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Chapter 1

Introduction

This thesis consists of papers describing several optimization models for decision
support primarily motivated by the needs of natural gas producers. Through
developing models for investments and operations in production, transport and
processing of natural gas, we seek to improve understanding of the issues related
to the design of these infrastructures on a system level, taking both long term
uncertainty and short term variability into account. We also extend the litera-
ture on stochastic programming with decision-dependent uncertainty. Decision-
dependent uncertainty is relevant in many problems related to exploitation of
natural resources.

The first part of this thesis consists of this introduction, which provides context
and motivation for the works presented, and demonstrates the contributions from
each paper and how they relate to existing work in literature. The introduction
ends with a presentation of each paper and specifies my contribution to each
paper.

The second part of this thesis consists of the six papers. The first paper,
Optimizing the Norwegian Natural Gas Production and Transport, introduces a
flow optimization model for natural gas transport that has been developed over
several years in close cooperation with industry partners. It demonstrates how
useful mathematical programming can be as a decision support tool, and also the
importance of close dialogue with analysts.

The second paper, Natural Gas Infrastructure Design with an Operational Per-
spective introduces a deterministic investment model for capacity expansion of
natural gas infrastructure: development of new fields, investments in transport
capacity and processing facilities. The model maximizes net present values from
investments, operational costs and revenue from selling gas at market nodes.

Paper three, Multi-Stage Stochastic Programming for Natural Gas Infrastruc-
ture Design with a Production Perspective presents an extension of paper two
to a multi-stage stochastic programming model. Investments in infrastructure
for petroleum exploitation involve high capital expenses, and uncertainty in e.g.
future prices or demand will have a large impact on the profitability of different
prospects. To incorporate both operational variability and long term uncertainty,
a novel multi-horizon scenario tree is introduced.
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Chapter 1 Introduction

In paper four, Discretizations of Natural Gas Pooling Problems, we investi-
gate different ways of discretizing the pooling problem that arises from multi-
commodity flow optimization problems with pooling and quality constraints and
introduce a new discretization scheme that shows great promise.

Paper five, A Generalized Global Optimization Formulation of the Pooling
Problem with Processing Facilities, compares different global optimization for-
mulations of the pooling problem, and introduces a more general formulation
that also facilitates the extension to include a simplified model of processing
facilities. We also compare performance of the continuous global optimization
formulation and discretized versions of this formulation.

In the final paper, Stochastic Programming with Decision-Dependent Probabil-
ities, we present a taxonomy of stochastic programming problems with decision-
dependent uncertainty, and introduce several novel models where the scenario
probabilities are manipulated by decision variables, either through distortions or
by setting the probability distribution parameters directly.

1.1 The Natural Gas Industry

The search for petroleum on the Norwegian Continental Shelf (NCS) began in
the 1960s, and production started in the early 1970s. Ever since, the petroleum
industry has been an important industry in Norway, and it is the largest sector
by far in terms of value creation.

In the early years, oil was the dominating product from the NCS, but natural
gas has gained importance over the years, and the industry has been subject to
great change following the introduction of the European Union Gas Directives.
Natural gas export from Norway accounts for almost 20% of the natural gas
consumption in Europe.

The challenges of natural gas production change over time as early develop-
ments age. New discoveries often have different characteristics from existing
fields, and may introduce quality challenges. New areas are opened for explo-
ration that may need different solutions from fields already in production, and
may or may not be connected with existing infrastructure. Markets can also
change rapidly as was seen when large volumes from shale gas production in the
United Stated changed the dynamics of world energy markets.

From Norway, the exported volume of oil is expected to go down, while nat-
ural gas production is expected to increase further in the decade to come. The
Norwegian Ministry of Petroleum and Energy and The Norwegian Petroleum
Directorate [2012]

In addition to market uncertainty and resource uncertainty, the industry is
also subject to regulations of emissions, in particular of CO2, as awareness of the
challenges related to climate change increases.

2



1.2 Methodology

1.2 Methodology

The method applied in the decision support models described in this thesis is
mathematical programming. Problems are studied in terms of mathematical
models where a real function is sought minimized (maximized) over an allowed
set of real or integer values. In particular, the subclasses of mathematical pro-
gramming applied in this thesis are Linear Programming (LP), Mixed Integer
Linear Programming (MILP), Global Optimization (GO) and Stochastic Pro-
gramming (SP).

Linear Programming (LP)

Linear Programming is one of the great success stories of Operations Research.
Many problems can be formulated as the minimization (maximization) of a linear
objective function over a convex polyhedron defined by linear side constraints.

The work on linear programming started with military planning problems in
the 1940s and 1950s and the development of the simplex method for solving LPs,
see Dantzig [1949], Wood and Dantzig [1949]. While the simplex algorithm is not
guaranteed to converge in polynomial time, with later refinements it has proven
extremely useful and is used both to solve large LPs and to solve relaxations of
more computationally demanding problems.

A general LP can be formulated as follows:

min c>x (1.1)

s.t.Ax ≤ b (1.2)

x ∈ Rnx
+ (1.3)

where coefficients c indicate the costs in the objective function, and the matrix
A gives the coefficients of the linear constraints on the decision variables x. All
constraints must satisfy the right hand side parameters b.

The first polynomial time algorithm for LPs was proven by Khachiyan [1980],
see also Grötschel et al. [1981], but this method has been of little practical use,
rather variations of the simplex method and interior point methods following the
work of Karmarkar [1984] are widely applied in industry applications.

Mixed Integer Linear Programming (MILP)

MILP is an extension of Linear Programming where some or all decision variables
are allowed to take only discrete values, giving Mixed Integer Linear Programs or
Integer Programs, respectively. This opens up for the possibility to model a much
wider range of decision problems, of which many are of a combinatorial nature.

3



Chapter 1 Introduction

By definition, Mixed Integer and Integer Linear Programs are non-convex. In
practice, many MILP predominantly consider binary variables, or 0-1 variables.

A general Mixed Integer Linear Program can be formulated as follows:

min c>x+ d>y (1.4)

s.t.Ax+By ≤ b (1.5)

x ∈ Rnx
+ (1.6)

y ∈ Zny

+ (1.7)

where coefficients c denote the cost in the objective function incurring from
continuous variables x, d denote cost coefficients incurred from discrete variables
y. A gives the coefficients for linear constraints in x and B coefficients for con-
straints in y. All constraints must satisfy right hand side parameters b.

To solve MILP, branch and bound methods and cutting planes techniques are
widely applied, for text books on Integer and Mixed Integer Linear Programming,
see e.g. Wolsey [1998], Nemhauser and Wolsey [1988].

While MILP is NP hard, there are several high performance commercial solvers
for MILP available, and this model class is widely applied to solving optimization
problems in industry. See Bixby and Rothberg [2007] for a fascinating tale of the
remarkable progress in MILP solvers over the last decades.

Global Optimization (GO)

Many relationships in nature are non-linear, and modelling them as a mathe-
matical program may give a model of a more general form where the objective
function or the feasible set is non-convex.

Such problems can often be approximated through MILP using piece-wise lin-
ear approximations, or solved as they are using other techniques. One often ap-
plied technique is to apply convex programming techniques (local solver) that will
give a local optimal solution, e.g. using a gradient method. However, such meth-
ods may give sub-optimal solutions for non-convex programs. Methods where
optimality within a given threshold ε can be proven are called global optimiza-
tion techniques.

For global optimization, LP, MILP and local solvers are typically used to solve
relaxed versions of the problem for some sub domain until convergence can be
proven through a branch and bound scheme. While not as large problems can
be solved as for LP and MILP, great improvements have been achieved over the
last years, and commercial global optimization solvers are available.

A general non-linear mathematical program (NLP) can be formulated as fol-
lows:

4



1.2 Methodology

min
x
f(x) (1.8)

s.t.g(x) ≤ 0 (1.9)

x ∈ X ∈ Rn (1.10)

where f : X → R, gi : X → R, i = 1 . . .m are continuous. If at least one of
these functions is non-convex, the NLP is a non-convex program, and global opti-
mization techniques are necessary to guarantee global optimal solutions. Similar
to MILP, integrality constraints on some of the decision variables may be added
for Mixed Integer Non-Linear Programs (MINLP). For a text book on Global
Optimization, see e.g. Tawarmalani and Sahinidis [2002].

Stochastic Programming with Recourse (SP)

Many practical decision problems are characterized by uncertainty. A commonly
occurring problem in long term planning of production and transport capacity, for
example, is the uncertainty in future prices and demand for commodities. The
model class of stochastic programming problems with recourse applies to this
kind of problems when the distribution of the stochastic parameters is known.

Recourse problems have two or more stages, where the stages represent discrete
points in time before and after the true value of some or all stochastic parameters
become known. Some decisions have to be made in earlier stages; other decisions
(recourse) can be made after the realization of the stochastic parameter is known.

A general formulation for a stochastic two stage problem with recourse can be
as follows (Birge and Loveaux [1997]):

min c>x+ EξQ(x, ξ) (1.11)

s.tAx = b (1.12)

x ∈ Rnx
+ (1.13)

where Q(x, ξ) = min q>y|Wy = h− Tx, y ∈ Rny

+ , ξ is the vector formed by the
components of q>, h> and T and Eξ is the mathematical expectation with respect
to ξ.

Specialized decomposition approaches are commonly applied to stochastic pro-
gramming problems, although many problems can be successfully solved using a
direct translation to the deterministic equivalent of the problem, which can be
solved by a general purpose solver.

The deterministic equivalent of the SP given above can be formulated as fol-
lows:

5



Chapter 1 Introduction

min c>x+
∑
s∈S

psd
>
s ys (1.14)

s.t.Ax = b (1.15)

Tsx+Wsys = hs,∀s ∈ S (1.16)

x ∈ Rnx
+ , ys ∈ R+∀s ∈ S (1.17)

Work on Stochastic (linear) Programming goes back to the 1950s, see Dantzig
[1955], Beale [1955]. For text books on Stochastic Programming, see Birge and
Loveaux [1997], Kall and Wallace [1994]. Higle [2005] gives a short tutorial on
Stochastic Programming, focusing on recourse problems.

Most results in stochastic programming literature are on LP and MILP, but
SP can also be formulated as NLP or non-convex NLP. A common premise for SP
is that uncertainty is exogenous, i.e. that the distribution and dynamics of the
stochastic parameters is independent of decision variables. SP can be generalized
to include such dependencies in stochastic programming problems with decision-
dependent uncertainty, as described by e.g. Jonsbr̊aten et al. [1998], and we
contribute to the extension of this generalized SP in paper six by describing
stochastic programming problems with decision-dependent probabilities.

1.3 Operational Models for Natural Gas

The petroleum industry has a long history of applications of optimization models
in decision support, and the literature is vast. In each part of the value chain,
complex problems need to be solved and trade offs made. From the production
planning and well management, through processing facilities, transport through
pipelines or by ships and on a system level transport capacity booking and con-
tracts management.

In the following we will concentrate on the literature concerning production
and transport of natural gas through pipelines, as that has been the focal point
of the work in this thesis.

In the short term, the planning problem for a system of coordinated production
sites with common transport and processing facilities can be seen as a production
portfolio problem and network flow maximization problem with side constraints.
Several of these side constraints show system effects, meaning that a change in
one part of the system may affect capacity in remote parts of the system.

6



1.3 Operational Models for Natural Gas

Pressure

One property that is a source to system effects is the flow pressure relationship for
gas flowing through pipelines. This steady-state relationship was first described
by Weymouth [1912], later refined in the Panhandle equations. Q denotes the
flow through the pipeline, K is a constant derived from the properties of the
pipeline, and pin and pout are the pressure at the inlet and outlet, respectively.

Q = K
√
p2
in − p2

out (1.18)

The system effect stems from the fact that a node in the network will have one
pressure, but several pipelines can meet in this point. Raising or lowering the
pressure in one node may influence the effective capacity of all those pipelines,
and Midthun et al. [2009] shows that it is difficult, if not impossible, to determine
appropriate static capacities in a natural gas network.

Including the Weymouth flow pressure relationship as an equality constraint
gives a non-convex problem, however in some systems, such as the transport sys-
tem at the NCS, the upper capacity constraints are usually the main concern,
and relaxing the constraint to an upper bound on flow allows for a convex model
that can be linearized with reasonable accuracy. Tomasgard et al. [2007] and
Rømo et al. [2009] present a linearization of the Weymouth equation which en-
ables the analysis of large networks and stochastic problems. Selot et al. [2008]
present an operational model for production and routing planning in the natural
gas value chain. The authors combine a detailed infrastructure model with a
complex contractual model but do not include a market for natural gas. The
infrastructure model comprises nonlinear equations relating pressure and flow in
wells and pipelines, multi-commodity flows and contractual agreements (delivery
pressure and quality of the gas).

In paper one, Rømo et al. [2009], we demonstrate the inclusion of linearization
of pressure constraints and discretization of quality constraints in an optimization
tool that is in regular use in the natural gas industry. The users from industry
give testimony to the estimated monetary value of including such a tool in their
analyses.

Quality

While natural gas as a commodity is often thought of as a perfectly substitutable
commodity in the market place, natural gas from different sources exhibit a wide
range of qualities given by the exact composition of gases in the gas mixture.
As gas is transported through the network, it can be blended with gas from
other sources and processed in processing facilities to remove heavy components
and contaminants. The final product must meet certain specifications, for safety

7



Chapter 1 Introduction

reasons, to avoid damage on equipment such as corrosion, and to meet market
specifications in terms of e.g. energy content and substitutability between differ-
ent sources. See Gas Processors Suppliers Association [2012] for typical quality
specifications and UK Government [1996] for quality constraints for delivery to
the UK.

In a large network with a portfolio of sources where the gas may be blended
in several locations, the possibility to blend gas to avoid unnecessary processing
becomes relevant. However simple to formulate, this gives a difficult to solve
non-convex problems due to the bilinear terms that need to be introduced. In
the global optimization literature, such problems are referred to as pooling prob-
lems, and they can be traced back to Haverly [1978], who presented a classic
problem with two sources, one pool, and two sinks and showed that pooling
problems are computationally hard with many local optima. Haverly [1979, 1980].
Visweswaran and Floudas [1990] were the first to solve pooling problems using
a global optimization algorithm to the pooling problem, that is, an algorithm
guaranteeing to find the global optimal solution. They solved three problems
posed by Haverly by solving a series of primal and relaxed dual problems. Foulds
et al. [1992] were the first to apply McCormick underestimators and branch and
bound (BB) methods to the pooling problem.

Two different, but equivalent formulations are widespread. The original for-
mulation of Haverly [1978] where flow and quality are modeled is often called the
P formulation. Ben-Tal et al. [1994] introduced a different formulation based on
the flow of individual components and proportions to enter the pool. This for-
mulation is often referred to as the Q formulation. Kocis and Grossmann [1989]
also considered a formulation based on flows and fractions going out from split-
ters. Quesada and Grossmann [1995] introduced a new formulation with extra
constraints combining formulations P and Q, and this formulation is called PQ.
Tawarmalani and Sahinidis [2002] discuss different global optimization formula-
tions and prove that PQ gives tighter bounds than formulations P and Q. For
a nice overview of recent advances in pooling models, see Misener and Floudas
[2009].

Another approach to pooling problems is to take advantage of the great progress
in MILP solvers and solve discretized pooling problems. Ulstein [2000], Ulstein
et al. [2007], Tomasgard et al. [2007], and Hellemo and Werner [2015] applied
discretization approaches to large pipeline networks for natural gas with pool-
ing on multiple levels. Hellemo et al. [2012a,b] applied discretization to pooling
in network design problems. In comparing global optimization techniques and
discretization Haugland [2010], Gupte [2012], Gupte et al. [2012], find that a dis-
cretization approach to pooling problems may yield better performance than a
global optimization approach, and discretization techniques have been integrated
in several global optimization algorithms for pooling problems, see e.g. Castro

8



1.3 Operational Models for Natural Gas

and Teles [2013] and Kolodziej et al. [2013] for a recent example.

The original pooling problem has been generalized in several ways, both by
extending to a network structure which allows interconnected pools. Audet et al.
[2004] and Alfaki and Haugland [2013] present a generalization of the PQ formu-
lation for a general network structure.

In paper four, Hellemo and Werner [2015], we introduce a new discretization
scheme to take advantage of the fact that the optimal solution may be close to the
solution of a single component auxiliary problem, and show that for a number of
real world problems this is advantageous. In paper five, Hellemo and Tomasgard
[2015] we integrate discrete models at NTNU/SINTEF and continuous models
from global optimization community, and add the superclass that includes more
general structure and easy model for extraction of some components. We test
these formulations on a set of standard test problems from literature and add
some test cases based on the network on the NCS.

Processing

Natural gas that does not satisfy market or terminal requirements need to be pro-
cessed, in order to remove contaminants such as H2S and CO2, water and heavy
hydrocarbons. Processing facilities are often large on-shore facilities comprising
a range of chemical processes and utilizing a range of techniques to separate com-
ponents to create separate products. However, simpler processing may also take
place off shore on production platforms or even in sub-sea installations.

Diaz et al. [1997] present a model for configuration of natural gas processing
plants based on turbo expansion, using a MINLP. Feed gas mixtures with varying
content of contaminants are analyzed to evaluate the plant design and operational
consequences. Grossmann et al. [1999] gives an overview of optimization models
for facility and process design for chemical processing in general, and show that
they often yield non-linear programming models. A recent example of an opti-
mization model for a gas processing plant considering uncertainty in feed flow
rate and composition modelled with the use of chance constraints is Mesfin and
Shuhaimi [2010].

In paper 5, Hellemo and Tomasgard [2015] we suggest a generalization of pool-
ing problems that include simplified processing facilities at a system level, similar
to Ulstein [2000], Ulstein et al. [2007] and Rømo et al. [2009], with the possibility
to specify the removal of each gas component of the gas mixture and the possi-
bility to give bounds on the absolute volumes removed of each component. This
is a simplification of the workings of the processing facility, and we do not con-
sider the specific characteristics of the different processes involved. More detailed
models of large processing facilities are possible using the basic modelling com-
ponents e.g. for each process train. We also demonstrate how composite quality

9



Chapter 1 Introduction

constraints can be added, and how this is facilitated by modelling the component
flows directly.

Booking

Following the implementation of the EU Gas Directives EU Commission [1998,
2003], the pipeline transport system at the NCS is managed by and independent
system operator, Gassco. The models presented in this thesis do not consider the
details of the booking regime for capacity.

Some recent papers that do consider booking problems are e.g., Kalashnikov
et al. [2010] who model the transport of gas by a transport company and a pipeline
operating company as a stochastic bi-level problem, and Fodstad et al. [2015],
where the authors consider the introduction of interruptible transport capacity
to the NCS transport system.

LNG Transport

Natural gas may alternatively be transported over long distances as Liquefied
Natural Gas (LNG). We do not consider this option explicitly in any of the
models in this thesis; however, it would be possible to include a very stylized
approximation of an LNG transport by modelling it as a pipeline with fixed
capacity. For some recent papers on LNG transport, see e.g. Fodstad et al.
[2010], Rakke et al. [2011], St̊alhane et al. [2012]

1.4 Strategic Models for Natural Gas

Deterministic Models

There exist a number of deterministic investment models, and early overviews
can be found in Sullivan [1988] and Haugland et al. [1988]. Nygreen et al. [1998]
present a multi-period MIP model used by the Norwegian Petroleum Directorate.
The model is employed for the investment planning of fields in the North Sea
which contain a mixture of oil and gas. In van den Heever and Grossmann
[2001], a model for design and planning of offshore field infrastructure projects
is presented. The model is a multi-period mixed-integer nonlinear programming
model (MINLP) and incorporates complex fiscal rules such as tariff, tax and
royalty calculations. The net present value of projects is discussed in the light
of these fiscal rules. There are also some models which incorporate uncertainty.
Jørnsten [1992] presents an integer model for sequencing offshore oil and gas
fields, where the objective is to maximize total economic benefit.
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In paper two, Hellemo et al. [2012b], we present a deterministic strategic model
for planning development of infrastructure for natural gas production, transport
and processing. This model allows the inclusion of pressure constraints and qual-
ity constraints, similar to what has been used for operational models, in a strate-
gic planning model.

Stochastic Models

Haugen [1996] develops a stochastic dynamic programming model to analyze
a supplier’s problem of scheduling fields and pipelines in order to be able to
meet contractual agreements. The uncertainty in this model is in the resources
(production profiles). In Jonsbr̊aten [1998], a stochastic MIP model for opti-
mal development of an oil field is presented. The objective of the model is to
maximize the expected net present value of the oil field given uncertain future
oil prices. Goel and Grossmann [2004] present a stochastic MIP model for the
planning of offshore gas field developments. The expected net present value is
maximized under uncertainty in reserves. A multi-stage investment model with
decision-dependent uncertainty is presented by Tarhan et al. [2009] along with a
branch-and-bound solution method for non-convex mixed-integer nonlinear sub
problems. They take into account nonlinear reservoir models and gradually re-
vealed uncertainties concerning initial flow rate, recoverable volume and other
characteristics of the reservoirs.

Meyer and Floudas [2006] generalized the pooling problem to include network
design, leading to combinatorial pooling problems. Li et al. [2011a] consider
a stochastic pooling problem with network design and operations and present
a global optimization decomposition algorithm for solving such problems in Li
et al. [2011b].

Game Theoretical Models

When several different stakeholders are involved in the production, transport,
processing and sales of natural gas in the same system, it opens up for strategic
behavior. This kind of behavior, where each participant anticipates the others’ re-
actions before deciding what to do, is commonly modelled using game theory and
typically use some kind of equilibrium models, often formulated as complementar-
ity problems. See Gabriel and Smeers [2006] for an overview of complementarity
problems in the natural gas industry.

We do not consider the gaming situation between different actors in the nat-
ural gas value chain, but consider what could be achieved by fully coordinated
actions. While equilibrium models are very interesting, they pose other challenges
in terms of interpretation of results and the premises for the analysis, for example
regarding the availability of full information for all players. We are aware that
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with less coordinated companies with different ownership shares in different parts
of the network, a fully coordinated solution can not be expected; still we believe
it is useful to optimize the entire system as a benchmark for maximization of
value creation.

1.5 Integrating Operational and Strategic Models

In making strategic models for processes which exhibit large short term variabil-
ity, the modeler is often presented with a dilemma. Including too much detail
in describing short term effects will make the model computationally intractable.
However, representing variable parameter values by expected values or maximum
values, for instance, will typically give under dimensioning or over dimensioning,
respectively. It will not correctly represent the trade off between gains from ex-
tra capacity to serve periods of high demand, versus the extra cost of this extra
capacity.

In order to ensure that short-term fluctuations and peak demand situations can
be accounted for in the system design, we include a representation of operational
flexibility in a strategic investment model. Not much work can be found which
focuses on both aspects at the same time. Schütz et al. [2009] include short-term
variations in a strategic model for the Norwegian meat industry. De Jonghe et al.
[2011] use an equilibrium model to study generation expansion. They integrate
the short-term demand response in their strategic model and discuss the effects
on flexibility of the generation capacity. The approach, however, considers only
a one-period static model. Sönmez et al. [2011] analyze technology choice in
LNG transport and discuss the impact of using a stochastic model for LNG
throughput. They show that operational flexibility is important in order to cope
with short-term variations and that is has a significant impact on profitability.

We suggest a multi-horizon tree in paper 3, Hellemo et al. [2012a] to incorpo-
rate short term variability in stochastic strategic models. By including sub trees
representing operational time periods for each strategic node in the scenario tree,
we are able to take short term variability into account while keeping the scenario
tree relatively small. Singh et al. [2009] describe a multi-stage capacity-planning
problem for an electricity distribution network which also allows stochastic oper-
ational sub models. They solve their model using Dantzig-Wolfe decomposition
and variable splitting. The concept of multi-horizon scenario trees is developed
further in Kaut et al. [2013].
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1.6 Decision-Dependent Uncertainty

A standard assumption in stochastic programming is that the uncertainty is
independent of the decisions made in the model, that is both in terms of the
probability distribution of the stochastic parameters and the dynamics of the
uncertainty, e.g. when uncertainty is resolved.

This can be a limitation when considering decision problems concerning the
design of or upgrade of existing infrastructure for petroleum exploitation. One
of the main sources of uncertainty in development of new reservoirs is the size
and characteristics of each new reservoir. Although great progress has been made
within seismic analysis, there still remains uncertainty to the exact qualities of
each reservoir until actual drilling takes place. Drilling offshore wells is expensive,
and the decisions on how, where and when to drill requires careful analysis and
planning. The crucial point is that the uncertainty is not resolved until the
well has been drilled. Similarly, as infrastructure grows older, the probability of
unwanted events increases, and by improving, refurbishing or replacing ageing
infrastructure, this probability can be reduced.

These are examples of situations where it would be useful to relax this assump-
tion and allow the model to change the characteristics of the uncertainty as seen
by the model, given some decisions, in other words to allow decision-dependent
uncertainty in the model. The literature on such models is sparse. To our knowl-
edge, the first attempt to make such a model was Pflug [1990] who solved the
model finding the stochastic quasigradient. Pflug suggests possible applications
of his simulation based approach to the optimal design of a communications
network, optimal allocation of resources in a queuing system, optimal size of
warehouses and optimal design of power plants. A generalization of stochastic
programming that includes problems where the uncertainty depends on decision
variables was introduced by Jonsbr̊aten [1998], Jonsbr̊aten et al. [1998]. Goel and
Grossmann [2006] suggested problems with decision-dependent uncertainty are of
one of two types: problems with decision-dependent probabilities are of type 1,
and problems with decision-dependent information revelation are of type 2.

Dupačová [2006] provided another overview over such problems, She identifies
two fundamental classes of problems with endogenous uncertainty. One where
the probability distribution is known and the decisions influence the parameters
and one where some decision will cause the probability distribution to be chosen
between a finite set of probability distributions. The first attempt to explicitly
model the relationship between the probability measure and the decision variable
was made by Ahmed [2000]. He formulates single stage stochastic programs that
are applied on network design, server selection and p-choice facility location.

In the final paper, Hellemo et al. [2015], we expand previous taxonomies pre-
sented for stochastic programming problems with decision-dependent uncertainty,
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and we present several two stage recourse models where probability distribution
can be manipulated through distortions, by directly changing the parameters of
the distribution for an exact pdf or for an approximation.

1.7 Summary of papers

In this section I will give a short presentation of each paper and my contributions
to each paper.

Paper I — Optimizing the Norwegian Natural Gas Production
and Transport, page 27

Authors: Frode Rømo, Asgeir Tomasgard, Lars Hellemo, Marte Fodstad, Bjørgulf
Haukelidsæter Eidesen, and Birger Pedersen

Reprinted by permission, Interfaces Vol. 39, No. 1, January–February 2009,
pp 46–56, Copyright (2009), the Institute for Operations Research and the Man-
agement Sciences, 5521 Research Park Drive, Suite 200, Catonsville, Maryland
21228 USA.

This paper presents a model for network flow optimization for natural gas
pipeline transmission grids, which is in daily use for planning purposes on the
NCS. We present the deterministic MILP model for network flow maximization
with linearization of the Weymouth equation as an upper bound and discretiza-
tion of multi-component flow fractions to find an approximate solution to the
pooling problem. The project is a testament to the great importance of close
cooperation with industry partners in developing operations research models for
use in industry. The industry partners estimate the financial gain stemming from
having access to such a model to be in the order of USD 2 billion over the time
that the model has been in use. The work presented in this paper was selected
as a finalist in the 2008 INFORMS Franz Edelman competition.

