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Abstract

We present two general number field sieve algorithms solving the
discrete logarithm problem in finite fields. The first algorithm pre-
sented deals with discrete logarithms in prime fields Fp, while the
second considers prime power fields Fpn . We prove, using the standard
heuristic, that these algorithms will run in sub-exponential time.

We also give an overview of different index calculus algorithms
solving the discrete logarithm problem efficiently for different possible
relations between the characteristic and the extension degree.

To be able to give a good introduction to the algorithms, we present
theory necessary to understand the underlying algebraic structures
used in the algorithms. This theory is largely algebraic number theory.
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1 Introduction

1.1 Discrete logarithms
Consider the situation where we have numbers k, g and t such that tk = g
in a finite group (that is, in the finite group G with a cyclic subgroup H
with generator t, g ∈ H and k ∈ Z). There exist fast algorithms for finding g
given k and t (for example, exponentiation by squaring). On the other hand,
finding k given g and t is not easy in general. Doing this computation will
in this text be referred to as solving the discrete logarithm problem. This is
usually written as k = logt g, mirroring standard logarithm notation, in for
example R.

1.2 The general number field sieve and L-notation
This text will discuss variants of the general number field sieve algorithm used
to solve discrete logarithm problems in finite fields of both prime and prime
power order. That is, the text will consider the discrete logarithm problem
over finite fields Fp and Fpn .

The discrete logarithm problem is important in cryptography, where the
Diffie-Hellman, Elgamal and Digital Signature algorithms are based on the
assumption that the discrete logarithm problem is hard. It can in fact be
shown that there exists no sub-exponential algorithm for general groups. To
be sub-exponential in solving the discrete logarithm problem, the algorithm
needs to take the structure of the group into consideration. In the case where
the underlying group is a finite field, the general number field sieve is known
to solve the problem in sub-exponential time, but still super-polynomial time.
To compare asymptotic run times L-notation will be used,

LQ(α, c) = exp((c+ o(1))(logQ)α(log logQ)1−α), (1)

where Q will be the size of the finite field we consider. This expression
is sub-exponential in the number of bits b required to express Q. That is,
L-notation will look like

LQ(α, c) = exp((c+ o(1))bα(log b)1−α), (2)

if we consider it a function of b = logQ. In this notation we see that α = 1
corresponds to a fully exponential run time, while α = 0 corresponds to a

4



polynomial run time. The two primary algorithms we will consider in this
text will have α = 1/3 and c = (64/9)1/3.

The general number field sieve algorithm was first developed to factor
large integers. It was later modified to solve discrete logarithms, in finite
fields, both of prime order and prime power order. The general number fields
sieve is the asymptotically fastest algorithm to solve the discrete logarithm
problem, and it is also practically the fastest when the size of the field gets
large enough.

Much of the literature explains the discrete logarithm algorithm by com-
paring it to the factorization algorithm. This will not be done here. This
text will first include prerequisites to understand the algorithms, then an
examination of the algorithm in the prime field case, an overview of different
algorithms that solves the discrete logarithm problem in different finite fields,
before it finishes with an algorithm that works for certain prime power finite
fields. This thesis follows in the footsteps of several earlier master theses
studying the number field sieve conducted at NTNU [10, 13, 14].
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2 Theory
This text assumes some knowledge about basic abstract algebra, e.g. under-
standing of rings, fields, polynomials and modules. We will assume that the
rings in this text are commutative and unital.

2.1 Number fields
The general number field sieve algorithm will make use of number fields in
computing the discrete logarithm. In this section we will define what that is
and consider related subjects. We will also give some other theory which will
be necessary to understand the algorithms presented.

Definition 1. A number field is a finite degree field extension of the field of
rational numbers Q. Here its dimension as a vector space over Q is simply
called its degree.

Typically we consider a monic irreducible polynomial f ∈ Q[x] of degree
d, with root α ∈ C. Then the field extension

Q[α] = {a0 + a1α + . . .+ ad−1α
a−1 | ai ∈ Q ∀i}

is a number field of degree d. We can map elements of a number field into
the complex numbers by way of an embedding.

Definition 2. An embedding of a number field Q[α] is an injective homomor-
phism Q[α]→ C. The number of such embeddings is equal to the degree, d.
An embedding is called real if the image is a subset of R, and complex if not.

Inside a number field we have a notion of integer mirroring the usual
integers Z.

Definition 3. An element β ∈ Q[α] is an algebraic integer if it is a root of a
monic polynomial with integer coefficients, that is, β is an algebraic integer if
it is a root of monic g(x) ∈ Z[x].

The collection of algebraic integers form a ring called the ring of (algebraic)
integers, denoted OQ[α]. Note that Z ⊆ OQ[α] in any number field. We now
have two different notions of integers, and to differentiate elements in Z and
OQ[α] it is typical to call Z the set of rational integers. A number that is
both rational and an algebraic integer is automatically a rational integer,
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(w ∈ Q ∧ w ∈ OQ[α] ⇒ w ∈ Z), giving justification for the name rational
integer. It should be noted that the ring OQ[α] is not in general equal to Z[α].
It is in fact the case that Z[α] ⊆ OQ[α]. To give an example of Z[α] 6= OQ[α],
consider the number field Q[

√
−3]. The ring of integers in this number field

is called the Eisenstein integers. To see that OQ[
√
−3] 6= Z[

√
−3], consider the

number −1+
√
−3

2 = e2πi/3 which we will call ω. It is clear that ω /∈ Z[
√
−3],

but we have ω ∈ OQ[
√
−3] since we have ω2 + ω + 1 = 0, so it is a root of a

monic polynomial in Z[x]. It is possible to show that OQ[
√
−3] = Z[ω].

To use the ring of integers in the number field sieve algorithm, we need
to know some properties of the ring. Most of the properties we will use are
covered by the fact that the ring of integers is a Dedekind domain. (See
Marcus[9, page 56] for a proof.)

2.1.1 Dedekind domains

Informally, a Dedekind domain is a ring where unique factorization holds for
ideals in the ring, but not necessarily for the elements themselves. An ideal i
factors into another ideal p if it can be written as i = pq where q is another
ideal. This clearly mirrors factorization in Z.

Definition 4. A Dedekind domain is an integral domain, where every nonzero
proper ideal factors into prime ideals.

A Dedekind domain is therefore a ring with no zero-divisors, where all
ideals (not equal to zero or the whole ring) can be expressed as a product
of prime ideals, that is we have the unique factorization theorem for ideals,
which, like we said, mirrors the unique factorization in Z.

It is important to emphasize that this theorem is not true for elements in
OQ[α], only ideals. For example in OQ[

√
−5] = Z[

√
−5] the element 6 = 2 · 3 =

(1 +
√
−5)(1−

√
−5) has two factorizations which are different. On the other

hand, the ideal 〈6〉 has a unique factorization, 〈6〉 = 〈2, 1 +
√
−5〉2〈3, 1 −√

−5〉〈3, 1 +
√
−5〉. (See Marcus [9] for more details.) This is because the

ideals 〈2〉 = 〈2, 1 +
√
−5〉2 and 〈3〉 = 〈3, 1 +

√
−5〉〈3, 1 −

√
−5〉 factor non-

trivially into prime ideals. Note that all factors of 〈6〉 are generated by two
elements, it is in fact true in a Dedekind domain that all ideals are generated
by one or two elements.

A fact that we will use later is that all prime ideals are maximal ideals in
a Dedekind domain. The converse is always true, so in a Dedekind domain
an ideal is prime if and only if it is maximal.
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Unique factorization of elements holds in unique factorization domains
(UFDs). A Dedekind domain is a UFD if and only if it is a PID, a ring where
all ideals are generated by a single element. In fact, we have a notion of
”how much” unique factorization fails in a Dedekind domain, called the ideal
class group. To define this, we need to look at some other related definitions,
namely the field of fractions of an integral domain and fractional ideals.

Definition 5. A field of fractions of an integral domain is the smallest field
in which it can be embedded.

The canonical example is that the field of fractions of Z is Q. The field of
fractions of Z[

√
−5] is equal to Q[

√
−5].

Definition 6. Let R be a Dedekind domain and K be its field of fractions.
Consider a R-submodule of K that we call a. Let a be nonzero. This a is a
fractional ideal if there exists a nonzero r ∈ R such that ra ⊂ R.

Note that a fractional ideal does not lie in R, but rather in K. One can
think of r as ”clearing out denominators” in a. Given a Dedekind domain
R, we now define a relation ∼ on the fractional ideals of R such that a ∼ b
if ra = sb for r, s ∈ R. This relation can be shown to be an equivalence
relation.

