, and u is an extrapolated velocity field constructed using the method in [22].
This equation is not justified here, see e.g. [23].

Solving this equation will result in transportation of the interface, but it will also degrade the accuracy of the inter-
face representation, as φ is deformed from a signed distance function. To avoid this, the level-set function is periodically
reinitialized. We follow here the PDE-based approach introduced by Sussman, Smereka and Osher [23], which consists in
solving

∂φ

∂τ
+ sgn(φ)

(|∇φ| − 1
) = 0. (7)

Here τ is a pseudo-time which is not related to the physical time in simulations. This approach is both computationally
fast and accurate when used as here with a narrow-band approach. The extrapolation of the velocity field as used in Eq. (6)
above is performed by solving a similar type of equation. These equations are solved using pseudo-CFL numbers of 1.0 for
the velocity extrapolation and 0.5 for the reinitialization. It is noted that a numerical solution of the reinitialization equation
needs accurate normal vectors at the interface.

A useful property of these equations is that the characteristics originate at the interface, meaning that solving the equa-
tions numerically for N pseudo-time steps using a CFL-number of C will yield a correct signed distance function C · N
space steps away from the interface. This has led to the use of narrow-band methods, where the level-set function and
other properties such as the curvature are only calculated and used in a narrow band around the interface. This reduces the
computational time significantly.

In two-phase flow simulations, the LSM is coupled with the Navier–Stokes equations,

∇ · u = 0, (8)
∂u

∂t
+ (u · ∇)u = −∇p

ρ
+ ν∇2u + f. (9)

Here ν = μ/ρ is the kinematic viscosity, while μ is the dynamic viscosity, ρ is the density, u is the velocity field and p is
the pressure. f is any external force, such as gravity, and may be zero.

These equations hold for single-phase fluid flow, but can be extended to two-phase flow using different methods. In
the present work, the ghost fluid method (GFM) [24] is used. This method prescribes jump conditions for e.g. the pressure
across the interface based on the interface properties. The jump conditions used here are

[u] = 0, (10)

[p] = 2[μ]n · ∇u · n + σκ, (11)

[μ∇u] = [μ]((n · ∇u · n)nn + (n · ∇u · t)nt (12)

− (n · ∇u · t)tn + (t · ∇u · t)tt
)
, (13)

[∇p] = 0, (14)

based on [21]. Here, t is the tangent vector along the interface and [·] denotes the jump across an interface, that is [μ] ≡
μ+ − μ− . Note that ∇u and (e.g.) nt are rank-2 tensors. The pressure must also be decoupled from the velocity field in
order to enable a numerical solution of the Navier–Stokes equations; we use here the projection method due to Chorin [25].
This gives a Poisson equation for the pressure which can be solved using freely available numerical libraries. The PETSc
library is used here [26].

In the present numerical implementation, SSP-RK schemes [27,28] are used for the time integration, while the WENO
method [29] is used for the spatial discretizations. To determine the time step dynamically, we use the CFL-criterion given
by Kang et al. [21].
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Fig. 1. (a) Two droplets in near contact. The dotted line marks a region where the derivative of the level-set function is not defined. (b) A one-dimensional
slice of the level-set function. The dots mark points where the derivative of φ is not defined.

3. The local level-set extraction (LOLEX) method

3.1. Introduction

Calculating the curvature κ of the interface between two phases is important, since it appears in the Young–Laplace
formula for the capillary pressure, �p = σκ . Its value is used in e.g. the ghost fluid method (GFM) (Eq. (11)), or other
methods of enforcing the jump conditions. The normal vectors to the interface are also important, e.g. when advecting
the level-set function and when reinitializing it. Calculating these geometric quantities is straightforward in theory, using
Eqs. (3) and (4) to compute them from the level-set function.

However, as is often the case, in practice it is not so straightforward. The problems arise when the distance between two
interfaces is of the order �x. This is illustrated in Fig. 1. The derivatives of φ are not defined at the kinks. As a result of this,
the numerical stencils approximating the derivatives of φ will often produce large, erroneous values. When this happens,
the curvatures and normal vectors will be erroneous. For the curvature, this error is of order O(1/�x), which can be several
orders of magnitude larger than the correct curvature value. It should be stressed that additional grid refinement does not
solve this problem; e.g. for the simulation of colliding drops, one would have to continue refining the grid ad infinitum.

The earliest non-smearing approach to this problem, by Macklin and Lowengrub [4], uses a modification of the direc-
tional differences for points close to kinks, along with a mesh refinement for these points. The same authors introduced a
curve-fitting method instead in [10], which is said to be an improvement on the directional differences and a simplification.
The latter version will be referred to as the MLM (Macklin and Lowengrub method). Further improvements to this method,
and adaptations to an on-grid framework (i.e. calculating the curvature at the grid points, not at the interface), have been
developed by Lervåg [12,13]. These methods give good results in 2D, but are difficult to extend to 3D simulations due to
the use of curve-fitting.

An alternative approach to the problem is due to Salac and Lu [11], and will be referred to as the Salac and Lu
method (SLM). This approach extracts separate bodies represented by the level-set function into their own, separate dis-
tance functions. Only the negative parts of the level-set function are extracted, the positive parts are reconstructed through
reinitialization. This procedure removes all kinks that are caused by two or more bodies that are close to each other. For a
review and comparison of the SLM, MLM and the method by Lervåg, see Lervåg and Ervik [30]. It should also be noted that
the recent article by Focke and Bothe [31] discusses a similar issue, in the context of thin lamellae which form when liquid
drops collide off-center. The authors introduce a method which resembles the SLM, but which also has the ability to add
small amounts of liquid to the lamella region, preventing a numerical rupture.

The method considered here is a further development of the SLM. It is referred to as the local level-set extraction
method, or LOLEX method in short. The reason why the SLM is insufficient in some cases, as well as the details of the
present method, is given below. Suffice it to say at this point that the present method is more general, so it applies both
to the cases considered by Salac and Lu and those considered by Focke and Bothe (except the stabilization of thin lamellae
which the latter introduce).

Another recently presented approach is due to Trontin et al. [32], who consider a hybrid particle/level-set method. Their
approach is to use the information from the tracking particles to calculate the curvature and normal vectors, with good
results. This can obviously not be applied to a pure level-set method as discussed here, or e.g. a coupled level-set/VOF
(CLSVOF) method as has recently become popular [18].

The previously mentioned work by Shin et al. [19] which introduces a hybrid front-tracking/level-set method is another
interesting approach. The ability of their method to conserve mass globally as well as locally is impressive, and the handling
of thin filaments is better than the method proposed in this paper. As with the approach due to Trontin et al., this method
cannot be applied to a pure level-set framework, and integrating it into an existing level-set based code would be arduous.
In comparison, the method proposed in this paper can be implemented into a level-set framework with less than 500 lines
of code.

An approach which has not been considered here, or by other authors in the context of level-set methods as far as we are
aware, is the use of filtering. Vliet and Verbeek [33] study the estimation of curvature from a discretely sampled greyscale
image, using derivative-of-Gaussian filters, and note that this outperforms a traditional curvature estimate analogous to
Eq. (5).
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Fig. 2. The curvature field plotted for the SLM. Note the red curvature field inside the air finger between the drop and the pool, which is incorrect. The
color should be light blue in this area. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)

The idea of Salac and Lu, on which the present method is based, is simple when compared to the curve-fitting scheme
used by Macklin and Lowengrub [4] and later by Lervåg [12,13]. This simplicity is more in keeping with the “spirit” of the
level-set method: the LSM is an implicit alternative to front-tracking methods that employ curve fitting, and this implicitness
makes extending to higher dimensions straightforward. In the same fashion, the SLM is easily extensible to 3D, while the
methods employing curve fitting are not. There are, however, some drawbacks to the Salac and Lu method as well.

The primary issue stems from the fact that the Salac and Lu method is aware of the global topology of the interface.
A problematic area, with a kink in the level-set function close to φ = 0, can be caused either by two bodies in close
proximity or by a single body folding back onto itself. In the latter case, as illustrated in Fig. 2, the Salac and Lu method
falls back to the standard discretization, and the calculated curvature will be erroneous. This may seem like an edge case not
worth considering, but simulations have shown that this often happens, e.g. when a falling droplet merges into a pool. As
pointed out by Smereka [9], errors like these can be the main contribution to unphysical area loss in a simulation. Another
situation where this would often be the case is in tumor simulations like those performed by Macklin and Lowengrub, as
can be seen in e.g. [4, Fig. 6].

3.2. The idea of the LOLEX method

The method presented here tries to combine the best of the SLM with the best of the MLM. As illustrated in the previous
section, the SLM is aware of the global topology of the interface, which is problematic in some cases. The MLM does not
have this problem, as its curve fitting considers only the local area, but as previously stated it does not extend easily to 3D.
A natural workaround to the “global awareness” is to make the Salac and Lu method consider only the local topology; say,
a 10 × 10 × 10 cube around the point where we calculate the curvature.

In the following, we assume the level-set function to be located on a uniform mesh on a single CPU. The proposed
method can be adapted in a straightforward manner both into a domain-decomposition and a mesh-refinement framework.
We do not discuss this in further detail here.

Since the SLM relies on reinitialization to remove kinks, a potential problem with this approach is computational effi-
ciency, as reinitialization can be time-consuming. To avoid this problem, we want to use the standard discretization as much
as possible, only resorting to the LOLEX method when we have to, i.e. when kinks in φ are close to the interface. To easily
identify kinks, we use the quality function Q (x) which was introduced by Macklin and Lowengrub in [4]. It is defined as

Q (x) = ∥∥1 − ∇φ(x)
∥∥

2, (15)

i.e. the deviation of φ from a signed distance function, measured with the 2 norm. If max(Q (xi, j,k)) > η for xi, j,k in a
3 × 3 × 3 cube around the current grid point, we use the LOLEX method. A value of η = 0.005 is used here, and is seen
to perform well. That is, the number of grid points where the LOLEX method is used becomes small compared to the total
number of grid points. This keeps the computational cost low. The effect of varying η can be seen in Fig. 10, as discussed
in Section 4.2

To further decrease the computational cost, we use the “narrow band” level-set method introduced in [34]. This means
that quantities such as the curvature are only calculated in a narrow band around the zero level set, where they are needed.

Having briefly presented the idea behind the present method and the scope in which it will be used, we give here a
step-by-step outline of it, see Fig. 3. 2D notation is used for clarity, but all steps are easily extensible to 3D. In this outline,
a few arrays are introduced for storing data: lookphi is a copy of the global φ for the local area we are considering,
bodies indicates the bodies present using increasing integers, and locphi holds the local φs that are extracted from the
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↪→ Loop over the computational domain using indices i,j.
↪→ If (xi, j not close to interface) do nothing. A point is defined as close to an interface if all φ(xn,m) for (n,m) ∈ [i − 1, i + 1] × [ j − 1, j + 1] is either

negative or positive.
↪→ Else if (Q (xn,m) ≤ η ∀(n,m) ∈ [i − 1, i + 1] × [ j − 1, j + 1] ) use ordinary method.
↪→ Else use LOLEX method:

↪→ Copy φ in a [-1,ilmax+2]*[-1,jlmax+2] square around i,j into the lookphi array.
↪→ Identify the bodies present in the [0,ilmax+1]*[0,jlmax+1] square, store this in the bodies array.
↪→ For each body, extract the relevant part of the lookphi array into locphi(:,:,bodyno). This array has 3 ghost cells on the boundary outside

ilmax*jlmax; these are not used until the extrapolation further down. Extracting means:
– copying lookphi for the internal points of this body
– copying lookphi for external points that are not next to more than one body
– explicitly reconstructing the signed distance for external points that are next to more than one body
– setting a value of 2*dx for all other points

↪→ Once the locphi array has been filled for all bodies, the values are extrapolated into the ghost cells. The extrapolation is zeroth-order, as will be
explained further down.

↪→ The locphi array is then reinitialized for all bodies. This erases the problematic kink, as well as the value of 2*dx which was set previously.
Thus this value is unimportant, as long as it is > 0.

↪→ Using these local φ ’s, the curvature and normal vectors can be calculated for each body. The curvature and normal vectors corresponding to the
body which is closest to the current grid point are used.

Fig. 3. A step-by-step outline of the LOLEX algorithm.

global φ and then refined into more accurate representations of the local bodies present. The quantities ilmax, jlmax
and klmax represent the number of grid points, in the x, y and z directions respectively, of the local grid. The values of
ilmax, jlmax, klmax are all set to 7 in the simulations performed here. Their values are independent of the global grid
size. Sensible values of these are between 5 and 11; since they must be odd, smaller than 5 gives too low resolution, and
larger than 11 starts eliminating the advantage of using a localized method. The value of 7 used here gives good results,
and increasing it to 9 gives only a small change while increasing the computational cost. In the limit ilmax → imax etc.
the method of Salac and Lu is recovered.

The steps in the algorithm that warrant further comments are: identifying the bodies present, explicitly reconstructing
the signed distance, extrapolating to the ghost cells, and reinitializing. These will be considered further in the next section
and subsections.

3.3. Details of the method

Some steps of the algorithm outlined need further explanations. This is either because they are too technical to be
fully described in the previous short outline, or because they have not been properly motivated yet. The steps that will be
considered are identifying the bodies present (Section 3.3.1), explicitly reconstructing the signed distance (Section 3.3.2),
extrapolating to the ghost cells (Section 3.3.3), and reinitializing (Section 3.3.4).

3.3.1. Identifying the bodies present
To identify the bodies present, a recursive routine is used, which starts at a seed point in a body and iterates through the

entire body, marking it as a body in the bodies array. The seed point is found by scanning the computational domain for
points with φ < 0. The recursive routine is called bodyscan here. The bodies array starts with a value of unchecked,
and bodies found are marked using increasing integers. The recursive subroutine will have marked the entire first body
when its first call returns.

A final point to note about the routine given here is that even though a recursive subroutine is used, memory usage
will not be problematic. This is because the routine operates on a small array whose size is independent of the grid size.
In 3 dimensions and with the presently used size of the local area, the array bodyscan would have 11*11*11 = 1331
elements. This routine can maximally be called 1331 times, giving a worst-case memory consumption of 13.5 MB. In reality
this number would typically be less than half of that. This will not cause memory problems, although it is too large to fit
in the CPU cache for some processors. The performance impact has not been tested here, as the 3D calculations are only
considered as a proof-of-concept, and have not been optimized for speed. In 2D the memory use is naturally much smaller.

3.3.2. Explicit reconstruction of the signed distance
For some points with φ > 0, two or more bodies are within �x of the point. This means that the value of φ is probably

incorrect, since it has to be the distance to two separate bodies at the same time. We will call such points “dependent
points”. These points are found using the bodies array: if this array has more than one unique positive integer value in
the four points adjacent to the present point, it is dependent. Because φ is likely incorrect for dependent points, we discard
its value, and instead explicitly reconstruct the distance to the relevant interface. The procedure used is due to Adalsteinsson
et al. [35].

When we consider such a dependent point, it lies right next to two interfaces. When reconstructing the distance, only
one interface is of interest, so the other one is momentarily removed. Note that the signed distance is always positive for
exterior points, so it is just the normal distance.
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Fig. 4. Cases for the neighborhood of a point.

The procedure in [35] is as follows. The point (i, j) which we are considering is next to the interface of current interest.
We ignore all other interfaces. Up to rotational symmetry, there are four possible cases. An illustration of these cases can
be seen in Fig. 4.

We examine the four cases (a–d) more closely:

a The interface crosses one of the lines from (i, j) to its four neighbors. In this case, we use the distance to the interface
along this line as our distance. This distance is given by

s = �y + φ(i, j − 1) (16)

where we have assumed that (i, j − 1) is the neighbor on the other side of the interface. Since this neighbor is an
internal point, it has φ < 0. The distance to the interface is the distance to the neighboring grid point (�y) minus the
distance from that grid point to the interface, which gives this formula. It is best to use only the φ-value inside the
body, since it is less likely to be distorted.

b The interface crosses two of the lines, and these two lines make out a corner of the 2 × 2 grid around (i, j). In this case
we use the shortest distance to the straight line between the two points of intersection. The distance d is given by the
formula

(
d

s

)2

+
(

d

t

)2

= 1. (17)

As long as s2 + t2 �= 0 this equation can be solved, and the positive solution is

d = st√
s2 + t2

. (18)

If we have s2 + t2 = 0, then s = t = 0, so it is obvious that the distance to the interface is d = 0.
c The interface crosses three lines. We construct the two straight lines between the points of intersection, and use the

shortest distance to either of these two lines, given by

(
d

min(s1, s2)

)2

+
(

d

t

)2

= 1. (19)

d The interface crosses two lines. These lines are on opposite sides of the point (i, j). In this case, we use the shortest of
the two distances, so d = min(s1, s2).

These formulae can be extended to three dimensions, where the possible cases are more numerous. In 3D, the central
point has two additional neighbors. This means there are more variations in addition to the cases considered above. This is
not considered in detail here.
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Fig. 5. Extraction, extrapolation and reinitialization of the local level set is shown, for the lower body in (a). Red indicates a negative value, blue a positive
value, and white indicates zero. The green lines indicate kinks in the level set function, and the black lines are the zero level sets. A detailed explanation
of the figures is given in Section 3.3.3. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)

3.3.3. Extrapolation
After the interior of the locphi array has been filled, the ghost cells must be filled before we can reinitialize the

local φ. Two ways of doing this are illustrated in Fig. 5. A first approach is to use linear extrapolation, which should work
well since φ is a linear function in 1D. However, it turns out that this does not work. A fundamental property of the reini-
tialization equation (7) is that its characteristics originate at the interface φ = 0. This is why the present method (and the
SLM) works – we only need a few cells directly next to the interface to have the correct value of φ, and reinitialization will
fix the rest. It also means that reinitialization will never move the position of the interface, which is a desirable property in
general.

The problem with linear extrapolation occurs when we extrapolate starting on the opposite side of the kink from the
interface. In this case, the values of the local φ are tending towards 0 from above, which means that extrapolation can
reintroduce the other body (which we removed in the first place). When this happens, reinitialization cannot fix the values
beyond the kink, since it cannot move the interface reintroduced by extrapolation. A straightforward alternative is to use a
zeroth-order extrapolation. This means simply copying the values along the edges into the ghost cells. It is obvious that this
will never cross φ = 0, so reinitialization works as intended.

The difference between these two is shown in Fig. 5. In (a), a zoom in on the global level set of a droplet touching a
pool is shown. In (b), the local level set of the lower body (the pool) is shown after extraction and explicit reconstruction.
Here, the values on the edges are not set, indicated in grey. In (c), the same is shown after first-order extrapolation, and in
(d) after zeroth-order extrapolation. In (e), the first-order extrapolated φ is shown reinitialized, and in (f) the zeroth-order
extrapolated φ is shown reinitialized. Note in particular that in (e), a kink still exists after the entire procedure (green line),
so the geometric quantities calculated would still be wrong if the derivatives cross the kink.
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Fig. 6. Why we reinitialize from a lower level set: At the lower level set, indicated by the dotted line, values of e.g. ∇φ are more accurate at the grid point
which is closest to the grey line than for the zero level set. The grey line indicates the local level-set function φ. The dashed lines indicate ∇φ calculated
using central differences.

The corner cells on the boundaries must also be set. Here, these all get the value from the corresponding corner of the
internal grid.

3.3.4. Reinitialization
When the extracted local level-set has been extrapolated, it must then be reinitialized before the geometric quantities

are calculated. This is essential in order to have good values of the level-set function outside the interface. The entire LOLEX
method hinges on the fact that reinitialization restores the local level-set to a signed distance function, so that ordinary
discretizations will not give errors. This is not entirely straightforward, however.

When reinitializing, we require at least some points on either side of the interface with decent φ-values, i.e. φ being
the signed distance to the interface. In addition to this, we need to know the smeared sign function, and most crucially,
the normal vectors at the interface. Thus we are faced with a bootstrapping problem: accurate normal vectors are required
in order to accurately calculate the normal vectors. This is only a problem when the global interfaces are very close; when
there is a moderate distance (i.e. more than one grid point between the interfaces), the normal vectors can be calculated at
the interface using the local level-set.

The solution to this conundrum is to exploit the redundant information which is stored in the level-set function. To
illustrate this redundancy, imagine that you are walking along a normal vector to the interface. At each grid point you pass,
you are told the current distance to the interface. As long as you do not pass any kinks, this information is redundant: using
the value at the first grid point you pass, you can calculate the value at the next grid point, and the one after that, given
that you know the grid spacing.

What this means for the present case is that we have information inside the current body that we can use. Most
importantly, we can calculate the normal vectors without problem for internal points. This means that we can reinitialize a
level set different from φ = 0, e.g. φ = −0.8�x, and get essentially the correct φ afterwards. We are not guaranteed to get
exactly the correct φ, but as we cannot obtain the correct φ anyway, we will settle for a good approximation. An illustration
of this in 1D is shown in Fig. 6, where the extracted local level-set function φ is shown in grey. Note that e.g. the value
of ∇φ at the grid point 02, shown with a dashed line, is much closer to 1 than the value at the grid point 01. When the
lower level set is used, we momentarily move the interface further to the left in this figure, so the grid point 02 is closest
to the interface. It is obvious that we have a better chance of restoring a signed distance function with the correct location
of the interface if we reinitialize from the lower level set.

The value of −0.8�x used here gives the most accurate results. If the value is too close to zero, the benefit of reinitializ-
ing from a lower level set is reduced. However, if the value is too large, we risk having this lower level set too close to the
edges of the local domain, and we increase the potential error caused by reinitializing from a different level than zero. The
optimal result is afforded by choosing a value somewhat below −0.5�x, since this ensures that the grid point 02 is always
closest to the interface, while minimizing errors from the edges of the domain.

Another problem solved by this is the fact that the values directly outside the zero level set may be incorrect in some
cases. In particular, this happens when an outside grid cell is not flagged as dependent, but its value of φ still deviates
from that dictated by a signed distance function. Tests have shown that this sometimes occurs, and that it distorts the
reconstructed local level set.

Reinitializing from a different level may sound somewhat complicated to do, but the implicit formulation springs to
the rescue again. To reinitialize from a lower level set, we simply add a positive constant to φ at every local grid point,
call the reinitialization routine on this φ, and then subtract the same constant from the reinitialized φ. The effect of this is
illustrated in Fig. 7, which is an extreme case. Here, reinitialization of two very close bodies (concentric circles) has distorted
the global level-set function close to and outside the interfaces. The reinitialized local level-set function is also wrong, but
the one which is reinitialized from a lower level set gives a much smoother representation of the interface, which agrees
with the contour lines further into the body. This smoother representation will, in turn, give a significantly more accurate
curvature. A plot of the curvature calculated with and without this improvement is shown in Fig. 8 for the concentric circles
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Fig. 7. The LOLEX method on a global level set which is distorted due to reinitialization of very close bodies. The global bodies are two concentric circles.
(a) Local φ before reinitialization. (b) Local φ reinitialized from φ = −0.8�x. (c) Local φ reinitialized from φ = 0.0. The black square indicates the boundary
to the ghost cells, and the red square indicates the 3 × 3 central points that are used in the final curvature calculation. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 8. Lineplots of the curvature along the interface when reinitializing from both the zero level set and a lower level set. Also shown are the curvature
calculated when forcing use of the LOLEX method on a single interface, and the analytical curvature.

case; this global interface configuration can also be seen in Fig. 11 further down. This plot shows the curvature along the
inner circle. It is seen that the improvement is large, particularly in this case when two interfaces are close. The curvature
calculated using the standard method is not shown, as it is outside the y-axis range in this figure.

While the curvature calculated using the LOLEX method is close to the analytical value, there is still a more or less
constant error of 1–2%. It turns out that this error is caused by the reinitialization of the local level set, as is indicated in
this figure as well. The line captioned ‘Forced LOLEX’ shows the LOLEX method used on a single interface corresponding to
the inner circle. Here, the level-set function is correct and the standard method gives an error for the single interface which
is smaller than the line width in this figure. When we force the use of the LOLEX method, the only difference from the
standard method is the extrapolation and reinitialization, meaning that these must be the culprits. To mitigate this, a more
accurate reinitialization procedure could be used, e.g. the HCR method due to Hartmann et al. [16].

3.3.5. Parameters of the method
In the LOLEX method as presented here, there are a number of parameters that can be varied. An overview of these is

given here, along with the values used presently, and sensible ranges, in Table 1.
After the local level sets have been extracted correctly, the standard discretizations can be used to calculate the normal

vector and curvature. As the curvature and normal vector cannot be multiply defined at a single grid point, we must
combine the information from different local level sets. To do this, we simply select the one corresponding to the interface
which is closest to the central point.

As the present method uses reinitialization on a local grid for each grid point where it is used, the performance impact
of the method could become large. To avoid this, the quality function Q (x) is used to restrict the use of the method. In
a typical falling drop simulation, the present method will only be used in a small percentage of the total number of time
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Table 1
Parameters used in the LOLEX method, along with values used and sensible ranges.

Parameter Value Sensible range

Local grid size 7 5–11
Gradient threshold η 0.005 0.01–0.001
Reinit. level set −0.8�x −1.0�x to −0.5�x

steps, and even then, it will typically not be used for all points along the interface. This means the computational cost of
the present method has a low impact on the total runtime of a simulation. We note that the computational cost is lower
than in the method of Salac and Lu, since that applies reinitialization to the entirety of the bodies present.

3.4. Summary

In this section the presently used LOLEX method has been described in detail. The method is used for grid points where
the level-set function deviates from being a signed distance function, where it extracts one or more local level sets, removes
any kinks in these by use of reinitialization, and finally uses these local level sets to calculate the curvature and normal
vectors. The values corresponding to the interface which is closest to the current grid point is used.

The method is motivated in that it is more general than the previous method by Salac and Lu [11], handling bodies
which fold back onto themselves, and it extends more easily to 3D than the previous methods by Macklin and Lowengrub
[4,10] and by Lervåg [12,13], which use curve-fitting schemes. The parameters of the method are given in Table 1. Results,
both for static and dynamic simulations, are given in the next sections.

4. Geometric results

In order to test the LOLEX method, some static interface configurations were used that replicate typical situations occur-
ring in simulations of droplet collisions.

4.1. Circles and straight interfaces

The first test case consists of three circles and a straight-lined interface, where two of the circles and the straight-lined
interface are joined together. The results for this case are shown in Fig. 9 for the LOLEX method, the SLM, and the standard
method. In this figure, the interfaces are shown as black lines, and the color indicates the curvature. The background
curvature of 0 is indicated in white, blue indicates a negative curvature and red indicates a positive curvature. The figure
illustrates that the standard method produces positive unphysical curvatures several places, both between the circles and the
straight interface and between circles. The Salac and Lu method remediates the situation somewhat, but still has problems
where the circle folds back onto the straight interface, and at the bottom of the middle circle, which is particularly close to
the straight interface. The LOLEX method produces positive curvatures only where they are expected and needed.

4.2. Droplet falling onto a pool

In order to compare the behavior of the LOLEX and the standard method for different interface separations, a test case
was considered which mimics a droplet falling onto a pool. In this case, a 0.2 m diameter circle and a horizontal line were
initialized in a 1 m × 1 m domain. The separation between the circle and the line was varied from 3.6�x down to 0�x in
increments of 0.1�x. For each separation, the curvature was calculated at all points within the narrow band close to the
interfaces, and the supremum-norm ‖κ‖∞ of the curvature values was calculated. This was done using the standard and
the LOLEX method, for grid resolutions of 64 × 64, 256 × 256 and 1024 × 1024. The analytical curvature is 10 for the circle
and 0 for the line, so the supremum norm should be close to 10. The results are shown in Fig. 10.

As is seen in this figure, the standard method returns the value used in regularizing the curvature, ‖κ‖∞ = 1
�x , when

the interface separation becomes smaller than about 2.4�x. Increasing the grid resolution does not improve the situation.
Note that the y-axis in this plot is logarithmic. Meanwhile, the LOLEX method gives decent values close to the analytical
value of 10 all the way up to when the interfaces merge, which happens at a separation of 0.2�x. It is seen that the small
deviations for the LOLEX method are reduced when the grid resolution is increased.

A final thing which may be illustrated using this figure is the effect of the parameter η. This parameter indicates how
much the level-set function φ has to deviate from being a signed distance function before we switch from using the standard
method to the LOLEX method. In the circle-line case in Fig. 10 the value of η = 0.005 (used throughout this paper) triggers
the switch for the first point when the distance is 4.2�x. Using η = 0.01 as in [10], the switch is made at 3.9�x. Both these
distances are in the region where the standard method gives good answers, so the LOLEX method is not very sensitive to
the precise value of η as long as it is in this range.

In addition to the curvature, accurate normal vectors close to the interface are desirable in level-set simulations. The
importance in reinitialization has been suggested above, coming from the fact that normal vectors are used in finding the
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Fig. 9. Comparison of curvature calculation methods for circles and straight interfaces. The color indicates the curvature; white is zero, blue is negative and
red is positive. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 10. Supremum norm of the curvature for decreasing interface separation. Dashed lines: results using the standard method. Solid lines: results using the
LOLEX method. The lines are shaded lighter with increasing grid resolution. The analytical curvature of the circle is 10.
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Fig. 11. Comparison of normal vector calculations using different methods.

upwind direction. Normal vectors are equally important in calculating the extension velocity, where an error would lead to
the interface not moving according to the flow.

4.3. Concentric circles

In order to compare the proposed method to the standard method, a geometric test case was considered which replicates
the demands of simulating merging interfaces. The calculated normal vectors are compared both to the standard central-
differences discretization, to a directional-differences discretization as described in [4], and to the curve-fitting method of
Lervåg [13].

In this test case, two concentric circles were initialized, as if we had a thin ring of fluid 1 inside fluid 2. The width of
this ring was 1.6�x. This test case is interesting, since it reveals grid effects or anisotropies. It also replicates the situation
of a thin film that forms between a droplet and a pool for cases where the droplet deforms the pool surface before merging.
This has been observed experimentally, see e.g. [36]. The results for all four methods are shown in Fig. 11.

In this figure it is seen that the directional difference method is not much better than the central difference method.
This is partly what prompted the use of curve fitting methods; Macklin and Lowengrub initially used directional differences
and additional grid refinement in [4], but switched to curve-fitting methods in [10]. As is seen in Fig. 11(c), curve fitting
methods (the method by Lervåg is used here) give the correct result. In (d), we see that the LOLEX method also gives the
correct result. It is impossible to distinguish the results in (c) and (d) without overlaying the figures and zooming in a lot.
We calculated the maximum RMS deviation between the LOLEX method and the other three methods compared in Fig. 11,

e.g.
∥∥√

(nx(d) − nx(a))2 + (ny(d) − ny(a))2
∥∥∞ . This was 0.0086 for the Lervåg method, 0.92 for the Central difference and

1.78 for the Directional difference; a 90◦ difference would give
√

2. We note that the maximum error is largest for the
Directional difference, while the average error is largest for the Central difference. The difference between the LOLEX and
Lervåg methods is too small to have any impact on the simulation results.

As pointed out several times already, the main advantage of the present LOLEX method over methods employing curve
fitting is that it scales easily to 3D. This is because the present method retains the implicitness of the level-set method. A 3D
extension of the Macklin and Lowengrub method, on the other hand, would fit a local surface to the point of interest, as
they indicate in [10]. Curvature estimation in 3D based on local surface fitting has long been a topic of research in computer
vision, see [37] for a review of various methods including the use biquadratic surfaces and of splines. The conclusion of [37]
is that these methods are very sensitive to numerical noise (in their context, sensor noise). In the current case, noise is to
be expected, as can be seen in Fig. 7(b). Due to this fact, methods in computer vision that avoid local surface fitting and
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Fig. 12. 3D bubble above a plane (not shown). Comparison of the standard curvature discretization (a) and the LOLEX method (b). The surfaces are colored
according to the curvature, and the standard method is seen to give large errors close to the kink in the level-set function (which is below the sphere),
seen as green and dark blue bands. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)

calculate only the sign of the curvature have been introduced, since this quantity can be calculated more reliably [38]. This
is not a viable alternative in two-phase flow simulations as considered here.

4.4. 3D bubble above a plane

A curvature calculation using the LOLEX method on a 3D case is shown in Fig. 12. In this case, a bubble is placed above
a plane, with distance 1.2�x at the closest. The grid is 50 × 50 × 50, and the bubble radius is 12.5�x. The surfaces are
colored according to the curvature (interpolated to the surface). In Fig. 12(a), the standard method is used. In 3D, this is
the 27-point stencil given by Kang et al. [21]. In Fig. 12(b), the LOLEX method is used to extract the local level sets, and
the curvature is then calculated using the same 27-point stencil on these local level sets. It is seen that the LOLEX method
performs much better than the standard discretization in areas where the bubble and plane are in close proximity. Note
that the plane is not shown here, only the bubble. The kink in the global φ is below the bubble.

Comparing to the analytical curvature, which in this case is −10 for the spherical bubble, it is seen that the standard
discretization performs well away from kinks, where the variation in curvature is at most ±0.2%. Close to the kink, the
standard discretization has errors of ±80%, seen as green and dark blue bands in Fig. 12(a). The LOLEX method has the
same variation as the standard method away from kinks, while the variation is ±2% close to the kink, seen as light blue
spots in Fig. 12(b). Thus it is seen that the LOLEX method gives an error which is an order of magnitude lower than the
standard method close to kinks in the level-set function. There is still a small error of the same size as reported above
in 2D, which is again probably caused by reinitialization. A deviation of this magnitude is unlikely to have a large impact
on simulations, in contrast to the errors from the standard discretization.

To the knowledge of the authors, improved calculation of geometric quantities for a pure level-set formulation in three
spatial dimensions that handles general topologies have not been reported before in the literature. Salac and Lu report
results of 3D simulations in [11], but it is not known how (or if) they handle problems like that illustrated in Fig. 2, i.e.
a body folding back onto itself. They also do not discuss the problem of needing good normal vectors at the interface in
order to solve the reinitialization equation.

Given the current state of developments toward petascale supercomputers, and particularly the rapid evolution in GPU-
accelerated solvers, dynamic 3D level-set simulations of colliding bodies are going to become more and more common. As
this happens, a method such as the present one will be necessary in order to get trustworthy results for situations where
accurate curvature is important.

5. Dynamic results

As discussed previously, the case of a single droplet of liquid falling onto a pool of the same liquid, either through gas or
another liquid, has been widely studied. Thus it is a good benchmark on which to test the proposed method, since detailed
experimental results are available.

When considering this case, the main dichotomy is between a droplet falling through gas and a droplet falling through
liquid. We will consider both cases here, since both are interesting from an industry standpoint. These two cases present
different challenges to numerical simulations. The liquid-in-gas case has a high density difference between the two fluids,
which is known to be a difficult case. Sussman et al. have studied this problem, and have produced good results using a
hybrid LSM-VOF method [18]. The liquid-in-liquid case, on the other hand, can be time-consuming to simulate due to the
viscous term in the CFL-criterion used here [21], but is not challenging with respect to density differences.

5.1. Decane droplet in water merging with decane pool

The simulation discussed here consider two immiscible liquids, where a droplet of the heaviest liquid is placed in the
lightest liquid above a pool of the heaviest liquid. In the experimental work by Chen et al. [39], the droplet is made to
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Fig. 13. A 1.1 mm diameter water droplet merging with a water pool. The ambient fluid is 20% polybutene in decane. Snapshots are taken 542 μs apart, the
arrow indicates the capillary wave, and the horizontal lines indicate the top of the bubble in the first frame. (a) is the experimental result, reprinted with
permission from [39], copyright 2006 American Institute of Physics. (b) is the simulation result.

rest on the pool, and then merging happens after some time. The heavy liquid is water, and the light liquid is a mix of
20% polybutene in decane. The droplet diameter is 1.1 mm. As the droplet and interface are brought into proximity, a thin
film is formed between them. This thin film drains, and after some time the film ruptures and the droplet merges with the
interface. In the Chen et al. experiments, the merging happens at the central point, but off-center merging has also been
reported for larger droplets [40].

A simulation was performed with the same fluid properties and droplet dimension as reported by Chen et al. The
computational domain was 6 × 6 mm, the grid was 400 × 400, and the CFL-number was 0.8. The results are shown in
Fig. 13. The agreement between the simulation and experimental results is very good.

In this simulation, the point of merging is decided mainly by grid effects when the droplet deforms the interface forming
a thin film. With the present method, we must simply hope that precisely what happens at the time of merging does not
significantly affect the following behavior. Comparing Fig. 13(a) and (b) indicates that in this case the precise mechanisms
of merging are not very important, as the numerical and experimental results agree very nicely. To accurately capture the
thin film behavior, the grid resolution would have to be extremely fine. Hodgson and Lee [41] report that the width of the
thin film between a droplet and a pool for the water-toluene system they study is four orders of magnitude smaller than
the droplet diameter, i.e. around 100 nanometers. It is possible that an adaptive grid could be able to resolve such a thin
film, but since there is no analog to the Knudsen number for liquids, it is not immediately clear whether the continuum
description of the Navier–Stokes equations still holds at this length scale.

Comparing the LOLEX method and the standard method on this case, the standard method gives a more oscillatory
pressure field around the contact point, as seen in Fig. 14. This increased pressure inside the thin film delays the rupture of
the film, seen as a slightly increased width of the film in Fig. 14(b).
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Fig. 14. Water droplet in a mixture of polybutene and decane, about to merge with a water pool. Comparison of the pressure field using the LOLEX method
and the standard method at t = 0.007 s.

Fig. 15. Experimental results (top) and simulation results (bottom) for a 0.18 mm water droplet falling through air and impacting a deep pool of water at
0.29 m/s. (a) is reprinted from [42], Copyright (2011), with permission from Elsevier.

5.2. Water droplet falling through air onto a water pool

Considering the case of a liquid in gas, a simulation was performed of a 0.18 mm diameter water droplet falling through
air at 0.29 m/s and impacting a deep pool of water. Experimental results for this case due to Zhao, Brunsvold and Munkejord
are found in [42]. These results indicate that a partial coalescence occurs, but the high-speed camera used was not fast
enough to capture all the details of the partial coalescence process.

The simulation was performed using axisymmetry. The computational domain was 0.7 mm × 0.7 mm, resolved using a
401 × 401 Cartesian grid. The CFL-number was 0.25. The LOLEX method was used for curvature and normal vector calcula-
tion. A comparison of the experimental and simulation results are shown in Fig. 15.
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Fig. 16. Water droplet falling onto a pool, just before the interfaces merge. Comparison between the LOLEX method and the standard method. The pressure
field is shown as colored contours.

The time intervals between frames for the experimental and simulation results do not match in this figure. The in-
tervals between the second and third frames are the ones that match best, suggesting that the behavior of the thin air
film that forms between the droplet and the pool before coalescence is the major source of this discrepancy. The grid
used in the simulation is unable to resolve the thin film. It is not clear that an increased grid resolution would amend
this, as the continuum approximation may not be valid for the thin air film. The width of this film is not known from
experiments.

As an order-of-magnitude estimate, we can use the results by Hodgson and Lee [41]. They report that the width of
the thin film between a droplet and a pool before merging, for the water-toluene system they study, is around L = 100
nanometers. Since the mean free path in air at room temperature and atmospheric pressure is around λ = 66 nanome-
ters [43], the Knudsen number is Kn = λ

L ≈ 0.7 /� 1, which would imply that the continuum description is no longer
valid.

Nevertheless, the simulation is able to correctly predict the partial coalescence, and the simulation agrees well with
experiments on the size of the daughter droplet produced. In the experiments, this daughter droplet subsequently bounces
on the pool of water. The simulation is unable to predict this, again due to the thin air film formed, and shows the daughter
droplet merging with the water pool instead.

A comparison between the LOLEX method and the standard method is shown in Figs. 16 and 17. These figures show
a section through the droplets just before collision and just when the neck is at its tallest, respectively. The pressure field
is plotted as colored contours. The LOLEX method is plotted on the left side and the standard method is plotted on the
right side. It is seen from these figures that the curvature errors produced by the standard method give rise to significant
oscillations in the pressure; note in particular the interleaved red and blue patches where the pressure changes sign. As
the reinitialization is performed more frequently, the oscillations persist, and are even found inside the pool below the
droplet.

An important effect of this erroneous pressure is a loss of kinetic energy, which can be seen in Fig. 17, where the neck is
clearly shorter with the standard method. It is also seen that more frequent reinitialization leads to a higher loss of kinetic
energy. As some authors have noted [44], the height of the neck and the dynamics of the capillary waves are important
factors for the partial coalescence mechanism.

The LOLEX method is not significantly affected by the amount of reinitialization, and gives a more sensible pressure field
in both cases. It should be noted that the pressure difference across the droplet interface in Fig. 16 is about 2500 Pa, which
is very large, caused by the very small droplet diameter.

This case also allows an illustration of the benefit of using the LOLEX method over the Salac and Lu method. In Fig. 18
we compare the curvature field for these two just after droplet-film merging, where it is seen that curvature errors in the
Salac and Lu method have led to the entrainment of a small bubble. Since the bubble is under-resolved on this grid, it
subsequently disappears due to reinitialization. The LOLEX method does not entrain any bubbles.

Finally, we consider the performance impact of the LOLEX method on this case. The same simulations using the LOLEX
and standard method were rerun using a 201 × 201 grid for timing purposes. The simulation using the standard method
took 43 525 s of CPU time, while the simulation using the LOLEX method took 46 753 s. This means the LOLEX method is 7%
slower than the standard method for this case, which is a fair trade-off for the benefits of both reduced pressure oscillations
and lower sensitivity to reinitialization frequency.
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Fig. 17. Water droplet falling onto a pool, when the neck reaches its highest position. Comparison between the LOLEX method and the standard method.
The pressure field is shown as colored contours.

Fig. 18. Water droplet falling onto a pool, zoom in on the interface just after merging. Comparison between the LOLEX method and the Salac and Lu
method. It is seen that the latter entrains a small air bubble due to the oscillatory curvature field following the merging. The curvature field is shown as
colored contours.

6. Concluding remarks

In the present work we have proposed a new method for calculating the curvature and normal vectors of an interface
represented by a level-set function, and which gives accurate results before, during and after topological changes in the
interface. The method is compared to the standard method for geometric test cases, where the analytical curvature is
known, and it is seen that in areas where the standard method gives errors of around 100%, the proposed method gives
errors of around 1–2%. The method is easily extended to 3D, as is demonstrated, where the same reduction in error is seen.
The method is then employed in simulations of two-phase flow where a droplet merges with a pool. Here it is seen that the
standard method gives rise to unphysical pressure oscillations before merging, which affect the subsequent capillary waves,
while the proposed method fares much better. The results of the simulations using the proposed method are compared
to experimental results both for a liquid-in-liquid case, where the agreement is very good, and for a more demanding
liquid-in-gas case where the agreement is qualitative, reproducing the partial coalescence behavior.
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ABSTRACT

To leverage the last two decades’ transition in High-
Performance Computing (HPC) towards clusters of compute
nodes bound together with fast interconnects, a modern
scalable CFD code must be able to efficiently distribute work
amongst several nodes using the Message Passing Interface
(MPI). MPI can enable very large simulations running on very
large clusters, but it is necessary that the bulk of the CFD code
be written with MPI in mind, an obstacle to parallelizing an
existing serial code.

In this work we present the results of extending an existing
two-phase 3D Navier-Stokes solver, which was completely
serial, to a parallel execution model using MPI. The 3D Navier-
Stokes equations for two immiscible incompressible fluids
are solved by the continuum surface force method, while the
location of the interface is determined by the level-set method.

We employ the Portable Extensible Toolkit for Scientific
Computing (PETSc) for domain decomposition (DD) in a
framework where only a fraction of the code needs to be
altered. We study the strong and weak scaling of the resulting
code. Cases are studied that are relevant to the fundamental
understanding of oil/water separation in electrocoalescers.

Keywords: Parallelization, Oil/water separation, Surfact-
ants and interfaces, Bubble and droplet dynamics .

