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Abstract
By adding a particle source term in the Boltzmann equation of kinetic theory, it is possible
to represent particles appearing and disappearing throughout the fluid with a specified
distribution of particle velocities. By deriving the wave equation from this modified Boltz-
mann equation via the conservation equations of fluid mechanics, multipole source terms
in the wave equation are found. These multipole source terms are given by the particle
source term in the Boltzmann equation. To the Euler level in the momentum equation, a
monopole and a dipole source term appear in the wave equation. To the Navier-Stokes
level, a quadrupole term with negligible magnitude also appears.
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Introduction

Acoustic multipoles are oscillating sources that emit acoustic fields of different directivities.
These sources can be either point sources, localized at single points in space, or they can be
distributions throughout the medium. The the first three orders of multipoles are the most well-
known: Monopoles, dipoles, and quadrupoles at zeroth, first, and second order, respectively.

When these three types of multipole sources appear as source terms in the wave equation,
they usually originate from terms in the conservation equations of fluidmechanics. For instance,
monopoles are linked to a source term in the mass conservation equation (also known as the
continuity equation), which represents mass appearing and disappearing throughout the fluid as
a function of time. This can model pulsations of small bodies throughout the fluid [1].

However, an alternative approach is to add a particle source term in the Boltzmann equation,
which is more fundamental than the fluid conservation equations which can be derived from it.
Adding such a source term to the Boltzmann equation allows specifying the velocity distribution
of particles that appear and disappear throughout the fluid. This approach is therefore similar
to, but more general than, the aforementioned method of adding a mass source term, and can
therefore model more general vibrations of small bodies in the fluid.

Such a particle source term was recently examined for the lattice Boltzmann method [2], a
computational fluid dynamics method based on the fully discretised Boltzmann equation. It was
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found that such an approach results in a wave equation with non-vanishing monopole, dipole,
and quadrupole source terms. This article will similarly examine particle source terms, but in
the classic non-discretised Boltzmann equation.

Acoustic multipole sources

Mathematically, multipoles are related to source terms in the wave equation,

๖
1
𝑐2

0

𝜕
𝜕𝑡 − ∇2

๗
𝑝(𝐱, 𝑡) = 𝑇0(𝐱, 𝑡) + 𝜕

𝜕𝑥𝑖
𝑇𝑖(𝐱, 𝑡) + 𝜕2

𝜕𝑥𝑖𝜕𝑥𝑗
𝑇𝑖𝑗(𝐱, 𝑡) + … . (1)

Here, 𝑝 is the pressure and 𝑐0 is the speed of sound. The terms on the right-hand side are
multipole source terms.

This article makes use of the index notation commonly used in the field of fluid mechanics.
In this notation, a single index indicates a generic vector element (e.g. 𝑇𝑖 could be 𝑇𝑥, 𝑇𝑦, or
𝑇𝑧), and multiple indices (as in 𝑇𝑖𝑗 or 𝑎𝑖𝑏𝑗) indicate generic tensor elements. Repeating indices
within a single term implies summation over all possible values of that index. For example,
𝑎𝑖𝑏𝑖 = 𝑎𝑥𝑏𝑥 + 𝑎𝑦𝑏𝑦 + 𝑎𝑧𝑏𝑧 = 𝐚 ⋅ 𝐛, and 𝜕𝑇𝑖/𝜕𝑥𝑖 = 𝜕𝑇𝑥/𝜕𝑥 + 𝜕𝑇𝑦/𝜕𝑦 + 𝜕𝑇𝑧/𝜕𝑧 = ∇ ⋅ 𝐓. When
indices repeat in this way, the letter used is arbitrary, so that 𝑎𝑖𝑏𝑖 = 𝑎𝑘𝑏𝑘.