The modelling and implementation has been performed at SINTEF, with some
contributions from researchers at NTNU. I have participated in refinement of the
model and interface, and taken main responsibility for writing and submitting
the paper.
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Paper II — Natural Gas Infrastructure Design with an
Operational Perspective, page 41

Authors: Lars Hellemo, Kjetil Midthun, Asgeir Tomasgard, and Adrian Werner

Reprinted by permission, Energy Procedia 26 (2012) 67–73

This paper presents a model for natural gas infrastructure investments and
capacity expansions. We consider both existing infrastructure and potential ex-
pansions, and the model is formulated as a deterministic MILP. We include a
linearization of the Weymouth equation for flow pressure relationship and in-
clude the possibility to add quality constraints through a discretization of the
pooling problem. We also discuss a relevant investment case from the NCS.

The modelling is joint work with colleagues at SINTEF and NTNU. I have
contributed to the implementation and performed numerical experiments. I have
contributed in equal part in discussions and in writing the paper.

Paper III — Multi-Stage Stochastic Programming for Natural
Gas Infrastructure Design with a Production Perspective,
page 51

Authors: Lars Hellemo, Kjetil Midthun, Asgeir Tomasgard, and Adrian Werner

Published in Ziemba, W. T., Wallace, S. W., Gassman, H. I. (Eds.), Stochas-
tic programming — Applications in finance, energy, planning and logistics. Vol.
4 of World Scientific series in finance. World Scientific, 2012, pp. 259–288, Copy-
right (2012) World Scientific

In paper three we present a multi-stage stochastic model for natural gas in-
vestments and capacity expansions. We consider candidate projects and existing
infrastructure together when optimizing the operations of the available infras-
tructure during each time period. Several uncertain parameters can be included,
both upstream and downstream, e.g. reservoir size and quality composition, mar-
ket demand and prices. We also include analysis of the effects on the expected
production assurance from the solutions chosen by the model.

In order to analyze both long term uncertainty and short term variability
we introduce a novel scenario tree structure intended to reduce dimensionality
and improve computational tractability. The multi-horizon tree structure allows
branching into separate sub trees for each strategic node independently of further
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branching of the long term uncertainty.

The modelling is joint work with colleagues at SINTEF and NTNU. I have
contributed to the implementation and performed numerical experiments. I have
contributed in equal part in discussions and in writing the paper.

Paper IV — Discretizations of Natural Gas Pooling Problems,
page 83

Authors: Lars Hellemo and Adrian Werner

Submitted to an international, peer-reviewed journal

In the fourth paper we evaluate several discretization schemes for the non-
convex pooling problem. We introduce a novel discretization scheme, where in-
formation from an auxiliary LP relaxation is used to determine the discretization.
We also introduce post processing problem, a set of linear equations solved as an
LP to determine the quality flows in problem instances where the quality con-
straints are non-binding. Whether the constraints are binding is not known in
advance, and we propose a solution scheme where the computationally cheap post
processing is performed first, resorting to more elaborate discretization schemes
depending on problem properties. We show that the proposed scheme works well
on a set of real world problem instances motivated by natural gas transport on
the Norwegian Continental Shelf.

This work is joint work with my colleague at SINTEF. I have contributed in
equal parts in discussions and implementation. I have taken main responsibility
for writing the paper, and I have performed the numerical experiments.

Paper V — A Generalized Global Optimization Formulation of
the Pooling Problem with Processing Facilities and Composite
Quality Constraints, page 117

Authors: Lars Hellemo and Asgeir Tomasgard

Accepted for publication in TOP

In this paper we present a new continuous formulation of the pooling problem
which is more general than the normal pooling problem. Our formulation allows
several levels of pools, also when intermediate pools are not directly connected
to sources or sinks.
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By using a multi-commodity flow formulation, it is easy to extend the stan-
dard pooling model to include simple processing facilities that can alter the flow
composition and composite quality constraints.

We compare the performance of our formulation with other formulations, using
test cases from literature. We also introduce new test cases based on real word
problems stemming from the Norwegian Continental Shelf. We also investigate
the extra computational effort required to solve problems with composite quality
constraints.

This is joint work with my supervisor at NTNU. I have been the main author
and have performed all implementation and numerical experiments.

Paper VI — Stochastic Programming with Decision-Dependent
Probabilities, page 173

Authors: Lars Hellemo, Paul I. Barton, and Asgeir Tomasgard

Submitted to an international, peer-reviewed journal

In the final paper we present a taxonomy of stochastic programming problems
with decision-dependent uncertainty, which expands on previous taxonomies of
such problems.

We also introduce two kinds of two-stage recourse problems with decision-
dependent probabilities where the probability distributions are manipulated di-
rectly as a continuous function of some first stage decision variables. The manip-
ulation is either performed as an affine distortion of some pre existing discrete
probability distribution (models 1 and 2), or as the direct manipulation of some
parameters of a continuous distribution (models 3 and 4). The four models are:
Distortion of subsets of scenarios and corresponding correction of remaining sce-
narios, convex combination of probabilities, Kumaraswamy distribution and an
approximation to the Normal distribution with change of mean through change
of variables.

We include test instances of all four problem types with different number
of discrete scenarios and test the computational implications of each problem
type through numerical experiments. The decomposition approach we imple-
mented was outperformed by a commercial global optimization solver with selec-
tive branching.

This is joint work with my supervisor at NTNU and my co-supervisor at MIT.
I have been the main author and have contributed in equal part in discussions. I
also performed the implementation and numerical experiments.
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D. Haugland, Å. Hallefjord, and H. Asheim. Models for petroleum field exploita-
tion. European Journal of Operational Reseach, 37:58–72, 1988.

C. Haverly. Studies of the behavior of recursion for the pooling problem. ACM
SIGMAP Bulletin, 25:19–28, 1978.

C. Haverly. Behavior of recursion model—more studies. ACM SIGMAP Bulletin,
(26):22–28, 1979.

C. Haverly. Recursion model behavior: more studies. ACM SIGMAP Bulletin,
(28):39–41, 1980.

L. Hellemo and A. Tomasgard. A Generalized Global Optimization Pooling For-
mulation With Processing Facilities and Compoisite Quality Constraints. 2015.

L. Hellemo and A. Werner. Discretizations of natural gas pooling problems. In
Review, 2015.

L. Hellemo, K. Midthun, A. Tomasgard, and A. Werner. Multi-stage stochastic
programming for natural gas infrastructure design with a production perspec-
tive. In W. T. Ziemba, S. W. Wallace, and H. I. Gassman, editors, Stochastic
programming – Applications in finance, energy, planning and logistics, vol-
ume 4 of World Scientific series in finance, pages 259–288. World Scientific,
2012, 2012a.

L. Hellemo, K. Midthun, A. Tomasgard, and A. Werner. Natural Gas Infras-
tructure Design with an Operational Perspective. Energy Procedia, 26:67–73,
2012b.

L. Hellemo, A. Tomasgard, and P. I. Barton. Stochastic Programming with
Decision-Dependent Probabilities. 2015.

J. L. Higle. Stochastic programming: optimization when uncertainty matters.
Cole Smith J (ed) Tutorials in operations research, pages 30–53, 2005.

T. Jonsbr̊aten. Oil field optimization under price uncertainty. Journal of the
Operational Research Society, 49(8):811–818, 1998.

21



Chapter 1 Introduction

T. Jonsbr̊aten, R. Wets, and D. Woodruff. A class of stochastic programs with
decision dependent random elements. Annals of Operations Research, 82:83–
106, 1998.

K. O. Jørnsten. Sequencing offshore oil and gas fields under uncertainty. European
Journal of Operational Research, 58:191–201, 1992.
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ãäåæçèéæäè êäêëìçíç îï ðæèñîëæòé íäïñêçèñòóèòñæ ôêç õææä öí÷æëì çèò÷íæ÷ø ùäæ éêúîñ éîèíåêèíîä ïîñ
èôæçæ çèò÷íæç íç èôæ ëêñûæ óîçèç êççîóíêèæ÷ öíèô õîèô ðñî÷òóèíîä ïêóíëíèíæç êä÷ èñêäçðîñè ïêóíëíèíæç ñæëêèæ÷
èîü íä ðêñèíóòëêñü îýçôîñæ ðñî÷òóèíîäø þôæ äêèòñêë ûêç åêëòæ óôêíä êëçî ôêç çîéæ çðæóíêë óôêñêóèæñíçèíóç
èôêè éêÿæ óêñæïòë êäêëìçíç êä÷ ûîî÷ ÷æóíçíîä çòððîñè èîîëç åæñì åêëòêõëæø ãä îòñ çèò÷ì öæ ôêåæ òçæ÷ èôæ
◆îñöæûíêä ❈îäèíäæäèêë ❙ôæëï êç èôæ éîèíåêèíäû óêçæø þôæ èñêäçðîñè äæèöîñÿ îä èôæ ◆îñöæûíêä ❈îäèíäæäèêë
❙ôæëï íç èôæ ëêñûæçè çòõçæê ûêç èñêäçðîñè äæèöîñÿ íä èôæ öîñë÷ø ãè óîäçíçèç îï êððñî❛íéêèæëì ✼�✁✁ ÿé îï
ðíðæëíäæç öíèô ëêñûæ ÷íêéæèæñç èôêè êñæ îðæñêèæ÷ êè ôíûô ðñæççòñæ ëæåæëçø þôæ ðñî÷òóèíîä ïêóíëíèíæç ôêåæ
éí❛æ÷ óôêñêóèæñíçèíóç íä èæñéç îï çîéæ ➈æ❛íõëæ ðñî÷òóèíîä ➇æë÷ç êä÷ çîéæ ➇æë÷ç èôêè êñæ ðñíéêñíëì îíë ➇æë÷ç
öôæñæ èôæ ûêç ðñî÷òóèíîä éòçè õæ éêíäèêíäæ÷ íä îñ÷æñ èî ÿææð èôæ îíë ðñî÷òóèíîä ëæåæë ôíûôø þôæ ➇æë÷ç êëçî
ðñî÷òóæ ûêç öíèô ÷íýæñæäè qòêëíèìø ❲æ éî÷æë ➈îö èôñîòûô ðíðæëíäæç êç ê éòëèí♠óîééî÷íèì ➈îö öôæñæ èôæ
óîééî÷íèíæç êñæ ÷íýæñæäè ûêç óîéðîäæäèçü çòóô êç éæèôêäæü õòèêäæü ðñîðêäæü ❈ù✷ü êä÷ ❍✷❙ø ãè íç íéðîñèêäè
èî ÿææð èñêóÿ îï èôæ ûêç qòêëíèì çíäóæ èôæñæ êñæ çðæóí➇óêèíîäç íä èôæ éêñÿæè äî÷æç èôêè éòçè õæ éæèü öíèô
ñæçðæóè èî õîèô èôæ æäæñûì óîäèæäè îï ÷æëíåæñíæç íä èæñéç îï ûñîçç óêëîñí➇ó åêëòæ ✭✂❈✄☎ êä÷ èôæ éê❛íéòé
óîäèæäè îï ❈ù✷ø ✂êç èôêè ÷îæç äîè éææè èôæ çðæóí➇óêèíîäç óêä õæ æíèôæñ ðñîóæççæ÷ îñ õëæä÷æ÷ öíèô ûêç ïñîé
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✦❝❞✣❞ ❝✐ ✛✚❞✣✖★★✛✚✜ ✚✘✇ ✛✚✐✢✖❞✣✢✤✦✣✤✢✘ ✖❞ ✇✘★★ ✖❞ ✦❝❞✣❞ ❝✐ ✢✘♠❝✈✛✚✜ ❝★✗ ✛✚✐✢✖❞✣✢✤✦✣✤✢✘✧ ■✚ ✖✗✗✛✣✛❝✚✱ ✣✙✘✢✘ ✖✢✘

❝♣✘✢✖✣✛✚✜ ✦❝❞✣❞ ✢✘★✖✣✘✗ ✣❝ ♠✖✛✚✣✖✛✚✛✚✜ ✖✚✗ ❝♣✘✢✖✣✛✚✜ ✣✙✘ ✛✚✐✢✖❞✣✢✤✦✣✤✢✘ ✖✚✗ ✣✙✘ ♣✢❝✗✤✦✣✛❝✚ ❝✚ ✣✙✘ ✗✛✪✘✢✘✚✣

➇✘★✗❞✧ ❘✘✈✘✚✤✘ ✛❞ ✦✖★✦✤★✖✣✘✗ ✛✚ ✣✙✘ ❝♣✘✢✖✣✛❝✚✖★ ✣✛♠✘ ♣✘✢✛❝✗❞✱ ✖✚✗ ✢✘❞✤★✣❞ ✐✢❝♠ ❞✖★✘❞ ✛✚ ✦❝✚✣✢✖✦✣❞ ✖✚✗ ❝✚ ❞♣❝✣

♠✖✢✩✘✣❞✧ ❚✙✘ ✢✘❞✤★✣✛✚✜ ✦✖❞✙ ➈❝✇❞ ✖✢✘ ✗✛❞✦❝✤✚✣✘✗ ✇✛✣✙ ✖ ✜✛✈✘✚ ✢✘q✤✛✢✘✗ ✢✖✣✘ ❝✐ ✢✘✣✤✢✚✧
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▲�✁s ✂✄☎☎✄✆✝ ✄✞ �☎✟ ✥ ❊✠✄✁❣✡ ☛✁✝♦✄☞✌� ✷✍ ✎✷✏✑✷✮ ✍✻ ✒ ✻✓ ✔✕

S1 O11 O12 O13 O14 S2 O21

Time

Strategic time periods

Operational time periods

1 2

1 2 3 14

❋✖✗✘ ✶✘ ❚✙✚ t✖✛✚ ✜t✢✣✤t✣✢✚ ✣✜✚✉ ✖✐ ✦✣✢ ✛✦✉✚♠✘ ❚✙✚ ✜✧✣★✢✚ ✐✦✉✚✜ ✢✚r✢✚✜✚✐t ✖✐✈✚✜t✛✚✐t r✚✢✖✦✉✜ ✇✙✚✢✚ ✉✚✤✖✜✖✦✐✜ ✢✚✗★✢✉✖✐✗ ✖✐✩✢★✜t✢✣✤t✣✢✚

✉✚✈✚♠✦r✛✚✐t ★✢✚ ✛★✉✚✪ ✇✙✖♠✜t t✙✚ ✤✖✢✤✣♠★✢ ✐✦✉✚✜ ✢✚r✢✚✜✚✐t ✦r✚✢★t✖✦✐★♠ r✚✢✖✦✉✜ ✇✙✚✢✚ t✙✚ ✦r✚✢★t✖✦✐ ✦✩ t✙✚ ✐✚t✇✦✢✫ ✖✜ ✉✚t✚✢✛✖✐✚✉ ★✐✉

✢✚✈✚✐✣✚✜ ★✐✉ ✤✦✜t✜ ★✢✚ ✩✦✣✐✉✘

■✬✭✯✰✱✲✯✬✱ ❞✯✳✴✰✴✵✬✰✸ ✹✺✼ ✽✾✿✼❡❀❁✼✾❀ ❂✼❃✽❡✽❄✾❡ ✽✾ ❀✺✼ ❁❄❂✼❅ ❛❆✼ ❇✺✼❀✺✼❆ ❄❆ ✾❄❀ ❀❄ ✽✾✿✼❡❀ ✽✾ ♣❆❄♣❄❡✼❂

♣❆❄❈✼❃❀❡ ❡❉❃✺ ❛❡ ♣✽♣✼❅✽✾✼❡● ➇✼❅❂❡● ♣❆❄❃✼❡❡✽✾❍ ♣❅❛✾❀❡● ❅❛✾❂✽✾❍ ♣❄✽✾❀❡● ❛✾❂ ❈❉✾❃❀✽❄✾ ✾❄❂✼❡ ❛✾❂ ❛❆✼● ❀✺✼❆✼❏❄❆✼●

❁❄❂✼❅✼❂ ❉❡✽✾❍ ❜✽✾❛❆❑ ✿❛❆✽❛❜❅✼❡▼ ◆ ❏❉❆❀✺✼❆ ❡✼❀ ❄❏ ❂✼❃✽❡✽❄✾❡ ❃❄✾❃✼❆✾❡ ❀✺✼ ♣❄❀✼✾❀✽❛❅ ❡✺❉❀❖❂❄❇✾ ❄❏ ♣❆❄❈✼❃❀❡ P❇✽❀✺

❛ ❃❄❡❀ ❏❄❆ ❀✺✼✽❆ ❆✼❁❄✿❛❅◗▼ ◆❅❡❄ ✼①✽❡❀✽✾❍ ✽✾❏❆❛❡❀❆❉❃❀❉❆✼ ✽❡ ❁❄❂✼❅✼❂ ✽✾ ❀✺✽❡ ❇❛❑▼ ◆❅❅ ♣❆❄❈✼❃❀❡ ✺❛✿✼ ❡❄❁✼ ❃❄❁❁❄✾

❃✺❛❆❛❃❀✼❆✽❡❀✽❃❡● ❡❉❃✺ ❛❡ ❛ ❀✽❁✼ ❇✽✾❂❄❇ ❏❄❆ ✽✾✿✼❡❀❁✼✾❀ P✼❛❆❅✽✼❡❀ ❛✾❂ ❅❛❀✼❡❀ ❡❀❛❆❀❖❉♣ ❀✽❁✼◗● ❃❄✾❡❀❆❉❃❀✽❄✾ ❀✽❁✼

P❂✼❅❛❑ ❜✼❀❇✼✼✾ ✽✾✿✼❡❀❁✼✾❀ ❂✼❃✽❡✽❄✾ ❛✾❂ ❀✽❁✼ ❄❏ ❄♣✼❆❛❀✽❄✾◗● ❛✾❂ ❃❄❡❀❡▼ ❘✾ ❛❂❂✽❀✽❄✾● ❀✺✼❆✼ ❛❆✼ ❃✺❛❆❛❃❀✼❆✽❡❀✽❃❡

❀✺❛❀ ❛❆✼ ❉✾✽❙❉✼ ❏❄❆ ❀✺✼ ❂✽❯✼❆✼✾❀ ♣❆❄❈✼❃❀❡▼ ❱❄❆ ❀✺✼ ➇✼❅❂❡● ❏❄❆ ✽✾❡❀❛✾❃✼● ❇✼ ❡♣✼❃✽❏❑ ❆✼❡✼❆✿❄✽❆ ❅✼✿✼❅❡● ♣❆❄❂❉❃❀✽❄✾

❆❛❀✼ ❅✼✿✼❅❡ ❛✾❂ ❃❄❁♣❄❡✽❀✽❄✾ ❄❏ ❀✺✼ ❍❛❡ ✽✾ ❀✺✼ ❆✼❡✼❆✿❄✽❆❡▼ ❘✾ ❄❆❂✼❆ ❀❄ ❆✼♣❆✼❡✼✾❀ ❂✽❯✼❆✼✾❀ ➇✼❅❂ ❂✼✿✼❅❄♣❁✼✾❀

♣❄❡❡✽❜✽❅✽❀✽✼❡ ❛❀ ❄✾✼ ❡✽❀✼● ❇✼ ✽✾❃❅❉❂✼ ❡✼✿✼❆❛❅ ✽✾✿✼❡❀❁✼✾❀ ♣❆❄❈✼❃❀❡● ✼❛❃✺ ❂✼❡❃❆✽❜✽✾❍ ❄✾✼ ❂✼✿✼❅❄♣❁✼✾❀ ❄♣❀✽❄✾▼

❘✾ ❡❉❃✺ ❛ ❃❛❡✼● ❇✼ ❛❅❡❄ ❛❂❂ ❃❄✾❡❀❆❛✽✾❀❡ ✼✾❡❉❆✽✾❍ ❀✺❛❀ ❄✾❅❑ ❄✾✼ ❄❏ ❀✺✼ ♣❆❄❈✼❃❀❡ ❃❛✾ ❜✼ ❃✺❄❡✼✾▼ ❲✼✾✼❆❛❅❅❑●

❃❄✾❡❀❆❛✽✾❀❡ ❃❛✾ ❛❅❡❄ ❜✼ ❉❡✼❂ ❀❄ ❀✽✼ ♣❆❄❈✼❃❀❡ ❀❄❍✼❀✺✼❆ ✽✾ ❍❆❄❉♣❡ ❡❉❃✺ ❀✺❛❀ ✽❏ ❄✾✼ ❄❏ ❀✺✼ ♣❆❄❈✼❃❀❡ ✽✾ ❀✺✼ ❍❆❄❉♣ ✽❡

✽✾✿✼❡❀✼❂ ✽✾● ❀✺✼✾ ❀✺✼ ❆✼❡❀ ❄❏ ❀✺✼ ♣❆❄❈✼❃❀❡ ✽✾ ❀✺✼ ❍❆❄❉♣ ❁❉❡❀ ❛❅❡❄ ❜✼ ✽✾✿✼❡❀✼❂ ✽✾ P❄❆ ❄✾❅❑ ❄✾✼ ♣❆❄❈✼❃❀ ❏❆❄❁ ❀✺✼

❍❆❄❉♣ ❃❛✾ ❜✼ ✽✾✿✼❡❀✼❂ ✽✾◗▼

❳❨✯❩❬✱✴✵✬❬❭ ❞✯✳✴✰✴✵✬✰✸ ❘✾ ❀✺✼ ❄♣✼❆❛❀✽❄✾❛❅ ❀✽❁✼ ♣✼❆✽❄❂❡ ❇✼ ✽✾❃❅❉❂✼ ❃❄✾❡❀❆❛✽✾❀❡ ❏❄❆ ♣❆❄❂❉❃❀✽❄✾ ❅✽❁✽❀❡ ✽✾ ❀✺✼

➇✼❅❂❡● ❁❛❡❡ ❜❛❅❛✾❃✼❡ ✽✾ ❀✺✼ ✾✼❀❇❄❆❪● ❍❛❡ ❙❉❛❅✽❀❑● ❁❛❆❪✼❀ ❂✼❁❛✾❂● ❛✾❂ ❆✼❅❛❀✽❄✾❡✺✽♣❡ ❜✼❀❇✼✼✾ ➈❄❇ ❛✾❂ ♣❆✼❡❖

❡❉❆✼▼ ❫❛❆❛❁✼❀✼❆❡ ❡❉❃✺ ❛❡ ❂✼❁❛✾❂ ❛✾❂ ♣❆✽❃✼❡ ❄❏❀✼✾ ❡✺❄❇ ❛ ❡✼❛❡❄✾❛❅ ✼❯✼❃❀ ✽✾ ❛❂❂✽❀✽❄✾ ❀❄ ❅❛❆❍✼ ❂❛✽❅❑ ✿❛❆✽❛❀✽❄✾❡▼

✹✺✼❡✼ ✿❛❆✽❛❀✽❄✾❡ ❃❛✾ ✽✾➈❉✼✾❃✼ ❄♣❀✽❁❛❅ ✾✼❀❇❄❆❪ ❂✼❡✽❍✾ ❃✺❄✽❃✼❡▼ ◆✾ ✽✾✿✼❡❀❁✼✾❀ ❛✾❛❅❑❡✽❡ ❉❡✽✾❍ ❛✿✼❆❛❍✼ ✿❛❅❖

❉✼❡ ❄✿✼❆ ❅❄✾❍ ❀✽❁✼ ♣✼❆✽❄❂❡ ✾✼❍❅✼❃❀❡ ❛❅❅ ❡✺❄❆❀❖❀✼❆❁ ✿❛❆✽❛❀✽❄✾❡▼ ✹✺✽❡ ✽❡ ❡✽❁✽❅❛❆ ❀❄ ❉❡✽✾❍ ❛ ❂✼❀✼❆❁✽✾✽❡❀✽❃ ❁❄❂✼❅

P❇✺✼❆✼ ❀✺✼ ❉✾❃✼❆❀❛✽✾❀❑ ✽❡ ❛✿✼❆❛❍✼❂◗ ❆❛❀✺✼❆ ❀✺❛✾ ❛ ❡❀❄❃✺❛❡❀✽❃ ❁❄❂✼❅● ❛✾❂ ❃❛✾ ❅✼❛❂ ❀❄ ❡❄❁✼ ❄❏ ❀✺✼ ❡❛❁✼ ✼❯✼❃❀❡▼

◆✿✼❆❛❍✽✾❍ ✿❛❅❉✼❡ ✽❍✾❄❆✼❡ ❀✺✼✽❆ ✿❛❆✽❛❜✽❅✽❀❑● ❛✾❂ ❀✺✼ ✾✼❀❇❄❆❪ ❁❛❑ ✼✾❂ ❉♣ ❜✼✽✾❍ ✽✾➈✼①✽❜❅✼ ❛✾❂ ❉✾❛❜❅✼ ❜❄❀✺ ❀❄

✺❛✾❂❅✼ ✾✼❍❛❀✽✿✼ ✼✿✼✾❀❡ ❛✾❂ ❀❄ ❀❛❪✼ ❛❂✿❛✾❀❛❍✼ ❄❏ ♣❄❡✽❀✽✿✼ ✼✿✼✾❀❡ ❡❉❃✺ ❛❡ ✿✼❆❑ ✺✽❍✺ ♣❆✽❃✼❡ ❄❆ ✺✽❍✺ ❂✼❁❛✾❂▼ ❴❑

❃❄✾❡✽❂✼❆✽✾❍ ❛ ➇✾✼ ❀✽❁✼ ❆✼❡❄❅❉❀✽❄✾ ❏❄❆ ❀✺✼ ❄♣✼❆❛❀✽❄✾❛❅ ❀✽❁✼ ♣✼❆✽❄❂❡ ❇✼ ❛✿❄✽❂ ❀✺✽❡ ❃✺❛❅❅✼✾❍✼ ❛✾❂ ❃❛✾ ❆✼♣❆✼❡✼✾❀

❂✽❯✼❆✼✾❀ ❄♣✼❆❛❀✽✾❍ ❃❄✾❂✽❀✽❄✾❡ ❏❄❆ ❀✺✼ ✾❛❀❉❆❛❅ ❍❛❡ ✿❛❅❉✼ ❃✺❛✽✾▼

❵✸❵✸ ❝❢✰✱✯✲ ✯❤✯✳✱✰

❘✾ ❛ ✾❛❀❉❆❛❅ ❍❛❡ ✾✼❀❇❄❆❪ ✽❀ ✽❡ ✾❄❆❁❛❅❅❑ ✾❄❀ ♣❄❡❡✽❜❅✼ ❀❄ ♣❆✼❂✼➇✾✼ ❃❛♣❛❃✽❀✽✼❡ ✽✾ ❀✺✼ ♣✽♣✼❅✽✾✼❡ ❡✽✾❃✼ ❀✺✼

❃❛♣❛❃✽❀❑ ❄❏ ❄✾✼ ♣✽♣✼❅✽✾✼ ❇✽❅❅ ❂✼♣✼✾❂ ❄✾ ✺❄❇ ❀✺✼ ❡❉❆❆❄❉✾❂✽✾❍ ♣✽♣✼❅✽✾✼❡ ❛❆✼ ❄♣✼❆❛❀✼❂ P❏❄❆ ❛ ❂✽❡❃❉❡❡✽❄✾● ❡✼✼

❥✽❂❀✺❉✾ ✼❀ ❛❅▼ ❦❧♥q◗▼ ✹✺✼ ✼①❀✼✾❀ ❄❏ ❡❉❃✺ ❡❑❡❀✼❁ ✼❯✼❃❀❡ ❃❛✾ ❜✼ ✽❅❅❉❡❀❆❛❀✼❂ ❇✽❀✺ ❛ ❡✽❁♣❅✼ ✽✾✿✼❡❀❁✼✾❀ ✼①❛❁♣❅✼