NOMENCLATURE

µ Dynamic viscosity of a fluid. Pa·s
ν Kinematic viscosity of a fluid. m2/s
ρ Density of a fluid. kg/m3

f External acceleration. m/s2

u(x) Velocity field of a fluid. m/s
p(x) Pressure of a fluid. Pa
κ Curvature of the interface. 1/m
σ Coefficient of surface tension. N/m
n Time step index.
Re Reynolds number.

INTRODUCTION

In 1965GordonMoore famously predicted that transistor
density (and hence computing power for a given chip)
would double each year in the foreseeable future (Moore,
1965). Dubbed Moore’s law, this trend continued to

hold for roughly 40 years and meant that life was easy
for people needing greater and greater computational
power. While serious High-Performance Computing
(HPC) was dominated in most of this period by
vector machines like the seminal Cray 1, by the mid-
1990s clusters of many interconnected scalar CPUs had
become a cheaper solution, leading to the industry-wide
adoption of distributed memory architectures.

Around 2005 Moore’s law finally started hitting a
barrier when the high heat production of chips and,
somewhat later, the diffraction limits for photolitography
began forcing chip makers to alter their ways. Two
complementary solutions were introduced, namely
shared-memory architectures (multi-core CPUs) and
vector instruction sets (SSE, AVX, FMA)1. Both solutions
were adopted in HPC, leading to hybrid shared-
memory/distributed-memory systems. In the last five
years accelerator technologies (GPGPU, MIC)2 have
furthered the return to vector processing, so HPC has
in a sense come full circle. All in all this gives a very
heterogeneous environment for HPC where the onus is
on the application programmer to ensure that his/her
code can make the most of the available resources.

In contemporary numerical codes, omitting here
the use of accelerators, the two main programming
paradigms for leveraging parallelism are OpenMP and
MPI. OpenMP takes advantage of shared-memory
architectures, while MPI can use distributed-memory
architectures. On current systems, OpenMP can scale
from 1 to 32 cores, while MPI can scale to thousands
and even millions of cores. This means that MPI is the
paradigm of choice for HPC, possibly in combination
with OpenMP used by each MPI process.

We will use the following nomenclature when
discussing parallelism: a “process” is one MPI rank
which is executing code. A CPU has several “cores”,
each of which may execute a process. The CPUs are
located on “nodes”, e.g. a desktop computer or a blade
in a cluster. Typical cluster nodes have 2 (or more) CPUs,
each having a separate “socket” connecting the CPU to

1SSE: Streaming SIMD Extensions. AVX: Advanced Vector
Extensions. FMA: Fused Multiply-Add.

2GPGPU: General-Purpose Graphics Processing Unit. MIC: Many
Integrated Core.
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thememory (RAM). Each socket has one communication
channel to memory shared by all cores on this socket.
Many nodes can communicate over the “interconnect”,
which should preferrably be very fast and have very low
latency.

This paper will focus on the use of MPI to port an ex-
isting serial implementation of a 2D/3D incompressible
Navier-Stokes solver. This code can simulate two-phase
flows relevant e.g. for the fundamental understanding
of oil/water separation, but for 3D cases the runtime
is very long (weeks and months). The majority of this
runtime is due to the solution of a Poisson equation
for the pressure, and state of the art algorithms for
this problem are bound by the memory bandwidth
rather than CPU speed. This makes OpenMP a poor
solution in this case and leaves MPI as the necessary
paradigm for parallelism. We will employ the PETSc
library, specifically the DMDA component, to do domain
decomposition. The solution of the Poisson equation
is also done using PETSc routines. We establish a
framework in Fortran where it is possible to reuse the
existing serial code.

The rest of this paper is organized as follows: in the
next section, the basic equations are established, after
which the numerical methods are presented. Then we
describe the framework and the specific changes that
were needed to port the serial code. Computations
performed with the resulting code are discussed and
we study the strong and weak scaling on several
architectures. Finally some closing remarks are given.

MODEL DESCRIPTION

The equations that govern the two-phase flow system
under consideration are the incompressible Navier-
Stokes equations:

∇ · u = 0 (1)
∂u

∂t
+ (u ·∇)u = −∇p

ρ
+
µ

ρ
∇2u + f (2)

These equations are valid for single-phase flow. To
extend this formulation to two-phase flowwe keep these
equations in each of the two phases, where the densities
and viscosities are constant in each phase. We will
restrict ourselves to laminar flow, as we are interested in
situations with Reynolds numbers Re ∼ O(1).

Across the interface between the fluids, a jump in
the normal component of the traction vector will arise
due to the surface tension σ, and this jump together
with effects of the jump in density and viscosity must be
added to our equations. We introduce these effects using
the continuum surface force method (CSF) (Brackbill
et al., 1992). The location of the interface is captured
using the level-set method (LSM) (Osher and Sethian,
1988; Osher and Fedkiw, 2001), see Ervik et al. (2014) for
a detailed description, we provide only a short outline
here.

The level-set method is a method for capturing the
location of an interface. It is widely used not just
for multi-phase fluid flow but also in other contexts
where an interface separates two regions. The interface
is represented by a level-set function φ(x) which is

equal to the signed distance to the interface. In other
words, the interface is given by the zero level set
{x |φ(x) = 0}, hence the name. Rather than advecting
the interface location, one advects the function φ(x)
directly according to the transport equation

∂φ

∂t
= −u ·∇φ (3)

giving an implicit formulation that automatically
handles changes in interface topology.

The level-set method can be visualized as in Fig. 1
for a 2D fluid flow with a drop next to a film, seen on
the right-hand side in this figure as gray shapes. The
distance is shown as isocontour lines superimposed on
these shapes. On the left-hand side the level-set function
is shown visualized in 3D as surfaces where the height
above water corresponds to the signed distance. The
analogy to a map describing an island rising out of the
water is quite striking, except that the roles of “reality”
and “tool for description” have been reversed.

Figure 1: Illustration of the level-set method. Right: in
2D, a fluid drop (dark gray) seen next to a fluid film
(dark gray), both immersed in a different fluid (white).
Left: the signed-distance function representing these
two fluid bodies, the drop and the film.

When the location of the interface is known, the
curvature κ can be calculated from φ, and together with
σ this gives the surface tension force. In the CSF method
this force is incorporated as a volume-force term which
is non-zero only in a thin band around the interface. This
thin band is producedby smearing out the delta function,
making the force term continuous For such a smeared-
out delta function, we can compute the volume-force
term at a point x close to the interface as

fs(x, t) =

∫

Γ

fsfd(s, t)δ(x− xI(s))ds, (4)

where fsfd is a surface-force density and xI(s) is a
parametrization of the interface. The surface-force
density is such that the integral of fs(x, t) across
the (smeared-out) interface approximates the surface
tension force, see Brackbill et al. (1992) for details.
Note that in the level-set context it is not necessary to
parametrize the interface since φ(x) stores the distance
to the interface, so we have x − xI(s) = φ(x) as long
as φ(x) is a signed distance function. There are several
ways to smear out the delta function, we follow Osher
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and Fedkiw (2003, Eq. 1.23),

δ(x) =

{
0 if |φ| > ε
1
2ε

(
1 + cos

(
πφ
ε

))
else

(5)

where ε = 1.5∆x is employed. This one-dimensional
delta function is composed into the three-dimensional
version by taking δ(x) = δ(x)δ(y)δ(z).

This formulation leads to a source term which
incorporates the effects of surface tension. It is
also necessary to smear out the viscosity and density
differences across the interface in order to be consistent
with the above formulation. A smeared-out Heaviside
functionH(x) is used to accomplish this, given by Osher
and Fedkiw (2003, Eq. 1.22) as

H(x) =





0 if φ < −ε
1
2

(
1 + φ

ε + 1
π sin

(
πφ
ε

))
if − ε < φ < ε

1 if φ > ε

(6)

NUMERICAL METHODS

To discretize the Navier-Stokes equations and the
equations for the level-set method we employ finite
difference methods, specifically WENO (Liu et al., 1994)
for the convective terms and central differences for the
viscous terms in Eq. (2), and WENO also for Eq. (3). The
time integration is done with an explicit second-order
Runge-Kutta method (SSPRK (2,2) in the terminology of
Gottlieb et al. (2009)) for both Eq. (2) and Eq. (3).

The grid is a structured rectangular uniform
staggered grid. A staggered grid is employed to
avoid checkerboarding of the pressure field; this
means that the pressure and other scalars “live” at cell
centers, while the velocities “live” at the cell faces. To
be more precise, if we have a pressure at one point
pi,j,k, the velocities (u, v, w) around this point are
ui±1/2,j,k, vi,j±1/2,k, wi,j,k±1/2 located at the 6 cell faces.
In the actual code we store the velocity values for
ui+1/2,j,k, vi,j+1/2,k, wi,j,k+1/2 at the index (i,j,k)
even though these values are not physically colocated.

The major problem when solving Eqs. (1) and (2)
is that this is not a set of PDEs, it is a differential-
algebraic equation (DAE) with a Hessenberg index of
two. In otherwords, even thoughwe have four equations
(Eq. (2) is three equations) and fourunknowns (u, v, w, p),
Eq. (1) cannot be used directly to find p. The first
solution to this conundrum was presented by Chorin
(1968). This method can be understood as calculating
an approximate velocity field u∗ which does not satisfy
Eq. (1), and subsequently projecting this velocity field
onto the manifold of vector fields satisfying Eq. (1).
For this reason, the method is often called Chorin’s
projection method or simply the projection method. It
consists of these three steps, where we calculate three

quantities successively, namely u∗, pn+1,un+1:

u∗ − un
∆t

= − (un ·∇)un + ν∇2un (7)

∇2pn+1 =
ρ

∆t
∇ · u∗ (8)

un+1 = u∗ − ∆t

ρ
∇pn+1 (9)

The pressure Poisson equation (8) that arises here is
elliptic, so the numerical solution is very time consuming
and a vast amount of research has gone into developing
fast solvers. For two-phase flows with high density
differences, the condition number of the matrix that
results when Eq. (8) is discretized will make matters
even worse than for the single-phase problem (Duffy
et al., 2002). This matrix is very large even in sparse
storage formats, for a 2563 grid it has 117 million non-
zero elements. The current state-of-the-art consists
in combining a (geometric or algebraic) multigrid
preconditioner with a conjugate gradient method (often
BiCGStab) for solving the resulting sparse linear system.
Our experience with 2D axisymmetric simulations
suggests that the Bi-Conjugate Gradient Stabilized
method (van der Vorst, 1992) with the BoomerAMG
preconditioner (Henson and Yang, 2000) is an optimal
choice. For the simulations performed here, however,
the straigth-forward successive over-relaxation (SOR)
preconditioner turned out to be faster than BoomerAMG.
This has not been investigated in greater detail. We
employ the PETSc andHypre libraries for thesemethods
(Balay et al., 2014; hypre , 2014).

We note also that the boundary conditions for Eq. (8)
are of pure Neumann type (unless e.g. an outlet
pressure is specified), which results in a singular matrix.
These boundary conditions arise from the projection
methodandare notphysical. The common “engineering”
approach of fixing the singularity, simply fixing the
pressure at some point in the domain, is not a very
good approach as it may pollute the spectrum of the
preconditioner. Instead, projecting the discretized
singular equation into the orthogonal complement of
the null space of the singular matrix seems to be a
good solution (Zhuang and Sun, 2001). In other words,
for Ax = b, we construct the Krylov operator K =
(I−N)P−1A such that b,Kb,K2b, ... is orthogonal to the
null space N. Here I is the identity matrix, so (I−N)P−1

is the desired projection. In the PETSc library that we
employ here (Balay et al., 2014), this is achieved using
the KSPSetNullSpace() routine.

PARALLELIZATION

The starting point for the parallelization was an in-house
code consisting of a 2D/3D Navier-Stokes solver and a
multi-physics framework that enables the simulation
of two-phase flows with the possibility of applying
electric fields, and/or adding surface-active agents to
the interface. The interface between the two phases is
captured using a level-set method, so interfaces with
changing topology such as two merging drops can be
simulated. The code has been successfully applied to
the study of both liquid-liquid (Teigen and Munkejord,
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2010) and liquid-gas systems (Ervik et al., 2014), but the
long runtime has restricted its use to 2D axisymmetric
cases so far.

The PETSc DMDA framework for domain decom-
position was chosen as the main methodology for
parallelizing the code. Domain decomposition consists
in splitting the whole domain into subdomains which
are each distributed to one MPI node. Each node then
has a computational domain with some internal cells
where the flow is computed, and some ghost cells which
represent either boundary conditions or values that
belong to neighbouring domains. This means that
regular communication between the nodes is necessary
such that all ghost cells have correct values. Such a
splitting is shown in Fig. 2 below. Neglecting for a
moment the pressure Poisson equation, this approach
can scale well tomillions of CPU cores, see e.g. Rossinelli
et al. (2013) for an example in compressible flow.

By using the PETSc DMDA framework we can avoid
the gritty details of domain decomposition and MPI
programming. At the initialization of the code, some
routines are called to set up three DMDAs which are
objects that manage the decomposition. Using these
objects we input how large our computational domain
should be in terms of grid points, and the library decides
an optimal decomposition at runtime depending on the
number of MPI processes the code is run with. We also
specify the physical dimensions of our uniform grid,
and the library returns the physical dimensions for each
subdomain.

This framework is very convenient, but one enhance-
ment wasmade to further facilitate the reuse of the serial
code. In the standard PETSc framework, the local work
arrays that represent the solution on a given subdomain
and the values in the ghost cells are indexed using
the global indices. The existing code naturally expects
indices that go from 1 to the maximum value imax. In
Fortran, the bounds of an array may be re-mappedwhen
the array is passed to a subroutine, and this feature was
used to ensure that each local work array had bounds
as expected by the serial code. Thus we will use imax as
the final i index on each subdomain in the following.

With this enhancement, the only thing that had to
be re-written in the original code was the handling of
the staggered grid for the velocity. In the formulation
used here, we have one less point for e.g. u in the x
direction, since these values are located at the cell faces.
In the serial code this is handled by not solving for u
at the point imax. In the parallel version, u at the point
imax should however be solved for on those processes
that are not at the actual boundary but where there is a
neighbouring process in the positive x-direction.

Furthermore, this means that a communication step
is also necessary in the projection method. After the
pressure has been calculated from the Poisson equation,
we calculate e.g. the x-component of ∇p at the cell
face corresponding to u at imax. Numerically this
is (p(imax+1) - p(imax))/dx, so the ghost value at
imax+1must be updated before this calculation for those
subdomains where p(imax+1) represents a pressure
value on another subdomain and not a boundary
condition.

Returning to the pressure Poisson equation Eq. (8),
the elliptic nature of this equation means that, in some
sense, all nodes must communicate during the solution.
A further reduction in speedup potential is due to the
fact that the solvers for this equation aremostly bound by
memory bandwidth, which is shared amongst all cores
on amodernCPU. These limits imply thatwemust lower
our expectations somewhat in comparison with the
impressive results mentioned earlier for compressible
flows.

In the DMDA framework, the Poisson equation is
set up such that each process computes its own portion
of the matrix and right-hand side vector. This is the
only scalable way of solving it, even when sparse storage
formats are used.

RESULTS

Manufactured solution case

After the code had been parallelized it was tested using
a manufactured solution (Roache, 2002) inspired by that
used in John et al. (2006). The debugging tool Valgrind
(Nethercote and Seward, 2007; Nethercote et al., 2014)
was used in the memory checking mode to ensure that
the code does not e.g. make use of uninitialized values, a
common programming error. When all such errors were
fixed, the codewas used to solve the single-phaseNavier-
Stokes equations with the following exact solution used
as an initial – boundary value problem on a (1.0 m)3
domain, where the origin is in the lower left front corner
(cf. Fig. 2).

u = t3yz

v = t2xz

w = txy

p = x+ y + z − 1.5

(10)

Figure 2: The computed solution after 0.031 s (100 time
steps) on a 1283 grid run on 8 processors. The blocks
show the decomposition of the domain, the pressure
field is shown superimposed on these blocks, and the
streamlines illustrate the flow.
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Insertion into Eq. (1) confirms that this solution is
divergence free, and the resulting body force can be
computed by inserting Eq. (10) in Eq. (2). In order
to minimize the risk of human error, this was done
symbolically using Maple, the resulting expression was
copied into the Fortran code and regular expressions
were used to convert Maple syntax into Fortran. A
plot of the computed solution is shown in Fig. 2. Here
the velocity streamlines are shown together with the
pressure field which has been superimposed on blocks
representing the parallel decomposition.

Convergence

Using the manufactured solution in Eq. (10), the
convergence under grid- and time step refinement, as
well as the strong and weak scaling, was tested on the
Kongull cluster at NTNU. This cluster has dual-socket
nodes with Intel Xeon E5-2670 8-core CPUs and a 1
Gb/s Ethernet interconnect. The STREAM benchmark
(McCalpin, 2014, 1995) was run on one core and gave an
effective memory bandwidth of 9800 MB/s for the Triad
test3.

To test the grid- and time step refinement, a base case
was selected with a 2563 grid, giving a grid spacing dx
of 3.91 · 10−3 m, the CFL condition following Kang et al.
(2000) with a CFL number of 0.5 then giving a time step
of 1.28·10−4 s. This case was solved for 100 time steps, as
were solutions on coarser grids 1283 and 643 computed
with the same time step. All simulations were run on 32
processes (8 nodes with 4 processes each). Subsequently,
the same cases were run but with 1/2, 1/4 and 1/8 the
time step using 200, 400 and 800 time steps, respectively.
The results are shown in Fig. 3.

It is seen that the convergence behaviour is as
expected. First of all, the temporal order is 1 (not 2) due to
an irreducible splitting error from the projectionmethod.
This can be overcome e.g. by using the incremental
pressure form (see Guermond et al. (2006) for a review of
projection methods), but has not been considered in this
work. Second, the grid refinement does not influence
the error. This is due to the fact that the velocity field is
linear in space, so the error is completely dominated by
the temporal order.

Strong scaling

To test the strong scaling of our code, i.e. how simulating
a given case speeds up when more processes are used, a
1283 grid was used giving a grid spacing dx of 7.81 ·10−3

m, the CFL condition giving a time step of 3.10 · 10−4 s.
The solution was computed for 100 time steps. Since the
Poisson solver performance should be bound bymemory
bandwidth, the test was made using 2 processes per
node (one per socket) and several nodes. The resulting
speedup relative to one process is shown in Fig. 4. In this
figure, the black points indicate the speedup compared
to running on one process. The scaling seen is quite
good, but as expected lower than the theoretical linear
scaling. It is seen that the peak memory usage (orange)
increases slightly with more processes.

3The Triad test consists of repeated computations of the operation
a(i)=b(i)+q*c(i) where q is constant and i is incremented.
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To investigate the hypothesis that using only 2
processes per node and several nodes is better than using
many processes on one node, we also tried running
with 8 and 16 processes on one node. These results are
plotted in magenta in Fig. 4 and confirm the hypothesis.
We can conclude that even on this particular cluster
with a slow (by HPC standards) interconnect, the added
memory bandwidth afforded by using more nodes
(thus more sockets) outweighs the penalty of increased
communication between nodes. This also indicates that
the results for 2 processes per node are bound by the
interconnect speed, such that the speedup would be
closer to the optimal (linear) scaling when run on a more
tightly-coupled cluster.

Weak scaling

The weak scaling of the code was also studied. The base
case was the same manufactured solution on a (0.5 m)3
domain resolved with a 643 grid, run on one process.
Then a (0.5m)2×(1.0m) domainwith a 642×128 gridwas
solved with two processes, a (0.5 m)×(1.0 m)2 domain
with a 64×1282 grid was solved on 4 processes, etc. In
this way, the number of grid points and the number
of processes are both increased proportionally. The
equations were solved for 50 time steps, and the results
are shown in Fig. 5.
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Figure 5: The weak scaling of the code as the number
of processes and the number of grid points are both
increased proportionally.

As is seen in this figure, there is obviously a
performance hit initially; the perfect behaviour would
be a flat line. This is as expected. When going from 1 to
2 processes, we go from no communication to overhead
from communication. Furthermore, when going from 2
to 4 processes, there is the added overhead of intra-node
communication, as opposed to the case with 2 processes
where the communication is not over the network but
over the CPU bus. The weak scaling seen here is quite
decent. One should also be aware that it is more difficult
to ensure that cases are “equivalently hard” for weak
scaling than for strong scaling (Aagaard et al., 2013).

Two-phase results

As an initial test of the two-phase capabilities of the
parallelized code, the CSF method was employed to
simulate a 2 cm diameter drop with properties ρ1 =

2 kg/m3, µ1 = 0.01 Pa s falling through a bulk fluid
with properties ρ2 = 1 kg/m3, µ2 = 0.05 Pa s. The
interfacial tension was set to σ = 0.01 N/m. The domain
was (10 cm)3 resolved by a (128)3 grid, the simulation
was run on 8 processes for 33900 time steps up to t =
0.01 s. The drop has not yet achieved a substantial falling
velocity, so the spurious currents are quite visible. The
result is shown in Fig. 6, where the drop is shown with
the pressure superimposed on the surface, streamlines
indicating the flow. A plane is shown intersecting the
centre of the drop, on this plane the pressure field,
velocity field and level-set function contour lines are
shown. A reference vector is shown on the right.

Figure 6: The falling drop after a short time (0.01 s). The
pressure field is shown superimposed on the surface,
and on the plane behind the drop. On this plane
the velocity field and the level-set isocontours are also
shown. Streamlines indicate the velocity field.

Spurious currents is a well-known challenge with
the CSF method, and experience with the 2D serial code
has led us to prefer the ghost-fluidmethod (GFM) (Kang
et al., 2000), which is somewhat more complicated to
implement. This was not done within the scope of this
paper. Nevertheless, this demonstrates that the parallel
code is capable of two-phase fluid simulations with both
density- and viscosity-jumps.

CONCLUSIONS

In this paper we have discussed the parallelization
of an existing serial 3D incompressible Navier-Stokes
solver for two-phase flow. The PETSc DMDA domain
decomposition framework has been leveraged to apply
MPI parallelism, enabling the code to make use of
modern HPC facilites. We have discussed the alterations
that were necessary for the serial code and established a
framework where these were as few as possible.

Based on this code, we have reported the strong and
weak scalings for a manufactured-solution case on a
cluster with dual-socket nodes and 1 Gb/s Ethernet
interconnect. It is seen that the code scales rather
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well, but that one should take care to maximize the
number of sockets used, since the Poisson solver is
bound by memory bandwidth. If this code is run on a
cluster simultaneously with CPU-bound parallell codes
(e.g. using Monte Carlo methods), sensible resource
allocation would benefit from taking the available
memory bandwidth into account. Then it would not
be optimal to allocate all cores on N nodes to this code,
but rather e.g. 50% of the cores on 2N nodes, while a
CPU-bound code could effectively utilize the remaining
50% of the cores.

The speedup seen in the strong scaling test (13x
faster on 32 processes) is sub-linear but does not level-
off. Together with the possibility of running on more
tightly-coupled clusters where the behaviour should be
closer to linear, and using more than 32 cores, this will
give a substantial speedup and reduce the runtimes of
weeks andmonths for the serial code to something more
managable, i.e. a few days or less.

Initial tests demonstrate that the code is able simulate
two-phase flow, but the ghost-fluid method (GFM)
should be used instead of the CSF method currently
employed, in order to minimize the spurious currents.

This effort has left uswith a code that scales quitewell
and a framework where the remaining multi-physics
components can easily be introduced. In the end this
will enable future simulations of full 3D cases relevant for
the fundamental understanding of electrocoalescence.
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Abstract
In this paper we present experimental and numerical studies of the electrohydrodynamic

stretching of a sub-millimetre-sized salt water drop, immersed in oil with added non-ionic surfactant,

and subjected to a suddenly applied electric field of magnitude approaching 1 kV/mm. By varying

the drop size, electric field strength and surfactant concentration we cover the whole range of electric

capillary numbers (CaE) from 0 up to the limit of drop disintegration. The results are compared

with the analytical result by G.I. Taylor (Proc. R. Soc. A 280, 383 (1964)) which predicts the

asymptotic deformation as a function of CaE . We find that the addition of surfactant damps the

transient oscillations and that the drops may be stretched slightly beyond the stability limit found

by Taylor. We proceed to study the damping of the oscillations, and show that increasing the

surfactant concentration has a dual effect of first increasing the damping at low concentrations,

and then increasing the asymptotic deformation at higher concentrations. We explain this by

comparing the Marangoni forces and the interfacial tension as the drops deform. Finally, we have

observed in the experiments a significant hysteresis effect when drops in oil with large concentration

of surfactant are subjected to repeated deformations with increasing electric field strengths. This

effect is not attributable to the flow nor the interfacial surfactant transport.

PACS numbers: 47.11.-j,47.15.G-,47.55.D-,47.55.dk,47.65.-d
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I. INTRODUCTION

Surfactants are ubiquitous in two-phase fluid flows. Take for instance a single drop

falling through a viscous fluid, perhaps the simplest and most widely studied two-phase

flow configuration. While the classic results by Hadamard [1] and Rybzynski [2] give the

analytical result for the flow field in this case, experimental investigations mostly fail to

agree with this result. The discrepancy is attributed to trace surface-active contaminants,

found even in the most purified of liquids. It is natural, then, also to consider the effects

of surfactants on the more complicated case of electrohydrodynamic deformation of a

conducting drop falling in an insulating oil.

The case of a drop deforming in an electric field is interesting, not only as an

intriguing physical phenomenon of which our understanding can be improved, but also

for applications e.g. to chemical processing equipment such as electrocoalescers [3–5]. A

deeper understanding of the physical processes at play in this system could lead to improved

coalescer equipment and reduced emissions.

We will consider here experiments and simulations of sub-millimetre-sized drops of

brine falling in a highly refined oil with added surfactant, studying the drop deformations

and oscillations induced by square voltage pulses of varying amplitude applied to parallel

electrodes above and below such a drop.

When performing these studies of drop deformations, it is crucial to have a system which

is well characterised in terms of the fluid and the interfacial properties. To overcome the

uncertainties associated with unknown trace contaminants acting as surface-active agents, we

deliberately add a non-ionic surfactant (Span 80) in known, small quantities. The interfacial

tension as a function of surfactant concentration is then measured, together with the bulk

properties, to give a well-characterised system.

There is a large amount of research on the deformations of drops in electric fields, using

analytical, experimental and numerical techniques; we will not summarise all of it here. The

review by Melcher and Taylor [6] covers the fundamentals in a thorough fashion, while the

review by Saville [7] gives an update with more recent results in the field. However, when

surfactants are added to this picture, the literature is not so extensive. Previous authors

[8, 9] have investigated the influence of surfactants on the electrohydrodynamic stretching

experimentally, but they have been limited to considerations of the static (equilibrium)
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deformation, as well as drop sizes above 1 mm in diameter, and a limited number of

observations. Computational studies in the literature, namely previous work by Teigen

et al. [10], and the paper by Nganguia et al. [11] which finds good agreement with [10], have

also been focused on the static deformation. Note that the numerical code used in this paper

is the same as in [10].

Taking a step further, we consider here also the dynamical behaviour of the stretching

drops, in particular the effects of the surfactant concentration on the damping of the drop

oscillations. We work with drops smaller than 1 mm in diameter. We report results for

many drop deformations, almost 300 for the experiments and 44 representative cases for the

simulations.

This work is an extension of our initial investigation [12], where five cases of the

electrohydrodynamic deformation of drops in insulating oil were studied. In the present

work we have extended this analysis to a parameter study of the factors influencing the

deformation and the deviations from the classical result by Taylor [13], which does not take

surfactants into account. The analytical result by Taylor has been found to agree very well

with subsequent results, see e.g. [14], and for this reason we use it as a supporting line in

the plots and analysis throughout the paper. Following Taylor, we use the dimensionless

electric field strength ζ =
√
CaE in the following.

The results presented here show that the deviation from Taylor’s expression is negligible

below dimensionless electric field strengths of ζ ≈ 0.4, while above this threshold they

become significant. We demonstrate that drops in the presence of surfactants may be

deformed beyond the stability limit given by the Taylor theory. Finally we study the effect of

the surfactant concentration, and the effects of Marangoni stresses on the damping of drop

oscillations. Our results indicate that small concentrations of surfactant give a significant

increase in the damping whilst having but a small effect on the equilibrium (static) shape.

Also, for the highest surfactant concentration used here, we observe in the experiments a

significant hysteresis effect of repeated stretchings. This effect is not seen in the simulations,

so it cannot be explained by the hydrodynamics and the surfactant transport processes which

are modelled by our approach.
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II. THEORY

The flow of single-phase oil or water can be described by the incompressible Navier-Stokes

equations

∇ · u = 0, (1)
∂u

∂t
+ (u ·∇)u = −∇p

ρ
+
η

ρ
∇2u + f , (2)

where u is the velocity field, p is the pressure, ρ is the density, η is the dynamic viscosity, and

f is the acceleration caused by some body force, e.g. the gravitational acceleration. This

description can be extended to a two-phase flow by incorporating three things, namely that

there is an interface separating the two fluids, that the fluids may have different viscosities

η1, η2 and densities ρ1, ρ2, and finally the effects of interfacial tension and interfacial tension

gradients. We mark the drop properties with subscript 1 and the bulk properties with 2,

and denote the interfacial tension by γ. The viscosity difference and the interfacial tension

γ contribute to jumps across the interface in various properties such as the pressure; this is

detailed in equations (16) to (18) below. Mathematically, this can be incorporated into the

Navier-Stokes equations as a singular contribution to f in equation (2).

This system admits two dimensionless groups, which we may take to be the Reynolds

number Re and the Ohnesorge number Oh. The Reynolds number is of interest for a falling

drop, where it is defined as ReD = ρ2uTD/η2, uT being the terminal velocity and D being

the drop diameter. For the drops considered here, the Reynolds number is small (ReD < 1),

meaning that the inertial term in equation (2) is unimportant for the flow at terminal

velocity.

For an oscillating drop, the Ohnesorge number is an important quantity; some authors

use the inverse of the Ohnesorge number as the “oscillation Reynolds number” Reosc. We

use the definition Oh = η2/
√
ρ2γD, since the ambient fluid is much more viscous for the

cases considered here. For the oscillations, the Ohnesorge number is also small (Oh < 0.2),

but here the inertial term is important since small Oh corresponds to large Reosc.

When considering a single small (i.e. spherical) drop falling in a clean fluid at low

Reynolds number, the terminal velocity as well as the flow in the entire domain is given

analytically by the results that Hadamard [1] and Rybzynski [2] obtained independently.
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Their result for the terminal velocity, assuming an unbounded domain, is

vT,HR =
(ρ1 − ρ2)gD2(η1 + η2)

6η2(3η1 + 2η2)
. (3)

Experimental results for the terminal velocity, however, tend to not agree with this result

[see e.g. 15, Fig. 1], but a closer agreement is found with the formula derived by Stokes [16]

for a hard sphere falling in an unbounded domain,

vT,S =
(ρ1 − ρ2)gD2

18η2
. (4)

Indeed Hadamard himself was aware of this discrepancy, as is evident when reading the

closing paragraph of his 1911 paper, wherein he mentions poor agreement with as-yet

unpublished experiments he had performed.

We note that for η1 < ∞, the graphs of vT(D) given by equations (3) and (4) only

intersect at D = 0, and thus the terminal velocity of a falling drop is an observable quantity

that can determine if a system is clean or not. An experimental observation closer to

equation (4) indicates a contaminated system, which is indeed the observation for most fluid

combinations. It is noteworthy that the experiments which have obtained values agreeing

with equation (3) are for quite singular fluid combinations, e.g. mercury drops in glycerine

[17]. Experiments reported in our previous paper [12] indicate that the pharmaceutical grade

white-oil used here, Marcol 52, contains contaminants that make small water drops fall like

hard spheres.

The currently accepted explanation [see 18, pp. 35-41] of this phenomenon is that trace

contaminants in the system act as surfactants which are swept along the interface by the

flow, creating an interfacial-tension gradient which results in a Marangoni force, with the

end result that the drop interface is immobile. Since the nature of these trace contaminants

are not known, we deliberately add to the oil a known amount of a non-ionic surfactant,

Span 80, such that we obtain a well-described fluid system.

The interfacial tension, γ, can be related to the bulk concentration of surfactant, Λ, using

the Szyszkowski [19] equation of state (EoS):

γ(Λ) = γ0

[
1− β ln

(
1 +

Λ

aL

)]
, (5)

where γ0 is the interfacial tension without surfactants, β = RgasTΓ∞/γ0 is the interfacial

elasticity, and aL = kdes/kads is the ratio between the adsorption and desorption coefficients of
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the surfactant. In the expression for β, Γ∞ is the maximum possible interfacial concentration

of surfactant, Rgas is the universal gas constant, and T is the temperature (in Kelvin). The

parameters β, aL of this EoS may be computed by fitting to experimental data; note that

this also determines Γ∞ when the temperature is known.

The equilibrium interfacial concentration can subsequently be calculated as

Γ = Γ∞
Λ

Λ + aL
. (6)

The relationship between interfacial concentration and interfacial tension is then given by

the Langmuir EoS:

γ(Γ) = γ0

[
1 + β ln

(
1− Γ

Γ∞

)]
. (7)

For a detailed review of these equations and their derivation, see e.g. [20, pp. 47–50].

In figure 2 in the next section we plot this equation, with parameters obtained by fitting

equation (5) to the experimental data of interfacial tension as a function of concentration,

together with the experimental data. It is seen that the fit is very good.

In the present case we consider the surfactant to be insoluble, and we restrict ourselves

both in simulations and experiments to surfactant concentrations which are below the

critical micelle concentration (0.02 wt% for our system). An insoluble surfactant is a good

approximation when the time scales for adsorption-desorption are long when compared to

the deformation time scales [21, 22]. This is the case here, since the time it takes to reach

equilibrium for the measurements of interfacial tension is in the order of minutes, while the

time period of the drop deformations discussed is on the order of milliseconds. We denote the

non-equilibrium interfacial surfactant concentration by ξ. The initial value of ξ is given by

equation (6), and the concentration profile ξ(x) evolves according to an advection-diffusion

equation which is restricted to the interface (see e.g. [23]), namely

∂ξ

∂t
+ ui

∂ξ

∂xi
− ninj

∂uj
∂xi

ξ = Dξ

(
∂2ξ

∂xi∂xi
− ninj∂

2ξ

∂xi∂xj
+ κni

∂ξ

∂xi

)
, (8)

where we employ the Einstein summation convention. ui and ni denotes the components of

the velocity u and the normal vector n, respectively. κ = ∇ ·n is the interfacial curvature.

Dξ is the surfactant interfacial diffusion coefficient, a parameter which is very difficult to

measure. Fortunately the solutions of this equation are quite insensitive to the value of this

constant as long as it is small. Here we use the value 5 · 10−7 m2/s, which is of the same

magnitude as that reported e.g. by Sakata and Berg [24] (albeit for different surfactants).
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For an oil-soluble surfactant with a long aliphatic tail such as Span 80, it makes sense that

the diffusion coefficient is quite low when the oil is quite viscous.

With this approach, the Gibbs elasticity is taken into account, and its magnitude can be

computed as βγ [22]. This only takes into account the elasticity caused by the change in

interfacial tension given by a change in the drop area. Other physical mechanisms, such as

reorientation of surfactant molecules at the interface, can lead to additional effects, and even

cause a phase transition in the surfactant layer [25]. These mechanisms are not accounted

for in the model used here.

As is the case with the falling drop, the oscillating fluid drop has received much attention

in the scientific literature. The earliest work is due to Bidone [26] who experimentally studied

the breakup of thin liquid jets and the oscillating drops formed by these. Parts of that paper

are reproduced in the seminal study by Rayleigh [27] who presented a theoretical analysis

of why thin liquid jets break up, and that instability now bears Rayleigh’s name. In that

paper he also investigated the oscillations of the liquid drops produced after jet breakup, and

derived an expression for the frequency of an oscillating drop valid at small deformations,

zero viscosity and no outer fluid.

The analysis was later extended by Lamb [28] to include the damping of oscillations

for a weakly viscous drop, and then by Chandrasekhar [29] to any viscosity, but still only

for a liquid drop in vacuum or a dilute gas. The extension to a liquid drop immersed in

another liquid was then done by Miller and Scriven [30], and extended again by Prosperetti

[31] to a result valid at all times, not just asymptotically. We note that this analysis has

been applied for measuring the interfacial tension and viscosity of two-phase fluid systems, a

technique first described by Ronay [32]. In all these descriptions, the surface is decomposed

into spherical harmonics, and they differ essentially only in how the coefficients of these

harmonics are distributed and how they evolve in time. Another common feature is that all

considerations of damping lead to the result that the fundamental mode of stretching (i.e. an

elongated drop) is damped most slowly, and that the higher modes have significantly lower

amplitude and faster damping. It is notable that experiments by Apfel et al. [33] which

show more exotic oscillations, including e.g. an hour-glass shape and a dimpled sphere, had

to be performed in a micro-gravity environment. A third common feature is that they all

work in the limit Oh→ 0, i.e. they assume that the viscosity is small, and so they linearise

the Navier-Stokes equations.
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While this type of analysis is a popular way of attacking the problem, it is unfortunately

not applicable in the present case. This is because we are dealing with a very viscous outer

fluid, so the oscillations are damped out in one or two periods. It is well-known that the

theory discussed in the previous paragraph is not applicable in the strict sense to the initial

value problem, since the initial condition is not in the solution space. Nevertheless, as

demonstrated by Prosperetti [31], applying the linearised theory starting from the end of

the first period of oscillation gives good results. Unfortunately, after the first period, the

oscillations we consider here are all but extinguished. We thus find ourselves in the situation

where this theory cannot assist our understanding of the problem at hand. See also figure 13

in the appendix, which shows that the oscillation frequency observed in the simulations here

is significantly lower than that obtained with the formula in [28, p. 475].

Another seminal approach from a different point of view is the study by Taylor [13] who

did a theoretical analysis of the electrohydrodynamic stretching of a clean conducting drop

in a perfect dielectric medium. His result predicts the asymptotic drop deformation as a

function of the electric field strength, radius, permittivity of the oil and interfacial tension,

all combined into a dimensionless electric field strength ζ. This is equivalent to the square

root of the electric capillary number, ζ =
√
CaE, where ζ is defined as

ζ = Ē
√
εε0D/γ, (9)

and Ē is the uniform electric field that is present far away from the drop. Note that papers

from that era work in electrostatic units, where the numerical value of ε0 is 1, so it is

frequently omitted from their formulae. Note also that some authors use the drop radius

rather than the diameter here.

We may compare ζ2 to the capillary number computed from the terminal velocity, Ca =

η2uT/γ, giving us an impression of the relative importance of the external flow versus the

electric field as far as the drop shape is concerned. Using numbers relevant to the situation at

hand, we estimate a typical value of the hydrodynamic capillary number to be Ca ≈ 0.007,

while a typical value for the electric capillary number is ζ2 ≈ 0.25, indicating that the

electric field has a much greater influence on the drop shape than the deformation due to

the external flow. One may thus neglect the effects of the external flow when considering

the drop deformations.

In his analysis of drop deformation, Taylor considered a clean drop at rest in a medium
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Figure 1: The static deformation predicted by Taylor’s theory.

with the permittivity of free space, approximated the drop shape at equilibrium as ellipsoidal,

and assumed that the value of the difference between interfacial tension and electrical stress

at the interface is equal at the poles and at the equator. He then derived an implicit formula

which predicts the drop elongation a/b as a function of ζ. In this context, a and b denote

the semi-major and semi-minor axis of the drop, respectively, see also figure 3b in the next

section.

That implicit formula may be given e.g. as the zero level of the function f(ζ, a/b),

f
(
ζ,
a

b

)
= 2

(a
b

)−4/3√
2−

(a
b

)−1
−
(a
b

)−3
I − ζ, (10)

I =
1

2
e−3 ln

(
1 + e

1− e

)
− e−2, (11)

e =
√

1− (a/b)−2. (12)

This predicts a limit to the static deformation at a/b ≈ 1.86 and ζ ≈ 0.65; at higher applied

field strengths the drop does not reach an equilibrium state, but is torn apart. Taylor showed

that this limit agrees with experiments done with drops in air. The theoretical result by

Taylor is shown in figure 1 together with a horizontal line at a/b = 1.86 and a vertical line

at ζ = 0.6485.

For the numerical model, including the effects of an electric field on the drop requires

knowledge of this field inside the simulation domain. Even though we consider a conducting
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drop in a dielectric medium, we may model the situation as two dielectric media with a very

high permittivity ratio [6]. We use here a numerical value of 1000 for the relative permittivity

of the conducting liquid; this value is not important as long as it is much larger than that

of the dielectric liquid. The model validity is confirmed by the fact that the calculated

field lines inside the drop are indeed straight, parallel lines in the direction normal to the

electrodes, as seen in figure 4b.

To obtain the electric field, we may then proceed by solving a Laplace equation for the

electric potential Ψ, with the applied voltage as boundary conditions at the top and bottom

of the domain, and ∇Ψ · n = 0 at the vertical boundaries of the domain. To wit:

∇ · (εε0∇Ψ) = 0, (13)

where ε is the relative permittivity and ε0 is the permittivity in vacuum. Note that we keep

ε inside the divergence operator here, even though it is piecewise constant, since this is how

the discontinuity is handled by the numerical method.

The Maxwell stress tensor,
↔
M , can then be calculated from the electric field E = −∇Ψ.

Neglecting the magnetic field, which is not of interest here, we have

↔
M = εε0

(
EE − 1

2
(E ·E)I

↔)
. (14)

This stress gives a spatially varying contribution to e.g. the jump in the pressure across the

interface, which will distort a drop from its spherical shape.

All in all, the formulation presented here takes into account the effects of interfacial

tension γ, the applied electric field, and the Marangoni effect that arises from an interfacial-

tension gradient. The jumps across the drop interface in various properties are then given

as [10, 34]

JuK = 0, (15)

JpK = 2JηKn ·∇u · n + n · J↔MK · n− γκ, (16)

JΨK = 0, (17)

Jη∇uK = JηK
(

(n ·∇u · n)nn + (n ·∇u · t)nt

− (n ·∇u · t)tn + (t ·∇u · t)tt
)

(18)

− (t ·∇ιγ)tn,
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In these expressions, n and t are the normal and tangent unit vectors to the interface.

Expressions such as ∇u and nn denote rank-two tensors formed by the outer product, so

e.g. ∇u ·n denotes such a tensor acting on a vector. We use the convention that a normal

vector on a drop points towards the external fluid, and that the jump J−K is the difference

between the external and the internal properties, e.g. JηK = η2 − η1. Note that these

expressions have been written in a form which results in faster computer code, see [35, p.

14] for details. The interface is denoted by ι here, so ∇ι is the gradient along the interface.

For the sake of completeness, we mention that an additional term −(t · J↔MK ·n) contributes

to equation (18) when the fluids are not perfect dielectrics, but rather leaky dielectrics. This

is considered e.g. in [36, 37], and gives an electric contribution to the tangential force at the

interface.

III. METHODS

A. Experimental methods

Experiments were performed with brine drops (3.36 wt% NaCl added to Milli-Q purified

water) immersed in Marcol 52 oil (ExxonMobil), which is a purified and hydrogenated

hydrocarbon oil with very low content of surface-active components. Span 80 non-ionic

surfactant (Sigma-Aldrich) was added. The densities were measured with an Anton Paar

DMA 5000 density meter. The viscosity of the oil was measured with an Anton Paar MCR

102 rheometer. Tabulated values from White [38] were used for brine viscosity. Experiments

were done with temperature control at 21.5°C, where viscosity and density of water were

1.03 mPa·s and 1023.6 kg/m3, respectively, and those of the oil were 12.4 mPa·s and 832.3

kg/m3, respectively. The relative permittivity of Marcol 52 was taken to be 2.13, as per the

data sheet supplied by the manufacturer.

