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Abstract
In this thesis we study triangulated categories and look at one specific example, the homotopy
category of matrix factorizations. First we define categories and functors. Then we introduce
additive and triangulated categories and see that the octahedral axiom can be replaced by
Neeman’s mapping cone axiom. After this we look at matrix factorizations and the homotopy
category of matrix factorizations, HMF(S, x), which leads us to one of our main results, i.e.
that HMF(S, x) is triangulated. We prove this with both the octahedral axiom and Neeman’s
mapping cone theorem. Lastly we look at the homotopy category of totally acyclic complexes
over a local, regular ring and see that this is equivalent to HMF(S, x).

Sammendrag
I denne oppgaven ser vi på triangulerte kategorier og trekker frem ett spesifikt eksempel: homo-
topikategorien av matrisefaktoriseringer. Vi begynner med å definere kategorier og funktorer
for så å introdusere additive og triangulerte kategorier. Her viser vi at oktaederaksiomet kan
erstattes med Neemans "mapping cone"-aksiom. Deretter ser vi på matrisefaktoriseringer og ho-
motopikategorien av matrisefaktoriseringer, HMF(S, x), som vi viser at er triangulert. Til dette
bruker vi både oktaederaksiomet og Neemans aksiom. Til slutt ser vi på homotopikategorien
til totalt asykliske komplekser og viser at over en lokal, regulær ring, er denne ekvivalent med
HMF(S, x).
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Chapter 1

Introduction

The concept of categories was introduced by Samuel Eilenberg and Saunders Mac Lane in
the 1945 article "General Theory of Natural Equivalences", [18], after the authors had already
touched on the subject in 1942. Categories were invented to express certain constructions
in algebraic topology, but has since developed rapidly and is now a big part of for example
homological algebra.

The focus in this thesis is the triangulated category HMF(S, x) which is the homotopy
category of matrix factorizations. The notion of triangulated categories was introduced in
algebraic geometry in the Ph.D. thesis of Jean-Luis Verdier, and in algebraic topology by Dieter
Puppe. Verdier was looking at derived categories and observed they had some special "triangles".
The axioms of the basic properties of these triangles then became the axioms of the triangulated
categories. Since they were introduced, these categories have played an important role in many
branches of mathematics, e.g representation theory, algebraic geometry, algebraic topology,
commutative algebra and more.

Matrix factorizations were introduced some years later by Eisenbud in [10]. Here he studied
free resolutions over the corresponding factor rings and showed that if we take a finitely generated
maximal Cohen-Macaulay module over the factor ring Q/(x), where Q is a regular local ring
and x a nonzero element, then its minimal free resolution is obtained from a matrix factorization
of x over Q.

In this thesis we start by introducing categories in chapter 2, and give some examples. We
also look at functors and natural transformations and show that a functor is an equivalence if and
only if it is full, faithful and dense. Then, in chapter 3, we introduce zero objects, products and
coproducts before we look at additive categories and show that C(A ), the category of complexes
over A , is an additive category. After this we define triangulated categories and show some of
their properties, and then look at Neeman’s mapping cone axiom and show that it can replace
the octahedral axiom. Then, in chapter 5, we introduce matrix factorizations and prove that
HMF(S, x) is triangulated. Lastly we show that HMF(S, x) is equivalent with Ktac(R).
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Chapter 2

General categories

2.1 Categories
A category is a collection of related objects and maps between them.

Definition. A category C consists of

• a collection Ob(C ) of objects,

• for each A and B ∈ Ob(C ), a set HomC (A,B) of morphisms from A to B,

• for each A,B,C ∈ Ob(C ), a function

HomC (B,C)×HomC (A,B)→ HomC (A,C)

(g, f) 7→ g ◦ f

called composition,

• for each A ∈ Ob(C ), an element 1A ∈ HomC (A,A) called the identity on A

satisfying the following

1. for each f ∈ HomC (A,B), g ∈ HomC (B,C) and h ∈ HomC (C,D) we have

(h ◦ g) ◦ f = h ◦ (g ◦ f)

i.e. associativity holds, and

2. for each f ∈ HomC (A,B) we have

f ◦ 1A = f = 1B ◦ f

i.e. the identity laws hold.

Remark. It is common to write just A ∈ C instead of A ∈ Ob(C ) and f : A→ B or A
f−→ B

instead of f ∈ HomC (A,B). Also, it is common to write gf instead of g ◦ f .

So, a category consists of objects and maps between them, and these maps follow the law of
associativity and behave as one would expect with regards to identity elements. Now let us look
at some examples of categories.
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Example. (a) Set, the category whose objects are sets and the morphisms are just maps between
them. Composition is the regular composition of maps and the identity on a set is just the identity
map.

(b) Gr, the category whose objects are groups and the morphisms are group homomorphism
with the standard composition and identity map.

(c) Ab, which is the same as above, but the objects are abelian groups.
(d) Top, where the objects are topological spaces and the morphisms are continuous maps.

This means there are categories for sets, groups and topological spaces, but these are just
some examples. There are also categories of vector spaces, rings, posets and so on. And when
we have one category, there is always another that is closely related.

Definition. For every category C we define the opposite category C op by

• Ob(C op) = Ob(C )

• HomC op(A,B) = HomC (B,A)

with

• f ◦C op g = g ◦C f .

Now that we know what a category is and know some examples, it is natural to look at what
happens between them. But before we do that, we will look at something that happens inside
them, i.e. we want to know what an isomorphism in a category is.

Definition. Let C be a category. We say that a map f : A → B in C is an isomorphism if
∃g : B → A such that gf = 1A and fg = 1B. We say that A and B are isomorphic and write
A ∼= B.

If we relate this to the example above we see that in Set the isomorphisms are the bijections,
in Gr they are the group isomorphisms and in Top they are the homeomorphisms. This can seem
trivial at first glance, but it is not. In each case a short proof is needed to see that these are indeed
the isomorphisms of the categories.

2.2 Functors
Let us look at the maps between categories.

Definition. Let C and D be two categories. We define a (covariant) functor F : C → D by

• A function Ob(C )→ Ob(D) written as C 7→ F (C) or C 7→ FC

• For each C1, C2 ∈ C a function HomC (C1, C2) → HomD(F (C1), F (C2)) written f 7→
F (f) or f 7→ Ff

such that

• F (g ◦ f) = F (g) ◦ F (f) when f : C1 → C2, g : C2 → C3

• F (1C) = 1F (C) ∀C ∈ C .

So functors are maps between categories that preserve composition of maps and identities.
Let us look at some examples.
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Example. (a) Forgetful functors, e.g F : Gr → Set. This functor "forgets" the structure of
the group. That means that if A is a group, F (A) is the underlying set, and if f is a group
homomorphism, F (f) is just the function itself.

(b) Inclusion functors, e.g G : Ab→ Gr. This functor "includes" the abelian groups into the
category of all groups. So, if A is an abelian group and f a group homomorphism, G(A) = A
and G(f) = f . This functor is also forgetful, as it "forgets" that abelian groups are abelian, they
are just groups.

Both of these were examples of what we call covariant functors, but there is also another
kind.

Definition. A contravariant functor between two categories C and D , is a functor F : C op → D .

Let us look at an example.

Example. Let k be a field and Vectk the category of vector spaces over k. We then have a
contravariant functor

( )∗ = Hom(−, k) : Vectop
k → Vectk

sending each vector space V to its dual V ∗.

Like other maps, functors have different qualities. We state the following definition for
covariant functors.

Definition. Let F : C → D be a functor. F is

• faithful if, for each A,B ∈ C , F : HomC (A,B)→ HomD(F (A), F (B)) is injective,

• full if, for each A,B ∈ C , F : HomC (A,B)→ HomD(F (A), F (B)) is surjective,

• dense if, for each D ∈ D ∃C ∈ C such that F (C) ∼= D.

Remark. Some books, for example [16], call dense functors essentially surjective on objects.

Now we have looked at categories and functors, so let us look at the maps between functors,
what is called natural transformations.

2.3 Natural transformations
Definition. Let C and D be categories and let F,G : C → D be two functors between them.

A natural transformation η : F → G is a family ηC : F (C) → G(C) ∀C ∈ Ob(C ) of
morphisms in D such that for every map f : C → C ′ in C , the following square commutes:

F (C) F (C ′)

G(C) G(C ′)

F (f)

ηC ηC′

G(f)

The ηC’s are called the components of η.

A natural transformation η is called a natural isomorphism if all the ηC are isomorphisms in
D . And with that we get the following.
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Definition. Given functors C
F

⇒
G

D , we say that

F (A) ∼= G(A) naturally in A

if F and G are naturally isomorphic. We often write F ∼=
nat
G.

This brings us to the important notion of equivalence.

Definition. Two categories C and D are equivalent if there exist functors F : C → D and
G : D → C such that

F ◦G ∼=
nat

idD and G ◦ F ∼=
nat

idC .

This is not always so easy to check, but we have a theorem that makes it easier.

Theorem 2.3.1. Let F : C → D be a functor. Then F is an equivalence if and only if it is full,
faithful and dense.

Proof. (⇒) Assume that F is an equivalence and let G be as in the definition. If we let
η : G ◦ F → idC be a natural isomorphism we have, for any f ∈ HomC (C1, C2), the
commutative square

GFC1 C1

GFC2 C2.

ηC1

GFf f

ηc2

Since this commutes we get that f = ηC2 ◦GFf ◦ η−1
C1

is uniquely determined by Ff . Hence F
is faithful.

Now, let ζ : F ◦G→ idD be a natural isomorphism. This means that for any object D ∈ D
we have FGD ∼= 1DD = D i.e. C = GD is such that FC ∼= D and hence F is dense.

Finally we need to show that F is full so we let η and ζ be as above and let f : FC1 → FC2

in D . We then construct a commutative diagram

FC1 FGFC1 FC1

FC2 FGFC2 FC2

f

FηC1

g

ζFC1

h

FηC2

ζFC2

where g and h are the unique maps that make the squares commute. Since ζ is natural we get
that g = FGh and since the left hand square is commutative we get

f = FηC2 ◦ FGh ◦ (FηC1)
−1

= F (ηC2 ◦Gh ◦ η−1
C1

).

This shows that f is in the image of F and hence F is full.
(⇐) Assume that F is full, faithful and dense. Since F is dense, we have that for every

object D ∈ D there is an object C ∈ C such that D ∼= FC. We fix one such C and denote it by
GD. We also choose and fix an isomorphism ζD : FGD → D. For every f ∈ HomD(D1, D2)
we use the bijection

HomC (GD1, GD2)→ HomD(FGD1, FGD2)
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that is induced by F since it is full and faithful, and define Gf to be the preimage of ζ−1
D2
◦f ◦ ζD1 .

This makes G a functor from D to C :
Firstly we have

GidD = F−1(ζ−1
D ◦ idD ◦ ζD) = F−1(idFGD) = idGD

Secondly if we have f : D1 → D2 and g : D2 → D3 we get

G(g ◦ f) = F−1(ζ−1
D3
◦ g ◦ f ◦ ζD1)

= F−1(ζ−1
D3
◦ g ◦ ζD2 ◦ ζ−1

D2
◦ f ◦ ζD1)

= F−1(ζ−1
D3
◦ g ◦ ζD2) ◦ F−1(ζ−1

D2
◦ f ◦ ζD1)

= Gg ◦Gf.

Hence G is a functor.
Now we claim that ζ is a natural isomorphism F ◦G→ idD . Let f ∈ HomD(D1, D2). Then

we have
ζD2 ◦ FGf = ζD2 ◦ ζ−1

D2
◦ f ◦ ζD1 = f ◦ ζD1

and hence ζ is a natural isomorphism.
Finally we construct a natural isomorphisms η : G ◦ F → idC . First we observe that for any

C ∈ C , ζ induces mutually inverse natural isomorphisms:

ζFC : F ◦G ◦ FC → FC and ζ−1
FC : F → F ◦G ◦ FC.

Since F is full and faithful, we can find unique morphisms ηC : GFC → C and η′C : C → GFC
such that

ζFC = FηC and ζ−1
FC = Fη

′

C

it follows that η is a natural transformation, with inverse η′ and hence we get

F ◦G ∼=
nat

idD and G ◦ F ∼=
nat

idC .

Hence F is an equivalence.
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Chapter 3

Additive Categories

We now begin to look at different types of categories. First we will look at additive categories,
but before we can define them we need some more theory.

3.1 Zero objects
In a category the objects have different qualities. For instance we know that objects can have
different sizes, e.g. in Set we have sets with only one element and we have sets like Z which
has an infinite number of elements. Objects can also have different structure, like in Gr where
some groups are abelian while others are not. Since categories consist of both objects and maps
between them, we will now look at qualities that take into consideration both an object and the
maps to or from it. This is where initial and terminal objects come in.

Definition. Let C be a category. An object I in C is called initial if for every C ∈ ObC there
is exactly one map I → C.

An object T in C is called terminal if for every C ∈ ObC there is exactly one map C → T .

Remark. There is a duality between initial and terminal object. A terminal object in C is an
initial object in C op.

