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Abstract

We consider solving stochastic hyperbolic conservation laws with a quasi Monte

Carlo method based on Sobol sequences. As far as we are aware, no one has

done any research on this specific combination before. We extend an already

available tool for uncertainty quantification, ALSVID-UQ, with the ability to

perform quasi Monte Carlo using Sobol sequences. We perform numerical exper-

iments with uncertain initial values for Burgers equation and most of the results

converge with the rate O(1/M) where M is the amount of samples, compared to

O(1/
√
M) for conventional Monte Carlo methods. The convergence is measured

in variance and mean. The problems are easily parallelizable, and simulations

are done on a supercomputer with up to 1024 CPU cores used simultaneously.
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Sammendrag

Vi løser stokastiske hyperbolske bevaringslover ved hjelp av en kvasi-Monte

Carlo metode basert p̊a Sobolsekvenser. S̊avidt vi vet har denne kombinasjonen

aldri vært forsket p̊a tidligere. Vi utvider usikkerhetskvantifiseringsverktøyet

ALSVID-UQ til å kunne bruke Sobolsekvenser, og dermed kunne utføre kvasi-

Monte Carlo simuleringer. Vi utfører numeriske forsøk med usikre initialdata

for Burgers ligning, og de fleste resultatene konvergerer med rate O(1/M) der M

er antall simuleringer, sammenlignet med O(1/
√
M) for konvensjonelle Monte

Carlo metoder. Konvergensen er m̊alt i varians og gjennomsnitt. Problemene

er parallellskalerbare, og simuleringer er kjørt ved opptil 1024 kjerner samtidig.
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Chapter 1

Introduction

In recent years, the development of efficient simulation methods for hyperbolic

conservation laws with uncertain initial values has been studied extensively.

Examples of conservation laws include the Euler equations in fluid dynamics,

conservation of energy, traffic flow and shallow water waves. Conservation laws

are also used extensively in medium-range weather forecasting (around 10 days

into the future). The European Centre for Medium-range Weather Forecasts

(ECMWF) experimented with a Monte Carlo method already in 1979 [2], but

the results were inconclusive. The current model, called Ensemble prediction [3],

can be viewed as a specialized Monte Carlo procedure, generating results from

an ensemble consisting of up to 51 perturbations of the full operational model.

The results from this model enables the weather prediction to be more correct,

but it also enables an estimate about how certain the model is. This is the

reason the medium-range forecasts can be labeled with a high, medium or low

degree of probability of being correct.

Work has recently been done in speeding up Monte Carlo simulations, for

example by utilizing a technique called multi-level Monte Carlo (MLMC) ([4],

[5]). The MLMC method makes the Monte Carlo method more effective by doing

less work for the same accuracy. The quasi Monte Carlo method’s premise is a

possibly better convergence rate than conventional Monte Carlo. As far as we

1



2 CHAPTER 1. INTRODUCTION

are aware, nobody has researched this specific combination before; conservation

laws and quasi Monte Carlo. We are interested in whether the quasi Monte Carlo

method can be used as a drop-in replacement for the Monte Carlo method in

the specific use case that is conservation laws with uncertain initial values.

We begin by presenting theory for conservation laws in Chapter 2, while

theory for Monte Carlo and quasi Monte Carlo methods are presented in Chap-

ters 3 and 4. How to generate a Sobol sequence, our quasi random number

generator of choice, is presented in Chapter 5. Combining the previous topics,

and giving an example, is considered in Chapter 6 while the implementation

work is described in Chapter 7. Finally, numerical experiments and conclusion

comes in Chapters 8 and 9.



Chapter 2

Conservation Laws

In this section conservation laws and numerical methods for them will be pre-

sented. For more in-depth knowledge and understanding of the subject we refer

to Holden and Risebro [6]. For other details the lecture notes by S. Mishra [7]

are a good resource. The following chapter also builds on previous work done

by the author [8].

2.1 Introduction to Conservation Laws

Consider a probability space Ω ⊂ Rn and a quantity of interest u that is defined

in all points x ∈ Ω. In conservation laws, this quantity typically is a temper-

ature, a pressure or a density. For a fixed sub-domain ω ⊂ Ω of any size, the

rate of change of u over time is equal to the total amount of u produced (or de-

stroyed) inside ω and the flux across the boundaries. An integral representation

of this would be

d

dt

∫
ω

udx = −
∫
δω

F · νdσ(x)︸ ︷︷ ︸
flux

+

∫
ω

Sdx︸ ︷︷ ︸
source or sink

,

3



4 CHAPTER 2. CONSERVATION LAWS

with ν being the outward normal, dσ(x) being the surface measure, F and S

being the flux and source. Simplifying this integral by using the divergence

theorem we obtain

d

dt

∫
ω

udx+

∫
ω

div(F )dx =

∫
ω

Sdx.

Since this holds for all sub-domains ω ⊂ Ω, using an infinitesimal ω obtains the

following differential equation, known as a balance law :

∂tu+ div(F ) = S ∀(x, t) ∈ (Ω,R+)

u(x, 0) = u0(x).

If the source (or sink) is zero, we classify this as a conservation law (since u only

changes by flux entering or leaving the domain) and it takes the form

∂tu+ div(F ) = 0 ∀(x, t) ∈ (Ω,R+)

u(x, 0) = u0(x). (2.1)

2.2 Examples of Conservation Laws

The scalar transport equation

∂tu+ div(a(x, t)u) = 0 (2.2)

governs flow over a velocity field a(x, t). If we let u be a concentration of a

pollutant in the air, wind will generate the velocity field a(x, t) and the pollutant

will be transported with the wind. In a simple case where we consider one

dimension and the velocity field is constant, (2.2) reduces to

∂tu+ a∂xu = 0,

which is often called the transport or advection equation.

Given a metal rod that is heated in the center, you would assume that the
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heat (u) spreads out and in time you get a uniform heat distribution on the rod.

For a general medium this diffusion is described by Fick’s law:

F (u) = −k∇u,

where k is the conductivity tensor for the medium. Since heat flows from hotter

to colder zones we get a minus sign. Plugging this into the general conservation

law (2.1) we get

∂tu− div(k∇u) = 0,

which is called the heat equation. This equation governs the transportation of

heat over time. The heat equation can also model particle diffusion, Brownian

motion and a lot of other equations can be reduced to it. The heat equation is

a second order partial differential equation. From here and out we only look at

first order scalar partial differential equations.