Interfacial tension was measured with a SIGMA 703D tensiometer with a DuNuoy ring,

for different Span 80-concentrations, with selected values shown in table I. All data points

are given in the supplementary information. Here wt% means weight percent. From these

measurements, the critical micelle concentration was determined to be 0.020 wt%, and we

limit ourselves to concentrations below this value.

β and aL in equation (5) were determined by fitting this equation to the experimental
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wt% Span 80 Interfacial tension [mN/m]

0.030 10.0

0.020 10.1

0.015 13.9

0.010 18.8

0.001 29.4

Table I: Interfacial tension between water and oil for different surfactant concentrations
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Figure 2: Experimental measurements of interfacial tension (points) and the Langmuir

EoS (7) fitted to these (line). Note that the interfacial tension is constant above 0.02 wt%,

indicating that this is the CMC.

measurements using non-linear least-squares. See the plot of the data points and the fitted

equation in figure 2; note in particular that the interfacial tension is constant above 0.02

wt%, confirming that this is the critical micelle concentration (CMC). It is somewhat difficult

to tell whether the point at 0.02 wt% is a little above or a little below the CMC; thus we

have tested the sensitivity of the curve fit to this point by also computing a fit with this
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point omitted. At the highest concentration studied here, 0.016 wt%, this change in the

curve fit produced a change in the interfacial tension predicted by the EoS of 0.1 mN/m, i.e.

less than 1% and within the experimental uncertainty. Accordincly, the small uncertainty

about the exact value of the CMC has no influence on the results presented in this paper.

In addition to fitting the EoS, the interfacial area available to each surfactant molecule at

the critical micelle concentration, ACMC, was estimated from the slope of the Gibbs isotherm

as it approaches the CMC [39]. For further details, see the supplementary information which

contains the script used for fitting and the experimental data. When comparing with the

results by Peltonen and Yliruusi [40], we find good agreement for the values of ACMC and the

critical micelle concentration (CMC) obtained here, 30.5 Å2 and 0.020 wt%, respectively.

The deformation of the water drops was observed as they fell in the 15 mm gap between

an upper and a lower horizontal metal electrode. Drops were produced from a screw-in

syringe connected to a glass capillary tube made hydrophobic by a silane coating; this tube

protruded through a small hole in the upper electrode. A series of square voltages with

different amplitudes was applied to the lower electrode, creating an electric field E that

distorted the drop. The voltage pulse shape was generated in MATLAB and sent over a

serial connection to a Stanford Research DS340 signal generator connected to a TREK 2020B

high voltage amplifier. The voltage pulse shapes were either rising or falling, and included

both positive and negative pulses; i.e. the pulses were bipolar. The length of each pulse

was 25 ms, with a 25 ms pause between pulses. The amplitudes were defined as fractions

of a maximum amplitude V0, e.g. V0 = 10 kV and fractions 2/4, 3/4 and 4/4 times V0,

giving pulses that look like or . Typically 6 different amplitudes

(fractions) were used. This application of different voltages resulting in different stretchings

of the same drop is the only practical way of studying the effect of varying the electric field

strength at constant drop radius. It also allows us to study possible hysteresis effects of the

stretching on the surfactant on the interface. Such effects have been reported previously,

e.g. in [40] for the Span 80 surfactant used here.

When applying several voltage pulses to the electrodes it is desirable to keep the drop in

the camera field-of-view for as long as possible. To achieve this, a moving stage setup was

used, comprised of a Newport (M-)IMS-V linear stage to move the test cell containing the

fluid system upwards a constant velocity, and a Newport XPS Series Motion Controller to

manually match the velocity of the moving stage to the terminal velocity of the drop.
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(a) Experimental setup. (b) Captured image of drop. (c) 3D rendering of setup.

Figure 3: Schematic showing a side view of the experimental setup, an example of a

captured drop image shown with the major and minor axes a and b superimposed, and a

3D rendering with a simulated droplet and electric field shown between the electrodes. The

drop size is exaggerated in both (a) and (c).

A side view of the experimental setup is shown in figure 3a, and a 3D rendering is shown

in figure 3c. To avoid unnecessary clutter, the temperature control bath, optical setup and

the linear stage are omitted in both of these figures, and in figure 3c the cuvette containing

oil and the syringe mechanism are also omitted. The drop size relative to the setup is

exaggerated in both figures.

To record high-speed movies of a falling drop, a Cheetah CL near-infrared camera was

used with an Infinity KS2 long-range microscope lens, and a collimated light source was

placed on the opposite side of the cuvette. The camera recorded a frame of 640× 512 pixels

at 1730 frames per second. The high-speed movies were recorded in the Streams 7 software,

together with the voltage pulse from the signal generator and the velocity and position

of the moving stage. These electrical signals were captured using a National Instruments

PCI-6052E DAQ board.

To determine the drop deformations from the high-speed images, the Spotlight image

analysis software was used. With this software, the dimensions of the major axis a and

minor axis b of a deformed drop can be determined, as seen in figure 3b, where the axes
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are superimposed on an image of an elongated drop. This then gives the ratio a/b as a

measure of the deformation; note that this measure does not make any assumptions about

the drop shape. See also the supplemental material in movie 1 which shows a video of a

drop deformation cycle together with an animated plot of a/b as a function of time.

The various uncertainties that affected the measurement of a/b were analysed in a fashion

similar to that used in [41] and Gaussian error propagation was then used to compute the

uncertainty in a/b [42]. This uncertainty was found to be independent of a/b, but dependent

on the initial drop radius, which is sensible. The relative error in a/b was largest for the

smallest drops under consideration, at 3.4%, and smallest for the largest drops considered,

at 2.0%.

The experimental procedure for studying the drop deformation in an electric field was

comprised of the following steps:

1. Move the test cell using the linear stage such that the tip of the needle used for generating

droplets is in the top of the camera’s field-of-view. Use the screw-in plunger to create a

droplet of the desired size.

2. Wait for 1 minute to allow the equilibration of surfactants at the drop interface. Arm

the camera such that it starts recording 10 ms before the first voltage pulse is applied.

3. Use an electromagnet to jerk the glass needle upwards, releasing the drop.

4. As the drop falls through the view of the camera, adjust the upwards velocity of the

moving stage to match the terminal velocity of the drop, keeping the drop in the centre of

the image. The drop falls for approx. 0.5 seconds before the voltage pulse train is applied,

allowing ample time for any initial oscillations to be damped away.

5. Trigger the voltage pulse train. The camera is also controlled by this trigger and records

a movie of the drop being deformed.

6. Post-process the recorded movie to extract a, b as functions of time.

A remark is in order with regards to the waiting time for equilibration of surfactants at

the drop. As stated, a waiting time of one minute is used in these studies. If we are to

compare this with some intrinsic time scale, we may consider τD = Γ2/(Λ2DB) [43], with Γ

taken at some surfactant concentration Λ, say the highest used in these experiments (0.016

wt%). The value of DB, the bulk diffusion coefficient of Span 80 in Marcol 52 oil, is not

known. Since the Span 80 molecule is not much larger than the alkanes in the oil, we may
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use as a rough estimate the self-diffusion coefficient of the tail of the Span 80 molecule,

namely oleic acid, which gives DB ≈ 10−10 m2/s [44]; of the same order of magnitude as

e.g. the diffusion coefficient of C12E6 surfactant in water [45]. This gives a time scale of

τD ≈ 3 · 105 s, i.e. 3.5 days. It would be impractical to wait for such a long time between

each drop was produced.

Fortunately, the transport of surfactants to the interface is greatly accelerated once the

drop starts falling, since the velocity boundary layer decreases the length of the diffusion

boundary layer. Note that the length of the diffusion boundary layer as estimated above

is l = Γ/Λ = 20µm, which is comparable to the drop radius of 250–500 µm. To quantify

the increase in surfactant transport to the interface, we may consider the Schmidt number,

i.e. the ratio between the viscous and the molecular diffusion rates, which in this system is

Sc = 2 · 105. This indicates that the combination of the one minute waiting time and the

subsequent falling time of 0.5 s between drop release and the start of the first deformation

should be sufficient to ensure the interfacial surfactant concentration is equilibrated before

the deformations commence.

B. Simulation and numerical methods

An in-house code was used to solve the Navier-Stokes equations (1) and (2) numerically.

The simulations reported here are done in axisymmetry. See Teigen et al. [10], Teigen and

Munkejord [36, 46] for validation of the methods and implementation used here.

The equations are discretised on a structured, uniform, staggered grid using the finite-

difference method. For the convective terms, the fifth-order WENO scheme [47, 48] is

employed. For the other terms a standard second-order central-difference scheme is used.

The pressure and velocity fields are coupled using the classical projection method due to

Chorin [49], which gives a Poisson equation for the pressure. This Poisson equation is solved

here using the BoomerAMG (Algebraic MultiGrid) preconditioner [50] and the BiCGStab

(Bi-Conjugate Gradient Stabilised) iterative solver [51]; we use the Hypre [52, 53] and PETSc

[54] libraries for these methods.

The equations are then integrated in time using an explicit Runge-Kutta method which

has the strong stability preserving (SSP) property, namely SSPRK(2,2) in the terminology

of Gottlieb et al. [55]. Although this method is second order in time, the overall scheme
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is only first order in time due to the irreducible splitting error from the Chorin projection

method [see e.g. 56]. The reason for still using a second-order Runge-Kutta method is the

enlarged stability domain as compared to the forward Euler method. To sum up, the present

method is first-order in time and second-order in space. We are not aware of any explicit

second-order in time projection method for the incompressible Navier-Stokes equations. It is

only very recently that a feasible implicit scheme has been developed [57] for two-phase flow

simulations with the ghost-fluid method, allowing simulations with higher temporal order.

To capture the position of the interface between the two fluids, the level-set method

[58, 59] is used with the high-order constrained reinitialisation method [60] and the velocity

extrapolation procedure [61]. With the interface position known, the ghost-fluid method

[62, 63] is used to enforce the jumps specified in equations (16) to (18) across the interface

in sharp fashion.

This formulation takes into account the effects of interfacial tension γ, the applied

electric field, and the Marangoni effect that arises from an interfacial tension gradient. The

surfactant concentration along the interface, ξ, is determined by solving the advection-

diffusion equation (8). The interfacial tension γ is then determined by the surfactant

concentration according to equation (7), using equation (6) with ξ in place of Λ.

There exists in the literature a large number of interface tracking and interface capturing

methods: front tracking [64], volume of fluid [65], level set [58], phase field [66] to name

but a few. Many of these methods have been applied to the study of electrohydrodynamic

deformation of conducting drops [67–70]. The combination used here of the level-set method

with the sharp interface handling of the ghost-fluid method is chosen because it is easy

to implement, has been extensively verified and validated in the literature (including by

ourselves using the present numerical code), and because it gives an accurate handling of

interfacial tension and the jumps in the density and viscosity across the interface.

IV. RESULTS

A. Parameter studies on drop deformation

As mentioned in the introduction, five distinct cases of drop deformation in the presence

of surfactants were studied in our previous paper [12], along with studies on the terminal

17



Diameter (µm) Electric field (V/mm) Span 80 concentr. (wt%) ζ (-)

Simulations (500, 700, 900) (300, 500, 700, 900) (0.0, 0.001, 0.005, 0.016) [0.15− 0.80]

Experiments [578− 902] [207− 747] (0.001, 0.005, 0.016) [0.15− 0.65]

Table II: Ranges for parameters used.

velocity. Detailed comparisons between the experimental results and the simulation results

are given there. In light of those results, an experimental and a computational parameter

study were set up to better understand the effects of surfactants. The aim of the present

study is to give a sufficient coverage of the parameter space, and to leverage the combination

of simulations and experiments to give a deeper insight into the observed phenomena. In

particular we study the initial drop oscillations when the pulse is applied, and the effect the

Marangoni force has on the damping of these oscillations. To the best of our knowledge

this has not been studied before. The present study was constructed such that we take

advantage of the benefits that the computational studies have to offer, namely full control

over all parameters and a detailed view of the flow field and surfactant distribution, while

at the same time keeping the results directly comparable with the experiments. The data

generated by this study are available in the supplementary information.

For the simulations, a combination of three drop radii, four electric field strengths and

four surfactant concentrations was chosen, representative of the parameter ranges used in the

experiments. The dimensionless field strength ζ was then computed for each combination,

and additional combinations were added to ensure a good coverage of the ζ values. The

values are summarised in table II.

From the experimental point of view, the surfactant concentration is also well-defined at

three values (the clean system cannot be reached). The drop radius, on the other hand,

is a quantity most difficult to control from one drop to the next, so there is no systematic

variation in it. Finally the applied electric field strength is defined from a base value and

several fractions of this value, e.g. (2/6, 3/6, 4/6, 5/6, 6/6). This is thus more controlled

than the radii. But the base value was varied for different interfacial-tension values, due to

a desire to avoid stretching drops beyond their stability limit, as drop destruction necessitates

stopping the experiment and cleaning the test cell. The values used in experiments are also

summarised in table II.
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The results of the simulation-based parameter study are presented in the next section,

and the results of the experiment-based parameter study are presented in the subsequent

section. Note that the simulations are all done independently, while the experiments are

done with several applications of fields of different strength on the same drop. Thus the

simulations neglect any hysteresis effects that arise from the hydrodynamics, e.g. if the

flow caused by the previous deformation is still significant when the next one commences.

Also, since the scaling analysis of the capillary numbers presented in section II indicates

that gravity (i.e. the external flow due to falling) is unimportant for the deformations, the

simulations are performed with zero gravity.

To confirm that these assumptions do not affect the result, at the end of the next section

we present results from a simulation with gravity and with an applied increasing voltage

pulse as used in the experiments, showing that neither the simplification of zero-gravity nor

that of independent deformations has a significant effect on the simulation results.

In the subsequent sections we show plots of the deformation a/b, as discussed in section II.

During the deformation of a drop, a/b starts as 1, then increases to a peak value, and finally

settles at some static value after some oscillations. In figure 4 we plot the time evolution

of a/b for one of the cases considered here, as an example. We also show a snapshot of the

pressure, velocity and electric fields after 2 ms, which is halfway to the peak deformation.

Note that the maximum time in this line plot is the same as the duration of a pulse, so

this plot indicates the relaxation towards the new equilibrium of a stretched drop. See also

the accompanying movie 1, where a plot like figure 4a from one experiment is shown side-

by-side with the high-speed footage of a drop. In our previous work [12] we show detailed

comparisons of such plots for experimental and simulation results.

Care has been taken to ensure an exact correspondence of shapes and sizes between all

plots in this paper, unless otherwise explicitly stated. Also, the range on the abscissa of the

critical electric field ζ is the same in all plots, except for figure 10 which shows comparison

between the simulation and experimental results.

B. Computational parameter study

In this section we report the results of parameter studies of the deformation as a function

of the dimensionless electric field strength. In total 44 cases were studied. The simulations
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(b) Snapshot of the deforming drop after 2

ms, halfway to the peak deformation. On

the right side, velocity vectors are shown for

every fifth grid point. On the left side,

electric field lines are shown, quadratically

spaced due to axisymmetry. The colour

indicates pressure.

Figure 4: Example case for ζ = 0.52, a 0.9 mm diameter drop is being deformed by a 700

V/mm field without any surfactants present. The field lines

were performed in axisymmetry, using a 241×482 grid covering a 3D × 6D domain. This

is about six times larger in each direction than what is shown in figure 4b. As discussed

previously we perform the simulations with zero gravity. The initial condition is then a

circular drop at rest, with an initial surfactant concentration given by the bulk concentration

according to equation (6). The electric field is switched on at t = 0; the time it takes in

experiments for the voltage to reach its constant value is much smaller than the ∼ 0.5 ms

it takes for the drop to start deforming. See also the supplemental material in movie 2,

where we show an animated 3D rendering produced from one of these simulations, namely

of the 900 µm diameter drop in 0.005 wt% Span 80 subjected to a 700 V/mm electric field,

corresponding to ζ = 0.58.

The results for the static deformation obtained in the simulations are shown in figure 5.

Here the static deformation for each case is shown as a point and compared with the line
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Figure 5: The deformation a/b found in simulations as a function of the dimensionless

electric field strength, ζ. Solid line: Taylor theory. Dashed line: static deformation limit.

Red points: drop breakup.

which is the Taylor result. The points are colour coded by the electric field. The shape of

the points indicates the surfactant concentration, and the size of the points indicates the

drop radius. The points shown in red were unstable, i.e. the drop stretched until breakup.

As is seen from figure 5, there are deviations from the Taylor theory, occurring mostly

for large values of the dimensionless field strength. It is also seen that the dimensionless

parameter ζ is still a good variable for describing the system in the presence of surfactants.

We note that previous simulations by Brazier-Smith [14] also find some slight disagreement

with the results by Taylor. This is discussed further in section V.

To further study the effects of increasing surfactant concentration on the oscillation of

drops, one may consider the analogy to a damped mass-spring system. In that case, it is more

convenient to work with a− b rather than a/b. This is because the former is directly related

to the magnitude c2 of the fundamental mode of the oscillation, given by the coefficient of the

second spherical harmonic, viz. a− b =
√

45/16π× c2. Here we assume that essentially only

the second spherical harmonic contributes to the oscillation. Note that under the typical
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assumptions in analytical work on drop oscillations, as used e.g. by Lamb [28, pp. 473-475],

the temporal evolution of c2 corresponds exactly to the evolution of a damped harmonic

oscillator.

Working then with a− b we define the overshoot Ω of an oscillation as

Ω =
(a− b)peak − (a− b)static

(a− b)static
. (19)

This is motivated again by analogy with the damped mass-spring system, where the

overshoot of the response to a step forcing has a one-to-one correspondence with the damping

ratio [71, p. 172]. This measure of the damping is more accurate here than the standard

method of fitting an exponential, since the observed oscillations have few discernible peaks.

Using the overshoot is less sensitive to uncertainties and can be used even when just one or

two peaks are discernible. Using the formula given in [71] we compute the damping ratio λ

as

λ =

√
ln(Ω)2

π2 + ln(Ω)2
. (20)

Note that it is more traditional in the context of drop oscillations to work with the damping

coefficient b = λω0, where ω0 is the natural frequency, as is done by Lamb [28, p. 474]

and by others. This is a bit curious, since their results predict a damping ratio which is

directly proportional to the Ohnesorge number, with a proportionality constant depending

on the number of the oscillation mode in question; taking e.g. the result by Lamb for the

fundamental oscillation mode of a free droplet we obtain λ = 10/
√

3 ×Oh. For the damping

coefficient b the relationship with Oh also includes ω0.

Even though it is known that the oscillations of a viscous drop immersed in a viscous

fluid cannot be described by a simple harmonic oscillator [31], we posit here that λ still

gives a good measure of how damped the drop oscillations are. Note that it follows from

the definition that λ < 1 corresponds to underdamped oscillations, and that lower values

indicate less damped oscillations. See figure 13 in Appendix A where we plot the oscillations

for two cases with the same value of ζ (and thus the same final deformation), but different

values of the damping ratio, together with the step responses of harmonic oscillators with

the same damping ratios. This plot indicates that λ is a useful measure of the damping.

Having defined this damping ratio λ, we show in figure 6 a plot of λ versus ζ where we

connect points with identical drop size and electric field strength. From this plot we may

surmise that adding small amounts of surfactant increases the damping significantly, but has
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Figure 6: The damping ratio of oscillations, λ, versus ζ. Dashed line: static deformation

limit.

a negligible effect on the static deformation (represented here by ζ), so the lines connecting

the 0 wt% and the 0.001 wt% results have steep slopes. On the other hand, adding larger

amounts of surfactant significantly increases the ζ by reducing γ, so the slopes are flatter.

This can be understood when considering that the surfactants play a dual role in the system:

adding Marangoni stresses and reducing interfacial tension. From these results we see that

when small amounts of surfactant are added, the increase in damping from Marangoni forces

is much more significant than the reduction in interfacial tension. When more surfactant

is added, the effect of reduced interfacial tension becomes pronounced. We discuss this in

more detail in section V, and illustrate the point with detailed plots from the numerical

simulations.

Finally, we report the results from a simulation where the drop was falling at terminal

velocity and subjected to a rising voltage pulse ( ) matching that used in the

experiments. A moving grid procedure was used to keep the falling drop in the centre of the

computational domain. The base value of the applied field was 500 kV/m, and the fractions

2/7 to 7/7 of this base value were used.
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The surfactant concentration was 0.016 wt% and the drop diameter was 900 µm. Based

on the terminal velocity uT , the capillary number is CaT = η2uT/γ = 0.004 and the surface

Péclet number is PeT = DuT/Dξ = 8.5. (Recall that D is the drop diameter while Dξ is

the surface diffusion coefficient.) For comparison, the electric capillary number is CaE ∈
[0.03, 0.3] for the increasing field strengths. We may define an electric surface Péclet number,

by analogy with the electric capillary number, as PeE = D2Ē2εε0/(η2Dξ), which gives in this

case PeE ∈ [24, 290]. All in all, these numbers suggest that the external flow is unimportant,

which is also what the simulation results indicate.

The simulation results are shown in figure 7. They are very similar to those seen in

figure 5, which confirms that neither the external flow nor the previous deformations have

a significant influence on the static deformation in the simulations. If the hysteresis effect

observed in the experiments described in the next section were caused by hydrodynamic

effects or by the surfactant transport, e.g. if the flow field was still influenced by the

previous deformation at the start of the next deformation, the hysteresis would also be

observed in these simulations. Since it is not, these can be ruled out as likely explanations

of the hysteresis.

C. Experimental parameter study

Several experiments were performed with different drop diameters, field strengths and

surfactant concentrations, as described in section IVA. In total, 295 drop deformations were

observed, with 8 to 12 observations of each drop and 4 to 6 different voltages applied with

both polarities.

The results for the static deformation obtained in the experiments are shown in figure 8

for rising voltage pulse trains ( ) and figure 9 for falling voltage pulse trains

( ). The use of point shapes and sizes match those used in figure 5 for the

simulations. In these two plots, the shaded region around the Taylor result indicates the

magnitude of the uncertainty in the optical observations, as described in section IIIA.

It is seen in these two figures that the experiments are also well-described by the parameter

ζ, and that the results lie fairly close to the Taylor theory, especially for low deformations.

Below ζ ∼ 0.4, the deviations are of the same magnitude as the uncertainty in the optical

measurements, while above this, they are significant. See also figures 14 and 15 in Appendix
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Figure 7: The static deformation a/b versus ζ for a 900 µm diameter drop at 0.016 wt%

surfactant concentration. This simulation is with a drop falling under gravity and

subjected to repeated deformations by a rising voltage pulse.

A where the relative deviation ∆ from the Taylor theory is plotted.

There is a profound difference seen between rising and falling pulse trains in these plots,

in that the deviation is positive for the latter, but both positive and negative for the former.

(Again, this is also clearly apparent in figures 14 and 15 in Appendix A.) Furthermore it is

seen that this difference occurs only for the highest concentration of surfactants.

Peltonen and Yliruusi [40] have reported similar hysteresis effects when repeatedly

stretching and compressing an interface between water and hexane with added Span 80,

using a Langmuir-Blodgett apparatus. When comparing figure 8 and figure 9 given here,

it is noted that for rising voltage pulses, the previous stretchings at small and intermediate

field strengths significantly affect the subsequent stretchings, giving a deviation from the

Taylor theory that has the opposite sign of that seen in all other cases. Note also that the

simulation results (figure 5) show positive deviations for all but one point.

The hypothesis in [40] is that earlier compressions disperse surfactants into the water

phase, but it is not readily apparent that this is the case here; if this were so, the large
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expansions and compressions of the interface that occur at the beginning of a falling voltage

pulse train should significantly affect the subsequent medium and small expansions, but this

is not observed.

For the sake of clarity, we remark that the hysteresis seen here is an entirely different

phenomenon from the hysteresis studied e.g. by Sherwood [72]. Sherwood considers the

hysteresis in the deformation a/b which arises from a finite permittivity ratio, but as is

apparent from his figure 2, the phenomenon he discusses requires deformations a/b � 10,

while our deformations are all a/b < 2. Thus the hysteresis phenomenon observed herein

cannot be attributed to a finite permittivity ratio.

Another interesting phenomenon seen in the numerical results is the effect of surfactant

concentration on the damping of oscillations, cf. figure 6. Naturally, it is interesting to

see if the experiments show a similar trend. Since the experimental results do not admit

the same direct comparison by holding two parameters identical while varying a third, the

electric field was binned into 5 intervals with limits at (200, 400, 500, 600, 700, 800) V/mm.

No experiments were done with electric fields below 200 or above 800 V/mm. We then

considered all results within such a bin and with a given surfactant concentration and joined

these into groups, amounting to averaging over the radius. This gave 5×3 = 15 groups. We

omit deformations where the difference between the maximum and the static deformation

was smaller than the optical resolution, i.e. we only consider observably underdamped

oscillations.

To create a plot like figure 6, the centre-of-mass of each group was computed, connecting

centre-of-mass points that represent groups with the same range of electric fields. This

corresponds to averaging over the drop radius. (See also figures 16 and 17 in the Appendix

for illustrations of these groups and their centres-of-mass.) Plotting this together with the

simulation results in figure 10, it is seen that a similar trend is found, in particular for the

slopes between the 0.001 and 0.005 wt% results. However, the absolute value of the damping

is lower

In this comparison, note that the circular points corresponding to zero surfactant can

only be shown for the simulation results, since the system is known to be contaminated even

when no Span 80 is added. Note also that in the plot of the simulation results, only those

drops with D ≥ 600µm are shown in order to reduce clutter.
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Figure 8: The deformation a/b found in experiments as a function of ζ for rising voltage

pulse trains. Shaded region: optical measurement uncertainty.

V. DISCUSSION

Several features of the results of these studies warrant further comment. First of all, we

observe stable solutions slightly beyond the limit predicted by Taylor. One could imagine

that this is caused by the effective increase in surface tension as the drop stretches and

the surfactant is spread out over a larger area. At the highest surfactant concentration

and the largest drop deformations this results in a decrease of about 2% in ζ, which is

sufficient to explain the deviation. However, for the lower surfactant concentrations the

effect is too small to account for the observed deviation. It is likely that this discrepancy is

caused by some of the approximations used by Taylor. Other authors have also pointed out

minor disagreements between their results and the Taylor theory. Brazier-Smith [14], using

numerical iterations to obtain pressure balance along the entire interface, found a difference

which is very similar to that found here.

As for the general agreement with the Taylor theory, it is apparent from the numerical

results that the main effect of surfactants on the static deformation is through the reduction
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Figure 9: The deformation a/b found in experiments as a function of ζ for falling voltage

pulse trains. Shaded region: optical measurement uncertainty.

in equilibrium surface tension. When this is taken into account in the calculation of ζ, the

results agree nicely with Taylor’s prediction, as shown in figure 5.

For the experimental results, however, there is a clear tendency for smaller deformations

than those predicted by the Taylor theory. One possibility is that this discrepancy is caused

by a form of interfacial elasticity which is not accounted for here, as discussed earlier.

As illustrated in figure 10, the effect of adding surfactant is two-fold. Small additions

increase the damping significantly, while the reduction in interfacial tension is small, so the

static deformation is not much affected. Conversely, adding larger amounts of surfactants

give a significant decrease in interfacial tension causing a larger deformation, while the

increase in damping is less significant. In order to explain this effect, we show in figure 11a

plots of the pressure field as well as the vector quantity γκn − 100 ×∇ιγ at the interface

for the four different surfactant concentrations considered here. This is for the 0.5 mm

diameter drop subjected to a 700 V/mm electric field. We scale the Marangoni force by 100

to accommodate the visualisation, since the curvature κ is very large for these small drops.

The important thing here is not the absolute value of this vector, but rather the comparison
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Figure 10: The damping ratio λ versus ζ, for the experimental values (top) and the

simulation results shown in figure 6 (bottom). The simulation results are only shown for

drops with D ≥ 600µm to avoid clutter.

between the four cases in the tangential and normal components. All plots are shown at the

same time, t = 1ms, which is a little less than halfway to the peak deformation. Around this

time, the Marangoni forces are at their largest, since these forces counteract the surfactant

maldistribution driving the concentration profile to be uniform at equilibrium. This time is

also convenient since the deformation of the drops is very similar at this point in time, while

they differ more at later times. Also shown in this plot is the flow field, and the surfactant

distribution along the interface in red colour going from the lowest (darkest) to the highest

(brightest) concentration along the interface in each case. The interfacial positions are very

similar at this early time, which in turn means that both the electric fields and the curvature

profiles are also very similar. However, note that the flow is stronger for the drop with the

highest surfactant concentration, consistent with the fact that this will be more deformed

than the other drops.

In all the three cases where surfactants are present, it is seen that the initial deformation

gives an increased surfactant concentration near the equator and a reduced concentration
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near the poles. The lowest and highest concentrations Γmin and Γmax for each case with

surfactant present are plotted in figure 12 as functions of time. For comparison, the

maximum possible interfacial concentration given by fitting the Langmuir EoS equation (7)

to the experimental data is 1.31 ×10−4 mol/m2, and all values are well below this.

In figure 11b we show the two components of the vector γκn − 100 ·∇ιγ plotted as a

function of the vertical coordinate y, covering here one quadrant of the drop. Inspecting

the plot, it is seen that the Marangoni forces increase significantly at the lower surfactant

concentrations, while the decrease in interfacial tension is significant mainly for the highest

surfactant concentration. These plots confirm the hypothesis put forward to explain the

influence of surfactants on the damping which is seen in figure 6.

When it comes to the hysteresis, we have no clear explanation of the observed phenomena.

It is evident from the results shown in figure 7 that the simulations cannot explain

the hysteresis, even when taking into account the external flow, the history of previous

deformations and the Marangoni effect. There is a possibility that incorporating the elastic

effects caused by the surfactant could help explain the hysteresis, but this does not seem to be

likely a priori, since the forces from the elasticity are expected to decrease the deformation,

not increase it. Our results do not appear to support the hypothesis in [40], where it

is proposed that the hysteresis can be explained by the previous deformations causing

surfactants to detach into the water phase. If this were the case, we should observe the

hysteresis also for falling voltage pulses, and we do not. If one may speculate, it could be

that the small deformations caused by the initial part of a rising pulse train can cause a

phase transition in the monolayer of surfactants at the interface. Such phenomena have

been reported in the literature [25].

VI. CONCLUDING REMARKS

We have performed detailed studies of the effect of surfactants on the electrohydro-

dynamic stretching of water drops in oil at various drop sizes and electric field strengths,

covering the full range of dimensionless electric field ζ from zero to drop breakup. We have

compared our results to the classic result by Taylor, which assumes no surfactants present

at the drop interface, and predicts the deformation as a function of ζ.

We find that when the equilibrium interfacial tension caused by the surfactant is used in
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(a) Comparison of the pressure field

(blue/green), the vector γκn− 100∇ιγ

(black vectors), the flow field (sky-blue

vectors) and the surfactant concentration at

the interface (red to black corresponding to

the variation shown in figure 12, black for 0

wt% corresponding to Γ = 0). The

quadrants show the four different bulk

concentrations considered in this paper.
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Figure 11: The effect of surfactant concentration on normal and tangential interfacial

stress. The plots are for the 0.5 mm diameter drop subjected to a 700 V/mm electric field,

at t = 1 ms corresponding to the blue vertical line in figure 12. The values of ζ are 0.39,

0.40, 0.44 and 0.59 in order of increasing surfactant concentration.

the expression for ζ, the system remains well-described by this dimensionless quantity, as

expected from figure 12 which shows that the surfactant maldistribution quickly becomes

small. For field strengths below ζ ∼ 0.4, i.e. deformations below a/b ∼ 1.12, we have

31



0

2 × 10
−5

4 × 10
−5

6 × 10
−5

0 5 10 15

time [ms]

C
o

n
c
e

n
tr

a
ti
o

n
 [

m
o

l/
m

²]

wt% Span

0.016

0.005

0.001

Figure 12: The time evolution of the minimum and maximum interfacial surfactant

concentration, shown as the lower and upper edges of shaded bands, for the three cases

with surfactants shown in figure 11. The vertical blue line shows the instant at which

figure 11 is plotted. Note that all values are well below Γ∞ = 1.31× 10−4 mol/m2, i.e.

within the range of validity of the surfactant EoS.

found only negligible deviations from the Taylor theory when surfactants are added. For

field strengths above this we have reported significant deviations of the observed drop

deformations, as well as an ability to go slightly beyond the critical stability limit, ζ ∼ 0.65,

predicted by the Taylor theory without drops breaking up. The deviations from the Taylor

theory are larger for experimental than for the simulation results, which could be explained

by the interfacial elasticity caused by the surfactant, an effect which is not taken into account

in the simulations.

We have shown both by simulations and experiments that the addition of surfactants

damps the oscillations induced by a suddenly applied electric field, an effect which may be

attributed to the Marangoni effect that arises in the presence of interfacial-tension gradients.

We have studied the effects of the surfactant concentration on the damping of oscillations,

and found that low concentrations increase the damping significantly while having little

effect on the static deformation. On the other hand, the difference between low and high
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surfactant concentrations lies mainly in the change of equilibrium surface tension, which

affects the static deformation.

Finally we have observed in our experiments a significant hysteresis effect when repeatedly

stretching drops at high surfactant concentrations. But these effects are only seen for the

case where the applied deformations are first small and then increased, not in the opposite

case when the deformations are first large and then decreased. We have investigated whether

this effect can be explained just by the hydrodynamics and surfactant transport, and have

found this not to be the case. One may speculate that the small initial deformations give the

surfactant heads enough room to reorient into an energetically more favorable state, thus

making the interface more pliable.

The results presented here add to our understanding of the effects of surfactants on the

electrohydrodynamic stretching of conducting drops. But there still remain open avenues of

research in this field, in particular on the hysteresis effects. Future work may also consider

the interfacial elasticity, to see how this affects the agreement between simulations and

experiments, and one may also consider extending the analytical expression by Taylor to

include the elasticity.
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APPENDIX: INTERMEDIATE PLOTS

In this appendix we present several plots that further illustrate the steps in the analysis

and discussion in the main text. Even more plots are shown in the supplementary

information, along with the full data set and the scripts for analysis; see Appendix B for

details.

We show one plot in figure 13 which illustrates that the damping ratio as computed

from the overshoot is indeed a sensible measure of the damping. Here we show a − b

rather than a/b, since it is only for a − b that we may compare directly with the damped

harmonic oscillator response. In this figure it is seen that the case with a lower damping

ratio has more pronounced oscillations. It is also seen that the responses are qualitatively

different from the step responses of damped harmonic oscillators. The frequency used for

the harmonic oscillator responses are those from the formula given e.g. by Lamb [28, p.

475 eq. 10], illustrating that this expression does not hold here. This is as expected, since

that expression is based on several assumptions which are not true in the present case, such

as the fluids being weakly viscous. But even if the frequency is altered to make the curves

correspond e.g. for the first peak, the curves still do not agree. This is again as expected

[31]. Interestingly, however, the time it takes for the oscillations to be damped away is very

similar.

Two plots are presented in figures 14 and 15 showing the same results as in figures 8

and 9 save that the relative deviation from the Taylor theory in the static deformation a/b,

∆ = (a/bTaylor−a/bExp)/a/bTaylor, is plotted. These two figures serve to further illustrate the

point that rising pulse trains at the largest surfactant concentration exhibit a significantly

different effect than all other observations, namely that the deviation as defined above has

the opposite sign.

Two plots are shown in figures 16 and 17 in order to illustrate the analysis that produced

the plots in figure 10. First, figure 16 shows the overshoot Ω plotted versus ζ for all

experimental observations. The points are sorted into 15 groups arising from the combination

of the three different surfactant concentrations, and binning the electric field into five groups,

with limits at (200,400,500,600,700,800). We average over the radius. The coloured regions

in the plot show areas with a 75% probability of finding the points in the different groups.

The points in this plot have been shrunk so as to facilitate the inspection. It is seen that
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the damping ratio. The dashed lines show the step response of a damped harmonic

oscillator with the same damping ratio as computed from the overshoot of the simulation

results, and with the natural frequency computed from the formula in [28, p. 475].

the binning gives a good representation of the variations in the data.

The second plot, in figure 17, shows the coloured regions in the first plot together with

the centre-of-mass of each region, connecting groups with the same radius and electric

field strength. From this we can compute the damping for each point and proceed with

constructing figure 10.

The data produced by the parameter studies in this paper are permanently stored at

Figshare, http://dx.doi.org/10.6084/m9.figshare.1254343 (note to the reviewers: this

link is not yet public, you may instead use the private link http://figshare.com/s/

e27d778e771411e4b1b206ec4b8d1f61) together with an R Markdown document that uses

the ggplot2 package to construct the majority of the plots in this paper. This means most

of the plots in this paper are fully reproducible. The data files are in the CSV format, so

they may be opened in any plotting or analysis software. Figures not reproduced by the

above document are figures 3, 4, 11a and 13. The line plots in figures 4a and 13 are produced

with gnuplot. The detailed plots of simulation results in figures 4b and 11a are produced
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Figure 14: The deviation from the Taylor theory in a/b seen in experiments as a function

of the dimensionless electric field strength, ζ, for rising voltage pulse trains. Shaded

region: optical measurement uncertainty.

with Tecplot 360 EX. The 3D renderings in figure 3c and in movie 2 are generated using

Paraview and Blender.
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Figure 15: The deviation from the Taylor theory in a/b seen in experiments as a function

of the dimensionless electric field strength, ζ, for falling voltage pulse trains. Shaded

region: optical measurement uncertainty.
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Figure 16: The overshoot Ω observed in experiments as a function of the dimensionless

electric field strength, ζ. The points are binned based on the electric field, and groups with

these bins for different surfactant concentrations are computed. The coloured regions

indicate the areas where there is a >75% probability of finding points in the various

groups. The points in this plot have been shrunk and the sizes cannot be compared with

other plots.
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Figure 17: The overshoot Ω observed in experiments as a function of the dimensionless

electric field strength, ζ, for the centre-of-mass of the groups shown in the previous plot.

Groups with the same range of electric fields are connected with lines. The colour of the

points indicates the mean value of the bins.
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The Hadamard-Rybczynski solution for the flow inside and around a small spherical falling
drop is well known. But experimental results for small spherical drops show that these fall
slower than predicted by the theory, and instead according to Stokes’ result for a falling
hard sphere. Increasing the drop size, a transition between these two extremes is found.
This phenomenon is due to surfactants present in the system, and study of this has led
to the stagnant-cap model. In the present work, we present an alternative model, called
the continuous-interface model. In contrast to previous studies using the stagnant-cap
model, we do not make use of a surfactant advection-diffusion equation at the interface.
Rather, we demonstrate that employing such an equation leads to inconsistent results.
Accounting instead for the Marangoni effect through the tangential boundary condition
at the interface, and considering also the normal interfacial stress, we are able to solve
the Stokes equation analytically for the falling drop with a varying interfacial tension.
Some of the solutions thus obtained, e.g. the hovering drop, violate conservation of energy
unless energy is provided directly to the interface, for instance by a thermal gradient. In
the absence of such an energy input, considering the energy budget of the drop, we show
that the terminal velocity is bounded by the Stokes and the Hadamard-Rybczynski results,
respectively. To proceed from this result, the continuous-interface model is obtained by
considering the balance of forces acting on surfactants at the interface. The resulting
expressions predict the functional form of the transition between the hard-sphere and
clean-drop results. The model also predicts that the critical radius, below which drops
fall like hard spheres, is directly proportional to the interfacial surfactant concentration,
and thus related to the bulk surfactant concentration through a Langmuir isotherm.
By analysing experimental results from the literature, we confirm this prediction, thus
providing strong arguments for the validity of the proposed model.

Key words: Intentionally blank

Nomenclature
C
−1/2
n n’th Gegenbauer polynomial. 1

D Diameter of a drop. m
E Energy consumption. W
EHS Energy consumption of a hard sphere. W
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EI Energy consumption in the interface. W
R Radius of a drop. m
U Free stream velocity. m/s
UHR Terminal velocity of a clean drop. m/s
UHS Terminal velocity of a hard sphere. m/s
β Relative viscosity(µ1/µ2). 1
δ (x) Dirac delta-function. 1/m
κ Interfacial curvature. 1/m
µ Dynamic viscosity of a fluid. Pa·s
ρ Density of a fluid. kg/m3

σ Interfacial tension. N/m
Pn n’th Legendre polynomial. 1
eK The specific kinetic energy. J/m3

θ Polar angle, measured from the z-axis. rad
T Cauchy stress tensor. N/m2

fb External acceleration. m/s2
fI Interfacial force. N
g Gravitational acceleration. m/s2
xI Material points on the interface. m
p0i Reference pressure in the i’th fluid phase. Pa
r Radial distance from droplet centre. m

1. Introduction
A single falling (or rising) drop is one of the simplest two-phase flow configurations, and

has been under scrutiny since the dawn of fluid mechanics research. Many of the early
studies were focused on drops impacting a pool of water, such as the works by Worthington
(1876) and by Reynolds (1875). Stokes (1851) was the first to give an analytical solution
for the flow at low Reynolds number (Re) around a solid sphere falling at terminal velocity.
Then Hadamard (1911) and Rybzynski (1911) independently published the analytical
solution for the flow inside and around a clean spherical drop falling at low Re. This has
later been extended by various authors to account for the presence of surfactants, under
various assumptions, as will be discussed in the following.

The case of liquids with surfactants may seem to be of lesser interest than the case of
clean fluids. But experimentally observed terminal velocities of small drops do not match
the Hadamard-Rybczynski result, but rather the Stokes result for the vast majority of
combinations of “clean” fluids, see e.g. the work by Nordlund (1913); Lebedev (1916);
Silvey (1916); Bond (1927); Bond & Newton (1928). In the latter work, a distinguished
jump was found in the terminal velocity, going from the Stokes result to the Hadamard-
Rybczynski result as the drop radius was increased. This has been confirmed in later
experiments, e.g. by Griffith (1962).

It is noteworthy that even Hadamard acknowledges the fact that his expression does not
agree with experimental results, in the closing words of his 1911 paper, where he refers to
disagreement between the expression and some (at that time) unpublished experimental
results:

La formule (III) présente, avec les résultats expérimentaux obtenus quant à
présent (et encore inédits), de notables divergences. Il semble donc, jusqu’á nouvel
ordre, que, dans les cas étudiés, les hypothèses classiques dont nous sommes parti
doivent être modifiées.
In fact there are extremely few published works that are able to obtain terminal
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velocities for very small drops matching the Hadamard-Rybczynski result, and then only
for quite singular fluid combinations. Examples include molten lead drops in liquid
beryllium trioxide (Volarovich & Leont’yeva 1939), or liquid mercury drops in highly
purified glycerine (Frumkin & Bagotskaya 1947). There are a few studies where the
authors have gone to great pains to purify more ordinary fluid systems, but these have
been limited to Re > 10, see e.g. Thorsen et al. (1968); Edge & Grant (1972). That one is
able to obtain agreement with the Hadamard-Rybczynski result for small drops only when
at least one of the fluids in question are chemically quite different from ordinary liquids,
supports the hypothesis that amphiphilic surfactants which occur naturally in even highly
purified organic liquids cause the aberrant behaviour typically observed.

In later years, attention towards surfactants and their role in systems both man-made
(e.g. in various foods) and natural (e.g. in our lungs) has increased considerably. As an
example, it is recognised that surfactants play a dominant role in the stability of emulsions
(Lucassen-Reynders 1996), whether this is stability is desired (as in mayonnaise) or not
(as in a water-crude oil emulsion). Surfactants act both to slow down the sedimentation
of drops, and to prevent the coalescence of drops in a separation process.