P❡✼✼ ❱✽❍❉❆✼ ♥◗▼ ✹✺✼ ❄❆✽❍✽✾❛❅ ✾✼❀❇❄❆❪● ❃❄✾❡✽❡❀✽✾❍ ❄❏ ❛ ♣❆❄❂❉❃❀✽❄✾ ➇✼❅❂ ② ❛✾❂ ❛ ❁❛❆❪✼❀ ✾❄❂✼ ③● ✺❛❡ ❛ ❀❆❛✾❡♣❄❆❀

❃❛♣❛❃✽❀❑ ❄❏ ④❧▼⑤ ❥⑥❁
⑦
⑧❂▼ ✹✺✼❆✼ ❛❆✼ ❀❇❄ ♣❄❡❡✽❜❅✼ ♣❄✽✾❀❡● ➁❧⑨ ❛✾❂ ➁♥⑨● ❀✺❛❀ ❃❛✾ ❜✼ ❉❡✼❂ ❀❄ ❃❄✾✾✼❃❀ ❁❛❆❪✼❀

✾❄❂✼ ⑩ ❀❄ ❀✺✽❡ ✾✼❀❇❄❆❪▼ ❶✿✼✾ ✽❏ ❛❅❅ ♣✽♣✼❅✽✾✼ ❃✺❛❆❛❃❀✼❆✽❡❀✽❃❡ P✼①❃✼♣❀ ❄❏ ❅✼✾❍❀✺◗ ❛❆✼ ✽❂✼✾❀✽❃❛❅ ❜✼❀❇✼✼✾ ❀✺✼ ❀❇❄

♣✽♣✼❅✽✾✼❡● ❀✺✼ ❀❇❄ ❃❄✾✾✼❃❀✽❄✾ ♣❄✽✾❀❡ ❇✽❅❅ ❡❀✽❅❅ ❍✽✿✼ ❀❇❄ ✿✼❆❑ ❂✽❯✼❆✼✾❀ ✾✼❀❇❄❆❪❡❷ ❘❏ ❇✼ ➇① ❀✺✼ ➈❄❇ ❜✼❀❇✼✼✾

② ❛✾❂ ⑩ ❀❄ ❧❸ ❉✾✽❀❡ ❛✾❂ ❀✺✼✾ ❁❛①✽❁✽❹✼ ❀✺✼ ➈❄❇ ❜✼❀❇✼✼✾ ✾❄❂✼❡ ② ❛✾❂ ③● ❃✺❄❄❡✽✾❍ ♣❄✽✾❀ ➁❧⑨ ❍✽✿✼❡ ❛ ➈❄❇ ❄❏

❺❻▼④ ❥⑥❁
⑦
⑧❂ ❇✺✽❅✼ ♣❄✽✾❀ ➁♥⑨ ❆✼❡❉❅❀❡ ✽✾ ❛ ➈❄❇ ❄❏ ❺❺▼❧ ❥⑥❁

⑦
⑧❂▼

✹✺✼ ❃❛♣❛❃✽❀❑ ✽✾ ❛ ❍✽✿✼✾ ♣✽♣✼❅✽✾✼ ❂✼♣✼✾❂❡● ❛❀ ❛✾❑ ♣❄✽✾❀ ✽✾ ❀✽❁✼● ❄✾ ❀✺✼ ♣❆✼❡❡❉❆✼ ✽✾❀❄ ❀✺✼ ♣✽♣✼❅✽✾✼● ❀✺✼

♣❆✼❡❡❉❆✼ ❄❉❀ ❄❏ ❀✺✼ ♣✽♣✼❅✽✾✼ ❛✾❂ ❀✺✼ ♣✽♣✼❅✽✾✼ ❃✺❛❆❛❃❀✼❆✽❡❀✽❃❡ P❡❉❃✺ ❛❡ ❅✼✾❍❀✺● ❂✽❛❁✼❀✼❆● ❄❆ ❏❆✽❃❀✽❄✾◗▼ ✹✺✼ ❆✼❅❛❖

45



✼� ▲✁✂s ✄☎✆✆☎✝✞ ☎✟ ✁✆✠ ✥ ❊✡☎✂❣☛ ☞✂✞♦☎✌✍✁ ✷✎ ✏✷✑✒✷✮ ✎✻ ✓ ✻✔

t✕✖✗✘✙✕✚ ❜✛t✜✛✛✗ ➈✖✜✱ ✚♣✛✘✘✢♣✛ ❧✛✈✛❧✘✱ ❛✗✣ ✣✛✘✕❞✗ ✚❛♣❛✤✛t✛♣✘ ❝❛✗ ❜✛ ✛①✚♣✛✘✘✛✣ ❜✦ t✙✛ ❲✛✦✤✖✢t✙ ✛❡✢❛t✕✖✗✧

❢✐ ★ ❂ ❑
✩
✐ ★

✪

✫
✬
✐ ❾ ✫

✬
★ ✭ ✯✭ ❥ ✰ ✲ ✳✴✵

✜✙✛♣✛ ❢✐ ★ ✕✘ t✙✛ ➈✖✜ ❜✛t✜✛✛✗ ✗✛t✜✖♣✶ ✗✖✣✛✘ ✯ ❛✗✣ ❥ ✜✙✛✗ t✙✛ ✚♣✛✘✘✢♣✛✘ ✕✗ t✙✛✘✛ ✗✖✣✛✘ ❛♣✛ ✫✐ ❛✗✣ ✫ ★✱

♣✛✘✚✛❝t✕✈✛❧✦✸ ❚✙✛ ✖t✙✛♣ ✚✕✚✛❧✕✗✛ ❝✙❛♣❛❝t✛♣✕✘t✕❝✘ ❛♣✛ ❛❞❞♣✛❞❛t✛✣ ✕✗ t✙✛ ❝✖✗✘t❛✗t ❑
✩
✐ ★ ✸ ❚✙✛ ✈❛❧✢✛ ✖✹ t✙✛ ❝✖✗✘t❛✗t

❑
✩
✐ ★ ✕✘ ❜❛✘✛✣ ✖✗ t✙✛ t✙✛✖♣✛t✕❝❛❧ ✈❛❧✢✛ ✹✖✢✗✣ ✹♣✖✤ t✙✛ ❝✙❛♣❛❝t✛♣✕✘t✕❝✘ ✖✹ t✙✛ ✚✕✚✛❧✕✗✛ ✳✘✛✛✱ ✹✖♣ ✕✗✘t❛✗❝✛✱ ❬✴✺✽✵

❛✗✣ ✕✘✱ ✜✙✛✗ ✗✛✛✣✛✣✱ ❛✣✾✢✘t✛✣ ❛❝❝✖♣✣✕✗❞ t✖ ✙✕✘t✖♣✕❝❛❧ ✖❜✘✛♣✈❛t✕✖✗✘ ❛✗✣ t✛✘t✘✸ ❚✙✕✘ ✛❡✢❛t✕✖✗ ❝❛✗ ❜✛ ❧✕✗✛❛♣✕✿✛✣

❜✦ ✢✘✕✗❞ ❛ ➇♣✘t❀✖♣✣✛♣ ❚❛✦❧✖♣ ✛①✚❛✗✘✕✖✗ ❛♣✖✢✗✣ ❁ ➇①✛✣ ✕✗✚✢t ❛✗✣ ✖✢t❧✛t ✚♣✛✘✘✢♣✛ ✚✖✕✗t✘ P❃✐❄ ❛✗✣ P❅★❄ ✹✖♣ t✙✛

✚✕✚✛❧✕✗✛ ❜✛t✜✛✛✗ ✗✖✣✛✘ ✯ ❛✗✣ ❥✧

❢✐ ★❆ ❇ ❑
✩
✐ ★

❈
❉❉❉❉❉❉❉❉❉❉❋

P❃✐❄
✪

P❃
✬
✐❄ ❾ P❅

✬
★❄

✫✐ ❾
P❅★❄

✪

P❃
✬
✐❄ ❾ P❅

✬
★❄

✫ ★

●
❍❍❍❍❍❍❍❍❍❍■

✭ ✯✭ ❥ ✰ ✲✭ ❏ ✰ ✴▼▼❁ ✳◆✵

❚✙✕✘ ❧✕✗✛❛♣✕✿❛t✕✖✗ ❛❧❧✖✜✘ ✢✘ t✖ ❛✗❛❧✦✿✛ ❧❛♣❞✛ ✗✛t✜✖♣✶✘ ❛✗✣ ✤❛✗✦ ✖✚✛♣❛t✕✖✗❛❧ ✚✛♣✕✖✣✘✸ ❖✖♣ ✣✛t❛✕❧✘ ♣✛❞❛♣✣✕✗❞

t✙✛ ❧✕✗✛❛♣✕✿❛t✕✖✗ ✜✛ ♣✛✹✛♣ t✖ ❘◗✤✖ ✛t ❛❧✸ ❬◆✽✸ ❙✗ ✖✢♣ ✚♣✛✘✛✗t❛t✕✖✗ ✖✹ t✙✛ ✚♣✛✘✘✢♣✛❀➈✖✜ ♣✛❧❛t✕✖✗✘✙✕✚ ✜✛ ✙❛✈✛

❛✘✘✢✤✛✣ t✙❛t ✖✢♣ ✗✛t✜✖♣✶ ✕✘ ❛ ✣✕♣✛❝t✛✣ ❞♣❛✚✙ ✘✢❝✙ t✙❛t t✙✛ ➈✖✜ ✣✕♣✛❝t✕✖✗ ✕✘ ✚♣✛❀✘✚✛❝✕➇✛✣✸ ❚✙✛ ✗✛t✜✖♣✶ ✤❛✦

❛❧✘✖ ❝✖✗t❛✕✗ ✘✖✤✛ ❜✕❀✣✕♣✛❝t✕✖✗❛❧ ✚✕✚✛❧✕✗✛✘✸ ❚✙✛✘✛ ❛♣✛ t♣✛❛t✛✣ ✕✗ ✖✢♣ ✤✖✣✛❧ ❛✘ t✜✖ ✘✛✚❛♣❛t✛ ✚✕✚✛❧✕✗✛✘ ✜✕t✙

✣✕❯✛♣✛✗t ➈✖✜ ✣✕♣✛❝t✕✖✗✘✸ ❚✙✛✗✱ ❛ ❜✕✗❛♣✦ ✈❛♣✕❛❜❧✛ ✕✗✣✕❝❛t✛✘ ✜✙✕❝✙ ✖✹ t✙✛ ✚✕✚✛❧✕✗✛✘ ✕✘ ✖✚✛♣❛t✛✣ ✕✗ ❛✗✦ ❞✕✈✛✗

t✕✤✛ ✚✛♣✕✖✣✸ ❙✹ ✜✛ ✜✛♣✛ t✖ ✕✗❝❧✢✣✛ t✙✛ ✗✛t✜✖♣✶ ✣✖✜✗✘t♣✛❛✤ ✖✹ t✙✛ ✤❛♣✶✛t ✗✖✣✛✘✱ ✜✛ ✜✖✢❧✣ ❛❧✘✖ ✗✛✛✣ t✖

❝✖✗✘✕✣✛♣ ✗✛t✜✖♣✶ ❝✦❝❧✛✘✸

A

BC

1

2

❱❳❨❩ ❭❩ ❪ ❫❳❴❵❤❦ ❳♠♥❦❫q❴❦♠q ❵r✉✇❤❦❴ ②③❦r❦ ④ ♠❦② ❴④r⑤❦q ♠✉⑥❦ ⑦ ❫③④❤❤ ✇❦ ⑧✉♠♠❦⑧q❦⑥ q✉ ④♠ ❦⑨❳❫q❳♠❨ ❵❳❵❦❤❳♠❦ ❨✉❳♠❨ ⑩r✉❴ q③❦ ❶❦❤⑥ ♠✉⑥❦

❷ q✉ q③❦ ❴④r⑤❦q ♠✉⑥❦ ❸❩ ❹③❦r❦ ④r❦ q②✉ ❵✉q❦♠q❳④❤ ⑧✉♠♠❦⑧q❳✉♠ ❵✉❳♠q❫❺ ➁❻❼ ④♠⑥ ➁❭❼❩

❽❿➀❿ ➂➃➄ ➅➆➃❏✯➉➊

➋❛❝✙ ✚♣✖✣✢❝t✕✖✗ ➇✛❧✣ ✚♣✖✣✢❝✛✘ ❞❛✘ ✜✕t✙ ✣✕❯✛♣✛✗t ❡✢❛❧✕t✦ ✳✣✕❯✛♣✛✗t ❝✖✤✚✖✘✕t✕✖✗✵✸ ❙✗ t✙✛ ✤❛♣✶✛t ✗✖✣✛✘

t✙✛♣✛ ❛♣✛ ♣✛❡✢✕♣✛✤✛✗t✘ ✖✗ t✙✛ ❞❛✘ ❡✢❛❧✕t✦✱ ✘✢❝✙ ❛✘ ➌➍➎ ❛✗✣ ➍➏✬ ❝✖✗t✛✗t✸ ❙✗ ✖♣✣✛♣ t✖ ✤✛✛t t✙✛✘✛ ♣✛❡✢✕♣✛❀

✤✛✗t✘✱ ✖✗✛ ✤❛✦ ✚♣✖❝✛✘✘ ❞❛✘ ✕✗ ✖✗❀✘✙✖♣✛ t✛♣✤✕✗❛❧✘ ✖♣ ❜❧✛✗✣ ❞❛✘ ✹♣✖✤ ✣✕❯✛♣✛✗t ✘✖✢♣❝✛✘ ✘✢❝✙ t✙❛t t✙✛ ♣✛✘✢❧t✕✗❞

❞❛✘ ❜❧✛✗✣ ✤✛✛t✘ t✙✛ ✘✚✛❝✕➇❝❛t✕✖✗✘✸

➐✖✣✛❧✕✗❞ t✙✛ ❞❛✘ ❡✢❛❧✕t✦ ❧✛❛✣✘ t✖ t✙✛ ✚✖✖❧✕✗❞ ✚♣✖❜❧✛✤ ✳✘✛✛✱ ✹✖♣ ✕✗✘t❛✗❝✛✱ ➑❛✈✛♣❧✦ ❬✴➒✽✵✱ ✜✙✕❝✙ ♣✛✚♣✛✘✛✗t✘

❛ ❝✖✤✚✢t❛t✕✖✗❛❧❧✦ ✙❛♣✣ ✚♣✖❜❧✛✤✸ ❙t ❛♣✕✘✛✘ ✜✙✛✗ ❞❛✘ ✹♣✖✤ ✣✕❯✛♣✛✗t ✘✖✢♣❝✛✘ ✕✘ ✤✕①✛✣ ✕✗ ❛ ✾✢✗❝t✕✖✗ ✗✖✣✛ ❛✗✣
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Chapter 4

Multi-Stage Stochastic Programming for
Natural Gas Infrastructure Design with a
Production Perspective

Abstract:
We present a multi-stage stochastic model that analyzes investments in nat-
ural gas fields and infrastructure. New projects are evaluated together with
existing infrastructure and planned expansions. Several uncertain factors
both upstream and downstream such as reservoir volumes, the composition
of the gas in new reservoirs, market demand and price levels can influence
the optimal decisions. The model focuses also on the impact of the sequenc-
ing of field developments and new infrastructure on the expected security
of supply. In order to analyze all these aspects in one model, we propose a
novel approach to scenario trees, combining long-term and short-term uncer-
tainty. Dimensionality and solution times of realistic investment cases from
the Norwegian Continental Shelf are discussed.

4.1 Introduction

The pipeline transport system on the Norwegian Continental Shelf (NCS) is the
world’s largest subsea gas transport system with 7800 km of pipelines. When
new projects such as platforms, pipelines, compressors or processing facilities are
considered, they should work well with existing and future infrastructure rather
than be evaluated isolated from the total system. Current models for natural
gas infrastructure development are often deterministic, where the distribution of
uncertain parameters is replaced by mean values. There is, however, uncertainty
in demand, prices, unplanned events, and gas quality and volumes from fields yet
to be developed. Such uncertain parameters can be categorized with respect to
the time horizon over which they vary. Some of the parameters vary from day
to day, such as prices and demand in the markets, nominations in the long-term
contracts, and unplanned events in the network. These variations will affect both
the profitability of the operations in the natural gas value chain and the avail-
ability of network resources. Unplanned events can drastically reduce capacity
in parts of the network and therefore cause large problems for the security of
supply in the system. Examples of such unplanned events are production stops
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on fields, compressor failures, or reduced capacities of processing plants. By con-
sidering only average values for these parameters, important details may be lost
through aggregation. For example, bottlenecks on the operational level during
peak demand can be completely disguised when using only average demand val-
ues. On the long-term horizon there are also several uncertain parameters such
as gas volumes in undeveloped reservoirs, the quality of the gas in such reservoirs,
discoveries of new fields as well as long-term changes in price and demand levels.

The pipeline network exhibits system effects in the sense that the pressure and
flow in one part of the network may influence the capacity in other parts of the
network. To find an efficient routing of gas from production fields to markets we
have to take into account relationships between pressure and flow and blending
of gas with different quality. Consequently, these considerations are important
both for evaluating how the proposed solutions work with existing infrastructure
and for choosing solutions that are flexible enough to be reused for subsequent
developments.

The infrastructure investment model we present here is part of the Ramona
project1 on production assurance and security of supply. We have developed
tools for infrastructure design that value production assurance in addition to
traditional profit or cost objectives. With the development of new gas field with
low quality gas, this task has become more challenging as the quality issues
require more processing capacity or blending with good quality gas to reach
target specifications on gas quality in addition to volume requirements. With a
sufficient number of scenarios we are able to use risk measures such as Conditional
Value at Risk (CVaR) to ensure a high security of supply in the system.

Our main contribution is the development of a decision support system for
infrastructure development that is very flexible with respect to the level of detail
describing the physical processes in the natural gas value chain. The system
is based on a multi-stage stochastic mixed-integer linear programming (MIP)
model. This model can incorporate aspects such as pressure–flow relationship,
multi-commodity flow, line pack, processing plants, and storages. At the same
time we present a novel approach to analyzing both short-term and long-term
uncertainty in the same model. We introduce a new scenario tree structure
that combines strategic periods with operational periods, where the operational
periods are representative for a given period. The structure allows a large number
of such operational periods without causing more than a linear increase in the
size of the scenario tree. We also present results from a realistic investment case
on the NCS.

Paper structure We present an overview of the relevant literature in the fol-
lowing section. Uncertainty that needs to be incorporated in our stochastic MIP

1The Research Council of Norway, project number 175967
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model is discussed in section 4.3. In section 4.4, we describe the main elements
of the mathematical model formulation. Finally, we present a case study with
preliminary computational results in section 4.7. Section 4.8 concludes the paper.
The notation will be introduced when needed in the mathematical formulation,
while we refer to section 4.A for a full overview.

4.2 Literature review

In the literature, we find several examples of models that analyze different aspects
of offshore petroleum investments. This is not surprising given the large risks and
costs associated with such projects.

Strategic models There exist a number of deterministic investment models,
and early overviews can be found in Sullivan [1988] and Haugland et al. [1988].
Nygreen et al. [1998] present a multi-period MIP model used by the Norwegian
Petroleum Directorate. The model is employed for the investment planning of
fields in the North Sea which contain a mixture of oil and gas. In van den
Heever and Grossmann [2001], a model for design and planning of offshore field
infrastructure projects is presented. The model is a multi-period mixed-integer
nonlinear programming model (MINLP) and incorporates complex fiscal rules
such as tariff, tax and royalty calculations. The net present value of projects
is discussed in the light of these fiscal rules. There are also some models which
incorporate uncertainty. Jørnsten [1992] presents an integer model for sequenc-
ing offshore oil and gas fields, where the objective is to maximize total economic
benefit. Haugen [1996] develops a stochastic dynamic programming model to
analyze a supplier’s problem of scheduling fields and pipelines in order to be
able to meet contractual agreements. The uncertainty in this model is in the
resources (production profiles). In Jonsbr̊aten [1998], a stochastic MIP model for
optimal development of an oil field is presented. The objective of the model is
to maximize the expected net present value of the oil field given uncertain future
oil prices. Goel and Grossmann [2004] present a stochastic MIP model for the
planning of offshore gas field developments. The expected net present value is
maximized under uncertainty in reserves. A multi-stage investment model with
decision dependent uncertainty is presented by Tarhan et al. [2009] along with a
branch-and-bound solution method for non-convex mixed-integer nonlinear sub
problems. They take into account nonlinear reservoir models and gradually re-
vealed uncertainties concerning initial flow rate, recoverable volume and other
characteristics of the reservoirs.
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Operational models We use a value chain approach where we consider elements
in the natural gas value chain from production field to market and optimize the
resulting system. This approach has become even more valuable and impor-
tant after the liberalization process, which meant an increase in flexibility for
the participants in the value chain. In Ulstein et al. [2007], planning of offshore
petroleum production is studied on a tactical level. The model has a value chain
approach where production plans, network routing, processing of natural gas and
sales in the markets are considered. In addition, multi-commodity flows and
quality restrictions in the markets are taken into account. Pressure constraints
in the network are, however, not included. The nonlinear splitting for chemical
processing is linearized with binary variables. The resulting model is a mixed-
integer programming model. Selot et al. [2008] presents an operational model
for production and routing planning in the natural gas value chain. The authors
combine a detailed infrastructure model with a complex contractual model but do
not include a market for natural gas. The infrastructure model comprises nonlin-
ear equations relating pressure and flow in wells and pipelines, multi-commodity
flows and contractual agreements (delivery pressure and quality of the gas). The
contractual model is based on a set of logical conditions for production sharing
and customer requirements. The combined model is a mixed-integer nonlinear
programming model. Li et al. [2011] present a global optimization approach to
a stochastic pooling problem. They solve the integrated design and operations
problem of industrial networks such as natural gas networks where the quality is
stochastic.

The transportation of natural gas is one of the key elements when studying the
natural gas industry and is paramount for analyzing the design of the network.
Tomasgard et al. [2007] and Rømo et al. [2009] present a linearization of the
Weymouth equation which enables the analysis of large networks and stochastic
problems. There is a large number of publications with a technical approach to
gas transportation. The models are detailed and accurate in their description
of the physics of gas transportation, such as transient flow and interaction with
compressors. A discussion of transient flows is given in Kelling et al. [2000], while
the homepage of the Pipeline Simulation Interest Group (www.psig.org) gives a
comprehensive overview on modeling, simulation and optimization of natural gas
flows. Midthun et al. [2009] shows that it is difficult, if not impossible, to deter-
mine appropriate static capacities in a natural gas network. The system effects
are discussed and a framework for economic analysis in natural gas networks is
provided. Problems related to transport booking are studied by, e.g., Kalash-
nikov et al. [2010] who model the transport of gas by a transport company and
a pipeline operating company as a stochastic bi-level problem.

56



4.3 Uncertainty

Strategic models with operational variability In order to ensure that short-
term fluctuations and peak demand situations can be accounted for in the sys-
tem design, we include a representation of operational flexibility in a strategic
investment model. Not much work can be found which focuses on both aspects
at the same time. Schütz et al. [2009] include short-term variations in a strategic
model for the Norwegian meat industry. De Jonghe et al. [2011] use an equi-
librium model to study generation expansion. They integrate the short-term
demand response in their strategic model and discuss the effects on flexibility
of the generation capacity. The approach, however, considers only a one-period
static model. Sönmez et al. [2013] analyze technology choice in LNG transport
and discuss the impact of using a stochastic model for LNG throughput. They
show that operational flexibility is important in order to cope with short-term
variations and that is has a significant impact on profitability.

4.3 Uncertainty

Uncertainty in the context of our model

The investment problem we address contains uncertainty both on the long-term
and the short-term horizons. In the long term, there is considerable uncertainty
regarding future energy prices and demand. It is driven by the uncertainty about
the future mix of energy sources, technology shifts, and imports from other geo-
graphical regions. Other important aspects are the gas composition and reservoir
levels of new fields yet to start production. The uncertainty in gas composition
poses challenges related to keeping the delivered gas quality within specifications,
while the volume uncertainty will influence optimal pipeline designs. Also the gas
quality specifications may not be perfectly known, for example, the maximum al-
lowed content of contaminants such as CO2 might be lowered in the future.

In the short term there is uncertainty in the prices in each market. These
prices have a seasonal profile, in addition to high variability and large spikes.
Also the demand in the long-term contracts is uncertain in the short term as
the customers have the flexibility to nominate volumes within certain levels. In
addition, parts of the production or transport capacity may be reduced during an
unforeseen event. Such events can last much shorter than an operational period
but may block network elements completely. We model this by stating how much
of the network element’s capacity is available over the operational period.

It is important to deal with the uncertainty in an appropriate way to ensure
a robust and flexible infrastructure design allowing profitable operations under
various, also adverse, conditions. For the investment analysis we need an opti-
mization horizon of several years, typically between 20 and 50. The operational
analysis, on the other hand, requires a much finer time resolution, such as days
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or hours. Combining the long time horizon, the fine time resolution and the un-
certainty in both the long and the short term into a common paradigm, the size
of a traditional scenario tree will explode. It is, therefore, worthwhile to inves-
tigate alternative approaches. One way of handling the effects of the short-term
uncertainty is to iteratively run the investment model and a short-term model
that incorporates the operational aspects (see, for instance, Myklebust [2010]).
This approach poses, however, large challenges with respect to coordination and
convergence of the solution. We propose a different approach that allows us to
analyze long time horizons consisting of several years while still taking into ac-
count the effects of operational decisions and uncertainty in the same model. The
following section describes our approach in more detail.

The multi-horizon scenario tree

We have developed a new scenario tree structure to represent both short-term and
long-term uncertainty in a unified framework. To the best of our knowledge, such
a framework has not been presented before. The approach includes key aspects
of operational variability and uncertainty while keeping the size of the scenario
tree manageable. Our approach is based on multi-horizon scenario trees, where
the long-term and short-term horizons are handled differently but in a unified
framework. The strategic nodes span long time periods such as years, while the
operational nodes typically represent days. All decisions related to investments
and network design is made in the strategic nodes, while all decisions related
to operating the network are made in the operational nodes. This distinction
between strategic and operational tree nodes in a multi-horizon tree is stronger
than in a traditional scenario tree.

The operational nodes represent sub-trees in the scenario tree. In these sub-
trees, the leaf nodes are always operational nodes while the root node will be
an investment node. At each investment node we can then add several sub-
trees. This way we can test the infrastructure in the connected investment node
on an operational level. This connection is illustrated in Figure 4.1, where the
strategic node is given as a square while the operational nodes are oval. The
figure also shows that we distinguish between two different types of operational
scenarios. The first type is included in the objective function of our model and
provides us with the costs and revenues from operating the network. The benefits
from adding these nodes are the greater detail we can add to the calculation
of the profits with a finer time resolution as well as the possibility of adding
several scenarios (using the expected value in the objective function). In addition,
we have a second type of operational nodes (on the far right in Figure 4.1)
that are used to find the security of supply (or production assurance) in the
network. These operational nodes represent extreme scenarios that include events
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with negative impact on operations that may occur with a small probability
as well as scenarios representing the normal operations with an associated high
probability. These scenarios are included to enforce the satisfaction of production
assurance targets given the occurrence of such events. The results from these
extreme scenarios do not contribute to the objective function in terms of revenue
or operational expenses. Rather, production assurance targets may be enforced
through hard constraints or violations penalized in the objective function. This
way it is possible to influence the infrastructure solutions proposed by the model
to be more robust against failures, also in situations that may not directly reduce
overall profitability by much due to the short duration of the events.

