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Abstract

A method for parametric estimation of seismic wavelets from well logs and seismic data is devel-
oped. Parameters include amplitude, skewness, length and fluctuation order, and the link between
parameters and wavelet properties provides a user-friendly interpretation of the wavelet function.
The method is set in a Bayesian framework, and is well-suited for addressing questions about un-
certainty related to estimated wavelets. This is accomplished by sampling the posterior distribution
using Markov Chain Monte Carlo methods. The estimation method is framed as a practical step-
wise procedure. An extension of the model to enable joint wavelet estimation from seismic data with
multiple incidence angles, is also described.

The method is tested on simulated data, and on well log and seismic amplitude data from the
North Sea. The results in the synthetic case indicate that the method performs well under idealised
conditions. When tested on real data, the method produces a realistic wavelet fit and uncertainty
range. Uncertainty is substantially reduced from the prior to the posterior distribution, but in
general, the shape of the posterior surface could make it hard to explore. A comparison with a
wavelet estimator based on a Gaussian process indicates that the proposed parametric form gives a
tighter wavelet, and is less prone to overfitting.



Sammendrag

En metode utarbeides for å estimere seismiske wavelets parametrisk fra brønnlogger og seismiske
data. Metoden beskrives i et Bayesiansk rammeverk, og egner seg for å karakterisere usikkerhet
tilknyttet estimerte wavelets. Dette gjennomføres ved at Markov Chain Monte Carlo-metoder tas i
bruk for å trekke realisasjoner tilfeldig fra en aposteriorifordeling. Estimeringsmetoden presenteres
som en praktisk stegvis prosedyre. I tillegg beskrives en modellutvidelse som gjør det mulig å estimere
flere wavelets simultant utfra seismiske data med ulike innfallsvinkler.

Metoden testes på simulerte data, og på brønnlogger og amplitude-seismikk fra Nordsjøen. Re-
sultatene fra syntetiske tester viser at metoden fungerer godt under ideelle forhold. I tester på reelle
data gir metoden et realistisk estimat og usikkerhetsspenn. En markant reduksjon av usikkerhet
registreres fra apriorifordelingen til aposteriorifordelingen. Generelt kan formen til aposterioriforde-
lingen gjøre den vanskelig å utforske. Sammenlikning med en alternativ wavelet-estimator basert
på en Gaussisk prosess, indikerer at den parametriske modellen gir en mer kompakt wavelet, og er
mindre utsatt for overtilpasning.
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1 Introduction

Wavelets play a central role in seismic data interpretation, because they link geology, represented
by reflection coefficients, to seismic data, or traces. Since they are generally unknown, accurate
estimates of wavelets are a prerequisite for reliable interpretation and imaging alike.

Without going into details about notation at this stage, the relationship between reflection
coefficients, wavelets and seismic data can be expressed through the convolutional model

y = r∗w + ε, (1)

where y is a seismic trace, w is the wavelet, r is a reflectivity series, or reflection coefficient series,
and ε is a residual noise term. In other words, the seismic trace is modelled as the convolution
of reflectivity, which depends on mass density and seismic wave velocity, with the wavelet. Any
mismatch between the trace and this convolution is accounted for by a residual term. This could
be random noise or processing and imaging artefacts of physical processes which are not explained
by the convolutional model (1). Although y could be a raw field trace, and w the concomitant field
wavelet, this work will consider the case where y is a processed trace, and w is a corresponding,
unknown wavelet to be estimated from the data, which consists of y and the reflectivity series r.

This first section will define the wavelet estimation problem and outline the proposed estimation
method, introducing necessary notation. Subsequent sections will discuss the estimation procedure in
detail, and present results of numerical tests on real and synthetic data, to document the performance
of the method.

1.1 Description of Problem

The goal is to obtain an estimate ŵ(t) of the seismic wavelet as a function of time t, and to assess the
uncertainty accompanying the estimate, using the available data. There will either be a single trace
y(t), or several traces y1(t), y2(t), . . . , typically corresponding to different stacks, and associated
with different angles of incidence. When considering the multi-stack case, we will assume throughout
that there are three stacks; near, mid and far.

Also included in the data are well logs containing borehole measurements of mass density and
P- and S-wave velocities, or equivalently, slownesses. From these, a time series r(t) of reflection
coefficients can be constructed for any given angle, using the Zoeppritz equations, or a suitable
approximation of them (Aki and Richards, 1980).

Given y(t) and r(t), determining w(t) is essentially a matter of deconvolving (1). The general
strategy in wavelet estimation is to choose w(t) by matching the convolution r(t)∗w(t) to the trace
y(t).

1.2 Existing solutions, literature review

Estimating the wavelet from seismic data alone, i.e. without well data, is a particularly ill-conditioned
problem, which can be solved, for instance, by posing it as underdetermined, and looking for a so-
lution which minimises carefully chosen norms of the parameters involved (Routh et al., 2003).
Introducing well logs opens up a wider range of approaches to the wavelet estimation problem, such
as cepstral stacking, where the wavelet and reflectivity are separated by computing the complex cep-
strum of the seismic trace, or cumulant matching, a non-probabilistic optimisation-based technique
(Ulrych et al., 1995). Perhaps the most widely used method for estimating seismic wavelets from
seismic and well data is the one proposed by Walden and White (1998), which works by matching
the convolution of the wavelet and reflectivity series to the seismic trace in the frequency domain.
This makes the estimation very fast, but without a probabilistic setting it is not obvious how the
method should be extended to handle situations where one wishes to simultaneously estimate mul-
tiple wavelets from seismic data with different incidence angles, gathered from different locations, or
even at different times. The approach discussed here operates in the time domain and is built around
a Bayesian framework. Thus it is more akin to the hierarchical model of Buland and Omre (2003)
which uses a Gaussian process prior model for the wavelet, and where the posterior distribution
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is explored using MCMC methods. Also similar is the comprehensive estimation procedure due to
Gunning and Glinsky (2006), which searches for the best-fitting wavelet using numerical optimisa-
tion, and tackles the issue of determining wavelet length by framing it as a model selection problem.
Aune et al. (2013) suggested a parametric form for the wavelet, and the current work adjusts this
formulation, and frames it in a practical algorithm.

1.3 Proposed solution, outline of method

We represent the wavelet w(t) by an analytical function w(t;β) parametrised by a small number of
parameters β. Each of these parameters has an interpretable effect, such as controlling the amplitude
or duration of the wavelet. This wavelet function, which is continuous in time, as well as having
other desirable properties (to be described below), gives us a parsimonious representation of the
wavelet. The wavelet function will be introduced in detail in section 3.

In addition to the wavelet parameters, we define a fourth parameter related to the magnitude of
the residual term in (1), and we form a vector β from all the parameters. This vector then comprises
all unknown parameters in the model, and the wavelet function can be estimated via the parameter
vector.

All inference about β relies on the posterior distribution π(β|y) of the parameters conditional on
all the data. For ease of notation, y refers to all the data in this case, i.e. both seismic data and well
logs or reflection coefficient series. By the definition of conditional probability, this is (Gamerman
and Lopes, 2006)

π(β|y) =
π(β,y)

π(y)
∝ π(β,y) ∝ π(β)︸ ︷︷ ︸

Prior

π(y|β)︸ ︷︷ ︸
Likelihood

. (2)

The prior probability distribution of β is set using a spectrum smoothing technique to extract
a tentative wavelet estimate from the amplitude spectrum of the seismic data. The data likelihood
π(y|β) is defined using the parametric wavelet function, and the convolutional model (1). Maximis-
ing the posterior distribution with respect to β gives a maximum a posteriori (MAP) estimate of
the parameters β and, by extension, the wavelet w(t). Uncertainty associated with the estimate can
be captured by exploring the posterior distribution of β around the mode, which is accomplished by
sampling, using a Markov Chain Monte Carlo methods.

2 Geophysical model

The likelihood in the statistical deconvolution approach explored in this thesis, is based on the
convolutional model of seismic wave propagation. It describes the recorded seismic trace as a convo-
lution of the reflectivity series with a wavelet. The convolution operation has the effect of blurring
or averaging out the details in the reflectivity, so that the seismic trace is much smoother than the
reflectivity. Figure 1 illustrates the relation between elastic parameters, reflectivity, the wavelet and
the trace.

2.1 Convolutional wave propagation model

To define the likelihood for a trace y, given the reflectivity series r and the wavelet w, we begin
by introducing the discrete representation y of the trace. This is a vector containing discrete and
equidistant samples of the continuous function y(t). Similarly, the reflectivity function r(t) is repre-
sented by the vector r, and the wavelet function w is represented by the vector w. All vectors are
discretised with the same sampling time interval ∆t. Details of the discretisation are provided in
section 4.

The data likelihood for y given r and w, is defined by rewriting (1) with vector notation

y = r∗w + ε (3)

and prescribing a Gaussian distribution for the residual term ε,

ε ∼ N (0, σ2I). (4)
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Hence, the probability distribution π(y|w, σ) of the data y conditional on the wavelet w and the
standard deviation σ is Gaussian with mean r∗w and covariance matrix σ2I. The noise term could
be modelled differently. Using a different covariance matrix we might, for instance, model correlated,
or coloured, noise. In this thesis, however, the choice of covariance matrix is restricted to a multiple
of the identity matrix. The scalar σ is a model parameter, to be estimated alongside the wavelet
parameters β.

Figure 1: Components involved in the convolutional model. The elastic param-
eters VP (P-wave velocity), VS (S-wave velocity) and ρ (mass density), together
with the angle of incidence θ, determine the series of reflection coefficients, or re-
flectivity, r. Convolving r with the wavelet w gives the trace y. In addition, we
assume that the observed trace is contaminated by noise.

2.2 Data properties

In practice, seismic traces are not continuous functions of time, but series of samples taken at a
regular time interval ∆t. Because seismic traces tend to be coarser than borehole data in terms
of sampling frequency, the seismic sampling time interval determines which time interval should
be used for estimation. Therefore, after constructing reflection coefficient time series, these are
downsampled, to match the seismic data. As a consequence, we do not expect to resolve very high
frequency components of the wavelet.