So an object is initial if there is exactly one map going out of it and terminal if there is exactly
one map going in to it, for all objects in the category. Let us look at some examples.

Example. (a) In the category Set the empty set is initial and every set {x} with only one element
is terminal. That means Set has only one initial object but many terminal ones, but all the
terminal objects are isomorphic.

(b) In the category Gr the group of one element is both initial and terminal and is unique up
to isomorphism.

(c) In the category of categories, Cat, the category 0 with no objects or arrows is initial, and
the category 1 with only one object and its identity map is terminal.

Notice that in (b) in the above example the trivial group is both initial and terminal. These
objects have their own name:

Definition. An object in a category C is a zero object if it is both initial and terminal.

Let us look at some examples.
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Example. (a) In Set there are no zero objects.
(b) As seen above, in Gr the trivial group is a zero object. Similarly for the category of

vector spaces and linear transformations.
(c) For a ring R, the trivial R-module is the zero-object in Mod R, the category of R-modules.

Proposition 3.1.1. Every zero object is unique up to isomorphism.

Proof. Let A and B be zero objects, i.e. they are both initial and terminal. The diagram

A B

A B

u

idA
v

idB

u

commutes since each morphism originates from an initial object and hence is unique. That means
v is the inverse of u and so u is an isomorphism. The same diagram also commutes because each
morphism ends in a terminal object and hence is unique. Which again means v is the inverse of
u and hence u is an isomorphism.

3.2 Products and coproducts
Something we are used to from set theory are products and sums. These are special cases of
products and coproducts.

Definition. Let A and B be two objects in a category C . A product of A and B is an object P
along with morphisms A

p1←− P
p2−→ B such that:

Given any diagram A
x1←− X

x2−→ B there exist a unique morphism u : X → P such that the
following diagram commutes

X

A P B

x1 u
x2

p1 p2

i.e x1 = p1 ◦ u and x2 = p2 ◦ u.

Definition. Let A and B be two objects in a category C . A coproduct of A and B is an object
C together with morphisms A c1−→ C

c2←− B such that:
Given A

z1−→ Z
z2←− B there is a unique u : C → Z such that the following diagram

commutes:
Z

A C B

z1

c1

u

c2

z2

that is z1 = u ◦ c1 and z2 = u ◦ c2.

So a coproduct is the dual of a product, i.e. it is a product in the opposite category. We often
write AΠB for products and AqB for coproducts. Now let us look at an example.

Example. If we look at the category of sets, we have the cartesian product AΠB which is the
set of ordered pairs AΠB = {(a, b) | a ∈ A, b ∈ B}. Here we have two coordinate projections

A
p1←− AΠB

p2−→ B
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with
p1(a, b) = a, p2(a, b) = b

which means that any element c ∈ AΠB can be written as c = (p1(c), p2(c)). Thus we get the
following diagram

X

A AΠB B.

a (a,b)
b

p1 p2

We also have the coproduct AqB which is the disjoint union of A and B. It can for example
be constructed as AqB = {(a, 1) | a ∈ A} ∪ {(b, 2) | b ∈ B}, with the maps

c1(a) = (a, 1), c2(b) = (b, 2).

Given any f and g as in the following commutative diagram

Z

A AqB B

f

c1

[f,g]

c2

g

we can define

[f, g] (x, y) =

{
f(x) if y = 1

g(x) if y = 2.

Then, for an h with h ◦ c1 = f and h ◦ c2 = g we get that for any (x, y) ∈ AqB we must have

h(x, y) = [f, g] (x, y).

In this example the coproduct is clearly different from the product, which is most often the
case. However, there are some categories where AqB is isomorphic to AΠB, for example the
category of abelian groups. When this holds, the common value of AqB and AΠB is called a
biproduct and is denoted A⊕ B. Another useful property of coproducts (and products) is the
following.

Proposition 3.2.1. Coproducts are unique up to isomorphism.

Proof. Suppose A c1−→ C
c2←− B and A d1−→ D

d2←− B are two coproducts of A and B. Since D is
a coproduct there is a unique v : D → C such that v ◦ d1 = c1 and v ◦ d2 = c2. And since C is a
coproduct there exists a unique u : C → D such that u ◦ c1 = d2 and u ◦ c2 = d2. This gives us
the following commutative diagrams:

C

A D B

C

c1

d1

c1

v

d2

c2

c2
u

D

A C B.

D

d1

c1

d1

u

c2

d2

d2
v

Looking at the first diagram, we get that v ◦ u ◦ c1 = c1 and v ◦ u ◦ c2 = c2. We also have
that 1C ◦ c1 = c1 and 1C ◦ c2 = c2 so uniqueness gives us that v ◦ u = 1C . Now looking at
the second diagram we get that u ◦ v ◦ d1 = d1 and u ◦ v ◦ d2 = d2. From uniqueness and the
fact that 1D ◦ d1 = d1 and 1D ◦ d2 = d2 we see that u ◦ v = 1D. This means that u and v are
isomorphisms, hence C and D are isomorphic.
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3.3 Additive categories
Now it is time to use all this and define what an additive category is.

Definition. A category A is an additive category if the following conditions hold:

1) For every pair X, Y ∈ Ob(A ), HomA (X, Y ) is an abelian group and the composition
of morphisms is bilinear.

2) A contains a zero object.

3) For any pair X, Y ∈ Ob(A ), there exists a coproduct X q Y in A .

A functor F : A → B between two such categories is additive if for all X, Y ∈ Ob(A )
and all f, g ∈ HomA (X, Y ) we have

F (f + g) = Ff + Fg,

i.e it induces a homomorphism of groups HomA (X, Y )→ HomA (FX,FY ).

Proposition 3.3.1. Let A be an additive category and let A,B ∈ Ob(A ).

(i) Assume AΠB exists in A and let p : AΠB → A and q : AΠB → B be the projections.
Now let i : A→ AΠB and j : B → AΠB be two morphisms such that

p ◦ i = 1A, q ◦ j = 1B, p ◦ j = q ◦ i = 0. (3.1)

Then we have
i ◦ p+ j ◦ q = 1AΠB. (3.2)

(ii) Let P ∈ Ob(A ) and let i : A → P , j : B → P , p : P → A and q : P → B be
morphisms satisfying (3.1) and (3.2). Then P is a product of A and B by (p, q) and a
coproduct by (i, j). Hence we have

AΠB ∼= AqB.

Proof. (i) We have p ◦ (i ◦ p + j ◦ q) = (p ◦ i) ◦ p + (p ◦ j) ◦ q = p = p ◦ 1AΠB and
q ◦ (i ◦ p+ j ◦ q) = (q ◦ i) ◦ p+ (q ◦ j) ◦ q = q = q ◦ 1AΠB. Hence i ◦ p+ j ◦ q = 1AΠB.

(ii) If we let u in
X

A P B

x1 u
x2

p q

be i ◦ x1 + j ◦ x2 we see that the diagram commutes. But to be sure we have a product we need
this u to be unique. So assume we have a θ : X → P such that u = θ makes the diagram above
commute. Then we have

θ = 1P ◦ θ = (i ◦ p+ j ◦ q) ◦ θ
= i ◦ (p ◦ θ) + j ◦ (q ◦ θ) = i ◦ x1 + j ◦ x2.

Hence u = i ◦ x1 + j ◦ x2 is unique and (P, p, q) is a product.
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Now if we let the v in
Z

A P B

z1

c1

v

c2

z2

be c1 ◦ p + c2 ◦ q we get a commutative diagram. To see if this v is unique we let η : P → Z
such that v = η makes the above diagram commute. Then we have

η = η ◦ 1P = η ◦ (i ◦ p+ j ◦ q)
= (η ◦ i) ◦ p+ (η ◦ j) ◦ q = c1 ◦ p+ c2 ◦ q.

Hence v = c1 ◦ p+ c2 ◦ q is unique and (P, i, j) is a coproduct.

This means that when we want to check if a category is additive, it is not necessary to find a
coproduct between objects. We can find a product or biproduct instead, because they are all the
same. Let us now look at some examples of additive categories.

Example. (1) Ab is an additive category. The zero object is the trivial group, addition of
morphisms is defined pointwise and the biproduct is given by direct sums.

(2) Let R be an associative ring with unity. Then Mod R is an additive category. So is mod
R, the category of finitely generated R-modules.

Before we look at the next example we need some definitions.

Definition. Let A be an additive category. A complex over A is a family X = (Xn, d
X
n )n∈Z

where Xn ∈ Ob(A ) and dXn ∈ HomA (Xn, Xn−1) such that dn ◦ dn+1 = 0 for all n ∈ Z. A
complex is often written as a sequence as follows:

... Xn+1 Xn Xn−1 ...
dn+1 dn dn−1

Now let X = (Xn, d
X
n ) and Y = (Yn, d

Y
n ) be two complexes. Then f : X → Y is a

morphism of complexes if it is a family of morphisms f = (fn : Xn → Yn)n∈Z such that the
diagram

... Xn+1 Xn Xn−1 ...

... Yn+1 Yn Yn−1 ...

fn+1 fn fn−1

commutes.

If we put this together we get a new category.

Definition. Let A be an additive category. Then the collection of complexes over A together
with the morphisms of complexes form a new category called the category of complexes over A ,
denoted C(A ).

Proposition 3.3.2. C(A ) is an additive category.

Proof. 1) Addition of morphisms is defined degreewise so if f = (fn) : X → Y and g = (gn) :
X → Y we get f + g := (fn + gn)n∈Z. Since A is additive we know that a + b = b + a
for a, b ∈ HomA (A,B), and we get that f + g = (fn + gn) = (gn + fn) = g + f , since
fn, gn ∈ HomA (Xn, Yn). We also get the bilinearity from A .
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2) The zero object in C(A ) is the complex (0A , d) where 0A is the zero object in A and d
is the unique morphism on the zero object.

3) We need to prove that for every pair of objects X, Y ∈ C(A ) there exists a coproduct
X q Y in C(A ). Let X = (Xn, d

X
n ) and Y = (Yn, d

Y
n ) be two complexes. X q Y is then

defined degreewise with the coproduct in A i.e. X qY = (XnqYn, dn)n∈Z where d is obtained
by the universal property as in

Xn−1 q Yn−1

Xn Xn q Yn Yn

ιXn−1
dXn

ιXn

dn

ιYn

ιYn−1
dYn

Using uniqueness in the universal property on the following diagram

Xn−2 q Yn−2

Xn Xn q Yn Yn

0

ιXn

dn−1dn

ιYn

0

it follows that dn−1dn = 0. The complex X q Y satisfies the properties of a coproduct in C(A )
with morphisms of complexes ιX = (ιXn)n∈Z : Xn → Xn q Yn and ιY = (ιYn)n∈Z : Yn →
Xn q Yn. To check that the universal property holds we let Z be an arbitrary complex and let
fX : Xn → Zn and fY : Yn → Zn be two arbitrary morphisms of complexes. The unique
morphism of complexes that satisfies fX = f ◦ ιX and fY = f ◦ ιY is f = (fn)n∈Z : XqY → Z
where we get fn from the universal property in the following diagram:

Zn

Xn Xn q Yn Yn

(fX)n

ιXn

fn

ιYn

(fY )n

Hence the coproduct exists and so C(A ) is an additive category.
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Chapter 4

Triangulated Categories

4.1 Definition
Triangulated categories are additive categories together with a functor called the suspension, and
what we call triangles. Let us define these first.

Definition. Let A be an additive category and let Σ : A → A be an additive automorphism. A
triangle in A is a sequence A1

α1−→ A2
α2−→ A3

α3−→ ΣA1 of objects and morphisms in A .

Let A1
α1−→ A2

α2−→ A3
α3−→ ΣA1 and B1

β1−→ B2
β2−→ B3

β3−→ ΣB1 be two triangles in A .
A morphism of triangles (φ1, φ2, φ3) is a commutative diagram

A1 A2 A3 ΣA1

B1 B2 B3 ΣB1.

α1

φ1

α2

φ2

α3

φ3 Σφ1

β1 β2 β3

If φ1, φ2 and φ3 are isomorphisms in A , we say that (φ1, φ2, φ3) is an isomorphism of triangles.

Now we can define triangulated categories.

Definition. Let T be an additive category. Then T together with an additive automorphism Σ
and a collection ∆ of what we call distinguished triangles, is called a triangulated category if
the following hold:

(TR1) (a) If a triangle is isomorphic to a triangle in ∆ it is itself in ∆.

(b) For every A ∈ Ob(T ) the triangle A 1−→ A −→ 0 −→ ΣA is in ∆.

(c) For every A1, A2 ∈ Ob(A ) and α ∈ HomT (A1, A2) there is a triangle in ∆ of the
form

A1
α−→ A2 −→ A3 −→ ΣA1.

(TR2) If A1
α1−→ A2

α2−→ A3
α3−→ ΣA1 is in ∆, then the left rotation

A2
α2−→ A3

α3−→ ΣA1
−Σα1−→ ΣA2

is also in ∆, and vice versa.
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(TR3) If

A1
α1−→ A2

α2−→ A3
α3−→ ΣA1 and B1

β1−→ B2
β2−→ B3

β3−→ ΣB1

are two triangles in ∆, each commutative diagram of the form

A1 A2 A3 ΣA1

B1 B2 B3 ΣB1

α1

φ1

α2

φ2

α3

Σφ1

β1 β2 β3

can be completed (not necessarily uniquely) to a morphism of triangles.