1

Figure 4.1: Coupling of strategic nodes (square) and the two different groups of
operational subtrees (ovals).

The branching in our scenario tree is performed on the strategic nodes only, as
illustrated in Figure 4.2. That is, the only connection between the operational
nodes and the next strategic node is through the expected profits from operations
(in addition to the expected production which will change the reservoir levels).
This way, we can incorporate operational details and short-term uncertainty al-
lowing us to thoroughly test design decisions, and at the same time use traditional
scenarios expressing the long-term uncertainty, thus analyzing long time horizons
without an explosion in problem size. This corresponds to a contingent scenario
analysis for the operational problem for each strategic node and is, in general, a
relaxation from the real information structure which would include branching in
the main tree also at the operational level. Such a relaxation allows us to take
into account the operational variability to some degree without suffering from the
immense growth of the scenario tree needed for a model with frequent branching
in a short-term horizon included in a strategic model. Observe that, if both the
long-term uncertainty is independent of previous short-term realizations and the
strategic decisions are independent of previous short-term decisions, the scenario
tree structure actually reflects the exact information structure.

We denote the strategic scenarios of the tree by s ∈ S and the operational
scenarios by o ∈ SOp with the corresponding root node R(o) ∈ S. The set SOpSub

ts

denotes all operational scenarios in the sub-tree associated with a strategic node
in time period t ∈ T and scenario s ∈ S. The operational (leaf) nodes o ∈ SOp
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26 

Year 1: 

Long term 

Year 1: 

Short term, 

normal 

Year 1: 

Short term, 

extreme 

events 
Year 2: 

Long term . . . 
Figure 4.2: Multi-horizon scenario tree combining long- and short-term uncer-

tainty for investment and operational decision nodes. The first group
of operational time periods denotes the representative normal days,
while the second group represents events.

have no descendant nodes in S, but all have a root node R(o) ∈ S. We sometimes
refer to o as the operational scenario contingent on R(o). To be able to explore
effects of time bindings (for example, when studying line pack or storages), we
may consider groups g ∈ {1, ..., G} consisting of several consecutive operational
nodes. As discussed earlier in this section, we can distinguish two disjoint subsets:
The set Gnorm

t ⊆ {1, ..., G} defines all such groups representing normal operations
in strategic period t while the set Gextreme

t ⊆ {1, ..., G} denotes all groups of nodes
representing extreme situations in that period. Note that such an aggregation
into groups of potentially varying length requires a scaling factor γg to include
operational terms into the objective function in the right order of magnitude.

Note that, although not illustrated above, the approach can easily accommo-
date also more complex tree structures such as multistage operational sub-trees,
branching at operational nodes within sub-trees. This is conceivable in particular
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for the sub-trees representing normal operating conditions.

4.4 Model structure

Time structure, investment and operational decisions

We assume that investment decisions are made at the beginning of an investment
period t ∈ T while operational decisions are made at the operational time periods
d ∈ Dt associated with the investment period t. Obviously, the sets of investment
and operational periods are disjoint. In the remainder of this paper, we denote
investment time periods often as ”years” and operational time periods as ”days”.
This is done purely for reasons of notational clarity. However, an investment
time period may also cover, for example, several calendar years and varying time
granularity can easily be taken into account.

Modularity

We employ a two-layered model design: A fully working core model comprises
basic formulations of all necessary aspects while a number of separate extension
modules are designed to improve functionality and/or level of detail and to allow
for more sophisticated modeling of selected areas.

This modular approach enhances the flexibility and generality of the mathe-
matical model because it allows conducting various analyses with different focus
without compromising the underlying model and its implementation. It enables
also a stepwise extension of the model as new functionality can be added as re-
quired. The level of detailed can be chosen in a trade off between richness in
modeling and computational complexity.

The flexibility in modeling will in some cases lead to a less tight formulation
than what might be possible for a more specialized model, and we rely on the
effectiveness of the presolve step of available commercial MILP solvers.

Core model

In the core model, the objective is to maximize net present value including cash
flow from operations and penalties for insufficient production assurance. Main
constraints included in the core model are the following:

• Investment decision modeling

• Demand satisfaction in the market nodes

• Mass balances in all network nodes
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• Flow capacity limits in pipelines

• Production capacity limits

• Reservoir modeling

The main decisions concern the single project investments (network elements
and alternatives: nodes and pipelines) and the flow through each of the elements
invested in.

Extension modules

At present, the model contains the following modules:
Production assurance modeling. We penalize deviations from production
assurance requirements in the objective function. The extension adds two sets
of constraints. The first set ensures that the probability of days with non-
satisfactory production assurance is not too large. The second set limits the
expected value of such underperformance by applying risk measures such as Con-
ditional Value at Risk (Rockafellar and Uryasev [2000]).
Pressure dynamics. This module allows to model pipelines with pressure dy-
namics. It expands on the core functionality of maximum flow constraints. We
include upper and lower limits on pressures in each node and in pipelines, relation-
ships between pressures into and out of a node as well as in ingoing and outgoing
pipelines (Weymouth equation), and contracted pressure in market (customer)
nodes. These features are described in section 4.6.
Reservoir modeling. The core model uses a simple tank implementation for
each reservoir where a certain maximum volume is given which is exhausted when
the accumulated production has reached this level. This is replaced in the more
advanced module by an approach similar to a production profile varying over
time. The single production volumes are limited with respect to how much has
been produced so far. Details on this module are given in section 4.6.
Multi-component flow modeling. The extension module introduces variables
and constraints for modeling heterogeneous flows, see section 4.6. In most cases,
this module will considerably increase the computational complexity.
Relations between projects This module introduces constraints which specify
that, from a given group of projects, at most one alternative (or a certain min-
imum/maximum number) can be started. Constraints may ensure the startup
or shutdown of a certain number of projects from one group before the startup/
shutdown of projects from another group or vice versa. Another relation controls
the replacement of one (system of) project(s) by another. Mutually exclusive
(systems of) projects may also be specified.
Processing nodes The module adds the option to extract some components at
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dedicated processing plants in the network and to sell them in separate markets.

As the needs of the analysts develop, additional modules may be included, for
example modules for line pack, storage or bidirectional pipelines.

4.5 Core model

Objective function

The main objective in the model is to maximize the expected net present value
NPV , arising from infrastructure investments and their operation, taken over the
values in the single long-term scenarios s ∈ S. The parameter Probts denotes the
absolute probability of the strategic tree node at time period t ∈ T in scenario
s ∈ S. Included in the revenue, Rev ts, are both potential salvage value from
obsolete infrastructure and income from gas sales while costs Cost ts comprise
both investment costs and operational expenses at each time period t ∈ T .

NPV =
∑
s∈S

∑
t∈T

Probtsδt (Rev ts − Cost ts) (4.1)

The single objective function terms are discussed in more detail in section 4.5
below.

Cash flows are discounted in each investment period t ∈ T at a discount rate
σ, using the discount factor δt,

δt =
1

(1 + σ)t

Investment constraints

All investment decisions are characterized by certain common properties such as
startup, shutdown, capacities (possibly varying over time), and costs. We model
these properties by means of a common class, denoted as projects, describing the
common structure of all network elements such as fields, pipelines, or nodes. For
the considered gas transport network, projects comprise pipelines, production
nodes (fields), transport nodes (junctions, processing plants, etc.) and consump-
tion nodes (markets). Projects can be either existing or new projects. Summariz-
ing, a project p ∈ P is any option to invest in a network element under scenario
s which, at time t, is characterized by the binary variables startpts, stoppts, and
prdpts defining the project’s status: start, stop, and production, respectively.

The sets I(p) and O(p) denote the projects which are located directly upstream
and downstream of a project p. For network nodes p, these sets I(p), O(p) mean
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the pipelines leading to and from p. For pipelines p, they denote the input and
outlet nodes.

The startup date of existing projects p ∈ Pex is set to the start of the op-
timization horizon, startp1s = 1. Each new project p ∈ PNew can start up
at most once during the optimization horizon and has a certain time window
Startep, ...,Start lp ∈ T for startup,∑

t=Startep...Startlp

startpts ≤ 1

Each project can be shut down at most once during the optimization horizon,

T∑
t=Startep

stoppts ≤ 1

Production can only take place if a project has started up and has not been
shut down yet. If there is a delay ∆p between the time when deciding to start
a new project p ∈ PNew and the time it is available for production, startup
decisions after t − ∆p do not need to be taken into account (but shut-down
decisions should).

∀t ∈ {Startep + ∆p...T} : prdpts ≤
t−∆p∑

τ=Startep

startpτs −
t∑

τ=Startep

stoppτs

To avoid an undue postponement of a project shutdown to reduce the net
present value of shutdown costs, the following inequality enforces the immediate
stop of a project after production halts.

∀t ∈ {Startep, ..., T} : prdpt−1s − prdpts ≤ stoppts

The binary variable stprdptτs indicates whether a project p which started at
τ ∈ T is producing at t ∈ T .

prdpts =
∑
τ∈T

τ≤t−∆p

stprdptτs

∀τ ∈ {Startep, ..., t−∆p} : stprdptτs ≤ startpτs

Time series of parameters – profiles All projects can be described by param-
eters that change over time. For example, production capacity may be low at
the beginning due to necessary adjustments, high during peak production and
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low again at the end when reservoirs are exhausted. We call these series of val-
ues ”profiles” and distinguish two types: Floating profiles depend on the start
date of a project and are relative to this start date. They are denoted by Πfloat .
An example is a capacity profile. Fixed profiles refer to calendar dates and are
independent of project start. They are denoted by Πfix . Examples are market
demand or prices. See Appendix 4.A for a complete list of profiles used in the
model.

Operational constraints

Mass balances We have modeled the flow through a network element in a uni-
fied way although it may have slightly different meanings for different network
elements in real life. For example, the flow through production nodes p ∈ PProd

is the total amount produced in that node in the considered period, the flow
through consumption nodes p ∈ PCons is the total amount sold in that node in
that period.

The following constraints ensure the mass balances in the network for each
project p at each operational period d ∈ Dt, t ∈ T and each operational scenario
o ∈ SOp . For production nodes p ∈ PProd , the amount produced must equal the
outflow into the network (4.2a), the amount sold in a market node p ∈ PCons

must equal the inflow from the network (4.2b) and the flow into a transport node
p ∈ PTransp must equal the flow out of it (4.2c). For pipelines p ∈ PPipe , no
explicit equations are necessary as they have exactly one direct upstream and
downstream project. Note that the flow through a transport node p ∈ PTransp is
defined only implicitly through the mass balance (4.2c). It is specified in equation
(4.2d) in order to state, e.g., the lower and upper flow bounds (4.3).

flowptdo =
∑

j∈O(p)

flow jtdo (4.2a)

flowptdo =
∑
j∈I(p)

flow jtdo (4.2b)

∑
i∈I(p)

flow itdo =
∑

j∈O(p)

flow jtdo (4.2c)

flowptdo =
∑
j∈I(p)

flow jtdo =
∑

j∈O(p)

flow jtdo (4.2d)

Flow bounds Capacity bounds on the flow through a project depend on this
project’s age and are given through floating profiles. These profiles indicate the
physically available capacity and are defined on a strategic level. For projects
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p ∈ P with startup decision made at τ , flow in the operational periods d ∈ Dt is
bounded by the value of the floating profiles at a position relative to the project
start, taking into account possible delays ∆p. In addition, a stochastic parameter
CapPercptdo denotes the percentage of that capacity which is actually available

in the operational period d ∈ Dt under scenario o ∈ SOp . This allows us to
model unforeseen events affecting network capacity, and the input parameters’
consistency between reduced upper and lower bounds must be ensured.

flowptdo ≤ CapPercptdo
∑
τ∈T
τ≤t

ΠMaxFlow
pt−τ−∆p+1 · stprdptτs (4.3a)

flowptdo ≥
∑
τ∈T
τ≤t

ΠMinFlow
pt−τ−∆p+1 · stprdptτs (4.3b)

The amount sold at a consumption node p ∈ PCons cannot exceed the con-
tracted volume in this node during that time period and scenario. In the presence
of production assurance constraints, the sales volume bound Volptdo is interpreted
as contracted volume, in the absence of such constraints as possible sales in spot
markets.

flowptdo ≤ Volptdo

Reservoir constraints In the core model, reservoir volumes are modeled through
a simple tank implementation: the parameter ResMaxp states an upper bound on
the totally available volume in the reservoir p ∈ PProd for operational scenarios
o ∈ SOp .

∑
t∈T

∑
g∈Gnorm

t

γg

dLg∑
d=d0g

flowptdo ≤ ResMaxp (4.4)

Additionally, there is a given yearly production rate on the field which should
not be exceeded in any year t ∈ T ,

∑
g∈Gnorm

t

γg

dLg∑
d=d0g

flowptdo ≤ ResProdRatept
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Objective function terms

Investment costs

Costs Projects have costs that, like production characteristics, depend on the
age of the project while other costs depend on calendar dates. It is therefore
reasonable to operate with both floating and fixed profiles.

Costs incurred by investment decisions are startup, fix investment and removal
costs,

CostInv
ts =

∑
p∈P

(
Cost invst

pts + Cost invfix
pts + Cost invrem

pts

)
Startup costs may depend on the startup point of time, for example it may

be cheaper to start an extension project soon than to wait until the additional
capacity is needed.

Cost invst
pts = Πinvst

pt · startpts

Fixed investment costs may occur at investment periods during the project’s
lifetime and depend on the age of the project,

Cost invfix
pts =

t∑
τ=1

ΠinvfixC
pt−τ+1 · stprdptτs

Removal costs are incurred by the stop of a project p and may depend on both
the age of the project and the point of time, i.e. they have a fixed and a floating
component.

Cost invrem
pt = ΠinvremC

fix ,pt · stoppts +

t∑
τ=1

ΠinvremC
float,pt−τ+1 · stoppτs

In addition to costs associated with stopping we allow a positive salvage value
where applicable.

Operational expenditure and revenue

Costs Total operational costs during investment period t ∈ T under scenario
s ∈ S are composed of operational expenditure, fixed and variable costs arising
for projects p ∈ P in all operational periods (days) d ∈ Dt in this investment
period. These costs are representative costs, as only a few operational periods
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are considered, and they are scaled up to a yearly basis.

CostOp
ts =

∑
p∈P

(
Costopex

pts

+
∑

o∈SOpSub
ts

∑
g∈Gnorm

t

γg

dLg∑
d=d0g

Probdo

(
Costopfix

ptdo + Costopvar
ptdo

))

Operational expenditure (opex) is independent of the production volume or
flow but can vary over the lifetime of the project and depends, hence, on the
project’s age. It arises only when the project is actually active (i.e. projects
which have started up but are not producing yet do not generate opex).

Costopex
pts =

t∑
τ=1

Πopex
pt−τ−∆p+1 · stprdptτs

Fixed operational costs depend neither on the age of a project nor on the flow
but on the operational date d ∈ Dt and the associated investment period t,

Costopfix
ptds = Πopfix

ptd · prdpts

Variable operational costs depend on the flow through that project and are
independent of the project age; they may also include costs of production factors
or similar,

Costopvar
ptds = Πopvar

ptd · flowptdo

Revenue Revenue from operations comes from sales at market nodes at opera-
tional periods d ∈ Dt under scenarios o ∈ SOpSub

ts illustrating normal operating
conditions. This revenue is considered representative revenue, and the scaling
factor γg is applied. For the core model we assume there is no sale of by-products
at any node p ∈ PProd ∪PTransp ∪PCons . Sales price profiles at the single market
nodes p ∈ PCons depend on the point of time and may be stochastic,

RevOp
ts =

∑
o∈SOpSub

ts

∑
g∈Gnorm

t

γg

dLg∑
d=d0g

Probdo
∑

p∈¶Cons

PriceSpot
ptdo · flowptdo

Production assurance Production assurance is studied in terms of deliverability,
referring to deliveries at market nodes in each operational period d ∈ Dt under

68



4.6 Selected extension modules

scenario o ∈ SOpSub
ts and period d ∈ Dt in strategic scenario s ∈ S and period

t ∈ T . It is defined as (contracted volumes - deviations)/contracted volumes where
deviations means the difference between contracted and delivered volumes. The
measure is aggregated over all markets p ∈ PCons ,

Del tdo =

∑
p∈PCons

flowptdo∑
p∈PCons

Volptdo

For the core model, we achieve sufficient production assurance by penalizing
negative deviations from the target production assurance PATarget t. The ac-
tual production assurance is realized through the investment and all operational
decisions in a given investment period t ∈ T , scenario s ∈ S,

Devks = max

0,PATarget t −
∑

o∈SOpSub
ts

dLg∑
d=d0g

Probdo
Del tdo

dLg − d0
g + 1


We then include penalty terms

δtPent
∑

g∈Gextreme
t ∪Gnorm

t

Devks

for each time period t ∈ T and scenario s ∈ S into the objective function (4.1).

4.6 Selected extension modules

As discussed in section 4.4, extension modules provide more sophisticated model-
ing than the core model and can be switched on as required for various analyses.
In the following, we describe some relevant modules in more detail, in particu-
lar, advanced pressure modeling, reservoir modeling, and multi-component flow
/ quality modeling.

Pressure dynamics

For this module it is convenient to consider a set PNodes comprising all network
elements other than pipelines. The current model does not include a detailed
compressor model. Instead we allow pressure increase within capacity bounds for
projects representing a compressor.

Consider a pipeline p ∈ PPipe connecting network nodes i and j which have
the respective pressures presitd and presjtd. Simple flow constraints as in the
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core model are used for short pipelines where the pressure drop is not important
for the flow calculation,

presoutptdo = presinptdo

For all other pipelines, a linearization of the Weymouth equation (Gas Processors
Suppliers Association [1998]) gives an upper bound on the flow flowptdo coming
from i ∈ I(p) and going out through j ∈ O(p) at each linearization breakpoint
b ∈ B = {1, . . . , B}.

flowptdo ≤ KW
p

Pib√
P 2
ib − P 2

jb

presitdo −KW
p

Pjb√
P 2
ib − P 2

jb

presjtdo

The parameter KW
p denotes the pipeline specific Weymouth constant while Pib

and Pjb are approximations of the pressures at the in- and outlet points of pipeline
p at the linearization breakpoint b ∈ B = {1, ..., B}.
Additionally, the pressure presitdo in the node i needs to be within some minimum
and maximum bounds,

Pi ≤ presitdo ≤ Pi

Such bounds are defined, e.g., through design parameters of the network and
contractual agreements and may also have a time index, Pit, Pit, t ∈ T . See
Tomasgard et al. [2007] for further details.

Reservoir modeling

While the basic reservoir modeling in constraint (4.4) only restricts the total or
aggregated volume produced on a field, the advanced reservoir constraints set
upper bounds on the production volumes based on how much has already been
produced from that field. Observe that these constraints do not apply for groups
g ∈ Gextreme

t of operational periods testing the viability of decisions during more
extreme scenarios.
The production rate at each time period t should be at most a certain percentage
of the volume still available in the reservoir. This describes a floating profile
of yearly production rates. Over time there may be several such percentages,
resulting in a complex profile structure. A procedure is employed to derive a set
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of M linear constraints for projects p ∈ PProd ,

∑
g∈Gnorm

t

γg

dLg∑
d=d0g

flowptdo ≤ ProdAbs
pm + ProdRel

pm · flowA
pts

These constraints describe the production profile as a convex set where the pro-
duction capacity at any time t depends on the accumulated production flowA

pts

until t which is given by

flowA
pts =

t∑
τ=1

∑
g∈Gnorm

t

γg
∑

o∈SOpSub
ts

Probdo

dLg∑
d=d0g

flowptdo

The accumulated production must not exceed the total volume to be produced
from the reservoir,

flowA
pts ≤MaxProdp

The absolute and relative coefficients ProdAbs
pm and ProdRel

pm (m = 1, ...,M) and
the limits MaxProdp are found based on user specified yearly production rates
ProdRatept.

Quality / Multi-component flow modeling

The fractions of the component flows going out of a split node p ∈ PTransp into
the different downstream pipelines p1, p2 ∈ O(p) must be equal for all components
c1, c2 ∈ C in the flow:

flowC
p1c1

flowC
p2c1

=
flowC

p1c2

flowC
p2c2

This results in a bilinear expression which is approximated through a linearization
using pre-defined split options αp1h, h = 1, ...,H, to find the share of the flow
through a pipeline p1. These pre-defined split options can be found based on,
for example, the split percentages from a single-component run of the model or
a fixed set of split options (Tomasgard et al. [2007]).

The following constraints define the flow flowC
p1ctdo of component c ∈ C through
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this pipeline at day d ∈ Dt, year t ∈ T , operational scenario o ∈ SOpSub
ts :

∀ h ∈ {1, ...,H} : flowS
p1chtdo ≤ αp1htdo · flowC

pctdo

flowC
p1ctdo =

∑
h∈{1,...,H}

flowS
p1chtdo∑

h∈{1,...,H}

flowS
p1chtdo ≤ UBp1tdo · λp1htdo

αp1htdo · flowC
pctdo ≤ flowS

p1ctdo + UBp1tdo · (1− λp1htdo)

With an upper bound

UBp1tdo = CapPercp1tdo
∑
τ∈T
τ≤t

ΠMaxFlow
p1t−τ−∆p1+1

on the capacity of pipeline p1, the auxiliary binary decision variables λp1htdo for

the choice of split options h ∈ {1, ...,H} and the continuous variable flowS
p1chtdo

denoting the component flow of component c ∈ C through p1 if option h would
be chosen. Note that, for each split node p, these constraints need to be defined
only for all but one downstream pipelines O(p).

The volume of each component c ∈ C in the flow from a production node
p ∈ PProd is given through

flowC
pctdo = flowptdo · CompProdpctdo

CompProdpctdo defines the ratio of component c contained in the flow produced
at p.

The aggregated flow through the other nodes is the sum of the component
flows,

flowptdo =
∑
c∈C

flowC
pctdo

Component-wise mass balances for all c ∈ C replace the aggregated mass balances
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(4.2a)–(4.2c):

∀p ∈ PProd : flowC
pctdo =

∑
p1∈O(p)

flowC
p1ctdo

∀p ∈ PCons : flowC
pctdo =

∑
p1∈I(p)

flowC
p1ctdo

∀p ∈ PTransp :
∑

p1∈I(p)

flowC
p1ctdo =

∑
p1∈O(p)

flowC
p1ctdo

These constraints connect the multi-component module to all other model
functionality. Additional constraints may reflect quality requirements at mar-
ket nodes.

4.7 Case study

We present a case study based on a realistic set of investment opportunities from
the NCS. The actual investment projects are confidential, and we altered the
names and the geographical locations of the network nodes. The data used in
our analysis is partly real and partly synthetic. Most of the upstream data is real
while the market data (prices and demand) is synthetic, but based on an analysis
of historical data. We consider uncertainty both in volumes in the reservoirs for
not yet developed fields and in the quality of the gas.

The analyzed network structure is shown in Figure 4.3. The case includes
existing fields, markets and pipelines connecting them. Candidate new invest-
ment projects comprise branch-offs and compressors within the main transport
network and the development of new fields and pipelines connecting them to the
existing network. The existing infrastructure is shown in black, while candidate
projects are shown in light gray color. Production fields are indicated by squares,
consumption nodes by triangles and nodes within the network by circles. Arcs in
the network indicate the pipelines in the system while arrows show the direction
of flow.

As can be seen from the figure, the investment possibilities include relatively
isolated new parts of the network as well as extensions and changes to the ex-
isting network. The system perspective taken in our analysis is very important
when there are close links between the existing system and the new investment
possibilities. Even though the links between the new parts of the system and the
existing ones may seem weak on a first inspection, the consequences of ignoring
them may be large due to network effects on pressure or quality. For example,
projects 180 and 181 (just above the center of the figure) are parts of two alter-
native branch-offs that would make the existing link between projects 83 and 84
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Figure 4.3: The network structure considered in the test instance.
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obsolete. The branch-off is located at different places in the two cases, resulting
in different pressure parameters. Examples of new fields are projects 201 through
203, while projects 204, 227, and 205 represent examples of pipeline alternatives
with small, medium and large capacity, respectively, and corresponding costs.

Our test instance is a two-stage stochastic program with 11 years time horizon.
The stochastic parameters are price and demand at the market nodes as well as
the volumes and quality available from new fields. There are 240 projects in
total, of which 182 are already existing infrastructure, and 58 represent invest-
ment opportunities. The two-stage model with 27 scenarios generates a model
instance with 27.390.199 rows, 372.832 columns and 38.082.317 nonzero variables.
Gurobi 4.6.0 reduces this to 599.988 rows, 110.872 columns and 2.094.249 nonzero
variables during the presolve step. This presolved model instance has 20.441 con-
tinuous and 90.431 binary variables. It is solved to optimality in approximately
3 days on a six-core AMD Opteron processor 2431 with 24Gb memory. The
computer was running Linux 2.6.18 (Rocks 5.3).