Theorem 7. Multiplication of equivalence classes of ideals defined by [a][b] =
[ab] is well defined, and the classes form a group under this operation.

Proof. Assume a1 ∼ b1 and a2 ∼ b2, that is r1a1 = s1b1 and r2a2 = s2b2.
Multiplying these equations together, we get

r1a1r2a2 = s1b1s2b2

r1r2a1a2 = s1s2b1b2

a1a2 ∼ b1b2,

so the multiplication is well defined. The group operation is commutative and
associative because multiplication of ideals is commutative and associative.
The identity is the class of all principle ideals. The existence of inverses are
proven in Marcus [9, chapter 3].

Definition 8. The ideal class group of a Dedekind domain is the group given
by defining multiplication between the equivalence classes of ideals.
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We note that the group is trivial if and only if R is a PID (and hence
a UFD), since all ideals will then be in the same equivalence class, the one
consisting of principal ideals. We noted that Z[

√
−5] did not have unique

factorization, and can hence not have trivial ideal class group. The ideal class
group of Z[

√
−5] is in fact Z2, as is proven in Jamroz [5].

2.1.2 Module structure

A fact that will be used in the discussion of the algorithm is the free module
structure of rings of integers. In a similar fashion to how Q[α] is a vector
space of degree d over Q, OQ[α] is a free Z-module of degree d.

2.1.3 Norm of ideals

Given unique factorization of ideals in OQ[α], we want another way to look
at these ideals, which will be the norm of them. First we consider the norm
of an element in a number field. Remember that in a number field Q[α] of
degree d, we have exactly d embeddings into C, namely the homomorphisms
defined by σi : α 7→ αi where α1, ..., αd are the roots of f . To define the norm
of an element we use these embeddings. The norm of an element β ∈ Q[α] is

N(β) =
d∏
i=1

σi(β).

The norm sends elements in Q[α] to Q, and elements in OQ[α] to Z. We also see
from the definition that the norm is multiplicative, i.e. N(βγ) = N(β)N(γ).
For elements a+ bα ∈ Z[α] we can make the norm explicit,

N(a+ bα) =
d∏
i=1

σi(a+ bα) =
d∏
i=1

(a+ bαi) = bd
d∏
i=1

(
a

b
+ αi

)
.

Notice that we have f(x) = ∏d
i=1(x− αi), and that we are only a sign away

from this. We continue

N(a+ bα) = (−b)d
d∏
i=1

(
− a

b
− αi

)
= (−b)df

(
− a

b

)
. (3)

Furthermore we define the norm for ideals by N(a) = [OQ[α] : a] =
|OQ[α]/a|. This definition has a close relationship with the norm of elements,
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in fact for a principle ideal b generated by β we have that N(b) = |N(β)|.
The norm of ideals is also multiplicative, N(a · b) = N(a)N(b) if a and b are
ideals of OQ[α].

Another important concept related to this is ramification of primes in
OQ[α]. Given the factorization of the ideal 〈q〉 generated by a prime q

〈q〉 =
∏
i

qeii

into prime ideals q, we say that q is unramified in OQ[α] if ei ∈ {0, 1} for all
i, and say it is ramified otherwise. The largest ei is called the ramification
index of q in OQ[α]. Looking at the example above we see that 2 is ramified
in OQ[

√
−5] because 〈2〉 = 〈2, 1 +

√
−5〉2, while 3 is unramified in OQ[

√
−5],

because 〈3〉 = 〈3, 1 +
√
−5〉〈3, 1−

√
−5〉.

2.1.4 Units

In our discussion of the algorithms, we also encounter units of a ring i.e.
elements with multiplicative inverse. Recall that all rings will have a unit, 1,
as it is its own multiplicative inverse. All elements in a field, except zero, are
units. The set of units of a ring is a group under multiplication, called the
unit group. In a ring of integers in a number field, we have a theorem called
Dirichlet’s unit theorem which tell us about the structure of the unit group.

Theorem 9 (Dirichlet’s unit group theorem). Let O∗Q[α] be the unit group of
the ring of integers OQ[α], r1 the real embeddings of the number field and r2 the
number of conjugate pairs of complex embeddings. Then O∗Q[α]

∼= G×Zr1+r2−1

where G = 〈u0〉 is a finite cyclic group consisting of all the roots of unity in
Q[α].

Proof. A proof can be found in Ash [1, Section 6.2].

2.2 Prime ideals
In the number field sieve algorithm we want to have some control over certain
prime ideals in OQ[α]. First note that if we have an ideal q such that N(q)
is prime, then q is a prime ideal. This is because if N(q) = q for a prime
q, then |OQ[α]/q| = q =⇒ OQ[α]/q ∼= Zq, which is a field. This means that q
is a maximal ideal and hence a prime ideal. Conversely we have that any
prime ideal q has prime power norm, since prime ideals are maximal in a
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Dedekind domain, which means that OQ[α]/q is a finite field, which implies
N(q) = |OQ[α]/q| = qn as any finite field has prime or prime power order. We
use this power n, and say that such an ideal has degree n. We are interested
in first degree prime ideals.

To identify first degree prime ideals we first define the set

R(q) = {r ∈ {0, 1, ..., q} | f(r) ≡ 0 (mod q)}, (4)

where f is the polynomial we used to define our number field. We look at
what this set has to do with factors of N(a+ bα).

Theorem 10. Let q be a prime number and a + bα ∈ Z[α] such that q
does not divide b. Then q | N(a+ bα) if and only if a ≡ −br (mod q) for a
r ∈ R(q).

Proof. Let r ∈ R(q) be such that a ≡ −br (mod q). We now simply calculate
the norm,

N(a+ bα) ≡ (−b)df
(
− a

b

)
≡ (−b)df

(
− −br

b

)
≡ (−b)df(r) ≡ 0 (mod q).

If q | N(a+bα), we have (−b)df(−a
b
) ≡ 0 (mod q), which means f(−a

b
) ≡

0 (mod q) since b - q. Define r = −a
b
to get what we want.

We now classify first degree prime ideals.

Theorem 11. There is a bijection between pairs (q, r) such that r ∈ R(q)
and first degree prime ideals q of Z[α].

Proof. To find a map from first degree prime ideals to such pairs, first note
that the definition gives that the norm of a first degree prime ideal is a
prime q, so we send the ideal to this q in the pair. Next, consider the natural
homomorphism φ : Z[α]→ Zq, and let φ(α) = r. This r will in fact be in R(q).
This because f(α) = 0 giving us φ(f(α)) = 0. We also have φ(f(α)) ≡ f(r)
(mod q). To see this we simply distribute φ over f ,

φ(f(α)) = φ

 d∏
i=0

ciα
i

 ≡ d∏
i=0

ciφ(α)i ≡
d∏
i=0

cir
i ≡ f(r) (mod q),

giving us f(r) ≡ 0 (mod q).
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To find the reverse map we consider the same homomorphism φ : Z[α]→
Zq. We now study kerφ which is equal to the cyclic subgroup of Z[α] generated
by a+bα (kerφ = 〈a+bα〉). The map φ is surjective, so the first isomorphism
theorem for rings says that Z[α]/ kerφ ∼= Zq. If we define q = kerφ, we have
that N(q) = q, so q is a first degree prime ideal.

Note that q is generated by q and α− r. We have

φ(β1q + β2(α− r)) = φ(β1)φ(q) + φ(β2)φ(α)− φ(β2)φ(r)
= φ(β1) · 0 + φ(β2)r − φ(β2)r
= 0,

showing that {β1q + β2(α− r)|β1, β2 ∈ Z[α]} ⊂ kerφ = q. To show the other
inclusion, we assume β ∈ q, which is the same as φ(β) ≡ 0 (mod q). Any
β ∈ Z[α] can be written as β = ∑d−1

i=0 aiα
i. There is an integer k such that

kq = φ(β) = φ

 d−1∑
i=0

aiα
i

 =
d−1∑
i=0

air
i

0 = kq −
d−1∑
i=0

air
i

β = kq −
d−1∑
i=0

air
i + β

β = kq −
d−1∑
i=0

air
i +

d−1∑
i=0

aiα
i = kq −

d−1∑
i=0

ai(αi − ri).

We observe that (α − r) is a factor of the sum, which means that we have
proved the second inclusion.

We now need to show that if q1 = 〈q, α − r1〉 and q2 = 〈q, α − r2〉, then
either q1 6= q2 and r1 6≡ r2 (mod q); or q1 = q2 and r1 ≡ r2 (mod q). We
consider (α− r1)− (α− r2) = r2 − r1. Equality trivially gives us q1 = q2, so
we consider r2 − r1 6= 0. We consider gcd(r2 − r1, q), which can equal 1 or q.