The general three-dimensional solution to (1) is given by an integral over the entire volume
of the source terms on the right-hand side [1],

𝑝(𝐱, 𝑡) = 1
4𝜋 ඘ ๙

𝑇0 ඳ𝐲, 𝑡 − |𝐱−𝐲|
𝑐0 ප

|𝐱 − 𝐲| + 𝜕
𝜕𝑥𝑖

𝑇𝑖 ඳ𝐲, 𝑡 − |𝐱−𝐲|
𝑐0 ප

|𝐱 − 𝐲| + 𝜕2

𝜕𝑥𝑖𝜕𝑥𝑗

𝑇𝑖𝑗 ඳ𝐲, 𝑡 − |𝐱−𝐲|
𝑐0 ප

|𝐱 − 𝐲| ๚
d𝐲. (2)

Thus, 𝑇0(𝐱, 𝑡) indicates the instantaneous monopole strength, 𝑇𝑖(𝐱, 𝑡) the 𝑖-dipole strength, and
𝑇𝑖𝑗 the 𝑖𝑗-quadrupole strength.

As mentioned above, monopole sources can be modeled by adding a mass source term to
the mass conservation equation,

𝜕𝜌
𝜕𝑡 + ∇ ⋅ (𝜌𝐮) = 𝑄, (3)

𝜌 being the mass density, 𝐮 the fluid velocity, and 𝑄(𝐱, 𝑡) the instantaneous mass flux. Dipoles
typically originate from the force term in the momentum conservation equation. To the Euler
level, this equation is

𝜌 ෺
𝜕𝐮
𝜕𝑡 + (𝐮 ⋅ ∇)𝐮෻ = −∇𝑝 + 𝐅, (4)

where 𝐅 represents body forces. Finally, quadrupoles typically originate from the nonlinear
term in (4).

The multipole terms in (1) are usually related to the terms in the conservation equations
as [1]

𝑇0 = 𝜕𝑄
𝜕𝑡 , 𝑇𝑖 = −𝐹𝑖, 𝑇𝑖𝑗 ≃ 𝜌𝑢𝑖𝑢𝑗 .
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The Boltzmann equation

The Boltzmann equation describes motion of a gas at a finer level of detail than the fluid conser-
vation equations. In this discussion we shall restrict ourselves to its very basics. More details
can be found in the literature [3, 4, 5]. The equation evolves the particle distribution function,
𝑓(𝐱, 𝝃, 𝑡), which may be seen as a double density in both physical space and particle velocity
space. Thus, it describes the density of particles with position 𝐱 and velocity 𝝃 at time 𝑡.

The familiar macroscopic quantities can be recovered as moments of 𝑓 , i.e. by weighting
with some function and integrating over the entire velocity space. The mass density and mo-
mentum density are found as the zeroth- and first-order moments,

𝜌(𝐱, 𝑡) = ඘ 𝑓(𝐱, 𝝃, 𝑡) d𝝃, (5a)

𝜌𝐮(𝐱, 𝑡) = ඘ 𝝃𝑓(𝐱, 𝝃, 𝑡) d𝝃. (5b)

Neglecting body forces and using the BGK collision operator [6], the Boltzmann equation
is

𝜕𝑓
𝜕𝑡 + 𝝃 ⋅ ∇𝑓 = 𝑠 − 1

𝜏 ඳ𝑓 − 𝑓 (0)ප . (6)

𝑠(𝐱, 𝝃, 𝑡) is the aforementioned particle source term which is central to this article. As the left-
hand side of the equation is a standard advection equation, 𝑠(𝐱, 𝝃, 𝑡) describes the rate at which
particles are added into the 𝑓(𝐱, 𝝃, 𝑡) distribution. The final term is the BGK collision operator,
which models collisions between particles as a relaxation with a characteristic relaxation time
𝜏 to the equilibrium distribution function,

𝑓 (0)(𝐱, 𝝃, 𝑡) = 𝜌 ว
𝜌

2𝜋𝑝ศ
3/2

e−𝜌|𝝃−𝐮|2/2𝑝, (7)

with 𝜌 and 𝐮 found from (5). In this article, 𝑝 is approximated by (8). As the quantities of mass
and momentum are conserved in collisions, substituting 𝑓 (0) for 𝑓 in (5) must give the same
moments. As a result of this, the BGK collision operator conserves both mass and momentum.

The BGK collision operator is a far simpler model of collisions than Boltzmann's original
and more accurate collision operator. That simplicity comes with drawbacks, chiefly that the
BGK operator slightly mispredicts the Prandtl number [3]. This dimensionless number relates
the transport coefficients in the momentum equation (viscosity) and the energy equation (con-
ductivity). However, this will not matter as we will neglect the effects of conductivity in this
article.