Generally, we have w = w(t, θ), i.e. the wavelet is function, not only of time, but also of the
angle of incidence θ of the seismic waves whose propagation it describes. If we have multiple seismic
traces with different angles of incidence, then they will have different seismic wavelets associated
with them. Reflectivity also depends on the angle of incidence, in addition to elastic parameters, so
the same borehole data will give rise to a different reflectivity series depending on which angle of
incidence is used. The exact reflectivity is given by the Zoeppritz equations, but we choose instead
to use the approximation (Aki and Richards, 1980)

r(θ) =
1

2

(
1 + tan θ2

) ∆VP

VP
− 4

(
VS

VP

)2

sin θ2 ∆VS

VS
+

1

2

(
1− 4

VS
2

VP
2 sin θ2

)
∆ρ

ρ
, (5)

where VP and VS are the P- and S-wave velocities of the propagation medium, and ρ is its mass
density. The bar and ∆ symbols denote averaging and differencing over a boundary, so at sample
point i, we have

ξi =
ξi + ξi+1

2
, ∆ξi =

ξi+1 − ξi
2

, ξ = VP , VS , ρ. (6)
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2.3 Multi-angle formulation

Suppose that, instead of one trace y and one reflectivity series r, we have three traces y1, y2, y3

and three reflectivity series r1, r2, r3. The situation is presented schematically in Figure 2. Rather
than the single equation (1), we now have a separate equation

yi = ri∗wi + εi (7)

for each angle stack i. Using vector notation, and letting wi represent wi, this is

yi = ri∗wi + εi. (8)

Figure 2: Multi-angle extension of the forward model. Compare with Figure 1.
Different angles θi, i = 1, 2, 3, are used to compute the reflectivity for the near,
mid and far traces. The convolution operations are applied independently to the
respective reflectivity series.

Assumptions made about the relationship between the wavelets of different stacks, impact how
the estimation problem should be approached. If dependence between stacks is negligible, then
independent and parallel application of the single stack approach is the natural choice. On the other
hand, if some correlation structure is imposed on wavelets of different angle stacks, then joint and
simultaneous estimation becomes an option. It is of interest to assess whether, and in which cases,
joint estimation offers advantages over independent estimation. The question of how to specify the
prior between-angle correlation structure will be addressed in section 5. Note that the multi-angle
case is not treated in the main presentation of the wavelet estimation method (section 4). Instead,
the method is described there in a single-angle setting, and the discussion is then extended, in section
5, to cover multi-angle estimation.
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3 Statistical model

This section explains the Bayesian model underlying the wavelet estimation procedure, describing
the various model components, such as the parametric wavelet function, the prior distributions
of the wavelet parameters, the likelihood, or conditional distribution of the data given the model
parameters, and the posterior distribution, i.e. the conditional distribution of the parameters given
the data.

3.1 Wavelet model

The four wavelet parameters, which will be explained in detail later, are the skewness parameter
s, the amplitude parameter a, the dilation parameter v, and the wavelet order n. Note that the
standard deviation σ is not a wavelet parameter, but rather a different model parameter which is not
directly related to the wavelet. The parametric wavelet function is inspired by the parametrisation
suggested in Aune et al. (2013), and has the form

w(t; s, a, v, n) = a
ψ2n(t/v)

ψ2n(0)

erf(st/v) + 1

2
, (9)

where
erf(x) =

2√
π

∫ x

0
e−t

2
dt (10)

is the error function, and
ψn(x) = e−

1
2
x2Hen(x). (11)

is a modified Hermite polynomial

Hen(x) = (−1)ne
1
2
x2 ∂

n

∂xn
e−

1
2
x2 . (12)

We mentioned that the wavelet function takes four parameters; s, a, v and n, as seen in (9).
Their interpretations are as follows.

Skewness parameter s
s ∈ (−∞,∞) controls wavelet skewness, and is related to phase rotation. Increasing s shifts
the energy of the wavelet towards the right, while decreasing s shifts it to the left (Figure 3).

Amplitude parameter a
a ∈ (0,∞) controls the wavelet amplitude. From (9) we have w(0; s, a, v, n) = a erf(0)+1

2 = a
2 ,

since erf(0) = 0.

Dilation parameter v
v ∈ (0,∞) controls the width, or duration, of the wavelet. Increasing v elongates the wavelet,
and decreasing v compresses it (Figure 4).

Wavelet order n
n ∈ {0, 1, 2, . . .} determines the order of the Hermite polynomial used. Only even ordered
polynomials are included, hence the ψ2n(·) in (9). Increasing n effectively gives the wavelet
additional sidelobes, shifting its peak frequency upward (Figure 5).

Figure 6 shows the first six Hermite polynomials, and Figure 7 shows the effect of damping,
and then normalising, the Hermite polynomials. When n is odd, we have Hen(0) = 0, so the
normalisation can only be applied to even-ordered wavelets. The shapes of odd-ordered wavelets
can be attained by even-ordered wavelets with large (positive or negative) skewness, so excluding
odd-ordered wavelets should not affect the model’s flexibility.

Since s, a and v are continuous parameters and n is discrete, it is useful to regard these as
distinct blocks of parameters for purposes of sampling or optimisation. We must also account for
the fact that the parameters have different ranges. The skewness parameter s takes any real value,
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s = −0.6 s = −0.3 s = 0

s = 0.3 s = 0.6 s = 0.9

Figure 3: Wavelets with n = 2, and six different values of the skewness parameter
s.

v = 0.007 v = 0.012 v = 0.022

Figure 4: Wavelets with n = 2, and three different values of the dilation parameter
v.

n = 0 n = 1 n = 2

n = 3 n = 4 n = 5

Figure 5: Wavelets with a small positive skewness (s ≈ 0.15) and six different
orders n.
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Figure 6: The first six probabilist’s Hermite polynomials Hen(x), n = 0, . . . , 5.

Figure 7: Hermite polynomials Hen(x), damped Hermite polynomials ψn(x) =

e−x2/2Hen(x) and normalised damped Hermite polynomials, for polynomial orders
n = 0, 1, 2, 3. Note that the normalised damped polynomials are not defined for
odd n.
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while a, v and the noise standard deviation σ are strictly positive, and n takes non-negative integer
values only. Therefore, we define transformed parameters

β1 = s, β2 = log a, β3 = log v, β4 = log σ, (13)

and write β = (β1 β2 β3 β4)T . With this transformation, we have β ∈ R4.
Note that the discrete parameter n is not included in β, and must be handled separately. Also

note that even though the wavelet function does not depend on β4, we generally write w(t;β, n), or
sometimes only w(t;β), if the value of n is clear from the context.

3.2 Parameter prior

We give β a multivariate normal distribution with mean µβ and covariance matrix Σβ ,

β ∼ N
(
µβ,Σβ

)
(14)

so that the prior probability density function of β is

π(β) = (2π)−2 (det Σβ)−
1
2 exp

{
−1

2

(
β − µβ

)T
Σ−1
β

(
β − µβ

)}
. (15)

As for the wavelet order parameter n, we can either use a fixed order, or we can treat n as a
random variable, estimating β and n jointly. In the latter case, it will be useful to put a prior
distribution on n. We therefore assign to it a Poisson distribution with mean λ, which gives the
probability mass function

π(n) =
λn

n!
e−λ. (16)

3.3 Likelihood, parametrised

From (3) and the discussion of the data likelihood in section 2, we define the likelihood of y with
respect to β and n by letting

π(y|β, n) = π
(
y|w = w(t;β, n), σ = eβ4

)
. (17)

The probability density function of y given β and n is

π(y|β, n) = (2πσ2)−
ny
2 exp

{
− 1

2σ2
(y − r∗w(t;β, n))T (y − r∗w(t;β, n))

}
, (18)

where ny is the length of the data record, i.e. the number of samples in y.

3.4 Posterior distribution

The posterior distribution of interest is

π(β, n|y) ∝ π(β, n,y) ∝ π(β)π(n)π(y|β, n). (19)

when n is a random variable, and

πn(β|y) ∝ π(β,y) ∝ π(β)π(y|β) (20)

when n is fixed.
Inserting (15), (16) and (18) into (19) gives

π(β, n|y) ∝ det(Σβ)−
1
2 exp

{
−1

2
(β − µβ)TΣ−1

β (β − µβ)

}
· λ

n

n!
(σ2)−

ny
2 exp

{
− 1

2σ2
(y − r∗w(β, n))T (y − r∗w(β, n))

}
.

(21)
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Similarly, inserting (15) and (18) into (20) gives

πn(β|y) ∝ det(Σβ)−
1
2 exp

{
−1

2
(β − µβ)TΣ−1

β (β − µβ)

}
· (σ2)−

ny
2 exp

{
− 1

2σ2
(y − r∗w(β, n))T (y − r∗w(β, n))

}
.

(22)

4 Method

This section presents the estimation method in a single-angle setting. The multi-angle case is
discussed in section 5. In order to provide a quick overview, the various steps of the estimation
procedure are listed here. Each step will be explained in detail in sections 4.1–4.5.

Step 1: Load data y and r. Unless the reflectivity series is already available, it must be computed
from borehole data and matched to the sampling frequency of the seismic data. Depending
on the properties of the seismic data, it may need to be regularised, to ensure that samples
are equidistant.

Step 2: Extract a tentative wavelet estimate w̃ from the seismic data.

• Compute the discrete Fourier transform of y.

• Smooth the spectrum by convolving it with a window function.

• Apply the inverse DFT to the smoothed spectrum to recover time domain wavelet w̃.

• Fit the parametric wavelet model w(t;β, n) to w̃ to get preliminary estimates β̃ and
ñ.

Step 3: Set parameters for prior distributions based on the preliminary estimates β̃ and ñ.

• Either fix n = ñ, or treat n as a random variable with prior mean λ = ñ.

• Set the prior standard deviation of each element of β separately, based on user specified
bounds Ui and exceedance probabilities αi, which define statements of the form “Peak
wavelet amplitude exceeds U1 with probability α1”.

Step 4: Locate the mode β̂ and, if applicable, n̂, of the posterior distribution.

• Define an objective function fβ|y,n(β) = − log π(β|y, n) if n is fixed, or fβ,n|y(β, n) =
− log π(β, n|y) if n is a random variable.

• Supplying β̃ as an initial parameter vector, use a numerical optimisation algorithm to
minimise the appropriate objective function either with respect to β or with respect
to β and n. Denote the modal configurations β̂, n̂.

Step 5: Sample parameter vectors from the posterior distribution.

• Compute the Hessian H of the negative log-posterior at β̂.