(TR4) (Octahedral axiom) Given a commutative diagram

A1 A2 A3 ΣA1

A1 B2 B3 ΣA1

C3

ΣA2

α1 α2

φ2

α3

β1 β2

γ2

β3

γ3

where the top two rows and second column are in ∆. Then there exist morphisms
φ3 : A3 → B3 and θ3 : B3 → C3 such that the diagram

A1 A2 A3 ΣA1

A1 B2 B3 ΣA1

C3 C3

ΣA2 ΣA3

α1 α2

φ2

α3

φ3

β1 β2

γ2

β3

θ3

γ3 Σα2◦γ3
Σα2

(4.1)

is commutative, the third column is in ∆, and γ3 ◦ θ3 = Σα1 ◦ β3.
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The last diagram can also be written as an octahedron:

B3

A3 C3

A1 B2

A2

θ3

|

φ3

α2

|

|

|

β1

α1

γ3

β2

φ2

where B3 A1| means a morphism B3 → ΣA1.

4.2 Properties
Having defined triangulated categories, we now look at some elementary properties. In all the
following results we assume T is a triangulated category with suspension Σ.

Proposition 4.2.1. Let A1
α1−→ A2

α2−→ A3
α3−→ ΣA1 be in ∆. Then any composition of two

consecutive morphisms vanishes, i.e. α2 ◦ α1 = 0, α3 ◦ α2 = 0 and (Σα1) ◦ α3 = 0.

Proof. Because of the rotation axiom (TR2), we only need to show that α2 ◦α1 = 0. We also get
from (TR2) that we have a distinguished triangle A2

α2−→ A3
α3−→ ΣA1

−Σα1−→ ΣA2. From this and
from (TR1)(b) and (TR3) we can complete the following diagram to a morphism of triangles:

A2 A3 ΣA1 ΣA2

A3 A3 0 ΣA3.

α2

α2

α3 −Σα1

Σα2

1 0 0

From this we see that (Σα2) ◦ (−Σα1) = 0 and since Σ is an automorphism this means that
α2 ◦ α1 = 0.

The following result shows that distinguished triangles give rise to long exact sequences.

Proposition 4.2.2. Let A1
α1−→ A2

α2−→ A3
α3−→ ΣA1 be in ∆. For any T ∈ T there is a long

exact sequence of abelian groups

... −→ HomT (T,ΣiA1)
(Σiα1)∗−−−−→ HomT (T,ΣiA2)

(Σiα2)∗−−−−→ HomT (T,ΣiA3)

(Σiα3)∗−−−−→ HomT (T,Σi+1A1) −→ ...

where f∗ := HomT (T, f), the morphism induced by f under the functor HomT (T,−).
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Proof. By (TR2) we only need to show that

HomT (T,ΣiA1)
(Σiα1)∗−−−−→ HomT (T,ΣiA2)

(Σiα2)∗−−−−→ HomT (T,ΣiA3)

is exact. By proposition 4.2.1 we know that (Σiα2)◦(Σiα1) = 0 and hence (Σiα2)∗◦(Σiα1)∗ = 0.
This means that the image of (Σiα1)∗ is contained in the kernel of (Σiα2)∗.

To show the other inclusion we let f ∈ Ker(Σiα2)∗. Consider the following diagram

Σ−iT 0 Σ−i+1T Σ−i+1T

A2 A3 ΣA1 ΣA2

0

Σ−if

0

0

1

Σ−i+1f

α2 α3 −Σα1

We know that the rows are distinguished triangles by (TR1)(b) and (TR2) and by our assumption
on f we see that the left square commutes. From (TR3) we get that there exists an h : Σ−i+1T →
ΣA1 completing the diagram to a morphism of triangles. This means Σ−i+1f = (Σα1) ◦ h and
hence, since Σ is an automorphism, f = (Σiα1) ◦ (Σi−1h) is in the image of (Σiα1)∗ as we
wanted.

Proposition 4.2.3. Let A1
α1−→ A2

α2−→ A3
α3−→ ΣA1 be in ∆, with α3 = 0. Then there is a

β1 : A2 → A1 such that β1 ◦ α1 = 1A1 , and a β2 : A3 → A2 such that α2 ◦ β2 = 1A3 . We then
say that the triangle splits.

Proof. We first show the part about α1. Consider the following commutative diagram:

A1 A2 A3 ΣA1

A1 A1 0 ΣA1

α1 α2 0

0

1 0 0

By (TR2) and (TR3) this can be completed to a morphism of triangles. That means there exists a
β1 : A2 → A1 such that β1 ◦ α1 = 1A1 , which is what we wanted.

For α2 we look at the following: From (TR1)(b) we have that A3
1→ A3 → 0→ ΣA3 is in

∆, and from (TR2) that Σ−10→ A3
1→ A3 → 0 is too. Since Σ is an automorphism, Σ−10 = 0

and we get the following commutative diagram:

0 A3 A3 0

A1 A2 A3 ΣA1

0

0

1 0

0

α1 α2 0

As above we see that with (TR2) and (TR3) we can complete this to a morphism of triangles and
hence get a β2 : A3 → A2 such that α2 ◦ β2 = 1A3 .

4.3 Replacing the octahedral axiom
The octahedral axiom may seem big and complicated, and it is usually a lot of work to prove that
it holds. Amnon Neeman therefore introduced a new axiom which replaces the octahedral axiom
and is a bit more understandable. Here, instead of considering a large commutative diagram, we
look at mapping cones. If we assume (TR1)-(TR3) hold we have the following:
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(TR4’) Given any diagram

A1 A2 A3 ΣA1

B1 B2 B3 ΣB1

α1

φ1

α2

φ2

α3

Σφ1

β1 β2 β3

whose rows are distinguished triangles, there exists a φ3 : A3 → B3 such that the diagram
commutes and the mapping cone

A2 ⊕B1 A3 ⊕B2 ΣA1 ⊕B3 ΣA2 ⊕ ΣB1

[−α2 0
φ2 β1

] [−α3 0
φ3 β2

] [−Σα1 0
Σφ1 β3

]

is a distinguished triangle.
That this axiom is equivalent to the octahedral axiom was proved by Neeman in [20] and

[19], but we will instead follow the proof for n-angulated categories presented in [6]. First we
need a lemma.

Lemma 4.3.1. Suppose T is a category satisfying (TR1), (TR2), (TR3) and (TR4’), and let

A1 A2 A3 ΣA1

A1 B2 B3 ΣA1

α1 α2

φ2

α3

β1 β2 β3

be a commutative diagram where the rows are distinguished triangles. Apply axiom (TR4’) and
complete the diagram to a morphism of triangles

A1 A2 A3 ΣA1

A1 B2 B3 ΣA1

α1 α2

φ2

α3

φ3

β1 β2 β3

in such a way that the mapping cone is also a distinguished triangle. Then the triangle

A2 A3 ⊕B2 B3 ΣA2

[−α2
φ2

]
[φ3 β2 ] Σα1◦β3

is a distinguished triangle.

Proof. In the direct sum diagram

A2 A3 ⊕B2 B3 ΣA2

A2 ⊕ A1 A3 ⊕B2 ΣA1 ⊕B3 ΣA2 ⊕ ΣA1

A2 A3 ⊕B2 B3 ΣA2

[−α2
φ2

]

[ 1
0 ]

[φ3 β2 ]

[ 1 0
0 1 ]

Σα1β3

[−β3
1

]
[ 1
0 ][−α2 0

φ2 β1

]

[ 1 α1 ]

[−α3 0
φ3 β2

]

[ 1 0
0 1 ]

[−Σα1 0
1 β3

]

[ 0 1 ] [ 1 Σα1 ][−α2
φ2

]
[φ3 β2 ] Σα1β3

the middle row is the mapping cone, i.e a distinguished triangle. In Proposition 1.2.3 in [20],
Neeman showed that ∆ is closed under direct summands. Hence the top (and bottom) row in the
above diagram is also a distinguished triangle.
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Now we can show that (TR4) and (TR4’) are equivalent, and as in [6] we do this in two steps.

Theorem 4.3.2. Assume ∆ is a collection of triangles satisfying axioms (TR1) and (TR2). If ∆
satisfies (TR4’) it also satisfies (TR3) and (TR4).

Proof. (TR3) follows directly from (TR4’). Assume we have a commutative diagram

A1 A2 A3 ΣA1

A1 B2 B3 ΣA1

α1 α2

φ2

α3

β1 β2 β3

where the rows are in ∆, and in addition

A2
φ2−→ B2

γ2−→ C3
γ3−→ ΣA2

is in ∆. We want to show that we can complete this diagram to a morphism of triangles and
show that the diagram (4.1) commutes, with the right column in ∆. We also need to show that
γ3 ◦ θ3 = Σα1 ◦ β3.

We apply (TR4’) to the diagram above and complete it to a morphism (1, φ2, φ3) of triangles
in such a way that the mapping cone is in ∆. Then the top part of (4.1) is commutative.

Now, by Lemma 4.3.1 we know that the triangle

A2 A3 ⊕B2 B3 ΣA2

[−α2
φ2

]
[φ3 β2 ] Σα1◦β3

is in ∆. That means we can apply (TR4’) on the diagram

A2 A3 ⊕B2 B3 ΣA2

A2 B2 C3 ΣA2

[−α2
φ2

]
[φ3 β2 ]

[ 0 1 ]

Σα1◦β3

φ2 γ2 γ3

and complete it to a morphism

A2 A3 ⊕B2 B3 ΣA2

A2 B2 C3 ΣA2

[−α2
φ2

]
[φ3 β2 ]

[ 0 1 ]

Σα1◦β3

θ3

φ2 γ2 γ3

(4.2)

of triangles so that the mapping cone

A3 ⊕B2 ⊕ A2 B3 ⊕B2 ΣA2 ⊕ C3 ΣA3 ⊕ ΣB2 ⊕ ΣA2

[−φ3 −β2 0
0 1 φ2

] [−Σα1◦β3 0
θ3 γ2

] [
Σα2 0
−Σφ2 0

1 γ3

]

is in ∆. Note that since the diagram (4.2) is commutative, we get from the middle square that
[ 0 γ2 ] = [ θ3◦φ3 θ3◦β2 ]⇒ γ2 = θ3 ◦ β2, so the middle square in (4.1) is commutative. Note also
that since the mapping cone above is in ∆, the composition of the two last arrows is zero by
proposition 4.2.1. This means that[ Σα2 0

−Σφ2 0
1 γ3

] [ −Σα1◦β3 0
θ3 γ2

]
=

[
−Σα2◦Σα1◦β3 0
Σφ2◦Σα1◦β3 0
γ3◦θ3−Σα1◦β3 γ3◦γ2

]
= 0⇒ γ3 ◦ θ3 = Σα1 ◦ β3
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We also have that the mapping cone is the middle row of the direct sum diagram

A3 B3 C3 ΣA3

A3 ⊕B2 ⊕ A2 B3 ⊕B2 ΣA2 ⊕ C3 ΣA3 ⊕ ΣB2 ⊕ ΣA2

A3 B3 C3 ΣA3,

φ3

[−1
0
0

]
θ3

[ 1
0 ]

Σα2◦γ3

[−γ31 ]
[−1

0
0

]
[−φ3 −β2 0

0 1 φ2

]

[−1 0 α2 ]

[−Σα1◦β3 0
θ3 γ2

]

[ 1 β2 ]

[
Σα2 0
−Σφ2 0

1 γ3

]

[ 0 1 ] [−1 0 Σα2 ]

φ3 θ3 Σα2◦γ3

which commutes by relations previously established. This implies, by Proposition 1.2.3 in [20],
that the top (and bottom) row is in ∆ i.e. (TR4) holds.

Now let us prove the converse.

Theorem 4.3.3. If ∆ is a collection of triangles satisfying axioms (TR1)-(TR4), then it also
satisfies axiom (TR4’).

Proof. Let
A1 A2 A3 ΣA1

B1 B2 B3 ΣB1

α1

φ1

α2

φ2

α3

Σφ1

β1 β2 β3

be a commutative diagram where the rows are in ∆. We call these A• and B•. We want to prove
that we can complete this diagram to a morphism of triangles in such a way that the mapping
cone of this morphism is in ∆.

