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Abstract

In this report we examine a data set from TrønderTaxi, which contains

information about all phone calls their call center received from 1 March

2014 to 31 January 2016. We model the number of phone calls received

per 30 minute time interval using two different models. The first model is

a seasonal autoregressive integrated moving average model, or SARIMA

model. The second model is a naive model, which treats all of the weeks

of the data set as independent and identically distributed. We use both

the SARIMA and naive models to make predictions of both one and two

weeks into the future. The results show that the SARIMA model appears

to make slightly better predictions for one week into the future, while the

naive model is better for more distant predictions.
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Sammendrag

I denne rapporten undersøker vi et datasett fra TrønderTaxi som in-

neholder informasjon om alle telefonsamtaler deres telefonsentral mottok

fra 1. mars 2014 til og med 31. januar 2016. Vi modellerer antall mottatte

samtaler per 30-minutters tidsintervall ved hjelp av to forskjellige mod-

eller. Den første modellen er en SARIMA-modell. Den andre modellen

er en naiv modell, som behandler alle ukene i datasettet som uavhengige

og identisk fordelt. B̊ade SARIMA-modellen og den naive modellen ble

brukt til å predikere verdier b̊ade én og to uker fremover i tid. Resultatene

viser at SARIMA-modellen ser ut til å være litt bedre til å predikere én

uke fremover i tid, mens den naive modellen er bedre til å predikere lengre

fremover i tid.
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1 Introduction

Every day TrønderTaxi receives hundreds of phone calls to their call center

from customers wanting to order taxis. The motivation behind this project is

to create a model which can predict the number of phone calls per time interval

TrønderTaxi will receive during a certain period of time in the future. It is very

important for TrønderTaxi to be able to predict the number of calls they will

receive during a given time interval, since this information can be used to set

up a timetable for the employees at their call center. Thus, TrønderTaxi will be

able to have the appropriate number of people at work at any given time. This

reduces the amount of overstaffing and understaffing, both of which can be very

costly for TrønderTaxi. Exactly how many people this turns out to be depends

on how many calls each employee is able to process per hour, and how large

a percentage of dropped calls TrønderTaxi finds acceptable. TrønderTaxi has

other practical considerations as well. For instance, they cannot ask someone

to work for a single hour in the middle of the night just because they expect

more calls during that hour. Such practical considerations are not taken into

account when we are selecting our models.

Several different attempts have been made to successfully staff a call center. In

1995, queuing theory was used to economically optimise the staffing levels of

the telephone operators working for L.L. Bean, a large American telemarketer

(Andrews and Parsons, 1993). This was done by expected-total-cost minimi-

sation, with expected savings amounting to more than $500 000 per year. An

ARIMA model has successfully been used to predict the number of calls L.L.

Bean would receive three weeks into the future (Andrews and Cunningham,

1995). This model used intervention analysis to handle the abnormal number

of calls received during the holidays and during advertisement campaigns. Fur-

thermore, ARIMA models have been used for predicting calls to AT&T’s call

center, and were shown to perform better than a simpler Holt-Winters smooth-

ing (Bianchi et al., 1998). This method also used intervention analysis. The

number of calls received by a call center has also been modelled as a Poisson pro-

cess (Soyer and Tarimcilar, 2008), a bivariate mixed-effects model (Ibrahim and
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L’Ecuyer, 2013) and as a Poisson equally weighted moving average (PEWMA)

model (Brandt et al., 2000).

In this report we present a SARIMA model for the number of calls received per

30 minute time interval by TrønderTaxi, and use this model to make predictions.

We start by performing a preliminary investigation of the data set to look for

patterns. To aid this process, we plot short intervals of the data set, as well as

the autocorrelation and partial autocorrelation functions of the entire data set.

Following this, we build a model based on our investigation of the data set. We

start by testing the data set for level and trend stationarities. After this, we use

the ACF and PACF in order to make a first guess of the model. We improve the

model by adding regressors to account for the difference between the weekdays

and weekends. This eventually leads to the final SARIMA model. Estimates

of this model are plotted together with the observed values. The standardised

residuals are also examined in order to determine how well the model fits the

data. After deciding on a model, we use this model to make predictions of

the last part of the data set, based on all of the data leading up to the time

intervals we want to predict. These predictions are compared to the predictions

of a naive model, which only looks at the mean values calculated for every 30

minute time interval of the week. Various error checking statistics for both the

SARIMA and naive models are calculated and compared. Finally, we calculate

the coverage probability of forecasts of one and two weeks into the future using

both the SARIMA and naive models.

In Section 2 of this report theory about time series models is presented. Section

3 contains a preliminary investigation of the data set. In Section 4 we arrive

at our final models and use them to perform predictions based on the data

set. Finally, in Section 5 we summarise the findings from Section 4 and discuss

implications of the results.
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2 Time series models

A time series is an ordered sequence of equally spaced data points. It is most

common to have ordering through time, but it is also possible to have ordering

through space. Examples of time series include yearly tobacco production, daily

maximum temperature and the number of calls received at a call center per hour.

An important aspect of time series is that they are commonly used to predict

future values. A more thorough introduction can be found in the references

(Box and Jenkins, 1990). We define a time series Y as

Y = {yt, t ∈ T}, (2.1)

where yt is the value of the time series at time t in the index set T . Before

introducing various time series models, we introduce the backshift operator B

in order to ease notation. The backshift operator B applied to the time series

Y at time t is defined as (Hyndman and Athanasopoulos, 2013)

Byt = yt−1, (2.2)

giving the value of the previous step of the time series. In the following, we

introduce the autocorrelation function (ACF) and partial autocorrelation func-

tion (PACF). Following that, we define the autoregressive (AR) and moving

average (MA) models, as well as various extensions, culminating in the seasonal

autoregressive integrated moving average (SARIMA) model.