2.3 Properties of Conservation Laws

We look at the first order scalar conservation law

∂tu+ ∂xf(u) = 0

u(x, 0) = u0(x). (2.3)

Since the solution (or even the initial data) do not need to be smooth, we

multiply with any test function φ ∈ C1
c (R× R+) and integrate by parts to get∫

R×R+

u∂tφ+ f(u)∂xφdxdt+

∫
R
u0(x)φ(x, 0)dx = 0. (2.4)

Definition 2.1. Any function u ∈ L1(R × R+) that satisfies (2.4) is called a

weak solution to (2.3).

Weak solutions are not necessarily unique. Enforcing an entropy condition,
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t

x

Figure 2.1: Characteristics of a shock solution. We see that as time passes, the
location of the shock will move to the right.

such as the Lax entropy condition

f ′(u−(t)) > s(t) > f ′(u+(t)), (2.5)

we get an entropy solution. Here s(t) is the shock speed while u± is the states

on either side of the shock. More general entropy conditions also exist.

Definition 2.2. If a weak solution also satisfy an entropy condition, such as

the Lax entropy condition, this is an entropy solution.

Solutions of conservation laws can be constructed using the method of char-

acteristics. For decreasing initial data with a convex flux, a shock will arise.

This is visible as a discontinuity in the solution and the fact that the charac-

teristic lines cross each other. See Figure 2.1 for an example characteristic plot

where a shock exists. The traveling speed of the shock is determined by the

Rankine-Hugoniot condition

s(t) =
f(u+(t))− f(u−(t))

u+(t)− u−(t)
. (2.6)

If, on the other hand, the characteristics do not collide, but rather spreads

out from an area, a rarefaction wave is created, see Figure 2.2a for an example.
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t

x

?

(a) A rarefaction wave with unde-
cided characteristics in the center.

t

x

(b) A rarefaction wave satisfying the
Lax entropy condition (2.5).

Figure 2.2: Characteristics of a rarefaction solution. We see that as time passes,
the left side of the rarefaction will stay at the same point, while the right side
travels further right and extends the area the rarefaction covers.

This type of wave will emerge for example if you have increasing initial data with

a convex flux. Many valid weak solutions exists, but we need a unique entropy

solution. Utilizing Rankine-Hugoniot (2.6) and the Lax entropy condition (2.5)

the entropy solution is to ”fill out” the empty area with a fan shape starting in

the origin of the rarefaction. See Figure 2.2b for an illustration of the entropy

solution.

2.4 Finite volume schemes

In this section we will develop a finite volume scheme for the one dimensional

scalar conservation law(2.3). Since equations of this type does not necessarily

have continuous solutions we search for weak solutions and define control cells

instead of the usual grid points. This is done because an average cell value

better maps discontinuous data. For x ∈ [xL, xR] we define the discrete points

as

xj = xL +

(
j +

1

2

)
∆x, j = 0, . . . , N, ∆x =

xR − xL
N + 1

,
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and the control volumes as

Cj =
[
xj−1/2, xj+1/2

)
where xj±1/2 are the midpoints between two discrete neighboring grid points.

We also use a uniform discretization in time,

tn = n∆t.

Since the solutions to (2.3) might be discontinuous, instead of looking at point

values we try to update the control volumes:

Unj ≈
1

∆x

∫ xj+1/2

xj−1/2

u(x, tn)dx

for each time step tn. Integrating (2.3) over x ∈ [xj−1/2, xj+1/2] in space and

t ∈ [tn, tn+1] in time yields

∫ tn+1

tn

∫ xj+1/2

xj−1/2

∂tudxdt+

∫ tn+1

tn

∫ xj+1/2

xj−1/2

∂xf(u)dxdt = 0.

Defining the control volume flux

Fnj+1/2 =
1

∆t

∫ tn+1

tn
f(u(xj+1/2), t)dt (2.7)
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we get that

∫ tn+1

tn

∫ xj+1/2

xj−1/2

∂tudxdt = −
∫ tn+1

tn

∫ xj+1/2

xj−1/2

∂xf(u)dxdt

∫ tn+1

tn
∂t∆xU

n
j dt =

∫ xj+1/2

xj−1/2

∂x∆tFnj dx

∆x(Un+1
j − Unj ) = ∆t(Fnj+1/2 − F

n
j−1/2)

Un+1
j = Unj −

∆t

∆x

(
Fnj+1/2 − F

n
j−1/2

)
. (2.8)

In (2.7) we define flux passing in and out from a control volume from time tn to

tn+1. The change in Unj in the same timespan is the flux passing through the

endpoints of the interval. This means that (2.8) is a conservation statement.

Since the fluxes are unknown they need to be approximated. This approximation

depends on what kind of solver one would want to use.

To approximate (2.8) Gudonov [9] assumed that the control volume averages

are constant in each volume Cj and therefore the interfaces between them define

a Riemann problem:
∂tu+ ∂xf(u) = 0 (x ∈ R, t > tn)

u(x, tn) =

{
Unj if x < xj+1/2

Unj+1 if x > xj+1/2.

(2.9)

Our solution is thus a superposition of Riemann problems (2.9). As long

as (x, t) is reasonably close to (xj+1/2, t
n) the Riemann problem closely ap-

proximates a conservation law made up of several control volumes. The so-

lution of the Riemann problems forms shock waves, rarefactions and com-

pound waves. To prevent the waves from affecting each other we impose the

Courant–Friedrichs–Lewy condition, also called the CFL-condition:

max
j
|f ′(u)|∆t

∆x
≤ 1

2
.

This can be inferred from the fact that the solution waves have a finite speed that
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is bounded by maxj |f ′(unj )|. Solving each of the Riemann problems with the

CFL-condition active guarantees that waves from adjacent cells do not interact.

2.5 Approximate Riemann solver

We approximate a solution to the Riemann problem by using two waves: one

traveling right with speed slj+1/2 and one traveling left with speed srj+1/2. This

is also called a two-wave solution. The approximate solution to the Riemann

problem (2.9) is:

u0(x) =


unj if x < slj+1/2t

u∗j+1/2 if slj+1/2t < x < srj+1/2t

unj+1 if x > srj+1/2t.