4.8 Conclusions

We have developed a multi-stage stochastic optimization model for analyzing
natural gas infrastructure investment decisions in an integrated approach. New
investment and shut-down options, including their proper timing, are studied in
the light of the existing network structure, thus taking into account system ef-
fects as well as future production and development plans. Evaluating production
assurance alongside common objectives such as profit maximization leads to a
more robust and flexible infrastructure design. The inclusion of aspects such as
pressure–flow relationships, multi-commodity flows or line-pack allows assessing
the impact of the investment decisions on daily operations. We present a novel
approach to analyze both long- and short-term uncertainty in a unified frame-
work. For this purpose we introduce a new scenario tree structure, allowing a
large number of operational periods without causing the typical explosion in size
often observed with more traditional structures. We also discuss an applica-
tion of the modeling framework to a realistic investment case on the Norwegian
Continental Shelf.
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4.A Notation

Sets and indices

Notation Description
b ∈ B = {1, ..., B} break points for Weymouth linearization
c ∈ C = {1, ..., C} components in the flow
d ∈ Dt = {1, ..., Dt} operational periods associated with investment

period t
d0
g first operational period in group g
dLg last operational period in group g
h ∈ {1, ...,H} split options for multi-component flow
I(p) ⊂ P direct upstream (”input”) projects of p
g ∈ {1, ..., G} groups of consecutive operational periods
Gnorm
t ⊆ {1, ..., G} sets of operational periods representing normal

operation
Gextreme
t ⊆ {1, ..., G} sets of operational periods representing extreme

situations
n0 ∈ S root node in the scenario tree
O(p) ⊂ P direct downstream (”output”) projects of p
i, j, p ∈ P all projects
PCons consumption projects (markets etc.)
Pex existing projects
Pnew new projects
PNodes network nodes (all projects except pipelines)
PPipe pipeline projects
PProd production projects (fields etc.)
PTransp transport nodes
s ∈ S = {1, ..., S} investment scenarios
o ∈ SOp all operational scenarios

o ∈ SOpSub
ts all operational scenarios associated with strate-

gic tree node determined through year t, invest-
ment scenario s

t ∈ T = {1, ..., T} investment time periods
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Decision variables

Notation Description
strategic level:
prdpts ∈ {0, 1} project p producing at t under scenario s
startpts ∈ {0, 1} project p started at t ∈ T under scenario s
stoppts ∈ {0, 1} p stopped/removed at t under scenario s
stprdptτs ∈ {0, 1} project p started at τ and producing at t

operational level:
flowptdo flow through project p

flowA
pts accumulated flow through production node p un-

til (including) period t

flowC
pcto volume flow of component c through project p

flowS
pchtdo volume flow of component c through pipeline p

if split option h is chosen
λphtdo ∈ {0, 1} split option h chosen for flow
presptdo pressure in project p (in- and output pressures

modeled through pressures in in- and output
projects)

Variables / functions

Notation Description
Cost ts all costs in period t ∈ T , scenario s ∈ S
CostInv

ts investment related costs

Cost invfix
pts fixed investment costs project p

Cost invrem
pts stop / removal costs project p

Cost invst
pts startup/investment costs project p

CostOp
ts expected operations related costs

Costopex
pts operational expenditure of project p

Costopfix
ptdo fixed operational costs of project p

Costopvar
ptdo variable operational costs of project p

Del tdo production assurance measure: deliverability
Rev ts all revenue in period t ∈ T , scenario s ∈ S
RevOp

ts expected operations related revenue

Parameters / constants
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Notation Description
CapPercptdo percentage of flow capacity available for usage
CompProdpctdo fraction of component c in flow from production

node p
δt discount factor in (investment) period t ∈ T
∆p time between decision to invest and availability

for production
γg factor to scale operational cash flow / volumes

to yearly basis
KW
p Weymouth constant for pipeline p

Pib approximation of pressure at in-/outlet point i
of a pipeline, breakpoint b

P i, P i lower / upper bounds for pressure in node i
PATarget t performance target for production assurance
Pent penalty for insufficient production assurance

PriceSpot
ptdo sales price at market node / project p

ResMaxp total volume to be produced from reservoir p

ProdAbs
pm absolute coefficient for linearization of reservoir

profile

ProdRel
pm relative coefficient for linearization of reservoir

profile
Probdo probability of scenario tree node representing op-

erational period d ∈ Dt, scenario o ∈ SOp

R(n) ∈ S root node of operational node o ∈ SOp

σ discount rate
Startep earliest startup date for (new) project p

Start lp latest startup date for (new) project p
UBptdo upper bound on capacity of pipeline p
Volptdo contracted delivery volume in market node p ∈

PCons

Profiles

Note that all strategic profiles have ”yearly” (investment time unit) resolution
while operational profiles have a ”daily” resolution. This holds also for the float-
ing operational profiles based on the age of the project although this age is
expressed in investment time units.

Notation Description

Investment level, fixed (time dependent) – at t ∈ T for project p ∈ P:
ΠinvremC

fix ,pt removal costs (per year)
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Notation Description
Πinvst
pt startup/investment costs (per year)

Investment level, floating (age dependent) – at t ∈ T for project p ∈ P
started at τ ∈ T :

ΠinvfixC
pt−τ+1 fixed investment costs

ΠinvremC
float,pt−τ+1 removal costs

Operational level, fixed (time dependent) – at d ∈ Dt, t ∈ T for project
p ∈ P:

Πopfix
ptd constant operational costs (per day)

Πopvar
ptd variable operational costs (per unit of flow)

Operational level, floating (age dependent) – at t ∈ T for project p ∈ P
started at τ ∈ T :
ΠMaxFlow
pt−τ+1 upper bound on daily flow

ΠMinFlow
pt−τ+1 lower bound on daily flow

Πopex
pt−τ+1 operational expenditure (per year – averaged to

daily levels)
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Chapter 5

Discretizations of Natural Gas Pooling
Problems

Abstract:

Multi-component flow optimization problems in natural gas transport net-
works with pooling opportunities are large-scale non-convex problems. Such
problems may be discretized and solved as mixed-integer linear programming
(MILP) problems. Uniform discretization with a relatively small number of
discretization points makes such approximations prone to converge to sub-
optimal solutions.
We propose discretization schemes D1 to D3 and show that, by selecting
discretization points based on information from the solution of an auxiliary
linear problem, we improve the time to find good solutions considerably. To
safeguard against cutting off optimal solutions, we propose verification by
warm starting a problem with much finer discretization.
We show for a number of industry cases that the proposed discretization
scheme D3 does not cut off the optimal solution. Rather, it provides better or
optimal solutions much faster than with uniformly distributed discretization
points (D1 and D2). Some instances can even be solved using auxiliary linear
programs, and by exploiting the different problem properties, large numbers
of natural gas flow problems with quality constraints can be solved more
efficiently.

5.1 Introduction

Solving problems involving network flows is an important part of planning and op-
erating the natural gas transport system from producing fields to market nodes.
Network flow problems involving a single commodity can be solved very effi-
ciently. However, natural gas is not homogeneous, which complicates the com-
putations considerably. Depending on the geological conditions of the reservoir,
the gas may have distinct characteristics in terms of composition, and therefore
energy content, as well as the amount of contaminants such as CO2 and H2S.
The composition of gas may affect how much can be transported, how much it
must be treated in processing facilities and whether it can be sold in a market
with defined quality requirements. When gas of different quality is mixed during
transportation in the network, the mathematical properties of the problems used
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to solve network flow problems change. This is because one must keep track of
the composition of the resulting flows. Such problems are often referred to as
pooling problems, and can be traced back to Haverly [1978], who presented a
classic problem with two sources, one pool, and two sinks and showed that pool-
ing problems are computationally hard with many local optima. This is due to
the non-convexity inherent in determining volumes of source gas, the resulting
quality, and the volumes sent to each sink. These considerations have to be kept
consistent and give bilinear terms in the optimization problem. If we ignore the
quality issues and assume the gas to be homogeneous, the problem is reduced to
a linear program (LP).

Haverly [1979, 1980] followed up on the original pooling formulation, and sev-
eral studies were performed using successive linear programming (SLP), includ-
ing, for instance, Baker and Lasdon [1985] up to more recent work by Frimannslund
and Haugland [2009] who applied SLP with parallelization. SLP is an efficient
algorithm, but is not guaranteed to converge to a global optimum.

Visweswaran and Floudas [1990] were the first to solve pooling problems using
a global optimization algorithm to the pooling problem, that is, an algorithm
guaranteeing to find the global optimal solution. They solved three problems
posed by Haverly by solving a series of primal and relaxed dual problems. Foulds
et al. [1992] were the first to apply McCormick underestimators and branch and
bound (BB) methods to the pooling problem. Lodwick [1992] developed pre-
processing techniques that would find implicit bounds. Androulakis et al. [1995]
applied their αBB approach to the pooling problem and Adhya et al. [1999]
developed a global optimization technique, with bounds based on Lagrangian
relaxation in combination with branch and bound methods. Audet et al. [2000]
developed a branch and cut algorithm that was also applied to pooling problems.

Pooling problems can be formulated in two different, but equivalent ways. The
original formulation of Haverly [1978] where flow and quality are modeled is often
called the P formulation. Ben-Tal et al. [1994] introduced a different formulation
based on the flow of individual components and proportions to enter the pool.
This formulation is often referred to as the Q formulation. Kocis and Gross-
mann [1989] also considered a formulation based on flows and fractions going
out from splitters. Quesada and Grossmann [1995] introduced a new formulation
with extra constraints combining formulations P and Q, and this formulation is
called PQ. Tawarmalani and Sahinidis [2002] discuss different global optimization
formulations and prove that PQ gives tighter bounds than formulations P and
Q.

Lee and Grossmann [2003] developed a two-level branch and bound algorithm
and applied it to pooling problems in water management. Gounaris et al. [2009]
showed that bounds and convergence time can be improved by applying piecewise
linear relaxations. Discussing different approaches to solving pooling problems
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in a recent survey, Misener and Floudas [2009] give a good overview of the de-
velopment during the early 2000s. Selot et al. [2008] applied global optimization
methods to similar natural gas operational problems with additional disjunctive
constraints for contracts regulating production allowances.

As an alternative to global optimization techniques, the pooling problem may
be discretized and solved using a MILP solver. Ulstein [2000], Ulstein et al.
[2007], Tomasgard et al. [2007], and Rømo et al. [2009] applied discretization
approaches to large pipeline networks for natural gas with pooling on multiple
levels. They used commercial mixed-integer linear programming solvers, and did
not investigate the effects of the discretization on the quality of the solutions ob-
tained. However, Alfaki and Haugland [2011] find that a discretization approach
to pooling problems may perform better than a global optimization approach.
Our work builds on the approach of Ulstein et al. [2007], Tomasgard et al. [2007],
Rømo et al. [2009].

Recently, discretization as a part of global optimization algorithms has gained
popularity. For example, Pham et al. [2009] discretized the quality attribute and
reduced the problem dimensionality by limiting the number of possible combi-
nations of pool qualities. Misener et al. [2011] used a piecewise linear relaxation
of the bilinear function with a logarithmic number of binary variables. Gupte
et al. [2012] compared the results of various discretization approaches with the
global optimization solver BARON. Faria and Bagajewicz [2012] used a MILP
as lower bounding problem and added an interval elimination technique before
partitioning using a traditional branch and bound approach. Castro and Teles
[2013] and Kolodziej et al. [2013] used an iteratively finer discretization by a log-
arithmic number of binary variables. They also compared piece-wise McCormick
relaxations and multiparametric disaggregation.

Several attempts have been undertaken to generalize pooling problems in terms
of network structure allowing multiple levels of interconnected pools. They in-
clude Audet et al. [2004] and Alfaki and Haugland [2013] who present a general-
ization of the PQ formulation for a general network structure. Meyer and Floudas
[2006] generalized the problem to include network design, leading to combinato-
rial pooling problems. Li et al. [2011a] consider a stochastic pooling problem with
network design and operations and present a global optimization decomposition
algorithm for solving such problems in Li et al. [2011b].

The methods discussed in this paper are implemented as part of a large-scale
capacity expansion model described in detail in Hellemo et al. [2012a]. We seek
to maximize profit from selling natural gas on markets and assume that the price
in each market is independent of the actual quality delivered, as long as this
quality stays within predefined quality bands. In this paper, we focus purely on
aspects related to routing multi-component gas flows and pooling. The natural
gas transportation networks can be complex, with several levels of consecutive
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pools on the path between sources and sinks. Our problem shares many charac-
teristics with the classic pooling problem, most notably the non-convexity that
follows from blending gas from sources with different composition in pools before
transporting it to the network sink. Problems may be formulated as single-period
flow problems with pooling or as multi-period investment problems with many
integer variables and an embedded pooling problem for each operational time pe-
riod. Problems may also be formulated as stochastic programs, further increasing
the dimensionality and, hence, the number of embedded pooling problems and
integer variables. As a unified framework for approaching these problems, dis-
cretization appears to be a natural way to integrate pooling with potentially
large-scale integer programming problems since state-of-the-art MILP solvers are
known to be very efficient. While the problems solved in Li et al. [2011b] are
certainly large-scale non-linear problems, the number of binary variables is low
compared with investment models such as the one described in Hellemo et al.
[2012a,b].

We present a discretization approach that is very promising in terms of finding
good solutions to large-scale pooling problems faster than previous discretization
approaches. This will enable us to perform more detailed scenario analysis or
Monte Carlo simulations, which can be very useful to analyze potential infras-
tructure developments, or to perform security of supply analyses, reliability test
or flow capacity analyses. It will also enable us to solve more detailed investment
problems in a reasonable time frame.

We continue this paper in Section 5.2 with a discussion of the specifics of
pooling problems and why they are computationally hard. We present two lin-
ear auxiliary problems that we use in our algorithm in Section 5.3 and detail
three discretization approaches in Section 5.4. Our suggestions for algorithms
combining auxiliary problems and discretization schemes follow in Section 5.5.
We discuss computational results from test cases based on real-world problems
in Section 5.6 before we conclude in Section 7.7. The full nomenclature for the
mathematical formulations is given in Section 5.A.

5.2 Formulating the pooling problem

We present a general formulation of the pooling problem in the sense that we
allow pools on multiple levels. The pooling problems may also be combinatorial
as they may be part of investment models as described in Hellemo et al. [2012a,b].
Our formulation resembles the formulation of Kocis and Grossmann [1989] and
Ruiz and Grossmann [2011] in modeling the fraction of flow moving to each
downstream leg of a pool explicitly. In contrast to most global optimization
approaches discussed above, we use a reformulation with discretization to solve
pooling problems within an MILP framework. While our approach does not
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guarantee convergence of upper and lower global bounds, using finer discretization
will limit the extent that optimal solution can be cut off. As the distance between
discretization points approach the solver tolerance, the solutions potentially cut
off will become correspondingly closer to a feasible solution of the discretized
problem.

We consider the flow of natural gas to consist of C components. The gas
composition can be described by molar percentages for each gas component. We
denote the flow of a component c from a node i to the next node j by f cij . The
flow of a component in one pipeline out from a split node has to be equal to the
inflow of that component into the node less the flow in the other pipelines out
from this node:

f cnj =
∑
i∈I(n)

f cin −
∑

k∈O(n)\j

f cnk, c ∈ C, n ∈ B, j ∈ O(n) (5.1)

We only allow positive flows:

f cnj ≥ 0 ∀n ∈ B, j ∈ O(n), c ∈ C (5.2)

The following constraint defines the volume of each component in the flow from
a production node

f cnj = fnjQ
c
n, ∀n ∈ P, j ∈ O(n), c ∈ C (5.3)

where the parameter Qcn defines the percentage of component c contained in the
flow produced at production node n ∈ P.

The aggregated flow fnj through a network element is the sum of the compo-
nent flows,

fnj =
∑
c∈C

f cnj ,∀n ∈ N \ P, j ∈ O(n). (5.4)

For simplicity, let us consider only two pipelines out from a split node n ∈
B going to nodes j1 and j2. We denote the first component in the set C of
components by c1. We assume full blending and that the ratio of the volume
split between the pipelines to j1 and j2 must be equal for all components,

f c1nj1
f c1nj2

=
f cnj1
f cnj2

,∀n ∈ B, j1, j2 ∈ O(n), c ∈ C \ c1. (5.5)

This quality relationship can be reformulated in the following way, yielding
many bilinear terms:
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f c1nj1f
c
nj2 = f c1nj2f

c
nj1 ,∀n ∈ B, j1, j2 ∈ O(n), c ∈ C \ c1. (5.6)

At market nodes m ∈ M, there are quality requirements. For example, the
energy content in terms of Gross Calorific Value (GCV) must be within the
bounds GCVm and GCVm defined for each market,

GCVm ≤
∑

n∈I(m)

∑
c∈C

GCV cf cnm ≤ GCVm,∀m ∈M. (5.7)

Also, the percentage of CO2 must be below the maximum CO2 content allowed
at each market, CO2m m ∈M:∑

n∈I(m)

fCO2
nm ≤ CO2m

∑
n∈I(m)

∑
c∈C

f cnm,∀m ∈M (5.8)

Special cases

While generally the pooling problem is computationally hard, there are some
important special cases that require much less computational effort (compare
Table 5.3 to tables 5.4 and 5.5).

1. The optimal flow pattern is “similar” to the flow pattern of the single-
component flow solution: In this case we may find the global optimum in
the neighborhood of this solution.

2. The quality constraints are all non-binding: In this case the optimal flow
pattern is equal to the solution from a single-component flow relaxation.
Because the single-component solution can be found as a linear combina-
tion of the multi-component flows, it is easy to find the single-component
solution corresponding to a multi-component solution and vice versa. Sup-
pose that the optimal multi-component solution is better than the opti-
mal single-component solution. Then we could easily find the equivalent
single-component flow – which means the original single-component solution
could not have been optimal. An analogous argument applies when assum-
ing that the optimal single-component solution is better than the optimal
multi-component solution. In contrast, if the constraints were binding and
the single-component solution is better than the multi-component solution,
then it would be infeasible for the multi-component problem.

We will take advantage of these observations in the subsequent sections.
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5.3 Auxiliary models

During the solution procedure, we use two auxiliary problems that are simplifi-
cations of the model presented in Section 5.4: A model assuming homogeneous
flow (A1, referred to as pre-processing) and a model where the total flow volumes
are fixed and just the component flows need to be determined (A2, referred to as
post-processing).

We will later use information from the solution of A1 as part of the solution
procedure for the discretized model. For some easy problems as identified in
Section 5.2, solving A1 (pre-processing) followed by A2 (post-processing) will be
sufficient to find the global optimum.

Homogeneous flow (A1)

For the homogeneous-flow auxiliary problem, we assume that all flows consist
of only one component. This means that the optimization problem is no longer
a pooling problem, but can be formulated as an LP and solved very efficiently.
This is analogous to the first step in the procedure used by Rømo et al. [2009],
see Figure 5.2a.

We maximize the total revenue from deliveries to market nodes:

max
∑
m∈M

∑
n∈I(m)

Πmfnm (5.9)

subject to the following constraints:
Flow from production node p must not exceed the production capacity of that
node, Pp. ∑

n∈O(p)

fpn ≤ Pp,∀p ∈ P (5.10)

Flow to market nodes m must not exceed demand Dm in that market:∑
n∈I(m)

fnm ≤ Dm,∀m ∈M (5.11)

Mass balances must hold for all nodes except production and market nodes.∑
i∈I(n)

fin =
∑

o∈O(n)

fno,∀n ∈ N \ (P ∪M) (5.12)
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Fixed flows and fractions (A2)

After solving a homogeneous-flow problem A1, a post-processing routine or a
simplified model can be run where all flows Fij and split fractions Φjk are fixed
while the component flows f cij need to be determined. The resulting problem
is a system of linear equations that may be solved as a linear program with an
arbitrarily chosen objective function, e.g.:

max
∑
c∈C

∑
j∈M

∑
i∈I(j)

Πjf
c
ij (5.13)

subject to:

f cij = QciFij , ∀c ∈ C, i ∈ P, j ∈ O(i) (5.14)

f cjk = Φjk
∑
i∈I(j)

f cij , ∀c ∈ C, j ∈ N \M, k ∈ O(j) (5.15)

∑
c∈C

f cij = Fij ,∀j ∈ N \ P, i ∈ I(j) (5.16)

The flow f cij of component c from a producing field i is defined by the quality
Qci of the gas produced at that field (Equation (5.14)). Each component flow
from a split node into a downstream leg must equal the inflow to this node times
the split fraction Φjk into that leg (Equation (5.15)). Finally, for all pipelines,
the total flow of all components must equal the pre-calculated total flow volume
for that pipeline (Equation (5.16)).

If the problem has quality constraints, these constraints can be checked for
violations. In the case that some quality constraint is violated, one of the dis-
cretizations of the full pooling problem must be solved.

5.4 Discretizations

In this paper, we discuss three approaches to discretization. The following for-
mulations include the parts of an optimization model that are relevant to the
discussion of the discretization of the pooling problem. The complete model also
includes flow/pressure constraints, processing nodes, which alter the gas com-
position by extracting parts of some components, and economic aspects such as
production and transportation costs or demand satisfaction. A full model speci-
fication is provided in Hellemo et al. [2012a].

In the following, we discuss the basic discretization formulation with uniformly
distributed split options (D1), a binary split formulation (D2), and discretization
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with concentrated split options (D3).

Uniform discretization (D1)

A straight-forward approach to discretizing the bilinear terms in Equation (5.6)
is to define a set of allowed split fractions and use binary variables to select a
suitable split fraction. This reduces accuracy as splits are only allowed to take
predefined values. In selecting the number of binary variables, and thus the
accuracy of the approximation, a balance has to be struck between precision and
computational tractability.

For each split node n, we use a set of binary variables λznj where z = 1, 2, . . . , Z,
each representing the choice of a split fraction for the share of natural gas going
to node j1. The set B consists of all split nodes in the network.

We also define a new variable ecznj representing the flow from n to j of component
c if λznj = 1. The flow f cnj of component c from n to j equals the sum of partial
flows ecznj from n to j (of which all except one equal zero):

f cnj =

Z∑
z=1

ecznj , ∀ n ∈ B, j ∈ O(n). (5.17)

Enj is the maximum possible flow through the pipeline between n and j, and
ecznj the partial flow associated with breakpoint z. For each λznj we define a con-
stant αnj,z giving the fraction associated with z. For the discretization approach
D1 we let the split fractions αnj,z be uniformly distributed. For example, with
Z = 5, αnj,z ∈ {0, 0.25, 0.5, 0.75, 1.0},∀n ∈ B, j ∈ O(n). The ecznj variables are
constrained by the capacity of the split node if λznj is active.

∑
c∈C

ecznj ≤ αnj,zEnjλznj , (5.18a)

0 ≤ ecznj ≤ λznjαnj,zEnj , (5.18b)

αnj,z =
z − 1

Z − 1
, (5.18c)

∀n ∈ B, j ∈ O(n), (5.18d)

z ∈ {1, 2, . . . , Z}, λznj ∈ {0, 1} (5.18e)

Equation (6.18b) is not strictly necessary, but improves the numerical proper-
ties of the solution.

Each partial flow of a component flow equals the split fraction times the total
inflow of this component:
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ecznj ≤ αnj,z
∑
i∈I(n)

f cin,∀n ∈ B, j ∈ O(n), z ∈ {1, 2, . . . , Z} (5.19)

αnj,z
∑
i∈I(n)

f cin − ecznj ≤ αnj,zEnj(1− λznj),

∀n ∈ B, j ∈ O(n), c ∈ C, z ∈ {1, 2, . . . , Z}
(5.20)

We make sure only one λznj is positive for each node (this may be specified as
an SOS1 over z ∈ {1, 2, . . . , Z}).

Z∑
z=1

λznj = 1, ∀ n ∈ B, j ∈ O(n). (5.21)

Binary formulation (D2)

This formulation takes inspiration from binary numbers. The component flows
f cnj are considered linear combinations of the partial component flows ecznj , and
the potential split options αnj,z are combined to find the actual split fraction.
For example, with Z = 3, we get αnj,z ∈ {0.5, 0.25, 0.125} and can represent
the fraction 0.625 by setting λ1 = 1, λ2 = 0 and λ3 = 1. By using Z binary
variables for each split point in the network, we achieve a discretization of 1

2(Z−1)

possible split points. For example, with a resolution of Z = 11, we get discrete
steps of 1

1024 or about 0.001. A similar resolution using the uniform discretization
approach as above would require 2Z−1 + 1 (1025) binary variables per split node.

The formulation of D2 is similar to D1 with some important exceptions: We
do not include a constraint as in Equation (6.21), but allow all λznj to take values
one or zero. Also the definition of αnj,z is different, compare Equation (6.18)
to Equation (6.22). Enj is the maximum possible flow from n to j and ecznj the
partial flow associated with breakpoint z as defined by Equation (6.18) where
Equation (5.18c) is replaced by Equation (6.22).

αnj,z =

{
1
2z , z ∈ {1, 2, ..., Z − 1}

1
2z−1 , z = Z

(5.22)

Each binary fraction of a component flow equals the split fraction times the
total inflow of this component as formulated in Equations (6.19) to (6.20). The
flow of each component through a pipeline equals the sum of all binary parts of
the flow of this component through the pipeline as defined in Equation (6.17),
where in this case some or even all may be non-zero.
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0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

Figure 5.1: Distribution of 50 split points. Uniform split (D1) on the left, split
points concentrated around α = 0.25 (D3) on the right.

This formulation also has a uniform distribution of potential split options, but
has the attractive feature that it allows a much finer grained discretization with
the same number of binary variables as formulation D1. The disadvantage of
this approach is that the small size of the coefficients for the least significant
contributions can lead to numerical problems as Z increases.

Concentrated discretization (D3)

While the approaches presented above assumed a uniform distribution of poten-
tial split points, this may not be necessary. If there is reason to believe that an
optimal solution may deviate little from an already known split, the split points
could be placed with higher density around this predefined split fraction.

The discretization approach D3 is based on the same formulation as D1, Equa-
tions (6.17) to (6.21). The split fractions αnj,z are computed according to the
procedure presented below. This procedure finds a set of Z split options on the
interval [0, 1] which are distributed more densely around the fraction αnj,S com-
ing from solving the single-commodity model (A1). We calculate one set for each
pipeline out from a split node except one pipeline. For this remaining pipeline,
the component flows are determined by the node inflows less the flows into the
former pipelines.

The calculation of split points is based on a geometric series with a factor
less than one, giving split points that are progressively closer. This method to
calculate split points is given in algorithm 1. A visualization of the distribution
of split points can be seen in Figure 5.1. The parameter q > 1 controls the
density of the points around αnj,S ; higher values of q contract the split options
closer to αnj,S , lower values will spread the options more evenly. Additionally,
the split options will be distributed over the [0, 1] interval proportionally to the
size of αnj,S , i.e., for αnj,S close to 1, most of the split points will be smaller
than αnj,S . The number of split points used for values smaller than αnj,S is ZL
and the number of points larger than αnj,S is ZU . We also include αnj,S as a
potential split point.
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If the distance between consecutive points contracts too fast, a gap will occur
between the original split fraction αnj,S and the split point closest to it. To avoid
this situation, we require that this distance shall not be larger than for evenly
distributed points:

αnj,S
qZL−1

≤ αnj,S
ZL

(5.23)

which can be reformulated to q ≥ ZL−1
√
ZL. If this condition does not hold, we

adjust the value of q by q0
ZL−1
√
ZL where q0 ≥ 1 is a coefficient to boost the

effect of the adjustment. A similar reasoning applies to the distance between the
split option αnj,S = αnj,ZL+1 and the adjacent option αnj,ZL+2. The original or
adjusted factors form thus the factors qL and qU for calculating the split points
smaller and larger than αnj,S , respectively.

Redundant constraints

Several authors have noted that including redundant constraints in the problem
formulation may give improved performance. In addition to Equation (6.18b),
we have investigated two sets of redundant constraints: adding the McCormick
convex envelopes of the bilinear terms (McCormick [1976]), and adding an ex-
plicit split fraction for all pipelines downstream of a split node (where the first
is implicit in the above formulation) together with a constraint that all split
fractions downstream of a split node must sum to one. The former gives better
bounds, and the formulation is shown below, while the latter led to nearly dou-
bling the number of binary variables in our cases, and this decreases performance
significantly.

To define the McCormick constraints, we use auxiliary variables αnj :

αnj =

Z∑
z=1

αnj,zλ
z
nj ∀ n ∈ B, j ∈ O(n). (5.24)

Note that the lower bounds αnj and upper bounds αnj on the split fractions

are 0 and 1, respectively, ∀n ∈ B, j ∈ O(n). fnj and fnj denote the lower and
upper bounds on flow variables. We define the constraints below for all pipelines
where αnj is explicitly defined. For pipelines where the split αnj is implicit, we
use corresponding constraints where αnj is replaced by 1−

∑
k∈O(n) αnk.

fjk ≤ fnjαnj + fnjαnj − fnjαnj (5.25)

fjk ≤ fnjαnj + fnjαnj − fnjαnj (5.26)
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fjk ≥ fnjαnj + fnjαnj − fnjαnj (5.27)

fjk ≥ fnjαnj + fnjαnj − fnjαnj (5.28)

Input: q ≥ 0, q0 ≥ 1, αnj,S ∈ [0, 1] , Z ∈ N
ZL ← max{1, dαnj,SZe} . Initialize
ZU ← Z − ZL − 1.
if q ≥ ZL−1

√
ZL then . Check convergence lower part

qL ← q
else

qL ← q0
ZL−1
√
ZL

end if
if q ≥ ZU−1

√
ZU then . Check convergence upper part

qU ← q
else

qU ← q0
ZU−1
√
ZU

end if
for all z ∈ {1, . . . , Z} do . Calculate split fractions lower part

if z ∈ {1, ..., ZL} then
αnj,z ← αSnj −

αnj,S

qz−1
L

else if z = ZL + 1 then
αnj,z ← αnj,S

else . Calculate split fractions upper part
αnj,z ← αnj,S +

1−αnj,S

qZ−z
U

end if
end for

Algorithm 1: Calculate split points

5.5 Algorithms

The discretization schemes D1–D3 and auxiliary problems A1–A2 may be com-
bined in different ways to solve pooling problems. In this section, we discuss
some ways to combine the faster but potentially inaccurate formulations with
more accurate but computationally more demanding formulations.