2.1 Autocorrelation and partial autocorrelation functions

A time series Y is said to be stationary if its joint probability distribution

remains the same when shifted in time. This means that we have

E(yt) = µ ∀t ∈ T, (2.3)

Var(yt) = E(yt − µ)2 = γ0 ∀t ∈ T. (2.4)
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For a stationary time series, the correlation between yt and yt+k is also inde-

pendent of time, and is defined as

ρk =
Cov(yt, yt+k)√

Var(yt)
√

Var(yt+k)
=
γk
γ0
, (2.5)

and the partial autocorrelation between yt and yt+k is defined as

Pk =
Cov [(yt − ŷt), (yt+k − ŷt+k)]√
Var(yt − ŷt)

√
Var(yt+k − ŷt+k)

, (2.6)

where ŷt+k is the best linear estimate of yt+k (Wei, 2006). These expressions are

known as the ACF and PACF, respectively. Notice that these are not dependent

on the time t, but on the lag parameter k.

2.2 The AR(p) model

The autoregressive model of order p, or AR(p) model of a time series is defined

as

φp(B)ẏt = et, (2.7)

where

φp(B) = 1−
p∑
i=1

φiB
i, (2.8)

ẏt = yt − µ, and et is Gaussian N(0, 1) white noise, while µ is the mean of the

time series (Wei, 2006). A process is called a white noise process if it contains

uncorrelated random variables with a constant mean and a constant variance

(Kay, 1993). For ease of notation, we from now on use yt when referencing ẏt,

without any loss of generality. The AR(p) model assumes that the current value

of the time series is dependent on the p previous values. This can be shown by

writing out the definition of an AR(1) and AR(2) model with respect to yt,

giving

yt = et + φ1yt−1, (2.9)
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yt = et + φ1yt−1 + φ2yt−2, (2.10)

respectively. Correspondingly, the general AR(p) model can be written as

yt = et + φ1yt−1 + φ2yt−2 + · · ·+ φpyt−p, (2.11)

which is clearly dependent on the p previous values of the time series. Given

an arbitrary AR(p) model, it is possible to estimate p by looking at plots of

the autocorrelation and partial autocorrelation functions of the time series. For

an AR(p) model, the theoretical autocorrelation function (ACF) tails off expo-

nentially or as a damped sine wave. Meanwhile, the theoretical partial auto-

correlation function (PACF) cuts off after lag p. This means that all values of

the theoretical partial autocorrelation after lag p are zero. An example from an

AR(2) model with (φ1, φ2) = (0.9,−0.5) is shown in Figure 1. In this case, we

see that the ACF appears to tail off as a damped sine wave, while the PACF

cuts off after lag 2.

2.3 The MA(q) model

The moving average model of order q, or MA(q) model of a times series is defined

as

yt = θq(B)et, (2.12)

where

θq(B) = 1−
q∑
i=1

θiB
i (2.13)

and et is as defined above. We rewrite the MA(1) and MA(2) models with

respect to yt, giving

yt = et + θ1et−1, (2.14)

yt = et + θ1et−1 + θ2et−2. (2.15)
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Figure 1: Theoretical ACF and PACF of an AR(2) series with (φ1, φ2) =

(0.9,−0.5).
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Figure 2: Theoretical ACF and PACF of an MA(2) series with (θ1, θ2) =

(0.7,−0.4).

This leads to the the general MA(q) model with respect to yt being

yt = et + θ1et−1 + θ2et−2 + · · ·+ θqet−q. (2.16)

For MA(q) models, it is also possible to estimate q by looking at the ACF and

PACF of the time series. For an MA(q) model, the ACF cuts off after lag q,

while the PACF tails off exponentially or as a damped sine wave. An example

from an MA(2) model with (θ1, θ2) = (0.7,−0.4) is shown in Figure 2. In this

case, the ACF cuts off after lag 2, while the PACF appears to tail off as a

damped sine wave.
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Table 1: Characteristics of the ACF and PACF of AR(p), MA(q) and

ARMA(p, q) models.

Model ACF PACF

AR(p) Tails off Cuts off after lag p

MA(q) Cuts off after lag q Tails off

ARMA(p, q) Tails off after lag (q − p) Tails off after lag (p− q)

2.4 The ARMA(p, q) model

The autoregressive moving average model, or ARMA(p, q) model, is a combina-

tion of the AR(p) and MA(q) models described above, and is defined as

φp(B)yt = θq(B)et. (2.17)

This model is used when the time series contains both an autoregressive and

moving average process. We see from the definition that setting q = 0 or

p = 0 gives us the previously defined AR(p) and MA(q) models, respectively.

It is more difficult to estimate the values of p and q in an ARMA(p,q) model,

since the theoretical ACF tails off after lag (q − p), and the theoretical PACF

tails off after lag (p− q). An example of the theoretical ACF and PACF of an

ARMA(1,1) model with (φ1 = 0.9, θ1 = 0.5) is shown in Figure 3. A summary of

the characteristics of the ACF and PACF for an ARMA(p, q) model is presented

in Table 1 (Rosadi et al., 2012).

2.5 Homogeneous nonstationarity and differencing

Until now, the models we have defined all assume that the time series is station-

ary. A process is said to be homogeneous nonstationary if its behaviour stays

the same, apart from the differences in local means. If this is the case, differ-

encing an appropriate number of times d will make the time series stationary.
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Figure 3: Theoretical ACF and PACF of an ARMA(1,1) series with (φ1 =

0.9, θ1 = 0.5).
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Differencing yt d times is defined as

(1−B)dyt, (2.18)

where B is the previously defined backshift operator. Rewriting this, with d = 1

and d = 2, we get

y′t = yt − yt−1, (2.19)

y′′t = yt − 2yt−1 + yt−2. (2.20)

Intuitively, when we look at y′t, we look at the difference between every suc-

cessive value of the original time series. Differencing can be combined with the

ARMA(p,q) model to make the autoregressive integrated moving average model,

or ARIMA(p,d,q) model. This model is defined as

φp(B)(1−B)dyt = θq(B)et. (2.21)

As previously explained, the p corresponds to the order of the autoregressive

part, while the q corresponds to the order of the moving average part. The d

corresponds to the degree of first differencing involved.