We determine the exact solution to the middle state using the Rankine-Hugoniot

condition (2.6):

f(unj+1)− f∗j+1/2 = srj+1/2

(
unj+1 − U∗j+1/2

)
f(unj )− f∗j+1/2 = slj+1/2

(
unj − U∗j+1/2

)
,

with f∗j+1/2 being the middle flux. These equations represents a system which

can be solved for f∗j+1/2, and if we take the wave speeds to be equal in magnitude

but with opposite sign (sr = −sl = s) we get the simple expression

f∗j+1/2 =
f(unj ) + f(unj+1

2
−
sj+1/2

2

(
unj+1 − unj

)
.

This is one way to approximate the flux function for a control volume (2.7):

Fnj+1/2 ≈ f
∗
j+1/2.
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2.6 Lax-Friedrichs flux

The maximum allowed wave speeds are chosen to ensure neighboring Riemann

problems do not interact, and the maximum allowed speeds are

slj+1/2 = −∆x

∆t
, srj+1/2 =

∆x

∆t
. (2.10)

The wave speeds (2.10) lead to the flux function for Lax-Friedrichs scheme:

Fj+1/2 =
f(Unj ) + f(Unj+1)

2
− ∆x

2∆t

(
Unj+1 − Unj

)
, (2.11)

and so the full Lax-Friedrichs scheme is given by (2.8) and (2.11).

2.7 Rusanov flux

The Lax-Friedrichs scheme uses the same wave speeds over the whole domain,

which is not strictly necessary. Another scheme, the Rusanovs scheme (also

called local Lax-Friedrichs) chooses the speeds based on a subset of the grid:

sj+1/2 = max
(
|f ′(Unj )|, |f ′(Unj+1)|

)
,

now assuming that f(·) is convex (which is not strictly needed, but makes the

flux much easier to evaluate). The Rusanov method selects the wave speeds

based on local data, not on the whole domain like Lax-Friedrich does. The

Rusanov flux is thus given as:

FRus
j+1/2 =

f(Unj ) + f(Unj+1)

2
−

max
(
|f ′(Unj )|, |f ′(Unj+1)|

)
2

(
Unj+1 − Unj

)
, (2.12)

and the full Rusanov scheme is given by (2.8) and (2.12).
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2.8 HLL flux

Harten, Lax and van Leer flux [10] is given by

FHLL
j+1/2 =

srj+1/2f(Unj )− slj+1/2f(Unj+1)− srj+1/2s
l
j+1/2(Unj+1 − Unj ))

srj+1/2 − s
l
j+1/2

,

where srj+1/2 and slj+1/2 still are the wave speeds. Note that when solving

Burgers’ equation we have f(Un) = Un, and if the wave speeds are of equal

magnitude but opposing sign s = srj+1/2 = −slj+1/2, we have that

FHLL
j+1/2 =

sf(Unj ) + sf(Unj+1)

2s
−
s2(Unj+1 − Unj )

2s

=
f(Unj ) + f(Unj+1)

2
−
s(Unj+1 − Unj )

2

= FRus
j+1/2.

For these conditions the HLL flux is equal to the Rusanov Flux (2.12).



Chapter 3

Monte Carlo methods

Monte Carlo methods are used extensively in physics, mathematics, chemistry,

biology, geology and finance. This section will present the main results from

the method. For a deeper understanding of the subject, Caflisch’s [11] review

article is excellent.

The integral of a one dimensional Lebesgue integrable function f(ω) : R→ R
with respect to a probability density p(ω) can be expressed as

I[f ] =

∫
R
f(ω)p(ω)dω,

with ω ∈ R. The cumulative distribution function, or CDF, is defined as

P (x) =

∫ x

−∞
p(ω)dω. (3.1)

The expectation of a function can be formulated as an integral, so

E[f ] = I[f ].

13
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We further define the Monte Carlo integral as

IM [f ] =
1

M

M∑
m=1

f(xm(ω)), (3.2)

where {xm(ω)}Mm=1 is M independently sampled numbers from p(ω)

Theorem 3.1. With I[f ] being the integral of a Lebesgue integrable function

and IM [f ] the Monte Carlo approximation to the same integral we have that

lim
M→∞

IM [f ] = I[f ]

almost surely.

The above result comes directly from the Strong Law of Large Numbers [11].

Definition 3.2. The integration error for the Monte Carlo method is

εM = |I[f ]− IM [f ]| .

Using the Central Limit Theorem we can bound the Monte Carlo error from

Definition 3.2:

Theorem 3.3 (Caflisch [11]). The Monte Carlo error εM is

eM ≈ σM−1/2ν, (3.3)

where ν is a standard normal random variable and σ = σ(f) is the square root

of the variance (or standard deviation) of f :

σ(f) =

(∫
Ω

(f(ω)− I[f ])
2
dω

)1/2

.

Letting ω ∈ Rn, all the above still holds in multiple dimensions and we get

an error term that scales as O(M−1/2), independent of the spatial dimension.

Being independent of the spatial dimension makes the Monte Carlo method easy

to work with.



Chapter 4

Quasi Monte Carlo

Even though the Monte Carlo method is easy to work with it has a somewhat

slow convergence. The error bound on the Monte Carlo method (3.3) is a proba-

bilistic error bound. If a random sequence of numbers can give an average error

scaling with O(M1/2), surely there must exist some sequence that makes the

method converge faster. The quasi Monte Carlo method tries to take advantage

of this fact, and in this section we hunt for number sequences that can satisfy

this requirement.

To perform the Quasi Monte Carlo method we substitute the pseudo random

numbers from the Monte Carlo method with numbers from a low discrepancy

sequence. We begin by normalizing the integration domain to be the unit cube,

so the integral we want to approximate is

I(f) =

∫
[0,1]s

f(x)dx.

We further define the Quasi Monte Carlo integral just as we defined the ordinary

Monte Carlo integral (3.2)

15
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IQM (f) =
1

M

M∑
m=1

f(xm), (4.1)

only now the integral takes a predetermined sequence as input and not pseudo

random numbers in the evaluation of f(·). The sequence {xm}Mm=1, where each

xm is a point in [0, 1]s, must be uniformly distributed. Sobol ([12] and [13])

presents three main requirements such a sequence must satisfy to be suitable

for quasi Monte Carlo:

• Best uniformity distribution as M →∞.

• Good distribution for fairly small M .

• A very fast computation algorithm.

To measure uniformity of a sequence, or how well the stochastic room is

filled, we define the discrepancy :

Definition 4.1. The discrepancy of any sequence {xm}Mm=1,xm ∈ [0, 1]s is

RM (J) =
1

M
(#{xm ∈ J} − v(J)) ,

where J is any subset of [0, 1]s, #(·) is the counting function and v(J) is the

volume of J .