97



Chapter 5 Discretizations of Natural Gas Pooling Problems

Hybrid split algorithm

A three step methodology to improve the calculation speed for flow problems
with 12 components is described in Rømo et al. [2009] with pre-processing as
in A1, followed by a coarse discretization with SOS1 sets and discretization D2
depending on the problem properties, see Figure 5.2a. We propose an improved
algorithm for multi-component flow calculation based on model properties. The
algorithm makes sure that the faster calculation (A1+A2) is applied whenever
the problem falls into the class of well behaved problems, moving on to the more
complex models (D2+D3) only when necessary, see Figure 5.2b.

Warm start

We get a global upper bound on the flow from the objective value of the solution
from A1 or from the objective value of the root relaxation of either discretization.
The solution of the discretized problem may give a flow that is lower than this
upper bound. If the gap between the solution and the upper bound is greater
than some threshold, we may try to verify the solution with a finer discretization
scheme. We may also wish to verify the solution for other reasons. In that case,
a model instance with fine-grained discretization using D2 may be warm started
from a D3 solution.

Solve the homogeneous-flow auxiliary problem A1
Save the split fractions
Z ← 10
Solve the concentrated discretization D3
if Gap < GapLim or Time > TimeLim then

Z ← 25
Load problem D2
Load solution from D3
Solve problem D2

end if

Algorithm 2: Warm start

This method will give a good estimate of the upper bound on the flow maxi-
mization in the warm start of D2 due to the fine discretization, while exploiting
the reduced problem size in D3. Depending on the particular problem instance,
this can, in the best case, give quick convergence to a global optimum, or, in
the worst case, detect that the solution found by solving D3 is far from a proven
global optimum.
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(a) Flow chart for the procedure
used in Rømo et al. [2009].

(b) Flow chart showing how dif-
ferent flow models are invoked
depending on input data and
problem properties.

Figure 5.2: Flow charts
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General approach

To summarize, we exploit the observations from Section 5.2 and apply the sim-
plest possible approach for a given problem instance. If there are no quality
constraints, then pre-processing A1 followed by the post-processing A2 is suffi-
cient. For problems where the optimal solution is close to the solution of A1, D3
will give good results, and for more difficult problems, D2 is more robust.

Even for problems where there are quality constraints, the post-processing is
so much cheaper in terms of computation time than running a full-scale pooling
model, that it can be worthwhile to solve the simple model and check whether the
constraints are satisfied before running the full scale model. With the abundance
of parallel computing due to multi-core processors, several methods can be started
simultaneously. For example, the computations of A2 and D3 can be started
simultaneously and D3 aborted if solving A2 turns out to be sufficient. For serial
execution, we propose the general solution strategy shown in the flow chart in
Figure 5.2b and in algorithm 3.

Solve homogeneous-flow auxiliary problem A1
Solve fixed-flow auxiliary problem A2
if not quality constraints violated then

return solution
else

Solve concentrated discretization problem D3
if bound deviation < threshold then

return solution
else

Solve fine-grained binary discretization problem D2
return solution

end if
end if

Algorithm 3: Solve pooling problem

5.6 Computational results

In many analysis situations, getting a good solution fast is as important as having
the solver prove that the program was solved to optimality. In this section, we
investigate the behavior of the discussed methods by means of five test cases. We
evaluate the quality of the solution after 120 seconds for single period analyses
(cases 1-3) and one hour for large multi-period investment models (cases 4-5). We
also evaluate the time to reach a certain gap between the best solution found and
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the pre-computed estimate of the global upper bound, i.e. to reach a sufficiently
good solution.

The true global upper bound on the objective function value is given by the
homogeneous-flow problem. All our discretization schemes are approximations
that are not guaranteed to give an appropriate bound. However, to estimate the
upper bound, we use the best solution found by a very fine grained discretization
(algorithm 2) after several days of computation. We use the gap between the
solution found within the set time limit and this estimate of the global upper
bound to evaluate the quality of the found solutions: As the discretization steps
approach the precision of the solver software, the solution of the discretization
will converge to the continuous solution. With 50 binary variables, the theoretical
precision approaches that of IEEE double (15 significant digits), and thus this
solution will be of high quality. Only considering the bounds on the coarse
discrete approximation can be misleading, as the global optimum may have been
cut off.

Test cases

The five test cases are all based on real industry cases from the Norwegian Con-
tinental Shelf. Norwegian gas export covers close to 20% of European Union
natural gas consumption, and the export is expected to increase by 30-50% over
the next decade. With a few exceptions, this gas is transported through a subsea
pipeline network with pipelines going as deep as 1000 meters below sea level. Gas
under high pressure, often 150 bar and above, is transported over large distances
with single pipelines being several hundred kilometers long. The entire system
constitutes over 8000 km of pipelines, the largest subsea gas transport network in
the world (The Norwegian Ministry of Petroleum and Energy and The Norwegian
Petroleum Directorate [2014]).

Cases 1 through 3 are converted from industry cases specified through the
model presented in Rømo et al. [2009]. Cases 4 and 5 are investment problems
similar to the one presented in Hellemo et al. [2012b]. The size of the network in
each test case is given in Table 5.1, the size of each problem instance in terms of
variables and constraints in Table 5.2.

Results

All reported computation times are elapsed wall clock time in seconds using
Gurobi 5.6.3 on a six-core AMD Opteron processor 2431 with 24Gb memory
running Linux 2.6.18 (Rocks 5.3). We have used default settings with the excep-
tion of setting the time limit and increasing the priority of numerical correctness
over speed.
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The solution times for the linear auxiliary problems are shown in Table 5.3. All
these problems are solved in a matter of seconds, which makes the computation
time negligible compared with the solution time for the full problems. Thus,
solving the fixed-flow auxiliary problem A2 and checking for quality constraints
is computationally so cheap that we suggest to check first whether this is already
sufficient for finding the optimum of the original problem.

As may be expected, the coarser discretizations converge quicker than the finer
discretizations, and D1 and D3 with a relative small number of split candidates
often converge before reaching the time limit. On the other hand, the coarse
discretization cuts off solutions, while the finer discretizations give better upper
bounds, but will often take longer to find a good solution. For our test cases,
formulation D3 seems to be less prone to cutting off solutions, and we use it in
combination with formulation D2 to verify the solution quality.

Having a relatively low number of binary variables for each split node reduces
the search space, and, hence, improves the speed of convergence of the discretized
problem. Apparently, the concentrated split points in D3 include often the rel-
evant potential split fractions, giving a better solution using D3 in most of our
test cases. To illustrate the differences in computation time to find solutions, we
include some plots of the development of discretization upper and lower bounds
and compare with the best solution available. Because the discretization with
the lowest number of binary variables tended to give best results with respect to
computation time, the figures showing the bounds over time all show the results
using 10 binary variables for each split node. All plots show discretization scheme
D1 on top, D2 in the middle, and D3 at the bottom. Figure 5.3a shows the de-
velopment of discretization upper and lower bounds as well as the best available
solution for case 1 during 120 seconds. Discretization scheme D1 with 10 binary
variables for each split node gives an approximated problem that converges fast,
but is cutting off the optimal solution, thus converging to a suboptimal solution.
Discretization scheme D3 gives a problem that converges very fast until reaching
a gap of a few percent. For the larger infrastructure development models in cases
4 and 5, we plot the developments of upper and lower bounds during one hour.

The quality of the obtained solutions can be compared with the precomputed
solutions as shown in tables 5.4 and 5.5 in the Gap column. Note that these
results do not include good, but not optimal, solutions found early, as shown in
the plots mentioned above.

We also note that while precision can be improved infinitely in theory, the
solver precision is limiting the actual achievable precision. This limit is around
20 binary variables per split node using formulation D2, which gives a precision
in the order of 10−6. For the experiments with warm start, we have used 10
binary variables for formulation D3 and 25 binary variables for formulation D2.
The time limit for D3 was set to one third of the total time, and the time limit
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for D2 was set to the total time limit less the time spent solving D3. As can be
seen in Figure 5.4, we are able to combine the solution of formulation D3 with
the bounds from formulation D2. Evidently, these upper bounds are looser, but
do not exclude potential solutions, within the precision of the discretization D2.

For our test cases, the warm start gives slightly inferior solutions compared to
using D3 alone. This is to be expected as there is less time allocated to finding
a solution using D3. The computation of the upper bound starts from scratch
using the fine-resolution D2 formulation that will guarantee within the resolution
of the discretization that no solution has been cut off.

We believe our approach will very useful in settings where a large number of
similar cases are to be analyzed, for example, for Monte Carlo simulations. Of a
set of problem instances, some will be solved using auxiliary problem A1 and A2
in combination and solving the MILP can be avoided altogether. Some problem
instances will be solved successfully using the warm start combination of D3 and
D2 within the time limit, while some instances may require longer computational
time. By freeing up computational capacity from some easier problems, this
capacity may be allocated to the harder problem instances. The distribution of
problem properties among the problem instances in a set of problems depends
on the input data and is not generally known in advance. We suggest detecting
easier problem instances and exploiting that they may be solved by a simpler and
faster model.

5.7 Conclusions

We have presented several approaches to solving the pooling problem for multi-
component gas flows by discretizing the split fractions for all split nodes. Some
problems can be solved by an efficient post-processing procedure. Other prob-
lems may be solved efficiently if an appropriate discretization scheme is chosen.
The problem properties may be known in advance, e.g., if there are no quality
constraints, or can be determined dynamically as suggested in algorithm 3.

From our case studies, we see that a straightforward discretization (D1) eas-
ily converges to a suboptimal solution. The discretization regime D3 with the
discretization points concentrated around the split fraction solutions from the
homogeneous-flow auxiliary problem A1 seems less prone to this problem. Our
computational experiments show that this approach yields good results. There
is, however, no guarantee that it does not converge to a suboptimal solution when
using a low number of discretization points. Therefore, we suggest that a new
problem is solved with a much finer discretization, and that the solution from the
coarse discretized problem is used to warm start this more accurate problem.

We demonstrate that, with our new approach, we are able to find good solutions
with quality guarantees for problems that were previously practically unsolvable.
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Figure 5.3: Convergence of discretization lower and upper bounds and best avail-
able solution in cases 1 and 4 with 10 binary variables per split node.
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Figure 5.4: Results from warm start using first D3 with 10 binary variables per
split, followed by D2 using 25 binary variables per split.
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This means that more detailed quality models may be used for scenario analysis
and Monte Carlo simulations to analyze infrastructure developments or to per-
form security of supply analyses, reliability tests and flow capacity analyses. The
approach will also enable us to solve more detailed investment problems.

For future research, replacing the warm start of the high-resolution discrete
model with a continuous global optimization model would be interesting, as it
would often provide a good initial solution for the global optimization solver.
Utilizing split fractions from the solution of a previous full discretized model
(D2 or D3) for a successive similar problem could prove beneficial when solving
many similar optimization problems as part of a Monte Carlo simulation. Our
approach also appears to be well suited for integration in the algorithm with suc-
cessively finer discretization proposed by Castro and Teles [2013] and Kolodziej
et al. [2013]. Also, in our case the feasible region is limited by the flow pressure
constraints, and the significance of this effect on the pooling solutions would be
interesting to investigate further.
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5.A Nomenclature

Sets

B Nodes where gas flows are split into two or more pipelines. B ⊂ N
C Components defining the chemical content of the natural gas.
I(n) Nodes with pipelines going into node n ∈ N , I ⊂ N .
M Market nodes (sinks) in the network, M⊂ N .
N All nodes in the network.
O(n) Nodes with pipelines going out from node n ∈ N ,O(n) ⊂ N .
P Production nodes (sources) in the network, P ⊂ N .
Z Split percentages used to discretize potential split fractions in the network.

Parameters

αnj,S Split fraction calculated from solution of A1, n ∈ N , j ∈ O(n)
αnj,z Split fraction for z ∈ {1, 2, . . . , Z}, n ∈ N , j ∈ O(n)
CO2m

Upper bound on CO2 content in gas delivered to market m ∈M
Dm Demand from market m ∈M
Enj Maximum flow from node n ∈ N to j ∈ O(n)
Fnj Pre-computed flow from node n ∈ N to node j ∈ O(n).
Φij Pre-computed fraction of flow going from node i ∈ N to node j ∈ O(i).
GCVm Upper bound on GCV of gas delivered to market m ∈M
GCVm Lower bound on GCV of gas delivered to market m ∈M
GCV c Energy content of component c ∈ C
Pp Production capacity of node p ∈ P
Πm Price in market m ∈M
Qci Given fraction of component c ∈ C delivered from node i ∈ P.
Z Number of binary variables to represent split options
ZU Number of split options for values greater than αnj,S
ZL Number of split options for values smaller than αnj,S

Variables

eczij Partial flow of component c ∈ C from i to j for z ∈ {1, 2, . . . , Z}, i ∈ N , j ∈ O(i)
f cij Component flow for component c ∈ C from node i ∈ N to node j ∈ O(i).
fij Total flow from node i ∈ N to node j ∈ O(i).
λznj Possible split option for node n ∈ B where z ∈ {1, 2, . . . , Z}, j ∈ O(n)
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Table 5.1: Number of network elements in each test case. Natural gas inserted
into the network in production nodes (sources) is transported through
pipelines that are connected by transport nodes. Some transport
nodes are split nodes, others simple junctions, and others again have
processing capabilities. The gas finally reaches markets (sinks).

Case Elements Production Pipelines Markets Split Nodes

1 181 7 99 11 33
2 181 10 97 8 36
3 697 10 368 11 116
4 201 7 117 12 39
5 201 7 117 12 39

5.B Test instances

The size of each network is given in Table 5.1. The resulting sizes of the MILPs
for each instance are given in Table 5.2.

Table 5.2: Problem sizes for each test instance. The table shows case number
(Case), binary variables per split node (BVs), discretization scheme
(D), number of constraints (NumConstrs), number of variables (Num-
Vars) and number of integer (binary) variables (NumIntVars).

Case BVs D NumConstrs NumVars NumIntVars

1 10 1 18,920 7,795 1,064
1 10 2 18,920 7,795 1,064
1 10 3 18,954 7,795 1,064

1 20 1 32,700 12,215 1,404
1 20 2 32,700 12,215 1,404
1 20 3 32,734 12,215 1,404

1 50 1 74,040 25,475 2,424
1 50 2 74,040 25,475 2,424
1 50 3 74,074 25,475 2,424

2 10 1 18,489 7,460 1,028
2 10 2 18,489 7,460 1,028
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Table 5.2: Problem sizes for each test instance. The table shows case number
(Case), binary variables per split node (BVs), discretization scheme
(D), number of constraints (NumConstrs), number of variables (Num-
Vars) and number of integer (binary) variables (NumIntVars).

Case BVs D NumConstrs NumVars NumIntVars

2 10 3 18,521 7,460 1,028

2 20 1 31,889 11,620 1,348
2 20 2 31,889 11,620 1,348
2 20 3 31,921 11,620 1,348

2 50 1 72,089 24,100 2,308
2 50 2 72,089 24,100 2,308
2 50 3 72,121 24,100 2,308

3 10 1 59,737 28,305 3,938
3 10 2 59,737 28,305 3,938
3 10 3 59,852 28,305 3,938

3 20 1 1 · 105 43,255 5,088
3 20 2 1 · 105 43,255 5,088
3 20 3 1 · 105 43,255 5,088

3 50 1 2.21 · 105 88,105 8,538
3 50 2 2.21 · 105 88,105 8,538
3 50 3 2.21 · 105 88,105 8,538

4 10 1 3.33 · 105 1.06 · 105 14,503
4 10 2 3.33 · 105 1.06 · 105 14,503
4 10 3 3.33 · 105 1.06 · 105 14,503

4 20 1 5.33 · 105 1.71 · 105 19,453
4 20 2 5.33 · 105 1.71 · 105 19,453
4 20 3 5.34 · 105 1.71 · 105 19,453

4 50 1 1.13 · 106 3.64 · 105 34,303
4 50 2 1.13 · 106 3.64 · 105 34,303
4 50 3 1.13 · 106 3.64 · 105 34,303

5 10 1 5.83 · 105 2.01 · 105 19,453
5 10 2 5.83 · 105 2.01 · 105 19,453
5 10 3 5.84 · 105 2.01 · 105 19,453

5 20 1 9.84 · 105 3.3 · 105 29,353
5 20 2 9.84 · 105 3.3 · 105 29,353
5 20 3 9.85 · 105 3.3 · 105 29,353
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Table 5.2: Problem sizes for each test instance. The table shows case number
(Case), binary variables per split node (BVs), discretization scheme
(D), number of constraints (NumConstrs), number of variables (Num-
Vars) and number of integer (binary) variables (NumIntVars).

Case BVs D NumConstrs NumVars NumIntVars

5 50 1 2.19 · 106 7.16 · 105 59,053
5 50 2 2.19 · 106 7.16 · 105 59,053
5 50 3 2.19 · 106 7.16 · 105 59,053

5.C Additional results

Table 5.3: Time to solve the linear auxiliary problems for each test instance in
seconds.

Case Homogeneous Flow A1 Fixed Total Flow A2

1 9.62 · 10−3 3.8 · 10−3

2 1.2 · 10−2 4.1 · 10−3

3 3.24 · 10−2 −1
4 7.36 0.12
5 1.63 0.27

Table 5.4: Results after 120 seconds. The table shows case number (Case), num-
ber of binary variables per split node (BVs), discretization scheme
(D), time in seconds (T), lower bound (LB), upper bound (UB), best
available solution (Optimal), optimality gap betwen LB and UB (D-
Gap) and the gap between LB and Optimal (Gap).

Case BVs D T[s] LB UB Optimal D-Gap[%] Gap[%]

1 10 1 6.7 1.9 · 102 242.3 305.7 2.7 · 101 6·101

1 10 2 31.6 3.0 · 102 308.9 305.7 2.7 · 100 1.6 · 100

1 10 3 109.7 3.0 · 102 308.9 305.7 1.3 · 100 2.6 · 10−1
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Table 5.4: Results after 120 seconds. The table shows case number (Case), num-
ber of binary variables per split node (BVs), discretization scheme
(D), time in seconds (T), lower bound (LB), upper bound (UB), best
available solution (Optimal), optimality gap betwen LB and UB (D-
Gap) and the gap between LB and Optimal (Gap).

Case BVs D T[s] LB UB Optimal D-Gap[%] Gap[%]

1 20 1 17.9 2.3 · 102 248.3 305.7 6.2 · 100 3.1 · 101

1 20 2 129.2 3.0 · 102 308.9 305.7 4.1 · 100 3·100

1 20 3 66.9 3.0 · 102 308.9 305.7 2.1 · 100 9.9 · 10−1

1 50 1 17.6 2.2 · 102 283.1 305.7 2.8 · 101 3.8 · 101

1 50 2 167.2 3.0 · 102 308.9 305.7 2.6 · 100 1.5 · 100

1 50 3 120.4 3.0 · 102 308.9 305.7 1.8 · 100 6.9 · 10−1

2 10 1 8.2 3.9 · 102 464.0 435.9 1.9 · 101 1.2 · 101

2 10 2 91.1 4.3 · 102 485.0 435.9 1.4 · 101 2.3 · 100

2 10 3 13.1 4.3 · 102 482.3 435.9 1.2 · 101 7.9 · 10−1

2 20 1 23 3.9 · 102 466.0 435.9 1.9 · 101 1.2 · 101

2 20 2 150.2 4.2 · 102 485.0 435.9 1.5 · 101 3.8 · 100

2 20 3 79.7 4.3 · 102 482.3 435.9 1.2 · 101 7.9 · 10−1

2 50 1 69.5 3.9 · 102 432.7 435.9 1.1 · 101 1.2 · 101

2 50 2 70.5 2.9 · 102 485.0 435.9 6.8 · 101 5.1 · 101

2 50 3 111.1 4.0 · 102 485.5 435.9 2.1 · 101 8.4 · 100

3 10 1 12.2 2.8 · 102 307.6 464.7 1.1 · 101 6.7 · 101

3 10 2 50.4 4.6 · 102 464.7 464.7 2·10−4 −5.6 · 10−5

3 10 3 64 4.6 · 102 464.3 464.7 4.1 · 10−4 7.7 · 10−2

3 20 1 43.3 2.8 · 102 307.6 464.7 1.1 · 101 6.7 · 101

3 20 2 116.1 4.6 · 102 464.7 464.7 1.7 · 10−4 −8.8 · 10−5

3 20 3 37.2 4.6 · 102 464.7 464.7 9.4 · 10−4 6.8 · 10−4

3 50 1 77.3 2.8 · 102 324.3 464.7 1.7 · 101 6.7 · 101

3 50 2 134.4 3.4 · 102 464.7 464.7 3.8 · 101 3.8 · 101

3 50 3 149.4 4.6 · 102 464.7 464.7 1·10−1 1·10−1
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Table 5.5: Results after 3600 seconds

Case BVs D T[s] LB UB Optimal D-Gap[%] Gap[%]

4 10 1 1,685.5 4.9 · 104 1.5 · 105 2.1 · 105 2.1 · 102 3.2 · 102

4 10 2 3,548.3 1.9 · 105 2.1 · 105 2.1 · 105 1.2 · 101 1.1 · 101

4 10 3 1,709.1 2.0 · 105 2.1 · 105 2.1 · 105 3.3 · 10−1 2.4 · 10−1

4 20 1 3,046 4.9 · 104 1.5 · 105 2.1 · 105 2.1 · 102 3.2 · 102

4 20 2 3,609.9 1.3 · 105 2.1 · 105 2.1 · 105 5.6 · 101 5.3 · 101

4 20 3 609.9 1.8 · 105 2.1 · 105 2.1 · 105 1.8 · 101 1.7 · 101

4 50 1 554 4.9 · 104 1.6 · 105 2.1 · 105 2.3 · 102 3.2 · 102

4 50 2 1,005.4 1.2 · 105 2.1 · 105 2.1 · 105 7.7 · 101 7.5 · 101

4 50 3 1,663.8 1.8 · 105 2.1 · 105 2.1 · 105 1.3 · 101 1.2 · 101

5 10 1 388.4 3.7 · 105 6.8 · 105 7.7 · 105 8.2 · 101 1.1 · 102

5 10 2 1,597.8 5.6 · 105 8.3 · 105 7.7 · 105 4.7 · 101 3.8 · 101

5 10 3 2,614.2 6.9 · 105 8.1 · 105 7.7 · 105 1.7 · 101 1.2 · 101

5 20 1 1,159.5 3.6 · 105 6.7 · 105 7.7 · 105 8.6 · 101 1.1 · 102

5 20 2 3,724.5 5.5 · 105 8.3 · 105 7.7 · 105 5·101 4·101

5 20 3 1,544.9 5.8 · 105 8.2 · 105 7.7 · 105 4.2 · 101 3.4 · 101

5 50 1 3,202.5 3.6 · 105 6.7 · 105 7.7 · 105 8.6 · 101 1.1 · 102

5 50 2 2,660.7 4.6 · 105 8.3 · 105 7.7 · 105 8.1 · 101 6.9 · 101

5 50 3 2,981.4 4.3 · 105 8.2 · 105 7.7 · 105 9·101 7.9 · 101
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(a) Case 2, over 120 sec-
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(b) Case 3, over 120 sec-
onds.
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Figure 5.5: Convergence of discretization lower and upper bounds and best avail-
able solution in cases 2, 3, and 5 with 10 binary variables per split
node.
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Chapter 6

A Generalized Global Optimization
Formulation of the Pooling Problem with
Processing Facilities and Composite Quality
Constraints

Abstract:

We present a generalized formulation of the pooling problem. Our formu-
lation is different from the standard formulations in explicitly modelling
component flows. Modelling the physical components directly, allows easy
inclusion of processing facilities that may alter the flow composition. It also
allows adding composite quality constraints that can not be added directly
as quality parameters as they do not blend linearly.
We provide new test instances motivated by natural gas transport problems
at the Norwegian Continental Shelf and give computational results. We show
examples of nonlinear composite constraints on quality attributes and give
computational results on the effect of adding such constraints to the new set
of test instances.
The increased flexibility of our formulation comes at the cost of less tight
constraints and a performance penalty on existing test cases in literature.
The advantage is that it can solve the more general test cases described
above. We use GAMS implementations of the various formulations and solve
the problems with BARON. We compare the performance of our bilinear
formulation in BARON with discretizations solved as a Mixed Integer Linear
Program (MILP) using CPLEX. The discretized versions do not generally
perform as well as the continuous model, however they have better worst
case behavior on the new test cases.

6.1 Introduction

Pooling problems arise whenever flows with different quality are blended in a net-
work, and then subsequently sent in different directions where there are bounds
on the allowed quality of the mixture. This is generally the situation when nat-
ural gas from fields with distinct composition is transported through a network
with blending possibilities, such as the offshore transport network on the Norwe-
gian Continental Shelf (NCS). At some point in the network, there will typically
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be processing facilities that remove some proportion of the gas entering the fa-
cility. The processed gas reenters the network downstream to be transported to
the terminals.

We present a general formulation of the pooling problem, allowing for multi-
ple levels of pools and alteration of flow composition at processing nodes. By
modelling the physical components directly, the model is easily extended to in-
clude processing facilities that may alter the flow composition. It also allows
adding composite quality constraints that could not be added directly as quality
parameters as they do not blend linearly.

Formulating the quality as physical flow components is equivalent to using more
general quality parameters, and this formulation may also be used for traditional
pooling problems after a linear transformation of the quality attributes. This
formulation is not as tight as state-of-the-art pooling formulations, however. We
provide new test instances motivated by natural gas transport problems at the
Norwegian Continental Shelf and give computational results. By modelling the
flow of the physical gas components we may add constraints on quality attributes.
Using such quality attribute parameters directly would break the linear blending
assumption of standard pooling problems. We show examples of such constraints
and give computational results on the effect of adding such constraints to the set
of test instances.

Similar problems have previously been solved using Mixed Integer Linear Progams
(MILP), and we compare our continuous formulation with two discretized refor-
mulations. We also compare the performance of our formulation using available
test instances from the literature.

We give a short overview of the literature concerning pooling problems in Sec-
tion 6.2. The mathematical formulations are given in Section 6.3. Our problem
instances are described in Section 6.4, and numerical results are presented in
Section 6.5 before we conclude in Section 7.7.