Several authors have considered the extension of the Hadamard-Rybczynski analytical
result to account for the presence of surfactants. Prominent examples include the work
by Frumkin & Levich (1947), Savic (1953)†, Davis & Acrivos (1966), Griffith (1962) and
Sadhal & Johnson (1983). This body of work incorporates both experimental data, in the
form of correlations, and exact results under various assumptions; see Clift et al. (1978,
Chapter II.D) for a review.
A prominent feature in these works is the assumption of a stagnant cap, i.e. that the

surfactant is accumulated at the top of a falling drop, such that the interface is immobile
in this region and free to move on the rest of the drop. This assumption is based on
photographic evidence gathered for larger drops. An example is the photograph in the
paper by Savic (1953), reproduced here in Figure 1, which is often taken as prima facie
evidence for the stagnant cap model.

In this paper, we will extend the derivation by Chang & Berg (1985) of the analytical
solution for the terminal velocity of a low Re circular drop with an arbitrary surfactant
(hence interfacial tension) distribution, taking here also the normal interfacial stresses
into account. We show that this leads to a plethora of solutions, some of which are clearly
unphysical (in the absence of an external energy input), such as a hovering drop. By
appealing to the conservation of energy, we show that the physically admissible terminal
velocities are bounded from below by the Stokes result for hard spheres, and from above
by the Hadamard-Rybczynski result.

We proceed to supplement this with a simple model for the forces acting on surfactant
molecules at the interface, giving an expression for the transition in terminal velocity
between the two extremal values. This expression depends on the properties of the
surfactant in question. From the theory we predict that for a given surfactant, the
critical radius Rc below which drops fall like hard spheres, should be proportional to
the interfacial surfactant concentration. To confirm this prediction we determine the
critical radii for the different bulk surfactant concentrations considered in the experiments
performed by Griffith (1962). We demonstrate that these critical radii, when plotted
against the bulk surfactant concentration, all collapse on a single Langmuir isotherm.
Since the Langmuir isotherm relates the interfacial and the bulk surfactant concentration,

† The report by Savic has not been available electronically in the past; however we were
informed by the National Research Council of Canada that the copyright on it has expired, and
have thus made a scanned copy available at http://archive.org/download/mt-22/savic.pdf
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Figure 1. From the flow visualisation studies by Savic. Image showing a falling water drop in
castor oil, with complete internal circulation, (a), and a stagnant cap, i.e. a downwards shift of
the internal flow pattern, (b). Reproduced from Savic (1953) with permission from the National
Research Council of Canada.

this confirms the prediction by the present model, which we call the continuous-interface
model.
We then proceed to discuss the existing versions of the stagnant-cap model and to

compare these with the model presented in this work. We demonstrate in detail that the
stagnant-cap model leads to paradoxical results. As an example, consider Equation 7-270
on page 497 in the book by Leal (2007), which reads

∇s · (usΓ)≈ 0 (1.1)

where Γ is the surfactant concentration. This equation follows from the assumption that
the surfactant is insoluble, and that the interfacial Péclet number is Pes = 2R|us|/Ds� 1
where us is the velocity at the interface and Ds is the interfacial diffusivity of the
surfactant. From this, the classic stagnant cap result is obtained, namely that the part
of the interface where the surfactant is found has us = 0 (this is the stagnant cap), and
the rest of the interface has Γ = 0. But if us = 0 in the stagnant cap region where the
surfactant is located, then Pes = 0 6� 1. Thus the result violates the initial assumption,
and so it is not self-consistent.

It is notable that the result obtained in this work for the interfacial tension distribution
along the drop interface has the same functional form as the result obtained in the
classic analysis e.g. by Levich (1962). But unlike Levich we do not assume the variation
in surfactant concentration to be small, and since the present work avoids the use of a
surfactant advection-diffusion equation on the interface, in contrast to previous approaches,
we are able to obtain simultaneous analytical solutions to the flow and the interfacial
tension distribution. This has been a major obstacle in previous work, as noted e.g. by
Leal (2007):

It is not generally possible to obtain analytic solutions of the resulting problem
because of the complexity of the surfactant transport phenomenon and the coupling
between surfactant transport and fluid motion.

In closing, we argue that the present model is more appropriate for interfacially active
agents which are amphiphilic molecules, while the stagnant-cap model may indeed remain
appropriate for dispersed particulates which adsorb at the interface and thus modify the
boundary conditions of the problem.
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2. Theoretical results
2.1. Governing equations

The flow field u of an incompressible viscous Newtonian fluid is governed by the Navier-
Stokes equations on the form

∇·u = 0, (2.1)
∂u
∂t

+ (u ·∇)u =−∇p
ρ

+ µ

ρ
∇2u + fb. (2.2)

Here p(x) is the pressure field and fb is some external acceleration, such as gravity. As it
stands, this system of equations is closed when fluid properties and initial and boundary
conditions are given.
The system can be extended to two fluids by specifying an interface that separates

fluid 1 with properties ρ1,µ1 from fluid 2 with properties ρ2,µ2, as well as two dynamic
interfacial relations related to the interfacial tension σ. For the case of a drop or bubble
we will mark the internal properties with 1 and the external properties with 2.

In order to have closure of Equation (2.2) with this extension, one also needs the
following interfacial relations for two-phase flow:

JuK =0, (2.3)
t · JTK ·n =− t ·∇σ, (2.4)
n · JTK ·n =κσ. (2.5)

Here the jump in a quantity across the interface is denoted by J-K, n is the normal and t
is the tangent vector, and T is the stress tensor. We choose the normal vector to point
out from a drop, and the jump is then given by e.g. JµK = µ2−µ1, i.e. the difference
between the bulk and the drop value. In the case of a spherical droplet with zero velocity
field, Equation (2.5) reduces to the Young-Laplace relation for the pressure difference
across an interface (∆p= 2σ/R). The Marangoni force comes in through Equation (2.4),
and the functional form of the coefficient of interfacial tension along the drop interface, σ,
is also needed for closure.
In this paper, the case of one spherical droplet falling in an unbounded domain

will be considered. In this case, it is natural to introduce the following characteristic
properties:

x∗ =R, u∗ = U, t∗ =R/U, p∗ = σ/R, (2.6)
giving the following non-dimensional Navier-Stokes equations:

∇·u = 0, (2.7)
∂u
∂t

+ (u ·∇)u = 1
Re

[
∇2u + Re

We (Eo f −∇p)
]
. (2.8)

Here, Re denotes the Reynolds number, We is the Weber number and Eo represents the
Eötvös number. The Reynolds number is given by Re = ρ2UR/µ2 as it is customary
to use the continuous fluid properties in the dimensionless groups. This dimensionless
number gives the ratio of inertial forces to viscous forces. The Weber number is given by
We = ρ2U2R/σ and gives the ratio between inertial forces and interfacial tension forces.
Lastly, the Eötvös number, Eo = ρ2gR2/σ, gives the ratio between the body forces and
the capillary forces.
In what follows, Re, We and Eo are all assumed to be small. The assumption of

Re� 1 and of steady state flow simplifies the Navier-Stokes equation to the steady Stokes
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equation:

∇2u + Re
We (Eo f −∇p) = 0. (2.9)

When We is small, We� 1, the forces due to interfacial tension determine the shape
of the interface through minimising the interfacial energy, which results in a spherical
drop. As demonstrated by the Hadamard-Rybczynski result, the spherical falling drop is
an exact solution to the Stokes equation. Furthermore, as demonstrated by Kojima et al.
(1984) and in subsequent work (see Stone (1994, Chapter 6) for a review), perturbations
away from the spherical shape for a drop falling at low Re will either relax back toward
the spherical shape, or form instabilities as elongated tails.

Lastly, the assumption of a small Eötvös number means that the body forces are small
compared to the capillary forces, and hence will not alter the spherical shape of the
droplet, but rather induce an acceleration on the droplet as a rigid body. Taylor & Acrivos
(1964) considered the deviation from a spherical shape and found that this is O(Re2), i.e.
very small when Re is small. It follows that the assumption of a spherical drop is not a
significant restriction, and so this assumption is ubiquitous in the literature on the falling
drop at low Re with surfactants (Savic 1953; Levich 1962; Griffith 1962; Davis & Acrivos
1966; Sadhal & Johnson 1983; Leal 2007).

2.2. Spherical droplet in a quiescent liquid
We will now consider a spherical droplet in a gravitational field surrounded by a quiescent
liquid with which the droplet is immiscible. For a perfectly clean interface, the stationary
solution is given by the Hadamard-Rybczynski solution. We proceed to let the interfacial
tension vary along the interface and investigate the solutions obtained when accounting for
the Marangoni force. We will follow in the steps of the analysis of Chang & Berg (1985),
but we will also include the interfacial conditions for normal stresses. The appropriate
boundary conditions are then given by Equations (2.3)–(2.5).
We employ a spherical coordinate system (r,θ,φ) fixed at the centre-of-mass of the

droplet, with polar angle θ measured from the positive z-axis. For convenience we will
at times refer to the axes of the Cartesian coordinate system, which has positive x-axis
corresponding to θ= π/2,φ= 0. The situation is cylindrically symmetric, so the azimuthal
angle φ is redundant. The normal vectors in the r and θ directions are denoted by er
and eθ, respectively. For a spherical drop, the normal (i.e. radial) velocity is zero at the
interface, and the velocity far away from the droplet is given by

u = U cos(θ)er−U sin(θ)eθ, (2.10)

where U is the uniform velocity at infinity. The general solution for the stream functions
outside and inside the droplet are found to be

Ψ2 =
∞∑

n=2

(
Anr

n+Bnr
1−n+Dnr

2+n+Enr
3−n)C−1/2

n , (2.11)

Ψ1 =
∞∑

n=2

(
Fnr

n+Gnr
1−n+Hnr

2+n+ Inr
3−n)C−1/2

n , (2.12)

where the velocity components are related to the stream function by

ur = 1
r2 sin(θ)

∂Ψ
∂θ

, (2.13)

uθ =− 1
r sin(θ)

∂Ψ
∂r

. (2.14)
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Requiring a uniform velocity at infinity gives

A2 =−U, (2.15)
An = 0 ∀n≥ 3, (2.16)
Dn = 0 ∀n≥ 2, (2.17)

and the assumption that the velocity is bounded at the origin gives

Gn = 0 ∀n≥ 2, (2.18)
In = 0 ∀n≥ 2. (2.19)

The vanishing normal velocity at the interface (r =R) gives

B2 =R3U −R2E2, (2.20)
Bn =−R2En ∀n≥ 3, (2.21)

Hn =−Fn
R2 ∀n≥ 2. (2.22)

The final kinematic boundary condition, the continuity of the velocity field across the
interface, gives

E2 = 3
2RU −RF2, (2.23)

En =−R2n−3Fn ∀n≥ 3. (2.24)

Both stream functions can now be expressed through one common set of
coefficients

Ψ2 =
(
−Ur2−

(
R3

2 U −R3F2

)
1
r

+
(

3
2RU −RF2

)
r

)
C
−1/2
2

+
∞∑

n=3

(
R2n−1

rn−1 −
R2n−3

rn−3

)
FnC

−1/2
n , (2.25)

Ψ1 =
∞∑

n=2

(
rn− r

n+2

R2

)
FnC

−1/2
n , (2.26)

where R is the radius of the droplet.
The dynamic interfacial conditions will now be used to determine the last coefficient and

the interfacial tension as a function of the polar angle. Since the Legendre polynomials
form a complete orthonormal basis for any periodic function, we may write

σ =
∞∑

n=0
σnPn (η) , (2.27)

where η = cos(θ) and Pn is the n’th Legendre polynomial. The normal stress condition
(Equation (2.5)) in spherical coordinates can be written as

J−pK+ 2Jµ ∂
∂r

(
1
r2
∂Ψ
∂η

)
K = 2

R
σ, (2.28)
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giving the following relations between Fn and σn

σ0 =R

2 (p01−p02) , (2.29)

σ1 =3
4µ2U −

1
2 (ρ1−ρ2)gR2 +

(
3
2µ2 + 3µ1

)
F2, (2.30)

σn =6Rn−2
(

µi
2(n−1) + µo

2n

)
Fn+1 ∀n≥ 2. (2.31)

Similarly, the shear stress condition (Equation (2.4)), containing the Marangoni force,
gives the relations

σ1 =− 3
2µ2U + 3(µ2 +µ1)F2, (2.32)

σn =2Rn−2 2n−1
n(n+ 1)−6 (µ1 +µ2)Fn+1 ∀n≥ 2. (2.33)

The simultaneous solution to Equations (2.29)–(2.31) and Equations (2.32)–(2.33) is given
by

σ0 =R

2 (p01−p02) , (2.34)

σ1 =9
2µ1 (U −UHS) + 1

2µ2 (6U −9UHS) , (2.35)

σn =0 ∀n≥ 2, (2.36)

F2 =3
2 (U −UHS) , (2.37)

Fn =0 ∀n≥ 3, (2.38)

where p0i is the reference pressure in the respective phases and

UHS = 2∆ρ|g|R2

9µ2
, (2.39)

where ∆ρ= (ρ1−ρ2), is the Stokes result for the terminal velocity of a hard sphere. By
insertion, one finds that the expression for σ1 is zero if U is replaced by the solution
given by Hadamard and Rybczynski, which is consistent with the assumption of two clean
fluids.

The resulting expressions for the stream functions can now be given by

Ψ1 (r,θ) = 3
4 (U −UHS)

(
r2− r4

R2

)
sin2 (θ) , (2.40)

Ψ2 (r,θ) = 1
2

(
−Ur2 + 3

2UHSRr+
(
U − 3

2UHS

)
R3

r

)
sin2 (θ) . (2.41)

One may also notice that the internal stream function is identically equal to zero if U
is replaced by UHS. This shows that if the droplet is falling with the same velocity as a
hard sphere, the Marangoni forces will balance the shear forces from the external fluid,
resulting in a uniform velocity inside the droplet equal to the droplet velocity.

The above analysis does not give any restrictions on the velocity of the droplet, other
than the demand of keeping the Reynolds number low. An exotic case would be that
of a hovering droplet, meaning that the Marangoni forces balance the forces induced
by gravity. In the absence of an energy input e.g. from a temperature gradient (Young
et al. 1959) or from an asymmetric release of surfactants (Masoud & Stone 2014), both of
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(a) The vector field u around the
hovering droplet.

(b) Signed magnitude of the velocity along the z-
and x-axis, θ = 0 and θ = π/2 respectively.

Figure 2. The velocity field in the case of a hovering drop (terminal velocity equal to zero).
In (a) the vector field is shown close to the drop. In (b) line plots of the velocity along the polar
(z-axis) and the azimuthal (x-axis) directions. It is seen that the velocity field decays to zero far
away from the drop. Note that the sharp kink in (b) is caused by the drop interface.

which are interesting systems in their own right, a hovering drop will clearly violate the
conservation of energy.

The expression for the stream function shows that there is a non-zero velocity field in
this case. This is obvious from the fact that in the presence of Marangoni forces, the
viscous stress tensor cannot be zero both inside and outside the droplet, and hence there
must be gradients in the velocity field. In Figure 2 we plot (a) the vectors of the velocity
field around the hovering drop and (b) the decay of the velocity field far away from the
drop. This case corresponds of course to U = 0, so the coordinate systems of the drop
and the laboratory coincide.
To proceed, one may consider the energy balance in this system, in order to pick

physically acceptable solutions. The energy equation for creeping flow can be written
as:

ėK = ∂

∂t

(
ρ
u2

2

)
= u · (∇·T) +ρu · fb +u · fI(r, l)δ (x−xI(r, l)) drdl (2.42)

=∇· (u ·T)−T : ∇u +ρu · fb +u ·
∫

Γ
fI(r, l)δ (x−xI(r, l)) drdl, (2.43)

where δ(x−xI) is a Dirac delta-function which is singular at the interface and r and l is
the parametrisation of the interface. The first term on the right of Equation (2.43) is the
energy flux passing through a fluid interface and the second term is the energy dissipation
in a fluid element. The third term is the energy provided by the body force term, while the
last term is the energy dissipated in the interface due to the action of the surfactants. For
the sake of brevity we will refer to this dissipation as “energy consumption” (or “energy
production” in the opposite case), even though energy can of course not be consumed or
produced.
We will now look at the energy balance of the interface itself. This is achieved

by integrating Equation (2.43) over a volume just enclosing the interface (see
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e

G

W

Figure 3. The integration domain Ω of thickness ε around the droplet interface Γ.

Figure 3):

0 =
∫

Ω
∇· (u ·T) dx−

∫

Ω
T : ∇udx +

∫

Ω
ρu · fbdx +

∫

Ω
u ·
∫

Γ
fIδ (x−xI) dS dx (2.44)

After applying Gauss’ theorem and letting ε approach zero (following Hansen (2005)),
one obtains

0 =−
∮

u2 ·T2 ·ndS
︸ ︷︷ ︸

E1

+
∮

u1 ·T1 ·ndS
︸ ︷︷ ︸

E2

+
∮

(u1 · t)(t ·∇σ) dS
︸ ︷︷ ︸

E3

, (2.45)

where we have labelled the terms for reference in Figure 4, and where

u ·T ·n =−pur +µ

(
2ur

∂ur
∂r

+uθ
∂uθ
∂r
− u

2
θ

r
+ uθ

r

∂ur
∂r

)
(2.46)

in spherical coordinates. We have also used an inward pointing normal vector so that
energy flux into the interface is positive. Since there is no net movement of the drop, the
integration over the droplet of the body force term in Equation (2.43) will be zero. Thus
Equation (2.45) shows that the energy consumption in the interface together with the
energy dissipation in the droplet at stationary conditions must equal the energy flux into
the droplet interface from the surrounding fluid side.
The three terms in Equation (2.45) are plotted individually in Figure 4. The figure

shows that there is an interval where the interface is consuming energy to keep the
constant velocity. Since we are not providing external energy to the interface, this is the
only allowed velocity interval. By setting the third term in Equation (2.45) to zero, a
second order equation for the velocity gives:

U = UHS ∨ U = 3 µ1 +µ2
3µ1 + 2µ2

UHS, (2.47)

as the bounding interval. So, the permissible solutions for a viscous sphere falling at
steady state in a gravitational field surrounded by a quiescent liquid under the influence
of Marangoni forces are bounded by the Stokes solution for the hard sphere and the
Hadamard-Rybczynski solution for clean liquids. Note again the contrast here with the
stagnant-cap model, where these two bounds are assumed a priori.

To compare this result directly to the stagnant-cap model, one may consider the terminal
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Figure 4. Energy consumption for the falling droplet. Negative values indicate energy
consumption, while positive values are energy production. The term E3 is the second term on
the right-hand side of Equation (2.45), viz. E3 =E1−E2, and we see clearly that the interval in
which the interface consumes energy is bounded by the Stokes and the Hadamard-Rybczynski
terminal velocities, cf. Equation (2.47). Outside these limits, the interface produces energy,
which is unphysical.

velocity of the droplet given as a function of the interfacial tension,

U =3(µ1 +µ2)
3µ1 + 2µ2

UHS−
2σ1

9µ1 + 6µ2
(2.48)

=UHR−
2σ1

9µ1 + 6µ2
, (2.49)

where the reader is reminded that the interfacial tension is σ = σ0−σ1 cos(θ) and that
UHR is the Hadamard-Rybczynski velocity. This gives the following expression for the
drag force on the droplet:

FD = 4πµ2UR

1 +β

[
3
2β+ 1 + σ1

3µ2U

]
, (2.50)

where β is the ratio of the inner and outer fluid viscosity. In comparison, the drag force
obtained with the stagnant cap model can be written as

FD = 4πµ2UR

1 +β

[
3
2β+ 1 +f1

(
f−1

2

(
1 +β

µ2U
σ∆

))]
, (2.51)

where σ∆ is the difference between the maximum and minimum value of interfacial tension
as defined in Sadhal & Johnson (1983), and f1 and f2 are trigonometric functions of the
cap angle (Hatanaka et al. 1988). Davis & Acrivos (1966) assumed that σ∆ was limited
by a constant value Π∗, making the argument in f−1

2 approach zero when the droplet
radius (hence the terminal velocity) increases. One then obtains the desired behaviour
with the drag force approaching that for clean droplets.

2.3. The continuous-interface model
Proceeding from this result, we will derive a mechanical interface model which links the
interfacial concentration of surfactants to the coefficient of interfacial tension. To achieve
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this we will use arguments from molecular considerations, and link the dynamic equations
directly to the Marangoni force.
It is assumed that the surfactant molecules are subjected to a force field, f , and that

their action on each other due to thermal fluctuations is governed by a Wiener process,
i.e. a force given by σFs where σ is a scaling parameter for the normalised stochastic
Wiener function Fs. It is customary (Giona et al. 2004) to model the fluid friction on
each molecule by a Stokesian force term, f = ψu, where ψ is a friction constant and u is
the velocity of the species surrounding the molecule in question. This leads to Brownian
motion, whose stochastic behaviour in the diffusion-controlled regime is governed by the
Langevin equation (Giona et al. 2004)

dx
dt

=− f
ψ
− σ

ψ
Fs. (2.52)

This equation corresponds to a Fokker-Plank equation which is the macroscopic advection
diffusion equation (Castiglione et al. 1999),

∂Γ
∂t

+∇· j =Ds∇2Γ, (2.53)

where Γ is the interfacial concentration of the species in question, Ds = 1/2(σ/ψ)2 is the
interfacial diffusion coefficient, and j = f/ψΓ is the flux. This advection-diffusion equation
is the typical starting point for modelling the transport of surfactants on the droplet
interface (Levich 1962; Leal 2007).
Considering this equation, inconsistency again arises. In the situation where the

surfactants create a gradient in the conjuration, causing the Marangoni force to retard
the droplet to the Stokes terminal velocity, the hydrodynamic equations show that the
interfacial velocity of the liquid is zero (using a coordinate system fixed to the droplet
centre-of-mass). Inserting a zero velocity into the advection diffusion equation, the
stationary solution has to be constant. That is, the concentration of surfactants is uniform
over the droplet, giving a uniform coefficient of interfacial tension, and hence contradicting
the assumption of a gradient in interfacial tension.

The preceding outline of the derivation of the transport equation identifies the origin of
this inconsistency. The prediction of uniform surfactant concentration at zero interfacial
velocity by the advection-diffusion equation can be traced back to the assumption of a
Stokesian interaction force between the surfactants and the surrounding liquid, since this
clearly leads to a vanishing interaction force when the surrounding liquid velocity is reduced
to zero. It should be noted here that the assumption of a Stokesian interaction force is
necessary in order to obtain an advection-diffusion equation. If the interactions are not
described by such a force, one cannot obtain an advection-diffusion equation.

This leads us to conclude that the surfactant transport cannot be modelled via a diffusion-
advection equation based on the interfacial velocity. However, since the macroscopic
equations demand a continuity in the velocity field across the interface, it is natural to
demand that the surfactants should move with the same velocity as the surrounding
liquid. It is also required that the forces transferred to the surfactants are governed by
the Marangoni force (which is not a given when using an advection-diffusion equation).
If one proceeds from these considerations by considering the force balance, one may
simultaneously require that both the interfacial force corresponds to the Marangoni force
through a body force term, and that the velocity field is equal to the interfacial velocity,
viz.

Γ∂us
∂t

+ Γ(us ·∇)us =−∇Π +µs∇2us + fM, (2.54)
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where uI is the interfacial velocity field, µs is a viscosity term in the surfactant layer, and
fM is the Marangoni force. The pressure term ∇Π, where Π is the interfacial pressure,
accounts for the surfactant-surfactant interaction term. The simplest model of such
interactions is the ideal gas law,

Π = kΓ, (2.55)
a model which goes back to the classic paper by Langmuir (1917). At stationary conditions,
expressing the interfacial velocity field in the spherical coordinate system, Equation (2.54)
becomes

ΓU2
θ cos(θ)sin(θ) =− k

R

∂Γ
∂θ

+ µsUθ
R2

∂

∂θ

(
1

sin(θ)
∂

∂θ

(
sin2(θ)

))
+ σ1
R

sin(θ), (2.56)

which has the solution

Γ(θ) = e
α cos(2θ)

4

(
C−β

√
π

2αe
α
4 erf

(√
α

2 cos(θ)
))

, (2.57)

where α= U2/k, β = σ/k−2µsUθ/Rk, and C is a constant of integration. One should
notice that

lim
α→0

Γ(θ) = C−β cos(θ), (2.58)

which corresponds to neglecting the convective term. It is then straight-forward to obtain
that the coefficient of integration is given by the average interfacial concentration of
surfactants, C = Γavg. In the following it is assumed that the convective term is negligible,
and thus Equation (2.58) gives the surfactant concentration at the interface. In addition,
it is assumed that the viscous term is small compared to the coefficient of interfacial
tension, which corresponds to low interfacial concentration of surfactants. One then
obtains

Γ(θ) = Γavg−
σ1
k

cos(θ). (2.59)

This equation links the interfacial concentration of surfactants to the Marangoni force
acting on the surfactant molecules by the use of the Gibbs-Marangoni relation in the
transport equation for the surfactants. It should be noted that Equation (2.54) does
not make any assumptions regarding the functional form of the coefficient of interfacial
tension.
Furthermore, it is readily apparent from Equation (2.58) that Γ as a function of θ

is symmetric about Γavg, and that the minimum is given by Γavg−β, which implies
that

σ1 ≤ kΓavg + 2µsUθ
R

. (2.60)

Positing that there exists a maximum value for the repulsive force between the
surfactants, such that if Equation (2.54) would require a higher value, the surfactant
would be released from the interface and dissolve into the bulk phase, Equation (2.59)
shows that Γ must be less than some maximum value Γ∞. Γ∞ is known as the maximum
packing concentration in the surfactant literature. Inserting Γ∞ ≥ Γ into Equation (2.59)
one obtains

Γavg ≤ Γ∞−σ1/k, (2.61)
giving

σ1 ≤
kΓ∞

2 . (2.62)

In arriving at these expressions, it was implicitly assumed that there is no limit to the
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forces each surfactant molecule can absorb from the surrounding liquids. In reality, the
surfactant molecules will bend and twist if they are subjected to large stresses. Taking this
into account, i.e. requiring that each molecule can at most absorb a force of magnitude F∞,
one obtains a restriction on the Marangoni shear stress τ = σ1 sin(θ)/R, namely τ/Γ≤F∞.
In addition to this comes the requirement that Γ≤ Γ∞ as discussed previously.
Writing it out in full, this expression for the maximum interfacial shear stress

is

max
θ

τ

Γ(θ) = max
θ

1
Rσ1 sin(θ)

Γavg + σ1
k cos(θ) ≤ F∞, (2.63)

or equivalently

max
θ
σ1

(
sin(θ)
R
− F∞

k
cos(θ)

)
≤ F∞Γavg, (2.64)

giving a restriction on the rate of change of the interfacial tension,

σ1 ≤
kΓavg√

1 +
(

k
F∞R

)2
≤ kΓavg, (2.65)

which upon insertion of Equation (2.61) yields

σ1 ≤
kΓ∞

1 +
√

1 +
(

k
F∞R

)2
≤ kΓ∞

2 . (2.66)

Using Equation (2.48) to eliminate σ1 from Equation (2.65), one obtains now an expression
for the lowest terminal velocity allowed for a drop of radius R. Normalising this by the
terminal velocity of a hard sphere, χ= U/UHS, gives

χ≥ 3(µ1 +µ2)
3µ1 + 2µ2

− 2
9µ1 + 6µ2

kΓavg

UHS

√
1 +
(

k
F∞R

)2
. (2.67)

At this point it is convenient to introduce the viscosity ratio β = µ1/µ2, as well as the
quantity Rc = k/F∞. This critical radius Rc is the largest droplet radius such that the
forces from the surfactants on the liquid are large enough to retard the droplet to the
Stokes terminal velocity (χ= 1). We denote the drop radius normalised by the critical
radius as x=R/Rc. Using the fact that this expression should become 1 at x= 1, i.e. that
drops with the critical radius fall like hard spheres, we obtain Γavg/Rc =

√
2∆ρg/3F∞,

and the previous equation simplifies to

χ≥ 3(β+ 1)
3β+ 2 −

√
2

3β+ 2
x−2

√
1 +x−2

. (2.68)

Notice that in the expression for Γavg/Rc preceding this equation, the maximum force a
surfactant molecule can absorb, F∞, is a material constant for the surfactant. This means
that for a given surfactant, the average interfacial concentration is directly proportional
to the critical radius. Thus, in low surfactant-concentration experiments, one may use the
critical radius as a measure of equilibrium interfacial concentration of surfactants, Γavg.
The reader is reminded that Γavg can be related to the bulk concentration of surfactants,
C, by a Langmuir isotherm

Γavg = Γ∞
aC

1 +aC
(2.69)
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where a is a constant.
Recalling the proof in Section 2.2 that a drop cannot fall slower than a hard sphere of

equal radius, since this violates the conservation of energy, we obtain the final expression
for the relative velocity χ as

χ(x)≥





1 if x≤ 1,
3(β+1)
3β+2 −

√
2

3β+2
x−2√
1+x−2

if x > 1. (2.70)

Notice that this expression is continuous at x= 1, but the derivative is discontinuous at
this point, cf. Figure 6. Notice also that when R�Rc, i.e. x−2� 1, the expression for
x > 1 approaches the Hadamard-Rybczynski result. Thus the inequality must be replaced
by equality in the x� 1 limit. In the x→ 1 limit, equality is also required since it is
observed that the drops fall like hard spheres. The simplest expression which is correct
in both these limits is obtained by replacing the inequality with equality for the entire
expression, viz.

χ(x) =





1 if x≤ 1,
3(β+1)
3β+2 −

√
2

3β+2
x−2√
1+x−2

if x > 1. (2.71)

This is the prediction of the continuous-interface model for the transition in terminal
velocity as a function of drop radius.

3. Discussion
In 1953, Savic (1953) introduced the stagnant cap model (SCM) as an explanation

of the experimental results obtained by Bond (1927); Bond & Newton (1928). The
SCM incorporates the effect of surfactants through a rigid cap where a no-slip boundary
condition is used. It is obvious that this will lead to a terminal velocity of droplets
bounded by the Stokes velocity and the Hadamard-Rybczynski velocity. In later works
several iterations of the SCM have been proposed(Griffith 1962; Davis & Acrivos 1966;
Harper 1973; Sadhal & Johnson 1983), and presently two different versions exist, namely
the model proposed by Griffith (1962) and the model proposed by Davis & Acrivos (1966).
The Griffith approach is based on calculating the cap angle from a criterion based on
the average interfacial pressure difference, while Davis & Acrivos employ a local criterion
based on the capillary tension and the interfacial shear forces.

Hatanaka et al. (1988) give a review of the experiments performed by Bond & Newton
(1928) and Griffith (1962) and compare the two versions of the SCM with the experimental
results. Hatanaka et al. show that the model of Davis & Acrivos gives better agreement
with the experiments performed by Bond & Newton (1928), while the Griffith model
gives better agreement with the experimental results performed by Griffith himself. It
appears that the difference between the experimental results by Griffith and those of
Bond & Newton is too large to be governed by the same mechanism. Note here that
while the experiments due to Bond & Newton (1928) use fluids which are assumed to be
pure, in the experiments by Griffith (1962) a surfactant is deliberately added at known
bulk concentrations. In general, one considers the experiments performed by Griffith
(1962) to be more reliable, since the experimental setup there is better controlled, taking
advantage of developments in our understanding of chemistry and fluid mechanics, as well
as developments in experimental equipment, not available at the time of Bond & Newton
(1928).

Figure 5 shows one set of experiments performed by Griffith (1962), extracted from
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Figure 5. Droplet terminal velocities for different drop sizes and at different surfactants
concentrations (Griffith (1962, Fig. 9)). The concentration is given in kg/m3 and the highest
concentration corresponds to 35.4ppm.

Figure 6. Nonlinear curve fit of Equation (2.71) to the raw data by Griffith (1962).

Figure 9 in his work. The figure shows the results from an experiment with drops of
ethylene glycol with Aerosol 61 surfactant falling in a reservoir of a mineral oil, using
different concentrations of surfactant. The results are plotted as the relative velocity
χ= U/UHS versus the drop radius. Notice that the base fluids employed by Griffith are
not free of surface active agents, indicated by the results without any added surfactant
showing the same trend of approaching the hard sphere terminal velocity as the radius
decreases.

By fitting Equation (2.71) to these data points, we may calculate the critical radius Rc
below which χ= 1 in the experiments performed by Griffith. This is shown in Figure 6,
where the obtained values of Rc for each of the five concentrations is shown in the legend.
Note that in theory, if perfectly pure fluids were used, Rc→ 0 as C→ 0. This is not the
case for these experiments.
As outlined in the previous section, the proposed continuous-interface model predicts

that the critical radius is directly proportional to the interfacial surfactant concentration,
which can again be related to the bulk concentration through the Langmuir isotherm
Equation (2.69). This means the critical radius is also related to the bulk concentration
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Figure 7. Rc obtained from the fitting of Equation (2.71) to the experimental data, plotted
against bulk surfactant concentration, together with a Langmuir isotherm fitted to these points.

via a Langmuir isotherm, i.e. we can write Rc = Rc(C). Notice, however, that the
isotherm must be modified to account for the fact that surfactants are still present in the
system at C = 0, i.e. Rc(C = 0) 6= 0. By replacing the concentration in Equation (2.69)
with C′ = C+Cbase, we obtain an isotherm with two unknown parameters, a and Cbase.
Fitting this to the experimental data, as shown in Figure 7, it is seen that the critical
radii all collapse to the obtained Langmuir isotherm. This confirms the prediction made
by the proposed continuous-interface model.

To complete this discussion, we wish to point out that the stagnant cap model is likely
a good model when the surface-active agents interact like hard particles. To see this,
consider the explanation of the stagnant cap model in terms of the Marangoni force, as
attempted by Sadhal & Johnson (1983). If the Marangoni stress balance is valid, then
arguable the normal stress balance should also be satisfied. In the SCM, none of the
above stress balances are used as boundary conditions. It is then only possible (given
the uniqueness of solutions to the Stokes equation) to satisfy both stress balances if one
of them can be written in terms of the boundary conditions used. This is obviously not
possible, and hence the normal stress balance cannot be satisfied.

It is therefore natural to conclude that the SCM is limited to situations where interfacially
active components interact like particles and form a solid cap. In the continuous-interface
model presented here, both stress balances are used in the boundary conditions and
therefore, in contrast to the SCM, it can be used when the interfacially active components
are amphiphilic molecules.

If the SCM is reasonable for interfacially active components that act as particles, one
might want to re-examine experimental evidence for the SCM that is obtained using
particle-based flow visualisation methods. If it is the addition of particles for the flow
visualisation that causes the stagnant cap which is observed, these experiments are
obviously not representative for the more general situation of molecular contaminants
causing small liquid drops to fall like hard spheres. It would perhaps be possible to test
this hypothesis by performing NMR-based velocity field measurements (Han et al. 2001)
of small drops falling both with and without tracer particles.
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4. Concluding remarks
In this paper we have derived the exact solution to the flow inside and around a circular

drop falling at low Reynolds number, with an arbitrarily varying interfacial tension. By
avoiding the use of a surfactant advection-diffusion equation at the interface, we are able
to obtain analytical solutions to the flow, which has not been possible in previous works.
We demonstrate that when all the interfacial stress conditions are taken into account,
one obtains a range of simultaneous solutions for the variation in interfacial tension and
for the flow field, including exotic solutions such as the hovering drop. By appealing to
conservation of energy, we restrict the allowed interval of solutions, and show that the
terminal velocity of a falling drop must lie between the clean drop (Hadamard-Rybczynski)
and the rigid sphere (Stokes) results.

To proceed with this approach, we propose a new model for how surfactants behave at
the interface of a falling drop. Previous work has assumed the existence of a stagnant cap
of surfactants on the top of a falling drop. In the present model we do not impose a specific
surfactant distribution, but we introduce a simple model, called the continuous-interface
model, which takes into account the force balance for surfactant molecules at the interface.
It is demonstrated that the model gives a transition in terminal velocity as a function
of drop radius that is consistent with experimental results. Moreover, by fitting the
model to experimental results, we extract values for the critical radius as a function of
bulk surfactant concentration. The model predicts that these should be related by a
Langmuir isotherm, and indeed this is found to be true. We postulate that our model is
more reasonable for fluid-like surfactant molecules, while the stagnant cap model may
be appropriate for colloidal particles acting as surfactants. Future work may attempt to
identify this difference experimentally.

Ending on a historical note, we have read with interest the recent paper by Hager (2012)
about the life and work of Wilfrid Noel Bond, who, amongst other achievements, was
the first person to observe and discuss the transition in terminal velocity that we aim to
explain with our model. Bond’s untimely demise was surely a great loss not only for his
family, but also for the field of fluid mechanics research. †
The authors are grateful for stimulating discussions on these matters with Dr. Svend

Tollak Munkejord and Professor Bernhard Müller. This work was funded by the project
Fundamental understanding of electrocoalescence in heavy crude oils coordinated by
SINTEF Energy Research. The authors acknowledge the support from the Petromaks
programme of the Research Council of Norway (206976), Petrobras, Statoil and Wärtsilä
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Abstract

We describe here raaSAFT, a Python code that enables the setup and running of coarse-
grained molecular dynamics simulations in a systematic and efficient manner. The code is
built on top of the popular HOOMD-blue code, and as such harnesses the computational
power of GPUs. The methodology makes use of the SAFT-γ Mie force field, so the
resulting coarse grained pair potentials are both closely linked to and consistent with
the macroscopic thermodynamic properties of the simulated fluid. In raaSAFT both
homonuclear and heteronuclear models are implemented for a wide range of compounds
spanning from linear alkanes, to more complicated fluids such as water and alcohols,
all the way up to nonionic surfactants and models of asphaltenes and resins. Adding
new compounds as well as new features is made straightforward by the modularity of the
code. To demonstrate the ease-of-use of raaSAFT, we give a detailed walkthrough of how
to simulate liquid-liquid equilibrium of a hydrocarbon with water. We describe in detail
how both homonuclear and heteronuclear compounds are implemented. To demonstrate
the performance and versatility of raaSAFT, we simulate a large polymer-solvent mixture
with 300 polystyrene molecules dissolved in 42 700 molecules of heptane, reproducing the
experimentally observed temperature-dependent solubility of polystyrene. For this case
we obtain a speedup of more than three orders of magnitude as compared to atomistically-
detailed simulations.
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1. Introduction

The coarse-grained molecular dynamics (MD) simulation of simple and/or complex
fluids is a popular method for gaining physical insight into complex phenomena that
elude investigations by experiments or by theory. By coarse-graining we mean here the
procedure of lumping together the effect of a few individual atoms into a single sphere or

2



bead that forms the basic element of the MD simulation. These beads interact with each
other through an effective spherically symmetric pair potential. A popular variant is the
Lennard-Jones or (12,6) potential, consisting of a repulsive term proportional to r−12

and an attractive term proportional to r−6, where r is the distance between two beads.
If the beads are to interact with beads of another type, a cross-interaction potential must
also be specified in some way.

As is natural for a popular technique, there exists in the literature a large number
of procedures for coarse-graining the description of molecular fluids. Most of these
procedures are of the so called bottom-up type, meaning that one starts with an atomistic
representation of some molecule, and then tries to build representative beads typically
containing 2-4 atoms (not counting hydrogen) which represent, in some integrated
fashion, this atomistic structure. This procedure is often carried out via a trial-and-error
procedure. The resulting potentials describing the interaction between two beads are not
coupled to the macroscopic properties of the fluid, and typically lack both transferability
and robustness. A recent review of these techniques is given in [1].

As alternatives to this we have the top-down, or thermodynamic, coarse-graining
procedures. A popular example is the MARTINI force field [2], originally designed for
biomolecular applications such as simulation of lipids. In MARTINI, the super-atoms
(i.e. beads) are parametrised by matching the free energy of transfer between water and
organic solvents. The individual beads may then be connected in a group-contribution
fashion to model larger molecules. The model is based on the Lennard-Jones potential
and reports a finite set of parameters “building blocks”; both aspects somehow limit the
applicability.

The approach used here, namely the SAFT-γ Mie force field parametrization [3], is
another form of top-down coarse-graining procedure. In this approach, the interaction
between a pair of beads is through the Mie potential, also called the generalised Lennard-
Jones potential, seen in Equation (1) below. In the SAFT-γ Mie approach, the four
parameters of this potential have a one-to-one correspondence with the parameters of
the SAFT-γ equation of state (SAFT stands for Statistical Associating Fluid Theory).
By fitting this equation of state to experimentally measured macroscopic thermodynamic
properties, e.g. the densities of the saturated liquid and vapour pressure states of
some compound as a function of temperature, one fixes also the parameters of the Mie
potential. The crucial point of the approach is that fluid properties obtained from MD
simulations using this potential agree very well both with the equation of state and with
the original experimental data. Furthermore, the molecular simulations can accurately
predict properties that were not used in the initial fit, e.g. the interfacial tension, heat
capacity or the speed of sound of the fluid in question. The accuracy has been found
to be comparable with atomistically detailed models that have runtimes two orders of
magnitude larger [4].

The Mie potential is given as a function of the distance r between two
beads,

V (r) =C(n,m) ε
[(σ
r

)m
−
(σ
r

)n]
, (1)

C(n,m) =

(
m

m− n

)(m
n

)n/(m−n)

.

The potential consists of a repulsive (r−m) and an attractive (−r−n) term, i.e. a pair
3



of beads experience repulsion when they are very close, attraction when they are further
apart, and no force at infinite separation. The potential has a single global minimum,
often called the energy well, defined at a value of ε. The parameter σ specifies the
centre-to-centre distance at which the potential switches from a repulsive to an attractive
interaction, hence it is often taken to be the effective diameter of the bead for visualisation
purposes. The two exponents m,n of the attractive and repulsive terms can be freely
adjusted, allowing for a more complex balance between attractive and repulsive forces
than the standard Lennard-Jones potential (m = 12, n = 6). We remark that compared
to the Lennard-Jones potential, the number of free parameters for the Mie potential
increases not by two, but by one, since two of the four parameters in Equation (1) are
intimately related [5].

Taking this as our fundamental approach, we have constructed a Python framework
that makes it straightforward to set up and run MD simulations using coarse-grained
models with the SAFT-γ Mie approach. The framework is called raaSAFT (pronounced
“raw saft”) which in Scandinavian languages means “pure fruit juice”; “raa” may also be
translated into “coarse”. The framework leverages existing MD codes to perform the
actual simulations. HOOMD-blue [6, 7], a modern “GPU-first” code, is the option most
closely integrated in raaSAFT. One may also use GROMACS [8], a popular and highly
capable MD code, which is however more loosely integrated.

The speedup obtained by leveraging the potential of graphics processing hardware to
perform MD simulations is particularly impressive [9], and rivals the speedup obtained
by simplifying the molecular model (i.e. coarse-graining). The combination of both
approaches is guaranteed to allow the exploration of both long time scales and large
system sizes which are required to study a wealth of interesting and complex fluid
behaviour from a molecular viewpoint. As an example, the polymer simulation described
in Section 4.2 would have a runtime of the order of 10 years if one were to use an
atomistically-detailed model and a four-CPU workstation. On a four-GPU workstation
with the coarse-grained model, the runtime is 135 hours.

A force field for coarse-grained MD simulation is nothing without force field
parameters which represent different molecules that can be simulated. A number of
publications have appeared which detail the parametrization procedures to obtain SAFT-
γ Mie force field parameters for carbon dioxide [10], greenhouse gases and refrigerants
[11], benzene [12], water [13], mixtures of water, carbon dioxide and n-alkanes [14] etc.
An alternative approach to fitting the equation of state for each and every compound
is the use of the "M&M" correlation developed by Mejía et al. [15]. This correlation
computes the force field parameters directly from the critical properties of the molecular
fluid in question. These properties are readily available and tabulated for a vast number
of fluids.

Building on the M&M correlation, we have constructed a web application called
Bottled SAFT [16], providing force field parameters for over 6000 compounds. It is
available at http://www.bottledsaft.org and is free and open source. The user
may search this database by name, chemical formula or CAS number. Once a result
is obtained, the webpage produces a script which implements the result directly in
raaSAFT.