In other words, RM (J) is the error in measuring the volume of J using a Monte

Carlo method.

We restrict J to be a rectangular set with sides parallel to the coordinate

axes. Let the set of all such subsets be denoted by E. A rectangular set is defined

by the points of two opposing corners (x, y), so we can write J = J(x,y). Define

two different measures of discrepancies, the L∞ norm

DM = sup
J∈E
|RM (J)|,
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and the star discrepancy

D∗M = sup
J∈E∗

|RM (J)|,

where E∗ is all the sets with one vertex at zero, E∗ = {J(0,y)}. Since E∗ ⊂ E
we have that D∗M ≤ DM .

The discrepancy can be seen as the counterpart to M−1/2v part of the Monte

Carlo error (3.3). There is also a direct link between the discrepancy and uni-

formity of a sequence:

Definition 4.2. A sequence {xm}Mm=1 is uniformly distributed if

lim
N→∞

DM = 0.

The variation of a function measures how much the function varies on an

interval. It can seen as the counterpart of the variation (or standard deviation)

part of the Monte Carlo error (3.3).

Definition 4.3. The Hardy-Krause variation of f , in one dimension, is

V [f ] =

∫ 1

0

∣∣∣∣dfdt
∣∣∣∣ dt,

and in s dimensions

V [f ] =

∫
Is

∣∣∣∣ dsf

dt1 · · · dts

∣∣∣∣ dt1 · · · dts +

s∑
i=1

V [f
(i)
1 ],

where f
(i)
1 is f restricted to xi = 1.

Definition 4.4. The integration error for the Quasi Monte Carlo integration

be

εQM (f) = |I(f)− IQM (f)|.

Theorem 4.5 (The Koksma-Hlawka Theorem). For any sequence {xm}Mm=1
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and any function f with bounded variation, the integration error is bounded by

ε(f) ≤ V [f ]D∗M (4.2)

.

Notice that we use the definition with the star discrepancy, which is a tighter

bound than if we used the normal discrepancy DM . The Koksma-Hlawka The-

orem is valid for any sequence, but for a Quasi Random sequence the bound

is

εQM (f) ≤ V [f ]D∗M .

Comparing the Koksma-Hlawka inequality for error in the Quasi Monte

Carlo integration (4.2) and the Monte Carlo error (3.3), there are some similari-

ties and some important differences. First, the Koksma-Hlawka is an inequality

and therefore a strict upper bound, while the Monte Carlo error is a proba-

bilistic error. Both the bounds consist of one factor depending on the sequence

(M−
1
2 for Monte Carlo, and D∗M for Koksma-Hlawka) and one factor depending

on f (σ(f) and V [f ] respectively).

Definition 4.6. A sequence is quasi random if

DM ≤ c(logM)kM−1,

where c and k are independent from M , but may depend on s.

Often we only call the sequences quasi random if k = s. By Theorem 4.5

these quasi random sequences will have an error

εQM ≤ cV [f ](logM)sM−1,

but the practical error is typically much lower. What we have experienced in

practice, and aim to fulfill here is an error scaling as O(M−1).

The first candidate for such a quasi random sequence was presented by

Halton [14] in 1960. Sobol [15] sequences were presented in 1967, and Faure
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sequences [16] in 1982. The implementation and efficiency of the Faure and

Halton sequences are discussed by Fox [17], while the Sobol sequence is briefly

mentioned as another good candidate. Newer additions include lattice methods

and higher order digital nets for sampling, but from here we focus on the Sobol

sequence.
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Chapter 5

Sobol Sequence Generator

We want to generate a quasi random sequence in the unit cube for some target

dimension s, each with M realizations. This could seem like a trivial task, but

may need more work than we realize. To make a low-discrepancy sequence in

one dimension we could make a regular grid xj = j/N where N is the number

of grid points. This would however violate Sobol’s second requirement if we

suddenly only wanted M/2 points and are stuck with points only in the left half

of our domain. Another strategy could be halving our domain and picking a

midpoint each time. In fact, the first Sobol dimension does something like that,

see Table 5.1 for a list of the first 10 Sobol numbers in dimension one. We can

not, however, do this for all the dimensions our sequence. An example of doing

that with only 2 dimensions can be shown in Figure 5.1. Sobol’s property A can

guarantee some uniformity.

Definition 5.1 (Sobol’s property A [18]). Divide the unit cube [0, 1]s into 2s

multi dimensional sub-cubes. Let P0, P1 · · · be a sequence of points and let As

be a binary segment 5.2 of this sequence with length 2s. The sequence P0, P1 · · ·
possesses Sobol’s Property A if all points in As lies in different sub-cubes.

21
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Table 5.1: The 10 first realizations of the Sobol sequence in dimension 1.

i xi
1 0.5
2 0.75
3 0.25
4 0.375
5 0.875
6 0.625
7 0.125
8 0.1875
9 0.6875

10 0.9375

Figure 5.1: Plotting the first dimension on both axis does not yield a good
uniformity, and also contradicts property A.
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Definition 5.2. A binary segment of length 2s is a set of points Pi where the

subscripts satisfy

l2s ≤ i(l + 1)ls l = 0, 1, · · ·

Theorem 5.3. A sequence P0, P1 · · · possesses the property A if and only if

det

∣∣∣∣∣∣∣∣
v111 v121 . . . v1s1

...
...

. . .
...

vs11 vs21 . . . vss1

∣∣∣∣∣∣∣∣ = 1, (5.1)

where vijk is the kth bit after the decimal, in the jth direction number in the ith

component of a point sequence in s dimensions. This is proved by Sobol [18].

5.1 Generating a Sobol sequence

We generate a Sobol sequence [15] in s dimensions. Fox [19] describes a method

to generate such sequences. For each dimension we need a set of direction

numbers v1, v2, · · · . Each direction number vi is a binary fraction:

vi = 0.vi1vi2vi3 · · · .

This binary fraction can also be represented by a single odd integer mi:

vi =
mi

2i
.

Each part of the binary fraction is made out of one bit, so the vijs are either

zero or one. Note that j > i implicitly defines vij = 0 as 0.10 = 0.1. This is

also the reason mi has to be odd, since the rightmost bit of vi is one.

To generate these direction numbers we choose a polynomial with coefficients
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either zero or one, which is a primitive polynomial in the field Z2. We choose

P (x) = xd + a1x
d−1 + · · ·+ ad−1x+ 1,

so P is a polynomial of degree d in Z2.