• Approximate the posterior distribution with a Gaussian distribution with mean β̂ and
covariance matrix Σβ̂ = H−1.

• Sample parameter vectors β1,β2, . . . ,βns from the posterior distribution π(β|y, n)
by means of an independent-proposal Metropolis-hastings sampler using the Gaussian
approximation as a proposal distribution. If n is fixed, then use n = ñ as before.
Otherwise, let n ∼ Po(λ), with λ = ñ.

The input to the estimation algorithm is the seismic data y and either a reflection coefficient
series r or borehole data from which r can be computed. These data records must have been tied, or
aligned, in time prior to estimation. In other words, there should be a time vector ty, with sampling
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time interval determined by the sampling frequency of y, giving the two way time for each sample
point of both y and r.

Upon completion, the procedure should have produced (1) maximum a posteriori estimates of β
and, if applicable, n, and (2) a sample of ns parameter vectors drawn from the posterior distribution
of β. A maximum a posteriori estimate of the wavelet is most easily obtained by evaluating the
wavelet function on the MAP parameter estimate β̂. The sample of parameter vectors can be
converted into a sample of wavelets by evaluating the wavelet function on a time vector. These
sample wavelets can then be used to construct confidence limits for the wavelet.

4.1 Data loading and processing

The seismic trace y(t) is represented by the vector y indexed by the time vector ty.
Well logs contain records of the seismic P-wave velocity Vp, S-wave velocity Vs and mass density

ρ of the rock, usually along with two-way time computed from measured depth and velocity. As
mentioned in section 2, the reflection coefficient at a given time is a function of Vp, Vs and ρ, as well
as the angle of incidence of the seismic waves. When calculating r from a well log, we can use the
average angle given for the stack. The reflectivity series calculated in this way will be indexed by
the time vector tr.

For the convolutional model (3) to apply, we must ensure that y and r are commensurate, i.e.
the subsurface reflection points about which y contains information should correspond as closely as
possible with the trajectory of the borehole providing the data for r.

We also need to resample the data records, so that they are indexed by a common time vector
t, with equidistant samples. Generally, ty will be much coarser than tr, so if the trace already has a
regular sampling time interval, we can simply take t = ty and downsample r to the coarser time scale.
Sometimes, however, ty will be irregular, so that interpolation and resampling are necessary also for
y. A deviated well (Figure 8) is an example of a situation where samples will not be equidistant in
time, because when seismic data are extracted along the well trajectory, the time interval between
consecutive samples will depend on the angle of the trajectory.

MD MD

TWT TWT

A B

Figure 8: A: Straight well. Measured depth is proportional to Two-way time.
Samples are equidistant. B: Deviated well. Measured depth is related to Two-way
time in a non-linear way. A seismic trace extracted along the well trajectory will
not have equidistant samples. Rather, the time interval between samples will be
longer the greater the deviation from the vertical.

A time vector tw for the wavelet is also required to evaluate the wavelet function. This can
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DFT

Smoothing

Inverse DFT

Seismic trace Amplitude spectrum

Smoothed spectrumWavelet

Figure 9: The four stages in the spectrum smoothing procedure: The seismic
trace, y, the amplitude spectrum, the smoothed spectrum and the wavelet w̃.
The implementation of the procedure is based on the smooth_spectrum code from
Sacchi (2014).

be specified from prior belief about wavelet duration. The time sampling intervals of the time
vectors t and tw must be identical to ensure that discrete convolution behaves as intended. After
preprocessing, the three vectors y, r and t should have ny elements each, and we should have

yi = y(ti), ri = r(ti), i = 1, . . . , ny (23)

and
ti+1 − ti = ∆t, i = 1, . . . , ny − 1. (24)

4.2 Preliminary estimation

To set up the prior distributions of the wavelet parameters, it is useful to have an initial ”guess” at
what the wavelet looks like. We can extract such a crude estimate from the frequency content of
the seismic data, by taking the discrete Fourier transform, and smoothing the amplitude spectrum.
This spectrum-smoothing process, which is illustrated in Figure 9, is taken from Sacchi (2014).

First, we compute the discrete Fourier transform of the trace y using an FFT algorithm

Y = DFT(y).

Next, we convolve the squared absolute value |Y |2 of the transform, which is a vector of real numbers,
with a window function h(f), such as a Hamming window. Let the smoothed spectrum A be the
square root of this convolution,

A =
√
|Y |2∗h(f).

Applying the inverse discrete Fourier transform to A turns it back into a time domain waveform.
Finally, element-wise multiplication with another window function ensures that the estimated wavelet
w̃ has a reasonable shape, dominated by a central peak, and decaying quickly toward the edges,

w̃ = DFT−1(A)h(t).
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The window functions h(f) and h(t) control the degree of smoothing applied to the amplitude
spectrum of y and the width of the preliminary wavelet estimate w̃, respectively. The latter also
defines a time vector t̃ for the extracted wavelet w̃.

Preliminary parameter estimates can be obtained by matching w̃ to the wavelet function w(t;β, n)
evaluated on the time vector t̃. To facilitate this, we define a distance measure d(u,v) between vec-
tors u and v, both with length m, and with sampling time interval ∆τ ,

d(u,v) =

m∑
i=1

(ui − vi)2∆τ = (u− v)T (u− v)∆τ, (25)

which approximates the integral

dI(u(τ), v(τ)) =

∫ m∆τ

0
(u(τ)− v(τ))2dτ, (26)

for continuous functions u(τ) and v(τ), τ ∈ R.
The preliminary parameter estimates corresponding to w̃ are the parameters minimising the

distance between it and w(β, n), which is w(t;β, n) evaluated on the same time vector t̃ as w̃,

(β̃, ñ) = arg min
(β,n)

d(w(β, n), w̃). (27)

This determines ñ and the first three elements of β̃, but not β4 = log σ, since σ does not control
any aspect of the wavelet. To set β4, we compute the sample variance of the residual trace ε̃,

σ̃2 = ε̃T ε̃ =
(
y − r∗w(β̃, ñ)

)T (
y − r∗w(β̃, ñ)

)
, (28)

and let β̃4 = log σ̃ = 1
2 log σ̃2.

4.3 Setting prior distribution parameters

Before parameters can be estimated from the posterior distribution, the prior distributions of β and
n must be fully specified by setting the values of the parameters µβ , Σβ and λ. These values could
be set arbitrarily, but basing the choice of prior parameters on the preliminary parameter estimates
β̃ and ñ allows for a more structured approach, capable of adapting to the available data.

To set the mean µβ , we use the preliminary estimate β̃ directly, letting µβ = β̃.
For the prior covariance matrix Σβ , we use a diagonal matrix Σβ = diag(σ2

β) giving the variances
of each element of β. In other words, no between-parameter correlation is imposed a priori. The
element-wise prior standard deviations of β are contained in the vector σβ = (σβ1 σβ2 σβ3 σβ4)T .

There is no natural way to set these standard deviations from the preliminary wavelet and pa-
rameter estimates. Instead, we set them based on user supplied bounds and exceedance probabilities
for wavelet properties controlled by the parameters.

β1) The skewness parameter s can take any real value, hence we have β1 = s directly, unlike the
other parameters. The preliminary wavelet estimate w̃ will generally be symmetric, so that
β̃1 = 0. To express prior belief about the variability of s, users can specify a threshold or
upper bound U1 and an exceedance probability α1, with the interpretation that

Prob{s > U1} = α1, (29)

or equivalently, Prob{β1 > U1} = α1. Because we assume that the marginal prior distribution
of β1 is N (β̃1, σ

2
β1

), (29) can be rewritten as

1− Φ

(
U1 − β̃1

σβ1

)
= α1, (30)

where Ψ(·) is the cumulative distribution function of the standard normal distribution. When
solving for σβ1 , this gives

σβ1 =
logU1 − β̃1

Φ−1(1− α1)
. (31)

13



β2) The amplitude parameter a is proportional to the amplitude of w(t; s, a, v, n). Putting t = 0
in (9) gives a peak amplitude of

w(0; s, a, v, n) = a
ψ2n(0)

ψ2n(0)

erf(0) + 1

2
=
a

2
(32)

for symmetric wavelets, where the central peak occurs at t = 0. Users can specify prior beliefs
about the wavelet amplitude through an upper bound, or threshold U2 and an exceedance
probability α2, to be interpreted as follows,

Prob
{a

2
> U2

}
= α2. (33)

Since β2 = log a, this is equivalent to

Prob {β1 > log(2U2)} = α2. (34)

And using that β2 ∼ N (β̃2, σ
2
β2

), this means that

1− Φ

(
log(2U2)− β̃2

σβ2

)
= α2. (35)

From this we find the standard deviation

σβ2 =
log(2U2)− β̃2

Φ−1(1− α2)
. (36)

β3) The dilation parameter v is proportional to the duration of the wavelet. For a precise definition
of the duration of a wavelet w(t; s, a, v, n), let t1(v) and t2(v) be the first and last time points,
respectively, where the absolute value of the wavelet exceeds γ times the value at t = 0, that
is

t1(v) = min

{
t :

∣∣∣∣w(t; s, a, v, n)

w(0, s, a, v, n)

∣∣∣∣ > γ

}
(37)

and
t2(v) = max

{
t :

∣∣∣∣w(t; s, a, v, n)

w(0, s, a, v, n)

∣∣∣∣ > γ

}
(38)

for some γ ∈ (0, 1). Then the duration δ(v) of w(t; s, a, v, n) is

δ(v) = t2(v)− t1(v). (39)

Taking advantage of the linear relationship between δ(v) and v, we can fit a line

δ̂(v) = b̂0 + b̂1v. (40)

When δ is measured in seconds, we estimate b̂0 = −0.0005 and b̂1 = 7.6124, with γ = 0.05.
As for the other parameters, the prior standard deviation of β3 = log v can now be set by
choosing a threshold U3 and an exceedance probability α3, for the duration δ(v). These are
then interpreted as

Prob {δ(v) > U3} = α3, (41)

which, by (40), is approximately equivalent to

Prob
{
b̂0 + b̂1v > U3

}
= α3

Prob

{
v >

U3 − b̂0
b̂1

}
= α3

Prob

{
β3 > log

(
U3 − b̂0
b̂1

)}
= α3,

(42)
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which gives

1− Φ

 log
(
U3−b̂0
b̂1

)
− β̃3

σβ3

 = α3, (43)

and finally

σβ3 =
log
(
U3−b̂0
b̂1

)
− β̃3

Φ−1(1− α3)
. (44)

β4) The standard deviation σ of the residual ε = y − r∗w is interpretable enough that we take
U4 as a bound for σ directly. Again we have

Prob {σ > U4} = α4, (45)

and, using β4 = log σ and β4 ∼ N (β̃4, σ
2
β4

), we end up with

σβ4 =
logU4 − β̃4

Φ−1(1− α4)
(46)

by the same argument as for the other parameters.