From this point on we will assume that the macroscopic variables fluctuate only slightly
around rest state values 𝜌 = 𝜌0, 𝑝 = 𝑝0, 𝐮 = 0. This allows us to linearise subsequent equations
in this article, which is in keeping with the usual assumptions in acoustics.

The pressure 𝑝 in (7) is approximated using the common isentropic relation [1, 7]

𝑝
𝑝0

= ว
𝜌
𝜌0 ศ

𝛾
, (8)
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𝛾 = (𝑑+2)/2 being the adiabatic index determined by the degrees of freedom 𝑑 of the molecules
that make up the gas [7]. In this way, we include the effect of equipartition of energy between
translational and inner (i.e. rotational and vibrational) degrees of freedom, in the limit of rapid
energy transfer. This relation leads to an ideal speed of sound 𝑐0 given by

𝑐2
0 = 𝜕𝑝

𝜕𝜌 = 𝛾𝑝0
𝜌0

. (9)

It will be useful to introduce an abbreviated notation for the moments of the particle source
term 𝑠,

𝑆0(𝐱, 𝑡) = ඘ 𝑠(𝐱, 𝝃, 𝑡) d𝝃, (10a)

𝑆𝑖(𝐱, 𝑡) = ඘ 𝜉𝑖𝑠(𝐱, 𝝃, 𝑡) d𝝃, (10b)

𝑆𝑖𝑗(𝐱, 𝑡) = ඘ 𝜉𝑖𝜉𝑗𝑠(𝐱, 𝝃, 𝑡) d𝝃, (10c)

and so forth. 𝑆0(𝐱, 𝑡) represents the instantaneous mass flux of the particles at 𝐱, 𝑆𝑖 is associated
with odd symmetries of 𝑠 in velocity space, and 𝑆𝑖𝑗 is similarly associated with various even
symmetries.

Fluid conservation equations

It is possible to find the conservation equations of fluid mechanics from the Boltzmann equa-
tion (6). To find the Euler equations, we could simply take the zeroth and first moments of (6)
under the assumption that 𝑓 ≃ 𝑓 (0). However, to find the momentum equation to the Navier-
Stokes level, so that it includes the stress tensor term, we must resort to the Chapman-Enskog
expansion. This is a technique used to derive the fluid conservation equations from the Boltz-
mann equation. It is discussed throughout the literature with varying approaches and varying
levels of complexity [3, 4, 8, 5, 9]. In the following derivation, we use a moment-based ap-
proach [9].

Two mathematical techniques are used in this expansion. First, the distribution function 𝑓
is approximated as a perturbation expansion around equilibrium 𝑓 (0) in a smallness parameter
𝜖. Second, a multi-scale expansion of time is performed. In mathematical notation,

𝑓 = 𝑓 (0) + 𝜖𝑓 (1) + 𝜖2𝑓 (2) + … , 𝜕
𝜕𝑡 = 𝜕

𝜕𝑡0
+ 𝜖 𝜕

𝜕𝑡1
+ … .

The smallness parameter 𝜖 is associated with the dimensionless Knudsen number Kn = 𝑙mfp/𝐿,
relating the mean free path 𝑙mfp in the gas to a macroscopic length scale 𝐿. Thus, 𝑓 (𝑛+1) is of
one order higher in the Knudsen number than 𝑓 (𝑛). A dimensional analysis [5] reveals that the
relaxation time is also at first order of smallness, so that 𝜏 = 𝜖𝜏. As previously explained, the
density and momentum is fully contained in 𝑓 (0), so that

඘ 𝑓 (𝑛) = ඘ 𝜉𝑖𝑓 (𝑛) = 0 for 𝑛 > 0. (11)
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Expanding the Boltzmann equation in this way and truncating the expansion to 𝒪(𝜖), we
find

ว
𝜕

𝜕𝑡0
+ 𝜖 𝜕

𝜕𝑡1
+ 𝜉𝑖

𝜕
𝜕𝑥𝑖 ศ

ඳ𝑓 (0) + 𝜖𝑓 (1)ප = 𝑠 − 1
𝜖𝜏 ඳ𝜖𝑓 (1) + 𝜖2𝑓 (2)ප . (12)