First, if gcd(r2 − r1, q) = q, then r2 − r1 = (α− r1)− (α− r2) = kq with
k ∈ Z. This means that α− r1 = α− r2 + kq, so we get q1 = q2.

Now, if gcd(r2 − r1, q) = 1, we assume q1 = q2 for a contradiction. This
means that q, α− r1 and α− r2 are all in the ideal, and thus 1 is also in the
ideal. This is a contradiction because then the ideal would equal the whole
ring. We conclude that q1 6= q2 and r1 6≡ r2 (mod q).
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Continuing our example in Z[
√
−5], we try this with the prime ideals

〈3, 1 +
√
−5〉 and 〈3, 1−

√
−5〉. Note that Z[

√
−5] has minimal polynomial

f(x) = x2 + 5. First we find that the ideals have the same norm, which
is 3. Then we consider R(3) = {1, 2}. We define our homomorphism by√
−5 7→ 2 (mod 3), which gives −

√
−5 7→ −2 ≡ 1 (mod 3). That is we have

the following representations

〈3, 1 +
√
−5〉 ←→ (3, 2)

〈3, 1−
√
−5〉 ←→ (3, 1).

We check if 〈3, 1 +
√
−5〉 is generated by 3 and

√
−5− 2.

〈3,
√
−5− 2〉 = 3k + γ(

√
−5− 2)

= 3n+ 3γ + γ(
√
−5− 2)

= 3n+ γ(1 +
√
−5)

= 〈3, 1 +
√
−5〉

by choosing k = n + γ. We also see that the prime ideal 〈3, 1 −
√
−5〉 is

generated by 3 and
√
−5− 1 = −(1−

√
−5).

2.3 Smooth numbers
Definition 12. A y-smooth integer has all prime factors less than or equal
to y.

That means that 15 = 3 ·5 is 5-smooth, while 14 = 2 ·7 is not. This notion
can be extended to elements of OQ[α] by defining β ∈ OQ[α] to be y-smooth if
its norm N(β) ∈ Z is y-smooth.

2.3.1 Density

Denote by ψ(x, y) the number of integers less than x which are y-smooth.
The probability of a random integer in 1, ..., x being y-smooth is then ψ(x,y)

x
.

2.3.2 Exponent vectors

An alternative way to express y-smooth numbers given their factorizations
is by their exponent vectors. Given a base q1, q2, ...qπ(y) (typically called a
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smoothness base) that consists of all prime numbers up to y, one writes the
number n as a vector

n 7→ eq1(n), eq2(n), ..., eqπ(y)(n)

where eqi(n) is the exponent of the ith prime in the factorization of n. E.g.,
given the basis (2, 3, 5) for 5-smooth numbers, 24 = 23 · 3 is written (3, 1, 0)
while 25 = 52 is written (0, 0, 2). This base for y-smooth numbers will be
called the rational factor base R. It should be noted that it is possible to
have a rational factor base where one considers not only y-smooth numbers,
but e.g. a factor base consisting of y-smooth numbers for a small y and a
large prime q > y.

It is also possible to create an algebraic factor base, A. This will consist
of first degree prime ideals in OQ[α], represented by the pair (q, r). Then the
exponent vector representing the element (a+ bα) ∈ Z[α] will be representing
the factorization of the ideal 〈a+ bα〉 into prime ideals.

One should note that it is possible to expand the algebraic factor bases, A.
In both algorithms, we will letA consist of first degree prime ideals represented
by a pair (q, r). There is another type of prime ideal that could divide a+ bα,
namely prime ideals that divide the index fα = [OQ[α] : Z[α]], although
these two options cover all possibilities. These extra ideals complicate the
exposition, and was for that reason excluded. To find out how to include and
treat these ideals, check Joux et.al. [8, Section 4.1].
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3 The number field sieve in prime fields

3.1 Overview
In our finite field Fp we consider t, g ∈ F∗p, such that g ∈ 〈t〉. The goal is to
find the discrete logarithm of g to the base t, logt g. To compute this logarithm
using the general number field sieve we first find discrete logarithms modulo
large prime divisors l of p− 1, that is we find relations of the form j ≡ logt g
(mod l), and use the Chinese remainder theorem to find the original logarithm
logt g. Finding the relations modulo small l is done with algorithms which
are faster in small groups, and will not be covered here.

Note that the prime factorization of p− 1 is typically known in most cryp-
tographic contexts, and even if it is not, it is possible to use the factorization
version of the number field sieve to find it, which runs in the same time as
this algorithm.

To find such relations for large l we first choose two number rings with
maps into Fp. That is, we first need two polynomials f1, f2 ∈ Z[x] with a
common root.

There are several options for number rings here. The most common is
probably to use the base m technique where one simply chooses a number
m and takes the base-m expansion of p = ∑

aim
i. This gives f1 = ∑

aiX
i,

which has a common root m with f2 = X −m. The number ring we get from
f2 is then isomorphic with Z, this is called the rational side, while the side
corresponding to f1 is called algebraic.

Another option is to take a degree d+ 1 polynomial with small coefficients,
and try to find a root of it modulo p, discarding it and trying again if no
root is found. When such a polynomial is found, it is possible to use lattice
techniques to find a degree d polynomial with the same root. (See Joux and
Lercier [6] for details.)

This search for good polynomials defining the number rings is an active
field of research, with no known optimal solution.

3.2 Calculating logarithms
We will continue this section with the base m method, from the possible
methods of choosing polynomials. Other choices of polynomials give similar
continuations, only with two algebraic sides, rather than one rational and
one algebraic side. We do not explicitly define the polynomial on the rational
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side, and simply call the base m polynomial f . To find a degree d polynomial
f , we start by defining m = bp1/dc, then we find the base m expansion of
p = ∑

aim
i and define

f =
d∑
i=0

aiX
i.

We see that f(m) ≡ 0 (mod p). Our polynomial is also monic (ad = 1)
because 2md > p > md.

In practice, it may be interesting to try to find different polynomials so
that we can find a polynomial where the coefficients ai are small, as the size
of these coefficients change the run time. Therefore, it may be worthwhile to
check different degrees d and hope for small coefficients. We will return to
the choice of d in the section about the run time of the algorithm where we
will find bounds on d.

The next step is to find a root α ∈ C of f , and thus defining Z[α] and OQ[α].
We will consider on one side elements in Z[α]. The other ring will simply be
Z, as discussed above. We also need homomorphisms from these rings into Fp.
The map from Z will be the canonical projection map, π : Z→ Fp given by
a 7→ a (mod p) and the map φ : Z[α]→ Fp will be given by ∑ biα

i 7→ ∑
bim

i

(mod p) for bi ∈ Z, or equivalently the homomorphism given by α 7→ m
(mod p) .

The algorithm will try to find powers of l, with a certain form,

ol = txtg
∏

(a,b)∈S
(a+ bm)xa,b (5)

βl =
∏

(a,b)∈S
(a+ bα)xa,b , (6)

for o ∈ Z and β ∈ Z[α]. Using our homomorphisms, we get that

π(ol) = π

txtg ∏
(a,b)∈S

(a+ bm)xa,b
 = π(txtg)π

 ∏
(a,b)∈S

(a+ bm)xa,b
 .

For t, g ∈ Fp, we identify canonical integers, and by abuse of notation, we call
these integers t and g. Looking at the two parts of the right expression, we
can see that π(txtg) = txtg using our abuse of notation. We also see that

π

 ∏
(a,b)∈S

(a+ bm)xa,b
 = φ

 ∏
(a,b)∈S

(a+ bα)xa,b
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because π(m) = φ(α). This results in the relation π(ol) = txtgφ(βl) for xt.
This relation can be used to get a discrete logarithm modulo l. To do this we
see that since π and φ are homomorphisms, π(ol) = π(o)l and φ(βl) = φ(β)l
are lth powers. Renaming c = π(o)(φ(β))−1 we get

cl = txtg. (7)

Since txtg ∈ 〈t〉, we see that also c ∈ 〈t〉. This means that c = tb for some
b. Inserting this into (7) we get tbl = txtg. Looking at the exponents we get

bl = xt + logt g

in F∗p. In addition to being true modulo p− 1, this equation will also be true
modulo divisors l of p− 1, but since bl ≡ 0 (mod l) the equation simplifies.
We get that

logt g ≡ −xt (mod l), (8)
a solution modulo l. If we can generate such solutions for every prime divisor
of p− 1, we can use the Chinese remainder theorem to get back the discrete
logarithm k ≡ logt g (mod p− 1), solving the discrete logarithm problem.