From the diagram we are given, we build a new diagram

A1 ⊕B1 B2 ⊕ A2 ⊕B1 A3 ⊕B2 ΣA1 ⊕ ΣB1

A1 ⊕B1 B2 ΣA1 ⊕B3 ΣA1 ⊕ ΣB1

ΣA2 ⊕ ΣB1

ΣB2 ⊕ ΣA2 ⊕ ΣB1

[
0 0
−α1 0

0 −1

]
[ 0 −α2 0
1 0 0 ]

[ 1 −φ2 −β1 ]

[−α3 0
0 0 ]

[φ2◦α1 β1 ]

[
0
−β2

]

0

[ −1 0
Σφ1 β3

]

[
−Σφ2 −Σβ1
−1 0
0 −1

]

(4.3)

where the top left square commutes. Now let X•, Y• and Z• be the triangles

X•: B2 ⊕ A2 ⊕B1 B2 ΣA2 ⊕ ΣB1 ΣB2 ⊕ ΣA2 ⊕ ΣB1
[ 1 −φ2 ] 0

[
−Σφ2 −Σβ1

1 0
0 −1

]
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Y•: A1 ⊕B1 B2 ⊕ A2 ⊕B1 A3 ⊕B2 ΣA1 ⊕ ΣB1

[
0 0
−α1 0

0 −1

]
[ 0 −α2 0
1 0 0 ] [−α3 0

0 0 ]

Z•: A1 ⊕B1 B2 ΣA1 ⊕B3 ΣA1 ⊕ ΣB1
[φ2◦α1 β1 ]

[
0
−β2

] [ −1 0
Σφ1 β3

]

In order to use (TR4) we need these three to be in ∆. We can easily see that X• is isomorphic
to the direct product of the trivial triangle on B2, and the left rotations of the trivial triangles on
A2 and B1, i.e.

B2
1−→ B2 → 0→ ΣB2, A2 → 0→ ΣA2

1−→ ΣA2 and B1 → 0→ ΣB1
1−→ ΣB1,

all of which are in ∆. Similarly we see that Y• is isomorphic to the direct sum of A•, the trivial
triangle on B1 and the right rotation of the trivial triangle on B2 i.e.

A1
α1−→ A2

α2−→ A3
α3−→ ΣA1, B1

1−→ B1 → 0→ ΣB1 and 0→ B1
1−→ B1 → 0,

which are also in ∆. Finally we notice that Z• is isomorphic to the direct sum of B• and the left
rotation of trivial triangle on A1 i.e.

B1
β1−→ B2

β2−→ B3
β3−→ ΣB1 and A1 → 0→ ΣA1

1−→ ΣA1,

which are of course both in ∆. This means that by Proposition 1.2.3 in [20] X•, Y• and Z• are in
∆.

Now, since X•, Y• and Z• are in ∆, we can use (TR4) on the diagram (4.3). This means we
can find morphisms σ : A3 ⊕B2 → ΣA1 ⊕B3 and θ : ΣA1 ⊕B3 → ΣA2 ⊕ ΣB1 such that the
following holds:

(1) (1, [ 1 −φ2 β1 ] , σ) : Y• → Z• is a morphism of triangles,

(2)
[ −Σφ2 −Σβ1

1 0
0 −1

]
◦ θ =

[
0 0

−Σα1 0
0 −1

]
◦
[ −1 0

Σφ1 β3

]
and

(3) the triangle A3 ⊕B2
σ−→ ΣA1 ⊕B3

θ−→ ΣA2 ⊕ ΣB1

[−Σα2 0
Σφ2 −Σβ1

]
−−−−−−−−→ ΣA3 ⊕ ΣB2 is in ∆.

In other words we have a commutative diagram

A1 ⊕B1 B2 ⊕ A2 ⊕B1 A3 ⊕B2 ΣA1 ⊕ ΣB1

A1 ⊕B1 B2 ΣA1 ⊕B3 ΣA1 ⊕ ΣB1

ΣA2 ⊕ ΣB1 ΣA2 ⊕ ΣB1

ΣB2 ⊕ ΣA2 ⊕ ΣB1 ΣA3 ⊕ ΣB2

[
0 0
−α1 0

0 −1

]
[ 0 −α2 0
1 0 0 ]

[ 1 −φ2 −β1 ]

[−α3 0
0 0 ]

σ

[φ2◦α1 β1 ]

[
0
−β2

]

0

[ −1 0
Σφ1 β3

]

θ

[
−Σφ2 −Σβ1
−1 0
0 −1

] [
Σα2 0
−Σφ2 −Σβ1

]
[

0 −Σα2 0
1 0 0

]
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where the two top rows and two middle columns are in ∆. Since the diagram is commutative we
get, if we let σ = [ σ1 σ2σ3 σ4 ], that[ −1 0

Σφ1 β3

]
[ σ1 σ2σ3 σ4 ] =

[ −σ1 −σ2
Σφ1◦σ1+β3◦σ3 Σφ1◦σ2+β3◦σ4

]
= [ −α3 0

0 0 ] .

Hence σ1 = α3 and σ2 = 0, and we have the relations Σφ1α3 = −β3 ◦ σ3 and β3 ◦ σ4 = 0.
Further we get[

0
−β2
]

[ −1 −φ2 −β1 ] =
[

0 0 0
−β2 β2◦φ2 0

]
= [ α3 0

σ3 σ4 ] [ 0 −α2 0
1 0 0 ] = [ 0 0 0

σ4 −σ3◦α2 0 ]

i.e. σ4 = −β2 and β2 ◦ φ2 = −σ3 ◦ α2. From this we get that σ3 = −φ3 for some φ3 : A3 → B3

such that φ = (φ1, φ2, φ3) is a morphism of triangles.
Further, if we let θ =

[
θ1 θ2
θ3 θ4

]
we get from (2) that[ −Σφ2 −Σβ1
1 0
0 −1

] [
θ1 θ2
θ3 θ4

]
=
[

0 0
−Σα1 0

0 −1

] [ −1 0
Σφ1 β3

]
[ Σφ2◦θ1−Σβ1◦θ3 Σφ2◦θ2−Σβ1◦θ4

−θ1 −θ2
−θ3 −θ4

]
=
[

0 0
Σα1 0
−Σφ1 −β3

]
and hence θ =

[ −Σα1 0
Σφ1 β3

]
. This means that from (3) and what we have just shown, we get that

the triangle

A3 ⊕B2

[
α3 0
−φ3 −β2

]
−−−−−−−→ ΣA1 ⊕B3

[−Σα1 0
Σφ1 β3

]
−−−−−−−→ ΣA2 ⊕ ΣB1

[
Σα2 0
−Σφ2 −Σβ1

]
−−−−−−−−→ ΣA3 ⊕ ΣB2

is in ∆. The right rotation of this triangle is isomorphic by (1,
[ −1 0

0 −1

]
, 1) to the triangle

A2 ⊕B1

[−α2 0
φ2 β1

]
−−−−−−→ A3 ⊕B2

[−α3 0
φ3 β2

]
−−−−−−→ ΣA1 ⊕B3

[−Σα1 0
Σφ1 β3

]
−−−−−−−→ ΣA2 ⊕ ΣB1

which is the mapping cone of φ. This means by (TR1)(a) and(TR2) that this mapping cone is in
∆ and hence (TR4’) holds.
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Chapter 5

Matrix factorizations

5.1 Definition

Definition. Let S be a commutative ring and x ∈ S. A matrix factorization (F,G, φ, ψ) of x in
S is a diagram

F
φ−→ G

ψ−→ F

where F and G are finitely generated free S-modules, and φ and ψ are S-homomorphisms such
that

ψ ◦ φ = x · 1F and φ ◦ ψ = x · 1G.

A morphism θ between two matrix factorizations (F1, G1, φ1, ψ1) and (F2, G2, φ2, ψ2) of x,
is a pair of maps f : F1 → F2 and g : G1 → G2 such that the following diagram commutes:

F1 G1 F1

F2 G2 F2

φ1

f

ψ1

g f

φ2 ψ2

The category of matrix factorizations is denoted by MF(S, x) and is an additive category
with the obvious notion of a zero object and direct sums.

Definition. The suspension Σ(F,G, φ, ψ) of a matrix factorization (F,G, φ, ψ) is the matrix
factorization

G
−ψ−→ F

−φ−→ G

of x.

Definition. For the map θ : (F1, G1, φ1, ψ1)→ (F2, G2, φ2, ψ2) above, we define the mapping
cone Cθ of θ to be the the diagram

G1 ⊕ F2 F1 ⊕G2 G1 ⊕ F2.

[−ψ1 0
g φ2

] [−φ1 0
f ψ2

]
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This is also a matrix factorization of x and gives two natural maps of matrix factorizations in
MF(S, x):

(F2, G2, φ2, ψ2) F2 G2 F2

Cθ G1 ⊕ F2 F1 ⊕G2 G1 ⊕ F2

iθ

φ2

[
0

1F2

]
ψ2

[
0

1G2

] [
0

1F2

][−ψ1 0
g φ2

] [−φ1 0
f ψ2

]

and

Cθ G1 ⊕ F2 F1 ⊕G2 G1 ⊕ F2

Σ(F1, G1, φ1, ψ1) G1 F1 G1

πθ

[−ψ1 0
g φ2

]

[ 1G1
0 ]

[−φ1 0
f ψ2

]

[ 1F1 0 ] [ 1G1
0 ]

−ψ1 −φ1

Definition. Let θ, θ′ : (F1, G1, φ1, ψ1) → (F2, G2, φ2, ψ2) be two maps in MF(S, x) with the
same source and target, where θ = (f, g) and θ′ = (f ′, g′). We say θ and θ′ are homotopic if
there are diagonal maps s and t in the diagram

F1 G1 F1

F2 G2 F2

φ1

f ′ f

ψ1

g′ g
s

f ′ f
t

φ2 ψ2

such that

f − f ′ = s ◦ φ1 + ψ2 ◦ t
g − g′ = t ◦ ψ1 + φ2 ◦ s.

This defines an equivalence relation on the abelian groups of morphisms in the category
MF(S, x), and we denote the equivalence class of a morphism θ by [θ]. Homotopies are
compatible with addition and composition of maps in MF(S, x). This means that if we have
θ, θ′ : (F1, G1, φ1, ψ1) → (F2, G2, φ2, ψ2) and η, η′ : (F2, G2, φ2, ψ2) → (F3, G3, φ3, ψ3) with
θ ∼ θ′ and η ∼ η′, we have (η◦θ) ∼ (η′◦θ′). Similarly, if we have θ, θ′, η, η′ : (F1, G1, φ1, ψ1)→
(F2, G2, φ2, ψ2) with θ ∼ θ′ and η ∼ η′ we have (θ + η) ∼ (θ′ + η′).

Now we can define a new category HMF(S, x), the homotopy category, which has the same
objects as MF(S, x) but the morphism sets are the homotopy equivalence classes defined above.
These sets are also abelian groups, i.e [θ] + [η] = [η] + [θ], which means HMF(S, x) is an
additive category with the same zero object, which now is unique only up to homotopy, and the
usual direct sums.

We notice that the suspension Σ(F,G, φ, ψ) induces an additive automorphism on HMF(S, x)
with Σ2 = id. Now we define ∆ to be the collection of triangles isomorphic to triangles of the
form

(F1, G1, φ1, ψ1)
[θ]−→ (F2, G2, φ2, ψ2)

[iθ]−→ Cθ
[πθ]−→ Σ(F1, G1, φ1, ψ1)

which are called standard triangles. This brings us to the main result of this section:

Theorem 5.1.1. HMF(S, x) together with the suspension Σ and the distinguished triangles ∆,
is a triangulated category.
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Proof. The proof is an adaptation of the proof of Theorem 6.7 in [11] that shows the homotopy
category of an additive category is triangulated. We need to show that the axioms (TR1) - (TR4)
hold. The first, (TR1)(a), holds from the construction of ∆.

(TR1)(b) From the construction of the standard triangles we know that there is one on the
form

(F,G, φ, ψ)
[id]−→ (F,G, φ, ψ) −→ Cid −→ Σ(F,G, φ, ψ)

Want to show that Cid is isomorphic to the zero object 0→ 0→ 0 in HMF(S, x), and to do this
we show that the identity morphism on the cone Cid is homotopic to the zero map. The identity
map

F G F

F G F

φ

1F

ψ

1G 1F

φ ψ

has mapping cone

G⊕ F F ⊕G G⊕ F

[−ψ 0
1G φ

] [−φ 0
1F ψ

]

That means we need s and t in the diagram

G⊕ F F ⊕G G⊕ F

G⊕ F F ⊕G G⊕ F

[−ψ 0
1G φ

]

1G⊕F

[−φ 0
1F ψ

]

1F⊕G
s

1G⊕F
t

[−ψ 0
1G φ

] [−φ 0
1F ψ

]

that satisfy

1G⊕F = s ◦
[ −ψ 0

1G φ

]
+
[ −φ 0

1F ψ

]
◦ t and

1F⊕G = t ◦
[ −φ 0

1F ψ

]
+
[ −ψ 0

1G φ

]
◦ s.