Gathering these terms according to their order of smallness, we find

𝒪(𝜖0) ∶ ว
𝜕

𝜕𝑡0
+ 𝜉𝑖

𝜕
𝜕𝑥𝑖 ศ

𝑓 (0) = 𝑠 − 1
𝜏 𝑓 (1), (13a)

𝒪(𝜖1) ∶ 𝜕𝑓 (0)

𝜕𝑡1
+ ว

𝜕
𝜕𝑡0

+ 𝜉𝑖
𝜕

𝜕𝑥𝑖 ศ
𝑓 (1) = −1

𝜏 𝑓 (2). (13b)

To derive the mass and momentum equations to the Euler level, only the𝒪(𝜖0) terms are needed.
The Navier-Stokes corrections to these equations are found by also including the 𝒪(𝜖1) terms in
the derivation. Similarly, it is possible to find further corrections at 𝒪(𝜖2) (known as the Burnett
corrections) and beyond (super-Burnett), although these further corrections are negligible in
practical cases [4, 8] and have historically been viewed with some suspicion [8].

Deriving the conservation equations from (13) requires the second and third moments of
𝑓 (0) [9]. In linearised form, these are

඘ 𝜉𝑖𝜉𝑗𝑓 (0) d𝝃 ≃ 𝑝𝛿𝑖𝑗 , (14a)

඘ 𝜉𝑖𝜉𝑗𝜉𝑘𝑓 (0) d𝝃 ≃ 𝑝0(𝑢𝑖𝛿𝑗𝑘 + 𝑢𝑗𝛿𝑖𝑘 + 𝑢𝑘𝛿𝑖𝑗), (14b)

where 𝛿𝑖𝑗 is the Kronecker delta.
Taking the zeroth to second moments of (13a), using (14), and linearising, we find

𝜕𝜌
𝜕𝑡0

+ 𝜌0
𝜕𝑢𝑖
𝜕𝑥𝑖

= 𝑆0, (15a)

𝜌0
𝜕𝑢𝑖
𝜕𝑡0

+ 𝜕𝑝
𝜕𝑥𝑖

= 𝑆𝑖, (15b)

𝛿𝑖𝑗
𝜕𝑝
𝜕𝑡0

+ 𝑝0 ว
𝜕𝑢𝑖
𝜕𝑥𝑗

+
𝜕𝑢𝑗

𝜕𝑥𝑖
+ 𝛿𝑖𝑗

𝜕𝑢𝑘
𝜕𝑥𝑘 ศ = 𝑆𝑖𝑗 − 1

𝜏 Π(1)
𝑖𝑗 , (15c)

where Π(1)
𝑖𝑗 = ∫ 𝜉𝑖𝜉𝑗𝑓 (1) d𝝃. With the 𝒪(𝜖0) approximation 𝜕/𝜕𝑡0 = 𝜕/𝜕𝑡, the two first equa-

tions are equivalent to linearised versions of the mass equation (3) and the Euler momentum
equation (4), with 𝑆0 and 𝑆𝑖 in the place of 𝑄 and 𝐹𝑖, respectively. Taking the zeroth and first
moments of (13a) and linearising, we find 𝒪(𝜖) corrections to the above equations,

𝜕𝜌
𝜕𝑡1

= 0, (16a)

𝜌0
𝜕𝑢𝑖
𝜕𝑡1

+
𝜕Π(1)

𝑖𝑗

𝜕𝑥𝑗
= 0. (16b)
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The sum (15a)+ 𝜖(16a) directly leads to the linearised mass equation, given below in (20a).
Similarly, (15b) + 𝜖(16b) leads to the momentum equation, though the unknown tensor Π(1)

𝑖𝑗 .
Π(1)

𝑖𝑗 can be explicitly related to the Navier-Stokes stress tensor using (15c). The pressure
time derivative can be rewritten assuming a nearly isentropic process and using (15a), resulting
in

𝜕𝑝
𝜕𝑡0

= 𝜕𝑝
𝜕𝜌

𝜕𝜌
𝜕𝑡0

= 𝑐2
0 ว𝑆0 − 𝜌0

𝜕𝑢𝑘
𝜕𝑥𝑘 ศ . (17)