2.6 The SARIMA(p, d, q)(P,D,Q)m model

When a time series appears to contain seasonality, a seasonal autoregressive

integrated moving average (SARIMA) model may be used. The

SARIMA(p,d,q)(P ,D,Q)m model is defined as

φp(B)ΦP (Bm)(1−B)d(1−Bm)Dyt = θq(B)ΘQ(Bm)et, (2.22)

with φp(B) and θq(B) as defined for the ARIMA(p,d,q) model. ΦP (B) and

ΘQ(B) are defined similarly, with

ΦP (B) = 1−
P∑
i=1

ΦiB
i (2.23)
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and

ΘQ(B) = 1−
Q∑
i=1

ΘiB
i. (2.24)

Similarly to the nonseasonal ARIMA model, the P corresponds to the order of

the seasonal autoregressive part, and the Q corresponds to the order of the sea-

sonal moving average part. The D corresponds to the degree of first differencing

involved in the seasonal part of the model, while m represents the number of

periods in each season. For instance, if we were dealing with monthly data, the

period would be m = 12.

2.7 Adding regressors to the SARIMA model

It is possible to modify the original SARIMA model to include regressors. The

model then becomes

φp(B)ΦP (Bm)(1−B)d(1−Bm)D(yt − βTxt) = θq(B)ΘQ(Bm)et, (2.25)

where x is a matrix with a number of rows equal to the length of the time series,

and a number of columns equal to the number of desired regressors. The vector

β contains the values of the regressor parameters, indicating in what way the

various regressors affect the time series. This is a very important expansion of

the model. It allows us to include additional information in the model, such as

information about the weather, holidays and so on.

2.8 Variance-stabilising transformations

If a time series is found to be nonstationary in variance, a variance-stabilising

transformation is performed. The most common variance-stabilising transfor-

mation is the Box-Cox power transformation, which is defined as

T (yt) =
yλt − 1

λ
, (2.26)
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where λ can be any value. However, if λ = 1 we do not get a transformation.

The next step is to test for level stationarity and seasonal stationarity.

2.9 Tests of level stationarity

Tests of level stationarity are used to determine the value of d in the

SARIMA(p,d,q)(P ,D,Q)m model. There are several tests of level stationarity,

including the Kwiatkowski-Phillips-Schmidt-Shin (KPSS) and the augmented

Dickey-Fuller (ADF) tests.

2.9.1 The KPSS test of level stationarity

The KPSS test has a null hypothesis that a time series is trend stationary or

level stationary. By trend stationary, we mean that the time series is stationary

around a deterministic trend. Level stationarity means that the time series

behaves like white noise. The KPSS test assumes that the time series can be

written as

yt = ξt+ rt + εt,

where ξ is a deterministic trend, rt is a random walk, and εt are independent

and identically distributed as N(0, σ2
ε). The random walk can be written as

rt = rt−1+ut, where ut are independent and identically distributed as N(0, σ2
u).

The stationarity hypothesis is σ2
u = 0. If this is true, yt is either trend stationary

around ξ, or level stationary around r0 (if ξ = 0). The test statistic is defined

as (Kwiatkowski et al., 1992)

KPSS =

∑T
t=1 S

2
t

σ̂2
e

. (2.27)

In this case

St =

t∑
i=1

ei, t = 1, 2, · · · , T, (2.28)

where et = yt − ȳ, and σ̂2
e is the sum of the squared residuals, divided by T .
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2.9.2 The ADF test of level stationarity

The ADF unit root test is an augmented version of the Dickey-Fuller test (Dickey

and Fuller, 1979), and assumes the model

(1−B)yt = α+ βt+ γyt−1 + δ1(1−B)yt−1 + · · ·+ δp−1(1−B)yt−p+1 + εt,

(2.29)

where α, β are constants, δ1, · · · δp−1 are parameters and p is the lag order of

the autoregressive process. A common approach to determining the value of p

is to start with a large value, and then reduce the number of lags sequentially

until the longest lags are significant. The null hypothesis for the augmented

Dickey-Fuller test is γ = 0, while the alternative hypothesis is γ < 0. The test

statistic is

ADF =
γ̂

SE(γ̂)
. (2.30)

If the test statistic is more negative than the critical value, the null hypothesis

is rejected and there is no unit root.

2.10 Test of seasonal stationarity

Testing for seasonal stationarity is a way of determining the value of the D in a

SARIMA(p,d,q)(P ,D,Q)m model. There are several different tests for seasonal

stationarity, but this paper will only briefly explain the Canova and Hansen

(CH) test (Canova and Hansen, 1995). This test for seasonal stationarity has

a null hypothesis that the seasonal pattern of a time series is deterministic. It

assumes that the time series can be written as

yt = µ+ xTt β + St + et,

where xTt is a vector of explanatory variables, St is a deterministic seasonal

component, and et is an uncorrelated error with a N(0, σ2
e) distribution. The

CH test resembles the KPSS test described earlier, as they are both based on

the Lagrange Multiplier statistic.
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2.11 Competing models and parameter estimation

After deciding on the values of (p, d, q, P , D, Q), the parameter values are

estimated by maximum likelihood estimation. At this point, we may have sev-

eral competing models which all could be candidates for the best model. This

could for instance be the case if it is difficult to discern (p, q) from the ACF and

PACF. To decide on which model to use, we can calculate various information

criteria. There are several information criteria that can be used to select the

best model, including the AIC (Akaike, 1974), AICc and BIC.