3.3 Sieving
To find the relations in (5, 6), we first use a technique called sieving. We
want to find a set of numbers that are smooth over some factor base, that is
numbers that can be written as an exponent vector over such a base. First
consider two sets of primes R and A called the rational and algebraic factor
base, respectively.

Like we alluded to in the theory section, a common and effective way to
find such a factor base is to simply consider all primes up to a certain bound
y. We will assume that this approach is taken when we analyze the run time
of the algorithm. The difference between these sets is that A also has an r
attached to each such prime. In other words: A consists of pairs (q, r), the
representatives of first degree prime ideals seen in (4). We are looking for
numbers that are smooth over both R and A. On the rational side this simply
means numbers a+ bm that factor completely over R. On the algebraic side
we want numbers a + bα ∈ Z[α] such that 〈a + bα〉 factors completely into
first degree prime ideals that are represented by a pair (q, r) ∈ A. In the end
we want a set S ⊂ Z×Z such that for (a, b) ∈ S both a+ bm and a+ bα are
smooth in their respective factor bases.
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Let v be a bound, whose size will be discussed when we cover the run time
of the algorithm. First we look at the rational sieve. We fix 0 ≤ b ≤ v, and
list the values a+ bm for all a such that |a| ≤ v. A prime q divides a+ bm
if and only if a ≡ −bm (mod q), so after calculating −bm, we check this
congruence for all a considered. If we find that q divides a+ bm, we update
the number by dividing it by q as many times as possible. Now, when all a
are checked, scan the array for entries with value ±1, as these will correspond
to smooth numbers. Then go to the next b and continue the procedure. Note
that we skip a if a and b are not coprime, as they give no new information.

The algebraic sieve is similar, first we find N(a + bα) for all possible a
with a fixed b. We check the congruence a ≡ −br (mod q), and update the
corresponding entries by dividing by the highest possible power of q. When
this is done for all possible pairs (q, r), we again check for entries that are equal
to ±1, as these identify the smooth numbers. Remember that the algebraic
factor base A consists of first degree prime ideals, and we are checking the
factorization of ideals in OQ[α].

To increase the speed of this step in the algorithm we can change division
to subtraction by storing log(a+ bm) instead of a+ bm, and subtracting log q
instead of dividing by q. Then we look for values that are close to zero when
checking for smooth values. This can be improved to initializing by zeros,
and adding log q instead of subtracting. We also store the exponent vectors
of the smooth numbers for later use.

The last step is to create the set S with all smooth numbers by taking the
numbers that are smooth in both factor bases, the intersection of the results
of both sieves. This set S will be used later in the algorithm.

3.4 Schirokauer maps
The equation we want to get to on the algebraic side is

βl =
∏

(a,b)∈S
(a+ bα)xa,b ,

in other words we want βl to be equal something. Unfortunately, the algebraic
factor base consists of ideals in OQ[α], and if we use these directly, we only
get a relation with 〈β〉l, not with βl itself. We will in other words have

〈β〉l =
∏

(a,b)∈S
(a+ bα)xa,b ,
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from the algebraic factor base. To increase the probability of the right hand
side actually being an lth power of elements in OQ[α], and not just ideals, we
introduce another condition that has to be true in if it is the case that the
right hand side is an lth power of elements in OQ[α]. We will use Schirokauer
maps [12], and the condition we are considering is that the maps are zero.

Remember that l is a prime divisor of p−1. We assume that l is unramified
in OQ[α], which means that l has no repeated factors in its factorization into
prime ideals. Define the set

Γ = {γ ∈ OQ[α]|N(γ) 6≡ 0 (mod l)},
the set of all algebraic numbers whose norm is not zero modulo l. We wish
to find an integer ε such that γε ≡ 1 (mod l) ∀γ ∈ Γ. We first consider the
prime ideals li dividing 〈l〉. For each such prime ideal li, let εli = |(OQ[α]/li)∗|,
and ε = lcm(εl1 , ..., εlk). Given this, we know that there exist ri such that
ε = εliri for all i. Now we consider

γε + li = (γ + li)ε = (γ + li)εliri = (γ + li)|(OQ[α]/li)∗|ri .

Since γ ∈ li, we are essentially raising γ an exponent equal to the size of the
multiplicative subgroup, making it equal 1. This leads to γε + li = (1 + li)ri =
1 + li, and since this is true for all i, we get that

γε − 1 ∈
⋂
i

li.

The intersection of all li is equal to the product of them, which is equal to
lOQ[α], since l is unramified. Now we have that γε − 1 ∈ lOQ[α] and hence
γε ≡ 1 (mod l).

Now define
λ : Γ→lOQ[α]/l

2OQ[α]

γ 7→(γε − 1) + l2OQ[α].

Theorem 13. The map λ is a logarithmic homomorphism.
Proof.

λ(γγ̂)− (λ(γ) + λ(γ̂))
= (γγ̂)ε − 1− γε + 1− γ̂ε + 1 + l2OQ[α]

= γγ̂ε − γε − γ̂ε + 1 + l2OQ[α]

= (γε − 1)(γ̂ε − 1) + l2OQ[α] = 0 + l2OQ[α]

since both γε−1 and γ̂ε−1 are in lOQ[α], the product of them is in l2OQ[α].
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We now use the fact that OQ[α] is a free Z-module of rank d. This structure
induces a structure on lOQ[α]/l

2OQ[α], making it a free Zl module of rank
d. Given a basis {bjl + l2OQ[α]}j=1,...,d of this module, we create d maps by
projecting λ into each coordinate. Call these maps λj : Γ→ Zl. Explicitly,
we have

γε − 1 ≡ l
d∑
j=1

λj(γ)bj (mod l2).

The point of these maps is that λj(βl) = lλj(β) = 0 for all j, the maps are in
other words zero for any lth power of elements in OQ[α]. This will be used in
the following section.

3.5 Linear algebra
Now, we want to use the relations we have gathered to find the relations (5,
6). In other words, we want a subset U ⊆ S so that

ol = txtg
∏

(a,b)∈S
(a+ bm)xa,b

and
βl =

∏
(a,b)∈S

(a+ bα)xa,b .

This is done by linear algebra on the exponent vectors defining the numbers
in S. This will result in a solution vector x = (xt, x(a,b)1 , ..., x(a,b)|S|), fulfilling
the above relations.

We first consider how to construct the exponent vectors. Let n(R) be the
number of primes in the rational factor base R, and let n(A) be the number
of elements in the algebraic factor base A. We now construct an exponent
vector V(a,b) for each element (a, b) ∈ S with length n(R)+n(A)+d. The first
n(R) elements are the exponent vector in the rational factor base R, the next
n(A) are from the algebraic factor base A and the last d elements are from
the Schirokauer maps. We also consider the numbers in the original problem
k = logt g, and create exponent vectors Vt = (eq1(t), ..., eqn(R)(t), 0, ..., 0, ..., 0)
and Vg = (eq1(g), ..., eqn(R)(g), 0, ..., 0, ..., 0). The first n(R) elements are the
factorizations of t and g in R, and the remaining n(A) + d elements are zero.

Now we create a matrix A = (Vt, V(a,b)1 , ..., V(a,b)|S|) and create the linear
system we want to solve,

Ax ≡ −Vg (mod l).
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Note that almost all entries of A are zero. This means that A is a sparse
matrix, and this is a fact we need to consider when solving this linear system.
In fact, we cannot solve this linear system using Gaussian elimination, then
the run time we want will not be archived (Gaussian elimination runs in
O(n3).) Instead of using Gaussian elimination, we use an algorithm which
fits much better for our problem, namely Wiedemann’s algorithm [15]. We
assume that the linear system is solvable. Note that if l is large, it is unlikely
that l divides det(A), making is unlikely that A is singular modulo l, as seen
in Schirokauer [11]. Balancing the number of rows and columns is done in
the run time section.

This will result in a solution vector x = (xt, x(a,b)1 , ..., x(a,b)|S|). We now
define

z = txtg
∏

(a,b)∈S
(a+ bm)xa,b

δ =
∏

(a,b)∈S
(a+ bα)xa,b .

To show that these can be written as lth powers, we use the properties
that comes om the linear relations. We write these as

Vqi(t)xt +
∑

(a,b)∈S
Vqi(a+ bm)xa,b + Vqi(g) ≡ 0 (mod l)

∑
(a,b)∈S

VQi(a+ bα)xa,b ≡ 0 (mod l)
∑

(a,b)∈S
λj(a+ bα)xa,b ≡ 0 (mod l)

for qi ∈ R and Qi ∈ A, with λj denoting the Schirokauer maps. To see that
we are dealing with lth powers, we replace a+ bm, a+ bα, t and g with their
representation in the smoothness bases,

z =
(∏

i

q
Vqi (t)
i

)xt∏
i

q
Vqi (g)
i

∏
(a,b)∈S

(∏
i

q
Vqi (a+bm)
i

)xa,b
=
∏
i

q
Vqi (t)xt+Vqi (g)+

∑
(a,b)∈S Vqi (a+bm)xa,b

i .