Substituting for the speed of sound using (9), the diagonal terms in (15c) become

𝜕𝑝
𝜕𝑡0

+ 𝑝0
𝜕𝑢𝑘
𝜕𝑥𝑘

= ඳ𝑝0 − 𝜌0𝑐2
0ප

𝜕𝑢𝑘
𝜕𝑥𝑘

+ 𝑐2
0𝑆0 = −𝑝0(𝛾 − 1)𝜕𝑢𝑘

𝜕𝑥𝑘
+ 𝑐2

0𝑆0. (18)

Thus, we find

Π(1)
𝑖𝑗 = −𝑝0𝜏 ส

𝜕𝑢𝑗

𝜕𝑥𝑖
+ 𝜕𝑢𝑖

𝜕𝑥𝑗
+ 𝛿𝑖𝑗(1 − 𝛾)𝜕𝑢𝑘

𝜕𝑥𝑘 ห + 𝜏 ඳ𝑆𝑖𝑗 − 𝑐2
0𝑆0ප . (19)

The mass and momentum equations can now be explicitly found as described above,

𝜕𝜌
𝜕𝑡 + 𝜌0

𝜕𝑢𝑖
𝜕𝑥𝑖

= 𝑆0, (20a)

𝜌0
𝜕𝑢𝑖
𝜕𝑡 + 𝜕𝑝

𝜕𝑥𝑖
= 𝑆𝑖 − 𝜇

𝑝0

𝜕(𝑆𝑖𝑗 − 𝛿𝑖𝑗𝑐2
0𝑆0)

𝜕𝑥𝑗
+

𝜕𝜎າ
𝑖𝑗

𝜕𝑥𝑗
. (20b)

The momentum equation contains a deviatoric stress tensor

𝜎າ
𝑖𝑗 = 𝜇 ว

𝜕𝑢𝑖
𝜕𝑥𝑗

+
𝜕𝑢𝑗

𝜕𝑥𝑖
− 2

3𝛿𝑖𝑗
𝜕𝑢𝑘
𝜕𝑥𝑘 ศ + 𝜇𝐵𝛿𝑖𝑗

𝜕𝑢𝑘
𝜕𝑥𝑘

, (21)

with shear viscosity 𝜇 = 𝑝0𝜏 and bulk viscosity 𝜇𝐵/𝜇 = (5/3−𝛾). This value of the bulk viscosity
in the limit of rapid transfer of energy between translational and inner degrees of freedom has
previously been found using more rigorous kinetic theory [10].

Comparing (20a) to the classical mass equation (3), 𝑆0 appears in the place of the mass
flux 𝑄, which could be expected considering the interpretation of 𝑆0 as a mass flux. Compar-
ing (20b) to the Euler-level momentum equation (4), 𝑆𝑖 appears in the place of the body force,
which had been neglected from the Boltzmann equation. 𝑆𝑖𝑗 is also present inside a source term
with a single spatial derivative and a small coefficient 𝜇/𝑝0 in front.

The wave equation

The wave equation can be found as usual from the mass andmomentum equations as 𝜕(20a)/𝜕𝑡−
𝜕(20b)/𝜕𝑥𝑖. Using the isentropic relation (17) in the wave equation operator, and thus neglecting
sound absorption due to thermal conduction and relaxation [11], we find

๖
1
𝑐2

0

𝜕2

𝜕𝑡2 − ∇2
๗

𝑝 = 𝜕𝑆0
𝜕𝑡 − 𝜕𝑆𝑖

𝜕𝑥𝑖
+ 𝜇

𝑝0

𝜕2(𝑆𝑖𝑗 − 𝛿𝑖𝑗𝑐2
0𝑆0)

𝜕𝑥𝑖𝜕𝑥𝑗
+

𝜕2𝜎າ
𝑖𝑗

𝜕𝑥𝑖𝜕𝑥𝑗
. (22)
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Comparing with (1) and (2), we find a monopole strength 𝑇0 = 𝜕𝑆0/𝜕𝑡, a dipole strength 𝑇𝑖 =
−𝑆𝑖, and a quadrupole strength which is not fully resolved but involves 𝑆𝑖𝑗 , 𝛿𝑖𝑗𝑆0, and 𝜎າ