Using the chosen arbitrary polynomial we define a recurrence for vi:

vi = a1vi−1 ⊕ a2vi−2 ⊕ · · · ⊕ ad−1vi−d+1 ⊕ vi−d ⊕ b
vi−d
2d
c, i > d,

or equivalently, for mi:

mi = 2a1mi−1 ⊕ 22a2mi−2 ⊕ · · · ⊕ 2d−1ad−1mi−d+1 ⊕ 2dmi−d ⊕ 2dmi−d.

Here ⊕ denotes the exclusive or, bit by bit operation, meaning that you sum

each bit and take the modulo 2 of it. One can also note that dividing b vi−d

2d c is

the same operation as moving (or bit-shifting) all the bits to the right d places.

For computations the mi recurrence can be calculated with integer arithmetic

using a simple scaling. This means that all the calculations can be done in

logical operations, which should be very effective. The values of the first d mi

can chosen freely, but must be odd and mi < 2i.

As an example we choose the polynomial

x3 + x+ 1,

which gives us

a1 = 0

a2 = 1,

and the recurrence is

mi = 4mi−2 ⊕ 8mi−3 ⊕mi−3.

. Further we choose m1 = 1, m2 = 3, m3 = 7 and calculate the next two mis
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Table 5.2: The first direction numbers for one Sobol sequence.

i mi vi
1 1 0.1
2 3 0.11
3 7 0.111
4 5 0.0101
5 7 0.00111

(denote (·)2 as the binary representation of a number):

m4 = 12⊕ 8⊕ 1

= (1100)2 ⊕ (1000)2 ⊕ (0001)2

= (0101)2 = 5

m5 = 28 · 24 · 3

= (11100)2 · (11000)2 · (00011)2

= (00111)2 = 7,

and the resulting direction numbers are tabulated in Table 5.2.

To generate the sequence xM = {xi}Mi=0, xi ∈ [0, 1] we use

xi = b1v1 ⊕ v2b2 ⊕ · · · ⊕ bivi,

where · · · b3b2b1 is the binary representation of m. To produce a sequence qsM in

s dimensions we choose s different primitive polynomials to calculate direction

numbers:

qsM = (x1
M ,x

2
M , · · · ,xsM ) ∈ [0, 1]M×s

To guarantee some uniformity these direction numbers should be chosen so

the resulting sequence satisfies property A (5.1).

Antonov and Salew [20] proves that a reordering of the bits in m by using

the Gray code[21] representation of m gives the same asymptotic discrepancy.
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Table 5.3: The Gray code of some numbers.

i gray(i)
0 = (000)2 (000)2 = 0
1 = (001)2 (001)2 = 1
2 = (010)2 (011)2 = 3
3 = (011)2 (010)2 = 2
4 = (100)2 (110)2 = 6
5 = (101)2 (111)2 = 7
6 = (110)2 (101)2 = 5
7 = (111)2 (100)2 = 4

The reordering is defined as

xm = g1v1 ⊕ g2v2 ⊕ · · · ,

where · · · g3g2g1 is the Gray code binary representation of n. The Gray code of

a number is defined by:

gray(i) = i⊕ b i
2
c

= (· · · i3i2i1)⊕ (· · · i4i3i2)

and some examples can be seen in table 5.3.

The Gray code representation has the interesting property that gray(i) and

gray(i−1) only differ in one bit (the index of the rightmost zero-bit in the binary

representation of i− 1). This means that we can setup a recursive definition of

xn+1:

xn+1 = xn ⊕ vc,

where c is the rightmost zero-bit in the binary representation of n. This implies

that a computer implementation can be made extremely efficient.
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5.2 Implementation of the Sobol Sequence

The original implementation by Bratley and Fox [19] gave the direction num-

bers for generating a sequence with up to 40 dimensions. Since then there has

been a lot of work in generating more direction numbers and in making them

more robust. Joe and Kuo [22] extends the original Sobol generator with di-

rection numbers up to 1111 dimensions. Later [23] they extended this to 21201

dimensions, and also optimized the generator for getting good two-dimensional

projections. For most of the numerical computations we use an implementa-

tion by Gruenschloss[24]. In the above implementations all directions numbers

satisfy Sobol’s Property A.

5.3 Uniformity and normality

In this section we experiment with the Sobol generator to generate uniform

and normal distributed numbers. For the uniformity we plot a histogram of

N = 10000 realizations using the first Sobol dimension, where the first numbers

are presented in Table 5.1. The results are presented in Figure 5.2a.

We further transform these numbers using the Box-Muller transform.

Theorem 5.4 (Box-Muller transform [25]). For independent variables U1 ∼
U [0, 1] and U2 ∼ U [0, 1] the numbers X1 and X2

X1 =
√
−2 lnU1 cos(2πU2)

X2 =
√
−2 lnU1 sin(2πU2)

are standard normal distributed ∼ N (0, 1) and independent.

Since the numbers must be independent we use numbers from two different

Sobol dimensions to generate standard normal numbers. The result of taking

the Box-Muller transform is presented in Figure 5.2b. For reference a plot

using the numpy random module is also presented in Figure 5.3. We conclude

that the modified Box-Muller procedure works correctly.
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(a) Histogram of the uniform sequence. (b) Histogram of Box-Muller trans-
formed uniform sequence.

Figure 5.2: Uniformity and normality of the Sobol sequence.

(a) Histogram of the uniform numbers. (b) Histogram of Box-Muller trans-
formed uniform sequence.

Figure 5.3: Uniformity and normality of the numpy random sequence.
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Figure 5.4: The spacing of a two-dimensional projection of the Sobol sequence
(top) and Pseudo-random sequence (bottom) for different length of sequences,
M .

5.4 2D projections

As already seen, a possible problem with the Sobol generator is to what degree

the numbers are spaced out evenly. An example of how the Sobol sequence fills

out the space (a 2D-projection) can be seen in Figure 5.4. A comparison between

the Pseudo-random sequence and the Sobol sequence for all 2D projections for

the first five dimensions can be viewed in Figure 5.5 and 5.6. The projections

seems to indicate that the Sobol sequence fills out the space faster than the

pseudo-random sequence, but not all of the two dimensional projections are

equally good. They are better than the pseudo random ones though, so Sobol’s
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Figure 5.5: Two-dimensional projection for the first five dimensions of the Sobol
Sequence.

second requirement is fulfilled.