To set the prior mean λ of n, we simply let λ = ñ. Alternatively, we can fix n at this stage, and
estimate only β, in which case n = ñ is a reasonable choice.

4.4 Posterior distribution maximisation

The goal in this step is to obtain maximum a posteriori estimates of β and n, by locating the
posterior mode, i.e. the values that maximise the posterior distribution π(β, n|y). If n is fixed, then
the goal is to find the value of β that maximises πn(β|y).

To locate the mode, a numerical optimisation algorithm will be applied to an objective function
defined such that maximising the posterior distribution is equivalent to minimising the objective
function. This allows us to frame the optimisation problem as a minimisation problem, and it lets
the optimisation algorithm evaluate the posterior distribution in log scale.

From the posterior probability distribution functions (21) and (22), we define the objective
functions

fβ,n|y(β, n) = − log π(β, n|y) and fβ|y(β) = − log πn(β|y) (47)

by taking the negative logarithms of those expressions. Whereas (21) and (22) express propor-
tionality, or equality up to a multiplicative constant, the functions in (47) differ from the exact
log-posteriors by additive constants. This is inconsequential for purposes of optimisation, however,
because the functions’ shapes are preserved.

There are two cases to consider, giving different optimisation problems. In the case where n is
fixed in the prior specification step, say n = ñ, we seek the mode β of π(β|ñ,y). Since there are no
constraints on β, this can be found by solving the unconstrained minimisation problem

β̂ = arg min
β
fβ|y(β|y). (48)

In the other case, where n is not fixed, we are looking for the modal configuration (β̂, n̂) of
π(β, n|y), which is the solution of the mixed integer unconstrained minimisation problem

(β̂, n̂) = arg min
(β,n)

fβ,n|y(β, n|y). (49)

In the first case, we locate β̂ by simply applying a numerical optimisation algorithm to (48). In
the second case, we break the optimisation into several steps.

1. Choose a range of orders, n1, . . . , nk. A reasonable choice is 1, 2, . . . , k, where k is 4 or 5.
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2. Locate β̂i = arg minβ fβ,n|y(β, ni), for i = 1, . . . , k.

3. Let i∗ = arg mini fβ,n|y(β̂i, ni). In other words, choose whichever i gives the smallest minimum
of the objective function.

4. Let β̂ = β̂i∗ and n̂ = ni∗ .

4.5 Sampling from posterior distribution

Once the modal configuration (β̂, n̂) has been located, a maximum a posteriori estimate of the
wavelet is available by evaluating (9),

ŵ(t) = w(t; β̂, n̂). (50)

For characterising the uncertainty in ŵ(t), we can generate samples of β from the posterior
distribution π(β|n̂,y). Sampling will be more effective if we use a proposal distribution adjusted to
the shape of the target posterior distribution. We accomplish this by using a Gaussian approximation
πG(β|n̂,y) of π(β|n̂,y). Let H be the Hessian matrix of fβ|n,y at the mode (β̂, n̂). Then we have

H =
∂2

∂β2 fβ|n,y

∣∣∣∣
β=β̂, n=n̂

=
∂2

∂β2

(
− log π(β|n,y)

)∣∣∣∣
β=β̂, n=n̂

= − ∂2

∂β2 log π(β|n,y)

∣∣∣∣
β=β̂, n=n̂

,

(51)

hence, the Gaussian approximation has mean β̂ and covariance matrix H−1, and the probability
density function of our proposal distribution is

πG(β|n̂,y) =
1√
2π

(detH)
1
2 exp

{
−1

2

(
β − β̂

)
H
(
β − β̂

)}
. (52)

There are several possibilities for generating a sample of parameter vectors. Drawing directly
from πG(β|n̂, y) is quick, but only yields a sample from approximately the right distribution. A
more exact sample can be obtained by drawing candidate parameter combinations from the Gaussian
approximation, and then accepting them with some acceptance probability α depending on the target
distribution π(β|n̂,y). This can be implemented either as a Metropolis-Hastings sampling algorithm,
producing correlated samples, or as a rejection sampling algorithm, which produces independent
samples. Rejection sampling requires that the scale of the target distribution be matched properly
to the proposal distribution, and since the shape of the posterior distribution is unknown, it is
difficult to perform this matching automatically. Therefore, we choose to implement a Metropolis-
Hastings sampler, using the Gaussian approximation as the proposal distribution for β. When n
is a random variable, we can propose new values n′ from its prior distribution before drawing the
β-proposal, i.e. n′ ∼ π(n), and β′ ∼ πG(β′|n′,y). The acceptance probability for a proposed
transition from (β, n) to (β′, n′) is

α(β, n→ β′, n′) = min

{
1,
π(β′, n′|y)πG(β|n,y)π(n)

π(β, n|y)πG(β′|n′,y)π(n′)

}
= min

{
1,
π(n′)π(β′)π(y|β′, n′)πG(β|n,y)π(n)

π(n)π(β)π(y|β, n)πG(β′|n′,y)π(n′)

}
= min

{
1,
π(β′)π(y|β′, n′)πG(β|n,y)

π(β)π(y|β, n)πG(β′|n′,y)

} (53)

since the factors π(n) and π(n′) both appear once as a factor in the posterior distribution, and once
as a proposal distribution for the order. If n is fixed, then we are only interested in sampling from
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the posterior distribution of β conditional on the chosen value n̂. The acceptance probability for a
transition from β to β′ is then

α(β → β′) = min

{
1,
π(β′|n̂,y)πG(β|n̂,y)

π(β|n̂,y)πG(β′|n̂,y)

}
. (54)

When tested on synthetic and real data (details in section 6), the overall accept rate of the Metropolis-
Hastings sampler tends to be quite high; usually in the 0.4–0.7 range.

Parameter vector samples can be used to create wavelet samples by evaluating the wavelet
function. The variability of the wavelet samples then serves as a measure of the uncertainty of the
MAP wavelet estimate.

5 Multi-angle extension

The method described in section 4 can be applied to the multi-angle or multi-stack case, where several
seismic traces are available from different angle stacks. This section will describe the modifications
necessary to extend the method in this way. In the multi-angle setting, we aim to estimate a separate
wavelet, and hence a separate set of parameters, for each stack.

5.1 Data

Assume, for the sake of clarity, that there are three traces y1, y2 and y3 from the near, mid and
far stacks respectively, but covering the same position, i.e. a single well. Each stack has an average
angle of incidence θi associated with it. Since the reflection coefficient depends on angle of incidence,
we get a different reflection coefficient series ri for each stack.

5.2 Preliminary estimation

The three wavelets to be estimated are denoted

w1(t) = w(t;β1, n), w2(t) = w(t;β2, n) and w3(t) = w(t;β3, n), (55)

with parameter vectors β1, β2 and β3. For ease of notation, we combine these into one 12 element
vector β =

(
βT1 β

T
2 β

T
3

)T . The order n is the same for all three wavelets, reflecting the fact that all
three wavelets are expected to have a similar shape.

As between-stack differences in wavelets are expected to be small, and since the preliminary
wavelet estimate is only meant to give a rough indication of the wavelet shape, for the purpose of
setting the parameters of the prior distribution, we apply the spectrum smoothing method discussed
in section 4.2 only once to the multi-angle seismic data. This requires that all the traces be aggregated
in some way. If, in addition to the traces y1, y2, y3, from the near, mid and far stacks, a trace y
from a full stack is available, then we can apply the spectrum smoothing method to that. Otherwise,
the individual traces can be combined into an averaged trace y =

∑
i yi/3.

Either way, we extract a single preliminary wavelet estimate w̃ from y using the spectrum
smoothing approach. And to w̃, we fit a single set of parameters (β̃, ñ), as in the single-angle case.

5.3 Setting prior distributions

All three wavelets are expected to be qualitatively similar, the main points of difference being
amplitude and dilation, and possibly the standard deviation parameter σ, although the latter is
more closely related to the seismic trace than the wavelet. As a consequence of this expected
similarity, and with a view to keeping the model simple and parsimonious, we use the same order
n for all three wavelets. Moreover, we impose a high degree of between-stack correlation on the
elements of the combined parameter vector β.
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To this end we define a 3 × 3 correlation matrix Cθ, containing the correlation coefficients ρij ,
i, j ∈ {1, 2, 3} between the sets of parameters corresponding to each of the three incidence angles θ1,
θ2 and θ3, which are the average incidence-angles of the near, mid and far traces, respectively,

Cθ =

 1 ρ12 ρ13

ρ12 1 ρ23

ρ13 ρ23 1

 . (56)

There are many ways to choose the correlation coefficients ρij . The simplest choice is probably
to use the same value ρ for every coefficient, i.e.

ρij = ρ, i, j = 1, 2, 3, i 6= j. (57)

For a more nuanced approach, we could let the correlation between wavelet parameters associated
with angles of incidence θi and θj , be a function of the angle difference |θi − θj |. For example, we
could let

ρij = exp

(
−|θi − θj |

2

κ2

)
, i, j = 1, 2, 3, i 6= j, (58)

where κ is a constant which determines the correlation range. More sophisticated correlation struc-
tures are also available, but in this thesis, we will focus on the simple case of constant correlation
across all angles.

From Cθ, and the 4×4 covariance matrix Σβ = diag(σ2
β) defined as in section 4.3, we now define

a new 12× 12 covariance matrix Σβθ for the prior distribution of β,

Σβθ = Cθ ⊗ Σβ =

 Σβ ρ12Σβ ρ13Σβ

ρ12Σβ Σβ ρ23Σβ

ρ13Σβ ρ23Σβ Σβ

 . (59)

The standard deviations in σβ are adjusted using bounds Ui and exceedance probabilities αi as in
the single angle case, but note that this is still only done for four parameters, and then replicated
by taking the product in (59).