We notice that z is equal to something raised raised to an exponent which is
equal to zero modulo l, which means that z is an lth power. This calculation
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will be exactly analogous for 〈δ〉. The fact that the Schirokauer maps are
logarithmic homomorphisms, gives

λj(δ) = λj

(∏
i

(a+ bα)xa,b
)

=
∑

(a,b∈S)
xa,bλj(a+ bα),

which is zero modulo l, which is unlikely to happen if δ is not an lth power
in OQ[α].

We can use this to write z as an lth power z = ol and we also have that
〈δ〉 = 〈β〉l, with the Schirokauer maps making it very probable that δ = βl in
OQ[α]. So probable in fact, that we assume this to be the case.

We know that we can solve the discrete logarithm problem modulo l from
these equations. Then we repeat the algorithm for the other prime factors
of p − 1, and use the Chinese remainder theorem to get the logarithm we
wanted to start with.

3.5.1 A note about smooth t and g

One should note that finding logt g in the above given algorithm depends
on t and g to be smooth (to define Vt and Vg). This is in fact not necessary
for the algorithm to function. What we need is that t and g have smooth
preimages under φ. If this is needed, we define φ(τ) = t and φ(ν) = g such
that the ideals generated by τ and ν are smooth. Replace (Vt, Vg) by (Vτ , Vν),
which are the exponent vectors connected to 〈τ〉 and 〈ν〉, and also update
the Schirokauer maps λ. This gives the following relations form the linear
algebra,

z = τxτν
∏

(a,b)∈S
(a+ bm)xa,b

δ =
∏

(a,b)∈S
(a+ bα)xa,b

which replace the normal relations.
To find out more about this detail, check Schirokauer [12].
If we cannot find smooth preimages of t, we have an alternative; if we find

another generator t′ with a smooth preimage, we can find the logarithm of g
by

logt g ≡
logt′ g
logt′ t

(mod p− 1)
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3.6 Run time
In this section we want to justify that this algorithm has a run time of

Lp(1/3, (64/9)1/3) = exp(((64/9)1/3 + o(1))(log p)1/3(log log p)2/3),

it is in other words possible to find discrete logarithms in Fp within this
bound. The lemmas presented here are found in Buhler et. al. [2]. Note that
o(1) is for when p → ∞. Remember that the rational and algebraic factor
bases (R,A) will be assumed to consist of the primes less than y, so that
n(R) is the number of primes less than or equal to y, π(y), and the equivalent
for A. To give this algorithm a good run time, we need to balance the sieving
step with the linear algebra step, as we need a certain amount of smooth
numbers to solve the linear system, but we do not want to do the sieving step
for longer than necessary.

To do this we first give a theorem for the density of smooth numbers and
how it relates to L-notation.

Theorem 14. Given a function g defined for all y ≥ 2 that satisfies g(y) ≥ 1
and g(y) = y1+o(1) for y →∞, we have

xg(y)
ψ(x, y) ≥ Lx(1/2,

√
2)

for x→∞. Also, equality is achieved precisely when y = Lx(1/2, 1/
√

2), for
x→∞.

Proof. A proof can be found in Buhler et. al. [2, page 76].

In our algorithm we have certain parameters we can adjust to make sure it
is as fast as possible. We have the degree d of our polynomial f and we have
the bound of the sieving v. Remember that given d we define m = bp1/dc and
that m is the bound of the coefficients in f . We are going to assume that
p > d2d2 , giving a restriction on d.

Before we determine the run time, we give some necessary lemmas, which
can seem a bit technical, but which will be used to great effect later.

Lemma 15. Given the relation

v2

log v = av + b
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for a, b, v ≥ e, then it can be shown that

2v = (1 + o(1))
(
a log a+

√
(a log a)2 + 2b log b

)
as a+ b→∞.

Proof. A proof can be found in Buhler et. al. [2, page 78].

Lemma 16. For each pair p, d ∈ N of positive integers with the relation
p > d2d2 , the real numbers u(p, d) ≥ 2 and y(p, d) ≥ 2 are given, with the
property that the real number

x(p, d) = 2dp2/dud+1

satisfies the relation
u2ψ(x, y)

x
≥ g(y)

for some function g(y) ≥ 1 with g(y) = y1+o(1) as y →∞. Then we have

2 log u ≥ (1 + o(1))
(
d log d+

√
(d log d)2 + 4 log(p1/d) log log(p1/d)

)
.

Proof. We have that xx > p, and therefore x→∞ when p→∞. Now, use
the last assumption combined with theorem 14 to get

u2 ≥ xg(y)
ψ(x, y) ≥ Lx(1/2,

√
2).

In other words we have

u2 ≥ exp
(
(
√

2 + o(1))
√

log x log log x.
)

Taking the logarithm and squaring we get

4(log u)2 ≥ (2 + o(1)) log x log log x,

dividing by two gives us

2(log u)2 ≥ (1 + o(1)) log x log log x.

Note that z
log z is an increasing function for z > e. Using this, we divide each

side of the equation by its logarithm to get

2(log u)2

log 2 + 2 log log u ≥ (1 + o(1)) log x log log x
log log x+ log log log x.
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We can now cancel both log 2 and log log log x to get

(log u)2

log log u ≥ (1 + o(1)) log x.

Using the definition of x we get

(log u)2

log log u ≥ (1 + o(1))((2/d) log p+ (d+ 1) log u).

We now realize we are in a position to apply Lemma 15 with log u = v,
a ≥ d+ 1 and b ≥ (2/d) log p to obtain the desired result of

2 log u ≥ (1 + o(1))
(
d log d+

√
(d log d)2 + 4 log(p1/d) log log(p1/d)

)
,

which concludes the proof.

It is now time to start the analysis of the sieving step of the algorithm.
We wish to find a lower bound for the time taken by this step. We know that
for the linear algebra step to be successful, we need the number of rows in
our matrix to be higher than the number of columns. The rows in our matrix
is the number of smooth integers we find (in both the rational and algebraic
factor base). We know that the probability that a random integer less than x
is y-smooth is ψ(x,y)

x
. In the sieving step, we check around v2 such integers.

This means, if the integers we check in the sieve behave like they are random,
we can expect to find v2ψ(x,y)

x
y-smooth integers. There is no proof that this

is true (we are not picking random integers), but we presume it is true and
make the heuristic assumption that we find this many smooth integers.

The numbers of columns in the matrix considered in the linear algebra
step is n(R) + n(A) + d, where both n(R) and n(A) is bound by y. The
parameter d is much smaller than y, as we will see later. This means that we
can approximate the number of columns with y. Given these approximations,
we get that having at least as many rows as columns is the same as

v2ψ(x, y)
x

≥ y.

We recognize this from Lemma 16, but to use that lemma we also need x to
be of a certain form, x = 2dp2/dud+1, with u replaced by v. We argue that all
numbers we check are smaller or equal to this bound.
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In our algorithm, we check (a+ bm) and N(a+ bα) for smoothness, which
is the same as checking (a+ bm)N(a+ bα). Recall that we only check (a, b)
if both integers are less than v, and also that the coefficients of f are bound
by m = bp1/dc. We want to consider the largest N(a+ bα) that we check.

First write
N(a+ bα) = (−b)df

(
− a

b

)
.

This monic polynomial consists of d+ 1 therms, where the maximum of the
first term is vd, while the rest of the terms has a maximum of mvd. The
bound becomes N(a+ bα) ≤ vdm(d+ 1). Giving us

(a+ bm)N(a+ bα) ≤ (v + vm)vdm(d+ 1)
= vd+1(m+ 1)m(d+ 1)
≤ 2m2vd+1d

≤ 2dp2/dvd+1.

Thus, we can set x = 2dp2/dvd+1 and apply Lemma 16. This gives us

2 log v ≥ (1 + o(1))
(
d log d+

√
(d log d)2 + 4 log(p1/d) log log(p1/d)

)
taking the exponential, we get

v2 ≥ (1 + o(1)) exp
((
d log d+

√
(d log d)2 + 4 log(p1/d) log log(p1/d)

))
.