Put s = t = [ 0 1
0 0 ]. This gives us

[ 0 1
0 0 ]

[ −ψ 0
1G φ

]
+
[ −φ 0

1F ψ

]
[ 0 1

0 0 ] =
[

1G φ
0 0

]
+
[

0 −φ
0 1F

]
=
[

1G 0
0 1F

]
= 1G⊕F

which is what we wanted. The same holds for 1F⊕G. This means the identity morphism on Cid is
homotopic to the zero morphism which means Cid must be isomorphic to the zero object in the
homotopy category. Hence

(F,G, φ, ψ)
[id]−→ (F,G, φ, ψ) −→ 0 −→ Σ(F,G, φ, ψ)

is a distinguished triangle and (TR1)(b) holds.
(TR1)(c) This follows from the construction of ∆. If we have a morphism

θ : (F1, G1, φ1, ψ1)→ (F2, G2, φ2, ψ2)

we can find the mapping cone Cθ and from this find the maps iθ and πθ. We take the homotopy
classes and get

(F1, G1, φ1, ψ1)
[θ]−→ (F2, G2, φ2, ψ2)

[iθ]−→ Cθ
[πθ]−→ Σ(F1, G1, φ1, ψ1)
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which is a standard triangle and hence in ∆.

(TR2) We need to show that if we rotate a standard triangle, it is isomorphic to another
standard triangle in HMF(S, x). More precisely we will show that

(F2, G2, φ2, ψ2) Cθ Σ(F1, G1, φ1, ψ1) Σ(F2, G2, φ2, ψ2)
[iθ] [πθ] −Σ[θ]

is isomorphic to

(F2, G2, φ2, ψ2) Cθ Ciθ Σ(F2, G2, φ2, ψ2)
[iθ] [iiθ ] [πiθ ]

We construct an isomorphism between the two triangles in the following way:

(F2, G2, φ2, ψ2) Cθ Σ(F1, G1, φ1, ψ1) Σ(F2, G2, φ2, ψ2)

(F2, G2, φ2, ψ2) Cθ Ciθ Σ(F2, G2, φ2, ψ2)

[iθ]

id

[πθ]

id

−Σ[θ]

[α] id

[iθ] [iiθ ] [πiθ ]
[β]

where we define the morphisms α : Σ(F1, G1, φ1ψ1)→ Ciθ and β : Ciθ → Σ(F1, G1, φ1, ψ1) by

Σ(F1, G1, φ1, ψ1) G1 F1 G1

Ciθ G2 ⊕G1 ⊕ F2 F2 ⊕ F1 ⊕G2 G2 ⊕G1 ⊕ F2

α

[ −g
1G1

0

]
−ψ1

[ −f
1F1
0

]
−φ1

[ −g
1G1

0

]
β [ 0 1G1

0 ][−ψ2 0 0
0 ψ1 0

1G1
g φ2

] [ 0 1F1 0 ][−φ1 0 0
0 φ1 0

1F1 f ψ2

] [ 0 1G1
0 ]

For α and β to be isomorphisms, they have to be the inverse of each other. We start by
looking at [β ◦ α] . Here we have [ 0 1G1

0 ] [ −g 1G1
0 ]T = 1G1 and [ 0 1F1 0 ] [ −g 1F1 0 ]T = 1F1 so

[β ◦ α] = idΣ(F1,G1,φ1,ψ1). The opposite gives us

[ −g 1G1
0 ]T [ 0 1G1

0 ] =
[ 0 −g 0

0 1G1
0

0 0 0

]
[ −f 1F1 0 ]T [ 0 1F1 0 ] =

[ 0 −f 0
0 1F1 0
0 0 0

]
.

This is homotopic to idCiθ by s = t =
[

0 0 −1
0 0 0
0 0 0

]
, which means α ◦ β ∼ idCiθ . Hence [α] and [β]

are the inverse of each other.

Now we need to check that α and β induce morphisms of triangles. We look at [β] first and
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see that [β ◦ iiθ ] = [πθ] by looking at the following diagram:

Cθ Ciθ Σ(F1, G1, φ1, ψ1)

G1 ⊕ F2 G2 ⊕G1 ⊕ F2 G1

F1 ⊕G2 F2 ⊕ F1 ⊕G2 F1

G1 ⊕ F2 G2 ⊕G1 ⊕ F2 G1.

iiθ β

[
0 0

1G1
0

0 1F2

]

[−ψ1 0
g φ2

]
[ 0 1G1

0 ]

M1 −ψ1[
0 0

1F1 0
0 1G2

]

[−φ1 0
f ψ2

]
[ 0 1G1

0 ]

M2 −φ1[
0 0

1G1
0

0 1F2

]
[ 0 1G1

0 ]

Next we want to show that −Σθ ◦ β ∼ πiθ . So we first look at −Σθ ◦ β.

Ciθ Σ(F1, G1, φ1, ψ1) Σ(F2, G2, φ2, ψ2)

G2 ⊕G1 ⊕ F2 G1 G2

F2 ⊕ F1 ⊕G2 F1 F2

G2 ⊕G1 ⊕ F2 G1 G2.

β −Σθ

[ 0 1G1
0 ]

M1

−g

−ψ1 −ψ2

[ 0 1F1 0 ]

M2

−f

−φ1 −φ2
[ 0 1G1

0 ] −g

We want ([ 0 −g 0 ] , [ 0 −f 0 ]) to be homotopic with ([ 1G2
0 0 ] , [ 1F2 0 0 ]), which we get if we let

s = t = [ 0 0 −1 ] in the diagram

Ciθ G2 ⊕G1 ⊕ F2 F2 ⊕ F1 ⊕G2 G2 ⊕G1 ⊕ F2

Σ(F2, G2, φ2, ψ2) G2 F2 G2.

−Σθ◦β πiθ

[−ψ2 0 0
0 −ψ1 0

1G2
g φ2

]

[
0
−g
0

]T [
1G2

0
0

]T

[−φ2 0 0
0 −φ1 0

1F2 f ψ2

]

[
0
−f
0

]T [
1F2
0
0

]T
s

[
0
−g
0

]T [
1G2

0
0

]T
t

−ψ2 −φ2

So [β] is an isomorphism of triangles. The fact that [α] is too, follows from this:

iiθ = idCiθ ◦ iiθ = α ◦ β ◦ iiθ = α ◦ πθ
−Σθ = −Σθ ◦ idΣ(F1,G1,φ1,ψ1) = −Σθ ◦ β ◦ α = πiθ ◦ α.

So we have two isomorphisms of triangles and hence the two triangles we started with are
isomorphic and the rotation property holds.
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(TR3) Let α = (α1, α2) and β = (β1, β2). We assume we have a diagram

(F1, G1, φ1, ψ1) (F2, G2, φ2, ψ2) Cθ Σ(F1, G1, φ1, ψ1)

(F ′1, G
′
1, φ
′
1, ψ

′
1) (F ′2, G

′
2, φ
′
2, ψ

′
2) Cθ′ Σ(F ′1, G

′
1, φ
′
1, ψ

′
1)

[θ]

[α]

[iθ]

[β]

[πθ]

Σ[α]

[θ′] [iθ′ ] [πθ′ ]

(5.1)

where the left square commutes in HMF(S, x), i.e there exists maps s : G1 → F ′2 and t : F1 →
G′2 in the diagram

F1 G1 F1

F ′2 G′2 F ′2

φ1

β1◦f f ′◦α1

ψ1

β2◦g g′◦α2
s

β1◦f f ′◦α2
t

φ′2 ψ′2

such that

β1 ◦ f − f ′ ◦ α1 = s ◦ φ1 + ψ′2 ◦ t
β2 ◦ g − g′ ◦ α2 = t ◦ ψ1 + φ′2 ◦ s

We want to complete the diagram (5.1) to a morphism of triangles. To do that we define
γ = (γ1, γ2) : Cθ → Cθ′ by letting

γ1 =
[
α2 0
s β1

]
, γ2 =

[
α1 0
t β2

]
.

When we complete the diagram with [γ], it commutes since [γ ◦ iθ] = [iθ′ ◦ β] and [πθ′ ◦ γ] =
[Σα ◦ πθ′ ]. Hence (TR3) holds.

(TR4) Assume we have the following diagram:

(F1, G1, φ1, ψ1) (F2, G2, φ2, ψ2) Cθ Σ(F1, G1, φ1, ψ1)

(F1, G1, φ1, ψ1) (F3, G3, φ3, ψ3) Cηθ Σ(F1, G1, φ1, ψ1)

Cη

ΣB

[θ] [iθ]

[η]

[πθ]

[ηθ] [iηθ]

iη

[πηθ]

πη

where the two rows and the second column are in ∆. We want to find maps α : Cθ → Cηθ,
β : Cηθ → Cη and γ : Cη → ΣCθ such that the diagram

(F1, G1, φ1, ψ1) (F2, G2, φ2, ψ2) Cθ Σ(F1, G1, φ1, ψ1)

(F1, G1, φ1, ψ1) (F3, G3, φ3, ψ3) Cηθ Σ(F1, G1, φ1, ψ1)

Cη Cη

ΣB ΣCθ

[θ] [iθ]

[η]

[πθ]

[α]

[ηθ] [iηθ]

iη

[πηθ]

[β]

πη [γ]

Σ[iθ]

(5.2)
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commutes, the next to last column is in ∆ and [πη ◦ β] = [Σθ ◦ πηθ]. Let θ = (f, g) and
η = (u, v) and define

α : Cθ → Cηθ, by (
[

1G1
0

0 u

]
,
[

1F1 0
0 v

]
)

β : Cηθ → Cη, by (
[
g 0
0 1F3

]
,
[
f 0
0 1G3

]
)

γ : Cη → ΣCθ, by (
[

0 0
1G2

0

]
,
[

0 0
1F2 0

]
), i.e γ = Σiθ ◦ πη.

These three morphisms make all the squares in (5.2) commute, and we also get

πη◦β =
(

[ 1G2
0 ]
[
g 0
0 1F3

]
, [ 1F2 0 ]

[
f 0
0 1G3

])
= ([ g 0 ] , [ f 0 ]) = (g [ 1G1

0 ] , f [ 1F1 0 ]) = Σθ◦πηθ.

This means that all that remains is to prove that the next to last column in (5.2) is in ∆. To do
this, we want to find an isomorphism

Cθ Cηθ Cη ΣCθ

Cθ Cηθ Cα ΣCθ

[α] [β] [γ]

[σ]

[α] [iα] [πα]

[τ ]

i.e we need to find σ : Cη → Cα and τ : Cα → Cη to complete the isomorphism of triangles.
We let

σ = (

[ 0 0
1G2

0
0 0
0 1F3

]
,

[ 0 0
1F2 0
0 0
0 1G3

]
), τ = (

[
0 1G2

g 0
0 0 0 1F3

]
,
[

0 1G2
g 0

0 0 0 1F3

]
).

To see if these morphisms gives us the commutativity, we first look at the diagram

Cηθ G1 ⊕ F3 F1 ⊕G3 G1 ⊕ F3

Cα F1 ⊕G2 ⊕G1 ⊕ F3 G1 ⊕ F2 ⊕ F1 ⊕G3 F1 ⊕G2 ⊕G1 ⊕ F3

Cη G2 ⊕ F3 F2 ⊕G3 G2 ⊕ F3,

iα

 0 0
0 0

1G1
0

0 1F3



[−ψ1 0
g φ3

]
 0 0

0 0
1F1 0
0 1G3



[−φ1 0
f ψ3

]
 0 0

0 0
1G1

0
0 1F3



τ

[
0 1G2

g 0
0 0 0 1F3

]
N1

[
0 1F2 g 0
0 0 0 1G3

]
N2

[
0 1G2

g 0
0 0 0 1F3

]

[−ψ2 0
g φ3

] [−φ2 0
f ψ3

]

where N1 =

[
φ1 0 0 0
−f −ψ2 0 0
1F1 0 −ψ1 0

0 u g φ2

]
and N2 =

[
ψ1 0 0 0
−g −φ2 0 0
1G1

0 −φ1 0

0 v f ψ2

]
, and see that

τ ◦ iα = (
[
g 0
0 1F3

]
,
[
f 0
0 1G3

]
) = β.
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Next we see from

Cη G2 ⊕ F3 F2 ⊕G3 G2 ⊕ F3

Cα F1 ⊕G2 ⊕G1 ⊕ F3 G1 ⊕ F2 ⊕ F1 ⊕G3 F1 ⊕G2 ⊕G1 ⊕ F3

ΣCθ F1 ⊕G2 G1 ⊕ F2 F1 ⊕G2

σ

 0 0
1G2

0
0 0
0 1F3



[−ψ2 0
g ψ3

]
 0 0

1F2 0
0 0
0 1G3



[−φ2 0
f ψ3

]
 0 0

1G2
0

0 0
0 1F3



πα

[
1F1 0 0 0
0 1G2

0 0

]
N1

[
1G1

0 0 0
0 1F2 0 0

]
N2

[
1F1 0 0 0
0 1G2

0 0

]
[−ψ1 0

g φ2

] [−φ1 0
f ψ2

]

that πα ◦ σ = (
[

0 0
1G2

0

]
,
[

0 0
1F2 0

]
) = γ.