The Akaike information criterion (AIC) is defined as (Burnham and Anderson,

2004)

AIC = −2ln(L) + 2k, (2.31)

where ln(L) is the natural logarithm of the maximum likelihood and k is the

total number of parameters within the model. For finite sample sizes, it may be

more beneficial to use the AICc, defined as

AICc = AIC +
2k(k + 1)

n− k − 1
, (2.32)

where n is the sample size. This information criterion penalises having a large

number of parameters more than the AIC does. However, if n is much larger

than k2, the difference between the two criteria becomes negligible. Exten-

sive simulation work shows that the AICc is the preferred criterion of the two

(Canova and Hansen, 1995). For large n, the AICc converges to the AIC. Finally,

the Bayesian information criterion (BIC) is defined as

BIC = −2ln(L) + kln(n). (2.33)

2.12 Error checking

Another way to check how good various models are, is by looking at how good

they are at forecasting, or predicting future values. This can be measured
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by error checking. There exists several error checking criteria, including the

mean percentage error (MPE), mean squared error (MSE), mean absolute er-

ror (MAE) and the mean absolute percentage error (MAPE). Given a forecast

interval of length l, the MPE is defined as (Wei, 2006)

MPE =
1

l

l∑
t=1

yt − ŷt
yt

, (2.34)

where yt is the observed value of the time series at time t, and ŷt is the predicted

value of the time series at time t. One advantage of the MPE is that it measures

forecast bias. If a forecast is biased, it will generally predict values that are either

greater or less than the observed values. The MPE is only defined if none of

the observed values are zero. The MSE can be used regardless of whether any

of the observed values are zero, and is defined as (Wei, 2006)

MSE =
1

l

l∑
t=1

(yt − ŷt)2 . (2.35)

A possible disadvantage of the MSE is that outliers are heavily weighted. This

happens because all of the errors are squared. The MAE is defined as (Wei,

2006)

MAE =
1

l

l∑
t=1

|yt − ŷt|. (2.36)

The MAPE is defined as (Wei, 2006)

MAPE =
1

l

l∑
t=1

∣∣∣∣yt − ŷtyt

∣∣∣∣ . (2.37)

As with the MPE, the MAPE is not defined if any of the observed values are

zero. Another disadvantage of the MAPE is that it penalises negative errors

heavier than positive errors. This can be seen by calculating the MAPE for

(yt = 150, ŷt = 100) and (yt = 100, ŷt = 150). The first case gives a MAPE

of 50/150 = 0.33, while the second case gives a MAPE of 50/100 = 0.50, even

though both of the predicted values are equally far away from the observed

values.
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3 Introducing the data set

A preliminary investigation of the data set provided by TrønderTaxi is per-

formed before deciding on a specific model. Before plotting the data, it is

discretised from near-continuous time to intervals of 30 minutes. Doing this

makes the data set computationally easier to work with, without sacrificing any

degree of generality needed by TrønderTaxi. A similar investigation has previ-

ously been performed on a truncated version of this data set (Østhus, 2015).

The number of calls received per 30 minutes by TrønderTaxi for the period

01.03.2014 through 31.01.2016 is plotted in Figure 4. We immediately notice

that there are a couple of time periods where there were no recorded calls,

namely for intervals in June 2014, May 2015 and January 2016. The reason

for these gaps is that TrønderTaxi had technical difficulties during those time

intervals. Hence, the information about the calls received during those days was

not recorded.

3.1 Data analysis

The local peak values of the data set appear to be evenly spaced, indicating a

form of seasonality in the data set. This is what we would expect to find, since

we know that more people order taxis at certain times of the day, and certain

days of the week. To further verify this, we plot the number of calls received

per 30 minutes for two consecutive weeks on top of each other. This is shown

in Figure 5. We see that the number of calls received per 30 minute interval

for two consecutive weeks appear to be similar to each other. This was further

corroborated by looking at several other pairs of consecutive weeks of the data

set. Since the weeks resemble each other, it is natural to plot an average week

from the entire data set. The average week is found by taking

µ̃j =
1

Nj

Nj∑
i=1

yj+336(i−1), j = 1, · · · , 336, (3.1)
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Figure 4: Number of calls received by TrønderTaxi per 30 minute interval from

01.03.2014 through 31.01.2016.
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Figure 5: Plot of the number of calls received per 30 minutes for the third and

fourth week of the data set, starting in March 2014. The data from the third

and fourth weeks are shown in black and red, respectively. It should be noted

that there are no holidays during this time period.
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Figure 6: Plot of the mean value with standard deviation of number of calls

received per 30 minutes of the week.

where Nj is the number of 30 minute time intervals in the jth time interval of

the week. The index j goes from 1 to 336 because there are 336 intervals of 30

minutes in a week. The estimated standard deviation for each 30 minute time

interval of the week is defined as

σ̃j =

√√√√ 1

Nj

Nj∑
i=1

(yj+336(i−1) − µ̃j)2 j = 1, · · · , 336, . (3.2)

The plot of this average week, as well as its standard deviation, based on the

entire data set is found in Figure 6. We observe that the weekdays Monday

through Thursday seem to follow a very similar pattern, while the weekend

days Friday, Saturday and Sunday are very different. For instance, there are

more calls during the last hours of Friday than during the last hours of the other

weekdays. The rest of the Friday behaves quite similarly to the other weekdays.
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Figure 7: Plot of the estimated coefficient of variation per 30 minutes for the

entire data set.

3.2 Coefficient of variation

Another way of looking at how much the number of calls received per 30 minute

interval varies, is to plot the coefficient of variation cv. The coefficient of varia-

tion for the jth 30 minute time interval of the week is defined as

cjv =
σ̃j
µ̃j
, j = 1, · · · , 336, (3.3)

where µ̃j is the estimated mean value of the jth 30 minute time interval of the

week, and σ̃j is the estimated standard deviation of the jth 30 minute time

interval of the week. These estimates are defined in equations (3.1) and (3.2),

respectively. A plot of the estimated coefficient of variation is found in Figure

7. Here we see that the coefficient of variation is the lowest for Saturday and
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Sunday, while the largest values are found in the hours after midnight on the

other days of the week. There are several possible reasons for this. We can

imagine that a holiday falling on a weekday would have a much larger impact

on the number of calls received per 30 minute interval around midnight than

if the holiday were to happen during the weekend. From Figure 6, we also see

that the mean around midnight on the weekdays is very low. Dividing by these

values leads to a large coefficient of variation.