When we sieve, we do it in approximately v2 steps, and the above is
therefore a lower bound for this step. We now want to show that this lower
bound is achievable with the right choices of v and y. We choose v to be the
square root of the optimal run time, and also set y equal to this number

v0 = y0 = exp
(1

2

(
d log d+

√
(d log d)2 + 4 log(p1/d) log log(p1/d)

))
.

We also set x0 = 2dp2/dvd+1
0 . These choices gives us the relation

v2
0ψ(x0, y0)

x0
= y

1+o(1)
0 .

We want the above relation to be an inequality, which will be done by
increasing v and y by ε > 0

v = y = exp
(1 + ε

2

(
d log d+

√
(d log d)2 + 4 log(p1/d) log log(p1/d)

))
,
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with x = 2dp2/dvd+1. This means that y = y1+ε
0 and v = v1+ε

0 , but x ≤ x1+ε
0 .

Taking the logarithm, we get

log x
log y ≥

(1 + ε) log x0

(1 + ε) log y0
= log x0

log y0

Using this, we reach the an inequality involving x and x0

ψ(x, y)
x

≥
(
ψ(x0, y0)

x0

)1+o(1)
.

We now wish to use this inequality to generate an inequality involving
v2ψ(x,y)

x
, the estimated count of smooth numbers we find, or equivalently, the

number of rows in our matrix.

v2ψ(x, y)
x

≥
(
v2ψ(x0, y0)

x0

)1+o(1)
=
(
v

2(1+ε)
0 ψ(x0, y0)

x0

)1+o(1)

=
(
v2ε

0 y
1+o(1)
0

)1+o(1)
=
(
v2ε

0 y0

)1+o(1)

=
(
y1+2ε

0

)1+o(1)
=
(
y

1+2ε
1+ε

)1+o(1)

> y1+o(1).

We want to compare the rows and columns in our linear system. Consider
the number of columns in the linear system we solve in the algorithm, n(R) +
n(A) + d. We know that d is bounded by log p = yo(1). Remember that n(R)
is the number of smooth numbers less than y, so n(R) ≤ y. We also have
that

n(A) ≤ d · n(R) ≤ n(R) log p ≤ y log p = y1+o(1)

since there is at most d extensions of each number in A compared to R. We
get

n(R) + n(A) + d = y1+o(1)

as the number of columns. This means that for these choices of v and y we
have more rows than columns in our linear system, making it solvable. We
let ε→ 0 as p→∞ to get

v = y = exp
(1

2 + o(1)
(
d log d+

√
(d log d)2 + 4 log(p1/d) log log(p1/d)

))
.
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In our expression for v and y we have a part containing p and d. We want
to minimize this with a good choice of d. In the expression

exp
(
d log d+

√
(d log d)2 + 4 log(p1/d) log log(p1/d)

)
we assume that

d ≈
( log p

log log p

)1/3
,

which means that

log d ≈ 1
3(log log p− log log log p) ≈ log log p.

We can then find the following

d log d ≈ (log p)1/3(log log p)2/3

(d log d)2 ≈ (log p)2/3(log log p)4/3

log p1/d ≈ (log p)2/3(log log p)1/3

log log p1/d ≈ log log p.

This leads to

v ≈ exp((log p)1/3(log log p)2/3) = Lp(1/3, c)

for some c. To find this c, a bit more careful analysis is required. We find a
good c by choosing

d = (31/3 + o(1))
( log p

log log p

)1/3
.

Careful analysis will indeed show that this d will give c = (8/9)1/3, which
means that the sieving step will run in

v2 = exp(((64/9)1/3 + o(1))(log p)1/3(log log p)2/3)
= Lp(1/3, (64/9)1/3).

Note that the algorithm will run several times, once for each of the (large)
prime factors l of p− 1. This will not affect the asymptotic run time as the
number of prime factors of p− 1 is log2(p− 1) = yo(1) at maximum. Using
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the Chinese remainder theorem in the end is trivial compared to the rest of
the algorithm. Remember that, if the factorization of p− 1 is not known, one
can use the factorization version of the general number field sieve to find the
factors in the same run time. Also, Wiedemann’s algorithm [15] for solving
sparse linear systems in Fp will make the linear algebra step possible to do in
y2+o(1) steps, according to Buhler et. al. [2, page 84]. This means that the
linear algebra step will not be slower than other steps asymptotically, giving
us the above given bound as the actual bound for the whole algorithm.
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4 An overview of algorithms
The preceding algorithm considers the discrete logarithm problem in the prime
field Fp. As we know, other finite fields exist, namely the prime power fields,
Fpn . To classify the algorithms that solve the discrete logarithm in these
fields, it is customary to divide the prime power algorithm into further cases,
varying the characteristic and the extension. We do not cover algorithms for
small, constant characteristic (p = 2, 3, 5, 7). This overview is based on the
function field sieve presented by Joux and Lercier [7] and two number field
sieve algorithms presented by Joux et. al. [8].

Algorithms for finding the discrete algorithm in Lpn(1/3, c) exist for all
finite fields. Even so, the parameter c changes for the different fields. The
interesting question for medium prime fields that differentiates the fields is
how fast p grows with pn. To denote this, we compare p to Lpn(lp, a) where
lp varies. There are divides at lp = 1/3 and lp = 2/3.

If p < Lpn(1/3, a) the function field sieve gives c = (32
9 )1/3. Note that this

also includes the case when p is fixed.
If Lpn(1/3, a) < p < Lpn(2/3, a), a number field sieve algorithm gives

c = (128
9 )1/3.

If p > Lpn(2/3, a), another number field sieve algorithm gives c = (64
9 )1/3.

Note that lp →∞ corresponds to the prime case, and that we found c = (64
9 )1/3

for the prime case, like we should have.
At the dividing points, that is lp = 1/3 and lp = 2/3, the situation is a bit

more complicated. Here, c depends the other parameter in the growth of p,
a. To get a better view on these dividing points, check Joux and Lercier [7,
section 3] for the function field sieve and Joux et. al. [8, section 5] for the
number field sieve.
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5 The number field sieve in prime power fields

5.1 Overview
We now wish to consider the discrete logarithm problem in a prime power
field, Fpn . The algorithm that is presented here will work for certain prime
power fields, with ”medium base prime”. This simply means that p is larger
than the really small primes (2, 3, 5...), and the extension degree is also larger
than a small number like 2 or 3. We are in neither of those extreme cases. In
the run time section we will give precise parameters on when the algorithm
runs best. In the best case, the algorithm will run in Lpn(1/3, (64/9)1/3), like
the prime algorithm. The disposition will follow Joux and Lercier [8] and the
preceding algorithm closely.

Just as in the prime case, we want to find logt g, only now t, g ∈ F∗pn . Our
first hurdle is to find a representation of Fpn . In Fp, this part is obvious, we
simply took the integers modulo p. In Fpn , we start by taking polynomials with
coefficients that are integers modulo p (Fp[x]), but we also find a irreducible
polynomial f1 of degree n, and divide out by this. So we will in other words
use

Fpn ∼= Fp[x]/〈f1(x)〉

as our model for Fpn .
In fact, there are several polynomials which can be used as our f1 here.

We choose f1 with as small coefficients as possible. After we have found f1,
we now define f2 so they both have a common root µ in Fpn , as we did in
the prime case. Several options are obviously possible here. We will use the
simple one where we define f2 = f1 + p. Since we now get f1 ≡ f2 (mod p),
the polynomials will have a common root µ in Fpn , in fact all roots will
be shared. We now use the two polynomials to define number fields. Use
roots α1, α2 ∈ C of f1 and f2 to define the number fields Q[α1] and Q[α2],
respectively. We now consider a factor l of pn − 1. Like we did in the prime
algorithm, we will consider the problem modulo this l, and do this for all l,
before we use the Chinese remainder theorem to return to the answer.

5.2 Sieving
In the corresponding section in the prime algorithm, we defined the rational
and algebraic factor bases, R and A. In this, we define two algebraic factor
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bases for the number fields, A1 and A2. These consist of pairs (q, r) repre-
senting first degree prime ideals in their respective number fields, as seen in
(4). We let this consist of primes up to a smoothness bound, y, similarly to
before. We sieve in the same way as before: choose v and consider (a, b) with
0 ≤ b ≤ v and |a| ≤ v. We take the norms N(a + bα1) and N(a + bα2) of
each element and divide them by the primes that lie under the prime ideals if
the equation a ≡ −br (mod q) is fulfilled.

The improvements involving logarithms and changing division to addition
used in the prime algorithm also apply here.

5.3 Logarithmic maps
We have relations involving ideals in our number fields that we wish to
transform into multiplicative relations involving elements. We can then take
logarithms to get linear equations.