The last two commutativity relations only hold up to homotopy. For the first one we claim
that iα − σ ◦ β is homotopic to zero, and for the second we claim πα − γ ◦ τ is also homotopic
to zero. This gives us [iα] = [σ ◦ β] and [πα] = [γ ◦ τ ] which is what is needed for the diagram

to commute. First we note that iα − σ ◦ β = (

[ 0 0
1G1

0
0 0
0 1F3

]
−
[ 0 0
g 0
0 0
0 1F3

]
,

[ 0 0
1F1 0
0 0
0 1G3

]
−
[ 0 0
f 0
0 0
0 1G3

]
) =

(

[ 0 0
−g 0
1G1

0
0 0

]
,

[ 0 0
−f 0
1F1 0
0 0

]
). With the homotopy maps s = t =

[
1 0
0 0
0 0
0 0

]
we get

[ 0 0
−g 0
1G1

0
0 0

]
=

[
1 0
0 0
0 0
0 0

] [ −ψ1 0
g φ2

]
+

[
ψ1 0 0 0
−g −φ2 0 0
1G1

0 −φ1 0

0 v f ψ2

][
1 0
0 0
0 0
0 0

]
=

[
−ψ1 0

0 0
0 0
0 0

]
+

[
ψ1 0
−g 0
1G1

0
0 0

]
=

[ 0 0
−g 0
1G1

0
0 0

]
.

The same holds for
[ 0 0
−f 0
1F1 0
0 0

]
and we have [iα] = [σ ◦ β] . Next we note that πα − γ ◦ τ =

(
[

1F1 0 0 0
0 1G2

0 0

]
−
[

0 0 0 0
0 1G2

g 0

]
,
[

1G1
0 0 0

0 1F2 0 0

]
−
[

0 0 0 0
0 1F2 f 0

]
) = (

[
1F1 0 0 0
0 0 −g 0

]
,
[

1G1
0 0 0

0 0 −f 0

]
). With

the homotopy maps s = t = [ 0 0 1 0
0 0 0 0 ] we get

[
1F1 0 0 0
0 0 −g 0

]
= [ 0 0 1 0

0 0 0 0 ]

[
φ1 0 0 0
−f −ψ2 0 0
1F1 0 −ψ1 0

0 u g φ2

]
+
[
ψ1 0
−g −φ2

]
[ 0 0 1 0

0 0 0 0 ]

=
[

1F1 0 −ψ1 0
0 0 0 0

]
+
[

0 0 ψ1 0
0 0 −g 0

]
=
[

1F1 0 0 0
0 0 −g 0

]
.

The same holds for
[

1G1
0 0 0

0 0 −f 0

]
and we have [πα] = [γ ◦ τ ] which means the diagram commutes

and [σ] and [τ ] are morphisms of triangles.
What remains now is to check that they are in fact isomorphisms of triangles. We see that

τ ◦ σ = (
[

0 1G2
g 0

0 0 0 1F3

] [ 0 0
1G2

0
0 0
0 1F3

]
,
[

0 1F2 g 0
0 0 0 1G3

] [ 0 0
1F2 0
0 0
0 1G3

]
) = (

[
1G2

0
0 1F3

]
,
[

1F2 0
0 1G3

]
) = idCη .

The composition σ ◦ τ is given by

(

[ 0 0 0 0
0 1G2

g 0
0 0 0 0
0 0 0 1F3

]
,

[
0 0 0 0
0 1F2 f 0
0 0 0 0
0 0 0 1G3

]
).
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If we define the homotopy maps s = t =

[
0 0 −1 0
0 0 0 0
0 0 0 0
0 0 0 0

]
we get

[
−1F1 0 0 0

0 0 g 0
0 0 −1G1

0
0 0 0 0

]
=

[
0 0 −1 0
0 0 0 0
0 0 0 0
0 0 0 0

][ φ1 0 0 0
−f −ψ2 0 0
1F1 0 −ψ1 0

0 u g φ2

]
+

[
ψ1 0 0 0
−g −φ2 0 0
1G1

0 −φ1 0

0 v f ψ2

][
0 0 −1 0
0 0 0 0
0 0 0 0
0 0 0 0

]

=

[ −1F1 0 ψ1 0
0 0 0 0
0 0 0 0
0 0 0 0

]
+

[
0 0 −ψ1 0
0 0 g 0
0 0 −1G1

0
0 0 0 0

]
=

[
−1F1 0 0 0

0 0 g 0
0 0 −1G1

0
0 0 0 0

]
,

which means σ ◦ τ − idCα is homotopic to zero, i.e. [σ ◦ τ ] = idCα in HMF(S, x). This
means both [σ] and [τ ] are isomorphisms and hence we have proved the octahedral axiom for
HMF(S, x), which means HMF(S, x) is a triangulated category.

In Chapter 4 we introduced Neeman’s mapping cone axiom and saw that we can use this
instead of the octahedral axiom. This means we could have used (TR4’) in the proof above:

Proof. (TR4’) Assume we have a commutative diagram

(F1, G1, φ1, ψ1) (F2, G2, φ2, ψ2) Cθ Σ(F1, G1, φ1, ψ1)

(F ′1, G
′
1, φ
′
1, ψ

′
1) (F ′2, G

′
2, φ
′
2, ψ

′
2) Cθ′ Σ(F ′1, G

′
1, φ
′
1, ψ

′
1)

[θ]

[α]

[iθ]

[β]

[πθ]

Σ[α]

[θ′] [iθ′ ] [πθ′ ]

as in (TR3). We want to complete this to a morphism of triangles in such a way that the mapping
cone is in ∆. To simplify notation we let A = (F1, G1, φ1, ψ1), A′ = (F ′1, G

′
1, φ
′
1, ψ

′
1), B =

(F2, G2, φ2, ψ2) and B = (F ′2, G
′
2, φ
′
2, ψ

′
2) so we get the diagram

A B Cθ ΣA

A′ B′ Cθ′ ΣA′

[θ]

[α]

[iθ]

[β]

[πθ]

Σ[α]

[θ′] [iθ′ ] [πθ′ ]

(5.3)

Let [γ] : Cθ → Cθ′ be defined by γ =
[
α2 0
s β1

]
,
[
α1 0
t β2

]
. We saw in the proof of (TR3) that this is

a morphism of matrix factorizations and that it completes (5.3) to a morphism of triangles. Now,
the mapping cone of (5.3) is given by

B ⊕ A′
[
−iθ 0
β θ′

]
−−−−−→ Cθ ⊕B′

[−πθ 0
γ iθ′

]
−−−−−−→ ΣA⊕ Cθ′

[−Σθ 0
Σα πθ′

]
−−−−−−→ ΣB ⊕ ΣA′.

To prove that this is in ∆ we need to show that it is isomorphic to a standard triangle. If we let
σ =

[
−iθ 0
β θ′

]
, δ =

[ −πθ 0
γ iθ′

]
and ε =

[ −Σθ 0
Σα πθ′

]
we can look at the diagram

B ⊕ A′ Cθ ⊕B′ ΣA⊕ Cθ′ ΣB ⊕ ΣA′

B ⊕ A′ Cθ ⊕B′ Cσ ΣB ⊕ ΣA′.

[σ] [δ] [ε]

[τ ]

[σ] [iσ ] [πσ ]

(5.4)

Here we have three new elements:
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• Cσ :

G2 ⊕G′1 ⊕G1 ⊕ F2 ⊕ F ′2
A−→ F2 ⊕ F ′1 ⊕ F1 ⊕G2 ⊕G′2

B−→ G2 ⊕G′1 ⊕G1 ⊕ F2 ⊕ F ′2

where A =

 −ψ2 0 0 0 0
0 −ψ′1 0 0 0
0 0 −ψ1 0 0
−1 0 g φ2 0
β2 g′ 0 0 φ′2

 and B =

 −φ2 0 0 0 0
0 −φ′1 0 0 0
0 0 −φ1 0 0
−1 0 f ψ2 0
β1 f ′ 0 0 ψ′2


• iσ : Cθ ⊕B′ → Cσ

G1 ⊕ F2 ⊕ F ′2 F1 ⊕G2 ⊕G′2 G1 ⊕ F2 ⊕ F ′2

G2 ⊕G′1 ⊕G1 ⊕ F2 ⊕ F ′2 F2 ⊕ F ′1 ⊕ F1 ⊕G2 ⊕G′2 G2 ⊕G′1 ⊕G1 ⊕ F2 ⊕ F ′2

[−ψ1 0 0
g φ2 0
0 0 φ′2

]

 0 0 0
0 0 0
1 0 0
0 1 0
0 0 1



[−φ1 0 0
f ψ2 0
0 0 ψ′2

]

 0 0 0
0 0 0
1 0 0
0 1 0
0 0 1


 0 0 0

0 0 0
1 0 0
0 1 0
0 0 1


A B

and
• πσ : Cσ → ΣB ⊕ ΣA′

G2 ⊕G′1 ⊕G1 ⊕ F2 ⊕ F ′2 F2 ⊕ F ′1 ⊕ F1 ⊕G2 ⊕G′2 G2 ⊕G′1 ⊕G1 ⊕ F2 ⊕ F ′2

G2 ⊕G′1 F2 ⊕ F ′1 G2 ⊕G′1

A

[ 1 0 0 0 0
0 1 0 0 0 ]

B

[ 1 0 0 0 0
0 1 0 0 0 ] [ 1 0 0 0 0

0 1 0 0 0 ][
−ψ2 0

0 −ψ′1

] [
−φ2 0

0 −φ′1

]

First we need to find τ : Σa⊕ Cθ′ → Cσ such that (5.4) commutes. We have

G1 ⊕G′1 ⊕ F ′2 F1 ⊕ F ′1 ⊕G′2 G1 ⊕G′1 ⊕ F ′2

G2 ⊕G′1 ⊕G1 ⊕ F2 ⊕ F ′2 F2 ⊕ F ′1 ⊕ F1 ⊕G2 ⊕G′2 G2 ⊕G′1 ⊕G1 ⊕ F2 ⊕ F ′2

−ψ1 0 0
0 −ψ′1 0

0 g′ φ′2



τ1

−φ1 0 0
0 −φ′1 0

0 f ′ ψ′2



τ2 τ1

A B

where we define

τ1 =

[ −g 0 0
α2 1 0
−1 0 0
0 0 0
s 0 1

]
and τ2 =

[ −f 0 0
α1 1 0
−1 0 0
0 0 0
t 0 1

]
.

Now,

A ◦ τ1 =

 ψ2◦g 0 0
−ψ′1◦α2 −ψ′1 0
ψ1 0 0
g−g 0 0

−β2◦g+g′◦α2+φ′2◦s g′ φ2

 =

 f◦ψ1 0 0
−α1◦ψ1 −ψ′1 0
φ1 0 0
0 0 0

−t◦ψ1 g′ φ2

 = τ2 ◦
[
−ψ1 0 0

0 −ψ′1 0

0 g′ φ′2

]

and

B ◦ τ2 =

 φ2◦f 0 0
−φ′1◦α1 −φ′1 0
φ1 0 0
f−f 0 0

−β1◦f+f ′◦α1+ψ′2◦t f ′ ψ2

 =

 g◦φ1 0 0
−α2◦φ1 −φ′1 0
φ1 0 0
0 0 0

−s◦φ1 f ′ ψ2

 = τ1 ◦
[
−φ1 0 0

0 −φ′1 0

0 f ′ ψ′2

]
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which means τ is a morphism of matrix factorizations. Next we need to show that τ completes
(5.4) to a morphism of triangles, i.e that [πσ] ◦ [τ ] = [ε] and [τ ] ◦ [δ] = [iσ] . First we see that

πσ ◦ τ =

(
[ 1 0 0 0 0

0 1 0 0 0 ]

[ −g 0 0
α2 1 0
−1 0 0
0 0 0
s 0 1

]
, [ 1 0 0 0 0

0 1 0 0 0 ]

[ −f 0 0
α1 1 0
−1 0 0
0 0 0
t 0 1

])
=
([ −g 0 0

α2 1 0

]
,
[ −f 0 0
α1 1 0

])
= ε

so the first relation holds. Next we look at τ ◦ δ.

τ ◦δ =

([ −g 0 0
α2 1 0
−1 0 0
0 0 0
s 0 1

] [ −1 0 0
α2 0 0
s β1 1

]
,

[ −f 0 0
α1 1 0
−1 0 0
0 0 0
t 0 1

] [ −1 0 0
α1 0 0
t β2 1

])
=

([
g 0 0

−α2+α2 0 0
1 0 0
0 0 0
−s+s β1 1

]
,

[
f 0 0

−α1+α1 0 0
1 0 0
0 0 0
−t+t β2 1

])
6= iσ

This means we need to find homotopy maps k and l in the diagram

G1 ⊕ F2 ⊕ F ′2 F1 ⊕G2 ⊕G′2 G1 ⊕ F2 ⊕ F ′2

G2 ⊕G′1 ⊕G1 ⊕ F2 ⊕ F ′2 F2 ⊕ F ′1 ⊕ F1 ⊕G2 ⊕G′2 G2 ⊕G′1 ⊕G1 ⊕ F2 ⊕ F ′2

[−ψ1 0 0
g φ2 0
0 0 φ′2

]


g 0 0
0 0 0
1 0 0
0 0 0
0 β1 1


 0 0 0

0 0 0
1 0 0
0 1 0
0 0 1



[−φ1 0 0
f ψ2 0
0 0 ψ′2

]


f 0 0
0 0 0
1 0 0
0 0 0
0 β2 1


 0 0 0

0 0 0
1 0 0
0 1 0
0 0 1


k


g 0 0
0 0 0
1 0 0
0 0 0
0 β1 1


 0 0 0

0 0 0
1 0 0
0 1 0
0 0 1


l

A B

such that [
g 0 0
0 0 0
0 0 0
0 −1 0
0 β1 0

]
=k ◦

[
−ψ1 0 0
g φ2 0
0 0 φ′2

]
+B ◦ l[

f 0 0
0 0 0
0 0 0
0 −1 0
0 β2 0

]
=l ◦

[
−φ1 0 0
f ψ2 0
0 0 ψ′2

]
+ A ◦ k.