3.3 Comparing the days of the week

From Figure 6, we see that the weekdays resemble each other more than the

other days of the week. To further investigate how similar the average days

are to each other, we plot the average days of the week on top of each other in

Figure 8. This figure confirms that the weekdays are the most similar to each

other, especially Monday, Tuesday, Wednesday and Thursday. Friday follows a

similar pattern to the other weekdays in the beginning, but we see that there are

on average more calls received on Friday evenings than the other weekdays. We

also observe that there are fewer calls received during daytime on Saturday and

Sunday, but much more calls received during the evenings and nights. Figure 8

shows that the two busiest nights are the nights between Friday and Saturday,

and Saturday and Sunday. This makes sense, since many people want to get

earlier home on the night to Monday, due to work or school in the morning.

3.4 ACF and PACF

It may also be of interest to plot the autocorrelation and partial autocorrelation

functions of the data set to look for underlying patterns. The autocorrelation

function is plotted in Figure 9, while the partial autocorrelation function is

plotted in Figure 10. The autocorrelation function takes the shape of a damped

sine wave. We see that the period of the damped sine wave is 48, corresponding

to a period of 24 hours. This means that there is a positive correlation between
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Figure 8: Plot of the mean values per 30 minute interval for each day of the

week on top of each other.
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Figure 9: Plot of the autocorrelation function of the entire data set.
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Figure 10: Plot of the partial autocorrelation function of the entire data set.
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the number of calls in a 30 minute time interval on one day and the same 30

minute time interval on the following day. We also observe that the largest

negative correlation comes after 24 time lags, or 12 hours. From Figure 10, we

observe that the partial autocorrelation function appears to cut off quickly. The

implications of these plots are discussed in further detail later.
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4 Model building

In this section, we present models for the time series data obtained from TrønderTaxi.

A series of tests are performed on the data set to ensure fitting models, followed

by an examination of the standardised residuals, forecasting and error checking

diagnostics.

4.1 Tests of level stationarity and seasonal stationarity

To determine whether the call data provided by TrønderTaxi is level stationary,

we perform the KPSS and ADF tests in R, using the functions kpss.test and

adf.test found in the tseries package (Trapletti and Hornik, 2016). The KPSS

test returned a p-value greater than 0.05, so we cannot reject the null hypothesis

of level stationarity. Meanwhile, the ADF test returned a p-value less than 0.05,

leading us to reject the null hypothesis of nonstationarity. Together, the results

of these two tests imply that the time series is level stationary. This leads us to

initially set d = 0.

Next, we check for seasonal stationarity. This is done by using the R function

nsdiffs in the forecast package (Hyndman and Khandakar, 2008). This func-

tion uses the Canova-Hansen test in order to determine the number of seasonal

differences required to make the time series stationary in season. To check for

seasonal stationarity, we first decide on the period m of the data set. In this

case, we choose m = 48, since we are dealing with daily data and considering

30 minute time intervals. For this time series, the result of the CH test was 0,

leading us to believe that the time series is already stationary in season without

the need for seasonal differencing. Similarly to the conclusion of the test for

level stationarity, this leads us to initially set D = 0.
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4.2 Examining ACF and PACF

After deciding on initial values for d and D, we examine the plots of the autocor-

relation and partial autocorrelation functions of the data set found in Figures

9 and 10, respectively. This is done in order to obtain an initial guess for

(p, q, P,Q). From Figure 9, we see that the autocorrelation function of the data

set takes the shape of a damped sine wave. The partial autocorrelation function

of the data set plotted in Figure 10 does not give as clear an answer. However,

we observe that the partial autocorrelation quickly falls off after lag 1. The

combined observations from Figures 9 and 10 lead us to set (p = 1, q = 0) as

initial values.

We find initial values for P and Q by looking at every m lags of the autocor-

relation function and partial autocorrelation function of the data set. Plots of

the ACF and PACF with a larger maximum lag can be seen in Figure 11. The

ACF appears to tail off, while the PACF appears to cut off after two periods of

m. This leads to an initial guess of (P = 2, Q = 0).

4.3 Adding regressors to the model

Further examination of Figures 6 and 8 leads to the conclusion that all the days

of the week cannot be treated equally. However, we see that the number of calls

received per 30 minute time interval looks very similar for Mondays through

Thursdays. Due to this, we decide to calculate a new average day, based only

on the data for Mondays through Thursdays. This is presented in Figure 12. In

order to find out how much the various days of the week differ from this average

weekday, we examine the difference between the average week plotted in Figure

6 and the average weekday based on Mondays through Thursdays found in

Figure 12. This difference is plotted in Figure 13. We see that the number of

calls received per 30 minute time interval changes on Fridays, Saturdays and

Sundays. This plot is used to create a regressor matrix to be included in the

SARIMA model, in order to better fit the data set. The regressor matrix has a

number of rows equal to the length of the data set, and a number of columns
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Figure 11: Plot of the autocorrelation function and partial autocorrelation func-

tion of the entire data set up to a maximum lag of 220.
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Figure 12: Plot of the average number of calls received per 30 minute time

interval, based on all Mondays through Thursdays in the data set.
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Figure 13: Plot of the difference per 30 minute time interval between the average

week and the average of Mondays through Thursdays, based on the entire data

set.
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Figure 14: Simplified plot of the difference per 30 minute time interval between

the average week and the average of Mondays through Thursdays, based on the

entire data set. The four intervals of interest are plotted in red.

equal to the number of regressors. In this case, we choose to model the weekly

variation using linear combinations of four regressors. A simplified version of the

difference plotted in Figure 13 can be found in Figure 14. The regressors in our

regressor matrix correspond to the four constant nonzero time intervals found in

Figure 14, corresponding to the time intervals of [1,6], [17,31], [49,54] and [65,77].