6.2 Literature Review

Pooling problems can be traced back to Haverly [1978], who presented a clas-
sic problem with two sources, one pool, and two sinks and showed that pool-
ing problems are computationally hard with many local optima. Haverly [1979,
1980] followed up on the original pooling formulation, and several studies were
performed using successive linear programming (SLP), including, for instance,
Baker and Lasdon [1985] up to more recent work by Frimannslund and Haugland
[2009] who applied SLP with parallelization. SLP is an efficient algorithm, but
is not guaranteed to converge to a global optimum.

Foulds et al [1992] were the first to apply a global optimization algorithm to
the pooling problem, using McCormick underestimators and branch and bound
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(BB). Lodwick [1992] developed pre-processing techniques that would find im-
plicit bounds for pooling problems. Androulakis et al [1995] applied their αBB
technique to the pooling problem and Adhya et al [1999] developed a global opti-
mization technique, with bounds based on Lagrangian relaxation in combination
with branch and bound methods. Audet et al [2000] developed a branch and cut
algorithm that was also applied to pooling problems.

Most efforts in solving pooling problems have been applying global optimiza-
tion techniques, working on tighter formulations and solution algorithms. Two
different, but equivalent formulations are widespread. The original formulation
of Haverly [1978] where flow and quality are modeled is often called the P formu-
lation. Ben-Tal et al [1994] introduced a different formulation based on the flow
of individual components and proportions to enter the pool. This formulation is
often referred to as the Q formulation. Kocis and Grossmann [1989] also consid-
ered a formulation based on flows and fractions going out from splitters. Quesada
and Grossmann [1995] introduced a new formulation with extra constraints com-
bining formulations P and Q, and this formulation is called PQ. Tawarmalani
and Sahinidis [2002] discuss different global optimization formulations and prove
that PQ gives tighter bounds than formulations P and Q.

Lee and Grossmann [2003] developed a two-level branch and bound algorithm
and applied it to pooling problems in water management. Gounaris et al [2009]
showed that bounds and convergence time can be improved by applying piece-wise
linear relaxations. Discussing different approaches to solving pooling problems
in a recent survey, Misener and Floudas [2009] give a good overview of the de-
velopment during the early 2000s. Selot et al [2008] applied global optimization
to natural gas operational problems with additional disjunctive constraints for
contracts regulating production allowances. Recent advances in specialized algo-
rithms for solving pooling problems include piece-wise MILP relaxations (Misener
et al [2011]) and multiparametric disaggregation (Teles et al [2012], Castro and
Teles [2013]), the latter motivated by water treatment problems.

Another approach to pooling problems is to take advantage of the great progress
in MILP solvers and solve discretized pooling problems. Ulstein [2000], Ulstein
et al [2007], Tomasgard et al [2007], and Rømo et al [2009], Hellemo and Werner
[2014] applied discretization approaches to large pipeline networks for natural gas
with pooling on multiple levels. Hellemo et al [2012a,b] applied discretization to
pooling in network design problems. In comparing global optimization techniques
and discretization Haugland [2010], Gupte [2012], Gupte et al [2012], Dey and
Gupte [2015], find that a discretization approach to pooling problems may yield
better performance than a global optimization approach.

The original pooling problems has been generalized both by extending to a
network structure which allows interconnected pools and by including network
design. Audet et al [2004] and Alfaki and Haugland [2013a] present a generaliza-
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tion of the PQ formulation for a general network structure. Meyer and Floudas
[2006] generalized the problem to include network design, leading to combinato-
rial pooling problems. Li et al [2011a] consider a stochastic pooling problem with
network design and operations. They present a global optimization decomposi-
tion algorithm for solving such problems in Li et al [2011b].

The formulation in this paper is another generalization of the pooling prob-
lem. Our formulation allows several layers of interconnected pools. The pools
need not be directly connected to sources or sinks. This network structure is
not represented in the set of test instances published by Alfaki and Haugland
[2013a] or anywhere else to the best of our knowledge. We also present a pooling
model where a simple model of a processing facility is included. At the process-
ing facility, some components may be removed partially or completely before the
remainder flows further downstream. We also demonstrate that modelling the
physical components directly makes it relatively straightforward to add nonlin-
ear composite quality constraints. We compare this formulation with other global
optimization formulations in literature, both for a continuous, bilinear model and
for the discretized MILP. We also investigate the performance on our added test-
cases motivated from natural gas transport on the Norwegian Continental Shelf
(NCS). The advantage of these test instances is that they are more represen-
tative of the typical problem instances we encounter in practice than randomly
generated cases.

6.3 Formulation S

In this section we will first present the generalized pooling formulation, Formula-
tion S in Section 6.3, then describe the transformation of standard test instances
in Section 6.3, before we add the model of processing facilities in Section 6.3.
Finally, we consider the discretizations D1 and D2 of this model in Section 6.3
and Section 6.3, respectively.

The Generalized Pooling Model

We consider a directed acyclical graph P = (N ,A) with a set of nodesN and a set
of arcs A. The nodes downstream of a node i are members of the set O(i) = {j ∈
N : (i, j) ∈ A}. For each set O(i) there is a corresponding set O−(i) where one
arbitrary element j ∈ O(i) is removed such that O(i) \ O−(i) = {j}. The nodes
upstream of a node j are members of the set I(j) = {i ∈ N : (i, j) ∈ A}. Let
there be non-empty sets S,B, T ⊂ N , denominating the sources, split nodes and
terminals (sinks). Split nodes b ∈ B are nodes where |O(b)| > 1 and B ⊂ N \ S.
Associated with each split node b and each node j ∈ O−(b) are split variables
ybj ∈ [0, 1] The lower and upper bounds on flow through each node i ∈ N are FLi
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and FUi , respectively. The net unit cost cij includes both cost and revenue that
apply on each arc (i, j). The set of flow components is denoted C and the flow
fij on the arc (i, k) can be broken into component flows f cij where c ∈ C. The

quality parameters QLic and QUic are lower and upper bounds, respectively, on the
proportion of component c relative to the total flow entering (leaving) the sink
(source) i.

This formulation differs from the formulations traditionally used for the pooling
problem in the sense that we trace the content of each component through the
network explicitly, and all qualities as such are fractions of the total flow. Other
quality measures may be emulated as virtual components through a simple linear
transformation (see Section 6.3), which makes the formulations equivalent.

Minimize negative profit:

min
f,fc,y

∑
(i,j)∈A

cijfij (6.1)

Subject to the following constraints:
The quality from a source is given by the quality attribute of the source:

f csj = QLscfsj , ∀s ∈ S, j ∈ O(s), c ∈ C (6.2)

Flow through a node is bounded:

FLi ≤
∑

j∈O(j)

fij ≤ FUi , ∀i ∈ N (6.3)

FLj ≤
∑
i∈I(j)

fij ≤ FUj , ∀j ∈ N (6.4)

Quality bounds: ∑
i∈I(j)

f cij ≤
∑
i∈I(j)

fijQ
U
jc, ∀j ∈ N ,∀c ∈ C (6.5)

∑
i∈I(j)

f cij ≥
∑
i∈I(j)

fijQ
L
jc, ∀j ∈ N ,∀c ∈ C (6.6)

Quality mass balance: ∑
c∈C

f cij = fij , ∀(i, j) ∈ A (6.7)

∑
i∈I(l)

f cil =
∑
j∈O(l)

f clj , ∀l ∈ N ,∀c ∈ C (6.8)
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Splits (bilinear terms):∑
i∈I(b)

f cibybj = f cbj , ∀b ∈ B, j ∈ O−(b),∀c ∈ C (6.9)

∑
i∈I(b)

fibybj = fbj , ∀b ∈ B, j ∈ O−(b) (6.10)

Sum of fractions: ∑
j∈O(b)

ybj ≤ 1, ∀b ∈ B (6.11)

Non-negativity:
fij ≥ 0, fcij ≥ 0, ∀(i, j) ∈ A, c ∈ C (6.12)

We make some modelling choices in the above equations, and other, equivalent
formulations are possible. For example, we include both (6.9) and (6.10) although
(6.10) is redundant due to (6.7). Including redundant constraints may sometimes
be advantageous, but we did not test these alternative formulations. We also
choose to define these equations over j ∈ O−(b) (rather than over j ∈ O(b)) to
reduce the number of bilinear terms. This gives inequality in (6.11) as the split
fraction for O(b) \ O−(b) is implicit, while it would be defined with equality if
the equations mentioned above were defined over j ∈ O(b).

Transformation

Solving problems involving network flows is an important part of planning and
operating the natural gas transport system from producing fields to market nodes.
Depending on the reservoir, the gas may have distinct characteristics in terms of
composition, and thereby energy content, as well as the amount of contaminants
such as CO2 and H2S. The composition of gas may affect how much can be
transported, how much it must be treated in processing facilities and whether it
can be sold in a market with defined quality requirements.

Standard pooling models in literature assume linear blending. This applies
well to several important quality considerations, such as the proportion of an
undesired pollutant or the heating value (GCV) where the linear approximation
is good. However, it does not apply to quality aspects that are non-linear in the
flow composition, such as Wobbe Number (WN), Incomplete Combustion Factor
(ICF) and Soot Index (SI), see e.g. UK Government [1996], Hornemann [1998],
formulae are given in Section 6.3.

By modeling the physical component flows directly, we assume that the com-
ponent flows blend linearly in all blending nodes, but we may still add constraints
on quality aspects that depend non-linearly on the flow composition. This is of
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course also possible using other formulations if all component proportions are
added as quality parameters. Modeling the component flows directly facilitates
the addition of a simple representation of processing facilities as described in
Section 6.3. Note that this violates the typical redundant constraint of tighter
formulation which requires that the proportion through a pool stemming from
each source will sum to one, as some amount may be removed at the processing
plant.

In contrast, the test instances from literature consider quality without unit.
Formulation S (Section 6.3) assumes the quality to signify the fraction of the
flow for each component flow. We can easily transform the more general quality
attribute Qic to a virtual component flow Q′ic with the following linear transfor-
mation:

Q′ic =
Qic∑

c′∈C maxj∈N Qjc′
,∀i ∈ N , c ∈ C (6.13)

This ensures that the fractions are kept within the interval [0, 1] and that for
all component flows f cij , the sum of all component flow fractions is at most 1,∑
c f

c
ij ≤ 1,∀(i, j) ∈ A.

This approach may be more suitable in cases where the qualities are of very
different dimensions. Methane is usually a dominating component in natural gas
transport, with component flow fractions in the range of [0.8−1.0]. The pollutant
H2S, on the other hand, is usually measured in parts per million (PPM) due to
the low concentration, and this difference in magnitude could lead to numerical
difficulties.

The implementation of Alfaki and Haugland [2013b] only imposes upper bounds
on quality, and introduces new quality attributes for lower bounds. We transform
these upper bounds on the extra attributes back to lower bounds in the original
quality attributes in our implementation of Formulation S .

Processing

We add to the pooling model presented above a simple model of a processing
facility p ∈ P, which for each component c ∈ C has defined a removal factor
ρpc ∈ [0, 1] which is the fraction removed from the incoming flow to the processing
facility p of component c. The removed quantity is led to a designated sink
tpc. This represents a separation of the components in the mixed flow into its
individual components very different from split nodes b ∈ B (P ∩ B = ∅ and
equations (6.9–6.11) do not apply). The extent to which component flows may
be routed independently depends on the nature of the processing facility p, which
is modelled through the constraints described below:

The following equations enforce that a fraction of each component flow is re-
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moved and sent to the corresponding tank downstream of p:∑
i∈I(p)

f cipρpc = f cpt, t = tpc, p ∈ P, c ∈ C (6.14)

For other components, the flow to a given tank must be zero:

fptc′ = 0, t = tpc, p ∈ P, c′ 6= c ∈ C (6.15)

The following constraints lets whatever remaining after processing proceed in
the network, downstream of the processing facility p:∑

i∈I(p)

f cip(1− ρpc) =
∑

l∈O(p)\{tpc}

f cpl,∀p ∈ P, c ∈ C (6.16)

Discretization D1

We compare the performance of Formulation S with versions where the split
fraction is discretized. There are several options available for discretization, and
in the following we use the discretization D1, which is described in further detail
in Hellemo and Werner [2014]. D1 uses Z evenly spaced discretization points
implemented with binary variables or as SOS1. We introduce the allowed split
fractions αzbj ∈ [0, 1] and auxiliary flow variables eczbj . Ebj denotes the maximum
allowed flow through the arc (b, j) and is used for the discretizations that follow.
Ezbj is set to a value higher than the maximum flow to not further constrain the
flow from the problem formulation above.

The total component flow equals the sum of the auxiliary flow variables:

f cbj =

Z∑
z=1

eczbj , ∀ b ∈ B, j ∈ O(b). (6.17)

Equations (6.18a) and (6.18b) ensure that auxiliary flow variables eczbj corre-
sponding to active λzbj are allowed to take non-zero value. Constraints (6.18b) are
not strictly necessary, but improve the numerical accuracy of the component flows
as the constraints are applied to individual flows in addition to the sum of flows.
The candidate split fractions αzbj are given by αzbj = z−1

Z−1 where z ∈ {1, 2, . . . , Z}.

∑
c∈C

eczbj ≤ αzbjEbjλzbj , ∀b ∈ B, j ∈ O(b), λzbj ∈ {0, 1}, (6.18a)

0 ≤ eczbj ≤ λzbjαzbjEbj , ∀b ∈ B, j ∈ O(b), c ∈ C, λzbj ∈ {0, 1} (6.18b)
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Each partial flow of a component flow equals the split fraction times the total
inflow of this component:

eczbj ≤ αzbj
∑
i∈I(b)

f cib,∀b ∈ B, j ∈ O(b), z ∈ {1, 2, . . . , Z} (6.19)

αzbj
∑
i∈I(b)

f cib − eczbj ≤ αzbjEbj(1− λzbj),

∀b ∈ B, j ∈ O(b), c ∈ C, z ∈ {1, 2, . . . , Z}
(6.20)

We make sure exactly one λzbj is positive for each node (this may be specified
as an SOS1 over z ∈ {1, 2, . . . , Z}).

Z∑
z=1

λzbj = 1, ∀ b ∈ B, j ∈ O(b). (6.21)

Discretization D2

Discretization D2 is also taken from Hellemo and Werner [2014] and uses split
fractions based on binary numbers, where one or more selection variables λbj may
be equal to 1. In this way, several weights may be combined to form possible split
fraction with a higher resolution than discretization D1, using the same number
of binary variables.

The weight of each fraction is defined as follows:

αzbj =

{
1
2z , z ∈ {1, 2, ..., Z − 1}

1
2z−1 , z = Z

(6.22)

Otherwise the formulation is similar to D1, but does not include the constraints
6.21.

Composite quality constraints

One advantage of modelling the physical component flow directly is that addition
of nonlinear composite quality constraints is relatively straightforward. This is
because the blending of the component flows in the pools is linear. Modelling the
composite quality parameters directly would break this fundamental assumption
of the model.

As an illustration of such nonlinear composite quality constraints we have
added the quality constraints introduced in the UK market: Wobbe Number
(WN), Incomplete Combustion Factor (ICF) and Soot Index (SI).
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The Wobbe Index is given by the Gross Calorific Value (Upper Heating Value)
GCV of the gas mixture divided by the square root of the relative density (specific
gravity) of the gas mixture ρrel, see e.g. Hornemann [1998]:

WI =
GCV
√
ρ
rel

(6.23)

The Incomplete Combustion Factor (ICF) and Soot Index (SI) are defined by
UK Government [1996] as:

ICF =
WI− 50.73 + 0.03PN

1.56
(6.24)

SI = 0.896 tan−1(0.0255C3H8 − 0.0233N2 + 0.617) (6.25)

where PN means the sum of the percentages by volume of propane and nitrogen
in the equivalent mixture, C3H8 means the percentage by volume of propane in
the equivalent mixture and N2 means the percentage by volume of nitrogen in the
equivalent mixture. UK Government [1996] defines equivalent mixture as a mix
of methane, propane and nitrogen having the same characteristics as the original
mix. The equivalent mixture is to be calculated such that the average number
of carbon atoms and the ideal volumes is the same as for the original mix. The
equivalent mix shall also have identical Wobbe Number, given a normalization of
the volume.

We add the following expressions in the optimization model for marketsMcomp

with composite constraints, using variables eci to denote the flow of the equivalent
mixture; ∀i ∈Mcomp ⊂M:

Ideal volume We add the following constraints to make sure the ideal volume
of the equivalent mix Volem

i equals the ideal volume of the original mix Volom
i .

These equations make use of the constants volCc for the ideal volume of gas
component c.

Volom
i =

∑
c∈C

volCcfci (6.26)

Volem
i =

∑
c∈Cem

volCceci (6.27)

Volom
i = Volem

i (6.28)

Carbon atoms We also require the average number of carbon atoms in the
equivalent mix AvgNumCem

i equals the average number of carbon atoms in the
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original mix AvgNumCom
i . The number of carbon atoms for each component is

given by the constant numCc.

AvgNumCom
i =

∑
c∈C

numCcfci (6.29)

AvgNumCem
i =

∑
c∈Cem

numCceci (6.30)

AvgNumCom
i = AvgNumCem

i (6.31)

Wobbe Number The Wobbe number of the equivalent mix wnem
i must match

the Wobbe number of the original mix wnom
i , respectively. The relative density

of each component is given in the constant ρc and the flows are normalized using
normalization factor ηi:

wnem
i =

∑
c∈C GCVieciηi√∑

c∈C ρceciηi
(6.32)

wnom
i =

∑
c∈Com GCVifci√∑

c∈C ρcfci
(6.33)

wnem
i = wnom

i ,∀i ∈M (6.34)

ICF The ICF is computed following the definition, using the variables for the
equivalent flow for the components corresponding to C3H8, ei,C3H8

and N2, ei,N2
.

icfi =
wni − 50.73 + 0.03(ei,C3H8 + ei,N2)

1.56
(6.35)

SI As described above, the exact formula for calculating SI is:

sii = 0.896tan−1(0.0255eC3H8
− 0.0233eN2

+ 0.617) (6.36)

However, as BARON does not currently support trigonometric functions, we
have replaced tan−1(x) in Equation (6.36) with the approximation f(x) in Equa-
tion (6.37):

f(x) =
8x

3 +
√

25 + ( 16x
π )2

(6.37)

To allow zero flow and avoid adding binary variables, we multiply both sides
with the total flow to the terminal. Alternatively, the constraint may be added

129



Chapter 6 A Generalized Global Optimization Formulation...

directly, but this will imply positive flow constraints on the terminals. We apply
the constrains on all terminal nodes for which they are defined, ∀i ∈Mcomp ⊂M:∑

k∈I(i)

fkiwni ≤
∑
k∈I(i)

fkiWNU
i (6.38)

∑
k∈I(i)

fkiwni ≥
∑
k∈I(i)

fkiWNL
i (6.39)

∑
k∈I(i)

fkiicfi ≤
∑
k∈I(i)

fkiICFUi (6.40)

∑
k∈I(i)

fkisii ≤
∑
k∈I(i)

fkiSIUi (6.41)

where WNU
i and WNL

i denote upper and lower bounds on Wobbe number,
and ICFUi denotes upper bound on ICF and SIUi is the upper bound for SI for
terminal i.

The constraints described in this section are only applied to the nonlinear For-
mulation S . To apply them to the MILP formulations D1 and D2, the constraints
would need to be replaced by linear or piecewise linear approximations.

6.4 New Test Instances

We provide a set of new test instances based on the network for natural gas
transport on the Norwegian Continental Shelf (NCS). The transport system on
the NCS consists of almost 8000 km of subsea transport pipelines, operating
under high pressure. The volumes transported through this system account for
close to 20 % of European Natural Gas consumption.

Complete data sets from industry typically include business sensitive infor-
mation that may not be published. We have constructed test instances that
resemble real cases, using estimations based on openly available data. The net-
work structure used in our NCS test instances is taken from Fodstad et al [2013].
In addition, we specify natural gas quality data estimated from openly available
data in The Norwegian Ministry of Petroleum and Energy and The Norwegian
Petroleum Directorate [2012]. To increase the number of test instances, we have
drawn permutations of the allocation of quality data to entry nodes and increased
the production capacity at each node randomly within 20%. This is intended to
simulate possible variations over time as new fields are added or taken out of
production, or as production from certain fields is increased or decreased.

We consider several cases: The NCS as multi-level pooling problems with and
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without processing facility added. For both cases we may add the nonlinear
compostite quality constraints.

Where the NCS test case is extended with additional composite quality con-
straints, such constrains are added on only one sink. These constraints are valid
in the UK, and are applied to node 16 in the network, the node representing the
UK terminals. The parameter values of the bounds on these quality attributes
are taken from UK Government [1996]. We also include test cases where we
add a single processing node (node 12) to the network. This processing node
removes a proportion ranging from 0.1 to 1.0 of 10 out of 12 components. We
also consider the NCS case with both processing plant added and composite con-
straints for node 16. Note that the test instances where processing plant is added,
production is a bit more flexible in allowing turning down production from fields.

See Figure 6.1 for an illustration of the network. The GAMS specifications of
the test instances we add are available for download at http://iot.ntnu.no/

users/hellemo/Pooling/.

6.5 Numerical Results

In the following section, we present the results from our numerical experiments.
All problem instances were run with a maximum allowed time of one hour and
with stopping criteria relative gap 1× 10−3 and absolute gap 1× 10−3 . See
Section 6.A for hardware and software details. We first present the results from
the new NCS motivated cases. For reference, we also include tests using standard
multi-level pooling problems provided by Alfaki and Haugland [2013a]. The mean
and median cpu times for all instances for a given case and formulation are given
in Table 6.1. For the NCS case and the instances from the literature, we compare
Formulation S and the MCF formulation of Alfaki and Haugland [2013a], for the
NCS cases with processing facilities with and without composite constraints, we
only consider Formulation S .

NCS Case (NCS)

For the NCS base case, the full results are listed in Table 6.6. The performance
penalty from applying the more general formulation is small. We see that our
formulation is faster for some problem instances, while generally a bit slower.
In the best case, our formulation is 0.14 seconds faster (See Table 6.2). The
median performance penalty is 0.015 seconds and one instance (27) is not solved
to optimality within the time limit. The average performance penalty is about
90 seconds compared with the MCF formulation of Alfaki and Haugland [2013a].
See Table 6.3 for an overview of the final gap for all formulations.
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Figure 6.1: Test case, aggregated model of Norwegian Continental Shelf Gas
Transport System. Sources are shown as rectangles, pools and in-
termediate nodes shown as ovals, and terminals shown as triangles.
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NCS Case with Processing Facilities (NCS P)

The full results are given in Table 6.4. For the NCS test instances with added
processing facility at node 12 (NCS P), we may note that the overall objective
function value improves. This is to be expected, as this model allows some
components to be extracted at the processing facility and to be sold at a premium
price. It also allows for contaminants to be removed, which may allow increased
deliveries to downstream terminals. The value of the solution increases by about
3 % on average by adding the processing facility.

The computation time increases when processing facilities are added, but all in-
stances except five are solved to optimality within the time limit of one hour. The
average increase in computation time (including instances that did not complete
within the time limit) is 364 seconds, while the median increase in computation
time is about 3 second, compared with the instances in NCS without composite
constraints.

When comparing the continuous formulation with the two discretized versions,
we see that for most instances, the continuous formulation is solved much faster
than D1 or D2 (median cpu time 3 or 4 times shorter). However, some cases are
not solved to completion within the time limit, and the average time spent on
each instance is much longer for the continuous formulation. All the discretized
formulations complete within the time limit of one hour. The maximum cpu time
for formulation D1 is just above 20 seconds, and for formulation D2 267 seconds.

NCS Case with Composite Constraints (NCS C)

In the case where we add both processing facilities and composite constraints
for one terminal, we see that the objective value decreases approximately by
4% on average for the cases where both have a solution available within the
time limit. The penalty incurred in terms of increased computational effort is
substantial. Half of the problem instances are not solved within the time limit
of one hour. A few instances are solved faster than for the standard pooling
instance with processing facility. Among the cases solved within the time limit,
the average extra computational time amounts to 552 seconds, the median extra
computational time is only 8 seconds. See Table 6.5 for details.

Literature Test Instances (GPP)

For reference, we compare our formulation with state-of-the art formulations on
a number of test instances from the literature. These test instances are taken
from Alfaki and Haugland [2013a], and are all generalized pooling problems with
multiple levels of pools. We expected our formulation to perform worse on these
difficult test instances, and this is confirmed by the results in Table 6.9. In terms
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Table 6.1: Overview of results per case and formulation. Mean and median cpu
time in seconds. The cases shown are NCS traditional pooling problem
(NCS), with composite constraints (NCS C), with processing (NCS
P), with processing and composite constraints (NCS PC) and general-
ized pooling problem test intances from Alfaki and Haugland [2013a]
(GPP).

Formulation NCS NCS C NCS P NCS PC GPP

MCF 0.12 / 0.11 200 / 0.58
S 91 / 0.11 1082 / 0.73 455 / 3 1204 / 23 1843 / 2377

S-D1 5 / 0.56 10 / 10 2145 / 3600
S-D2 6 / 0.31 28 / 13 2350 / 3600

Table 6.2: Difference in cpu time for NCS base case compared with MCF. Posi-
tive values mean slower than MCF.

S S-D1 S-D2

Mean 90.494 5.102 5.475
Median 0.015 0.460 0.215

Min -0.140 -0.070 -0.110
Max 3599.830 55.380 65.480

of computational runtime, our formulation is faster for two problem instances
(L9 and L10), but generally slower, and for half of the instances, BARON has
not converged within the one hour time limit. In the best case, our formulation
is 132 seconds faster, the mean extra computation time is 165 seconds, and the
average extra computational time 1642 seconds longer using our formulation. See
Table 6.9 for the final gap for each formulation or Table 6.10 for full results.

6.6 Conclusions

We have presented a general formulation of the pooling problem that allows
multiple levels of interconnected pools, and that is easily extended to include
processing facilities. We compared the performance in BARON using the GAMS
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formulation of our Formulation S , a more general formulation that is easily
extended with processing facilities and nonlinear composite quality constraints,
as well as the state-of-the-art MCF formulation of Alfaki and Haugland [2013b].

We provide test instances motivated natural gas transport problems from the
Norwegian Continental Shelf (NCS) with the network structure not represented
in the existing body of test instances. We find that our Formulation S performs
comparable to the tighter MCF formulation on most of our test cases. On the
problems presented by Alfaki and Haugland [2013b], convergence is generally
slower using Formulation S than the MCF formulation.

Formulation S is comparable, but inferior to formulation MCF in most of our
test instances. In contrast with the MCF formulation, it solves more general
problems including processing facilities. Such problems often arise in analysis of
the network on the NCS, which makes Formulation S useful. For hard pooling
problems without processing facilites, previous formulations may be preferrable.

When comparing continuous and discretized formulations of the pooling prob-
lems with processing facilities, we found that the continuous formulation usually
outperforms the discretized versions. However, for several continuous instances,
computations did not complete within the time limit of one hour. All problem
instances completed well before the time limit using the discretized formula-
tions. It is difficult to predict which formulation will be the best for a given
test instance, and one may have to choose between better expected performance
with the continuous formulation, or better worst case performance using the dis-
cretized, approximate, formulations.

Adding composite constraints to one terminal node is relatively straightforward
when the quality is modelled as physical components. As expected, we see from
our computational results that the effort required solving the problem instances
increases substantially. Not all NCS instances with processing and composite
constraints are solved to optimality within the time limit of one hour.
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6.A Software and Hardware Specifications

All numerical tests were performed using GAMS version 23.7.2 with BARON
using CPLEX in combination with Conopt or GAMS in combination with CPLEX
for MILPs on an HP bl685c G7 4x AMD OpteronTM 6274, 16 core, 2.2GHz with
128Gb memory running Linux 2.6.32-358 (Rocks 6.1.1).