5.3.1 Trivial ideal class group and computable unit group

First we consider the case with trivial ideal class group and computable unit
group. Trivial ideal class group implies that all ideals are principal.

From the sieving step we have relations of the form

〈a+ bα〉 =
∏
i

qeii

where qi is a prime ideal in OQ[α]. Since all ideals are principal we get that

a+ bα = u
∏
i

γeii

where u is a unit in OQ[α] and 〈γi〉 = pi. We now apply Dirichlet’s unit
theorem (theorem 9) to find the structure of the unit group O∗Q[α],

O∗Q[α]
∼= G× Zr1+r2−1

where r1 is the number of real embeddings, r2 is the number of conjugate
pairs of complex embeddings and G = 〈u0〉 of order m. We use the notation
r = r1 + r2 − 1. The r + 1 generators of the unit group is called fundamental
units.
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Assume we can compute fundamental units u0, u1, . . . , ur. We can then
write u = un0

0 u
n1
1 . . . unrr . We use this equation to define r maps (indexed by

1 ≤ i ≤ r)
λi : O∗Q[α] → Z

u 7→ ni.

In addition we have a map
λ0 : O∗Q[α] → Zm

u 7→ n0.

We see that all these maps are logarithmic. These maps now define a
decomposition

a+ bα =
r∏
i=0

u
λi(u)
i

∏
i

γeii .

Taking logarithms on the above equation, we reach our goal

logt(a+ bα) ≡
r∑
i=0

λi(u) logt ui +
∑
i

ei logt γi (mod pn − 1).

Note that this equation is modulo pn − 1, not modulo a large prime factor, l.

5.3.2 General number fields

We assume that the large prime factor l of pn− 1 does not divide h, the order
of the ideal class group. This is a very minor restriction. From sieving we
have relations on the form

〈a+ bα〉 =
∏
i

qeii .

Since q isn’t a principal ideal in general, we need some procedure to make
sure we are dealing with principal ideals. We do this by raising the relation
to the h-th power. Given δi = qhi , we know that δi is principal because raising
the ideals to the h-th power will make the ideal class group trivial. We then
have

〈a+ bα〉h =
∏
i

qeihi

〈a+ bα〉h =
∏
i

δeii

(a+ bα)h = u
∏
i

δeii

33



for a unit u.
Since we in general have no way to compute the unit group, it not a good

strategy to take logarithms at this point, as logt u will be a new unknown in
each relation.

This problem will be circumvented by using the ideas in the section on
Schrokauer maps in the prime algorithm. The big insight here is to not
work over the whole unit group O∗Q[α], but rather over l-th powers of units
O∗Q[α]/(O∗Q[α])l. This is possible because if u ∈ (O∗Q[α])l, then logt u ≡ 0
(mod l). We again assume that l does not ramify in OQ[α]. We repeat some of
the argument given in the prime algorithm to ease the exposition. Consider
the set Γ we defined,

Γ = {γ ∈ OQ[α]|N(γ) 6≡ 0 (mod l)}.

Remember that all a+ bα ∈ Γ since they are smooth, so we have l - N(a+ bα).
Also note that O∗Q[α] ⊆ Γ, since the norm of a unit is one. Now, similarly to
how we defined the maps in the prime algorithm, we write ε = lD − 1 with D
being the least common multiple of the irreducible factors of f(x) (mod l).
Then we get

γε ≡ 1 (mod l).
We define a map

λ : Γ→ lOQ[α]/l
2OQ[α]

γ 7→ (γε − 1) + l2OQ[α]

Using the module structure of OQ[α], we fix a basis {bil + l2OQ[α]}i=1,...,d for
lOQ[α]/l

2OQ[α] and a basis {bil+ l2OQ[α]}i=1,...,r for λ(O∗Q[α]). We again define
the projections λi : Γ→ Zl by

γε − 1 ≡ l
d∑
i=1

λi(γ)bi (mod l2).

From theorem 13 we know that λ is a logarithmic homomorphism. This
means that λi : O∗Q[α] → Zl are homomorphisms for i = 1, . . . , n.

We now work over l-th powers of units; O∗Q[α]/(O∗Q[α])l. Consider r of these
maps together in a homomorphism;

λ̄ : O∗Q[α]/(O∗Q[α])l → Zrl
u 7→ (λ1(u), . . . , λr(u)).

We now prove a theorem about λ̄.
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Theorem 17. Given that λ̄ is injective, u ∈ O∗Q[α] is an lth power if and only
if λ̄(u) = 0.

Proof. If u is an l-th power, it is the identity in O∗Q[α]/(O∗Q[α])l, which is sent
to the identity in Zrl , which is zero.

If λ̄(u) = 0, we assume u 6= al for any a ∈ O∗Q[α], to get a contradiction.
Since λ̄ is injective, we get u 6= al ⇒ λ̄(u) 6= λ̄(al). But λ̄(u) = 0 = λ̄(al), a
contradiction.

To justify why we can assume λ̄ to be injective, realize that if O∗Q[α]
does not contain the primitive l-th roots of unity, then O∗Q[α]/(O∗Q[α])l has lr

elements, making λ̄ an isomorphism. We will make this assumption. Now
there exist units u1, . . . , ur ∈ O∗Q[α] with the property that λi(ui) = 1 and
λi(uj) = 0 whenever i 6= j.

We are now close to how we solved this in the easy case above, since we
can write any unit u ∈ OQ[α] as

u = ξl
r∏
i=1

u
λi(u)
i

for some unit ξ. We multiply each δi with a unit,

δ′i = δi
r∏
j=1

u
−λj(δi)
j .

Multiplying an ideal by a unit does not change the ideal, so δ′i still generates
qhi . This definition makes λj(δ′i) = 0 for j up to r. We now have

(a+ bα)h = u′
∏
i

(δ′i)ei

for a unit u′. Applying the unit equation to u′, we get

(a+ bα)h = ξla,b

r∏
i=1

u
λi(u′)
i ·

∏
i

(δ′i)ei .

Since λj(δ′i) = 0 for all j up to r, we get that λj(u′) = hλj(a+ bα), which
gives

(a+ bα)h = ξla,b

r∏
i=1

u
hλi(a+bα)
i ·

∏
i

(δ′i)ei .
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We now take logarithms modulo l to get

logt(a+ bα) ≡
r∑
i=1

λi(a+ bα) logt ui +
∑
i

eih
−1 logt δ′i (mod l). (9)

We see that ξa,b disappeared modulo l, like we saw in the calculating logarithms
section in the prime algorithm.

5.4 Linear Algebra
We will cover the linear algebra step assuming we have general number fields
(not trivial ideal class group, nor computable unit group). The goal is to find
logarithms of all smooth elements a+ bα.

We now consider the above relation (9) in both number fields, Q[α1] and
Q[α2]. Note that the numbers and elements in the relation will be different
for the different number fields, even if we use the same notation for both
of them. Remember that 〈δ′i〉 = 〈a + bα〉h in (9). Thus, we can consider
h−1 logt δ′i to represent the logarithm of the i-th ideal 〈a+ bα〉. This is called
the virtual logarithm of the ideal. Applying (9) to both our number fields
gives us relations involving up to 2nπ(y) smooth numbers and 2r units, where
π(y) is the number of smooth integers. This means that it is necessary to
collect 2nπ(y) + 2r ≈ 2nπ(y) relations in the sieving stage. Given enough
relations, we solve the resulting linear system to find the virtual logarithm
logt a+ bα for all smooth numbers a+ bα, in both number fields. Note that
we do this step several times (once for each l), and then use the Chinese
remainder theorem like we did in the prime case.

Note that g does not affect the linear system here, unlike in the prime al-
gorithm. The advantage of this is that one can find several discrete logarithms
in base t without redoing the linear algebra and sieving.

5.5 Finding the logarithm
The challenge now is to use the calculated virtual logarithms to find the
logarithm we want. We want to find the discrete logarithm logt g in Fpn . This
is done using a technique called ”special-q” descent.

First we search for an element z = gixj in Fpn ∼= Fp[x]/〈f1(x)〉, where
i, j ∈ N. We want z to satisfy two properties. The first is that we want
〈z〉 ∈ Q[α1] to have a norm that have ”smallish” prime factors. More
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precisely we want the prime factors of N(〈z〉) to be smaller than some bound
B1 ∈ Lpn(2/3, 1/31/3). The second property is that we want N(〈z〉) to be
squarefree, which means that it factors completely into first degree prime
ideals.

It seems that if we can find such a z, then we can use the logarithms we
calculated in the linear algebra step to get the answer. This is not possible yet,
since the factors of N(〈z〉) may be larger than the elements in the smoothness
bases. That is, we probably have v < B1. The squarefree condition makes
sure that all considered prime ideals are of degree one, which all ideals in the
smoothness bases are.