The mean of β is defined by repeating the preliminary parameter estimate β̃ from w̃ three times,

µβθ =

 β̃β̃
β̃

 . (60)

No changes from the single angle case are necessary concerning n. There is still the choice
between fixing the order, by taking n = ñ, for instance, or viewing it as a random variable, in which
case it is assigned a Poisson distribution with mean λ = ñ. It is also possible to let the orders of
different wavelets be separate variables, obtaining individual estimates n̂1, n̂2, etc. of each wavelet’s
order. The simplest choice, however, is to use a single, common order n, and the current work is
limited to that case.

5.4 Maximisation of posterior distribution

In the multi-angle case, the prior distribution of the parameter vector β ∈ R12 is Gaussian with
mean µβθ and covariance matrix Σβθ,

π(β) ∝ Σ
− 1

2
βθ exp

{
−1

2

(
β − µβθ

)T
Σβθ

(
β − µβθ

)}
. (61)

The likelihood of each trace is defined in the same way as the likelihood in section 3.3, and
the likelihood of all three traces is the product of the individual likelihoods, due to independence
between the traces,

π(y•|β, n) = π(y1,y2,y3|β1,β2,β3, n) = π(y1|β1, n)π(y2|β2, n)π(y3|β3, n). (62)
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Here, the bullet symbol (•) signifies concatenation of vectors with different subscripts, so y• is
the combination of y1, y2 and y3. Combining the prior distributions of β and n with the likelihood
(62) gives the posterior distributions

π(β, n|y•) ∝ π(β)π(n)π(y•|β, n) (63)

and
πn(β|y•) ∝ π(β)π(y•|β, n). (64)

Objective functions fβ,n|y(β, n) and fβ|n,y(β) are defined as the negative logarithms of π(β, n|y•)
and πn(β|y•) respectively.

The numerical optimisation is handled similarly as before, but since the dimension is increased
threefold, the optimisation algorithm will take longer to converge to the minimum of the objective
function. As before, the modal configuration is denoted (β̂, n̂).

5.5 Sampling from posterior distribution

Sampling is similar to the single angle case, and the same sampling algorithm can be used with
minimal modifications, whether it be a Metropolis random walk or a rejection sampling algorithm.
Sampled parameter vectors will need to be “unpacked”, or split up into three parts, so that each part
can be evaluated to produce a separate wavelet. Sample properties should be interpreted the same
way as in the single angle case.

In the single-angle situation, the posterior distribution might conceivably be explored using a
non-sampling based technique, such as mapping out the functional shape of the distribution by
evaluating it in a set of deterministically positioned points in parameter space. While this is viable
in a single-angle setting where we have only four parameters, it quickly becomes infeasible in the
multi-angle case, as the dimensionality increases. For multi-angle estimation, therefore, a sampling
based approach to uncertainty characterisation is more generally applicable.

6 Examples and Test Cases

In this section, we present a number of test cases for the wavelet estimation procedure. Each case
uses a different dataset, and serves as a usage example for the estimation procedure. In order
to reveal strengths and weaknesses in the maximisation-based approach, we also take advantage
of these test cases by comparing the performance of the proposed MAP estimation procedure to
that of a linear Bayes estimator. This estimator is an example of a point-wise estimation method,
because it represents the wavelet as a vector of samples, and essentially treats all the sample points
as individual model parameters.

The test cases vary in complexity and realism from the fully synthetic and idealised first case,
via a series of cases based on a semi-synthetic dataset, consisting of some real and some synthetic
data, to a fully real case, with no synthetic data.

To study the properties of the MAP estimation procedure, as well as highlight some of its ad-
vantages and disadvantages, we introduce here an alternative wavelet estimation method to contrast
it with. The Bayesian Least Squares (BLS) or Linear Minimum Mean Square Error (LMMSE) es-
timator is computed as a linear transformation of the samples in the observed seismic trace y. It
assumes a linear model which can be viewed as a simpler form of the hierarchical model suggested
by Buland and Omre (2003).

Instead of a parametric function, let the wavelet be represented by a vectorw of samples. Assume
a Gaussian prior

w ∼ N (µw, Cw) (65)

for the wavelet, and assume more specifically that the mean is µw = 0 and that the covarianc matrix
Cw is given by one of two choices

(Cw)ij =

γ
2 exp

{
− |i−j|

2

2τ2

}
(homoscedastic prior)

γ2 exp
{
− |i−nw/2|2+|j−nw/2|2

2ξ2

}
exp

{
− |i−j|

2

2τ2

}
(heteroscedastic prior)

. (66)
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With the homoscedastic prior distribution, prior wavelet uncertainty is independent of time, i.e.
we are equally uncertain about the value of the wavelet at all nw sample points. On the other hand,
the heteroscedastic prior assigns smaller uncertainty on the edges of the wavelet than in the middle.
The prior variance of wavelet sample i falls off as |i− nw/2| increases. This forces the wavelet to
taper off and tend to zero at the edges, provided the parameter ξ is chosen appropriately.

To make use of the BLS estimator, we must rewrite the convolutional model (1) as

y = Rw + e (67)

where R is a convolution matrix constructed by arranging the elements of r such that Rw = r∗w.
The noise vector e is assumed to be independently zero-mean Gaussian with variance σ2,

e ∼ N
(
0, σ2I

)
=⇒ y|w ∼ N

(
Rw, σ2I

)
. (68)

With these assumptions, the LMMSE estimator of w is given by (Kay, 1993)

ŵBLS = µw + CwR
T
(
RCwR

T + σ2I
)−1

(y −Rµw) , (69)

and the residual ε = w − ŵBLS is zero-mean Gaussian with covariance matrix

Cε = Cw − CwRT
(
RCwR

T + σ2I
)−1

RCw. (70)

6.1 Single reflection

The first test case assumes an earth model with two different geological layers, separated by a
reflective boundary. This very simple test case lets us confirm that the estimation method is working
as intended, and allows us to examine the properties of the estimation method, rather than those of
the data.

A noiseless synthetic trace y∗ is created by convolving a known wavelet w(t) (Figure 10) with a
reflectivity time series r, representing the simple two-layer earth model (Figure 11). The resulting
trace, which is also shown in Figure 11, contains a single reflected event at the layer boundary.

Since the reflectivity series r has a large value at the layer boundary, and is zero otherwise,
the shape of the wavelet is captured exactly in y∗, and perfect recovery would be expected in the
noiseless case. Some low-intensity white Gaussian noise is added, however, to produce the perturbed
trace y = y∗ + e, which is used as input data.

Figure 12 shows the prior wavelet estimate w̃, and the MAP wavelet estimate ŵ(t) together
with the true wavelet w(t). Note that the prior wavelet is represented in the seismic time resolution
(∆t = 4 ms), which is coarser than the resolution used for plotting the parametric wavelets. This
figure illustrates the difference between the preliminary wavelet estimate w̃, and the final wavelet
estimate, or maximum a posteriori estimate, ŵ(t). By construction, w̃ is symmetric, and normalised
to unit peak amplitude. The preliminary wavelet estimate matches the true wavelet closely in the
right side of the figure, but there is considerable mismatch between the two near the smaller, left
sidelobe, and near the central peak. Since the true wavelet was generated with the same wavelet
model used for estimation, it is no surprise that the posterior mode is close to it. What little
discrepancy is present, can be ascribed to the influence of noise.

Figure 13 shows the prior distribution of n, which is a Poisson distribution with mean λ =
2, compared with the posterior distribution, computed by normalising the modal values of the
posterior distribution when n takes values between 0 and 6. The posterior is maximised when
n = 2, so this is the chosen order n̂. In Figure 14, MAP and BLS wavelet estimates are shown
surrounded by 95% confidence limits. The limits for the MAP estimate are computed empirically
from samples of the posterior distribution, whereas the limits for the BLS wavelet are constructed
from the posterior mean and standard deviation of the wavelet at each time point, specifically by
taking ŵBLS ± 2

√
diag (Cε). The MAP wavelet estimate here is the same as in Figure 12, and the

narrow 95% confidence envelope reflects the small uncertainty associated with the estimate, which
is expected, given the low noise level. The BLS wavelet was estimated with the heteroscedastic prior
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Figure 10: True wavelet used to create the synthetic seismic trace for the single
reflection test case. This wavelet was generated using the parametric wavelet model
with parameters s = 0.25, a = 1, v = 0.008 and n = 2.
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Figure 11: Left: Reflectivity for two-layer earth model. Right: Synthetic seismic
trace y after addition of the vector e of white Gaussian noise.
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Figure 12: Prior mean wavelet (black), MAP wavelet estimate (red), and true
wavelet (blue).
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Figure 13: Prior and posterior distributions of the wavelet order n. A priori, n is
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associated with each order, within the range shown (0 ≤ n ≤ 6).
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Figure 14: Maximum a posteriori (MAP) and Bayesian least squares (BLS)
wavelet estimates (thick solid lines) with approximate 95% confidence intervals
(dashed lines) compared with true wavelet (thin solid lines). The curves in the
MAP case are too close together to be easily distinguishable, so an enlarged view
is included.

for w, and the confidence envelope can be seen to taper off towards the edges of the figure. The
wavelet estimate has largely succeeded in reconstructing the shape of the wavelet, but it has also
picked up some oscillations which are not part of the true wavelet. This indicates that some degree
of overfitting is taking place. Generally speaking, the point-wise sample representation approach
of the BLS estimation procedure is much more generic and flexible than any parametric wavelet
representation, but this flexibility also makes the estimate more sensitive to the influence of noise.
This problem can be mitigated somewhat by choosing a smaller value of the parameter ξ in (66),
to further penalise deviations from the mean. This cannot generally be done, however, without also
affecting the estimation of the desired part of the wavelet.
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Figure 15: Estimated traces, ŷ, observed traces y and residual traces y − ŷ for
MAP and BLS wavelet estimates.

Figure 15 shows the observed seismic trace y, compared with the estimated seismic trace ŷ,
which is computed by convolving the reflectivity series with the estimated wavelet, i.e. by applying
the forward model to the wavelet estimate. This is done separately for the MAP and BLS estimates.
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Finally, the residual trace y − ŷ is included in the figure. Ideally, we would like the residual trace
to be as small as possible. For both models, minimising ‖y − ŷ‖22 is equivalent to maximising the
likelihood π(y|w). The residual trace of the MAP estimate has small values everywhere, while the
BLS residual has larger values in a region near the reflector. This localised error is caused by the
overfitting of the wavelet to the noisy signal.