The outline of this paper is as follows. We first present a description of raaSAFT,
including the physical units employed, how to install raaSAFT, and how to set up and
run simulations. As an example we consider a simulation of liquid-liquid equilibrium of
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n-octane and water, and illustrate how to process the results of this simulation. We give
a brief overview of how to use the GROMACS backend. We then proceed to describe
how different compounds are implemented, first for the simple homonuclear case and
subsequently for a full heteronuclear example. User-defined compounds are implemented
in the same way. Next, we present results showcasing the applications and performance
of raaSAFT, including weak and strong scaling with various hardwares and systems.
Finally, we illustrate the versatility and performance of raaSAFT with a large simulation
of polystyrene in a solution of heptane, where we reproduce the temperature-dependent
solubility found in experiments.

2. Program description

3. Software design and use

3.1. Unit conventions
While some codes (e.g. GROMACS) establish a unit convention, others employ

“natural units” that leave the user free to choose the physical units, e.g. the units in
which the energy is measured. HOOMD-blue falls in the latter category. In this section
we specify the units chosen for raaSAFT. When running with GROMACS as a backend,
these units are converted into the GROMACS unit convention.

The fundamental units in HOOMD-blue are length, energy and mass. Furthermore,
temperature is given as the thermal energy kBT . The choice of units for raaSAFT is
given in Table 1. With this, the units of derived quantities are as given in Table 2, in
particular the time unit is 1 ps (picosecond). The energy in the Mie potential is specified
as ε/kB in units of K, where kB = 8.3144622 (J/mol)/K is the Boltzmann constant, as
is the convention in papers using the SAFT-γ Mie force field.

Table 1: Fundamental units used by raaSAFT

Quantity Symbol Unit

distance r 1 Å = 10−10m
energy ξ 10 J/mol
mass m 1 g/mol

Table 2: Derived units used by raaSAFT. Here NAV is Avogadro’s number, ε0 is the vacuum permittivity,
and statC is the stat-Coloumb unit of charge, equivalent to 1/(10c) Coulomb where c is the numerical
value of the speed of light in m/s.

Quantity Symbol Formula Unit

time t
√
mr2/ξ 1 ps

velocity v r/t 1 Å/ps = 100 m/s
temperature T kBTKelvin 10 J/mol
pressure P ξ/r3 1030/NAV Pa
charge q

√
4πε0rξ 1 statC/

√
NAV = 1/(2997924580

√
NAV ) C
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3.2. Installing raaSAFT
Since raaSAFT is purely a Python package, it can be installed easily on any computer,

even if the user is not an administrator (e.g. on a cluster). The first point is to ensure
that HOOMD-blue is installed. Then raaSAFT can be installed from the PyPi package
repository using the command pip install raasaft. The package may be upgraded
to the latest version with the command pip install –upgrade raasaft.

For advanced usage, the code may instead be installed by cloning the git repository
at http://bitbucket.org/asmunder/raasaft (code provided under the MIT license).
Contributions, either with implementations of new models or improvements to the
framework, are very welcome.

When raaSAFT has been installed with pip, it is advisable to create a directory for
running raaSAFT simulations, called e.g. raasaft. Jobscripts for different simulations
are best organised by putting them in different subdirectories of this directory. It is also
advisable to run the command raasaft_init in the raasaft directory. This command
populates the directory with the tutorials, replication and mysaft folders. As
the name implies, tutorials contains example jobscripts that demonstrate how to use
raaSAFT. These may be run e.g. as hoomd ex1.hoomd. Implementations of user-defined
compounds are put in the mysaft folder; this is described in more detail at the end of
Section 3.5.1.

The replication folder contains jobscripts from publications using raaSAFT.
Authors who use raaSAFT for their simulations are invited to submit their jobscripts
along with a brief README file to this repository, either as a pull request on Bitbucket
or by email to one of us. To seed this folder we have included jobscripts for the present
work, and will be adding more in the near future.

3.3. The interface for running a simulation
The user interface for raaSAFT is very similar to the user interface for HOOMD-

blue [6, 7], which raaSAFT was originally built around. This interface consists of a
jobscript written in Python, in which one imports the required libraries, specifies the
desired system components, the number of unique components, as well as the initial
density, and then initialises the system. Currently, this system initialisation is done with
the create_random_polymers() function from HOOMD-blue, at a low density (even for
liquid simulations), since this random initialisation is not very sophisticated. The desired
density is achieved by simulating initially in the isobaric-isothermal (NPT) ensemble for
a short time. Future versions of raaSAFT may include a more sophisticated system
initialisation.

In this section we will give a thorough walkthrough of a typical jobscript for running
a simulation with raaSAFT. The jobscript in its entirety can be found in Appendix A.
The first task is to import hoomd_script as well as the desired components of raaSAFT.
After this, a call is made to the function context.initialize() which was introduced as
mandatory in recent versions of HOOMD-blue. To avoid having to worry about whether
to call this function or not, raaSAFT “monkey patches” it such that it is available (and
does nothing) in case the simulation is using an earlier HOOMD-blue version where the
function is not defined. These first lines are shown in Listing 1.

Following this, the components to simulate are selected. In the simplest case this
is just a single compound, e.g. for simulating vapour-liquid equilibrium. In more
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1 #!/usr/bin/python
2 from hoomd_script import *
3 from raasaft.main import *
4 from raasaft.alkanes import *
5 from raasaft.water import *
6

7 context.initialize()

Listing 1: Importing HOOMD-blue, raaSAFT, and initialising the context.

complicated cases it may involve a large number of homonuclear and heteronuclear
components, e.g. for simulating a crude oil. Each component constructor takes the
argument count which specifies how many molecules of this component to include. Some
constructors take additional arguments, e.g. alkane models require the carbon number
of the desired alkane. After selecting the components, the simulation box is set up and
the system is then initialised. An example of this is shown in Listing 2, where we specify
the components n-octane and water, using the force field parameters from [14] and [13],
respectively.

1 C8 = HomoAlkane(C=8, count=1e4)
2 H2O = BioWater(count=6e4)
3 components = [C8,H2O]
4

5 theBox = setupSimBox(components, elong=3.0, packing=0.1)
6 system = setupSimulation(components, theBox)

Listing 2: Setting the desired components, creating the box, and initialising the system
with randomly placed beads.

At this point the data structures containing all the beads have been set up. The
standard HOOMD-blue initialisation sets up the initial positions and velocities for all the
beads, and also adds the bonds between beads where this has been specified. To proceed
one must inform HOOMD-blue about the potential for each components, and the cross-
interactions between components. The Lafitte combination rules [17] are used for the
cross-interactions, where one free parameter kij is available for tuning. If unspecified, the
kij is set to zero by raaSAFT, which is a reasonable starting point. The tuning should
be done by comparing to experimental values of some macroscopic property, for instance
interfacial tension, solubilities, vapour-liquid compositions etc.

To implement this in the jobscript, an important variable to define is the cutoff to be
used. It is either set automatically to a conservative default for the selected components,
namely 6σ for the largest σ in the system, or it is specified by the user. The long cutoff
values (> 5σ) typically provide a more accurate fit to the SAFT-γ equation of state
predictions, but incur a speed penalty as more force field evaluations are required per
time step. Very short cutoffs (e.g. 2.5σ) provide the fastest runs but compromise on the
quantitative aspects of the result.

Having specified the cutoff, one then specifies any nonzero kij to be used in the
cross-interactions. Next, a HOOMD-blue function is used to create the table object
holding the potentials, and one then sets the potential parameters and all the cross
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interactions. This is shown in Listing 3. Note in particular the simplicity of setting the
cross-interactions for all the N different bead types. This single line sets all N2/2 cross
interactions. Having N = 20 is not unreasonable for a complicated system with several
heteronuclear compounds, say a model for crude oil. If the jobscript were to have 200 lines
of code just for setting the cross-interactions, it would be hard to read and easy to make
mistakes. The current code uses the Lafitte combination rules and the combinations()
function from the itertools module in the Python standard library to dynamically set
all cross-interactions. Setting the cutoff, cross-interactions and tabulating the potentials
is shown in Listing 3.

1 setCutoff(components, cutoff=20)
2 setCrossInteraction(C8, H2O, kij=0.3205)
3 table = pair.table(width=1000)
4 setPotentialCoeffs(components, table)
5 setAllCrossCoeff(components, table)

Listing 3: Setting the cutoff, potentials and cross interactions for all components. The
cross interactions use the Lafitte combination rules [12] with a default kij = 0, other
values may be set as shown here.

The next item on the agenda is to specify the forces which enact the bonds.
With raaSAFT, the equilibrium length and constant for each bond is contained in the
implementation of each compound, so the job script just has to call a function to set these
in the data structures used by HOOMD-blue. Typically harmonic bonds are used, with
bond constants either calculated to match experimental evidence or atomistic simulations
(see e.g. the bond constants for alkane chains in [14]), or bond constants are set to a
large numerical value in order to approximate rigid bonds. The bonds are set with a
single command in Listing 4.

For compounds consisting of three or more beads, one is often also interested in
constraining some of the angles between sets of three beads. Here again harmonic
potentials are used, and there is again a distinction between “realistic” values of the
angle potential parameters, and numerical values intended to enforce a specific angle,
such as the cis angle for an alkyl group. A difference from the bonds is that angles
are not added to the system by HOOMD-blue in the system initialisation. Therefore
raaSAFT must add the appropriate angles for each component. The bonds are added
and set with a single command in Listing 4.

1 setupBonds(system, components)
2 setupAngles(system, components)

Listing 4: Setting up the potentials that govern the bonds and angles.

When this has been completed, the remaining functions to be called from the jobscript
are the same as in a standard HOOMD-blue jobscript. For completeness we shall
describe the typical usage of these functions in a raaSAFT-based jobscript. All functions
mentioned in the following are thus from HOOMD-blue. The first are two boilerplate
lines which are used in essentially all job scripts. These are shown in Listing 5. The
first line creates a group containing all beads, and the second sets the time step and
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integration mode. This mode is the standard one, unless one wants to perform an energy
minimisation using the FIRE algorithm [18].

1 all = group.all()
2 mode = integrate.mode_standard(dt=0.001)

Listing 5: Setting the integration mode and timestep.

As mentioned in the first paragraph of this section, the system is generally initialised
at a low density. This has two purposes: first, it avoids blowup during the first few
hundred time steps by reducing the number of beads placed very close by the random
initialisation. The second is that this largely avoids the tangling of complicated molecules.
To further reduce the risk of blowup, the first few hundred time steps can be performed in
the NVE (or microcanonical) ensemble with a limiter, i.e. restricting how far a molecule
is allowed to move in a timestep no matter how large the forces on it are. It is then
beneficial to run the system in the NVT (or canonical) ensemble for a few thousand time
steps before increasing the system density. The purpose of this short NVT run is to
randomise and thermally equilibrate the configuration in preparation for the subsequent
resizing of the system. This resizing is done by two different methods, depending on
whether a vapour-liquid equilibrium (VLE) or a fully liquid system is desired. For a
VLE, it is simpler to just resize the box manually, such that the resulting overall density
is between that of the liquid and of the vapour. Upon equilibration this will produce a
slab of liquid surrounded by its coexisting saturated vapour. For a fully liquid system, one
has to run in the NPT (or isothermal-isobaric) ensemble to obtain the desired pressure
for the liquid, since the pressure is highly sensitive to the box size for an essentially
incompressible liquid and thus manual tuning is unlikely to succeed. In Listing 6, we
show how the system is run in the different ensembles to obtain a fully liquid system in
the end.

1 relaxation = integrate.nve(group=all, limit=0.01)
2 run(1e3)
3 relaxation.disable()
4

5 Temp = 298.15*kBby10
6 nvt = integrate.nvt(group=all, T=Temp, tau=0.5)
7 run(4e4)
8 nvt.disable()
9

10 npt = integrate.npt(group=all, T=Temp, P=1*ConvFromBar, tau=0.5, tauP=0.5)
11 run(1e5)

Listing 6: Integrating the system to obtain a fully liquid system.

When simulating a liquid-liquid or vapour-liquid equilibrium, it is convenient to use
a simulation box which is elongated in one direction, since this causes the formation
of well-defined interfaces normal to the elongated direction. This setup will typically
produce two slabs of segregated fluids withing the box, which can be considered as a
tiny patch of some macroscopic fluid interface due to the periodic boundary conditions;
from this we can compute e.g. the interfacial tension. A system of immiscible liquids
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simulated using the SAFT-γ Mie force field will spontaneously phase separate even when
started from random initial conditions, but it may initially form clusters and/or multiple
slabs of liquid, which then take a very long time to coalesce into two slabs. This is due
to the inherent limitations of the timescales in simulation being small as compared to
the characteristic timescales for cluster diffusion.

A useful way of speeding this up consists in applying an external potential, varying in
the direction normal to the desired liquid-liquid interface, taking the form of a periodic
hyperbolic tangent function with opposite magnitudes for the two liquids. It is important
that the width of this external potential is large enough that a substantial number of
particles experience a force from the gradient of the potential. After the periodic potential
has been applied for some time, it is turned off. The system’s total momentum is then
set to zero, as it may have gained an undesirable net momentum due to random initial
alignment of the two liquids with the potential. Running with an external periodic
potential and subsequently removing the net momentum is shown in Listing 7.

1 periodic = external.periodic()
2 periodic.force_coeff.set(C8.Name, A = 400.0, i=2, w=0.2, p=1)
3 periodic.force_coeff.set(H2O.Name, A = -400.0, i=2, w=0.2, p=1)
4 run(1e6)
5 periodic.disable()
6 update.zero_momentum()
7 npt.disable()

Listing 7: Speeding up liquid-liquid separation with an external potential.

After having resized the system, and optionally having obtained a system with two
slabs of liquid, one is ready to do a production simulation. It is then desirable to
log integral quantities such as the temperature, energy etc., and to save the individual
trajectories of the beads. Both of these operations are done using standard HOOMD-blue
functionality, as shown in Listing 8.

1 xml = dump.xml(filename=’con.xml’, vis=True)
2 dump.dcd(filename=’dump.dcd’, period=1e4)
3 logQuant = [’time’, ’pair_table_energy’, ’pressure’, ’temperature’,
4 ’pressure_xx’, ’pressure_yy’, ’pressure_zz’]
5 analyze.log(filename=’log.dat’, quantities=logQuant, period=1e2, header_prefix=’’)

Listing 8: Specifying the logging of scalar quantities and the dumping of trajectories for
visualisation.

To do a production run, i.e. a simulation which we can analyse to get the information
we seek, we switch from the NPT to the NVT ensemble, and run for some time. At this
point, we may increase the time step size. At the end of the production run it is useful
to save a restart file, such that one can continue the simulation from that point. This is
shown in Listing 9.

The entire jobscript (see Appendix A), contained e.g. in the file octane-water.py,
may now be executed with the command hoomd octane-water.py. After the simulation
has finished (or while it is running) we may analyse the the results. This typically consists
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1 mode.set_params(dt=0.01)
2 nvt = integrate.nvt(group=all, T=Temp, tau=0.5)
3 run(2e6)
4 xml = dump.xml(filename=’restart.xml’, vis=True, velocity=True)

Listing 9: Doing the production run.

in either plotting some scalar quantity from the log file, or opening the .dcd and .xml
files in VMD [19] and analysing the results there.

For our liquid-liquid simulation we may plot the interfacial tension γ, computed from
the diagonal elements of the pressure tensor as

γ =
Lz

2

∫ (
Pzz −

1

2
(Pxx + Pyy)

)
dz. (2)

These values are sampled every 100 time steps in the simulation. In Figure 1 we plot
the cumulative average (green line) and a rolling average over 200 samples (blue dots)
together with the experimental value of 51 mN/m (dashed orange line). The agreement
is very good. The rolling average gives an impression of the uncertainty, but it would be
better to use a quantitative measure, e.g. the method discussed in the appendix of [20].
This will be considered in future versions of raaSAFT.

Figure 1: The interfacial tension of octane-water at 298 K and 1 bar, computed using Equation (2),
shown here for the last half (10 ns) of the production run. Values are logged every 100 time steps (0.01
ns). Green line: cumulative average. Blue points: rolling average over 200 values. Dashed orange line:
experimental value from [21].

We may also use VMD to gain a better insight into the system behaviour. Of
particular use is the density profile plugin [22] to plot the density variations in the
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z-direction, showing the densities of each phase and also the solubilities of these two
phases in each other. For octane and water, which are immiscible fluids, this is not
very interesting, but for other systems it can provide valuable insights; see [23] for a
comprehensive overview.

3.4. Using GROMACS as the backend
As mentioned, raaSAFT additionally supports running simulations with GROMACS.

In this case, the first part of the jobscript looks identical to that described in the
previous section, up to and including Listing 6. At this point, the system is in the
desired state and the positions and velocities of the beads are well-behaved such that
GROMACS can easily restart from this point. Then, instead of proceeding with the
simulation using HOOMD-blue, the user tells raaSAFT to write the system configuration
to the files which GROMACS uses for running the simulation, with a single function:
gmxWriteSystemFiles(system,components).

This function goes through the system and the components and

• Converts from the units described in Section 3.1 to GROMACS units

• Constructs the .itp file that specifies the compounds, their bonds, angles etc.

• Constructs the .mdp file with default parameters for the job, including the
interactions and cross-interactions to include

• Constructs the system.top file that sets the number of each compound

• Tabulates the potential for each interaction and cross-interaction into .xvg files

• Constructs the .gro file that contains the initial position and velocity of each bead

• Finally, prints to screen the commands the user should invoke to run the simulation

Presently, the generation of these files, in particular the initial position and velocities
of each bead, requires that HOOMD-blue is installed (it may be compiled and used
without GPU support if GPUs are not available). This restriction may be removed in
future versions of raaSAFT.

3.5. Implementing a compound
In raaSAFT, the definition of a given compound, be it homo- or heteronuclear, is

abstracted away from the jobscript. There are two important reasons for this choice.
One, it allows the efficient reuse of a compound implementation in many jobscripts.
Two, it separates the compound implementation from the simulation setup, which are
two logically distinct concepts.

In the following subsections we describe how compounds are implemented in the
raaSAFT code. We first discuss the simpler case of homonuclear compounds, and
then extend the discussion to heteronuclear compounds, which use several homonuclear
compound implementations as part of their implementation. Finally, we discuss Bottled
SAFT, our online library of compounds which users may search and download compound
implementations from, as well as some implementation details that may be of interest to
others.
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3.5.1. Homonuclear compound
The implementation of a homonuclear compound in raaSAFT is straightforward.

Starting with the simplest case of a one-bead model, the implementation only has to
specify the parameters of the Mie potential for this compound. Taking as an example
the Benzene1 compound (from [12]), which is a single-bead model for benzene. It is
implemented as shown in Listing 10. Here we see that the compound extends the base

1 class Benzene1(MieCG):
2 def __init__(self,count):
3 self.Name = "Benzene"
4 self.Epsilon = 658.17*kBby10
5 self.Sigma = 5.293
6 self.N = 32
7 self.M = 6
8 self.Segments = 1
9 self.Mass = 78.11 / self.Segments

10 self.Citation = "DOI: 10.1080/00268976.2012.662303"
11 MieCG.__init__(self,count)

Listing 10: Specification of the one-bead benzene model

MieCG class. We specify the name, parameters for the Mie potential, number of segments,
molar mass, and a reference to the literature for this set of parameters. Note that the
number given for Epsilon is the energy divided by the Boltzmann constant kB, in K, as
given in [12]. This is multiplied by kB/10, giving an energy in the expected units (10
J/mol). The base class constructor then sets properties common to all compounds based
on the SAFT-γ Mie force field, and contains convenience functions which are useful for
all such compounds.

A more complicated example is a homonuclear compound with more than one bead
and with some internal structure. As an example, we may take the three-bead model
for benzene implemented in Benzene3 (also from [12]), shown in Listing 11. As for the

1 class Benzene3(MieCG):
2 def __init__(self,count):
3 self.Name = "Benzene"
4 self.Epsilon=258.28*kBby10
5 self.Sigma=3.490
6 self.N=11.58
7 self.M=6
8 self.Segments = 3
9 self.Mass = 78.11 / self.Segments

10 self.Citation = "DOI: 10.1080/00268976.2012.662303"
11 self.BondConstant = RigidBondConstant
12 self.Bonds = [(0,1), (1,2), (2,0)]
13 MieCG.__init__(self,count)

Listing 11: Specification of the three-bead benzene model

one-bead model, we specify the name, Mie potential parameters, number of segments
and citation. In addition we must specify the bond constant and the bond layout. Note
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Figure 2: Molecular structure (left) and coarse grained version (right) of the model asphaltene molecule.

that the beads are zero-indexed. The bond layout here specifies that there are bonds
between beads 0 and 1, 1 and 2, 2 and 0; this gives a triangle. The bond length is set
automatically to give tangential bonding.

Before proceeding to the heteronuclear case, we will explain the purpose of the
previously mentioned mysaft folder which is among those created by the raasaft_init
command. This folder is used for implementing user-defined compounds. An example
of a simple homonuclear compound is included in the folder. The mysaft folder is
structured as a Python package, so the user should put the implementation of the desired
compound, e.g. as in Listing 10 and Listing 11, in one or more files in this folder. Say
these are put in the file benzene.py. The user must then append the mysaft folder
path to the $PYTHONPATH environment variable, e.g. by running the command export
PYTHONPATH=$PYTHONPATH:$PWD from inside the folder. The compounds implemented in
benzene.py can then be used in a jobscript by putting from mysaft.benzene import
* at the top of the jobscript.

3.5.2. Heteronuclear compound
The implementation of a heteronuclear compound is naturally more involved, because

these models are inherently more complicated. As an example we consider a model
coarse-grained asphaltene molecule, which has been successfully used in simulations of
real crude oils [24]. The coarse-grained version and the molecular structure are shown in
Figure 2. Asphaltenes are a major source of disruption in the production and processing
of petroleum. Due to their tendency to foul pipelines up to the point of blockage, they
have been called “the cholesterol of crude oil”. Despite more than a century of scientific
research, there are many aspects of asphaltenes that elude our understanding. For recent
reviews see e.g. [25, 26, 27, 28]. Coarse-grained molecular dynamics simulation is a very
promising tool for increasing our understanding of asphaltenes.

Here we show three listings with the implementation of this compound. The first
shows the general setup, the second shows the bond setup, and the third shows the angle
setup. In the first, Listing 12, we begin by setting the different types of beads making
up the molecule, here three. We put these into a list for later convenience. We then
give the compound a name and a short name; the latter is handy for the bond and angle
data structures. We set the number of segments and specify the number and sequence
of the different bead types. Finally we call the parent class constructor for MieCGHet.
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1 class APCnew(MieCGHet):
2

3 def __init__(self,count):
4 # Initialize the different bead types
5 self.C12 = MnMAlkane(C=12)
6 self.ANT = Anthracene()
7 self.PY = Pyridine()
8 # Put these in a list
9 self.Components=[self.C12, self.ANT, self.PY]

10 # Give this compound a name and a short name
11 self.Name = "AsphalteneContinental"
12 self.ShortName = "APC"
13 # Set the number of segments
14 self.Segments = 23
15 # This sets the particle numbering: (0,1,2,3) are alkanes, (4,5,6) are
16 # anthracenes, etc.
17 self.Def = [self.C12]*4 + [self.ANT]*3 + [self.PY] + [self.ANT]*3 + \
18 [self.PY] + [self.ANT]*3 + [self.C12]*8
19 # Initialize the base class instance
20 MieCGHet.__init__(self,count)

Listing 12: Specification of a coarse-grained asphaltene model: general

Once the general specification is completed, we proceed to the bonds. For this model
we need four different types of bonds, since there are four different bond lengths. The
canonical names of these four bonds are then constructed from self.ShortName. The
majority of this listing is taken up by the specification of self.Bonds which stores
information about which beads are bonded together and by what type of bonds. Finally,
createBondSpec() creates additional data structures based on self.Bonds and the list
of bond constants given as an argument to createBondSpec() (here the same constant
for all).

Once the bonds are specified, we proceed to the angles. The present model has two
types of angles: one that constrains the aromatic core to form a flat structure, and
one that allows some flexibility in the alkane tails. Again, the names of the angles are
constructed, and self.Angles takes up the majority of this listing. In this list, e.g. the
tuple (0, 1, 2, at1) specifies that the angle between the (0,1) and the (1,2) bonds is
to be of type at1. Finally, additional data structures are created based on this list and on
the angle constants and equilibrium angles given as arguments to createAngleSpec().
Here the first is given as a flexible angle suitable for linear alkanes [14], while the second
is given as a more rigid angle.

3.6. Bottled SAFT
As mentioned, we have built a large database of force field parameters based on

the M&M correlation presented in [15]. This database can be searched with the web
application Bottled SAFT (http://www.bottledsaft.org). It contains representations
of more than 6000 molecular fluids, and users may search by name, CAS number, or
chemical formula. Once a result is found, the user is presented with a table of force

15



1 # Bond type 1 is alkane-alkane, type 2 is alkane-anthracene,
2 # type 3 is anthracene-anthracene, type 4 is anthracene-pyridine.
3 self.NrBondTypes = 4
4 bt1, bt2, bt3, bt4 = self.getBondNames()
5 # Now configure the bonds
6 self.Bonds =[( 0, 1,bt1), ( 1, 2,bt1), ( 2, 3,bt1),
7 ( 3, 6,bt2), ( 4, 5,bt3), ( 4, 8,bt3),
8 ( 4, 9,bt3), ( 5, 6,bt3), ( 5, 9,bt3),
9 ( 5,10,bt3), ( 6, 7,bt4), ( 6,10,bt3),

10 ( 8, 9,bt3), ( 8,12,bt3), ( 8,13,bt3),
11 ( 9,10,bt3), ( 9,13,bt3), ( 9,14,bt3),
12 (10,14,bt3), (11,12,bt4), (12,13,bt3),
13 (12,15,bt2), (13,14,bt3), (14,19,bt2),
14 (15,16,bt1), (16,17,bt1), (17,18,bt1),
15 (19,20,bt1), (20,21,bt1), (21,22,bt1)]
16 # Make a list of the bond types, coefficients and lengths
17 self.createBondSpec([2*6309.47]*4)

Listing 13: Specification of a coarse-grained asphaltene model: the bonds

1 # Then set up the angles
2 self.NrAngleTypes = 2
3 at1, at2 = self.getAngleNames()
4 # Specify which angles are which types
5 self.Angles =[ ( 0, 1, 2, at1), ( 1, 2, 3, at1),
6 ( 3, 6, 10, at2), ( 4, 5, 6, at2), ( 4, 8, 12, at2),
7 ( 5, 6, 7, at2), ( 5, 9, 13, at2), ( 6, 10, 14, at2),
8 ( 8, 9, 10, at2), (11, 12, 13, at2), (12, 13, 14, at2),
9 (10, 6, 3, at2), ( 8, 12, 15, at2), (13, 14, 19, at2),

10 (15, 16, 17, at1), (16, 17, 18, at1),
11 (19, 20, 21, at1), (20, 21, 22, at1) ]
12 # Then create the data structure. Pass in a list of tuples containing
13 # the angle constant and equilibrium angle for each type of angles.
14 self.createAngleSpec([(AlkaneAngleConstant,AlkaneAngleZero),(3e5,math.pi)])
15 self.Citation = "DOI: 10.4043/26155-MS"

Listing 14: Specification of a coarse-grained asphaltene model: the angles

field parameters, together with a listing that contains a raaSAFT implementation of the
result. This listing can be placed in a file in the mysaft folder of raaSAFT and then
imported and used in a jobscript without any modifications. Together, Bottled SAFT
and raaSAFT offer an unprecedented ease-of-use for obtaining force field parameters and
setting up simulations.

3.7. The backend code
Some aspects of the backend code may be of general interest. In particular, raaSAFT

contains an interesting citation feature, something which has become popular in scientific
codes (e.g. [6], [29], [19]). This feature basically asks1 the user to cite the relevant papers

1It may be interesting to note at this point that demanding a citation, particularly in the code’s
license, is not compatible with the accepted definition of open-source [30].
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in a publication that uses the simulation tool. The feature may also provide a file with
references e.g. in BibTeX format. For some codes, the list of citations is short and
rarely changes, so it is fine to hard-code the citations into the code. But for other
codes the list changes frequently, as in raaSAFT where this list changes whenever a new
compound is described in the literature for the first time, so a more flexible approach
was needed.

As seen in Section 3.5, the compounds in raaSAFT have a citation attribute which
holds the DOI (Digital Object Identifier) of the paper describing that compound, if a
paper has been published about it. The citation feature in raaSAFT takes these DOIs
and downloads from the web the appropriate BibTeX block for each DOI. There are three
functions which accomplish this in the following manner.

1 def listDOIs(components):
2 compdoi = [("General method","10.1146/annurev-chembioeng-061312-103314"),
3 ("Combination rules","10.1080/00268976.2012.662303")]
4 for comp in components
5 trydoi = re.search("10.[0-9]{3,}\S+", comp.Citation)
6 if trydoi != None and not any(comp.Name == a for (a,b) in compdoi):
7 compdoi.append((comp.Name,trydoi.group(0)))
8 return compdoi
9

10 def doi2bib(doi):
11 url = "http://dx.doi.org/" + doi
12 r = requests.get(url,headers={"accept":"application/x-bibtex"})
13 r.encoding = "UTF-8"
14 return r.text
15

16 def dumpBibTeX(compdoi):
17 with open(’raaSAFT.bib’, ’w’) as bibfile:
18 for cite in compdoi:
19 bibfile.write(cite[0]+"\n"+doi2bib(cite[1])+"\n")

Listing 15: Functions for converting the valid DOIs in the system to a corresponding
BibTeX file.

The first function, listDOIs(), builds a list of the name and DOI of all components in
the system, checks that the DOI is valid, and ensures that components are not repeated.
Two general references are placed first. The second function, doi2bib(), accepts a string
containing a valid DOI, constructs the full URL for a DOI lookup from this, and sends
a GET HTML request to this URL with the header set to ask for a BibTeX response.
The correct character encoding is then set on the response, and the text in this response
(which consists of the BibTeX block) is returned. The third function, dumpBibTeX(),
takes the output from the first function, filters the DOIs through the second function,
and then writes the result to a file. The compound name is put before each BibTeX
block, it then becomes a comment in the BibTeX file.

To hook this functionality into HOOMD-blue’s cite.save() command, we employ a
decorator, a concept from functional programming languages. Since functions are first-
class members of the Python language, another function may accept a function and return
a function. This can be used to modify library functions, a procedure informally known as

17



monkey patching. In raaSAFT, we also check whether the cite.save() function exists,
and if it does not (for earlier HOOMD-blue versions) we provide it in raaSAFT. This
means the user jobscript does not have to change when running with different versions of
HOOMD-blue. The context.initialize() command recently introduced in HOOMD-
blue is monkey-patched in a similar fashion, to avoid having users change their jobscripts
based on the HOOMD-blue version. This is very convenient if one is running on several
machines, e.g. setting up jobs and doing the initial run on a workstation, and then doing
the long production runs on a cluster which may have an older HOOMD-blue version
installed.

4. Performance and applications

In this section we present a weak scaling study on up to 8 GPUs using HOOMD-
blue as the backend. We then show the results from a more complicated simulation of a
polymer in an explicit solvent, and finally we study the strong scaling on up to 24 GPUs
using this system.

4.1. Weak scaling
The test case we consider here is a simple simulation of liquid toluene, represented

by two beads per molecule, so it has a bond. The weak scaling was tested on a machine
having two eight-core Intel Xeon E5-2620 v2 CPUs, 24 GB of RAM, and eight Nvidia
Tesla K40 GPUs. For technical reasons, four GPUs are attached to each CPU, and the
CPUs communicate with each other over a dual-rail QDR InfiniBand network (Mellanox
ConnectX-3 adapters). The case for the single-GPU run consisted of 62 500 toluene
molecules, and the larger simulations were run with the same system replicated in the
z-direction, up to 500 000 molecules on 8 GPUs. With 125 000 beads per GPU, the
results by [7] indicate that the parallel efficiency should be above 80%. The case set up
for two GPUs was also run in GROMACS using the exact same force field parameters
and settings. This was run on just the two CPUs of the machine, since GROMACS does
not support using the Mie potential on GPUs at the time of writing.

To compare the scaling, the performance metric used was “million atom-
nanoseconds/hour”, i.e. if the system contains one million atoms, how many nanoseconds
can the code simulate per hour of walltime. We plot this metric against the number of
GPUs in Figure 3. It is seen that going from 1 to 2 GPUs incurs a performance hit, but
after this scaling is excellent.

4.2. Application: the dynamics of polystyrene in solution
Molecular simulations of polymers present formidable challenges, since both the time

and length scales of interest exceed what is commonly attained with fully detailed
atomistic models. Furthermore, the fine detail is often irrelevant to the macroscopic
physics. Here, again, there is value in considering coarse grained simulations. A model
of polystyrene has been proposed in [31] based on an alkane-like chain “decorated”
with dangling aromatic-like beads. The model is tuned to reproduce both the correct
thermophysical properties of polystyrene oligomers and the liquid-liquid phase behaviour
in mixtures of solvents.
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Figure 3: Weak scaling of liquid toluene system, toluene modelled as two beads at T = 293 K and P = 1
bar. Simulations run on one to eight GPUs with HOOMD-blue, and comparison with GROMACS on
two six-core CPUs.

To showcase how raaSAFT can be used for such large simulations with complicated
molecules, we consider as an application the phase equilibria of polystyrene in an
explicit solvent, namely heptane. The simulation encompasses 294 polystyrene molecules,
modelled using 46 repeating units formed from two distinct beads, one representing the
aliphatic and one representing the aromatic moieties. The total molecular weight of one
such molecule is 4791 g/mol. These molecules are surrounded by 42 700 molecules of a
two-bead model of heptane. The system contains a total of 112 400 beads, and the molar
fraction of solvent is 0.76.

We simulate this system at a pressure of P = 30 bar and at three different
temperatures, T1 = 310 K, T2 = 420 K and T3 = 530 K. Experiments reported in
[32] show that this system has a single phase at the middle temperature T2, i.e. the
polystyrene is soluble in the heptane at this temperature, while the polystyrene is not
soluble at the higher and lower temperatures T1 and T3.

The simulation box was set up as described in Section 3.3, and run in the NPT
ensemble to generate three initial systems at the desired temperatures and pressure. The
time step was increased from 0.001 ps to 0.01 ps after this. To obtain an equilibrated
system, the simulations were then run in the NVT ensemble, and the polystyrene-
polystyrene energies were monitored as the simulations progressed. These energies
are plotted in Figure 4. We observe that the single-phase system at T2 equilibrates
very quickly, while the phase-separated systems at T1 and T3 take much longer, in
the case of T1 several hundred nanoseconds. The polystyrene implementation and
the jobscripts to replicate these simulations are shown in the Appendix in Listing 17–
Listing 19 and will be included in the replication folder of the raaSAFT repository.
Note that the entire polystyrene implementation spans less than 50 lines of code, as do
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Figure 4: Polymer-polymer energies versus time, sampled every 10 ps as the simulations progressed in
the NVT ensemble. From top to bottom, the temperatures are 310, 420, 530 K. It was not clear that the
system at 310 K was equilibrated after 200 ns, so it was run for twice as long as the other temperatures.

the jobscripts.
The current simulation is equivalent to an atomistically-detailed simulation with

1.2 million atoms running for 400 nanoseconds. For each coarse-grained bead there
would be ∼ 10 atomistic centres, and the computing time scales with the square of
this number. Since the atomistically detailed model would also have to incorporate
electrostatic interactions, and since coarse-grained simulations have a tendency to explore
the configuration space (and thus reach equilibrium) faster than atomistic simulations
[33], a conservative estimate is that it would require computational resources three orders
of magnitude larger than those employed here. A three-orders-of-magnitude speedup is
the same as that reported in [34], where the atomistic model is of the united-atom type,
i.e. combining a single carbon atom with the hydrogen atoms attached to it into one
bead. This suggests that the speedup over a fully atomistically detailed simulation,
accounting also for the individual hydrogen atoms, is probably closer to four orders of
magnitude.

The 400 nanosecond simulation here took 135 hours of walltime when running
on four Nvidia Tesla K20 GPUs. Since the strong scaling is limited by the domain
decomposition becoming inefficient when domain sizes become comparable to the force
field cutoff, an equivalent atomistic simulation would be able to effectively utilise at
most ∼ 40 GPUs. With the conservative estimate of the coarse-grained speedup being
three orders of magnitude, the atomistic simulation would thus take more than a year of
walltime.

A snapshot from the simulation is shown in Figure 5, indicating the complexity of this
system. The heptane is invisible, and the polystyrene is shown as dark purple beads for
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the aliphatic backbone and light purple beads for the aromatic-like moieties. The top half
shows the system at T1, where the polystyrene is clearly not soluble, while the bottom
half shows the system at T2, where it is soluble. The snapshot for T3 is similar to that for
T1, and thus the model reproduces the phase behaviour seen in experiments.

To confirm these visual impressions, we have computed histograms of the solvent
density in sub-cells of the simulation box, shown in Figure 6. The simulation box
is divided into 63 cells, and the molar fraction of solvent is calculated in each box.
This calculation is averaged over 300 configurations each taken 10 000 time steps (100
picoseconds) apart, with the equilibrated system. The plot shows that for the solvated
system at T2, the distribution of molar fractions is unimodal and centered around the
total system molar fraction. For the temperatures T1 and T3, however, the distributions
are clearly bimodal, showing that some cells have a low solvent fraction and others
have a high solvent fraction. This is indicative of phase-separated systems at these two
temperatures.

4.3. Strong scaling
To test further the strong scaling, now on a complex system, we have measured the

performance of the polystyrene simulation discussed in the previous section, at P = 30
bar and T = 310 K for the equilibrated system, varying the number of GPUs from 1
to 24. These simulations are run on a larger cluster, where each node has two 4-core
Intel Xeon E5-2609 CPUs, 64 GB of RAM, and two Nvidia Tesla K20Xm GPUs. The
nodes are connected by a single-rail FDR InfiniBand network (Mellanox ConnectX-3
adapters).

The scaling is shown in Figure 7, which indicates a good strong scaling. At 24 GPUs,
the number of beads per GPU is becoming too small to have good performance, so the
scaling levels off. These results are very similar to those reported in [7, Fig. 9]. Fig. 8
in that publication demonstrates that for even bigger systems with more beads, one can
make efficient use of thousands of GPUs.

5. Conclusions

In this paper we have shown raaSAFT to be a easy-to-use and flexible framework for
implementing coarse-grained molecular dynamics models with the SAFT-γ Mie theory.
Models for many common substances are included with the code, and parameters for a
very large number of substances can be downloaded from our online database Bottled
SAFT. More complicated models, which may be built from simpler models with a
group-contribution approach, are easily implemented thanks to the flexible underlying
datastructures. The resulting models may be run with existing molecular dynamics
codes HOOMD-blue or GROMACS. Utilising the excellent scalability of HOOMD-blue,
we have demonstrated good weak and strong scaling on a multi-GPU machine and on a
larger cluster with GPUs.
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Figure 5: Snapshots of equilibrated configurations from a simulation of polystyrene in heptane at 310
K (top) and 420 K (bottom). Heptane molecules are not shown for clarity. It is seen clearly that the
polystyrene is dissolved at 420 K while it is clustered at 310 K. At the top of the figure, individual
polymers can be seen. The individual beads seen close to the edges are due to the periodic boundary
conditions.
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Figure 6: Quantitative evaluation of phase splits in finite systems, following [35]. Dividing the simulation
box into 63 cells, we compute the compositions Nsolvent/Ntotal for all cells and plot a histogram of these.
The dotted line is the composition for the whole simulation box. From the unimodal versus bimodal
distributions, it is apparent that the polystyrene is solvated at 410 K while it is insoluble at 310 K and
530 K, in agreement with experiments.