We assume that z has the same probability of having squarefree factor-
ization into small primes as a random number of the same size. According
to Joux et. al. [8] there is a statement in Ivić and Tenenbaum [4], that says
that we can write this as the product of the probability of the two properties.
The squarefree condition quickly tends to 6/π2, which vanishes into the o(1)
in the L-notation. The normal probability of a number having small prime
factors will be used and analyzed in the section where we determine the run
time.

After we have found a z fulfilling our criteria, we factor the principal ideal
generated by z into degree one prime ideals of small norm. We note that
there will be prime ideals in the factorization not contained in the factor bases
A1 and A2, since their norm was allowed to be bigger than the smoothness
bound v. These will be dealt with by using the special-q descent.

5.5.1 Special-q descent

We wish to find the logarithm of a prime ideal q that is too big to lie in our
factor base. We start by sieving on pairs (a, b), chosen in such a way that q
divides a+bα1 in Z[α1]. When we find a pair (a, b) such that N(a+bα1)/N(q)
and N(a+bα2) factor into primes smaller than B2 < B1, we iterate the descent.
When we iterate, we consider special-q ideals in both number fields, and we get
a lower bound on the primes for each iteration. We continue until the bound
is lower than v, when we know all logarithms. We use these to backtrack to
find the logarithms of each special-q ideal, and then the logarithm of z.
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5.5.2 The last step

To find logt g we repeat the above procedure twice, generating z = gixj and
z′ = gi

′
xj
′ that we know the logarithms of. When this is done, we make sure

that ij′ 6= i′j (mod pn− 1), so that it is possible to generate a logarithm. We
will show that this will give us logt g. We have two sets of equations we will
use,

z = gixj, logt z = r

z′ = gi
′
xj
′
, logt z′ = r′

where i, j, r ∈ N and the rest of the letters are group elements. If we put
these two together, we get the following equations

gixj = tr, gi
′
xj
′ = tr

′
.

The second equation gives us xj′ = tr
′
g−i

′ . Raise the first equation to the
power of j′ to get

gij
′
xjj
′ = trj

′

gij
′(xj′)j = trj

′

gij
′(tr′g−i′)j = trj

′
.

Solving the last equation is straight forward, and gives us

logt g = rj′ − r′j
ij′ − i′j

(mod pn − 1),

solving the discrete logarithm problem.

5.6 Run time
In this section we want to show that the run time of the prime power algorithm
is the same as the prime algorithm, for a certain relationship between p and
n. This run time is Lpn(1/3, (64/9)1/3). We will use some of the results in
that section to ease the exposition here.

First we assume that n and p fulfill the following relations

n = 1
c

( log pn
log log pn

)1/3
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p = exp
(
c(log pn)2/3(log log pn)1/3

)
for some constant c. This puts us in one of the dividing points in section 4,
namely lp = 1/3. Note that these definitions are compatible with any c 6= 0,
since we have

exp
(
c((log pn)2/3(log log pn)1/3

) 1
c

(
log pn

log log pn

)1/3

= exp
(
c((log pn)2/3(log log pn)1/3 1

c

( log pn
log log pn

)1/3)
= exp

(
(log pn)2/3(log pn)1/3

)
= pn.

Like we did in the prime algorithm, we will make the sieve limit v and
smoothness bound y equal. We will assume that these will be defined as

v = y = exp
(
c′(log pn)1/3(log log pn)2/3

)
for some constant c′, just like what happened in the prime case algorithm.

Remember that f1 has small coefficients. Let b0 be the bound on the
coefficients. To find the norm, we remember that we sieve over v values and
since N(a+ bα1) = (−b)nf(−a

b
) we get

N(a+ bα1) ≤ (n+ 1)b0v
n = yn+o(1).

Similarly, the bound on the norm of a + bα2 will be pyn+o(1). We consider
the bound on the product of the norms, which will be py2n+o(1). Using the
expressions we assume about p, n and y we get

N(a+ bα1)N(a+ bα2) ≤ py2n+o(1)

= exp
(
c(log pn)2/3(log log pn)1/3

)
· exp

(
c′(log pn)1/3(log log pn)2/3 2

c

( log pn
log log pn

)1/3
+ o(1)

)
= exp

(
c(log pn)2/3(log log pn)1/3

)
exp

(2c′
c

(log pn)2/3(log log pn)1/3 + o(1)
)

= exp
((
c+ 2c′

c
+ o(1)

)
(log pn)2/3(log log pn)1/3

)
= Lpn(2/3, c+ 2c′/c).
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According to Joux et.al. [8], there is a theorem in Canfield et. al. [3]
that defines the probability of a random number being smooth. Specifically,
a random number less than Lpn(r, γ) is Lpn(s, δ)-smooth with probability
Lpn(r − s,−γ(r − s)/δ). Remember that we are not only looking at smooth
numbers, but smooth numbers with squarefree factorizations. Like discussed
earlier, we can hide the factor 6/π2 from the squarefree condition in the o(1)
part of the L-notation. We use the heuristic we used in the prime algorithm,
and assume that our number behave like random numbers.

We realize that y = Lpn(1/3, c′). So the probability of N(a+ bα1)N(a+
bα2) ≤ Lpn(2/3, c+ 2c′/c) being y-smooth is

Lpn(2/3− 1/3,−(c+ 2c′/c)(2/3− 1/3)/c′)
= Lpn(1/3,−(1/3)(c/c′ + 2/c)).

To minimize the total runtime, we balance the sieving step and the linear
algebra step, like in the prime algorithm. This is the same as balancing the
rows and columns, as was done in the prime algorithm. In other words, we
need to balance v = Lpn(1/3, c′) and the average time it will take to find a y-
smooth number. This average time will be the inverse of the probability of the
sieved numbers being smooth. Explicitly, the following equation corresponds
to this balancing,

Lpn(1/3, c′) = Lpn(1/3, (1/3)(c/c′ + 2/c)),

which simplifies to
c′ = 1/3(c/c′ + 2/c).

We solve this equation for c′,

0 = c′2 − 2
3cc

′ − c

3

c′ = 1
3c ±

√
1

9c2 + c

3

= 1
3

(1
c
±
√

3c+ 1
c2

)
.

Here, there is a question of whether we should use the positive or negative
square root. We use the positive square root in the following, but we note
that we would get the same result if we chose the negative square root.
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Like in the prime algorithm, the step that takes the most time will be the
sieving, which will run in v2 steps. This means that the complexity of the
algorithm will be Lpn(1/3, 2c′). We wish to know when this is minimal. We
do this by differentiation,

3dc′
dc = 3− 2c−3

2
√

3c+ c−2
− 1
c2 = 3c3 − 2− 2

√
3c3 + 1

2c2
√

3c3 + 1
.

We continue only with the nominator equal to zero,

3c3 − 2− 2
√

3c3 + 1 = 0.

By choosing u = 3c3, we can solve this

u− 2− 2
√
u+ 1 = 0

(u− 2)2 = 4(u+ 1)
u2 − 8u = 0

u = 8
c = 2 · (1/3)1/3,

where u = 0 could not have been a solution, as it had made the denominator
above equal to zero. We see that c = 2 ·(1/3)1/3 corresponds to c′ = 2 ·(1/3)2/3.
It is clear that this is not a maximum because i.e. c = 2 corresponds to
c′ = 3/2. This c gives us the run time of Lpn(1/3, 2c′) = Lpn(1/3, (64/9)1/3),
which is the same as the prime algorithm.

We note that the algorithm described here is one of many in a class of
algorithms that works for different c. These are given in Joux et. al. [8], and
are included in section 4 in this text.
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6 Concluding remarks
We have given a description of the general number field sieve for discrete log-
arithms in prime fields and in prime power fields. Both algorithms considered
have the same run time, LQ(1/3, (64/9)1/3), where Q is the size of the finite
field. The family of algorithms described in section 4 contains the best known
algorithms for solving the discrete logarithm when the size of the finite field
becomes large enough, i.e. they have the fastest asymptotic run time known.
Interestingly, they are also practically applicable. The practicality of these
algorithms makes them interesting to study in the cryptographic context.

A lot of work goes into trying to improve the second parameter of the
L-notation. Improvements here gives faster algorithms, but no large break-
through will come as a result of improving the second parameter. A break-
through will come with an improvement in the first parameter, ideally to
zero, for a polynomial algorithm. If such a breakthrough happens, it is fully
possible that discrete logarithms will continue to be used, but the underlying
group will not be a finite field, but rather something like an elliptic curve.
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