These intervals are plotted in red. To make the regressor matrix, we start by

making a matrix with 4 columns and 336 rows, one row for each 30 minute time

interval of a week. We build the matrix one row at a time. The first 6 rows

are only affected by the first regressor, while the rows in the interval [7,16] are

affected by a linear combination of the first two regressors. Similarly, the rows

in the interval [17,31] are only affected by the second regressor, and the rows in

the interval [32,48] are affected by a linear combination of the second and third
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regressor. This procedure is repeated until we have covered the entire interval

[1,336]. It should be noted that the interval [78,87] only contains a fraction

of the fourth regressor, while the interval [319,336] only contains a fraction of

the first regressor. After this matrix is built, we repeat it until the number of

rows matches the length of the data set. The values of the regressor matrix

are normalised to make them easier to interpret later. This means that for the

intervals [1,6], [17,31], [49,54] and [65,77], we set the value of the respective

regressors to 1. In the parts of the matrix where a row contains two different

regressors, we also make sure that their sum is always equal to 1. The sections

which only contain fractions of a single regressor are also scaled appropriately.

4.4 Initial model guess

The following procedure is used in order to find the best SARIMA model for the

data set. Based on the previous tests of stationarity and seasonal stationarity,

and on the ACF and PACF of the original data set, we guess starting val-

ues for (p, d, q, P,D,Q). Additionally, a regressor matrix is built as described

above. After this, we use a slightly modified Hyndman-Khandakar algorithm

(Hyndman and Khandakar, 2008) to find the best SARIMA model for the data

set. This is done by testing neighbouring models to our initial guess model. The

neighbouring models are defined as models where either one of (p, q, P,Q) varies

by ±1 of the current model, where both (p, q) vary by ±1 of the current model,

or both (P,Q) vary by ±1 of the current model. The AICc is then calculated for

all of these neighbouring models, and the model with the lowest AICc is chosen

as our new current model. If any errors occur while estimating neighbouring

models, we reject those neighbouring models. The initial guess for our SARIMA

model is SARIMA(1,0,0)(2,0,0)48. After finding an initial model, we use the R

function Arima from the forecast package to calculate the AICc of this model

and all neighbouring models. Eventually, we arrive at our final model.
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Table 2: Estimated values and standard errors for the parameters of the

SARIMA(1,0,0)(2,0,2)48 model.

Parameter Estimate Standard error

µ 43.9 4.40

φ1 0.787 0.00390

Φ1 0.175 0.0450

Φ2 0.824 0.0449

Θ1 -0.128 0.0403

Θ2 -0.826 0.0387

β1 45.5 1.35

β2 -40.9 1.13

β3 112 1.40

β4 -48.6 1.22

4.5 Final model

We end up with a SARIMA(1,0,0)(2,0,2)48 model, which can be written as

φ1(B)Φ2(B48)(yt − βTxt) = Θ2(B48)et, (4.1)

or

(1− φ1B1)(1− Φ1B
49 − Φ2B

50)(yt − µ− βTxt) = (1−Θ1B
49 −Θ2B

50)et,

(4.2)

with the estimated parameter values presented in Table 2. We see from Table

2 that all of the parameters are significantly different from zero. A plot of

the estimated number of calls received per 30 minute time interval is shown in

Figure 15. Again, we observe the missing values for certain time intervals. This

is because the R function Arima from the forecast package does not estimate

a value for these time intervals, since the original data was not available. To

examine how closely the estimates fit the observed values, we plot the estimated

values and observed values on top of each other, for 6 weeks spread fairly evenly
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Figure 15: Plot of the estimated number of calls received per 30 minutes from

the SARIMA model.
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Figure 16: Plot of the estimated number of calls received per 30 minutes for

weeks 1, 11 and 32 of the data set, starting in March 2014. The estimated and

observed values are shown in black and red, respectively.

through the data set. These weeks are chosen so that they do not contain any

holidays. The results are shown in Figures 16 and 17. The plots show that

the estimated values fit the observed values fairly well, but the estimated values

appear to lag a little behind the observed values. In order to determine how well

this SARIMA model fits the data set, we examine the standardised residuals.
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Figure 17: Plot of the estimated number of calls received per 30 minutes for

weeks 46, 64 and 85 of the data set, starting in March 2014. The estimated and

observed values are shown in black and red, respectively.
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Figure 18: Plot of the standardised residuals of the SARIMA model.

4.6 Examining the standardised residuals

In order to evaluate the final model, we examine the standardised residuals of

the model. The standardised residual rt of a time series at time t is defined as

rt =
yt − ŷt
σ̂t

, (4.3)

where ŷt is the predicted value and σ̂t is the estimated standard deviation of (yt−
ŷt). A plot of the standardised residuals can be found in Figure 18. The missing

standardised residuals in Figure 18 correspond to the missing data in the original

data set. Next, we examine the distribution of the standardised residuals. This

is done by plotting a histogram of the standardised residuals, as well as a Q-Q

plot, shown in Figures 19 and 20, respectively. Figure 19 shows a histogram of

the standardised residuals of the SARIMA model, as well as a standard normal

distribution. We observe that there are more standardised residuals close to
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Figure 19: Histogram of the standardised residuals of the SARIMA model. The

red curve is a standard normal distribution N(0, 1). A red vertical line is also

plotted through zero to make is easier to distinguish the positive standardised

residuals from the negative ones.