This holds for k = l =

[
0 1 0
0 0 0
0 0 0
0 0 0
0 0 0

]
which means [τ ] ◦ [δ] = [iσ] and hence τ completes (5.4) to a

morphism of triangles.
What remains now is to show that τ is an isomorphism, i.e. that it has an inverse. To do this

we we define ω : Cσ → ΣA⊕ Cθ′ ,

G2 ⊕G′1 ⊕G1 ⊕ F2 ⊕ F ′2 F2 ⊕ F ′1 ⊕ F1 ⊕G2 ⊕G′2 G2 ⊕G′1 ⊕G1 ⊕ F2 ⊕ F ′2

G1 ⊕G′1 ⊕ F ′2 F1 ⊕ F ′1 ⊕G′2 G1 ⊕G′1 ⊕ F ′2,

A

ω1

B

ω2 ω1
−ψ1 0 0

0 −ψ′1 0

0 g′ φ′2

 −φ1 0 0
0 −φ′1 0

0 f ′ ψ′2


(5.5)

by
ω =

([
0 0 −1 0 0
0 1 α2 0 0
0 0 s β1 1

]
,
[

0 0 −1 0 0
0 1 α1 0 0
0 0 t β2 1

])
.

This makes (5.5) commute since[
−ψ1 0 0

0 −ψ′1 0

0 g′ φ′2

]
◦ ω1 =

[
0 0 ψ1 0 0
0 −ψ′1 −ψ′1◦α2 0 0

0 g′ g′◦α2+φ′2◦s φ′2◦β1 φ′2

]
=

[
0 0 ψ1 0 0
0 −ψ′1 −α1◦ψ1 0 0

−β2+β2 g′ −t◦ψ1+β2◦g β2◦φ2 φ′2

]
= ω2 ◦ A
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and[
−φ1 0 0

0 −φ′1 0

0 f ′ ψ′2

]
◦ω2 =

[
0 0 φ1 0 0
0 −φ′1 −φ′1◦α1 0 0

0 f ′ g′◦α1+ψ′2◦t ψ′2◦β2 ψ′2

]
=

[
0 0 φ1 0 0
0 −φ′1 −α2◦φ1 0 0

−β1+β1 f ′ −s◦φ1+β1◦f β1◦ψ2 ψ′2

]
= ω1 ◦B.

To see that [ω] is the inverse of [τ ] we first look at ω ◦ τ :

ω ◦ τ =

([
0 0 −1 0 0
0 1 α2 0 0
0 0 s β1 1

] [ −g 0 0
α2 1 0
−1 0 0
0 0 0
s 0 1

]
,
[

0 0 −1 0 0
0 1 α1 0 0
0 0 t β2 1

] [ −f 0 0
α1 1 0
−1 0 0
0 0 0
t 0 1

])
=
([

1 0 0
0 1 0
0 0 1

]
,
[

1 0 0
0 1 0
0 0 1

])
= 1ΣA⊕Cθ′

so [ω] ◦ [τ ] =
[
1ΣA⊕Cθ′

]
. Next we see that

τ ◦ ω =

([ −g 0 0
α2 1 0
−1 0 0
0 0 0
s 0 1

] [
0 0 −1 0 0
0 1 α2 0 0
0 0 s β1 1

]
,

[ −f 0 0
α1 1 0
−1 0 0
0 0 0
t 0 1

] [
0 0 −1 0 0
0 1 α1 0 0
0 0 t β2 1

])
=

([
0 0 g 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 0 0
0 0 0 β1 1

]
,

[
0 0 f 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 0 0
0 0 0 β2 1

])

which means we need to find maps m and n in the diagram

G2 ⊕G′1 ⊕G1 ⊕ F2 ⊕ F ′2 F2 ⊕ F ′1 ⊕ F1 ⊕G2 ⊕G′2 G2 ⊕G′1 ⊕G1 ⊕ F2 ⊕ F ′2

G2 ⊕G′1 ⊕G1 ⊕ F2 ⊕ F ′2 F2 ⊕ F ′1 ⊕ F1 ⊕G2 ⊕G′2 G2 ⊕G′1 ⊕G1 ⊕ F2 ⊕ F ′2

A


−1 0 g 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 −1 0
0 0 0 β1 0



B


−1 0 f 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 −1 0
0 0 0 β2 0

m


−1 0 g 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 −1 0
0 0 0 β1 0

n

A B

such that [ −1 0 g 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 −1 0
0 0 0 β1 0

]
= m ◦ A+B ◦ n and

[ −1 0 f 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 −1 0
0 0 0 β2 0

]
= n ◦B + A ◦m

We get this if we let m = n =

[
0 0 0 1 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

]
and hence [τ ] ◦ [ω] = [1Cσ ] and τ is an isomorphism,

which means (TR4’) holds.

5.2 Equivalence with the homotopy category of totally
acyclic complexes

An important result concerning HMF(S, x) has to do with long exact sequences or acyclic
complexes. More precisely the homotopy category where the objects are acyclic complexes
P : ... → P1 → P0 → P−1 → ... where the Pi are finitely generated free R-modules for the
commutative ring R = S/(x). We denote this category Kac(R). This is also a triangulated
category. With Σ : Kac(R) → Kac(R) defined as a shift to the left, i.e. the usual shifting of
complexes, and the distinguished triangles the triangles isomorphic to standard triangles using
mapping cones, we can use the same proof as with HMF(S, x) with only small adjustments.

Before we present the result we need some preliminaries.

Definition. Let R be a ring and let x ∈ R be different from zero. Then x is a non-zerodivisor if
for any y ∈ R

xy = 0⇒ y = 0.
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Instead of looking at the whole of Kac(R) we will look at a subcategory:

Definition. Let R be a commutative ring. A complex P of finitely generated projective R-
modules is totally acyclic if both P and HomR(P, R) are acyclic. These complexes form a
homotopy category Ktac(R), which is a triangulated subcategory of Kac.

The fact that some complexes are acyclic but not totally acyclic is studied by Jorgensen and
Şega in [14] and by Iyengar and Krause in [12].

Lemma 5.2.1. Let R be a commutative ring and

... F2 F1 F0 F−1 F−2 ...

... G2 G1 G0 G−1 G−2 ...

f2

φ2

f1

φ1

f0

φ0
s0

f−1

φ−1
s−1

φ−2

g2 g1 g0 g−1

a diagram in which the rows are totally acyclic complexes of free R-modules. Moreover, suppose
that φ = (..., φ1, φ0, φ−1, ...) is a chain map and that the two diagonal maps s0 and s−1 satisfy

φ0 = g1 ◦ s0 + s−1 ◦ f0.

Then s0 and s−1 can be completed to a nullhomotopy s = (..., s1, s0, s−1, ...) on φ.

Proof. To complete the nullhomotopy on φ we need to find maps si such that φi = gi+1 ◦ si +
si−1 ◦ fi. Let θ : F1 → G1 be defined by θ = φ1 − s0 ◦ f1. Since

g1 ◦ θ = g1 ◦ φ1 − g1 ◦ s0 ◦ f1

= φ0 ◦ f1 − g1 ◦ s0 ◦ f1

= (g1 ◦ s0 + s−1 ◦ f0) ◦ f1 − g1 ◦ s0 ◦ f1

= g1 ◦ s0 ◦ f1 + s−1 ◦ f0 ◦ f1 − g1 ◦ s0 ◦ f1 = 0

we have Im θ ⊆ Ker g1 = Im g2. This means there exists an s1 : F1 → G2 in

F1

G2 Im g2 0

θ
s1

g2

with θ = g2 ◦ s1 which means φ1 = s0 ◦ f1 + g1 ◦ s1. In this way we can find s2, s3, ... and so
on, i.e. all the maps to the left of s0.

Now we need to find the maps to the right. Apply HomR(−, R) and write (−)∗ for
HomR(−, R) . Then we get the diagram

... G∗−3 G∗−2 G∗−1 G∗0 G∗1 ...

... F ∗−3 F ∗−2 F ∗−1 F ∗0 F ∗1 ...

g∗−2

φ∗−3

g∗−1

φ∗−2

g∗0

φ∗−1

g∗1

φ∗0

s∗−1
φ∗1

s∗0

f∗−2 f∗−1 f∗0 f∗1

Here we have
φ∗0 = (g1 ◦ s0)∗ + (s−1 ◦ f0)∗ = s∗0 ◦ g∗1 + f ∗0 ◦ s∗−1
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We know that for a free R-module Q, Q∗ is also free, so we can use the same method as above
to find t−2, t−3, t−4 and so on. We apply HomR(−, R) on this new diagram and since (−)∗∗ is
an equivalence on the category of free modules we get the original diagram. Let si = t∗i for
i = −2,−3,−4, ..., then we have a nullhomotopy

(..., s−3, s−2, s−1, s0, s1, ...)

which is what we wanted.

Now we can present the first result.

Theorem 5.2.2. Let S be a commutative ring, x ∈ S a non-zerodivisor and R the factor ring
R = S/(x). To a matrix factorization

F G F
φ ψ

in MF(S, x) we assign the sequence

... F/xF G/xG F/xF G/xG ...
ψ φ ψ φ ψ

which is a complex of free R-modules, and for morphisms in MF(S, x) we assign the obvious
morphisms of complexes. This induces a fully faithful triangle functor

T : HMF(S, x)→ Ktac(R).

Proof. We need to prove three things: that T is a triangle functor, that it is faithful and that it is
full. We follow the proof in [5] and begin with showing that T is a triangle functor.

We start by reducing a matrix factorization (F,G, φ, ψ) modulo x and get

F/xF G/xG F/xF.
φ ψ

This is exact: Firstly we have ψ ◦ φ = x · 1F = 0 so Imφ ⊂ Kerψ. Now let a ∈ G and assume
a = a+ xG ∈ Kerψ i.e.

a+ xG 7→ 0 + xF.

We also have
a+ xG 7→ ψ(a) + xF

so we know that ψ(a) ∈ xF i.e. ψ(a) = x · f for some f ∈ F . From this we get

ψ(a) = x · f = ψ ◦ φ(f)

ψ(a− φ(f)) = 0

φ ◦ ψ(a− φ(f)) = 0

x · (a− φ(f)) = 0

and since x is a non-zerodivisor this means that a = φ(f). Hence a ∈ Imφ and a ∈ Imφ. This
means that Kerψ ⊂ Imφ and the sequence is exact.

From this we get an acyclic complex

M : ... F/xF G/xG F/xF G/xG ...
φ ψ φ
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of finitely generated free R-modules. We need to show that HomR(M, R) is acyclic too.
We fix bases for F and G and view φ and ψ as matrices with elements in S. Applying

HomS(−, S) to (F,G, φ, ψ) we get

HomS(F, S) HomS(G,S) HomS(F, S)
φ∗ ψ∗

which is a new matrix factorization in MF(S, x). Using the canonical isomorphism Hom(P,L)
∼−→ P for P a finitely generated free S-module, we see that the matrix factorization above is
isomorphic to

F G F
φT ψT

in MF(S, x). From what we saw earlier we get a new acyclic complex by reducing modulo x:

N : ... F/xF G/xG F/xF G/xG ...
φT ψT φT

of free R-modules.
Now, we consider the complex M. Here the maps are matrices with entries in R and hence

the arguments above show that

... F/xF G/xG F/xF G/xG ...
(φ)T (ψ)T (φ)T

is isomorphic to the complex HomR(M, R). Furthermore, since (y)T = yT for any matrix y over
S we see that HomR(M, R) is isomorphic to N and hence M is totally acyclic.

When we reduce a morphism of matrix factorizations in MF(S, x) modulo x we get a mor-
phism of totally acyclic complexes. And when we reduce a homotopy between two morphisms
in MF(S, x) we get a homotopy between two morphisms of totally acyclic complexes. This
means that T is a functor and from the similarity of the constructions of standard triangles in
the two categories, it is clear that T is a triangle functor, i.e. is a functor that sends triangles to
triangles.