5.5 Random number generator runtime

Another potential problem for the Sobol generator might be that they are slower

to generate, and therefore reduces the computational efficiency of the method.

As can be seen in Figure 5.7 we see that this is not the case. We are quite

surprised to get about twice the speed out of the Sobol generator than the

Mersenne Twister generator. The Gray code algorithm can, on the other hand,

be implemented extremely efficient, si it makes sense after all.

This marks Sobol’s final requirement as fulfilled, and we state that the Sobol

sequence is a suitable quasi random number generator.
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Figure 5.6: Two-dimensional projection for the first five dimensions of the
pseudo random Sequence.

Figure 5.7: Runtime for generating a sequence of M random numbers using
either the Sobol sequence or the Mersenne Twister pseudo-random generator.
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Chapter 6

Conservation Laws with

uncertain initial data

6.1 (Quasi) Monte Carlo Solver

In this section we describe a procedure for generating a numerical solution to

the conservation law with uncertain initial data. We are interested in taking a

look at what happens when the initial data is non-deterministic. To do this we

sample the random parameter, generate initial data and send this initial data

to a deterministic solver. We use this solver as a black box. We repeat this

process M times. The mean value and standard deviation are calculated from

the results. For the mean value we use the definition of the Monte Carlo integral

(3.2) (or equivalently the QMC integral (4.1)), rewritten to fit this data as

EM [u](x, t) =
1

M

M∑
i=1

ui(x, t, w),

33
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where each ui is a different realization of the problem with uncertain initial

data. We also utilize the discrete version of the standard deviation:

SDM (u) =

(
1

M

M∑
i=1

(ui(x, t, ω)− EM [u](x, t))
2

)1/2

6.2 Uncertain shock location

We follow Schwab and Tokareva [26] and consider the following stochastic Rie-

mann problem on the scalar conservation law (2.3)

u0(x,w) =

{
u− if x < x0 + Y (ω)

u+ if x > x0 + Y (ω),
(6.1)

with ω a random variable with distribution Y (ω). We introduce the stochastic

variable y = x0+Y (ω) ∈ R. Using the method of characteristics with an entropy

condition like the Lax Entropy Condition (2.5) this can be shown to be solved

by

u(x, t, ω) = u− + (u+ − u−)H(x− st− y),

where H(·) is the Heaviside function and s = s(t) is the shock speed determined

by the Rankine-Hugeniot condition (2.6). Given that Y has the density p(y),

the expectation can be written as

E(x, t) =

∫ ∞
−∞

u(x, t, y)p(y)dy

= u− + (u+ − u−)

∫ ∞
−∞

H(x− st− y)p(y)dy

= u− + (u+ − u−)

∫ ∞
−∞

(1−H(y − (x− st)) p(y)dy,

where the last equality comes from a property of the Heaviside function. In the

sense of distributions we have that H ′(y−y0) = δ(y−y0) where δ(·) is the delta
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function: ∫ ∞
−∞

φ(y)δ(y − y0) = φ(y0)

for any test function φ(y) ∈ C∞c (R). Putting all this together we have that the

expected solution to (2.1) with initial condition (6.1) is

E[u](x, t) = u− + (u+ − u−) (1−H(y − (x− st)))P (y)|∞−∞

+ (u+ − u−)

∫ ∞
y=−∞

δ(y − (x− st))P (y)dy

= u− + (u+ − u−)P (x− st) (6.2)

with P (·) being the cumulative distribution function (3.1). Wee see that the

solution varies only with the distribution of the shock location.

The variance is given as

Var[u](x, t) =

∫ ∞
−∞

(u− E[u])
2
p(y)dy

=

∫ ∞
−∞

[
(u+ − u−)H(x− st− y)− (u+ − u−)P (x− st)

]2
p(y)dy

= (u+ − u−)2

∫ ∞
−∞

H(x− st− y)2p(y)dy

+ (u+ − u−)2

∫ ∞
−∞
−2H(x− st− y)P (x− st)p(y)dy

+ (u+ − u−)2

∫ ∞
−∞

P (x− st)2p(y)dy

= (u+ − u−)2
(
P (x− st)− 2P (x− st)2 + P (x− st)2

)
= (u+ − u−)2

(
P (x− st)− P (x− st)2

)
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6.3 Example on uncertain shock location

We let the uncertain shock position be distributed with a uniform variable

c(2U(ω)− 1) where U(ω) ∼ U(0, 1) and c ∈ R. This implies that the stochastic

variable y = x0 + c(2U(ω)−1) ∼ U(x0− c, x0 + c). The density and distribution

function of y is now

p(y) =

{
1
2c if y ∈ [x0 − c, x0 + c]

0 otherwise.

P (y) =


0 if y < x0 − c
1
2c (y − x0 + c) if y ∈ [x0 − c, x0 + c]

1 if y > x0 + c.

Using (6.2) to solve this initial value problem we get the solution

u(x, t) = u− + (u+ − u−)P (x− st)

= u− + (u+ − u−)


0 if x− st < x0 − c
1
2c (x− st− x0 + c) if x− st ∈ [x0 − c, x0 + c]

1 if x− st > x0 + c.

This example is solved numerically for Burgers’ equation in Figure 6.1 for x0 =

0.5, c = 0.1 and t = 0.5.
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(a) Initial condition for the Riemann problem.

(b) Solution of the Riemann problem at t = 0.5.

Figure 6.1: The initial condition and solution for the example Riemann problem.
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6.4 Karhunen-Loève expansion

We would also like to experiment on continuous initial value problems, and a

Karhunen-Loève expansion is a good fit. A derivation of the method is de-

tailed by Alexanderian [27]. We consider a centered Gaussian random field X,

characterized by the variance σ2.

Theorem 6.1 (Karhunen-Loève expansion [27]). Let X : [t1, t2] × Ω → R be

a centered mean-square continuous stochastic process with X ∈ L2(Ω× [t1, t2]).

There exist a basis {εi} of L2([t1, t2]) such that for all t ∈ [t1, t2]

X(t, ω) =

Q∑
i=1

√
λiχi(ω)ε(t)

where χi are centered mutually uncorrelated random variables with unit variance.

If the stochastic process is Gaussian χi are standard normal variables.

The Gaussian process X has a Karhunen-Loève expansion[28] with

εi =


cos(ωi(x−0.5))√

0.5+
sin(ωi)

2ωi

if i is even,

sin(ωi(x−0.5))√
0.5− sin(ωi)

2ωi

if i is odd.