zero than what would be expected for a standard normal distribution. There

also appears to be more slightly positive standardised residuals than slightly

negative ones. In addition to this, we observe that the tails of the standardised

residuals are slightly heavier than expected. From the Q-Q plot presented

in Figure 20, we see that the majority of the standardised residuals follow a

straight line. The Q-Q plot also shows that the distribution is heavy-tailed,

especially when it comes to the negative standardised residuals. Furthermore,

we find that approximately 94 % of the standardised residuals lie within the (-

1.96, 1.96) interval. This is slightly less than the 95 % we would have expected

to find for a standard normal distribution. It is also of interest to look at the

autocorrelation function and partial autocorrelation function of the standardised
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Figure 20: Q-Q plot of the standardised residuals of the SARIMA model. The

red horizontal lines go through -1.96 and 1.96.
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Figure 21: Plot of the autocorrelation function of the standardised residuals of

the SARIMA model.

residuals. These plots can be found in Figures 21 and 22, respectively. If

the SARIMA model was a perfect fit for the data set, we would expect the

standardised residuals to behave like a white noise process. For a white noise

process, there is no correlation between the values in the time series. We see

from Figures 21 and 22 that this is clearly not the case for our standardised

residuals. Both the ACF and PACF seem to have a larger peak at the 48th

time lag, in addition to a large peak at lag 1. This could indicate that there is

still some seasonality in the data set which is not accounted for by the SARIMA

model.
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Figure 22: Plot of the partial autocorrelation function of the standardised resid-

uals of the SARIMA model.
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Figure 23: Plot of the predicted number of calls received per 30 minute time

interval for two consecutive weeks, starting on 21 November 2015, using the

SARIMA model. The predicted and observed values are shown in black and

red, respectively.

4.7 Prediction and comparison with naive model

Once we have settled on a model and checked how well it fits the underly-

ing data set, we use the model to make predictions. In order to test how

good the predictions of the model are, we estimate the parameters of the

SARIMA(1,0,0)(2,0,2)48 models based on only a part of the data set. This

allows us to perform predictions that we can compare to observed values. In

this case, we decide to include the first 90 weeks of the data set. This means

that the first week we predict starts on Saturday 21 November 2015. A plot of

the first two weeks of prediction can be found in Figure 23. We see that the

predicted values follow the observed values quite well, but that they tend to un-
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Figure 24: Plot of the predicted number of calls received per 30 minute time

interval for two consecutive weeks, starting on 21 November 2015, using the

naive model. The predicted and observed values are shown in black and red,

respectively.

derestimate the number of calls received during the busiest hours. Additionally,

the predicted values for the least busy hours tend to be a bit larger than the

observed values for these time periods.

To find out how well our SARIMA model performs, we compare its predictions

to predictions made using a naive model. This naive model consists of the

previously estimated mean value of a week, and can be found in Figure 6.

As with the SARIMA model, we plot the predicted values of the naive model

together with the observed values of the same two weeks. The results can be

found in Figure 24. The predictions follow the same pattern as the SARIMA

model. We observe that the predicted values for the busiest hours are generally
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Figure 25: 95 % prediction interval of the number of calls received per 30 minute

time interval for two consecutive weeks, starting on 21 November 2015, using

the SARIMA model. The predicted and observed values are shown in black and

red, respectively.

lower than the observed values, while the predicted values for the least busy

hours are often slightly larger than the observed values. We plot the 95 %

prediction intervals for the same two weeks, using both the SARIMA and naive

models. The results can be seen in Figures 25 and 26, respectively. This is done

so we can examine the certainty of our predictions. Figure 25 shows that the

prediction intervals for the SARIMA model fit the shape of the observed values

quite well, though the peak values for some of the days still lie outside of the

interval. The 95 % prediction interval for the naive model in Figure 26 also seems

to follow the observed values well. However, we observe that the prediction

intervals for Sunday nights, which have the largest observed values, are much

larger than for the SARIMA model. We also observe that the prediction interval
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Figure 26: 95 % prediction interval of the number of calls received per 30 minute

time interval for two consecutive weeks, starting on 21 November 2015, using

the naive model. The predicted and observed values are shown in black and

red, respectively.



4.7 Prediction and comparison with naive model 47

Figure 27: Overlapping histograms of the prediction error for the number of calls

received per 30 minute time interval for two weeks, starting on 21 November

2015. The prediction errors for the SARIMA and naive models are shown in

red and blue, respectively.

for the SARIMA model is more smooth than the prediction interval for the naive

model. To further compare the two models, we plot overlapping histograms of

the prediction errors of the models. In this case, the prediction error is defined as

the difference between the observed values and the predicted values, or (yt− ŷt).
The overlapping histograms are found in Figure 27. We see that there is a large

amount of overlap between the histograms of prediction errors of the two models,

though the SARIMA model appears to have more negative prediction errors.



48 4 Model building

Table 3: Calculated error statistics for the SARIMA and naive model for two

weeks of prediction, starting on 21 November 2015.

Statistic SARIMA Naive

MPE -0.0200 0.0282

MSE 277 243

MAE 12.1 11.2

MAPE 0.271 0.240

4.7.1 Error checking statistics

To further compare the forecasts made by the SARIMA and naive models,

we calculate the error statistics defined in equations (2.34) through (2.37). The

results of these calculations can be found in Table 3. The results are inconclusive

for this specific forecast. The forecast from the SARIMA model has the lowest

mean percentage error, while the forecast from the naive model has the lowest

mean squared error, mean absolute error and mean absolute percentage error.

However, Figure 27 shows that the SARIMA forecast has some very heavy

negative errors, which impact the MSE and MAPE in particular. This could

also just be the case for this specific forecast. In order to get a better indication

of which model provides the best forecast, we decide to produce several one-

week and two-week forecasts, each time removing a different number of weeks

from the data set. By two-week forecast, we mean a forecast of the second week

after the end of the data set. For the SARIMA model, we expect the one-week

forecasts to generally be better than the two-week forecasts. Once again, we

calculate the MPE, MSE, MAE and MAPE for each one-week forecast, and find

their average values. In this case, we examine forecasts where the data set ends

on weeks 89, 90, 91 and 92. We decide to use these particular weeks close to the

end of the data set so that the SARIMA model can be based on a large data

set. These weeks also do not contain any holidays. The results can be found in

Table 4. Similarly, we find the average error statistics of the two-week forecasts

from the SARIMA and naive model, when the data set ends on weeks 88, 89, 90
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Table 4: Calculated average error statistics for the SARIMA and naive models

for one-week forecasts of weeks 90, 91, 92 and 93.