Figure 7: Strong scaling of the polymer system. Simulations run on 1 to 24 GPUs with HOOMD-blue.
The scaling is very good initially, and then starts to level off at 24 GPUs, when the number of beads
per GPU is becoming small.
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Appendix A. Jobscripts and polystyrene implementation

In the following listings we present the collection of the partial listings 1–9 for the
octane-water simulation in Listing 16, the implementation of the polystyrene model in
Listing 17, and the jobscripts for running the polystyrene simulation in Listing 18 and
Listing 19.
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1 #!/usr/bin/python
2 from hoomd_script import *
3 from raasaft.main import *
4 from raasaft.alkanes import *
5 from raasaft.water import *
6 context.initialize()
7 C8 = HomoAlkane(C=8, count=1e4)
8 H2O = BioWater(count=6e4)
9 components = [C8,H2O]

10 theBox = setupSimBox(components, elong=3.0, packing=0.1)
11 system = setupSimulation(components, theBox)
12 setCutoff(components, cutoff=20)
13 setCrossInteraction(C8, H2O, kij=0.3205)
14 table = pair.table(width=1000)
15 setPotentialCoeffs(components, table)
16 setAllCrossCoeff(components, table)
17 setupBonds(system, components)
18 setupAngles(system, components)
19 all = group.all()
20 mode = integrate.mode_standard(dt=0.001)
21 relaxation = integrate.nve(group=all, limit=0.01)
22 run(1e3)
23 relaxation.disable()
24 Temp = 298.15*kBby10
25 nvt = integrate.nvt(group=all, T=Temp, tau=0.5)
26 run(4e4)
27 nvt.disable()
28 npt=integrate.npt(group=all, T=Temp, P=1*ConvFromBar, tau=0.5, tauP=0.5)
29 run(1e5)
30 periodic = external.periodic()
31 periodic.force_coeff.set(C8.Name, A = 400.0, i=2, w=0.2, p=1)
32 periodic.force_coeff.set(H2O.Name, A = -400.0, i=2, w=0.2, p=1)
33 run(1e6)
34 periodic.disable()
35 update.zero_momentum()
36 npt.disable()
37 xml = dump.xml(filename=’con.xml’, vis=True)
38 dump.dcd(filename=’dump.dcd’, period=1e3)
39 logQuant = [’time’, ’pair_table_energy’, ’pressure’, ’temperature’,
40 ’pressure_xx’, ’pressure_yy’, ’pressure_zz’]
41 analyze.log(filename=’log.dat’, quantities=logQuant, period=1e2,header_prefix=’’)
42 mode.set_params(dt=0.01)
43 nvt = integrate.nvt(group=all, T=Temp, tau=0.5)
44 run(2e6)
45 xml = dump.xml(filename=’restart.xml’, vis=True, velocity=True)

Listing 16: A collection of the partial listings 1–9 in Section 3.3. Note that only the lines
up to and including line 18 are raaSAFT-specific.
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1 from __future__ import (absolute_import, division,print_function)
2 from builtins import *
3 from raasaft.mie import *
4 from raasaft.constants import *
5 class AromaticPS(MieCG):
6 def __init__(self,count):
7 self.Name = "AromaticPS"
8 self.Epsilon=410.273*kBby10
9 self.Sigma=4.260

10 self.N=16.829
11 self.M=6
12 self.Segments = 2
13 self.Mass = 50
14 self.BondConstant = RigidBondConstant
15 self.Citation = "DOI: Unpublished"
16 MieCG.__init__(self,count)
17 class BackbonePS(MieCG):
18 def __init__(self,count):
19 self.Name = "BackbonePS"
20 self.Epsilon=377.14*kBby10
21 self.Sigma=4.180
22 self.N=16.430
23 self.M=6
24 self.Segments = 2
25 self.Mass = 54.15
26 self.BondConstant = RigidBondConstant
27 self.Citation = "DOI: Unpublished"
28 MieCG.__init__(self,count)
29 class Polystyrene(MieCGHet):
30 def __init__(self,count,monomers):
31 self.BBN = BackbonePS(count=1)
32 self.BCH = BenzenePS(count=1)
33 self.Components=[self.BBN, self.BCH]
34 self.Name = "Polystyrene"
35 self.ShortName = "PS"
36 self.Segments = 2*monomers
37 self.Def = ([self.BBN]+[self.BCH])*monomers
38 MieCGHet.__init__(self,count)
39 self.NrBondTypes = 2
40 bt1, bt2, = self.getBondNames()
41 self.Bonds = []
42 for m in range(monomers-1):
43 self.Bonds.extend( [ (2*m,2*m+1,bt1), (2*m,2*m+2,bt2) ] )
44 # Handle the last bond separately, since there is no bt2 to next alkane
45 self.Bonds.append((2*(m+1),2*(m+1)+1,bt1))
46 self.createBondSpec([10000,6309.5])
47 self.Citation = "DOI: unpublished"

Listing 17: Implementation of the polystyrene model. The first two classes specify
the bead types, and the final class specifies the heteronuclear model. Note that the
constructor for this model takes the number of monomers as input.
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1 from hoomd_script import *
2 from raasaft.main import *
3 from raasaft.polymers import *
4 from raasaft.alkanes import *
5 import math
6 context.initialize()
7 C7 = MnMAlkane(C=7,count=42672)
8 PS = Polystyrene(monomers=46,count=294)
9 components = [C7,PS]

10 theBox = setupSimBox(components,elong=1.0,packing=0.7)
11 system = setupSimulation(components,theBox)
12 setCutoff(components,cutoff=20)
13 setCrossInteraction(PS.BBN,C7,kij=-0.01)
14 setCrossInteraction(PS.BCH,C7,kij=0.045)
15 table = initMiePotential(table=True)
16 setPotentialCoeffs(components,table)
17 setAllCrossCoeff(components,table)
18 setupBonds(system,components)
19 Temp = 310*kBby10
20 Pres = 30.0*ConvFromBar
21 all = group.all()
22 mode = integrate.mode_standard(dt=0.001)
23 xml = dump.xml(filename=’ps-init-system.xml’, vis=True)
24 dump.dcd(filename=’ps-init-dump.dcd’, period=1e3)
25 logQuant = [’time’, ’pair_table_energy’, ’pressure’, ’temperature’,
26 ’pressure_xx’, ’pressure_yy’, ’pressure_zz’, ’lx’, ’ly’, ’lz’]
27 analyze.log(filename=’log.dat’, quantities=logQuant, period=1e2, header_prefix=’’)
28 relaxation = integrate.nve(group=all, limit=0.01)
29 run(1e3)
30 relaxation.disable()
31 nvt = integrate.nvt(group=all, T=Temp, tau=0.5)
32 run(5e4)
33 nvt.disable()
34 mode.set_params(dt=0.005)
35 npt=integrate.npt(group=all, T=Temp, P=Pres, tau=0.5, tauP=0.5)
36 npt.set_params(T=310*kBby10)
37 run(5e4)
38 xml = dump.xml(filename=’restart-after-npt-t310.xml’, vis=True, velocity=True)
39 npt.set_params(T=420*kBby10)
40 run(5e4)
41 xml = dump.xml(filename=’restart-after-npt-t420.xml’, vis=True, velocity=True)
42 npt.set_params(T=530*kBby10)
43 run(5e4)
44 xml = dump.xml(filename=’restart-after-npt-t530.xml’, vis=True, velocity=True)

Listing 18: Generating the initial systems with correct temperatures and pressure for the
polystyrene simulations.
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1 from hoomd_script import *
2 from raasaft.main import *
3 from raasaft.polymers import *
4 from raasaft.alkanes import *
5 import math
6 context.initialize()
7 C7 = MnMAlkane(C=7,count=42672)
8 PS = Polystyrene(monomers=46,count=294)
9 components = [C7,PS]

10 system = init.read_xml(filename="restart-after-npt-t310.xml")
11 setCutoff(components,cutoff=20)
12 setCrossInteraction(PS.BBN,C7,kij=-0.01)
13 setCrossInteraction(PS.BCH,C7,kij=0.045)
14 table = initMiePotential(table=True)
15 setPotentialCoeffs(components,table)
16 setAllCrossCoeff(components,table)
17 # dummy tables for logging partial energies
18 ## for d1, keep just polystyrene and its internal cross-interactions
19 d1 = pair.table(width=1000,name="pstpst")
20 setPotentialCoeffs(components,d1,keep=[PS])
21 setAllCrossCoeff(components,d1,keep=[PS])
22 d1.disable(log=True)
23 ## for d2, keep just heptane and no cross interactions
24 d2 = pair.table(width=1000,name="hephep")
25 setPotentialCoeffs(components,d2,keep=[C7])
26 setAllCrossCoeff(components,d2,keep=[])
27 d2.disable(log=True)
28 setupBonds(system,components)
29 Temp = 310*kBby10
30 all = group.all()
31 integrate.mode_standard(dt=0.01)
32 xml = dump.xml(filename=’con-t310.xml’, vis=True)
33 dump.dcd(filename=’dump-t310.dcd’, period=1e4)
34 logQuant = [’potential_energy’, ’pair_table_energy_pstpst’,
35 ’pair_table_energy_hephep’, ’temperature’, ’pressure’,
36 ’pressure_xx’, ’pressure_yy’, ’pressure_zz’]
37 analyze.log(filename=’log.dat’, quantities=logQuant, period=1e2, header_prefix=’’)
38 nvt = integrate.nvt(group=all, T=Temp, tau=0.5)
39 run(40e6)
40 dump.xml(filename="final-t310.xml", vis=True, velocity=True)

Listing 19: Implementation of a production run that takes the initial system from
Listing 18 and continues for 40 million time steps (line 39), providing for an analysis
of equilibrium by studying the polystyrene–polystyrene energies. Note the syntax for
logging partial energies on lines 17-27.
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Abstract

Coarse-grained molecular simulation is a popular tool for modelling simple and

complex fluids alike. The defining aspects of a coarse grained model are the force field

parameters, which must be determined for each particular fluid. Since the number

of molecular fluids important in nature and in engineering processes is immense,

constructing force field parameter tables manually does not scale well. An important

step towards solving this challenge was taken recently by Mejia et al., who proposed a

correlation that provides force field parameters for a fluid given its critical properties.

The force field in question is the successful SAFT-γ Mie approach. Building on this, we

have applied the correlation to more than 6000 fluids, and constructed a web application

which makes this data set easily searchable by CAS number, name or chemical formula.

We call this “Bottled SAFT”. Once a result has been found in Bottled SAFT, code

snippets are provided for simulating the desired substance using our recently released
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“raaSAFT” framework, which leverages established molecular dynamics codes to run

the simulations. For a chemical not found in the database, the correlation can be

run with user-provided critical properties. The code underlying the web application is

written in Python using the Flask microframework; this allows us to write a modern

high-performance web app while also making use of the scientific libraries available in

Python. Physical intuition and experience with molecular simulation will always be

required to obtain sensible simulation results. Bottled SAFT merely aims at taking

the complexity out of obtaining force field parameters for a wide range of molecular

fluids. The web application is freely available at http://www.bottledsaft.org, and the

underlying source code is available on Bitbucket under a permissive license.

Introduction

Coarse-grained molecular simulation has become a popular simulation tool. By coarse-grained

we mean that the particles in a simulation do not represent individual atoms, but perhaps two

to four atoms bunched together into a “bead”. In comparison with atomistic simulation this

trades resolution for speed; by resolving less details of the system we can simulate larger and

more complicated systems at the same cost. But lower resolution is not the only difference:

say there are 10 different chemical elements used in atomistically-detailed models for some

class of molecules. Then the number of coarse-grained bead types that can be constructed

from two, three or four of these elements is 375, and this number grows combinatorically with

the number of elements. Thus coarse-grained models face a greater challenge when it comes

to constructing the required force field parameters for a wide range of molecules.

A step towards solving this problem is offered by top-down coarse-graining methods, of

which the SAFT-γ Mie approach is an example; see Ref. 1 for a thorough review. An overview

of the approach is given in the supporting information. In principle, this approach obtains

the force field parameters by fitting an equation of state to experimental thermophysical

data, and having a one-to-one link between the equation of state and the molecular force
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field. This approach is powerful and does not require any trial-and-error, but still it requires

some amount of computational work. Recognising that the procedure could be simplified

further, Mejía et al.2 developed the “M&M” correlation which takes as input just the critical

properties and the acentric factor of the compound, as well as the desired number of beads

in the molecule, and the liquid density at a reduced temperature Tr = 0.7; if unavailable

this can be estimated from a Rackett-type equation3. Thus the force field parameters for a

given liquid can be computed instantaneously. Furthermore, large tables with the required

critical properties are found in the literature. For the current application, we have used as

a basis the book by Yaws4 which gives data for more than 7800 compounds. Applying the

correlation to this data set, and filtering out models which are outside the correlation range

of application, models for more than 6000 compounds were available. A description of how

the data set was filtered is found in the supporting information.

The recent development of web microframeworks in Python (e.g. Flask) has enabled

scientists to write web applications in a language with many scientific libraries. For building

Bottled SAFT, we have used Flask and its extensions together with the libraries Pandas and

RDkit. By using the Bootstrap CSS extension of Flask, we achieve a modern look which

works equally well on personal computers and mobile devices. We also integrate into the

application the ChemDoodle Web Components JavaScript library, and demonstrate how to

get a molecule drawn by the user into an RDkit representation in the Python code for further

processing. The technology stack is discussed in greater detail in the next section.

In the web application Bottled SAFT, each model is identified by the name, chemical

formula and the CAS number (if it has one). The application lets the user search by either of

these, including searching for parts of a name. Once the user has arrived at the desired model,

Bottled SAFT constructs an input file for raaSAFT5, our open-source Python framework for

easily setting up molecular dynamics simulations with the SAFT-γ Mie potential. raaSAFT

employs widely-used molecular dynamics codes to run the actual simulations; the default is

HOOMD-blue6, but GROMACS7 can also be used. In addition to searching the database,
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users may also run the M&M correlation with custom input, e.g. if they have thermophysical

properties for a compound of interest which is not in the database. Finally, we provide as a

proof-of-concept a page with a molecule drawer integrated with the Python backend. The

name Bottled SAFT stems from the fact that “saft” in German and Scandinavian languages

means “fruit juice”, while the acronym SAFT stands for “Statistical Associating Fluid Theory”.

Implementation

In the following subsections we describe the implementation of the Bottled SAFT web

application, detailing the roles played by the individual components. The address of the web

application is http://www.bottledsaft.org. The code running this web application can be

obtained from the repository at https://bitbucket.org/asmunder/bottledsaft. Executing

the saftflask.py file will run the web application on the local computer, assuming the

dependencies are installed. For a description of how the user interacts with the application,

see the supporting information.

Components of the web application

To build Bottled SAFT we have used Python 3 and we employ the Python packages Flask8,

Pandas9, WTForms10 and RDkit11. We also make use of Bootstrap12 and ChemDoodle

Web Components13. While the Flask framework has a built-in web server which is useful for

testing, this is not usable for production. We use the combination of nginx and uWSGI to

serve the application and to handle caching of content. Using Locust to test the performance,

we find that the application can sustain 70 000 database lookups per hour; see the supporting

information for details. We now describe these pieces and how they fit together in the

application.

Flask is a web microframework written in Python. It forms the backend of our application,

and is responsible for taking user input from forms and computing the appropriate output,
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Figure 1: Left: the /search page implemented by the code blocks in listings 1–3. Right: the
top table displays the properties of the compound. The bottom cards display the resulting
force field parameters, with an image showing the number of beads superimposed on the
molecule. At the bottom is a button for getting the script implementing it in raaSAFT. More
cards for higher bead numbers are below this (not shown). (For higher resolution and more
details please visit the actual webpage.)

for rendering the web pages requested by the user, and for routing a request to the correct

page. Flask provides a RESTful interface14. This means that the user’s web browser (the

client) is responsible for storing the state of the application, in the form of cookies. This

makes it easy to handle many simultaneous requests. In Flask, a request is routed using a

function decorator. Thus we write our data processing as usual Python functions, with one

exception: we cannot use input arguments to the function like we normally would. Instead,

the input data comes either from a global variable, a form variable, or from a session cookie

(i.e. data stored by the client). See the example in listing 1.

To handle form input, we use the Flask extension for the WTForms Python library. This
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Listing 1 A function that handles requests for /search. Both requesting the webpage (GET)
and submitting the form (POST) is handled by this function.

@app.route(’/search’, methods=(’GET’,’POST’))

def search():

# Get the form from code in listing 2.

form = CompoundForm(request.form)

if request.method == ’GET’:

# Render HTML, including form, and return it

return render_template(’search.html’,form=form)

if request.method == ’POST’ and form.validate():

# If user provided CAS number, search for it

if form.cas.data != "":

resFrame = df[df[’CAS’] == form.cas.data]

# Search by name/formula omitted for brevity

# Store result as JSON in a session cookie

session[’result_compound’] = resFrame.to_json()

# Pass user on to the next page

return redirect(’/refine’)

enables e.g. sanitising of user input with a simple syntax. See the supporting information for

further details. An example is shown in listing 2.

Listing 2 Defining the form on the /search page for searching the database.

class CompoundForm(Form):

cas = TextField(’CAS number’,\

description=’E.g. 115-07-1’,\

validators=[Regexp("\d{2,7}-\d\d-\d",

message="Not a valid CAS")]

)

# More fields go here, omitted for brevity

Lookup = SubmitField(’Look up this compound’)

To render web pages, Flask uses the Jinja2 templating engine, which lets us write templates

that are parsed into HTML before they are served. This makes it very simple to have HTML

with dynamic parts. The Jinja2 templating language is object-oriented, meaning templates

can inherit from other templates, and may override functions they have inherited. In the

example in listing 3, the template inherits from the parent "saftstyle.html" template, which

defines layout, fonts etc. The page heading and text is standard HTML, and the template

then inserts the form provided as input to render_template() in the final line of listing 1.

In order to make the web application work and appear consistent across both mobile devices
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and PCs, the popular Bootstrap12 frontend framework is employed. For more descriptions

of this and other implementation details, see the supporting information. The final HTML

template which renders the search page is shown in listing 3.

Listing 3 The template which is rendered to produce the HTML file for /search.

{% extends "saftstyle.html" %}

{% block content %}

<div class="container">

<div class="row">

<div class="col-md-10">

<h2>Please enter the compound you want</h2>

<p class="lead">

Please provide one or more of these search

terms. If you specify more than one, the

CAS number will be tried first, then the

name, and finally the formula.

</p>

{{wtf.quick_form(form,form_type=’horizontal’,

button_map={’submit_button’: ’primary’})}}

</div>

</div>

</div>

{% endblock %}

A final element in Bottled SAFT is the ChemDoodle molecule drawer which is integrated

through JavaScript code that sends the drawn molecule back to the Python code. For details

see the supporting information.

Results and Discussion

To demonstrate how Bottled SAFT enables the study of a vast number of complicated fluid

systems, we consider the ternary mixture of sulfolane, octane and benzene. This system

has important applications in the chemical processing industry, where sulfolane is used for

liquid-liquid extraction of aromatics during petroleum refinement. Sulfolane is also used to

purify natural gas in the sulfinol process. The sulfolane + octane + benzene system has a

liquid-liquid phase split where an octane-rich phase and a sulfolane-rich phase are formed,

with the benzene soluble in both phases.
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To be able to predict the two liquid phase compositions for the ternary system and

subsequently compare the results with experiments, we consider the system at a temperature

of 403.15 K, atmospheric pressure, and with an overall composition of 40 % sulfolane, 40 %

octane and 20 % benzene (all in mole percent). Experimental results for the two liquid phase

compositions at this system state are available due to Lee and Kim 15 . Models for this system

were obtained from Bottled SAFT; for details see the supporting information.

The system was simulated using a 1:1:3 elongated simulation domain, such that the

interfaces will form along the two shorter (x and y) directions. The system contains

8000 molecules of benzene, 16 000 molecules of octane and 16 000 molecules of sulfolane,

corresponding to a total of 752 000 atoms. The simulation was performed first briefly (0.1 ns)

in the NpT ensemble to obtain the desired temperature and pressure, and then for 40 ns in

the NV T ensemble to obtain equilibrium between the two liquid phases that spontaneously

separate. Running on a single desktop-class GPU (an Nvidia GTX 970) the simulation took

24 hours. The molar fractions along the elongated (z) direction, together with a snapshot

from the simulation, are shown in figure S1 in the supporting information. To compare with

experiments, the bulk compositions obtained are plotted in a ternary diagram together with

the experimental results from15, figure 2, where excellent agreement is seen.

Conclusions

Coarse-grained molecular simulation is a powerful tool, but requires a large number of force

field parameters in order to cover the chemical space interesting for scientific and engineering

applications. With the SAFT-γ Mie force field, a top-down approach to coarse-graining, we

can compute force field parameters directly from the critical properties of the compound in

question, by use of the M&M correlation. For the web application demonstrated here, Bottled

SAFT, we have applied the correlation to a large database of critical properties. This gives

Bottled SAFT a database with parameters for over 6000 compounds that can be simulated.
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Figure 2: A ternary phase diagram, showing the experimental results by Lee and Kim 15

(black points) connected with tie-lines (dark gray), and with a thin gray curve as a guide
to the eye showing the two-phase region. The blue open point in the middle is the initial
composition in the simulation, and the two solid blue points are the compositions of the two
liquid phases which separate. Note that the blue tie-line obscures the gray tie-line for these
points.
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To facilitate running molecular dynamics simulations with the resulting parameters, the user

can download a script implementing the result in our raaSAFT framework. The end result is

an unprecedented ease-of-use up to the point of running an initial simulation. From there on,

the usual process of running molecular dynamics applies.
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The SAFT-γ Mie approach

In a top-down method, the force field parameters are regressed from thermophysical properties

of the molecule in question. With the SAFT-γ Mie approach the top-down property comes

from a one-to-one correspondence between the parameters of the molecular force field and

a corresponding analytical equation of state. This means that fitting the equation of state

to experimental data, e.g. to vapour and liquid densities as a function of temperature, fixes

the parameters of the molecular force field. The key point, however, is that predicting

thermodynamic and transport properties from molecular simulations using these force field

parameters gives accurate quantitative results which are in good agreement with both the

equation of state and the experimental measurementsS1.
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To be specific, the force field for a given molecule is given by a chain of tangentially

bonded isotropic Mie beads. The Mie potential is

V (r) =C(n,m) ε
[(σ
r

)m
−
(σ
r

)n]
, (1)

C(n,m) =

(
m

m− n

)(m
n

)n/(m−n)

, (2)

of which the commonly used Lennard-Jones potential is the special case m = 12, n = 6.

Furthermore, it can be shownS2 that the two exponents are related to each other, hence

in this work we consider n = 6 as fixed. Leaving the other exponent m free allows for an

interplay between harder and softer potentials for different models that cannot be achieved if

one sticks with the Lennard-Jones form.

Tabulating and filtering results from the correlation

To construct the database underlying the web application, the M&M correlation was applied to

each line in the table provided in Ref. S3. The results were loaded into a Python program using

the Pandas libraryS4,S5, with all data in a single Pandas DataFrame. Once this DataFrame

was inspected, it was seen to be necessary to filter out results that were unphysical. Several

criteria were applied in the filtering:

• Models where the acentric factor ω was not given in the table in Ref. S3 were excluded.

• Models where σ was less than zero were excluded.

• Models with m > 40 were excluded, since these are known to give unphysically high

freezing temperaturesS2.

• Models with m < 7 were excluded, since the potential loses the repulsive core as m→ 6.
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Implementation details

To handle forms, Bottled SAFT employs the WTForms library. WTForms provides many

useful features, not least of which is input sanitation. For instance, the return type of a form

input field is specified e.g. as a float or a string, and this is enforced by the library. We may

also write functions or regular expressions for validating input. In Bottled SAFT we use a

regular expression to check that the user input is a valid CAS number. If a user inputs an

invalid CAS number, the web page displays an error message “Not a valid CAS” when the

user tries to submit the form.

While producing HTML from templates is the purpose of the Jinja2 templating engine,

we may also use it to build other text files. In Bottled SAFT we use Jinja2 to build the

Python snippets that implement code for simulating the result with raaSAFT. This means

we can write the boilerplate part of a Python script as a template and have Jinja2 put in the

dynamic parts of the script at the users request. This is a very flexible method of dynamically

building scripts or input files for the user.

To style the HTML, Bootstrap is used through the appropriate Flask plugin. Bootstrap

is a responsive framework, meaning that the page layout changes according to the size of the

users display. Since Bootstrap is widely employed on the web, the layout is familiar to users.

With Bootstrap the layout is specified in a 12× 12 grid of rows and columns, and we add

<div> tags to our template to specify the layout of our content relative to this grid, as shown

in listing 3 in the paper.

In Bottled SAFT the user input is stored to a database in two cases. The first is if the

user is running the correlation for a custom compound, and has provided a reference to the

literature for the values used. The second is if the user provides both a refined value for the

liquid density at 0.7×Tc (as opposed to using the Rackett equation estimate) and a reference

to the literature for this. The values are stored in a separate write-only database using the

HDFStore() mechanism from the Pandas library. The user is informed clearly about this

storage on the webpage.
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Using Bottled SAFT

When the user accesses http://www.bottledsaft.org they come to the front page. At the top

of this page, three cards display short information and links to the three different components:

search the database, run the correlation with custom input, or draw a molecule with the

sketcher. Below this, a brief review of the SAFT-γ Mie approach is given, with references to

the literature.

When the user clicks "Search the bottle", the /search page is rendered from the code

shown in the paper. When searching by formula or name, multiple results may be returned.

The next page then displays a drop-down list where the user can select the desired compound.

Once a unique compound has been selected, the user is given the option of refining the

model, by entering a more accurate value for the liquid density at a reduced temperature

Tr = 0.7. As mentioned, this value is otherwise estimated from a Rackett-type equation.

Once the result has been refined, or the user has decided to use the value from the Rackett

equation, the result is presented. A screenshot of this is shown in the paper. The figure

of the molecule is linked in from the NIH Chemical Identifier Resolver in the form http:

//cactus.nci.nih.gov/chemical/structure/<INSERT_CAS>/image.

Once one or more models are obtained, they can be used in molecular dynamics simulations.

When several models are used together in a simulation, the cross-interaction between beads of

different type can be obtained from the Lafitte combination rulesS6. In these there is one free

parameter kij, which as a reasonable starting point may be set to zero. When possible, the

value of kij should be tuned by comparing the simulation results to experimental values for a

macroscopic property, such as solubilities, interfacial tension, vapour-liquid compositions, etc.

Performance testing

In order to test the application performance under load we employ the Locust framework,

which is written in Python and can simulate millions of users accessing the application. The
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testing was done over gigabit Ethernet to avoid the network affecting the result.

To use Locust we write a small Python script that defines the tasks that should be tested.

For testing Bottled SAFT, we ran several tasks with different weights to approximate real

world load. These tasks included visiting the front page, searching for a random CAS number

from a list of 2000 valid ones, running the correlation with custom input, etc. Initial testing

indicated that the application running on a single CPU core could serve ∼ 7000 database

lookups per hour and ∼ 70 000 visits to the front page per hour. To increase the lookup speed,

profile-guided optimisation was performed of the search routines in the search() function,

and a ∼ 10× speedup was obtained for the various Pandas function calls by using NumPy

arrays instead of Pandas dataframes as input to these lookup calls. To speed up displaying

the front page, the web app runs behind nginx and uWSGI instead of Flask’s built in server,

which increases the speed by an order of magnitude. In the end, the application can sustain

∼ 70 000 database lookups per hour and ∼ 800 000 requests per hour for the front page.

This was deemed sufficient. Further increases to the lookup speed could be obtained by using

more than a single CPU core. Further increases to the front page loading speed could be

obtained by rendering its template to a static HTML page and serving this with only nginx.

Details concerning the ternary liquid-liquid system

The models for octane and benzene in Bottled SAFT are the same as those given in Ref. S7,

where improved values for the liquid density at Tr = 0.7, ρ0.7, have already been used in the

correlation. The octane model has three beads per molecule, and the benzene model has two

beads per molecule. For sulfolane, we searched for it in Bottled SAFT, a result was found,

and the refined value for the liquid density ρ0.7 = 8343.7 mol/m3 was entered. The three

bead sulfolane model given as a final result by Bottled SAFT was selected, and the raaSAFT

script given was downloaded and used, together with the octane and benzene models already

found in raaSAFT.
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The cross-interaction between the two main components of each liquid phase, sulfolane

and octane, was tuned to match approximately the mutual solubilites found in experiments

performed at 373.15 KS8. The tuning gave kij = 0.07 for use in the Lafitte combination rules.

Density profiles were computed from the simulation. These are shown in figure S1, together

with a snapshot from the simulation showing a side view of the system.

Figure S1: Top: side view from the molecular simulation. Bottom: molar fractions plotted
along the elongated direction of the simulation box. The sulfolane-rich phase is located in
the middle, and on both sides the octane-rich phase is found. Note that periodic boundary
conditions are used.
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Abstract

The interface between two liquids is fully described by the interfacial tension only for very pure liquids. In
most cases the system also contains surfactant molecules which modify the interfacial tension according to
their concentration at the interface. This has been widely studied over the years, and interesting phenomena
arise, e.g. the Marangoni effect. An even more complicated situation arises for complex fluids like crude
oil, where large molecules such as asphaltenes migrate to the interface and give rise to further phenomena
not seen in surfactant-contaminated systems. An example of this is the “crumpling drop” experiments,
where the interface of a drop being deflated becomes non-smooth at some point. In this paper we report
on the development of a multiscale method for simulating such complex liquid-liquid systems. We consider
simulations where water drops covered with asphaltenes are deflated, and reproduce the crumpling observed in
experiments. The method on the nanoscale is based on using coarse-grained molecular dynamics simulations of
the interface, with an accurate model for the asphaltene molecules. This enables the calculation of interfacial
properties. These properties are then used in the macroscale simulation, which is performed with a two-phase
incompressible flow solver using a novel hybrid level-set/ghost-fluid/immersed-boundary method for taking
the complex interface behaviour into account. We validate both the nano- and macroscale methods. Results
are presented from nano- and macroscale simulations which showcase some of the interesting behaviour
caused by asphaltenes affecting the interface. The molecular simulations presented here are the first in the
literature to obtain the correct interfacial orientation of asphaltenes. Results from the macroscale simulations
present a new physical explanation of the crumpled drop phenomenon, while highlighting shortcomings in
previous hypotheses.

Keywords:

1. Introduction

Interfacial tension is a remarkable phenomenon, in that the tumultuous interactions of fluid molecules of
different types and shapes give rise to macroscopic interfaces being not only smooth and stable, but indeed
well-described by a single material constant, viz. the interfacial tension γ. This holds true for an impressive
number of fluid molecules that may be polar or non-polar and may have different topology and size. It is by
adding a third phase to the system, this phase being interfacially active either by virtue of amphiphilicity or
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through being poorly soluble in either fluid, that more complicated dynamics arise. The simplest case is
that of amphiphilic surfactant molecules, where Marangoni [1, 2] first described the effects of nonuniform
interfacial tension, and Gibbs in his seminal treatise [3] was the first to consider the effective elasticity of
the interface imparted by the surfactants. The first mention of the deliberate use of surfactants to alter
the interfacial properties of liquids is, however, much earlier. In book two of Pliny the Elder’s encyclopedic
Naturalis Historia [4, 5] (77 AD) it is mentioned that divers would release small oil drops from their mouth,
to smooth the surface of the sea and thus increase the amount of light transmitted down to them.

Even though surfactants give rise to richer dynamics, their effects can be modelled using simple equations
dependent on macroscopic parameters, using the approaches developed by Gibbs [3], Pockels [6], Szyszkowski
[7], Langmuir [8] and Frumkin [9] (among others); see Levich and Krylov [10] (or the book by Levich [11]) for
a good introduction. Apart from studies using these approaches for systems with low surfactant concentration,
there is also a rich field of study into the various phases and phase transitions in the three-component systems
when the number of surfactant molecules becomes comparable to the number of fluid molecules. However,
we will not discuss this in further detail here. In the end, the effect of surfactants at low concentration is an
interfacial tension which may vary along the interface, according to the variation in interfacial concentration
of the surfactant. The relation between concentration and interfacial tension is given by e.g. a Langmuir
equation of state.

In more recent years, as experimental techniques have increased in sophistication and soft matter has
come to be a field of its own, attention has also turned to larger molecules at fluid interfaces. These larger
molecules may originate from biological systems, being e.g. proteins or lipids, or they may originate from
complex fluids such as crude oil, for instance asphaltenes. These molecules cause effects beyond those seen in
surfactant systems, e.g. the crumpling upon deflation of red blood cells [12] or asphaltene-covered drops
[13, 14]. It follows that something more than a (possibly varying) interfacial tension appears in these systems.
We shall focus our attention here on asphaltenes, and will use this term rather than “large molecules” for the
remainder of the paper, but the method remains general.

Let us then consider the asphaltenes. Having earned a reputation as the “cholesterol of crude oil”, this
component causes many problems in petroleum extraction, processing and refinement. As the name suggests,
asphaltenes are similar in appearance to asphalt, and are found in large quantities in bitumen, but are
present to some degree in most crude oils. The first reported discussion of asphaltenes is by Boussingault [15]
who coined the term in 1836 (see Hoepfner [16, Chapter 1.1] for a historical review) but there is still today
disagreement about their properties. Indeed, there was debate in the literature [17] up until recently on what
their average molecular weight is. Furthermore, the precise definition of what constitutes an asphaltene is
still not agreed upon. A commonly used operational definition is that it is the part of crude oil which is
soluble in toluene but insoluble in n-heptane, as codified e.g. in the ASTM D 6560 – 00 standard. (From
here on, we will denote n-heptane simply by heptane; branched alkanes are not considered in this work.) But
this definition in terms of solubilities is more a description of how to isolate asphaltenes in the laboratory, as
opposed to a definition of what they are.

The case is not clearer from the molecular perspective, as advanced experimental techniques such as
neutron scattering or high-resolution mass spectrometry [18] have shown that there are thousands of different
empirical formulae in a given asphaltene sample. Samples from different oil fields around the world have
different asphaltene compositions. Furthermore, since asphaltenes have of the order of 50 carbon atoms,
even for a single empirical formula the number of isomers is in the trillions. One may compare asphaltene
molecules to snowflakes; no two are exactly the same. It has been argued that asphaltenes are among the
most complex materials ever studied [16].

The effect of asphaltenes on liquid-liquid interfaces is also complicated. One such effect is that they make
it hard to separate emulsions of water and crude oil. See e.g. Jones et al. [19], Gafonova and Yarranton
[20], Sjöblom [21], Kokal [22], Kilpatrick [23] for reviews on water-in-crude oil emulsion stability. Emulsion
stability has been directly linked to the properties that the asphaltenes impart on the interface [24, 25]. The
asphaltenes give rise to interesting phenomena such as the previously mentioned crumpled drops reported by
Yeung et al. [13], Pauchard et al. [14].

In the present paper we report on our development of a multiscale method that enables the simulation of
liquid-liquid interfaces covered with asphaltenes (or other large molecules). This multiscale method is loosely
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coupled, with equilibrium simulations at the nanoscale providing parameters for dynamic simulations at the
macroscale. Many classifications exist of multiscale methods, some of which have a much tighter coupling
between the scales than in the present approach, see e.g. [26, 27] for reviews of multiscale methods.

The outline of this paper is as follows. In Section 2 we review the theory and present the methods used
on the nanoscale and the macroscale, in particular the SAFT-γ Mie approach to coarse-grained molecular
dynamics simulation (Section 2.1), and the hybrid level-set/ghost-fluid/immersed-boundary method developed
in this work for simulation of two-phase flows with complex interfaces(Section 2.4). The latter method is
summarised in Section 3. Subsequently, in Section 4, we validate these methods using standard test cases for
interface-capturing methods (Section 4.1), and by comparing the predictions from molecular simulations to
experimental results (Section 4.2). We then present the results obtained with the method in Section 5, discuss
the implications of these results in Section 6, and finally give some concluding remarks in Section 7.

2. Theory and methods

2.1. Nanoscale: theory
The complicated behaviour of liquid-liquid interfaces contaminated with asphaltenes is caused by the

interactions between the molecules at the interface. It is thus tempting to try and explain the interfacial
phenomena by modelling the molecular interactions. These are, in turn, also complicated, and one is forced
to make simplifications. On the most basic level, many-body quantum mechanics is what lies behind the
nature and interactions of molecules. Fortunately, on the scale of interactions between large molecules, one
may develop an effective theory which is much simpler. This theory has roots going back to the dawn of
thermodynamics, when pioneering efforts were made to understand how the microscopic nature of fluids could
explain their behaviour. The works by Maxwell, Boltzmann, van der Waals, Lennard-Jones, Mie, Chapman,
Engskog and others paved the way to our understanding of simple fluids from the molecular perspective; see
e.g. Chapman et al. [28] for an overview. For less simple fluids, it was not until the advent of computer
simulations that the molecular perspective was able to provide some insights.

One of the major challenges in simulating the behaviour of chemicals comes from the need for good models
that can accurately predict physical and chemical properties. For many simple substances, experimental
data may already be available or easy to obtain. However, many interesting systems contain one or several
chemically complex species, e.g. polymers, surfactants, and our asphaltenes. The quantitative prediction of
the thermodynamic properties of such systems, especially their phase behaviour and mesoscopic structure, is
very challenging. Simple equations of state are typically unable to make good predictions of the properties
of structured fluids. As this much is clear, one must resort to computer simulations of these more complex
fluids.

Many molecular simulation methods rely on force fields or other empirical parameters that are fitted to
reproduce the properties of particular classes of compounds, or to a particular large data set. These methods
may have trouble predicting the properties of complex mixtures. Truly ab initio prediction, using electronic
structure methods, is possible only for very small systems and processes spanning very short time scales, and
cannot be used directly to predict the properties of structured fluids or complex materials. It is possible to
construct models for complex systems by first building models for the different (smaller) component parts
using more predictive methods, and then eliminating the unimportant degrees of freedom.

This leads to a coarse-grained description that can be used to predict properties of more complex materials.
However, it is time-consuming to generate the data for the smaller building blocks, and it is often not clear
what the best way is when coarse-graining out the smaller/faster degrees of freedom. An alternative approach
is to construct a coarse-grained model directly using experimental data for the building blocks (“top-down”
coarse graining) – in this case the evaluation of the residual when performing the fit depends on a relatively
costly simulation, making the cost of fitting very high.

Recently, however, an alternative approach has been successfully used to fit coarse-grained models to
thermodynamic data without using simulations, but rather using statistical mechanical perturbation theory.
This novel approach, the SAFT-γ method, allows for the construction of coarse-grained models suitable for
molecular simulation of complex fluids using available experimental data for the constituent blocks. The
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SAFT equation of state is a perturbation approach based on a well-defined Hamiltonian. The reader is
referred to several reviews on SAFT that describe the various stages of its development, up to the current
SAFT-γ Mie approach [29, 30, 31, 32, 33, 34]. In the current approach, a Mie [35] potential gives the forces
between the coarse grained beads in the method,

V (r) =C(n,m) ε
[(σ
r

)n
−
(σ
r

)m]
, (1)

C(n,m) =

(
n

n−m

)( n
m

)m/(n−m)

, (2)

where r is the distance between a pair of beads, and ε and σ are the adjustable parameters relating to the
energy and distance scales. Each bead typically corresponds to 2–4 atoms heavier than hydrogen, together
with the hydrogen atoms attached to the heavier atoms. Referring to Figure 1, the parameter ε corresponds
to the depth of the potential well, and σ to the distance r where the potential switches from being repulsive
to being attractive. Thus σ is taken to correspond to the bead “diameter” for visualisation purposes. Note
that in the n→∞ limit, V (r) becomes a hard-sphere potential with diameter equal to σ.

It is important to note that in the present approach, the attractive exponent m is fixed at the value of six,
but the short-range repulsion exponent n takes on different values reflecting the average softness or hardness
of the potential for a given molecule. The fact that m = 6 is fixed is due to the observation that these two
exponents are not independent parameters [36], so fixing one simplifies the parameter space considered. The
effect of varying n is illustrated in Figure 1 where the potential is plotted for n ranging from 8 to 24 in
steps of 2. The n = 12 or Lennard-Jones potential is shown in a stronger orange colour. It is seen that
allowing n to vary allows for using softer or harder potentials for beads representing different molecules,
which is something that cannot be achieved in many other approaches which rely on only the Lennard-Jones
potential.
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Figure 1: The Mie (m,6) potential shown for ε = 200 (in arbitrary units) and n varying from 8 to 24, as a function of the
dimensionless distance r/σ. The Lennard Jones (12,6) potential is shown in a stronger colour. In the corner, the two beads are
illustrated with a distance r and a “diameter” σ.

There are several methodologies proposed in the literature to obtain parameters for coarse grained
models [37] . Most common approaches start from a fine-detailed model, usually an atomistically-detailed
characterization and integrate out degrees of freedom which are deemed unessential [38]. This procedure,
known as a bottom-up approach, inevitably discards information and produces potentials which can rarely
be used in states points other than those used to develop them.

A pathway to circumvent these problems is to employ a top-down or thermodynamic approach, where
the force field of the coarse grained sectors is an effective or average potential capable of reproducing
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macroscopic thermodynamic properties. These top-down coarse grained models provide by their own nature
parametrizations which are usually robust, representative or transferrable. Two notable examples are
the MARTINI force field [39, 40], which employs a group contribution approach targeted at biomolecular
simulations where uniform-sized coarse grained beads have been fitted to water/octanol solubilities.

In a group contribution approach, molecules which have different parts with different properties are
modelled using combinations of beads which represent each individual part. As an example, octanol could
be modelled with one bead that represents the head with the alcohol group, based on the thermophysical
properties of ethanol, and the other beads which represent the aliphatic tail could be based on the properties
of hexane.

A more refined coarse-grained model is the SAFT-γ force field [41], which employs an analytical equation of
state as the bridge between macroscopic thermophysical properties and the underlying intermolecular potential
that can effectively generate them. The most direct method of parametrization of coarse grained segments and
chemical moieties is to use the appropriate version of the SAFT equation of state to fit experimental phase
equilibria data, e.g. saturated liquid densities, vapour pressures, etc. essentially equating the free energy of a
coarse grained model to that obtained from the analysis of experimental data [42, 43, 33, 44].

However, if one recognizes the conformal nature of the underlying Mie potential, one can formulate
the equation of state in terms of a corresponding-states model and can express the properties of any non-
associating fluid in terms of a finite set of defining properties: a critical temperature, the acentric factor
and a well-defined density. This approach [45] greatly simplifies the parameter estimation without detriment
to the robustness of the methodology, as exemplified by the predictions of adsorption [46], transport and
interfacial properties [41] which are not part of the original fit, and the description of complex molecules
such as surfactants [47, 48], resins and asphaltenes [49]. This approach is used to construct the force field
parameters used in this work. The parameters for different coarse-grained beads are given in Appendix
B.

2.2. Nanoscale: numerical methods
Once the parameters for the intermolecular force field have been established for all molecules under

consideration, one can proceed to study the system. Since only the two-bead problem has an analytical solution,
a numerical approach is required for any realistic system. There are two fundamental approaches, namely
Monte Carlo methods and Molecular Dynamics (MD) methods. The ergodic hypothesis asserts that these
two are the same, i.e. that ensemble averages and time averages give the same answers. Molecular dynamics
is the approach used in this work, so we will not discuss Monte Carlo methods in any detail.

In molecular dynamics, the equations of motion are solved to evolve the system in time from some initial
state. The equations of motion are Newton’s second law for each of the N beads in the system, with the
force given by the Mie potential in the approach used here. Denote by xi the position of bead i with mass
mi. The equations of motion are then

∂2xi
∂t2

=
∑

j 6=i

F (|xj − xi|)
mi

xj − xi
|xj − xi|

(3)

where the forces are assumed to be conservative, and depending only on the distance between two beads.
Thus the forces are given by a potential V (r). This must be specified; a Mie potential is used here, as
discussed previously. This potential is short-ranged, so a cutoff rcut is specified, beyond which V (r) = 0.
The equations of motion are solved numerically using a symplectic integration method, since this ensures the
simulation is stable over long times and that the energy drift is very small. An example of such a method
is the velocity Verlet method. Here, the velocities vi and positions xi are stored at each time step n. The
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system is integrated forward in time to the time step n+ 1, with a step length ∆t, according to

v
n+1/2
i = vni +

∑

j∈N(i,n)

∆t

2m
F (|xnj − xni |)

xnj − xni
|xnj − xni |

(4)

xn+1
i = xni + v

n+1/2
i ∆t (5)

vn+1
i = v

n+1/2
i +

∑

j∈N(i,n+1)

∆t

2m
F (|xn+1

j − xn+1
i |)

xn+1
j − xn+1

i

|xn+1
j − xni |

(6)

Here N(i, n) is the neighbourlist of bead i, i.e. the indices of all beads which are within the cutoff distance
of bead i at the time step n. Using a neighbourlist dramatically speeds up the algorithm, but comes at a
storage cost; this data structure accounts for the bulk of the memory used by a molecular dynamics code.
The fact that all interactions are local makes the method well-suited for parallelisation, both on classical
CPUs and on accelerators such as graphical processing units (GPUs).

The beads are contained in a virtual simulation box, typically with periodic boundary conditions. The
initial state must be generated somehow. In the present work we start from random initial conditions at a
low density. To go from this initial state to the desired system state, e.g. a temperature T and a pressure p,
the system is evolved in the isothermal-isobaric or NpT ensemble, where a thermostat and a barostat are
employed to adjust the bead velocities and the simulation box size, respectively, to obtain the desired system
state. Once this state is reached, the simulation box size is fixed and the system is subsequently evolved in
the canonical or NV T ensemble. The reader is referred to standard textbooks on molecular dynamics, e.g.
by Allen and Tildesley [50], Frenkel and Smit [51], for further details.

While the first molecular dynamics simulations [52, 53] were limited to two-dimensional systems and
simple potentials, the results obtained provided fascinating new insights into the molecular world. With the
exponential increase in computing power since the 1950’s, molecular dynamics simulations today have probed
systems with hundreds of billions of atoms [54], or entire virus capsules [55], using large high-performance
computing systems.

Combining a coarse-grained approach to molecular dynamics, such as the SAFT-γ Mie force field used
here, with the power of general purpose GPUs, we obtain speedups of more than three orders of magnitude
over atomistically detailed simulations running on usual CPUs [56]. This means the present simulations,
even though they evolve systems with about one million atoms for hundreds of millions of timesteps in total,
are run on computational resources that can fit inside a desktop computer. The simulations reported here
are run in parallel typically on two or four GPUs; separate simulations are run simultaneously on different
nodes of a GPU cluster, consuming in total 8000 GPU-hours during this study.

For coarse-grained molecular dynamics simulations we employ our raaSAFT code [56], a framework for
simulations using the SAFT-γ Mie force field. raaSAFT leverages existing molecular dynamics codes to
do the heavy lifting. Here HOOMD-blue [57, 58] is used, a modern GPU-first code that shows excellent
performance and scalability on multiple GPUs.

HOOMD-blue takes a conservative approach to molecular dynamics, and uses algorithms that do not
sacrifice accuracy for speed. The simulations are run in the isothermal-isobaric (NpT ) or the isothermal-
isochoric (NV T ) ensemble, and the system is evolved in these ensembles using the Martyna-Tobias-Klein
approach [59]. This approach gives dynamics that are provably time-reversible and energy-preserving. In
the light of this, it is interesting how the simulations show time-irreversible results, such as the clustering
of asphaltenes. This is a variant of Loschmidt’s paradox. Recent work by Hoover et al. [60, 61, 62] might
provide some insight into the explanation of this, but so far it appears to remain an open question.