λi = σ2 2b

(1 + ωib)2
,

where wi are the ordered positive roots of the characteristic equation

[1− b tan(ω/2)] [bω + tan(ω/2)] = 0.

The first eigenvalues and bases
√
λiεi(x) are plotted in Figure 6.2, and ten

realizations of the field X is plotted in figure 6.3 with the expansion truncated

at Q = 10.
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Figure 6.2: The ten first eigenvalues in a logarithmic plot and the ten first bases
plotted.

Figure 6.3: 10 realizations of the random field X.
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Chapter 7

Implementation

7.1 Implementation from scratch

We have implemented as much as possible from scratch both to get a better

understanding of the methods, but also to compare results with the already

available solver package ALSVID-UQ [1]. We have written a C++ implemen-

tation of the Lax-Friedrichs, Rusanov and Godunov flux solvers for scalar one-

dimensional conservation laws, and tested extensively using Burgers’ equation.

This implementation uses Armadillo [29] as an underlying matrix library, and

everything has been wrapped in Python for easy scripting. MPI has been used

to parallelize the processing, and the solver has been tested concurrently with

up to 1024 cores at the Euler cluster [30].

We have implemented a Sobol generator in both Python and C++, and

together with the solver part we are able to solve Burgers’ equation with any

initial data. When we tested the ALSVID-UQ package we did get a nice speedup

above what we could achieve with our own implementation, perhaps because of

load balancing of the compute nodes ([31], [32]), more aggressive optimization

options when compiling, or some other reasons. A decision was made to extend

ALSVID-UQ with the necessary components to be able to perform Quasi Monte

Carlo with it.

41
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7.2 Integrating with ALSVID-UQ

ALSVID-UQ was not intended to be utilized as a framework for quasi Monte

Carlo, and thus needed some updates. Gruenschloss’ [24] Sobol generator was

integrated into the existing framework. Care had to be taken as you have

to request which Sobol dimension you want data from. We implemented this

feature in ALSVID-UQ, along with a special method to generate numbers from

N (0, 1) from Sobol numbers. New initial data has been added where needed.

Every new feature added to ALSVID-UQ has been checked to produce the

same results as with the implementation written from scratch.

ALSVID-UQ also offers scripting possibilities in Python. A framework for

creating and processing data has been written, extending the native capabilities

of ALSVID-UQ.



Chapter 8

Numerical Experiments

This section presents results from numerical experiments solved by using the

augmented ALSVID-UQ framework to solve initial value problems with mostly

Burgers’ equation:

∂tu(x, t) + ∂x

(
u2(x, t)

2

)
= 0 t > 0

u(x, 0) = u0(x).

If the initial data is uncertain we also have a dependency on a random variable

ω in some probability space Ω:

∂tu(x, t, ω) + ∂x

(
u2(x, t, ω)

2

)
= 0 t > 0 ω ∈ Ω

u(x, 0, ω) = u0(x, ω).

The following experiments will utilize the HLL-solver built into ALSVID-UQ,

but as has been shown in Section 2.8, this is equivalent to using a Rusanov

flux (2.12). For all problems we will plot the mean and variance, and also the

convergence for both the mean and the variance. The convergence is measured

43
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in the L1 norm:

||u||1 =
1

N

N∑
i=1

|ui|,

where N is the length of the vector x. We will first present results for a simple

discontinuous initial value problem, using both uniform and normal distributed

random numbers. This is mostly to check what kind of convergence we can

expect for more advanced simulations, but also to check that everything func-

tions as expected. We will then gradually solve more complicated initial value

problems.

8.1 Discontinuous initial value with uniform height

A test problem is given by

u0(x, ω) =

{
h+ ω if x ≤ x0

−h− ω if x > x0

,

ω ∼ U(0, c), h > 0, 0 < c < h, (8.1)

where x0 is the location of a shock. The solution is stationary and given by

u = h+ ω + (−h− ω − (h+ ω))H(x− x0)

= (h+ ω)(1− 2H(x− x0)).

The mean value is
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Figure 8.1: Mean and variance for the solutions of the discontinuous initial value
problem with uniform height.

E[u](x, t) = (1− 2H(x− x0))

∫ ∞
−∞

(h+ ω)p(ω)dω

=
1− 2H(x− x0)

c

∫ c

0

(h+ ω)dω

=
1− 2H(x− x0)

c
(hc+

c2

2
)

= (1− 2H(x− x0))(h+
c

2
)

=

{
h+ 0.5c if x ≤ x0

−h− 0.5c if x > x0

,

and the variance is c2

12 for all x. Letting N = 16384, t = 0.3, h = 1, c = 0.2

and x0 = 1 and letting M vary we present the results in Figure 8.1 and the

convergence in Figure 8.2. Since the underlying finite volume method converges

with O(1/N) in space for all nonlinear flux, we use a large N to isolate the

stochastic error.

A visual inspection of the mean results in Figure 8.1 both Monte Carlo meth-

ods seem to solve this problem efficiently. If we however study the convergence
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Figure 8.2: Convergence of mean and variance in the discontinuous initial value
problem with uniform height.

in Figure 8.2 we notice that the quasi Monte Carlo method seems to converge

a lot faster, and with more certainty, than the regular Monte Carlo method

using the Mersenne Twister. For this problem the Quasi Monte Carlo method

converges with rate O(1/M) in stochastic space. We suspect the slight bump

in the end comes because the spatial error in the finite volume method begins

to dominate from there and out. The error in the conventional Monte Carlo

method seems to fluctuate. We are not yet sure why this occurs, it may be a

problem by our implementation, or some other factor may play a role. We know

that for all these problems the error for the conventional Monte Carlo method

should scale as O(1/
√
M), so from here on we focus on the quasi Monte Carlo

error.

8.2 Discontinuous initial data with normal height

As far as we know, there was no clear evidence that the Sobol sequence should

not function correctly in a quasi Monte Carlo method using normally distributed
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Figure 8.3: Mean and variance for the solutions of the discontinuous initial value
problem with normal height.

numbers, but here we check that. For the next problem we use the exact same

problem as (8.1), only substituting the uniform variable with a normal dis-

tributed variable. The normal distributed variable is generated by the modified

Box-Muller algorithm as described in Section 5.3.

u0(x) =

{
h+ ω if x ≤ x0

−h− ω if x > x0

, ω ∼ N (0, c),

Following precisely the same procedure as above we get that

E[u](x, t) = (1− 2H(x− x0))h

Var[U ](x, t) = c2h2.