Next we want to show that T is faithful. We do this by showing that the kernel of T on
the Hom-sets is equal to zero, i.e. it is injective on the Hom-sets. Let θ : (F1, G1, φ1, ψ1) →
(F2, G2, φ2, ψ2) be a morphism

F1 G1 F1

F2 G2 F2

φ1

f

ψ1

g f

φ2 ψ2

in MF(S, x). Assume that T ([θ]) = 0. This means that the morphism of totally acyclic
complexes we get when reducing θ modulo x is nullhomotopic over R. Look at a section of such
a nullhomotopy:

F1/xF1 G1/xG1 F1/xF1 G1/xG1

F2/xF2 G2/xG2 F2/xF2 G2/xG2

φ1

f

ψ1

g
s1

φ1

f
t

g
s2

φ2 ψ2 φ2

where s1 does not necessarily equal s2. We choose liftings of these diagonal maps to S-
homomorphisms

s1 : G1 → F2, t : F1 → G2, s2 : G1 → F2.
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The nullhomotopy gives us that for every a ∈ F1, there is a ba ∈ F2 such that

f(a)− s2 ◦ φ1(a)− ψ2 ◦ t(a) = x · ba

This ba is unique because x is a non-zerodivisor. Similarly, for every u ∈ G1 we have a vu ∈ G2

such that
g(u)− t ◦ ψ1(u)− φ2 ◦ s2(u) = x · vu

where vu is unique. This means that if we define maps p : F1 → F2 by a 7→ ba and q : G1 → G2

by u 7→ vu, they are well-defined S-homomorphisms, and we get the equalities

f − s2 ◦ φ1 − ψ2 ◦ t = x · p
g − t ◦ ψ1 − φ2 ◦ s2 = x · q.

We want to find a nullhomotopy on θ so we modify t to a new map t′ : F1 → G1 defined by

t′ = t+ φ2 ◦ p.

So we want to show that (s2, t
′) is a nullhomotopy on

F1 G1 F1

F2 G2 F2.

φ1

f

ψ1

g
s2

f
t′

φ2 ψ2

From the definition of t we get

f − s2 ◦ φ1 − ψ2 ◦ t′ = f − s2 ◦ φ1 − ψ2 ◦ (t+ φ2 ◦ p)
= f − s2 ◦ φ1 − ψ2 ◦ t+ ψ2 ◦ φ2 ◦ p)
= f − s2 ◦ φ1 − ψ2 ◦ t+ x · p)
= x · p− x · p = 0,

so the first part of the homotopy holds. Now, using the equality g − t ◦ ψ1 − φ2 ◦ s1 = x · q we
see that composing f − s2 ◦ φ1 − ψ2 ◦ t = x · p with ψ1 gives us

x · p ◦ ψ1 = f ◦ ψ1 − s2 ◦ φ1 ◦ ψ1 − ψ2 ◦ t ◦ ψ1

= ψ2 ◦ g − x · s2 − ψ2 ◦ t ◦ ψ1

= ψ2 ◦ (g − t ◦ ψ1)− x · s2

= ψ2 ◦ (φ2 ◦ s1 + x · q)− x · s2

= x · (s1 + ψ2 ◦ q − s2).

Since x is a non-zerodivisor we see from the above that p ◦ψ1 = s1 +ψ2 ◦ q− s2 which gives us

g − t′ ◦ ψ1 − φ2 ◦ s2 = g − (t+ φ2 ◦ p) ◦ ψ1 − φ2 ◦ s2

= g − t ◦ ψ1 − φ2 ◦ (p ◦ ψ1 + s2)

= g − t ◦ ψ1 − φ2 ◦ (s1 − s2 + ψ2 ◦ q + s2)

= g − t ◦ ψ1 − φ2 ◦ s1 − x · q = x · q − x · q = 0.

This means that (s2, t
′) is a nullhomotopy on θ and hence [θ] = 0 in HMF(S, x) and T is

faithful.
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Lastly we want to show that T is full, i.e. that T is surjective on the Hom-sets. So, let
(F1, G1, φ1, ψ1) and (F2, G2, φ2, ψ2) be two matrix factorizations in MF(S, x) and let η be a
chain map

... F1/xF1 G1/xG1 F1/xF1 G1/xG1 ...

... F2/xF2 G2/xG2 F2/xF2 G2/xG2 ...

φ1

f1

ψ1

g1

φ1

f0 g0

φ2 ψ2 φ2

of totally acyclic complexes over R. This is the representation of a morphism [η] in Ktac. We
choose a section and lift it to S which gives us a diagram

G1 F1 G1

G2 F2 G2

ψ1

g1

φ1

f0 g0

ψ2 φ2

where the vertical maps are chosen liftings in S. Now, let a ∈ F1 and u ∈ G1. We know that
there exists ba ∈ G2 and vu ∈ F2 such that

φ2 ◦ f0(a)− g0 ◦ φ1(a) = x · ba
ψ2 ◦ g1(a)− f0 ◦ ψ1(a) = x · vu

because the diagram commutes when we reduce modulo R. Since x is a non-zerodivisor these
elements are unique and hence gives us well defined S-homomorphisms defined by

α : F1 → G2, a 7→ ba

β : G1 → F2, u 7→ vu,

which gives us the equalities

φ2 ◦ f0 − g0 ◦ φ1 = x · α
ψ2 ◦ g1 − f0 ◦ ψ1 = x · β.

Here, the first equality gives us

x · ψ2 ◦ α ◦ ψ1 = ψ2 ◦ (φ2 ◦ f0 − g0 ◦ φ1) ◦ ψ1 = x · f0 ◦ ψ1 − x · ψ2 ◦ g0

which means, because x is a non-zerodivisor, that ψ2 ◦ α ◦ ψ1 = f0 ◦ ψ1 − ψ2 ◦ g0.
Now, let the vertical maps in the diagram

G1 F1 G1

G2 F2 G2

ψ1

g

φ1

f g

ψ2 φ2

be defined by

f = f0 − ψ2 ◦ α + β ◦ φ1

g = g0 + φ2 ◦ β.
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Using the equalities from above we get

ψ2 ◦ g = ψ2 ◦ g0 + ψ2 ◦ φ2 ◦ β = (f0 ◦ ψ1 − ψ2 ◦ α ◦ ψ1) + x · β
= f0 ◦ ψ1 − ψ2 ◦ α ◦ ψ1 + β ◦ φ1 ◦ ψ1

= (f0 − ψ2 ◦ α + β ◦ φ1) ◦ ψ1 = f ◦ ψ1

and

φ2 ◦ f = φ2 ◦ f0 + φ2 ◦ ψ2 ◦ α + φ2 ◦ β ◦ φ1

= (φ2 ◦ f0 − x · α) + φ2 ◦ β ◦ φ1

= g0 ◦ φ1 + φ2 ◦ β ◦ φ1 = (g0 + φ2 ◦ β) ◦ φ1 = g ◦ φ1

which shows that the diagram commutes. This means that θ = (f, g) is a morphism of matrix
factorizations in MF(S, x) and we now want to show that T ([θ]) = [η].

T ([θ]) in Ktac is represented by

... F1/xF1 G1/xG1 F1/xF1 G1/xG1 ...

... F2/xF2 G2/xG2 F2/xF2 G2/xG2 ...

φ1

f

ψ1

g

φ1

f g

φ2 ψ2 φ2

which is a two-periodic chain map of totally acyclic complexes. We need to show that this is
homotopic to η. So consider the diagram

... F1/xF1 G1/xG1 F1/xF1 G1/xG1 ...

... F2/xF2 G2/xG2 F2/xF2 G2/xG2 ...

φ1

f−f1

ψ1

g−g1

φ1

f−f0

−α
g−g0

β

φ2 ψ2 φ2

Here we get
f − f0 = −ψ2 ◦ α + β ◦ φ1

from the definition of f and so the diagram displays the "zeroth part" of a possible nullhomotopy.
From Lemma 5.2.1 we know that we can complete this to a nullhomotopy and hence T ([θ]) = [η]
which means T is full.

Before we can prove the last result we need some more preliminaries.

Definition. (1) Let S be a ring with exactly one maximal ideal. Then S is a local ring.

(2) Let S be a Noetherian local ring with a maximal ideal m. Let m = (a1, a2, ..., an) where
n is chosen as small as possible. Then S is regular if dimS = n

The standard example of a local regular ring is S = k [[x1, x2, ..., xn]], where k is a field. We
also have that every field k is a regular local ring, with dimension 0.

An equivalent definition of a local regular ring is that a local Noetherian ring S is regular
if it has finite global dimension. This was proven by Auslander and Buchsbaum in [1] and [2],
and by Serre in [23]. Auslander-Buchsbaum also has another useful result which is called the
Auslander-Buchsbaum theorem. It states that regular local rings are unique factorization domains
and was proven in [3].
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Now, let S be a regular local ring and let 0 6= x ∈ S. Since S is a UFD it is also an integral
domain, so x is automatically a non-zerodivisor. This means Theorem 5.2.2 holds. This brings
us to our last result, which was proved by Orlov in [21].

Theorem 5.2.3. Let S be a regular local ring and 0 6= x ∈ S. Let R = S/(x). Then the functor

T : HMF(S, x)→ Ktac(R)

from Theorem 5.2.2 is an equivalence.

Proof. We know that T is fully faithful so what remains is to prove that it is dense. Consider
the ring R. In [9] it was proven that Ktac(R) is equivalent with MCM(R); the stable category
of maximal Cohen-Macaulay modules. Furthermore, in [10] it was shown that every maximal
Cohen-Macaulay R-module is two-periodic, i.e. has a two-periodic free resolution. So every
object in Ktac(R) is isomorphic to a two-periodic totally acyclic complex

... P Q P Q ...α β α

and what is left to prove is that there exists a matrix factorization (F,G, φ, ψ) in HMF(S, x)
such that T sends (F,G, φ, ψ) to the complex above.

Let
A : ... P Q P Q ...α β α

in Ktac(R) be indecomposable and minimal. Let M = Imα. This is an R-module with a
minimal free resolution

F1 : ... P Q P M 0α β α

Since M is a maximal Cohen-Macaulay module, we have from commutative algebra that
dimM = dimR = dimS − 1. This and the Auslander-Buchsbaum-Serre theorem gives us

pdSM = dimS − depthSM = 1

which means there exists a minimal free resolution over S

0 F G M 0
φ π

Since M is an R-module, we know that xM = 0. We also have that M ' G/Imφ which means
xG ⊆ Imφ. Look at

G

F Imφ 0

∃ψ ·x

φ

From the construction, this gives φ ◦ ψ = x · 1G. From this we get

φ ◦ ψ ◦ φ = (x · 1G) ◦ φ.

The map φ is injective so we know that for every a ∈ F we have

φ ◦ ψ ◦ φ(a) = φ(xa)⇒ φ(ψ ◦ φ(a)− xa) = 0⇒ ψ ◦ φ(a) = xa ∀a ∈ F
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which means that ψ ◦ φ = x · 1F . Hence

F G F
φ ψ

is a matrix factorization.
Reduce modulo x and get

... F/xF G/xG F/xF G/xG ...
φ ψ φ

Since this is exact we know that Kerψ = Imφ and from before we know that M ' G/Imφ and
xG ⊆ Imφ. Together this gives

Imψ ' (G/xG)/Kerψ

= (G/xG)/Imφ

= (G/xG)/(Imψ/xG)

' G/Imφ 'M.

This means we get a free resolution of M over R:

F2 : ... F/xF G/xG F/xF G/xG M 0
φ ψ φ

From the construction this is also minimal. This means that F1 ' F2, so

M ' ( ... F/xF G/xG F/xF G/xG ...
φ ψ φ

)

and the functor is dense.

48



Bibliography

[1] M. AUSLANDER AND D. A. BUCHSBAUM, Homological dimension in Noetherian rings,
Proceedings of the National Academy of Sciences of the United States of America, 42
(1956), pp. 36–38.

[2] , Homological dimension in local rings, Transactions of the American Mathematical
Society, 85 (1957), pp. 390–405.

[3] , Unique factorization in regular local rings, Proceedings of the National Academy of
Sciences of the United States of America, 45 (1959), pp. 733–734.

[4] S. AWODEY, Category Theory, Oxford university press, 2010.

[5] P. A. BERGH AND D. A. JORGENSEN, Complete intersections and equivalences with
categories of matrix factorizations, Homology, Homotopy and Applications, (2016).

[6] P. A. BERGH AND M. THAULE, The axioms for n-angulated categories, Algebraic and
Geometric Topology, 13 (2013), pp. 2405–2428.

[7] T. BLYTH, Categories, Longman, 1986.

[8] W. BRUNS AND J. HERZOG, Cohen-Macaulay rings, Cambridge University Press, 1993.

[9] R.-O. BUCHWEITZ, Maximal Cohen-Macaulay modules and Tate-cohomology over Goren-
stein rings. Available at https://tspace.library.utoronto.ca/handle/1807/16682, 1987.

[10] D. EISENBUD, Homological algebra on a complete intersection, with an application to
group representations, Transactions of the American Mathematical Society, 260 (1980),
pp. 35–64.

[11] T. HOLM, P. JØRGENSEN, AND R. ROUQUIER, Triangulated Categories, Cambridge
university press, 2010.

[12] S. IYENGAR AND H. KRAUSE, Acyclicity versus total acyclicity for complexes over
Noetherian rings, Documenta Mathematica, 11 (2006), pp. 207–240.

[13] J. P. JANS, Rings and Homology, Holt, Reinhart and Winston, Inc., 1964.
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