When systems with immiscible fluids are considered, it is of interest to compute the interfacial tension.
To do this, the simulation box is elongated in one direction, and this asymmetry causes the formation of
interfaces along the two shorter dimensions of the box, since this minimises the free energy of the interfaces.
Note that since periodic boundary conditions are employed, it is a topological impossibility to have an odd
number of interfaces between two liquids, so the desired system state has two slabs of liquid which are in
contact at two interfaces.
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For this system, we may compute the interfacial tension from the integral of the anisotropy in the diagonal
elements of the stress tensor, σii, along the elongated box dimension. To be precise, assuming the box is
elongated in the z-direction where the box dimension is Lz, the interfacial tension is given by

γ =
Lz
2

∫ Lz

0

(
−σzz +

1

2
(σxx + σyy)

)
dz. (7)

This is referred to as the mechanical route to the interfacial tension, and goes back to Kirkwood and Buff [63].
For a comparison of this with alternative methods, see e.g. [64]. Note that the integral here can be split into
three parts, so molecular dynamics software such as HOOMD-blue typically compute the values

pxx =

∫ Lx

0

−σxxdx, (8)

and similarly for pyy, pzz, and refer to these as the diagonal components of the “pressure tensor”. From
these three numbers we may compute the interfacial tension using Equation (7). Since molecular dynamics
simulations are inherently noisy, in particular for properties related to the pressure, γ computed from this
expression for a single point in time will fluctuate significantly from one time step to the next. To obtain a
reliable value for γ, time averages must be employed.

To also compute the elasticity of the interface, we follow refs. [65, 66], where the elasticity Ka is computed
from the change in interfacial tension ∆γ (as computed from Equation (7)) when the interfacial area is
changed from A0 to A, given by the expression

Ka =
∆γ

A/A0 − 1
. (9)

These two parameters, γ and Ka, are subsequently employed as material parameters in the macroscale
simulations.

2.3. Macroscale: theory
The flow inside and around water drops in oil behaves according to the incompressible Navier-Stokes

equations. For a derivation of these and a general overview, the reader is referred to standard textbooks
e.g. by Batchelor [67] or Lamb [68]. The incompressible Navier-Stokes equations for single-phase flow
read

ρ

(
∂u

∂t
+ u · ∇u

)
= −∇p+ ∇ · (µ∇u) + ρf , (10)

∇ · u = 0, (11)
u(x, 0) = u0(x), (12)
u∂Ω(t) = g(t), (13)

where ∂Ω is the domain boundary and g(t) is the velocity boundary condition. The initial condition is u0.
The viscosity µ and the density ρ are assumed to be constant throughout the domain. The velocity is denoted
by u and the pressure by p, and ρf is a body force such as gravity. This can be extended to handle two fluid
phases, with different viscosities and densities. Let Ω1 and Ω2 denote the domains filled with fluid 1 and fluid
2, respectively and Γ denote the interface separating the two fluids, i.e. we have Ω = Ω1 ∪ Ω2, as illustrated
in Figure 2.

The tension on Γ can be modelled as a contribution to Equation (10), localised at the interface. In this
work we consider one-dimensional or axisymmetric two-dimensional interfaces, and in both cases the interface
is parametrised as a one-dimensional curve xI(s). In the axisymmetric case, this curve is swept around the
azimuthal angle φ to form the two-dimensional interface. The interfacial tension has two contributions in the
axisymmetric case, Ts and Tφ, both of which may vary as functions of the position s along the interface. In
the case of a one-dimensional interface, Tφ = 0.
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Ω1

Ω2

Γ

Figure 2: Two fluid phases, the inner fluid 1 in Ω1 and the outer fluid 2 in Ω2, and the interface Γ separating them.

The interfacial force contribution to the body force in Equation (10) is then

fs(x, t) =

∫

Γ

(
∂Ts
∂s

t + Tsκsn + Tφκφn

)
δ(x− xI(s))ds, (14)

where ∂Ts

∂s is the derivative of the meridional tension along the interface, t is the interface tangent, κs, κφ are
the curvatures, n is the principal unit normal vector, and δ is the Dirac delta function. We assume here that
the interfacial curvature is small enough that the interface is approximately flat on the microscopic level. This
is a good approximation for drops with radius R� 1nm [69], which does not pose a significant restriction.
The interfacial tension for pure fluids is then dependent just on the temperature and the pressure.

In Figure 3 we illustrate the tensions for the axisymmetric case, together with the two coordinate systems
employed, on a spherical drop. Note that the drop is not restricted to being spherical, so none of the
coordinate systems are spherical, and s is an arc length, not an angle. The line parametrised by s, which
represents the drop surface, actually lies in the (r, z) plane, but in the figure the line is rotated out of the
plane in order to avoid clutter. Since we assume axisymmetry, neither of the coordinate systems will have
points discretising the φ-direction in the numerical methods.

On the right-hand side of this figure, the tensions Ts and Tφ are indicated as line segments in the directions
of strain, using varying red and green colours, respectively. Both tensions may vary along the s-direction, but
are constant in the φ-direction since axisymmetry is assumed. As is indicated in Equation (30) in the next
section, only the variation in Ts can give rise to a tangential force. From the figure we understand this, since
any non-normal component of the force caused by Tφ would have to be either in the azimuthal direction,
violating the assumption of axisymmetry; or in the meridional direction, but this force would be binormal to
the strain line, which is not possible.

The description of an interface between two fluids can be as simple as a constant interfacial tension
Ts = Tφ = γ, or more complicated due to molecules which are interfacially active. In any case, the formation
of the interface gives an increase in the energy of the system, and we denote the energy density of the interface
by w. It should be noted that while the interfacial energy (in J/m2) and the interfacial tension (in N/m) are
identical for the case of simple fluids, this is not the case for an interface with a more complicated interface
which has elastic properties; see e.g. [70] for details.

Following [71], we write w as a function1 of the interfacial deformations λs and λφ,

w = w(λs, λφ). (15)

1w is technically a functional; see e.g. [72] for a more mathematical formalism.
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z

s

φ

Tφ

Ts

Figure 3: Illustration of the two coordinate systems employed, and the tensions on the drop. The blue grid illustrates the (r, z)
coordinate system, where a structured grid is employed and the Navier-Stokes equations are solved. The grey sphere illustrates
the shape of a drop. On this drop, the coordinates s, φ are used. Note that s is an arc length, not an angle. On the right, the
tensions are illustrated with red (Ts) and green (Tφ) line segments. The varying colours indicate varying tensions. Note that
while both tensions vary from point to point, only Ts varies in the direction parallel to the corresponding strain λs, while Tφ is
constant in the direction parallel to λφ (due to axisymmetry).

These deformations refer to the length of an interfacial element li at time t relative to the undeformed length
at t = 0, i.e. λs = li(t)/li(0). The interface will tend to deform such that the energy is minimised, while
maintaining a constant volume inside. The minimal energy shape depends on the form of w; for the familiar
case of constant interfacial tension the minimal energy shape is a sphere.

We proceed to derive the general tensions for an interface which is described by a constant interfacial
tension γ and a Hookean elasticity Ka, following again [71]. The bending rigidity of the interface is assumed
to be zero; a non-zero bending rigidity may be considered in future work. As noted previously, we parametrise
the interface using the coordinate s along the interface in the (r, z) plane. All quantities in the system are
constant along the azimuthal direction φ. Under these assumptions the energy w is given by

w =
1

2

[
Ka

1− ν2

(
(λs − 1)2 + 2ν(λs − 1)(λφ − 1) + (λφ − 1)2

)
+ γλsλφ

]
. (16)

To obtain the tensions one takes the partial derivatives of the energy with respect to the deformations; to be
precise,

Ts =
1

λφ

∂w

∂λs
=

Ka

λφ(1− ν2)
(λs + νλφ − (1 + ν)) + γ, (17)

Tφ =
1

λs

∂w

∂λφ
=

Ka

λs(1− ν2)
(λφ + νλs − (1 + ν)) + γ, (18)

(19)
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which are the tensions in the meridional and azimuthal directions, respectively. These are inserted into
Equation (14) to obtain the force on the interface. In these expressions ν denotes the Poisson ratio, which is
a material constant that couples the meridional and azimuthal deformations. In the present work, ν = 0.3 is
used, which is a reasonable assumption for elastic interfaces such as those considered here [73].

2.4. Macroscale: numerical methods
Having described the equations governing the system, we now consider how to solve these numerically.

For the numerical methods, the equations must be discretised in space and time. In space, a structured,
uniform and staggered grid is employed, and the derivatives are discretised using standard second-order
finite differences, except for the convective term in Equation (10) which is discretised using the fifth-order
WENO scheme [74, 75]. Due to the coupling between pressure and velocity, the Navier-Stokes equations
are not a regular set of PDEs, but technically a differential-algebraic equation with an index-2 constraint
given by the incompressibility equation. To solve this, we employ the pressure projection method due to
Chorin [76], which leads to a splitting scheme for the time integration. In this scheme, we solve first for an
intermediate (non-divergence-free) velocity field using an Euler step, then solve a Poisson equation for the
pressure based on this intermediate velocity, and finally use the computed pressure to project the velocity
field into the space of divergence-free velocity fields. The pressure Poisson equation takes up the bulk of the
computation time, and much work has gone into developing fast numerical methods for this equation. In the
present work we employ the BoomerAMG [77] preconditioned BiCGStab [78] method, through the Hypre
[79] and PETSc [80] libraries, respectively. To obtain a larger stability domain than with only an explicit
Euler step, several Euler steps are combined to form a Runge-Kutta step (following the approach by Kang
et al. [81]), specifically the SSP-RK(2,2) method is employed here (using the notation of Gottlieb et al. [82]).
The method does, however, remain first-order in time due to the irreducible splitting error introduced by
the projection step; see [83] for a review of error reduction and of higher-order projection methods for the
Navier-Stokes equations.

This summarises how the single-phase Navier-Stokes equations are solved. To extend this to two-phase
flow, several methods are available. In previous work we have employed the combination of the level-set and
ghost-fluid methods, which gives results that agree well with theory and experiments [84, 85, 86, 87, 88, 89],
and which can handle topological changes in the interface, e.g. during drop coalescence. This method can
handle a varying interfacial tension, and has been coupled with the Langmuir equation of state to simulate
the effects of insoluble surfactants [86, 89].

To simulate interfaces with tensions that include a Hookean elasticity, this scheme had to be extended, as
we will discuss in the following. To this end, a hybrid level-set/ghost-fluid/immersed-boundary method has
been developed. To describe the hybrid method, we first give a brief overview of each of the methods it is
constructed from. The development of the hybrid method is documented in greater detail in the MSc thesis
of Lysgaard [90] for the two-dimensional case; the method was extended to axisymmetry later.

2.4.1. The level-set method
To solve the Navier-Stokes equations for two-phase flow, knowledge of the interface is required. For this,

a popular choice is the level-set method, originally proposed by Osher and Sethian [91]. With this method
the interface is encoded as a signed scalar distance field

ϕ(x, t) =

{
minx′∈Γ(t) ‖x− x′‖ if x ∈ Ω1

−minx′∈Γ(t) ‖x− x′‖ if x ∈ Ω2
(20)

This gives an implicit definition of the interface,

Γ(t) = {x ∈ Ω | ϕ(x, t) = 0}. (21)

The interface moves according to the flow of the fluids. This advection is performed directly with the function
φ, and for this reason the level-set method is referred to as an implicit interface capturing method. The
advection equation is then

∂ϕ

∂t
+ û · ∇ϕ = 0, (22)
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where û is the fluid velocity field at the interface, extrapolated to the whole domain (as suggested by
Adalsteinsson and Sethian [92]), which can be found by solving

∂û

∂τ
+ S(ϕ)n · ∇û = 0, û|τ=0 = u, (23)

Here τ is a pseudo time, and S is a smeared sign function which is zero at the interface, S(ϕ) = ϕ/
√
ϕ2 + 2∆2.

We assume here that the Eulerian grid spacings are equal and denote these by ∆x = ∆y = ∆. This equation
is in principle solved to steady state, i.e. τ → ∞. In a recent paper, Sabelnikov et al. [93] presented an
alternative approach which appears promising, since it has a lower computational cost.

As the level-set field is advected by Equation (22) it will become distorted and lose its signed distance-
property. Because of this, the level-set function is reinitialised at regular intervals by solving

∂ϕ

∂τ
+ S(ϕ0)(|∇ϕ| − 1) = 0, (24)

ϕ(x, 0) = ϕ0(x), (25)

to steady state [94, (7.4)]. Even though Equation (23) and Equation (24) are defined for the whole domain,
we are only interested in the extrapolated velocity and the reinitialised field in a neighbourhood around the
interface.

Interestingly the characteristics of both Equation (22), Equation (23) and Equation (24) originate at
the interface and point outwards. This implies that if one solves the equations not for τ →∞, but rather
for τ → N∆, N e.g. equal to 3, it gives a level-set function which is correct in a narrow band of width 3∆
around the interface. This significantly reduces the computational cost of the method; see e.g. [92] for further
details.

The properties required to calculate forces coming from a fluid interface are the interface normal vectors
and curvature. Both of these are computed directly from ϕ,

n =
∇ϕ
|∇ϕ| , κ = ∇ · n. (26)

2.4.2. The ghost-fluid method
Given an interface-capturing method such as the level-set method, yet another method is required to

impose the difference in material properties and the interfacial tension. Different methods are available, and
one distinguishes between sharp-interface and smeared-interface methods. A sharp-interface method (such as
the ghost-fluid [95] or immersed-interface methods [96]) is more accurate, but also more difficult to implement,
as compared to a smeared-interface method (such as the continuum-surface-force [97] or immersed-boundary
[98] methods).

With a smeared-out method, a mollified delta-function is used to spread a singular force out to several
grid cells. With such an approach, the normal finite-difference approximations to derivatives can be used as
there are no discontinuities in the solution, but rather very steep, smooth transitions.

By contrast, with the ghost-fluid method as used in this work, the discontinuities are incorporated directly
into the numerical stencils. This means that there is an actual jump in the solution, and jump conditions
are used to relate the values across the interface. For the case of two-phase flow with a constant interfacial
tension, the jumps are given by

JuK = 0, (27)
JpK = 2JµKn ·∇u · n− γκ, (28)

Jµ∇uK = JµK
(

(n ·∇u · n)nn + (n ·∇u · t)nt

− (n ·∇u · t)tn + (t ·∇u · t)tt
)

(29)

Here n, t are the normal and tangent vectors at the interface, and we denote tensors formed by the outer
product as e.g. ∇u. We take the normal vector to be pointing outwards on a drop, and then the jump
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J·K is the difference between the external and internal values, e.g. JµK = µ2 − µ1. It should be noted that
these expressions have been written in a form that gives faster code when implemented, see Lervåg [99] for a
derivation and for a more thorough description of the ghost-fluid method.

In the hybrid method developed here, these equations are used without the term γκ in Equation (28),
since the tension is then handled by the immersed-boundary method instead. The term is included when the
regular level-set/ghost-fluid method is used as a reference for testing the hybrid method.

2.4.3. Motivation for the hybrid method
To compute the tensions using Equations (17) and (18) requires knowledge of the interfacial deformations

λs, λφ. We may prove that the level-set function, or any similar scalar marker function, does not contain the
information required to compute this. Equivalently, the marker function does not contain information about
compression or stretching of the interface. To have compression or stretching of an interface in incompressible
flow, assuming no sources or sinks are present, the velocity component tangential to the interface has to be
nonzero. By considering the projection operator

P‖(ϕ) = (1−∇ϕ(∇ϕ· ))

which projects u into the space of velocity fields that are tangential to the interface, one may easily prove,
using the signed distance property of ϕ, that only the velocity component normal to the interface gives a
non-zero contribution in the advection equation. In other words, the interface representation φ is invariant
under velocity fields tangential to the interface. To store information about interfacial compression or
stretching in an interface capturing method which uses an Eulerian marker function, one must resort to
additional data structures to represent interfacial strain.

Alternatively, we may consider a hybrid interface-tracking method. Such methods have been successful
at combining the best features of several methods, e.g. in the coupled level-set/volume-of-fluid (CLSVOF)
method [100]. In the present work we have developed a hybrid level-set/ghost-fluid/immersed-boundary
method. The immersed boundary method provides not only the required information about compression and
stretching, but is also widely used and thoroughly tested with a general tension (i.e. elasticity and interfacial
tension). Originally developed for simulating biological systems, e.g. blood flow through a heart [98], the
immersed boundary method has been successfully applied to the simulation of red blood cells [12], which
have similar properties to drops covered with elastic membranes.

Another important motivation for using the immersed boundary method is that it allows for refining
the discretisation of the interface independently of the Eulerian grid. This increases the accuracy of the
interfacial representation while the Eulerian grid remains the same, as indicated by the results of standard
interface-capturing method test cases in Section 4.1. In particular for the crumpling drop case of interest here,
this represents a large saving of computational cost, since crumpled interfaces like those discussed in Section
5, represented using the level-set function, would require at least an order of magnitude more Eulerian grid
points than what is required to represent the flow field with sufficient accuracy. This would cause simulation
times to be at least two orders of magnitude larger (one order of magnitude from increased cost in the
Poisson solver, and one from the increased number of time steps required due to the stability condition). The
simulations considered in Section 5 have runtimes of a few days running in serial; parallelisation would give
some improvement in the time-to-solution, but even state-of-the-art solvers for the pressure Poisson equation
show limited performance gains when the number of unknowns per CPU core is below O(10000). Thus if one
was to use an extended level-set/ghost-fluid method, having data structures to represent interfacial strain,
and a parallelised code, the runtime for one of these cases would be of the order of months and the effort to
implement the method would be much larger.

The reason for not completely switching to the immersed-boundary method is that the handling of density
and viscosity differences across the interface is less accurate than with the level-set/ghost-fluid method; with
the immersed-boundary approach the contributions from the viscosity difference in the jump conditions
Equations (28) and (29) are typically not taken into account (see e.g. [101]), similar to when the level-set
method is used together with the continuum-surface force method [97]. The reason for retaining the level-set
method is that this eases the implementation, and that it may allow for simulations of drop coalescence in an
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extended version of the hybrid method, since the level-set method handles changes in the interface topology
very well.

2.4.4. The immersed boundary method
The key point of the immersed boundary method [72] is to allow solving the Navier-Stokes equations, or

other continuum equations, on an Eulerian regular grid, while handling a large class of arbitrary deformable
or rigid bodies embedded in the same domain. These bodies are described by Lagrangian coordinates. Thus
a key element of the method is the transformations between the Lagrangian and Eulerian coordinates, and
vice versa.

In addition to flexible interfaces as considered here, the immersed-boundary method can be used to
simulate rigid bodies. This has been widely employed for simulations in complex domains. With this
approach, the equations become very stiff, and thus the implicit forcing method has been constructed [102].
For the case of interest here, namely flexible interfaces, the explicit forcing method as used in the original
immersed-boundary method is sufficient. Even with an explicit time integration scheme, the method is stable
given that the time step is sufficiently small [103].

When using the immersed-boundary method to implement a generalised interfacial tension, we follow the
procedure given in [104]. The interface is imagined as a continuum of elastic fibres immersed in the fluid.
These fibres serve as a device for deriving the model. They do not have a mass nor do they occupy a volume,
but together with the fluid they are immersed in, they act as a viscoelastic material. The fibres are arranged
in a mesh parametrised by three space coordinates, which we take to be (φ, r, s) with reference to Figure 3.
With this framework, fixing two of the space coordinates, e.g. (φ, r), uniquely determines a fibre. The last
coordinate, s, is then a parametrisation along the elastic fibre given by the fixed values of (φ, r).

For the case of interest here, namely a drop interface that has no thickness, one coordinate is given
by the other two, i.e. r = r(φ, s); for a spherical drop r would be constant. Moreover, we consider the
axisymmetric case, meaning that r = r(s) and that nothing depends on φ. This means we consider the
situation illustrated in Figure 3, i.e. a single fibre going in the meridional (or s) direction of the drop, which
is discretised by many points. For each such point there is also a fibre going in the azimuthal direction, which
is not discretised.

Using Peskin’s notation, we write the strains as e.g. λs = |∂X∂s |. We then have [104] the forces from the
interface acting on the fluid given as

f =
∂Ts
∂s

t + Ts

∣∣∣∣
∂X

∂s

∣∣∣∣κsn + Tφ

∣∣∣∣
∂X

∂φ

∣∣∣∣κφn. (30)

From this we see that the force consists of a component along the fibre in the direction t, as well as a
component in the principal normal direction, pointing towards the centre of the osculating circle of the curve,
n. As previously noted, there is no force in the binormal direction, t× n.

If we assume no elasticity and a constant interfacial tension, Ts = Tφ = γ, Equation (30)
becomes

f = γ

(∣∣∣∣
∂X

∂s

∣∣∣∣κs +

∣∣∣∣
∂X

∂φ

∣∣∣∣κφ
)
n (31)

and the tangential force disappears. This corresponds to the normal two-phase flow situation with a simple
interface described only by interfacial tension, and will serve as a test case for the hybrid method. The
deformations entering into this expression serve as normalisation factors, since the original expressions are
derived with reference to the undeformed coordinate system. This point may be confusing at first; the reader
is referred to the thorough derivation in [104]. The parenthesis in this expression corresponds to the mean
curvature of the drop, so the entire expression corresponds to the familiar Laplace-Young formula.

To implement the tensions numerically requires computing the interfacial deformations. Let

‖X‖ki = ‖Xk −Xi‖ (32)
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be the Euclidean distance between Lagrangian points i and k. For simplicity we restrict the disposition here
to the fully two-dimensional case, where Tφ = 0 and the tension T is given as

Ts = Ka

(∣∣∣∣
∂X

∂s

∣∣∣∣− 1

)
+ γ (33)

Discretising this equation gives the following expression for the tension at point i, Ts,i:

Ts,i = Ka

(
‖X‖i+1

i + ‖X‖ii−1

li + li−1
− 1

)
+ γ, (34)

where li is the equilibrium length between point Xi and Xi+1. This gives the tension for each Lagrangian
point along the boundary, which is then used in a discretised version of Equation (30),

fi =
Ts,i+1 − Ts,i−1

2
ti + Ts,i

‖X‖i+1
i + ‖X‖ii−1

2
κn (35)

to compute the discretised interfacial force. This force enters the right-hand side of the discretised Navier-
Stokes equations on the Eulerian grid points close to the interface. The force is smeared out to these points
using the mollified delta function, which is made up of combinations of one-dimensional mollified delta
functions δ(r).

In contrast to other smeared-interface methods, the delta function in the immersed-boundary method is
uniquely determined by six requirements on the properties of this function. The reader is referred to [72,
sec. 6], as well as the previously mentioned MSc thesis by Lysgaard [90], for details of the delta function
construction, as well as description of the spreading of Lagrangian quantities to the Eulerian grid, and the
interpolation in the opposite direction. The resulting one-dimensional delta function, which is the basis for
both the interpolation and spreading operations, is

δ(r) =





0, r ≤ −2
1
8

(
5 + 2r −

√
−7− 12r − 4r2

)
, −2 ≤ r ≤ −1

1
8

(
3 + 2r +

√
1− 4r − 4r2

)
, −1 ≤ r ≤ −0

1
8

(
3− 2r +

√
1 + 4r − 4r2

)
, 0 ≤ r ≤ 1

1
8

(
5− 2r −

√
−7 + 12r − 4r2

)
, 1 ≤ r ≤ 2

0, 2 ≤ r

(36)

where r is the distance e.g. from a Lagrangian point to the Eulerian grid cell centre.
We remark that if the distance between two Lagrangian points is too big, the spreading operations using

the delta function will not approximate the continuous versions correctly. For this reason it is required that
two Lagrangian points never be further apart than half the width of an Eulerian grid cell.

In the proposed method, cubic splines are used to generate a smooth analytic parametrisation of the
interface. The main advantage of this is that properties such as the curvature, tangent- and normal vectors
are all naturally defined for a cubic spline. Figure 4 shows the immersed boundary elements around the point
with index i together with their different properties, and where they are defined. The cubic spline fitted to
the points is only evaluated at the nodes. Because of this the curvature is only available at these points. The
same applies to the normal vectors, which are directly calculated from the first derivative of the spline at the
nodes. On the other hand, line segments are computed as the difference in position between two adjacent
points. This means that lengths are defined on the segments, and not on the nodes. Note that the cubic
spline going through the points is not shown in this figure, but it is used to compute the curvature κ and the
normal vector n.

It should also be noted that the differences in segment length are exaggerated in Figure 4, since the
tangential term in the interfacial force will very quickly eliminate such differences. This is in line with what
one expects from such longitudinal waves, which are known from theory [105] and experiments [106] to be
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Figure 4: Part of immersed boundary grid showing where different values are located.

extremely rapid. This can also be understood intuitively since, in contrast to a regular capillary wave, a
longitudinal surface wave displaces essentially no mass, and thus inertial effects are very small.

When computing the interfacial force on each node, all variables are required at the node. As mentioned,
the segment-lengths are not stored at the nodes. An option would be to use the cubic spline to calculate the
length, but this requires the numerical evaluation as well as inversion of an elliptic integral. To keep the
method simple, we approximate the segment length as the average of the linear distance from the node in
question to its two neighbours. The curvature and unit normal vectors remain analytically evaluated from
the cubic spline.

In total, this approach encapsulates all the surface effects we need to simulate in one coherent framework.
If, say, the elasticity of the material is a function of temperature, or the elasticity is found to be non-Hookean,
or some relaxation behaviour is observed that makes the elastic modulus a function of the applied strain,
these effects can easily be accounted for by modifying Equation (33).

2.4.5. Computing the level-set function from the immersed boundary
When using both the immersed boundary method and the ghost-fluid method to calculate interface forces,

special care has to be taken to make the methods consistent. The following technique is proposed for that.
The geometry is completely determined by the Lagrangian points along the interface. In each stage of the
time integration method, the shortest distance from the Eulerian points to the Lagrangian boundary is
computed. In other words, we compute the level-set function purely from the immersed boundary.

This has several advantages. First, advection is moved from the level-set function to the immersed
boundary. When no advection of the level-set function is required, it is no longer needed to reinitialise it,
Equation (24), or extrapolate the velocity, Equation (23). These routines are somewhat costly, and their
saving leads to a ∼ 25% reduction in wall clock run time for some typical two-phase simulations. Second,
using this approach, the level-set function is always the best possible approximation to the exact signed
distance function for the given Eulerian grid. Third, given equal initial conditions for the immersed boundary
and the level-set field, the two descriptions of the interface may not be consistent with respect to each other,
meaning that after some time, t, the advection of the level-set function and the Lagrangian points could
cause the two methods to have slightly different locations for the interface 2. This is problematic because the
interfacial forces would appear at two different interfaces rather than one. This inconsistency disappears
when reinitialising the level-set function from the immersed boundary at every timestep.

The algorithm for computing the level-set function from the Lagrangian points is as follows.

↪→ Loop over the Lagrangian points representing the interface

↪→ For each line segment connecting two points, compute its bounding box.

2The reason for this is that the immersed boundary points can have sub grid details. This means that inside a grid cell
there will be differences between the level set and the immersed boundary. Over time these will grow bigger than one grid cell
because of advection. At that point, the two interface descriptions are not consistent with each other.
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↪→ Grow the bounding box such that it contains the widest Eulerian stencil used in the discretised
reinitialisation equation.

↪→ Loop over the Eulerian grid points inside the bounding box
↪→ Compute the shortest distance from this grid point to the line segment using standard formulae.
↪→ Compute whether the grid point is inside or outside of the closed interface using a standard

point-inside-polyhedron algorithm.
↪→ From these two results, compute the signed distance.
↪→ If this is the smallest distance computed for this grid point so far in the outer loop, store it as

the signed distance for this grid point.

2.4.6. Penalisation method
As will be seen in Section 5.2, we want to be able to simulate solid objects in our domain, in addition to

the two-phase flow with complex interfaces. To achieve this we utilise a standard L2 penalisation method
[107] since it is very easy to implement (literally just twenty lines of code) and since it can also be used to
enforce a flow field such as the desired suction inside a pipette. With the penalisation method, the flow
field exists inside the solid objects, but is forced to be approximately equal to zero, or in general equal to a
specified field uspec, through a forcing parameter 1/η which enters in an additional term (1/η)χ(uspec − u)
added to the right-hand side of the momentum equation. Here the scalar field χ is a marker function for
the solid body, so it is 1 inside the body and 0 outside it. One can think of the penalisation term as an
additional body force which outside the body is zero and inside the body is proportional to the difference
between the actual and the prescribed flow field. In [107] proofs of the existence and uniqueness of solutions
with this method, as well as an error estimate, are given. The error is of the order of η. To get good results,
one would naively set η = 0 and get zero error, but as the time step needed for stability is proportional to η
there is the usual trade-off between speed and accuracy.

2.4.7. The time step restrictions
In the simulations, the appropriate time step is adjusted dynamically using the conditions given here, in

order to have time steps as large as possible without causing the method to become unstable. Following [108,
sec 3.8], we take the contribution from the advection term into account with

Mc =
maxux + maxuy

∆
, (37)

where ∆ is the width of an Eulerian cell and maxux,maxuy are the largest magnitudes taken by the velocity
components in the simulation domain. The contribution of the viscous stress to the time step restriction is
taken into account with

Mv = max

(
µ1

ρ1
,
µ2

ρ2

)
4

∆2
. (38)

These are combined with the contribution from the interfacial force f = [fx fy]
T to form the time step

restriction
∆t

2

(
(Mc + Mv) +

√
(Mc + Mv)2 +

4fx + 4fy
∆

)
≤ C (39)

From smearing out the interfacial force density F using the mollified delta function δ∆, we have that f = Fδ∆
and since δ∆ ≤ 1

∆ , cf. Equation (36), the time step restriction can be written as

∆t

2

(
(Mc + Mv) +

√
(Mc + Mv)2 +

4Fx + 4Fy
∆2

)
≤ C. (40)

In this final condition, C is the time step safety factor, typically C = 0.5. Finally, as mentioned in the
previous section, when the penalisation method is used, the timestep must also fulfill ∆t ≤ η where η is the
penalisation parameter.
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3. Summary of the proposed method

At this point we may assemble the proposed multiscale method in its entirety.

• At the nanoscale: consider a tiny patch of the interface, ∼ 300 nm2:

– A volume around this patch is simulated using coarse-grained molecular dynamics.
– Accurate models for water, heptane, toluene and asphaltenes are used.
– The domain is elongated normal to the interface. Large systems of ∼ 106 atoms are simulated.
– The interfacial tension γ is computed from Equation (7).
– Using volume-preserving deformations, the elasticity Ka is computed from Equation (9).

• At the macroscale: two-phase flow simulation of drop with complex interfaces:

– Flow is governed by Equations (10) and (11), solved using numerical methods described in
Section 2.4.

– The interface is handled with the new hybrid level-set/ghost-fluid/immersed-boundary method.
– Level-set/ghost-fluid method gives a sharp handling of density and viscosity jumps using

Equations (27) to (29).
– Immersed-boundary method gives accurate interface representation, and computes the tension T
with Equations (17) and (18) using γ and Ka from the nanoscale.

– The forces caused by T are computed from Equation (31) and distributed from the Lagrangian
points to the Eulerian grid using Equation (36).

– The level-set function is computed from the Lagrangian points using the algorithm in Section 2.4.5.

In Figure 5 the method is summarised, showing the vectors and interface representation living on the
Eulerian grid, the immersed boundary Lagrangian points and the tensions acting on them, and in the corner
the molecular dynamics simulation which represents a tiny patch of the interface and is used to estimate the
properties Ka and γ.

We will now proceed to validate the different components that make up this method. We begin in
Section 4.1 with the macroscale method, and continue in Section 4.2 with the nanoscale, where the models
for different fluids and for the asphaltene molecules are considered.

4. Validation

We will now present validation results for both the nanoscale and the macroscale models. We first consider
the hybrid macroscale method and demonstrate that this method gives the correct results on several test
cases. Then we consider the nanoscale models for both the simple fluids and the more complex asphaltene
molecules.

4.1. Macroscale: validation
In this section we will demonstrate the validity of the developed hybrid method. We start by demonstrating

the superior resolution of the immersed-boundary method over the standard level-set method, as previously
mentioned. To this end we employ two standard test cases for interfacial advection, namely the drop in
vortex test and Zalesak’s disk test.

Following this, we consider the case of an initially elongated spheroidal drop relaxing under interfacial
tension. The case is considered both for a two-dimensional and for an axisymmetric drop, and it is also
considered both with and without density and viscosity differences across the interface. In summary, we
demonstrate that the methods converge to the same solution under grid refinement. For further verification,
see [90]. For the continuum simulations presented in this work, we provide tables with details of the
configuration and parameters used in Appendix A.
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Figure 5: Illustration of the proposed method. On the Eulerian (r, z) grid, the flow field u (vectors) and the level-set function φ
representing the green-shaded portion of the droplet are shown. Some of the Lagrangian immersed-boundary points are shown
in orange, with lines as before indicating the tensions Ts and Tφ. For a tiny patch on the interface, we compute the interfacial
properties Ka and γ using molecular dynamics simulations (lower right corner). These properties are used in the calculations of
the tensions. Note that the colours used in the molecular dynamics simulation snapshot do not have any relation to the other
colours in the figure.

4.1.1. Drop in vortex
A standard test of advection for interface-tracking methods is the drop in a potential vortex [109]. Here a

drop is placed in the unit box, and a static potential vortex advects it. The velocity field is given by

ux = −2
[

sin(πx− π/2)
]2

cos(πy − π/2) sin(πy − π/2) (41)

uy = −2
[

cos(πy − π/2)
]2

sin(πx− π/2) cos(πx− π/2) (42)

The remaining parameters for this test are given in Table A.1.
At some time t = T/2, the flow field is reversed, and the simulation is run until t = T . Then the initial

interface is compared with the final one. Figure 6 shows the initial condition (a), the interface at half time
(b) where t = T/2 = 3.5, and the final interface for both the level-set and the immersed boundary method, in
red and black colours, respectively.

We see that the immersed boundary method has no visible mass loss, while the level-set representation
loses mass when the drop gets stretched thinner than a grid cell. The reason for the large level-set mass loss
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(a) t = 0 (b) t = 3.5 (c) t = 7

Figure 6: Drop in potential vortex. Red is level-set solution while black is the immersed boundary. Velocity vectors are shown
for every 20 grid points in each direction.

is that when two interfaces come this close together, the discrete level-set function does not have the required
resolution to switch sign. This follows from the Nyquist-Shannon theorem. The immersed boundary method
does not have this restriction. If one wanted to represent the smaller features with level-set representation,
one choice would be to double the grid resolution. For two dimensions this would make the computational cost
increase quadratically. To get the same increase in resolution with the immersed boundary method, one would
need to double the number of points, this would only double the amount of work needed. Thus immersed
boundary scales considerably better than level-set with respect to the interface resolution.

The previous argument makes immersed boundary seem superior to level-set when it comes to resolution.
However, this is not the whole story. For the immersed boundary to represent a non-smooth sub-grid feature,
the Lagrangian points have to be advected in a sub-grid way. With the immersed boundary method, the
Lagrangian points are advected using an interpolated of the velocity field from the Eulerian grid. This means
that the highest wave number that can be created in the immersed boundary representation by the flow
is proportional to 1/∆ (where ∆ is the width of the Eulerian grid cells). For smooth velocity fields, like
this potential vortex, the immersed boundary method has some sub grid resolution. This is because it can
accurately represent stretching, squishing and other smooth transformations that lead to sub grid details.
Also, in the case of the interface crumpling as will be discussed in later sections, the immersed boundary
representation will produce wrinkles inside each grid cell.

4.1.2. Zalesak’s disk
Another interesting difference between an Eulerian and Lagrangian description of geometry is the effect

of grid alignment. This effect can be seen in the next test, Zalesak’s disk [110]. Here, a slotted disk is put
in a velocity field that has constant angular velocity, corresponding to rigid body rotation. The boundary
is advected one or several revolutions and the result is inspected. Further details of the case are given in
Table A.2.

From Figure 7 it is clear that the immersed boundary resolves the rotated disk better than the level-set
function. During the rotation, information is lost in the level set, while the immersed boundary is virtually
not affected. The reason for this is that the level set, based on an Eulerian grid, cannot represent non-smooth
features that are not aligned with the grid perfectly. This means that over the duration of the rotation, small
errors in the interface position creeps in as a consequence of the interface not being straight and aligned
with the grid. In the immersed boundary method, the grid has no preference about the orientation of the
interface. When it comes to the drop-in-vortex test, Section 4.1.1, one may argue that the difference between
the two methods is exaggerated by the specifics of the test, to the detriment of the level-set method. There
does not seem to be any such argument for Zalesak’s disk. The immersed boundary method is fundamentally
better at preserving non-smooth features like corners without smearing. In real life, non smooth interfaces
occur e.g. when two drops coalesce.
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(a) t = 0 (b) t = 40 (c) t = 80

Figure 7: Zalesak’s disk for 0, 1 and 2 revolutions. Red shows level-set interface while black shows immersed boundary. The
velocity field is constant in time and corresponds to rigid body rotation.

4.1.3. Comparison with reference method
We have now verified that the immersed boundary method captures the interface correctly under advection.

Next we need to verify that the forces from the boundary on the fluid are implemented correctly. The
handling of the viscosity and density jumps must also be verified to be correctly coupled with the immersed
boundary. The technique chosen for this was to compare the proposed method, Section 3, with a reference
method, the level-set method with the ghost fluid method, which has previously been verified and validated
[84, 85, 86, 87, 88, 89]. To have some measure of the drop dimensions during oscillations, the horizontal
and vertical axis lengths are used. These parts of the drop are the ones most rapidly advected, with the
highest pressure differences and curvatures. Thus any differences between the two methods would be most
pronounced at these points.

In the first test, an ellipsoidal drop is relaxing to its equilibrium, a sphere, driven by interfacial tension.
The purpose of this test is to verify that interfacial tension simulated with the proposed hybrid method gives
the same results as when simulated with the standard level-set/ghost-fluid method. There is no gravity and no
density or viscosity differences in this test. This way, all forces are generated by interfacial tension as the ellipse
relaxes to equilibrium. The parameters of the test are listed in Table A.3. The test was run for increasing
grid resolutions to see how the two methods compare under refinement. The result for the axisymmetric
simulation can be seen in Figure 8. We see that under grid refinement, the proposed method converges to
the same answer as the previously verified and validated implementation of the level-set/ghost-fluid method.
This demonstrates that the hybrid level-set/ghost-fluid/immersed-boundary method gives the correct result.
For corresponding tests in two dimensions, see [90].

This test shows that the proposed method converges to the same solution as the reference method for
a relaxing ellipse driven by interfacial tension. For the coarsest grid, it appears the hybrid method is the
least accurate. This is likely caused by the disagreement between the Eulerian and Lagrangian interface
representations becoming significant when the curvature of the interface is no longer much smaller than
1/∆.

This test confirms that the method is consistent, but there is no jump in density or viscosity in this case.
As discussed previously the proposed method will treat density and viscosity jumps in a sharp fashion, while
the tension in the interface is handled in a smeared-out fashion. To verify that this also gives consistent
results, a simulation of a similar case, i.e. a relaxing ellipse driven by interfacial tension was set up. Instead
of equal density and viscosity, the density ratio is now 2 and the viscosity ratio is 10. These parameters are
representative for the case of a water drop in oil. The simulation was run on a moderately fine grid, N = 400,
where good agreement was found between the two methods in the previous test. The full set of parameters
for the simulation are listed in Table A.4. The simulations were run both for 2D and axisymmetric flow for
both methods.

20



t

E
ll
ip

s
e

 a
x

is
 l
e

n
g

th

0 0.01 0.02 0.03 0.04

0.00095

0.001

0.00105

N=100

t

E
ll
ip

s
e

 a
x

is
 l
e

n
g

th

0 0.01 0.02 0.03 0.04

0.00095

0.001

0.00105

N=200

t

E
ll
ip

s
e

 a
x

is
 l
e

n
g

th

0 0.01 0.02 0.03 0.04

0.00095

0.001

0.00105

N=400

t

E
ll
ip

s
e

 a
x

is
 l
e

n
g

th

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04

0.00095

0.001

0.00105

N=800

Figure 8: Drop axis lengths for the axisymmetric relaxing drop. Red is the reference solution, dashed black is immersed boundary
solution. The two methods converge to the same solution as the grid is refined.
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Figure 9: Comparison of drop axis lengths for the reference method and proposed method with a viscosity and density jump.
Red is reference method while dashed black is proposed method.

21



time

Ax
is

 le
ng

th

(a) t = 0.0 (b) t = 0.00103 (c) t = 0.00502 (d) t = 0.00600

0.99
0.98
0.97
0.96
0.95
0.94
0.93
0.92
0.91
0.9
0.89

∂X
∂s

(e) t = 0.00805 (f) t = 0.01303 (g) t = 0.03106 (h) t = 0.03503

(i) t = 0.03901 (j) t = 0.04304 (k) t = 0.06903

Figure 10: Several frames of the two-dimensional simulation with elastic membrane, (coloured) together with the clean interface,
(black). The colours indicate the relative length of the interface compared to its equilibrium length. The inset in the lower right
corner shows the time evolution of the horizontal and vertical axis of the clean (black) and the contaminated (blue) interface,
which indicates that clean drop undergoes many oscillations during this time, while the contaminated drop only undergoes one.

As seen in Figure 9 the two methods are in agreement both for two-dimensional and axisymmetric flow.
This shows that the proposed method correctly and consistently combines the interfacial tension from the
diffuse interface, with the sharp handling of viscosity and density jumps.

4.1.4. Relaxing drop with elastic membrane
To test the effect of additional elasticity on the interface, the relaxing ellipse was again considered. In

this two-dimensional test case, the initial condition is an ellipse with both interfacial elasticity and interfacial
tension, compared to the same case with zero elasticity. The parameters for this test are listed in Table A.5.
At the initial state, the deformation ∂X

∂s = 1 in Equation (33), so the elasticity does not contribute to the
interfacial force. One can say that from the elastic point of view, the interface is neither stretched nor
compressed, but there remains the constant interfacial tension which produces a force. In this particular
case, Ka is set to be ten times larger than than γ, which means that T computed from Equation (33) will
be close to zero when ∂X

∂s ≈ 0.9. In other words, when the membrane is compressed to 90% of its original
length, elastic forces and interfacial tension forces will be in balance.

The interface starts in the initial state shown in red in Figure 10 (a). Because of its eccentricity, interfacial
tension is relatively strong on the left and right sides of the drop and it is quickly compressed, Figure 10
(b). After 5× 10−3 s the drop is compressed to approximately 90% of the initial length Figure 10 (c). This
means that the interface no longer introduces any force, and without any viscosity or density differences the
simulation would proceed as if it was momentarily single phase. As there is a significant flow still present
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in Figure 10 (c), advection of the interface continues. Some of the kinetic energy which is not dissipated
by viscosity goes into deforming and again stretching the interface. At t = 3.5× 10−2 s, Figure 10 (h), the
interface is stretched to the next maximum again, and the velocities are close to zero. Now there is not
enough potential energy in the membrane to do another oscillation, it is in some sense overdamped. The
interface contracts creating a crumpled drop as seen in Figure 10 (i) to Figure 10 (k). As this has happened
the drop with a clean interface, in black, has oscillated towards its equilibrium shape, a circle, by going
through about eight oscillation cycles.

It is clear that for these parameters, the elastic membrane has a significant effect on the time evolution of
the drop, fundamentally changing its response. For clean fluids, the equilibrium interface is always the one
that has the minimal interface area. The interfacial elasticity changes this situation, and the equilibrium
state is no longer obvious given the initial conditions. One insight from this simulation is that for a clean
drop without an elastic membrane, there exists a unique spherical equilibrium state, only given by the initial
volume of the drop. On the other hand, for the drop with an elastic membrane, the equilibrium is not
just a function of the initial volume, but also of the initial shape. This is because the initial shape affects
what parts of the drop are stretched and compressed, which has a significant impact on the final steady
state. This demonstrates that the evolution of a drop with an elastic membrane is more complex than one
without.