We use the same constants as before and plot the results in Figures 8.3 and 8.4.

We are not quite as happy with the performance on this experiment. The

convergence of the mean in Figure 8.4 is not as good as before, but the con-

vergence of the variance is O(1/M). Since normal distributed variables are not
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Figure 8.4: Convergence of mean and variance in the discontinuous initial value
problem with normal height.

bounded and we in principle could have that h + c < 0 this could be a source

of error. In that case we would get a rarefaction wave instead of a shock wave,

and this could skew the results. The probability of this happening in any single

run is only P(1 + 0.2c < 0) ≈ 2.8 · 10−7, so we disregard that here.

8.3 5-dimensional problem with uncertain shock

placements

Further it would be interesting to see how the quasi Monte Carlo method per-

forms on problems with more dimensions. We craft an initial value problem
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with different shock placements:

u0(x) =



1 if 0 ≤ x < 0.1 + Y1(ω)

0.8 if 0.1 + Y1(ω) ≤ x < 0.3 + Y2(ω)

0.6 if 0.3 + Y2(ω) ≤ x < 0.5 + Y3(ω)

0.4 if 0.5 + Y3(ω) ≤ x < 0.7 + Y4(ω)

0.2 if 0.7 + Y4(ω) ≤ x < 0.9 + Y5(ω)

0.0 if x ≥ 0.9 + Y5(ω)

,

Yi(ω) ∼ U(−c, c), i ∈ [1, 2, 3, 4, 5], (8.2)

where c yet again is some small positive constant. The following is then the

mean solution to each of the stochastic Riemann problems:

E[u](x, t) = u− + (u+ − u−)


0 if x− st < x0 − c
Z if x− st ∈ [x0 − c, x0 + c]

1 if x− st > x0 + c,

where x0 is the mean value of the current shock location and the value of the

constant is Z = 1
2c (x− st− x0 + c). This can further be patched together to a

solution of problem (8.2). The variance can be expressed as

Var[u](x, t) = (u+ − u−)2


0 if x− st < x0 − c
Z − (Z)2 if x− st ∈ [x0 − c, x0 + c]

0 if x− st > x0 + c.

The initial conditions and analytical mean solution can be seen in Figure

8.5. The results for c = 0.1, t = 0.3 and N = 16384 are presented in Figures 8.6

and 8.7.

These results are not conclusive for the convergence of the variance, that

prompted us to run again with higher spatial accuracy. In Figure 8.8 the con-

vergence results are presented for N = 65536. Increasing N yields a much better

convergence. This implies that the finite volume error dominated with lower N ,

and we conclude that the quasi Monte Carlo method converges with O(1/M)
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(a) Initial condition for five dimen-
sional problem.

(b) Analytical mean solution for t =
0.3 for five dimensional problem.

Figure 8.5: The initial condition and solution for the 5D shock problem.

Figure 8.6: Numerical and analytical solutions to the 5D shock problem.
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Figure 8.7: Convergence for the 5D shock problem with N = 16384.

Figure 8.8: Convergence for the 5D shock problem with N = 65536.
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Figure 8.9: Numerical and reference solutions to the sine problem.

also for this problem, even though there is a slip dip in the convergence graph

for the variance. We suspect that also this dip would be corrected had we run

with even higher spatial accuracy. For the regular Monte Carlo method the

convergence rate is as predicted, O(1/
√
M).

8.4 Sine with uncertain amplitude

Experimenting with continuous initial value problems, We want to solve the

problem

u0(x, ω) = ω sin(2πx)

ω ∼ U(0, 1),

and compare it with a reference solution computed with t = 0.2, N = 4096 and

M = 2048. We use t = 0.2, N = 512 and vary M . The mean and variance

results are plotted in Figure 8.9, and for reference the convergence of the quasi

Monte Carlo is plotted in Figure 8.10. The results here indicate the same

convergence O(1/M) for the quasi Monte Carlo method.



8.5. KARHUNEN-LOÈVE EXPANSION 53

Figure 8.10: Convergence for the sine problem with N = 512.

8.5 Karhunen-Loève expansion

Following the procedure described in Section 7, only now we truncate the ex-

pansion at Q = 9, let N = 16384, t = 0.05 and vary M . The mean and variance

results are plotted in Figure 8.11 and the convergence result is plotted in Figure

8.12. We do not know the analytical solution to this problem, so we compare

with a reference solution computed with N = 16384 and M = 16384. The con-

vergence results here indicate O(1/M) convergence for the quasi Monte Carlo

method and O(1/
√
M) for the regular Monte Carlo method. The dip in the

convergence plots when M gets large makes us suspect also this solution could

be better with better spatial resolution in the finite volume method.
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Figure 8.11: Results of the Karhunen-Loève experiment.

Figure 8.12: Convergence for the Karhunen-Loève experiment.



Chapter 9

Conclusion

We consider solving hyperbolic systems of conservation laws with uncertain

initial values, solved using a quasi Monte Carlo method. The quasi Monte

Carlo method utilize Sobol sequences, while the underlying solver is a finite

volume solver. We implement the Sobol generator and the finite volume solver

from scratch in C++. Combining these we have a complete system for solving

these kind of problem for scalar conservation laws. For speed and efficiency we

also integrate these into ALSVID-UQ, a tool for uncertainty quantification.

We present numerical experiments in one space dimension and up to nine

stochastic dimensions. For all experiments needing uniformly sampled initial

data the error is demonstrated to scale as O(1/M), both in the mean and

variance. Using a modified Box-Muller algorithm we can also generate normally

distributed initial data. Here the results are not that robust, but is no worse

than conventional Monte Carlo. For the most advanced experiment, using a

Karhunen-Loève expansion truncated after 9 terms, we get the error scaling

as O(1/M), even though these initial values depend on normally distributed

numbers. For some of the numerical examples the conventional Monte Carlo

error behave erratically. Due to the complexity of running these high-resolution

problems on a cluster we have not yet been able to pinpoint the exact cause of

this.

55
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Aside from some small technical difficulties, such as sampling from the cor-

rect dimension and using the modified Box-Muller method, the quasi Monte

Carlo method using Sobol sequences can substitute conventional Monte Carlo

methods with little to no work. The quasi Monte Carlo method offers a faster

convergence, and often a lower constant error in all our experiments. Espe-

cially in cases where only uniformly distributed numbers are needed this method

shines.
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