6.2 Semi-synthetic data, Ricker and box wavelets

The data for the following test cases are semi-synthetic in the sense that the reflectivity series is
computed from a real well log, but the seismic traces are synthesised by convolving r with known
wavelets and adding noise. Unlike the true wavelet used in the first test case (section 6.1), these
wavelets were not created using the parametric model. Instead, they were generated by computing
the inverse discrete Fourier transform of pre-specified amplitude spectra, and then, in some of the
cases, applying a phase rotation to the computed time-domain signal.

Figures 16 and 17 show MAP wavelet estimates and posterior wavelet samples. A Ricker wavelet
was used to generate the seismic data for this test case, and it is shown in red in the plot. In
Figure 16 the true wavelet is a zero phase, symmetric Ricker wavelet, and in Figure 17 it is phase
rotated and skewed. The amplitudes of the estimated wavelets differ somewhat from the amplitudes
of the true wavelets. To facilitate comparison between estimated and true wavelets in terms of
other wavelet properties, such as length and skewness, some plots are given with actual estimated
wavelet amplitudes, while others feature normalised wavelets. In other words, in some of the plots
in Figures 16–19, the true wavelet and the MAP wavelet estimate have both been scaled to unit
peak amplitude, and the wavelet samples from the posterior distribution have been scaled with the
same scale factor as the MAP wavelet, to preserve dispersion relative to amplitude.

When estimating the zero-phase Ricker wavelet, the n = 1 wavelet gives the best match in terms
of shape. Both the n = 1 and n = 2 wavelets fail to correctly match the amplitude of the Ricker
wavelet, particularly at the peak, although the n = 2 wavelet does have approximately correct values
in the troughs at t = ±0.02 s.

The situation for the phase-rotated Ricker wavelet in Figure 17 is similar, but here the left trough
is shallower than the right one due to the skewness caused by the phase rotation. Both estimated
wavelets (n = 1 and 2) fit the true wavelet more closely on the left side than on the right side of
the central peak. The n = 2 estimate has the more correct shape to the right of the deepest trough,
where the wavelet has a slight local maximum. On the other hand, it also introduces a similar local
maximum on the left side, where no such maximum is present in the true wavelet. The amplitude
and skewness parameters are both underestimated in this case.

Figures 18 and 19 show MAP wavelet estimates and posterior samples, estimated with various
wavelet orders between n = 1 and n = 3. The true wavelet, shown in red, is a box wavelet. It has
a box shaped amplitude spectrum, constant on some passband, with a relatively sharp (10–20 Hz)
cut-off at either end. The time signal corresponding to this amplitude spectrum is dominated by a
large central peak, surrounded by much smaller ripples. These ripples have a jagged appearance,
with some sections looking approximately linear, while others are curvier.

As in the Ricker wavelet-case, two different wavelets are used to generate traces. In Figure 18,
the box wavelet is zero-phase and symmetrical, whereas in Figure 19 the phase is rotated, and the
wavelet is skewed.

The most salient characteristic of the wavelet estimates in Figures 18 and 19 is their strikingly
small amplitude. If we think of the box wavelet as consisting of two components with different
amplitudes, the large central peak, and the much smaller oscillations surrounding it, then the am-
plitudes of the wavelet estimates seem to fit the second, smaller component, but not the first and
largest component. As a consequence, the overall quality of the fit suffers greatly.

Taking note of the ripples present in the box wavelet, we might try increasing n, since this
adds more oscillations to the parametric wavelet. But using a too large value for n risks causing
the dilation parameter to be grossly underestimated, so that all the oscillations of the wavelet are
located within the timespan of the central peak of the box wavelet. Comparing the wavelet estimates
with the box wavelet, we notice an important qualitative difference. The ripples in the box wavelet
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Figure 16: MAP wavelet estimates (blue) and posterior samples (grey) with n = 1
and n = 2. Seismic data for this test case was generated using the symmetric Ricker
wavelet, shown in red. Top: Actual estimated amplitude. Bottom: Normalised
amplitude. Note: The wavelet estimates in the top and bottom rows were estimated
independently.
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(c) n = 1, normalised
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Figure 17: MAP wavelet estimates (blue) and posterior samples (grey) with n = 1
and n = 2. The seismic data for this test case was generated with a phase rotated
Ricker wavelet, shown in red. Top: Actual estimated amplitude. Bottom: Nor-
malised amplitude. Note: The top and bottom rows show independently estimated
wavelets.
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Figure 18: MAP wavelet estimates (blue), wavelet samples from posterior dis-
tribution (grey), and true, zero-phase box wavelet (red). Estimates are shown for
n = 1 and n = 3. The wavelet model is unable to adapt well to the particular
shape of the box wavelet, resulting in a relatively poor fit. Top: Wavelets with
estimated amplitude. Bottom: Wavelets with normalised amplitude; wavelet am-
plitudes have been adjusted so that the maximum value is 1. Note: The normalised
and unnormalised wavelets were estimated separately, in independent runs of the
estimation procedure.
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Figure 19: MAP wavelet estimates (blue), posterior wavelet samples (grey) and
true, phase-rotated box wavelet (red). Results are shown for wavelet orders n = 1
and n = 2. The wavelet estimates shown here suffer from the same problem as the
ones in Figure 18, the parametric wavelet model is unable to match the shape of
the box wavelet. Top: Wavelets shown with estimated amplitudes. Bottom: All
wavelets normalised to unit peak amplitude. Note: The wavelets shown in the top
and bottom rows were estimated independently.
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are primarily found below zero, while the off-peak oscillations in the parametric wavelet are centred
on zero, so that a significant portion of the lobes are positive. If the minima immediately adjacent
to the central peak in a high-order parametric wavelet were to be matched to the corresponding
troughs of the box wavelet, then the neighbouring local maxima of the parametric wavelet would
necessarily become too large to fit the corresponding local maxima of the box wavelet, which are
quite small. This is an example of model inflexibility.

These tests, using the Ricker and box wavelets, reveal an important limitation of the parametric
wavelet model. Although relatively flexible considering the low number of parameters involved, the
model is still only capable of representing a limited range of wavelet shapes. In cases like these,
where a true wavelet exists, this target wavelet may either be within the range of the model, like
the wavelet in Figure 10, or it may be outside that range. Judging by the lack of fit exhibited by
the wavelet estimates in Figures 18 and 19, it appears that the box wavelet, phase rotated or not,
falls into the latter category.

The Ricker wavelet, which is very smooth compared with the box wavelet, is certainly closer to
the range of the parametric wavelet model than the box wavelet is. This is reflected by the superior
quality of the fit in Figures 16 and 17 compared with the fit in Figures 18 and 19. Still, the estimates
of the Ricker wavelet leave something to be desired, and it is clear that the wavelet model is unable
to provide a complete and accurate representation of the Ricker wavelet, so that it, too, is ostensibly
outside the model’s range.

To create a test case for multi-angle estimation, we compute reflectivity series r(θ) for three
different angles θ1, θ2 and θ3. Then we generate near, mid and far seismic traces y1, y2 and y3 by
convolving each reflectivity series with the same phase rotated Ricker wavelet used in the single-angle
test case.

Figure 20 shows MAP wavelet estimates resulting from joint wavelet estimation from the near,
mid and far traces. Also shown are wavelet samples from the posterior distribution. Figure 21
shows the prior mean used for estimation, and samples from the prior distribution. Finally, Figure
22 shows histograms of the amplitude and dilation parameters of the near wavelet, taken from the
posterior samples shown in Figure 20.

The multi-angle wavelet estimates display many of the same problems as the single-angle esti-
mates in Figure 17. They underestimate the amplitude, and do not match the shape of the true
wavelet consistently throughout the estimation time interval. As was the case for the single-angle
estimates, the match is significantly better near the left trough (at t ≈ −0.2) than on the right side.

When generating the seismic data for the multi-angle test case, the same true wavelet was used
for all three traces. In a realistic setting, one would expect to find differences between wavelets corre-
sponding to different angles of incidence. Specifically, a larger angle of incidence implies that seismic
waves traverse longer distances in the subsurface, and hence have their high-frequency components
attenuated to a greater degree. Although this effect is corrected for in data processing, we might
still expect the far wavelet to be smoother and less oscillatory, and perhaps longer, than the near
and mid wavelets. Similarly, we might expect the mid wavelet to be smoother and longer than the
near wavelet. In this test case, however, the near, mid and far angle stacks all have the same true
wavelet. As is evident from the Figure 20, the wavelets do differ slightly from each other, mostly
in terms of skewness. This variation is allowed, to some extent, since the between-angle correlation
coefficient in the prior distribution of β is set to ρ = 0.9 in (56).

6.3 Real data example

In this final test case, the well log used to create the reflectivity series and the seismic data are both
real, which means that no true wavelet is available for validation of estimates.

We estimate MAP wavelets using n = 1 and n = 2. The wavelet estimates, along with sam-
ples from the posterior distributions, are shown in Figure 23. Histograms of posterior samples of
the skewness and amplitude parameters are plotted in Figure 24, together with prior probability
densities.

A large prior variance was used for the amplitude, and the effect of this on the posterior distri-
bution can be seen on the wavelet samples in Figure 23. Although in both the n = 1 and n = 2 case,
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Figure 20: MAP wavelet estimates (black), posterior samples (grey) and true
Ricker wavelet (red). Prior correlation between corresponding parameters of dif-
ferent wavelets is ρ = 0.9.
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Figure 21: Prior mean wavelet (blue) and posterior samples from multi-angle
distribution (grey).
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Figure 22: Prior densities (red) and histograms of posterior samples (blue bars)
for the amplitude and dilation parameters of the near wavelet w1, with n = 1 and
n = 2.
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Figure 23: MAP wavelet estimates for the real test case (blue) with samples from
the posterior distribution (grey), using n = 1 and n = 2.
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Figure 24: Histograms of skewness parameter s and skewness parameter log a
from posterior samples, with n = 1 and n = 2. Prior probability densities are
shown as red lines.
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the posterior distribution is considerably more concentrated than the prior, as Figure 24 shows, the
wavelet samples cover a relatively wide range of amplitudes.