4.2. Nanoscale: validation
When running simulations of a complex multi-component system, the first thing to consider is each of

the two-component systems. For the toluene-water and heptane-water systems, there is one free parameter,
the binary interaction parameter kij , to tune in each case. There is also an important value to tune this
against, namely the interfacial tension measured in experiments. For the alkane-water system with the models
used here, Lobanova et al. [111] obtained the value of kij = 0.3205, transferable across the alkanes with
different lengths. The water [44] and alkane [111] models used have been published previously. The model
for toluene used here has not been published previously; see Appendix B for force field parameters for this
model.

For the toluene-water system, such tuning has not been done previously, so it is done here. The system
consisted of 10 000 toluene molecules and 40 000 water molecules, placed in an elongated box, and simulated
at 20°C and 1 bar. After obtaining the desired temperature and pressure by simulating in the NpT ensemble,
the system was allowed to phase-separate such that two slabs of liquid were formed. Subsequently, the system
was simulated in the NV T ensemble for 50 nanoseconds to obtain the interfacial tension.

The three values for the cross-interaction parameter, kij = (0.1, 0.2, 0.3), were initially tested, and
subsequent guesses were refined until the value kij = 0.241 was found, which gave an interfacial tension in
very good agreement with the experimental value of 37 mN/m [112] at this temperature and pressure. See
Figure 11, where the cumulative average of the interfacial tension computed from Equation (7) is plotted
as a function of the simulation time. Also plotted is the experimental result (dashed orange line) and the
running average over 1000 values of the interfacial tension (blue dots).

Having the cross-interactions for the two binary systems established, verifying that the interfacial tension
for the heptane-toluene or “heptol” mixture against water agrees with experiments is a good demonstration of
the predictive power of the method. When discussing a heptol mixture, one must distinguish between molar
ratios, convenient in simulations, and volume ratios, convenient in experiments. To avoid confusion, we will
refer here to volume ratios using the notation N : M , and molar ratios using the notation n/m. The molar
mass of heptane and toluene are 100.2 and 92.1 g/mol, respectively, and their densities are 684 kg/m3 and
867 kg/m3, respectively. This means that a 50/50 molar ratio gives a volume ratio of 1.38:1, and conversely,
a 1:1 volume ratio gives a 42/58 molar ratio.

To test the prediction of interfacial tension of the heptol-water system, a corresponding simulation was
set up with a 1:1 heptol mixture against water at 20°C and 1 bar. Experimental data for this interfacial
tension is not available, but an accurate estimate of it can be obtained following Yarranton and Masliyah
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Figure 11: Interfacial tension of toluene and water, using the cross-interaction parameter kij = 0.241. The green line shows the
cumulative average, the blue dots show the running average over 1000 points, and the dashed orange line shows the experimental
value.

[113]. This procedure gives the interfacial tension of an organic mixture against water as

γmix = γ2 −Ru T Γm ln

(
1 + x1(exp

(
γ2 − γ1

RTΓm

)
− 1)

)
(43)

where γ1 and γ2 are the two pure-component interfacial tensions against water, Ru is the universal gas
constant, T is the temperature in Kelvin, x1 is the molar fraction of component 1 in the mixture. We denote
here toluene as component 1 and heptane as component 2. The interfacial tensions are γ1 = 37 mN/m [112]
and γ2 = 51.2 mN/m [114]. The parameter Γm is estimated as Γm = 0.00415 mmol/m2 by Yarranton and
Masliyah [113], which is shown to give good results for a wide range of alkane-aromatic mixtures. With these
expressions, the interfacial tension of the mixture is computed as γmix = 41.9 mN/m.

The simulation result is plotted in Figure 12, together with γ1, γ2 and γmix. The simulation result matches
very well the value computed from Equation (43). Note that the cross-interaction between heptane and
toluene has not been tuned at all. This illustrates the predictive power of the SAFT-γ Mie approach, i.e.
that one can compute, with good accuracy, physical properties that have not been used when constructing
the model.

With the simple fluids taken into account, we may proceed to consider the models for the asphaltenes. As
discussed in the introduction, asphaltenes are immensely complex mixtures of different molecules that together
form a solubility class. It is likely that an asphaltene molecule in solution never interacts with an identical
molecule, and thus modelling the asphaltenes as a single molecule is a significant simplification. It is likely that
improved asphaltene models must take the polydispersity explicitly into account, i.e. having many different
types of model asphaltenes in the same simulation. This may be considered in future work.

Molecular dynamics simulations of asphaltenes in the bulk have been considered in several previous works,
see e.g. refs. [115, 116, 117, 118, 119, 120, 121, 122, 123]. In these studies, the association and aggregation
of asphaltenes have received particular focus, as this behaviour is very important for asphaltene deposition in
rocks and in pipelines. Of particular note is the work by Boek et al. [120], where the technique of quantitative
molecular representation (QMR) is used to compile a set of model asphaltene molecules, based on several
experimental sources of information such as mass spectrometry, NMR, X-ray and neutron scattering studies.
These model asphaltenes are employed by several subsequent authors, and have influenced the construction
of the coarse-grained model asphaltenes used in this work. Sedghi et al. [122] studied the effect of different
side groups and substitutions on one of these representative asphaltene molecules, and found that small
changes to the chemical composition caused large variations in the aggregation behaviour.

Only very recently have molecular dynamics simulations been applied to the study of asphaltenes at the
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Figure 12: The interfacial tension for a 1:1 heptol mixture against water, computed from molecular dynamics simulation. Black
line: cumulative average of the interfacial tension. Blue dots: running average of the interfacial tension over 1000 samples.
Orange dashed line: γmix predicted from Equation (43). Blue dashed line: interfacial tension of toluene-water. Green dashed
line: interfacial tension of heptane-water.

oil/water interface. Mikami et al. [124], Liu et al. [125], as well as Yang et al. [126] used atomistically-detailed
simulations to study this system. In [124, 125], the previously mentioned QMR-based model asphaltenes
were employed, whereas in [126], two different model asphaltenes were proposed based on experimental
measurements and used in simulations. These studies highlight the significant challenge encountered when
using an atomistically-detailed approach: one is either confined to very few asphaltene molecules [126] or very
short timescales [124, 125] due to the high computational cost. A coarse-grained approach, such as that used
here, can provide a solution to this; see e.g. the review by Brini et al. [38] for an overview of the advantages
of coarse-grained simulation for soft matter systems in general. Recent work by Ruiz-Morales and Mullins
[127] employed a coarse-grained (dissipative particle dynamics) approach, but this study is also limited to
considering few molecules and short time scales. Finally, it should be noted that in all these studies, the
asphaltenes are initially placed at the interface.

In contrast to these limitations of either few molecules or short time scales, and enforced interfacial
adsorption, we consider here simulations with up to two orders of magnitude more asphaltene molecules than
considered in [126] in conjunction with two orders of magnitude longer simulation times than considered in
[125]. Also the asphaltenes are not initially placed at the interface, but randomly distributed throughout the
oil phase. Thus the interfacial activity is an inherent property of the model asphaltenes used here.

With this in mind, we briefly discuss the three different asphaltene models that were used in the present
work. All these models are of the continental asphaltene type, i.e. they have a central core made up of
aromatic rings, to which aliphatic tails are attached. The first model asphaltene, presented by Müller et al.
[49], was used in the initial studies; we will refer to this as the APCH asphaltene. It is based on using
anthracene beads for the aromatic core, which also contains a pyridine ring, and three tails each made from
dodecane. The model behaves reasonably like an asphaltene. Results obtained with this model are discussed
in Section 5.1.1.

If anything, the APCH model appears slightly too self-associative. This, together with the some advances
in the SAFT-γ Mie theory for aromatic compounds, led to the second flavor, developed partly in this work.
The main difference with the first flavor is that the aromatic beads, which make up most of the core, are
obtained using a version of the SAFT-γ Mie approach that is tailored for ring-shaped molecules, as opposed
to the standard version which assumes they are linearly shaped. The structure is otherwise very similar to the
APCH model asphaltene. The parameters for the aromatic core beads are given in Appendix B.

Two different architectures were considered for this new flavor of asphaltenes, built from the same coarse-
grained beads, but with different shapes for the aromatic core. Both have three aliphatic tails made from
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Figure 13: From left to right: corresponding chemical structure, the APCH model, the APCE model and the APCL model.
Blue/green beads indicate the aliphatic tails, orange/red beads indicate the aromatic rings forming most of the core, and the
tan/gold beads indicate the pyridine.

dodecane, and cores made from six beads representing six hexagonal aromatic rings, together with two beads
representing a pyridine, i.e. a hexagonal aromatic ring with a single nitrogen substitution. The difference
lies in that “APCE” has a more circular core, while “APCL” has a more elongated core. See Figure 13 for a
comparison of the three different model asphaltenes considered in this work.

As mentioned in the introduction, the only usable definition of asphaltenes is that they are insoluble in
heptane and soluble in toluene. Accordingly, it should be verified that the new model asphaltene molecules
behave in this way. To test this, simulations were run with 240 asphaltene molecules in a system with 40 000
solvent molecules (heptane or toluene) at 20°C and 1 bar.

These simulations gave some interesting results which demonstrate how delicate the energy balance is
in systems containing asphaltenes. The two models APCE and APCL appear very similar; however, their
solubilities in heptane are completely different, as illustrated in Figure 14 which shows the behaviour in
heptane. In this figure, the solvent and the aliphatic tails are omitted for clarity, so one can easily see
the stacking of aromatic rings where the molecules cluster. It is readily apparent that the circular core
asphaltenes cluster in heptane, while elongated core ones are soluble in heptane. It is also seen that the
circular-core asphaltenes cluster with a distribution of a few large clusters, many small clusters, and some
monomers; in particular, the asphaltenes do not all gather in one big cluster. This is in agreement with
results from experiments (e.g. [128, 129, 130]) and atomistic simulations [119]; and it is in general agreement
with the accepted Yen-Mullins model of asphaltene behaviour [131].

The APCE model thus passes the first hurdle, being insoluble in heptane. Simulations of this model in
toluene also showed the correct behaviour, as illustrated in Figure 15 where the system is compared in heptane
(red) and in toluene (blue) after 50 ns of equilibration. In toluene, some pairs of asphaltenes occasionally
come in contact, but inspection of the trajectories showed that these pairs only stay together for about one
nanosecond before they break apart again, and thus no larger clusters have time to form.

To summarise, the APCE model asphaltene fits the definition of an asphaltene molecule, forming clusters
in heptane but staying in solution in toluene. In heptane, clusters of up to four molecules form after 50 ns.
It is likely that five- or six-molecule clusters may form after even longer times or at higher concentrations. A
closeup of a four-molecule cluster is shown in Figure 16.

5. Results

5.1. Molecular dynamics simulations of asphaltenes in oil/water systems
The crude oil/water system has a very large (and not fully understood) parameter space, so we restrict our

attention here to only a few simplified cases. The parameters that can be varied include temperature, pressure,
the mixture of alkanes and of aromatics for the fluid components, the ratio between alkanes and aromatics
in the fluid components, the amount of resins, the amount of asphaltenes, etc. The liquid components of
a crude oil contain a range of alkanes that may extend all the way from methane (liquid at high pressure)
to alkanes with 20-30 carbon atoms (liquid at high temperature). Effective models for these mixtures can
be obtained by taking a true boiling point curve and dividing it into classes of pseudo-components, e.g. a
mixture of C5H12, C10H22, C15H32, C20H42. The very simplest version of this, which we adopt here, is to
use just one alkane, for which heptane is a common choice. Similarly, for the aromatic liquids there is a
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Figure 14: Comparison of the model asphaltenes in heptane. Left: APCE with a circular core. Right: APCL with an elongated
core. In both cases, the inset shows the usual coarse grained beads for the entire molecule, while the main figures shows only
the aromatic beads and their bonds, with the diameter set to 0.5σ to make the visualisation clearer.

range to choose from, e.g. benzene, pyridine, toluene etc., and again we limit ourselves to just toluene. This
combination, heptol, has been widely used in experimental studies as a model system in which asphaltenes
can be dissolved (e.g. refs. [132, 133, 134, 135, 136, 137, 138]). Heptol is the simplest solvent for asphaltenes
where the aromatic to aliphatic ratio of the solvent can still be varied.

Given heptol as a base, the mixture ratio can be varied, and asphaltenes can be added to the system
in varying concentration. Previous work [132] has indicated that a heptol ratio around 70/30 gives the
most stabilising (and thus most interesting) interfacial properties, so the 70/30 heptol mixture is used as
a base fluid here. The temperature and pressure are set to 20°C and 1 bar, respectively. The asphaltene
concentration is varied, to study the effect this has on the system.

It is notable that in all the simulations reported here, the systems are started from random initial
conditions. In particular, the asphaltenes are not placed at the oil/water interface, but they are themselves
interfacially active. The tuning of cross-interactions is as reported in Section 4.2 for the heptane-water and
the toluene-water cross interactions. For the asphaltenes, the alkane tail-water cross interactions use the
same kij as for heptane-water, otherwise the cross-interactions have not been adjusted.

These studies using the various model asphaltenes were performed at different concentrations from 240 to
960 asphaltene molecules in 40 000 molecules of solvent (70/30 heptol), together with 160 000 molecules of
water. These systems were simulated in the NpT ensemble using an elongated simulation box with a 3:1:1
side ratio, and the desired state (20°C, 1 bar, oil/water phase-separated) was obtained. Subsequently, the
system was evolved in the NV T ensemble in order to let it equilibrate.

At this point, some remarks are in order with regards to the relaxation times in these systems, as
compared to experiments. Looking at the time it takes to reach equilibrium for the interfacial tension in
asphaltene-heptol-water systems in experiments (e.g. [136, 139]) the timescales are of the order of hours,
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Figure 15: Comparison of the APCE model asphaltenes in heptane (left, red) and in toluene (blue, right). As in the previous
figure, only the aromatic cores are shown. Purple circles highlight clusters with three or more molecules (there are none on the
right-hand side). It is evident that the molecule is poorly soluble in heptane, where two-, three- and four-molecule clusters can
be seen. In toluene, there is no clustering apart from the occasional contact between two asphaltene cores.

Figure 16: A closeup of a four-asphaltene APCE cluster in heptane. The beads are also here shown at reduced size for clarity;
aromatic beads with diameter set to 0.5σ and alkane beads with diameter set to 0.25σ. The colours indicate aromatic beads
(red), pyridine beads (gold) and aliphatic beads (blue)

which is completely out of reach for molecular simulation. However, these long timescales are caused by the
slow diffusion of asphaltene molecules from the far-away regions of the bulk to the asphaltene-depleted oil
layer close to the interface. Moreover, these timescales are not representative of the situation when water
drops travel through oil in a pipeline or a separator, where the ratio of the diffusion boundary layer width to
the viscous boundary layer width, i.e. the Schmidt number, can be of the order of 106, meaning that the
speed of diffusion is increased by this order of magnitude for a falling drop as compared to a drop at rest in a
tensiometer. Comparing this to the situation in simulations, it is clear that the diffusion cannot happen over a
longer scale than the simulation box size, which is of the order of 10 nanometres. Experimental measurements
indicate the diffusion coefficient of asphaltenes in solvents like heptol is of the order of 10−10 m2/s [140].

28



This means the characteristic time for an asphaltene to diffuse across the simulation box is of the order of
10−6 seconds.

There are two other relaxation time scales of importance, in addition to the time scale for diffusion.
The second is the time scale for the adsorption of an asphaltene at the interface. With a coarse-grained
description such as here, this time scale is very short, of the order of 1 nanosecond. The third is the time
scale for reorientation of the asphaltenes at the interface, i.e. that those molecules already adsorbed find a
tighter packing, which allows further molecules to adsorb at the interface. This time scale depends on how
the asphaltenes associate at the interface, and is thus difficult to estimate a priori.

5.1.1. Studies using the APCH model asphaltene
The APCH model asphaltene was used in the first studies of asphaltene-heptol-water systems. Two

concentrations were considered, namely 240 and 720 asphaltene molecules in 40 000 molecules of 70/30
heptol. The former corresponds to an asphaltene concentration of about 5%. Note that in these simulations,
a simpler two-bead model for the toluene molecule [45] was used.

Snapshots of the oil-water interface from simulations at this lower concentration are shown in Figure 17.
This figure shows the interface from the water side after 35 ns (left) and 350 ns (right). The water beads
are not shown, and the solvent beads are shown only as grey outlines. It is seen from this figure that the
interfacial configuration of asphaltenes changes during this time, with clusters forming at the interface. The
number of asphaltenes at the interface increases by about 30% from 35 to 350 ns, and at 350 ns there are
0.25 molecules per square nanometre. Inspection of this system revealed that the interfacial adsorption left
the bulk oil almost depleted of asphaltenes. Thus this situation with a lower concentration of asphaltenes is
representative of a freshly-formed interface where diffusion has not yet had time to bring in more asphaltenes
from the bulk.

Figure 17: Snapshot of the interface seen from the water side, for the system with 240 APCH model asphaltenes after 35 ns
(left) and 350 ns (right). Colours as in previous figures. Water molecules are omitted for clarity, and the heptane and toluene
beads are shown in gray.

As previously mentioned, the time scales for diffusion can be of the order of minutes and hours, which is
not tractable in these simulations. However, the effect of diffusion may be taken into account by starting
the simulation with an initially higher asphaltene concentration. The higher concentration case, using 720
asphaltene molecules, gave about 5% asphaltenes remaining in the bulk after 350 ns, and is thus representative
of the same system having reached equilibrium after diffusion from the bulk. Snapshots of this system are
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shown in Figure 18, again with 35 ns at the left and 350 ns at the right. Again, there is an increase of about
30% in the number of adsorbed asphaltenes from 35 to 350 ns, and at 350 ns there are 0.5 molecules per
square nanometre. It is evident from the snapshot that these asphaltene molecules are highly self-associative
at the interface, i.e. that they cluster together. It is likely that this behaviour is not representative of real
asphaltenes, which are believed to adsorb with the aromatic core towards the water [141].

Figure 18: Same as the previous figure, for the system with 720 APCH asphaltene molecules. At this higher concentration, the
tendency for the asphaltenes to cluster together at the interface is even more pronounced.

For the system with 720 asphaltene molecules at 350 ns, the interfacial tension and elasticity was calculated
using the previously described methods. The interfacial tension was found to be 39.5 ± 1 mN/m. The
elasticity was estimated to be 15 ± 10 mN/m; in Figure 19 the change in tension versus the change in
interfacial area is shown together with a line showing the 15 mN/m slope.

Figure 19: The change in interfacial tension versus the relative area A/A0 − 1 for compressions (negative relative area) and
expansions of the interface. It is seen that compressions give a reasonable elastic behaviour, but under expansion the change in
tension levels off. The line corresponds to Ka = 15 mN/m.
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5.1.2. Studies using the APCE model asphaltene
As previously mentioned, the new model asphaltenes were developed partly in response to the APCH

model asphaltenes being more self-associative than what is expected based on experimental evidence. The
APCE asphaltenes adopt a very different configuration at the interface, namely with the polycyclic aromatic
core aligned with the water interface, and the aliphatic tails stretched back towards the oil phase. This is
shown in Figure 20. In this figure, the interface is seen from the water side, in the system with 240 model
asphaltenes after 50 ns of equilibration. In the centre, highlighted by green planes above and below, the
interface is shown with the asphaltene molecules as in the previous figures. On the left side, a periodic
image is shown with only the aromatic cores. On the right side, a periodic image is shown with only the
aliphatic tails. In all three images, grey beads indicate heptane and toluene. It is seen that the aliphatic tails
are protruding into the grey oil phase, indicated by the shadows these beads are casting on each other. In
Figure 21, the same illustration is shown for the system with 720 asphaltene molecules.

Figure 20: Snapshot of the APCE model asphaltene at the interface seen from the water side, for the system with 240 asphaltenes,
after 50 ns of equilibration. Colors as in previous figures. On the right and left sides, periodic images of the interface are shown,
where the aromatic cores and the aliphatic tails are omitted, respectively. It is seen that the aromatic cores are predominantly
oriented in parallel with the interface, while the aliphatic tails are pointing away into the oil phase.

These results are in very good agreement with experiments performed by Andrews et al. [141] using sum
frequency generation (SFG) spectroscopy to study the orientation of real asphaltenes at interfaces. They
find that “SFG clearly indicates that asphaltene polycyclic aromatic hydrocarbons are highly oriented in
the plane of the interface and that the peripheral alkanes are transverse to the interface.” When comparing
Figure 17 to Figure 20, it is clear that the APCE model asphaltene has an interfacial behavior closer
to that observed in experiments, while results with the APCH model asphaltene show a qualitatively
different interfacial orientation. It is noteworthy that previous atomistically detailed molecular simulations
[124, 125, 126] have shown similar interfacial behaviour to the APCH model, i.e. have found the asphaltenes
to be highly associative at the interface and stacking with cores orthogonal to the interface, in contrast with
the experimental findings using real asphaltenes. Thus the results presented here with the APCE model
asphaltene are the first simulations to be consistent with the experimental results from SFG spectroscopy
[141].

This absence of clustering at the interface means that there is no long time scale for reorientation at
the interface, unlike with the APCH asphaltenes. This means that extending simulation runtimes to 350
nanoseconds, as for the APCH asphaltenes, is not necessary. To confirm this, a simulation with the highest
number of asphaltene molecules considered here was run until 150 ns, and no change in configuration was
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Figure 21: Same figure as Figure 20 for the system with 720 asphaltene molecules. It is seen that even at this high concentration,
the asphaltenes show essentially no clustering at the interface. Some asphaltenes here have their cores oriented perpendicularly
to the interface, but the great majority still have cores parallel to the interface.

observed between 50 and 150 ns.
With this model giving the interfacial behaviour as expected from experiments, it is interesting to see

how the interfacial tension varies with the asphaltene concentration. This is plotted in Figure 22. It is
seen that adding asphaltenes to the system decreases the interfacial tension, with what appears to be an
exponentially decaying trend. Note that the concentration in this figure is given as the number of molecules,
since interpretation of this number into bulk concentration is not immediately obvious. The variation in the
number of molecules in the simulation can be interpreted either as snapshots in time during the diffusion
process for one bulk concentration, or as the equilibrium interfacial tension for varying concentration of
asphaltenes. In general, these values and variation in interfacial tension corresponds well with experimental
observations, e.g. in [142].

The interfacial elasticity was also estimated with this model, using the system with 720 molecules after 50
ns, and found to be 55 ± 20 mN/m. The variation in tension with the interfacial area is shown in Figure 23,
together with a line having a slope of 55 mN/m.

5.2. Macroscopic simulations of the draining of water drops in oil
Given the immense potential for variations in even model crude oil/water systems, and the uncertainties

still surrounding the asphaltenes despite the use of state-of-the-art analytic chemistry techniques, it is not
possible in the experimental literature to provide enough detail for an exact comparison to be made here
between simulations and experiments. It is also noteworthy that the elasticity as defined here has not been
given consideration in the experimental literature. There, studies of interfacial properties in crude oil/water
systems have either focused on the shear rheology (e.g. [143, 144]), or in the cases where dilatational elasticity
has been considered (e.g. [145, 146, 147]), the authors have presupposed this elasticity to be of the type
considered by Gibbs in his seminal work [3]. As we will demonstrate in the following, a Gibbs-type elasticity
cannot cause the phenomena observed in experiments, for several reasons: Gibbs elasticity is given as the
change in interfacial tension when a change in area causes a change in the concentration of a surface-active
material. It follows that this elasticity is isotropic by definition, and furthermore that it cannot reduce the
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Figure 22: The interfacial tension γ computed from molecular simulations, for varying concentration of asphaltenes. The
decrease in γ with increasing asphaltene concentration corresponds well with experimental measurements.

Figure 23: The change in interfacial tension versus the relative area A/A0 − 1 for compression (negative relative area) and
expansion of the interface, with the 720 asphaltene molecule system. It is seen that the behaviour is linear, i.e. elastic. The line
corresponds to Ka = 55 mN/m.

tension to zero. The reader is referred to pp. 467–482 of the very readable paper by Gibbs [3] for further
details.

All in all, these facts imply that our comparisons with experiments must be of the qualitative kind. A
very interesting case for qualitative comparisons is the crumpled drop phenomenon, which occurs when a
water drop in crude oil is drained by use of a needle. The appearance of wrinkles or crumples in the drop
interface upon contraction is clearly evident in photographs and is thus not subject to interpretation, and it
is a phenomenon fundamentally different from those observed in water/oil/surfactant systems.

In the experimental literature there are two different categories of experiments with draining water drops
in crude-oil (or model systems). The first category concerns the micropipette experiments as reported e.g.
by [13]. In this case, the drop size is representative of drops found in a real water/crude-oil emulsion, with a
drop diameter of 50 µm. For these drops, buoyancy effects are small when compared to tension effects. In
the second category of experiments the pendant drop tensiometer is employed, with much larger drops of
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diameter around 5 mm, e.g. as reported by Pauchard et al. [14]3. In this case, buoyancy effects are larger
and tension effects smaller than in the micropipette case.

To get a quantitative measure of this difference, we may consider the Eötvös number, using the inverse
drop curvature 1/κ as the length scale, i.e.

Eo =
∆ρg

Tκ2
(44)

where ∆ρ is the water-oil density difference in kg/m2, g = 9.81 m/s2 is the gravitational acceleration, and T
is the total tension, which is of the order of 0.01 N/m. This means the Eötvös number is Eo ≈ 5 · 10−5 for the
micropipette case, while it is Eo ≈ 0.5 for the pendant drop case, meaning that in the former case buoyancy
is completely negligible, while in the latter case buoyancy has an effect. This means that in the latter case,
the interface is deformed both by the action of the tensiometer and by the effect of buoyancy.

5.2.1. The pendant drop case
With this in mind, we consider first the situation analogous to the pendant drop tensiometer, where

drops are influenced both by buoyancy and by tension effects. In the experiments reported e.g. in [14], the
drop remains axisymmetric up to the point of crumpling. It is seen that the crumpling only occurs in the
azimuthal direction, thus the interface remains in tension in the meridional direction. This is due to the
negative buoyancy of the water drop in oil. The situation can be compared to wrapping a handkerchief
around an apple and lifting the corners of the handkerchief together: the cloth will wrinkle in the azimuthal
direction, but there will obviously be tension in the meridional direction, since the cloth supports the weight
of the apple.

After crumpling has occurred, as long as the crumple depth remains small compared to the drop radius, the
axisymmetric simulation remains valid also in the crumpled region [71], where the interface then corresponds
to an azimuthal mean interface. This is precisely because the azimuthal tension is zero in the crumpled region,
and so this tension (including the effect of azimuthal curvature of the crumples) does not exert a force. Thus
axisymmetric simulations can provide insight into this situation. Unfortunately, neither drop diameters prior
to deflation, nor the composition (and thus density) of the oil phase, are given in [14]; moreover, the interfacial
elasticity is not known, and thus an exact comparison to these experiments cannot be made.

The case considered is a drop of water with an initial diameter of 6.6 mm immersed in oil (ρ2 = 830
kg/m3) and attached to a needle which sucks the water out at a rate of 0.059 mL/s. The initial drop volume
is 1.2 mL. The penalisation method is used to enforce no flow inside the needle walls, and a Pouseille flow
inside the needle. There is no explicit handling of the drop/needle contact angle, but the interface inside the
needle wall is forced to remain in its initial position by the penalisation. The tension in this case is given by
γ = 30 mN/m and Ka = 50 mN/m. These specific values are chosen based on the results from the molecular
simulations, which have some uncertainty; further details are given in Table A.6. Thus the Eötvös number
for the initial condition (where T = γ) is Eo = 0.61, and the simulation corresponds very well to the pendant
drop regime.

As the simulation begins, the drop starts to fall, and a balance is quickly established between the drop
tension and the drop negative buoyancy, forming a pendant drop. As the needle removes water from the
drop, it shrinks, and eventually the “neck” of the drop has shrunk to the point that it becomes tensionless in
the azimuthal direction, i.e. Tφ = 0. This is shown in Figure 24.

In this plot, the axisymmetric drop profile is mirrored around the symmetry axis, and the tensions Ts and
Tφ are shown on the right- and left-hand sides, respectively, as colours on the interface. Inside and outside
the drop, contours of the pressure field are shown. It is evident that even though Tφ is zero along a portion
of the interface, there is still a pressure jump across the interface. It is also seen that the pressure difference
varies along the interface, since Tφ varies in the meridional direction; and as previously pointed out, there
cannot be a force which cancels out this variation. This is true even in the static situation.

To compare the simulation result to images from experiments e.g. in [14], it is illustrative to construct a
three-dimensional representation from the axisymmetric interfacial profile. To this end, the axisymmetric

3The drop diameter is not given in this publication, but the tensiometer needle outer diameter is given as 1.65 mm.
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Figure 24: The axisymmetric drop profile (points) mirrored across the symmetry axis (dashed line). Only every 20th Lagrangian
point is shown. The colour of the points corresponds to Ts on the right-hand side and Tφ on the left-hand side of the plot. The
pressure is as coloured contours inside and outside the drop, showing the varying pressure jump across the interface.

profile was imported into the Blender 3D graphics software and revolved around the symmetry axis to create
a whole drop. Crumples were then inserted manually in the region where Tφ = 0. Raytracing was used
to create a realistic rendering of the drop and the needle to which it is attached. The result is shown in
Figure 25 next to the experimental result from [14]. The similarity is striking, indicating that elasticity in
the interface is a very likely explanation of the crumpled drop phenomenon seen in experiments.

5.2.2. The micropipette case
Considering the small Eötvös number regime, analogous to the micropipette drops, the situation after

crumpling occurs is clearly not axisymmetric, and thus full three-dimensional simulations are required for
quantitative studies of this. While the hybrid method discussed in this paper is readily extendable to
three dimensions, this has not been done here due to time constraints, but may be considered in future
work. One can, however, study this case from the qualitative perspective by considering a purely two-
dimensional simulation, corresponding to a drop and pipette which are significantly elongated in one direction
(perpendicular to the simulation domain).

The case considered for this case was with an initial diameter of 2 mm, corresponding to Eo = 0.06.
While this drop (and Eo) is substantially larger than in the experiments, it is small enough that gravity
becomes unimportant. Accordingly, the simulation is with zero gravity. Further details of the case are given
in Table A.7; see also [90]. A comparison of the simulation result with the photograph from experiments
by Yeung et al. [13], both from after crumpling has occurred, is shown in Figure 26. A good qualitative
similarity between the two is seen.
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Figure 25: Right: raytrace of the drop profile from simulations, revolved around the symmetry axis and with crumples inserted
into the region where Tφ = 0. Left: experimental result showing a deflated asphaltene-stabilised water drop in oil. (Left figure
reprinted with permission from: V. Pauchard, J. P. Rane, S. Banerjee, Asphaltene-laden interfaces form soft glassy layers in contraction
experiments: A mechanism for coalescence blocking, Langmuir 30 (2014) 12795–12803. Copyright (2014) American Chemical Society.)

Figure 26: Right: two-dimensional simulation, with red and blue colours indicating interfacial curvature. Velocities are plotted
for every 5th grid point and every 10th Lagrangian point is plotted. Left: experimental result showing the crumpled drop
attached to a micropipette. (Left figure reprinted with permission from: A. Yeung, T. Dabros, J. Czarnecki, J. Masliyah, On the
interfacial properties of micrometre–sized water droplets in crude oil, Proceedings of the Royal Society of London A (1999) 3709–3723.
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6. Discussion

This paper presents a multiscale approach to simulations that shed light on the behaviour of asphaltene-
covered water drops in crude oils. The simulation results at both the molecular and at the continuum scale
showcase several interesting phenomena which appear in these systems. Ultimately, a better understanding
of these phenomena will lead to a better understanding of crude oil/water emulsions, which are made up
of trillions of tiny water drops, each covered with asphaltene molecules. This improved understanding can
be utilised to reduce the cost and footprint of oil-water separation equipment, as well as to reduce the use
of chemicals and heat in these separators. This in turn leads to reductions in both capital and operational
expenses, as well as reduced emissions from oil production.

In the molecular simulations it is found that coarse-grained model asphaltenes are highly sensitive to
the molecular architecture, to the point that molecules which are isomers both on the atomistic and on the
coarse-grained scales have very different solubilities in the solvents in question (heptane and toluene). This is
consistent with e.g. the findings by Sedghi et al. [122] who found in their atomistic simulations that small
variations in the side groups of model asphaltenes caused large differences in solubility.

It is notable that the two solvents in question, heptane and toluene, are not very different in the first
place: they are miscible, have the same number of carbon atoms, and have similar Hildebrand solubility
parameters4, 15.3 and 18.3 respectively, compared to e.g. 26.2 for ethanol and 48.0 for water, all these from
[148] given in MPa1/2. The most obvious difference between heptane and toluene is the different molecular
architecture of the two (ring-shaped and linear), which in turn enables toluene to have π-orbital interactions
with other aromatic molecules. With the similarity in mind, an interesting question arises: Asphaltenes are
known to be a highly complex mixture of different molecules, which originate as part of the well-stream
from crude oil reservoirs deep underground. Unlike the carefully synthesised molecules used in man-made
chemical processes, asphaltenes are created in an essentially random fashion. How, then, do they achieve
such a detailed solubility balance?

It is likely that the explanation lies in a two-fold application of an argument analogous to the “anthropic
principle”: the fact that asphaltenes are insoluble in heptane comes from their penchant for π-π ring
interactions, which cause them to cluster and subsequently fall out of solution. If the molecules had smaller
aromatic cores, they would not show this behaviour, but then they would also not be asphaltenes in the first
place, rather they would be resins. The solubility in toluene can be understood from a similar point of view:
were the asphaltenes not soluble in toluene (or aromatic solvents in general), they would not be soluble in
crude oil at all, so they would never be found in the flow coming up from the reservoir.

An interesting possible topic for investigation in future studies is the effect of asphaltene polydispersity,
whic is an obvious next step on the path towards better models for molecular simulations involving asphaltenes.
A very appealing idea is the construction of a coarse-grained QMR method, which would in principle enable
the construction of an arbitrary number of different coarse-grained model asphaltene molecules.

When the model asphaltenes are introduced into the heptol-water system, they are found to intrinsically be
interfacially active. No tuning has been done of the cross-interactions between the aromatic cores and water,
due to the lack of experimental properties to tune this interaction to. With this in mind, it is remarkable
how well the interfacial behaviour of particularly the APCE model asphaltenes matches what one expects
based on our understanding of the π-interactions between aromatic rings and water [149].

The molecular simulations presented here using the APCE model asphaltenes are the first reported
simulations of asphaltenes in oil-water systems which obtain the correct interfacial behaviour, as compared
to experimental results using sum frequency generation spectroscopy [141]. This leads one to speculate
that perhaps a coarse-grained model asphaltene which has the correct solubility behaviour in heptane and
in toluene, such as the APCE model, somehow begins to take the asphaltene polydispersity into account
through the coarse-grained nature.

When it comes to the pendant drop case, simulations highlight that the tension is highly anisotropic,
and that the azimuthal tension varies significantly along the drop profile, being zero around the neck of the

4The Hildebrand solubility parameter is a quantity most useful for comparing solvents, and is given by the square root of
the cohesive energy density.
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drop when volume has been removed with the needle. This is caused by the Eötvös number being close to
one, such that both gravity and the needle suction are responsible for deforming the drop. The resulting
variations in the tensions explain the axisymmetric crumpling observed in experiments.

An important implication of the anisotropy in the tension is that when using the pendant drop tensiometer
to study asphaltene covered drops, it makes little sense to speak of a “surface pressure” as a scalar number
indicative of the total tension in the interface. This is in contrast to the situation with a flat interface, as
in a classical Langmuir-Blodgett trough apparatus, where the surface pressure would remain well-defined.
This questions the findings in previous studies where conclusions are drawn on the basis of variations in the
“surface pressure” of asphaltene-covered drops measured using the pendant drop tensiometer to deform drops.
It is also important to note that the elasticity considered in these simulations is fundamentally different from
the Gibbs elasticity of surfactants.

When studying ordinary surfactants, the Marangoni effect ensures that (at equilibrium) the distribution
of surfactants on the drop interface is uniform, and it thus makes sense to speak of a surface pressure in
this case. For the anisotropic tensions studied here, the analogue of the Marangoni effect serves only to
remove variation of Ts in the meridional direction etc. But as discussed previously, it is not possible to have
forces acting to cancel the variation in Tφ along the meridional direction, since these forces would be in the
direction binormal to the axis of strain.

When it comes to the micropipette drop case, the Eötvös number is Eo � 1, and thus gravity is
unimportant. This means that the tension forces dominate, and that drop deformations are entirely
controlled by the needle suction. This causes the drop to remain spherical up to the point of crumpling,
such that the crumples appear simultaneously across the drop interface. The two-dimensional simulation at
low Eötvös number demonstrates a qualitative similarity to this, in that crumpling appears on all of the
interface.

How these macroscopic phenomena relate to emulsion stability remains a topic for future investigations.
An important question which should be investigated is the deformation of emulsion drops as they travel from
the point of emulsion formation, through the varying turbulence levels in the flow which transports them
through the pipeline, and finally when they end up in the oil-water separator, where the flow is less turbulent
and the drop shapes will be spherical. Taking this into account, together with the adsorption time scales for
asphaltenes in a highly sheared flow, would provide important insight into the situation for real emulsion
drops. The multiscale method employed here, with future extensions e.g. to fully three-dimensional flow, is
uniquely poised to help answer these and other important questions.

7. Concluding remarks

To summarise, the current paper presents a multiscale approach to the simulation of drops with complex
interfaces, such as water drops in crude oil which are covered with asphaltene molecules. The approach
combines coarse-grained molecular dynamics simulations using the SAFT-γ Mie force field, with detailed
two-phase flow simulations using a hybrid level-set/ghost-fluid/immersed-boundary method developed as part
of this work. At the molecular scale, the coarse-grained approach enables simulations at unprecedented time-
and length-scales, using accurate models for both the simple fluids and the complex asphaltene molecules.
The interfacial tension γ and elasticity Ka are estimated, for use in the macroscopic simulations.

At the macroscopic scale, detailed simulations of oil-water interfaces with both interfacial tension and
elastic properties shed new light on experimental results that showcase one of the peculiarities of complex
fluid-fluid interfaces, namely crumpling drops. Two categories of experimental results exist in the literature,
with different classes of crumpling behaviour. The results presented here demonstrate that this difference is
caused by the large difference in Eötvös number between the two categories. In the pendant drop case, with
an Eötvös number around one, both gravity and the experimental setup are responsible for deforming the
drop, and this combination leads to an axisymmetric crumpling regime. In the micropipette case, with an
Eötvös number much smaller than one, the drop remains spherical up to the point of crumpling, leading to a
fully three-dimensional behaviour.

These results present a novel hypothesis, namely anisotropic tensions in the interface, as an explanation
of the crumpling phenomenon. This hypothesis is different from previously suggested explanations, e.g. that
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based on glass transitions in [14]. The hypothesis put forward in this work makes fewer assumptions and has
greater predictive power than those presented in previous works.

Building on this work, there are numerous avenues open for future investigations. The effect on interfacial
properties of crude oil composition, asphaltene polydispersity, asphaltene architecture, other crude components
such as resins, etc., should all be considered. Extending the hybrid simulation method to three dimensions
would enable not just simulations of e.g. the micropipette drops, but also of drops in more complicated (even
turbulent) flows. Furthermore, the extension to drop coalescence is a very interesting topic. Also, this study
assumes that the interfacial elasticity is of the Hookean type. While this is the simplest form of elasticity, it
could well be that asphaltene-covered interfaces can be more accurately modelled using e.g. a neo-Hookean
elasticity.

All in all, the methods presented here are well suited for increasing our understanding of dispersed
two-phase flows with complex interfaces. This is important not just for the application in focus here, crude
oil/water systems, but also for biological systems such as the flow of blood or the transport of proteins, and
for chemical processes involving multiphase flow and macromolecules.
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Appendix A. Parameters for the continuum simulation cases

Table A.1: Parameters for the drop in potential vortex.

Parameter Symbol Value

Drop radius r 0.15
Domain size Ω 1× 1
Stability safety factor C 0.5
Euler grid nodes N 200× 200
Lagrangian point density 5/∆

Table A.2: Parameters for the Zalesak’s disk test.

Parameter Symbol Value

Disk radius r 1/3
Domain size Ω 1× 1
Time step safety factor C 0.5
Euler grid nodes N 64× 64
Velocity field u π

10
[1/2− y, x− 1/2]

Lagrangian point density 5/∆

Table A.3: Parameters for the elliptical drop driven by
interfacial tension.

Parameter Symbol Value

Drop density ρ1 103 kg/m3

Matrix density ρ2 103 kg/m3

Drop viscosity µ1 10−3 Pa · s
Matrix viscosity µ2 10−3 Pa · s
Interfacial tension γ 15× 10−3 N/m
Drop radius r 10−3 m
Drop axis length ratio a

b
1.16

Domain size Ω 0.007× 0.007 m
Time step safety factor C 0.2
Grid nodes N {100, 200, 400, 800}

Table A.4: Parameters for relaxing drop with viscosity and
density jump.

Parameter Symbol Value

Drop density ρ1 103 kg/m3

Matrix density ρ2 5× 102 kg/m3

Drop viscosity µ1 10−3 Pa · s
Matrix viscosity µ2 10−2 Pa · s
Interfacial tension γ 15× 10−3 N/m
Drop radius r 10−3 m
Drop axis length ratio a

b
1.16

Domain size Ω 0.007× 0.007 m
Time step safety factor C 0.2
Grid nodes N 400

Table A.5: Parameters for relaxing drop with an elastic
membrane.

Parameter Symbol Value

Drop density ρ1 103 kg/m3

Matrix density ρ2 103 kg/m3

Drop viscosity µ1 10−3 Pa · s
Matrix viscosity µ2 10−3 Pa · s
Interfacial tension γ 15× 10−3 N/m
Elasticity Ka 0 and 15× 10−2 N/m
Drop radius r 10−3 m
Drop axis length ratio a

b
3.0

Domain size Ω 0.007× 0.007 m
Time step safety factor C 0.5
Grid nodes N 150

Table A.6: Parameters for the pendant drop case.

Parameter Symbol Value

Drop density ρ1 1000 kg/m3

Matrix density ρ2 830 kg/m3

Drop viscosity µ1 1.03× 10−3 Pa · s
Matrix viscosity µ2 12.4× 10−3 Pa · s
Interfacial tension γ 30× 10−3 N/m
Elasticity Ka 50× 10−3 N/m
Drop radius r 3.3× 10−3 m
Domain size Ω (5× 10−3)× (15× 10−3) m
Time step safety factor C 0.3
Grid nodes N 132× 200
Penalisation η 3× 10−5
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Table A.7: Parameters for the micropipette case.

Parameter Symbol Value

Drop density ρ1 1000 kg/m3

Matrix density ρ2 830 kg/m3

Drop viscosity µ1 1.03× 10−3 Pa · s
Matrix viscosity µ2 12.4× 10−3 Pa · s
Interfacial tension γ 40× 10−3 N/m
Elasticity Ka 50× 10−3 N/m
Drop radius r 1× 10−3 m
Domain size Ω (2× 10−3)× (3× 10−3) m
Time step safety factor C 0.5
Grid nodes N 132× 200
Penalisation η 5× 10−6

Appendix B. Parameters and scripts for the molecular simulations

The molecular simulations reported here are performed using our raaSAFT framework. Scripts which
can be used to reproduce the molecular simulations are available in the replication directory of the
raaSAFT repository, at http://www.bitbucket.org/asmunder/raasaft. The force field parameters
are mostly published elsewhere, as indicated by the DOI for each model in that repository. However, the
force field parameters for the aromatic beads used in the APCE and APCL asphaltene models have not been
published elsewhere yet. These are given in Table B.8. The parameters for the toluene model are also not
published elsewhere yet, these are given in Table B.8.

Table B.8: Parameters for the aromatic beads.

Parameter Value Unit

Toluene

ε/kB 269.74 [K]
σ 3.6794 [Å]
n 11.804 [-]
m 6 [-]

APCE

ε/kB 312.90 [K]
σ 3.975 [Å]
n 10 [-]
m 6 [-]
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