𝑖𝑗 .
The deviatoric stress tensor 𝜎າ

𝑖𝑗 can be resolved as

𝜕2𝜎າ
𝑖𝑗

𝜕𝑥𝑖𝜕𝑥𝑗
= 𝜇(3 − 𝛾)∇2 𝜕𝑢𝑘

𝜕𝑥𝑘
= 𝜇(3 − 𝛾)

𝜌0
∇2

๖
𝑆0 − 1

𝑐2
0

𝜕𝑝
𝜕𝑡 ๗

. (23)

The last term in the parenthesis contributes to sound absorption and is neglected in line with
previous approximations. The first parenthetical term contributes to the quadrupole strength.
Using the property ∇2 = 𝛿𝑖𝑗(𝜕2/𝜕𝑥𝑖𝜕𝑥𝑗), we find a fully resolved isentropic wave equation

๖
1
𝑐2

0

𝜕2

𝜕𝑡2 − ∇2
๗

𝑝 = 𝜕𝑆0
𝜕𝑡 − 𝜕𝑆𝑖

𝜕𝑥𝑖
+ 𝜇

𝑝0

𝜕2(𝑆𝑖𝑗 − 3𝛿𝑖𝑗𝑝0𝑆0/𝜌0)
𝜕𝑥𝑖𝜕𝑥𝑗

. (24)

Finally, we find the quadrupole strength as 𝑇𝑖𝑗 = (𝜇/𝑝0)(𝑆𝑖𝑗 − 3𝛿𝑖𝑗𝑝0𝑆0/𝜌0).
The coefficient 𝜇/𝑝0 in front of the quadrupole strength is typically on the order of 10−10 s

in gases. Its small magnitude means that the quadrupoles generated by the Boltzmann equation
source term 𝑠 tend to be negligible compared to the monopoles and dipoles.

Summary and conclusion

Asource term 𝑠 in the Boltzmann equation represents particles appearing or disappearing through-
out the fluid with some distribution of particle velocities. As adding a source term to the mass
equation allows modeling pulsations of small bodies throughout the fluid [1], a source term in
the Boltzmann equation would allow modeling more general vibrations of such small bodies.

From this modified Boltzmann equation, the mass and momentum conservations equa-
tions (20) were derived under the common acoustic approximation of linearity and constant
entropy. These equations gain source terms given by the moments (10) of 𝑠. The mass equation
gains a source term 𝑆0. To the Euler level, the momentum equation gains a source term 𝑆𝑖, and
to the Navier-Stokes level, it gains a source term involving 𝑆𝑖𝑗 and 𝛿𝑖𝑗𝑆0.

The wave equation derived from these two conservation equations contains multipole source
terms. Themonopole strength is 𝜕𝑆0/𝜕𝑡 and the dipole strength is−𝑆𝑖. The quadrupole strength,
which comes out of the Navier-Stokes level of the momentum equation, involves 𝑆𝑖𝑗 and 𝛿𝑖𝑗𝑆0,
but has a negligible magnitude. That the quadrupole strength is so much smaller than the
monopole and dipole strength could be expected, as the Navier-Stokes level terms are one order
higher in the small Knudsen number than the Euler-level terms.

Similarly, going to the 𝒪(Kn2) Burnett level might lead to a 𝜕2𝑆𝑖𝑗𝑘/𝜕𝑥𝑗𝜕𝑥𝑘 term in the mo-
mentum equation, leading to an octupole term in the wave equation. However, since this term
would be at 𝒪(Kn2), it would be even more negligible than the quadrupole term.

Going back to the point of modeling general vibrations of small bodies throughout the fluid,
this analysis indicates that the vibrations of such small bodies can radiate as monopoles and
dipoles, but only very weakly as higher-order multipoles.
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Comparing this analysis with the analogous analysis for the lattice Boltzmann method [2],
we find that the analogous source term in the lattice Boltzmann equation can only radiate
quadrupoles effectively due to a fortuitous discretisation error that occurs when discretising
the Boltzmann equation (6) in space and time using the first-order rectangle method. Discretis-
ing with the trapezoidal method [9], which results in a scheme fully consistent with (6), would
therefore also lead to a vanishing quadrupole term similarly to what has been shown here.
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