Since no true wavelet is available to compare the wavelet estimates with, we estimate additional
wavelets using the Bayesian Least Squares (BLS) estimator. The choice of prior distribution has a
large impact on the appearance of the BLS estimate, so we estimate two BLS wavelets, one using
the heteroscedastic prior with larger variance in the middle of the time interval, and another using
the homoscedastic prior with constant variance. The covariance parameters in (66) are chosen as
follows:

γ = 40, τ = 7, ξ =
nw
6

=
50

6
,

and the standard deviation of the noise in y is estimated as σ = 0.05‖y‖2.
The two prior distributions are visualised in Figure 25 by samples, and the wavelet estimates are

shown in Figure 26, with two standard deviation-confidence envelopes.
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Figure 25: Samples from the prior distribution of the Bayesian Least Squares
model, using both types of prior distribution.
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Figure 26: Bayesian Least Squares estimates of the real test case-wavelet (thick
line), and two standard deviation-confidence limits (dotted lines), estimated using
two different types of prior distribution.

There is a resemblance between the heteroscedastic prior-BLS estimate (25a), and the n = 2
MAP estimate 23b). It should be noted, however, that the BLS-wavelet is longer, its duration
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is about 160 ms, whereas the duration of the MAP wavelet is about 120 ms. Nevertheless, the
similarity in shape between the two independently estimated wavelets increases our confidence in
the estimates.

Comparing the two BLS estimates, we see that the one using the homoscedastic prior features
more oscillations, especially at the edges. Eliminating or damping these oscillations at the edges,
while leaving the middle part of the wavelet relatively unchanged, is exactly the effect we expect
the heteroscedastic prior to have. In one sense, using a prior distribution which essentially removes
part of the estimated wavelet, may seem arbitrary. But on the other hand, as illustrated by the BLS
estimate in Figure 14, the BLS estimator, with its large number of parameters, is sensitive to noise
and overfitting. Using the heteroscedastic prior is an effective means of mitigating that sensitivity.

In Figure 27, we compare the seismic trace y to the synthetic seismic traces ŷ obtained by
convolving the reflectivity series with the estimated wavelets. We get one synthetic trace for each
wavelet estimate. As in Figure 15, we also plot the residual y − ŷ for each estimate.
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Figure 27: Estimated, observed and residual traces for MAP wavelet estimates
with n = 1 and n = 2, and for BLS wavelet estimates with the heteroscedastic and
homoscedastic priors, in the real data test case.

The synthetic traces for the MAP wavelets have small amplitudes, suggesting that the wavelet
amplitude may be underestimated. There are no major differences between the n = 1 and n = 2
traces, which is expected, since the wavelets are similarly shaped.

The traces for the BLS wavelets are smoother, with slower variation and less details. This
observation can also be related to the wavelet shape, since the BLS wavelets are longer than the
MAP wavelets.

In Figure 28, we apply the complete forward model to ensembles of wavelets from the posterior
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distribution associated with each estimate. That is, we convolve each sampled wavelet with the
reflectivity series, and add independent Gaussian noise according to (1), using the estimated standard
deviation for the noise. This creates an ensemble of simulated seismic traces for each wavelet
estimate, which we then compare to the actual observed trace.

In all four cases, the band of simulated traces covers the blue line, which represents the observed
trace, well. The MAP bands have an almost constant width, while the BLS bands follow the
variations in the observed trace. This difference is likely related to the difference in the synthetic
traces in Figure 27, where the BLS traces have large amplitudes and slow variations, which are
visible through noise, while the MAP traces have smaller amplitudes and faster oscillations, which
may be masked by noise. The noise level itself is set based on the available estimate of the standard
deviation of the noise in the observed trace. In the BLS case, this is simply estimated as five percent
of the norm of y, or 0.86. In the MAP case, it is estimated as a model parameter, and the estimated
value is 1.61.

ρ = 0 Near Mid Far
s 0.000 (−0.826,1.047) −0.001 (−1.016,0.949) −0.001 (−0.988,0.916)
a 1.426 (0.546,4.189) 1.433 (0.477,3.745) 1.449 (0.552,3.768)
v 0.009 (0.004,0.023) 0.009 (0.004,0.020) 0.009 (0.005,0.021)
σ 3.309 (2.720,3.943) 2.825 (2.374,3.462) 2.328 (1.982,2.804)

ρ = 0.5 Near Mid Far
s 0.000 (−1.095,1.214) −0.001 (−1.087,1.129) −0.001 (−0.771,1.052)
a 1.434 (0.496,3.991) 1.438 (0.508,3.552) 1.447 (0.523,4.149)
v 0.009 (0.004,0.020) 0.009 (0.003,0.024) 0.009 (0.004,0.020)
σ 3.305 (2.772,4.029) 2.822 (2.389,3.435) 2.327 (1.970,2.841)

ρ = 0.98 Near Mid Far
s 0.000 (−1.003,1.098) −0.001 (−0.915,1.099) 0.000 (−0.890,1.081)
a 1.450 (0.486,3.817) 1.450 (0.490,4.215) 1.450 (0.495,3.870)
v 0.010 (0.004,0.022) 0.010 (0.004,0.022) 0.010 (0.004,0.022)
σ 3.263 (2.722,3.979) 2.819 (2.342,3.457) 2.357 (1.977,2.802)

Table 1: MAP estimates and empirical 95% confidence intervals for the parameters
s, a, v and σ of the near, mid and far wavelets using between-angle correlation
coefficients ρ = 0, ρ = 0.5 and ρ = 0.98.

To investigate the effect of the choice of correlation coefficient, discussed in section 5.3, we
jointly estimate parameters for near, mid and far wavelets, from multi-angle data with three seismic
traces, and we repeat the estimation using three different values of the correlation coefficient ρ.
The location, and the well log, are the same as before. MAP parameter estimates are given in
Table 1, along with empirical 95% confidence intervals computed from samples. There is no clearly
distinguishable pattern in the parameter estimates, nor in the widths of the confidence intervals. If
the choice of correlation coefficient has an effect, it is hard to detect here. At any rate, it might be
more interesting to consider other correlation structures.

7 Discussion and conclusions

In this section, we discuss the results of the tests presented in section 6, offering comments on what
works well and what doesn’t. We also give brief mention to topics relevant to, but not covered in,
this work, including possible extensions of the estimation procedure.

7.1 Model flexibility

One lesson learned from the various test results, is that the model could benefit from being more
flexible. In this context, flexibility means the model’s ability to adapt to, or match, a wide range of
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−10 −5 0 5 10

2100

2150

2200

2250

2300

2350

2400

2450

y(t)

t (
m

s)

(c) Bayes LS, heteroscedastic prior
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(d) Bayes LS, homoscedastic prior

Figure 28: Ensembles of traces generated from sampled wavelets by applying the
forward model to each wavelet. Blue lines show observed trace.
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different wavelet shapes. One way to think about this is to consider the parametric wavelet model as
a function mapping points in “parameter space” to points in “wavelet space”. Suppose we are using a
time vector t ∈ Rnw to discretise the wavelet w(t;β), where β ∈ Rnp is the parameter vector. Then
the discretised wavelet is

w(β) = (w(t1;β), w(t2;β), . . . , w(tnwβ))T ∈ Rnw ,

where t1 . . . , tnw are the elements of t. If we regard the time vector as fixed, we can think of the
parametrised wavelet as a function

w : Rnp → Rnw

whose domain is the parameter space Rnp , containing all possible input combinations, and whose
codomain is the wavelet space Rnw , containing all possible wavelets under this discretisation.

Perhaps the greatest strength of the parametric approach to the wavelet estimation problem,
comes from the fact that the number of parameters, np, can be so much smaller than the number of
wavelet samples nw. In point-wise estimation, such as Bayesian Least Squares, each wavelet sample
point is treated as a separate parameter to be fitted to the data, which gives the model many degrees
of freedom. As demonstrated by some of the test cases, this can easily lead to overfitting, unless
measures are taken specifically to counteract the model’s sensitivity to noise. A related issue is the
problem of determining the length of the wavelet, since a longer wavelet will typically achieve a
better fit (Gunning and Glinsky, 2006). Ideally, belief about the wavelet length should be encoded
as prior information.

Using a small number of parameters has a cost, however, in that not all points in wavelet space
will be accessible to the wavelet function. In other words, the image of w : β 7→ w(β) will be a
limited subset of Rnw . While a point-wise wavelet with each sample point as a separate parameter
is able to take on almost any shape, a parametric representation is limited to a much smaller set of
possible shapes; the fewer parameters used, the more limited it is.

Suppose now that there exists a true wavelet, which, using the discretisation implied by the
time vector t, is best represented by some vector w∗ ∈ Rnw . If this vector is in the image of the
parametric wavelet function, then all is well, and we can hope to estimate the correct wavelet shape.
Conversely, if there is no β such that w(β) = w∗, then the best we can hope for is to estimate some
closest point inside the model’s range.

In practice, the range of the model is determined not only by the form of the wavelet parametri-
sation, but also by the prior distribution. When we specify the prior distribution, we are, in effect,
choosing where to look for the best-fitting wavelet. If the prior distribution is very concentrated, so
that the probability mass of the posterior distribution is essentially supported on only a small region
of the parameter space, then the choice of prior distribution will contribute to limiting the model’s
range.

For any modelling approach, there is a trade-off between flexibility on the one hand, and par-
simony and robustness to noise on the other hand. Comparing the parametric model to the BLS
estimator provides a good example of this. Neither approach is obviously superior.

7.2 Stability of optimisation

Another finding from the test results is that the stability of the numerical optimisation of the
posterior distribution depends on the prior distribution as well as on the data. By stability, we
mean the ability of the optimisation algorithm to reliably converge to, and locate, the desired
extreme point of the objective function.

While the need for model flexibility puts a limit on how concentrated the prior distribution can
be, the need for stability effectively limits how diffuse it can be. This is because information from
the prior distribution is necessary to give the posterior distribution a shape with a clearly isolated
mode.

On synthetic data, with perfect alignment of reflectivity and seismic data, low noise level and a
true wavelet which can be represented by the parametrisation, the data likelihood will have a clear
maximum, and the shape of the prior distribution is not of critical importance for the success of the
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optimisation. On realistic data, however, straightforward likelihood maximisation, where the prior
distribution is non-informative, and hence does not contribute information to the posterior distribu-
tion, will not work in general. The optimisation will fail, either because the algorithm converges to
a local maximum, or because the maximum number of iterations or function evaluations allowed by
the algorithm is exceeded before any extreme point is located. Introducing a more informative prior
distribution alleviates this problem by improving the shape of the posterior distribution, but only
if it is concentrated enough. When specifying the prior distribution, therefore, we must find an ac-
ceptable compromise between concentrating the probability mass too much, so that the model range
is inordinately limited, and making the distribution too diffuse, so that the optimisation problem
becomes intractable, ultimately causing the estimation to fail.