Statistic SARIMA Naive

MPE1w -0.0170 0.0300

MSE1w 248 278

MAE1w 11.6 12.0

MAPE1w 0.277 0.250

Table 5: Calculated average error statistics for the SARIMA and naive models

for two-week forecasts of weeks 90, 91, 92 and 93.

Statistic SARIMA Naive

MPE2w -0.143 0.0300

MSE2w 390 278

MAE2w 13.7 12.0

MAPE2w 0.393 0.250

and 91. This leaves us with one-week and two-week forecasts of the same four

weeks. The results can be found in Table 5. We see from Tables 4 and 5 that

the values of all of the statistics increase for the two-week predictions. This is

as we expected, since it is more difficult to accurately predict two weeks into

the future than one.

4.7.2 Coverage probability

In addition to the various error checking statistics examined above, we can

use the coverage probabilities of the forecasts from the SARIMA and naive

models to evaluate them. The coverage probability for a prediction interval is

the percentage of observed values that are found within the specified prediction

interval (Agresti and Coull, 1998). As with the error statistics, we calculate the

average coverage probabilities for one-week and two-week forecasts made using



50 4 Model building

Table 6: Calculated coverage probabilities based on a 95 % prediction interval

for the SARIMA and naive model for one-week forecasts of weeks 90, 91, 92 and

93.

Week SARIMA Naive

90 93.8 % 97.6 %

91 92.3 % 96.7 %

92 94.1 % 94.6 %

93 93.2 % 92.9 %

Average 93.3 % 95.5 %

Table 7: Calculated coverage probabilities based on a 95 % prediction interval

for the SARIMA and naive model for two-week forecasts of weeks 90, 91, 92

and 93.

Week SARIMA Naive

90 90.5 % 97.6 %

91 92.1 % 96.7 %

92 91.7 % 94.6 %

93 83.0 % 92.9 %

Average 89.3 % 95.5 %

the SARIMA and naive models on weeks 90, 91, 92 and 93. In these cases,

we look at the percentage of observed values found within the 95 % prediction

intervals of the models. The results can be found in Tables 6 and 7. The

average coverage probability of the naive model seems to fit the wanted 95 %

coverage probability well. Furthermore, the individual coverage probabilities of

the SARIMA model indicate that the one-week forecasts perform better than the

corresponding two-week forecasts. We see this from the fact that the coverage

probabilities are larger for the one-week forecasts, and thus closer to the wanted

95 % coverage probability that we would hope to get from a 95 % prediction

interval.



51

5 Closing remarks

In this report, we examined a data set from TrønderTaxi containing the num-

ber of calls received per 30 minute time interval from 1 March 2014 through

31 January 2016. The time series was modelled as a seasonal autoregressive

integrated moving average model that was fitted to the data set. One-week and

two-week forecasts were made using this SARIMA model and a naive model.

Various error checking statistics were used to compare the two models with each

other. When it comes to performing forecasts for a single week into the future,

the SARIMA model appears to outperform the naive model. The SARIMA

model has a smaller MPE, MSE and MAE, but its MAPE is slightly larger.

This means that if TrønderTaxi is able to set up their staffing schedule as late

as only a single week ahead of time, it is advisable to use the SARIMA model

instead of the naive model. All of the error checking statistics of the two-week

forecasts from the SARIMA model were worse than the error checking statis-

tics for the naive model. Due to this, there is little reason to use the more

complicated and computationally demanding SARIMA model when performing

forecasts for two weeks into the future.

The models in this report contain several limitations. Neither the SARIMA nor

the naive models account for any seasonality other than the daily and weekly

seasonality previously explained. However, TrønderTaxi has reported that there

seems to be an underlying yearly trend in the number of calls received. For

instance, TrønderTaxi receives fewer calls during the summer months. This

could be related to the fact that many people from Trondheim decide to spend

at least parts of their summer vacation somewhere else than in Trondheim.

Information about when in the year the data points are from could be included

in the regressor matrix. Furthermore, it would be of interest to examine the

effects of various holidays on the number of calls received. Intuitively, we would

expect fewer calls to be received during the Easter holiday, as this is also a period

of the year when many people from Trondheim temporarily leave the city. This

coincides with the experiences of TrønderTaxi. On the other hand, the data

set provided by TrønderTaxi shows that some holidays lead to more calls being
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received. This becomes apparent when looking at the two New Year’s Eves

in the data set, which have the busiest 30 minute time intervals of the entire

data set. If we were to use our current SARIMA or naive models to predict

the number of calls received on these days, we would surely underestimate the

values. To obtain a good understanding of how the various holidays affect the

number of calls received, it would be beneficial to look at a larger data set,

spanning further back in time. Unfortunately, TrønderTaxi does not have call

data going further back in time than 1 March 2014. However, TrønderTaxi has

detailed logs over all trips made by their taxis spanning further back in time.

We would imagine that this data is highly correlated with the number of calls

made. If this proves to be the case, the data of the number of trips made could

be used to estimate the effects of various holidays. A natural extension from this

would be to look at the effects of large annual events, such as music festivals.

In addition to examining the effects of various holidays on the number of calls

received, it would be interesting to take a look at how the weather impacts the

number of calls. More specifically, the regressor matrix of the SARIMA model

could be extended to include a parameter for the recorded precipitation per 30

minute time interval, and another parameter for the recorded air temperature

for the same time intervals.

The histogram of the standardised residuals of the SARIMA model has heavier

tails than a standard normal distribution. A natural continuation of this project

would be to examine where in the data set these standardised residuals come

from. If we find out where these extreme standardised residuals come from, we

may be able to account for them in our model.
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