In addition to the shape of the objective function, the outcome of optimisation depends on the
initial position supplied to the optimisation algorithm. If one or more local maxima exist, then
depending on the initial position, the algorithm may converge to one of those instead of the global
maximum.

How sensitive the outcome of the optimisation is to the choice of prior distribution and starting
position, is at least somewhat dependent on the dimensionality of the parameter space. In the test
cases considered in section 6, the parameter space is R4 in the case of single-angle estimation, and
R12 for multi-angle (three angles) estimation. This tripling of the dimensionality is enough to give
a noticeable difference in stability, even when using the same method for automatically choosing a
prior distribution and an initial parameter vector for optimisation. This is something to keep in
mind when considering the feasibility of extending the parametric estimation method in ways which
would involve increasing the dimensionality of the parameter space.

7.3 Validity of modelling assumptions

In the statistical framework of the multi-angle parametric wavelet estimation procedure, a central as-
sumption is that the wavelets are relatively similar, i.e. that inter-angle differences between wavelets
are small. In the model, this is represented by a large correlation between corresponding parameters
of different wavelets, and, perhaps more importantly, by the fact that all three wavelets are assumed
to be of the same order. While it does simplify the modelling effort, and makes the estimation
problem easier, this assumption is not necessarily justified.

The way we model noise in the data also involves some basic modelling assumptions. In the
current work, we include only a single noise term e in the seismic trace. For a more realistic and
complete model, we might include similar additive noise terms for the reflectivity, and possibly also
for the time vector indexing the reflectivity. Having separate model components which could account
for other error sources (e.g. measurement errors, mis-tie), would enable us to more effectively isolate
the uncertainty in the wavelet itself, as opposed to uncertainty induced by other sources of error
(Buland and Omre, 2003).

The seismic noise term included in the model is also assumed to be white. That is, the covariance
matrix in the zero-mean Gaussian distribution of the noise vector is a multiple of the identity matrix,
and the elements of the noise vector are all independent. Again, the actual noise process could be
described more realistically by allowing some of the noise to be coloured by the wavelet. Suppose
that instead of modelling the noise term as e ∼ N (0, σ2), we introduce two independent noise vectors

e1 ∼ N (0, σ2
1) and e2 ∼ N (0, σ2

2) (71)

and let the total noise term be defined as

e = We1 + e2 (72)

where the matrixW is defined such thatWe1 = e1∗w, and w is the current wavelet estimate. The
first term is a coloured noise component, whose elements are correlated, whereas the second term is
a white noise component, with independent elements, as in the current noise model. The correlation
structure in the coloured noise term is determined by the wavelet convolution matrixW . From (72),
the covariance matrix of the total noise term is

Cov(e) = W (σ2
1I)W T + σ2

2I = σ2
1WW T + σ2

2I. (73)
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In the context of the parametric estimation method, w, and hence W , would depend on β, so the
wavelet parameters would enter into the likelihood function in both the mean (as before) and the
covariance. With this noise model, there would be two model parameters σ1 and σ2 related to the
noise, and the model would have five parameters in the single-angle case.

7.4 Omissions and suggestions

In this thesis, we have primarily been concerned with the form of the parametric wavelet model
and the formulation of the Bayesian framework for the MAP estimation procedure. We have also
discussed how the model may be extended to accommodate joint estimation of multiple wavelets
from seismic data with different angles of incidence. This multi-angle extension is only one of several
possible extensions.

Other options include multi-well estimation, where borehole data is available from multiple wells
in an area covered by the same seismic survey. To exploit assumptions of lateral correlation between
wavelets associated with different wells, a spatial component should be incorporated into the model,
so that correlation between wavelets could be treated as a function of the distance between their
respective wells.

Another possibility is extending the model to handle multi-vintage data, i.e. data from seismic
surveys performed at different times. The correlation structure of interest is then temporal, rather
than spatial, and could probably be handled in a similar manner as the incidence angle-correlation
in the multi-angle case.

A consequence common to the multi-angle, multi-well and multi-vintage extensions, is that they
all entail an increase in the number of model parameters, or equivalently, an increase in the dimen-
sionality of the parameter space. As mentioned in section 7.2, this may adversely affect the stability
of the numerical optimisation involved in locating the mode of the posterior distribution. When
developing these model extensions, care should be taken to ensure that the posterior distribution
remains somewhat well behaved.

Figure 29: Schematic representation of a land seismic survey. Seismic waves are
emitted from the source point Si, and are incident on the subsurface reflector at
depth z with angle of incidence θi. Reflected waves then travel along the indicated
raypath and are recorded at the receiver location Ri.

Returning to the question of whether it is reasonable to impose the same order on all wavelets
in multi-angle estimation, consider the situation depicted in Figure 29, where seismic waves emitted
from a source Si are reflected by a plane horizontal reflector at depth z, with angle of incidence θi,
and are then recorded by a receiver Ri. The total distance travelled by the waves is xi = 2z cos θi.
In a realistic setting, the source wavelet associated with the seismic waves emitted at Si will not
be similar in appearance to the type of wavelet considered here, but suppose, in order to illustrate
the effect of frequency-dependent attenuation, that the source wavelet looks like the top left plot
in Figure 30. We compute the corresponding amplitude spectrum by taking the discrete Fourier
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Figure 30: The severity of attenuation due to e.g. anelastic absorption, depends
on the frequency of waves. Hence, the loss of high-frequency wavelet components
may depend on the distance traversed, or equivalently, on the incidence-angle. Top
left: Synthetic “source wavelet”. Bottom left: Amplitude spectrum of the source
wavelet. Bottom right: Simulated amplitude spectrum at receiver location, nor-
malised. Top right: Simulated received near wavelet, recovered from attenuated
amplitude spectrum.

transform of the source wavelet. This amplitude spectrum A0(f) is then modified by taking

A(f) = A0(f) exp

(
−fxi
Q

)
(74)

at each FFT sample point, where xi is the total distance traversed by the seismic waves, and Q
is a constant associated with the propagation medium. This simulates the frequency-dependent
damping effect of anelastic absorption on a plane sine wave with frequency f (Sheriff and Geldart,
1995). The attenuated amplitude spectrum A(f) has a lower peak frequency, and is less influenced
by high-frequency components, than the original spectrum A0(f). Applying the inverse discrete
Fourier transform to A(f) gives us the waveform of the attenuated wavelet, which appears smoothed
compared with the source wavelet. Since the attenuation depends on xi, which in turn depends on
the incidence angle θi, the far wavelet is smoothed more than the near and mid wavelets (Figure
31).

Near: θ = 0° Mid: θ = 30° Far: θ = 60°

Figure 31: Near, mid and far wavelets after simulated frequency-dependent at-
tenuation. Angles of incidence are θ1 = 0◦, θ2 = 30◦ and θ3 = 60◦. The far wavelet
is qualitatively different from the near and mid wavelets.

In terms of the parametric wavelet model studied here, the source wavelet in Figure 30 was
generated with n = 3, and the near and mid wavelets in Figure 31 resemble wavelets with n = 2,
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but the far wavelet has the shape of an n = 1 wavelet. When interpreting this difference, we should
keep in mind that amplitude effects, including attenuation due to anelastic absorption, are corrected
for in data processing. In order for the effect studied here to actually manifest itself in the processed
data, it would have to be through artefacts present in the data after processing. Provided that this
simplified numerical experiment is still somewhat representative, the conclusion is that forcing the
same order on all wavelets in joint estimation is unjustified in the general case, although it should
be noted that θ3 = 60◦ is a very large angle of incidence, and is certainly at the high end of what
one may reasonably expect to encounter in real data.

Having reached the conditional conclusion that using the same order for all wavelets in joint
estimation is generally not justified, a natural modification to the multi-angle model would be to
allow the wavelet orders to differ. With many angles, this would represent a substantive increase in
the number of order combinations to search through, but this number may be reduced somewhat
by requiring that for any pair (θi, θj) of non-negative incidence angles where θi ≤ θj , we must have
ni ≥ nj , where nk is the order of the wavelet associated with angle θk, k = i, j. This requirement is
reasonable since a higher wavelet order implies a larger peak-frequency.

It is possible that the stability issues discussed in section 7.2, concerning numerical optimisation,
may be mitigated by modifying, or “stabilising”, the form of the wavelet parametrisation. For
example, expanding the model range, i.e. the set of wavelet shapes which can be represented by
the parametrisation, would allow more concentrated prior distributions to be used, which directly
impacts the stability of optimisation. Additionally, expanding the model range may cause well-
fitting, but previously inaccessible points in “wavelet space” to become feasible, which may also
make the posterior distribution easier to maximise.

One way to effect such a stabilising modification could be to introduce a parameter controlling
the rate at which the amplitude of the wavelet’s oscillations decay as the distance from the central
peak increases. The semi-synthetic test cases in section 6.2 demonstrate that the current envelope,
which has a Gaussian form, is ill-suited for matching the shapes of some wavelets.

7.5 Concluding remarks

We have proposed a method for estimation of seismic wavelets and attending uncertainty from
well logs and seismic data. The method is based on a parametric wavelet representation with a
small number of model parameters, and set in a Bayesian statistical framework, where all inference
concerning the wavelet and the uncertainty associated with it, are addressed through the posterior
distribution of the model parameters conditional on the data. We have also described an extension of
the model to facilitate joint estimation of multiple wavelets from seismic data with varying incidence
angles.

The method has been tested on synthetic and real data, and has been compared to an alternative,
point-wise estimation method. Test results indicate that the model is robust to noise, and has a low
risk of overfitting the model parameters to the data. The tests also reveal that the performance of
the estimation procedure is somewhat limited by a lack of flexibility in the wavelet parametrisation,
and that because of its reliance on numerical optimisation, the method is prone to stability issues,
and requires careful specification of the prior distribution in order to function reliably.

Other extensions beyond the multi-angle extension are possible with relatively straightforward
additions to the model, but it is difficult to anticipate how the increase in dimensionality necessitated
by such extensions would affect the stability and overall performance of the estimation method.
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