6.B Tables of numerical results

Table 6.3: NCS instances (no processing). Gap with time limit 1 hour. Instances
with no solution or gap > 100 are dashed.

Instance MCF S S-D1 S-D2 S w/Comp

NCS001 0.0 0.0 0.0 7.9 · 10−4 −
NCS002 0.0 0.0 0.0 0.0 0.0
NCS003 3.5 · 10−4 8.4 · 10−4 9 · 10−4 1 · 10−3 9.5 · 10−4

NCS004 0.0 0.0 0.0 8.4 · 10−4 0.0
NCS005 0.0 2.7 · 10−5 7.9 · 10−4 5.4 · 10−4 2.2 · 10−4

NCS006 0.0 0.0 2.7 · 10−4 0.0 0.0
NCS007 3.8 · 10−4 6.2 · 10−4 9.8 · 10−4 9.2 · 10−4 −
NCS008 1.6 · 10−4 7.1 · 10−4 8.4 · 10−4 8.1 · 10−4 1 · 10−3

NCS009 8.1 · 10−5 4.9 · 10−4 8.1 · 10−4 8.1 · 10−4 −
NCS010 1 · 10−3 9.8 · 10−4 9.8 · 10−4 9.8 · 10−4 −
NCS011 0.0 0.0 0.0 0.0 0.0
NCS012 0.0 0.0 0.0 0.0 −
NCS013 0.0 0.0 5.4 · 10−4 0.0 −
NCS014 0.0 1.9 · 10−4 9.5 · 10−4 9.2 · 10−4 −
NCS015 0.0 0.0 0.0 0.0 −
NCS016 0.0 0.0 0.0 0.0 0.0
NCS017 0.0 0.0 0.0 2.7 · 10−4 −
NCS018 0.0 0.0 0.0 0.0 −
NCS019 0.0 0.0 1.9 · 10−4 0.0 −
NCS020 6.3 · 10−4 1 · 10−3 1 · 10−3 9.8 · 10−4 1 · 10−3

NCS021 1.9 · 10−4 6.8 · 10−4 1 · 10−3 8.4 · 10−4 −
NCS022 0.0 0.0 3.8 · 10−4 0.0 −
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Table 6.3: NCS instances (no processing). Gap with time limit 1 hour. Instances
with no solution or gap > 100 are dashed.

Instance MCF S S-D1 S-D2 S w/Comp

NCS023 0.0 0.0 0.0 0.0 8.1 · 10−5

NCS024 0.0 0.0 1.1 · 10−4 0.0 1 · 10−3

NCS025 2.7 · 10−5 6.2 · 10−4 7.6 · 10−4 8.7 · 10−4 6.2 · 10−4

NCS026 0.0 0.0 2.2 · 10−4 8.1 · 10−4 −
NCS027 1 · 10−3 1.4 · 10−1 − 9.3 · 10−4 −
NCS028 1.9 · 10−4 4.3 · 10−4 9.8 · 10−4 6.8 · 10−4 1 · 10−3

NCS029 5.4 · 10−4 1 · 10−3 9.8 · 10−4 9.8 · 10−4 −
NCS030 2.7 · 10−4 8.1 · 10−4 1 · 10−3 9.8 · 10−4 9.8 · 10−4

NCS031 0.0 0.0 0.0 2.7 · 10−5 0.0
NCS032 0.0 0.0 0.0 0.0 0.0
NCS033 0.0 6.2 · 10−4 6.5 · 10−4 6.5 · 10−4 9.9 · 10−4

NCS034 2.7 · 10−5 2.4 · 10−4 2.7 · 10−4 4.6 · 10−4 −
NCS035 0.0 0.0 0.0 0.0 0.0
NCS036 0.0 0.0 0.0 0.0 −
NCS037 0.0 0.0 0.0 2.7 · 10−4 −
NCS038 0.0 0.0 2.7 · 10−5 0.0 −
NCS039 1.4 · 10−4 6.5 · 10−4 8.7 · 10−4 6.2 · 10−4 9.9 · 10−4

NCS040 9.5 · 10−4 1 · 10−3 1 · 10−3 1 · 10−3 −
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6.B Tables of numerical results

Table 6.9: Gap with time limit 1 hour for cases from the literature (GPP). In-
stances with no solution or gap > 100 are dashed.

Instance MCF S S-D1 S-D2

gppA1 0 0 0.0 0.0
gppA2 0 0 0.0 0.0
gppA3 0 0 0.0 0.0
gppA4 0 1.2 · 10−1 9.8 · 10−4 3.7 · 10−2

gppA5 0 1.6 0.0 0.0
gppB1 0 8.7 · 10−1 0.0 8.4 · 10−4

gppB2 0 0 0.0 0.0
gppB3 0 6.6 · 10−2 6.6 · 10−2 6.6 · 10−2

gppB4 0 0 0.0 0.0
gppB5 0 2 · 10−2 2 · 10−2 2 · 10−2

gppC1 0 1.5 · 10−1 1.5 · 10−1 1.5 · 10−1

gppC2 1 · 10−3 8.1 · 10−1 9 · 10−1 1 · 100

gppC3 0 1.9 · 10−1 3.6 · 10−1 3.9 · 10−1

gppC4 0 1.5 · 10−2 3.5 · 10−2 3.2 · 10−2

gppC5 0 4.7 · 10−1 5 · 10−1 4.9 · 10−1

gppD1 2.5 · 10−3 2.7 · 10−1 4.7 · 10−1 1.6
gppD2 0 3.9 · 10−1 5.7 · 10−1 1.0
gppD3 0 9.5 · 10−3 1.7 · 10−2 7.4 · 10−2

gppD4 0 1.1 1.2 1.2
gppD5 0 4.2 · 10−2 3.2 · 10−1 3.7 · 10−1

gppE1 0 − 2.3 2.3
gppE2 0 − 1.9 1.7
gppE3 0 − 5.8 5.8
gppE4 0 − 6.2 6.2
gppE5 0 − 7.6 7.6
gppL1 1.2 · 10−3 1.2 · 10−3 9.9 · 10−4 0.0
gppL2 1 · 10−3 6.9 · 10−1 9.6 · 10−4 3 · 10−1

gppL3 1 · 10−3 4.5 · 10−1 9.1 · 10−4 3.8 · 10−1

gppL4 2.1 · 10−2 5.7 · 10−1 5.8 · 10−1 6 · 10−1

gppL5 9.9 · 10−4 2 · 10−1 1.8 · 10−1 2.2 · 10−1

gppL6 1 · 10−3 1 · 10−3 0.0 0.0
gppL7 0 0 0.0 0.0
gppL8 0 1 · 10−3 7.9 · 10−4 1 · 10−3

gppL9 0 0 15.0 5.7
gppL10 0 0 7.5 3.1
gppL11 0 0 3.0 3.4
gppL12 1 · 10−3 1 · 10−3 0.0 0.0
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Table 6.9: Gap with time limit 1 hour for cases from the literature (GPP). In-
stances with no solution or gap > 100 are dashed.

Instance MCF S S-D1 S-D2

gppL13 1 · 10−3 3 · 10−3 0.0 1 · 10−3

gppL14 1 · 10−3 1 · 10−3 0.0 9.2 · 10−4

gppL15 1 · 10−3 1 · 10−3 9.5 · 10−4 9.5 · 10−4

Table 6.10 shows the full results from comparing several formulations for the
NCS test instances without processing facilities or composite quality constraints.
Note that the number of binary variables for formulation S-D1 is shown as 0.
This is because SOS1 variables are not reported as binary variables by GAMS.
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Chapter 7

Stochastic Programs with
Decision-Dependent Probabilities

Abstract:
Stochastic programming with recourse usually assumes uncertainty to be ex-
ogenous. We discuss modelling and application of decision-dependent uncer-
tainty in mathematical programming and present a taxonomy of stochastic
programming approaches with decision-dependent uncertainty.
We present several ways of incorporating direct or indirect manipulation
of underlying probability distributions through decision variables in two-
stage stochastic programming problems. We formulate two-stage models
where prior probabilities are distorted through an affine transformation, or
combined using a convex combination of several probability distributions.
Additionally, we present models where the parameters of the probability
distribution are first stage decision variables. The probability distributions
are either incorporated in the model using the exact expression or by using
a rational approximation.
Test instances for each formulation are solved with a commercial solver,
BARON, using selective branching.

7.1 Introduction

Most practical decision problems involve uncertainty at some level, and stochas-
tic programming was introduced by Dantzig [1955] and Beale [1955] to handle
uncertain parameters in mathematical programs. Their approach was to model
a discrete time decision process where uncertain parameters are represented by
scenarios and their respective probabilities. In a scenario-based stochastic pro-
gram, decisions are made and uncertain values are revealed at discrete points in
time. Some decisions are made before the actual values of uncertain parameters
are known, but the realization of the stochastic parameters is independent of the
decisions. This framework will later be referred to as stochastic programs with
exogenous uncertainty or stochastic programming with decision independent un-
certainty. In recent years stochastic programs with endogenous uncertainty or
decision-dependent uncertainty have received increased attention. Some early
examples of papers with decision-dependent uncertainty are Jonsbr̊aten [1998],
Jonsbr̊aten et al. [1998] and Goel & Grossmann [2004]. We will use the terms
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Chapter 7 Stochastic Programs with Decision-Dependent Probabilities

decision-dependent uncertainty and endogenous uncertainty interchangeably.
The main contribution of our paper is to provide new formulations for endoge-

nous stochastic programming models where the probabilities of future events
depend on decision variables in the optimization model, in the following called
stochastic programs with decision-dependent probabilities. This is a subclass of
endogenous stochastic programming models that has received little attention in
the literature. There are some examples in the existing literature of problems
where a decision may shift from one predefined set of probabilities to another.
To the best of our knowledge, there are no examples in the literature where the
relation is modeled as a continuous function. In Section 7.2 we give a more thor-
ough description of problem classes with endogenous uncertainty and discuss the
choices a problem owner or modeler needs to make. We provide an extended
taxonomy for stochastic programs with endogenous uncertainty and a literature
review in Section 7.3. Our new formulations for models with decision-dependent
probabilities are found in Section 7.4. We provide several test instances of models
using these formulations in Section 7.5. We give some computational results in
Section 7.6 and conclude in Section 7.7.

7.2 Decision Problems with Decision-Dependent
Uncertainty

To discuss the concept of decision-dependent uncertainty, it is useful to first make
distinctions between the real world, the description of the real world presented
to the modeler as a problem and the actual mathematical model formulation. A
problem description belongs to one of these classes:

Deterministic problems are problems where there is no substantial uncertainty,
there may for example be available precise measurements of all parameters,
or there may be some official values available, such as the prices for today’s
operations.

Exogenous uncertainty problems are problems with substantial uncertainty, where
we know the distribution of the stochastic parameters, for example based on
historical data or expert opinion. The information structure and the prob-
ability distributions do not depend on any decisions in the model. Rather,
the model will seek a solution that does well in expectation. Some models
also include different risk attitudes or use a risk measure.

Endogenous uncertainty problems are problems where decisions at one point in
time will have a substantial impact on the uncertainty faced later, either
in terms of when information about the actual value of a stochastic pa-
rameter becomes available, or the probability that a certain realization of a
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7.2 Decision Problems with Decision-Dependent Uncertainty

Reality Problem classes

Model classes

Control Theory

Exogenous

Exogenous SP

Endogenous

Deterministic

Exogenous

Deterministic

Endogenous SP

Markov Chains

Endogenous

Deterministic

Math. Programming

Figure 7.1: Classification problem and model classes. Stochastic programming
models in black, examples of other modelling paradigms in grey.
Dashed line indicates problem relaxation, whereas the full stroke in-
dicates a mapping.

parameter occurs. We classify a problem as having endogenous uncertainty
when decisions that are part of the problem to be solved, influences the
uncertainty of parameters that are also part of the problem.

Note that there is not a one to one mapping between reality and the problem
description or between the problem and the model choice. Figure 7.1 shows some
alternative mappings. In the following we will illustrate this with some examples.

First, consider a river where a dam is to be built and the design parameters
of the dam are to be determined. The risk of a dam break has to be balanced
against the extra cost of further reinforcing it. The stochastic inflow is not
influenced by the way the dam is built, rather the dam’s resistance to various
inflows is. In this case a problem description may focus on the stochastic inflow,
and describe this as a design problem with exogenous uncertainty. The risk of a
dam failure would depend on the stochastic inflow, but the design decision would
not affect the stochastic parameter in the model. Alternatively, we could decide
to model the probability of a dam break directly as uncertainty depending on
the dam design. The computational tractability of the two models would be one
important criterion in selecting between the two.

Next consider a petroleum reservoir where there is some uncertainty about the
properties of the reservoir, and the decisions are the technology used for drilling
wells, where to drill wells, as well as when the wells should be drilled if drilled
at all. The actual petroleum content of the reservoir is fixed, but not known
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Chapter 7 Stochastic Programs with Decision-Dependent Probabilities

precisely. The decision to drill test wells does not change the content of the
reservoir as such, but it may provide more information about the reservoir. This
information is not revealed unless we actually drill the test wells, which incurs
a substantial cost. This is a situation where the underlying reservoir content is
deterministic, but unknown to the decision maker. The information structure
(when and what information is revealed) is affected by the decisions, calling for
a model that handles decision-dependent uncertainty. Note that the underlying
uncertain parameter is not affected. In the same reservoir case, the choice between
alternative drilling technologies is another, similar, consideration. Some drilling
approaches may jeopardize the reservoir itself by introducing leaks between layers
in the ground, something that could render part of the resources unrecoverable.
In this way, our decisions may actually change the recoverable volume from said
reservoir. This aspect of the real world situation may be included or ignored in
the decision problem and later in a mathematical model, giving very different
models.

For this oil reservoir with fixed but unknown petroleum content we may choose
to ignore information structure or operational uncertainty or assume we know the
true state of the reservoir already and apply a deterministic model. Alternatively
we may choose to see it as an endogenous problem, where our decisions in part
determine the uncertainty of the recoverable volumes or change the information
structure, or we may see it as an exogenous problem, where we get to know the
true state of the reservoir at some future point in time.

The right-hand part of Figure 7.1 shows examples of model classes. Mov-
ing on to formulating a specific model to aid the solution of a certain problem,
some relaxations or approximations will usually have to be made, often to re-
duce cognitive load of model users or to improve computational tractability, or
both. While in this paper we focus on stochastic programming, also other mod-
eling paradigms exist such as control theory, game theory and several others that
may be considered for stochastic problems. In the following literature review
and taxonomy description we limit the scope to include problems described with
endogenous uncertainty and where the model choice is stochastic programming
with recourse.
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Chapter 7 Stochastic Programs with Decision-Dependent Probabilities

7.3 Taxonomy

In this section we will present a taxonomy and literature review for stochastic
programs with decision-dependent uncertainty. Our taxonomy expands previ-
ously presented classifications of such problems. We summarize the taxonomy in
Figure 7.2.

The literature on endogenous uncertainty in stochastic programming is sparse.
This should come as no surprise as one quickly departs from the domains where
well performing solution techniques are available, notably for convex program-
ming in general and linear programming in particular, as noted by Varaiya &
Wets [1989]. Jonsbr̊aten [1998] and Jonsbr̊aten et al. [1998] proposed a general-
ized formulation of stochastic programs with recourse of which the standard SP
is a special case (Equation (7.1)), and suggested the classification of stochastic
programs into two sub classes: endogenous and exogenous uncertainty.

min Ep f(x) =

∫
Ξ

f(ξ;x)p(dξ) such that (p, x) ∈ K ⊂ P × RN (7.1)

P is a subset of the probability measures on Ξ and K are the constraints linking
the decision x to the choice of p.

The problems discussed in the paper by Jonsbr̊aten et al., concern situations
where the time that information becomes available is determined by the deci-
sions in preceding stages. As an example they use stochastic production costs.
Only after making the decision of which product to make, is the uncertainty of
this particular product revealed. The other possible products’ true costs remain
hidden (stochastic) until a decision to produce them is made.

Several authors (Dupačová [2006], Tarhan et al. [2009]) identify two subclasses
within endogeneous stochastic programs. One class of problems is where the
probabilities are decision-dependent, and we will denote this class of problems
as Decision-Dependent Probabilities or Type 1. Equation (7.2) further general-
izes Equation (7.1) to include the possibility that the probability measure also
depends on x:

min Ep f(x) =

∫
Ξ

f(ξ;x)p(x; dξ) such that (p, x) ∈ K ⊂ P × RN (7.2)

Problems with decision-dependent probabilities are discussed further in Sec-
tion 7.3. The other subclass concerns information revelation, where the time of
the information revelation is decision-dependent.

We suggest a more general categorization, Decision-Dependent Information
Structure or Type 2. Problems with decision-dependent information structure

180



7.3 Taxonomy

are discussed further in Section 7.3. Some problems may have both kinds of
decision-dependent uncertainty, and we add a Type 3 to include such problems.
To the best of our knowledge, problems of Type 3 have not yet been discussed
in the literature. For an overview of the different problem classes and their
subclasses, see Figure 7.2.

Decision-Dependent Information Structure

By decision-dependent information structure we mean all ways of altering the
time dynamics of a stochastic program. This includes the time of information rev-
elation, as in endogenous problems of Type 2, as well as the addition of stochastic
parameters, and deletion of stochastic parameters. Another example is problems
for which the time when uncertainty is redefined/refined is a decision variable,
such as in using sensors or in acquisition of information. We include in this
category all stochastic programs with endogenous uncertainty were nonanticipa-
tivity constraints (NAC) can be manipulated by decision variables, whereas the
probabilities remain fixed.

Information Revelation

The subcategory of information revelation has received most attention in the lit-
erature, following Jonsbr̊aten [1998], Jonsbr̊aten et al. [1998] and Goel & Gross-
mann [2004]. The most used technique is to relax the nonanticipativity con-
straints of a stochastic program, allowing selection of the times of branching of
the tree (when scenarios become distinguishable), see discussion below.

Goel & Grossmann [2004] formulated a model for development of natural gas
resources where the time of exploitation can be selected in the model. This in-
troduces endogenous uncertainty as the information revelation depends on which
wells are drilled and when, and it is formulated as a disjunctive programming
problem where the nonanticipativity constraints depend on the decision variables
related to drilling. They first considered a model with pure decision-dependent
uncertainty, and later generalized it to a hybrid model including both endogenous
and exogenous uncertainty (Goel & Grossmann [2006]). This form of endogenous
uncertainty arises in multi-stage models, where the decisions to explore a field
unravels the true parameter values of the field that is explored, but not the
others. As this decision can be made at different times (stages), it is only rel-
evant in a multi-stage environment. Effectively their approach is a model with
decision-dependent nonanticipativity constraints, and they develop several theo-
retical results demonstrating redundancy in the constraints and that the number
of nonanticipativity constraints can be reduced accordingly. This improves the
practicality of the model by making it more readily solvable. The models are still
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Chapter 7 Stochastic Programs with Decision-Dependent Probabilities

quite large, though, and they propose a branch and bound solution procedure
based on Lagrangian duality.

Solak [2007] presents a portfolio optimization problem where the timings of
the realizations are dependent on the decisions to invest in the projects. The ap-
plication is from R&D in the aviation industry where a technology development
portfolio is to be optimized. Solak introduces gradual resolution of uncertainty,
where the amount invested in a project increases the resolution of the uncertainty
regarding that project up to a point where all uncertainty has been resolved. The
author proposes solution approaches for the multi-stage stochastic integer pro-
gramming model with focus on decomposability, sample average approximation
and Lagrangian relaxation with lower bounding heuristics.

A model with gradual resolution of information is also presented by Tarhan
et al. [2009], another petroleum application with a multi-stage non-convex stochas-
tic model, solved by a duality-based branch and bound method. Colvin & Mar-
avelias [2009] build on the work by Goel and Grossmann. Their application is
from the pharmaceutical industry and clinical trials. They further improve on a
reformulation with redundant nonanticipativity constraints removed, and observe
that few of the remaining are binding. They add the constraints only as needed
through a customized branch-and-cut algorithm. The model is formulated as a
pure MIP. Boland et al. [2008] also build on the work of Goel and Grossman in
their open pit mining application where geological properties of the mining blocks
(quality) varies, and there is a mix of already mined blocks, and blocks where the
quality is uncertain until the point of development. They find that they can reuse
existing variables for nonanticipativity constraints and thus reduce the size of the
problem. They exploit the problem structure to omit a significant proportion of
the nonanticipativity constraints. Boland et al. implemented a version of their
model with “lazy” constraints, but found that this did not improve performance
for their model instances.

The latest improvement on the work by Goel and Grossman is by Gupta &
Grossmann [2011], and they also propose new methods for obtaining a more
compact representation of the nonanticipativity constraints. In addition, they
propose three solution procedures. One is based on a relaxation of the problem
in what they call a k-stage constraints problem, where only nonanticipativity
constraints for a given number of stages are included. Secondly, they propose
an iterative procedure for nonanticipativity constraint relaxation, and third they
present a Lagrangian decomposition algorithm. The application is the same as
in Goel & Grossmann [2006].

An alternative and equivalent way of formulating stochastic programming prob-
lems with recourse is using a node formulation of the scenario tree. As an alter-
native to the disjunctive nonanticipativity constraints (NAC) formulation with
relaxation of NAC, problems with decision-dependent information revelation may
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7.3 Taxonomy

be formulated using a disjunctive node formulation. However, to our knowledge,
such a model has never been presented in the literature.

In an early paper, Artstein & Wets [1994] present a framework for analysis
where a decision maker can seek more information through what they call a
sensor. By using a sensor, they allow a redefinition of the probability distribution
that is used in the stochastic program. This refines the decision process in that
it acknowledges that the inquiry process may itself introduce errors. They solve
an example based on a variant of the newsboy problem where the newsboy may
perform a poll/sampling to gain information about the probability distribution,
possibly at a cost. They provide a general approach to the situation when the
underlying uncertainty is not known, and decisions may influence the accuracy
of the uncertainty in a stochastic program.

Problems that May be Reformulated as Ordinary SP

In addition to problems with decision-dependent information revelation, other
structures are conceivable, that may be reformulated as stochastic programs with
recourse. This includes deleting stochastic variables, adding stochastic variables,
and modifying the support. This may be achieved through the use of binary
variables. For a recent example, see Ntaimo et al. [2012] where a two-stage
stochastic program for wildfire initial attacks is presented. The cost incurred
by each wildfire is one of two possible outcomes for each scenario, depending
on whether the fire can be contained through an effective attack or not. The
model is formulated as a two-stage stochastic (integer) program with recourse,
with binary variables to select which set of recourse costs is incurred in stage two
based on the selection of attack means available as a consequence of decisions in
stage one. The scenarios are based on fire simulations, giving a large number of
scenarios. The model size is reduced by applying sample average approximation
(SAA).

Decision-Dependent Probabilities

The first attempt to model explicitly the relationship between the probability
measure and the decision variable was made by Ahmed [2000]. He formulates
single-stage stochastic programs that are applied to network design, server selec-
tion and p-choice facility location. Ahmed uses Luce’s choice axiom to develop
an expression for the probability that, e.g., a path is used, and this probabil-
ity depends on the design variables of the network. The resulting model is 0-1
hyperbolic program, which he solves by a binary reformulation and by genetic
programming in addition to a customized branch and bound algorithm.

For some problems with decision-dependent probabilities, the decision depen-
dency may be removed through an appropriate transformation of the probability
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measure, which is called the push-in technique by Rubinstein & Shapiro [1993,
214f], see also Pflug [1996, 143ff]. Dupačová [2006] notes that in some cases,
dependence of distribution P on decision variable x can be removed by a suit-
able transformation of the decision-dependent probability distribution (push-in
technique).

Escudero et al. [2014] have developed a multi-stage stochastic model including
both exogenous and endogenous uncertainty. They also include risk considera-
tions in the form of stochastic dominance constraints. The resulting model is a
mixed-integer quadratic program where the weights (probabilities) of each sce-
nario group and/or outcomes of the stochastic parameters may be determined
by decision variables from previous stages. To be able to solve large problem
instances the authors apply a customized Branch and Fix Coordination (BFC)
parallel algorithm.

For the problems in this section, only probabilities depend on the decision vari-
ables, while the information structure is fixed. To be specific, nonanticipativity
constraints are not manipulated by decision variables. Dupačová [2006] identifies
two fundamental classes of problems with endogenous probabilities. One where
the probability distribution is known and the decisions influence the parameters
and one where some decision will cause the probability distribution to be chosen
between a finite set of probability distributions Dupačová [2006]. We extend her
taxonomy with a third category, decision-dependent distribution distortion.

In principle, both discrete and continuous distributions may be considered,
where the use of discrete scenarios as an approximation also for continuous dis-
tributions is the most used method for modeling such problems. We are not
familiar with any attempts to model and solve problems with decision-dependent
probabilities using continuous probability distributions, and in the following we
only consider problems with discrete probability distributions, using a set of dis-
crete scenarios.

Decision-Dependent Distribution Selection

Viswanath et al. [2004] consider the design of a robust transportation network
where links can be reinforced by investing in additional measures. By investing,
the probability of survival of a disruptive event is improved. The model is an
investment model with a choice between a finite number of sets of probabilities,
typically two, pe and qe where pe is used if there is investment, qe otherwise. The
random variables take values 0 or 1 with probabilities given above. Dupačová
[2006] also discusses the subset of problems where available techniques from bi-
nary and integer programming can be can be applied to choosie between a finite
number of set of probability distributions with fixed parameters.
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Decision-Dependent Parameters

Selection between a discrete number of parameter values can be implemented
using a generalization of the technique described above. We suggest some models
where parameters are continuous decision variables in this paper, see Section 7.4.
We show an example of using the exact expression for a probability distribution
in Section 7.4 and a rational approximation in Section 7.4. We are not aware of
any other papers that include models of Type 1 where the probability distribution
parameters can be set continuously.

Distortion

We also include some models where we distort some prior set of probabilities for
a distribution with known parameters. We then introduce a distortion of these
probabilities controlled by decision variables. This distortion could be applied in
form of a transformation of one set of probabilities or by combining several sets of
probabilities. We give examples of linear transformations in Section 7.4, distort-
ing one set of prior probabilities in Section 7.4 and using the convex combination
of several sets of probabilities in Section 7.4.

We are not aware of any other publications to present this kind of model,
however Dupačová [2006] makes notes on the stability of optimal solutions, using
probability distribution contamination to investigate the case where a convex
combination of several distributions can be applied for convex problems.

Related Work

A bit on the side, Held & Woodruff [2005] consider a multi stage stochastic
network interdiction problem. The goal is to maximize the probability of sufficient
disruption, in terms of maximizing the probability that the minimum path length
exceeds a certain value. They present an exact (full enumeration) algorithm and
a heuristic solution procedure.

Another approach to uncertainty in optimization is to search for solutions that
are robust in the sense that they are good for the most disadvantageous outcomes
of the stochastic parameters. Several research groups are working with robust
optimization, going back to Ben-Tal et al. [1994], Ben-Tal & Nemirovski [1998],
Bertsimas & Sim [2003] and Bertsimas & Sim [2004]. Also, rather than taking a
worst-case approach, introducing some ambiguity to the underlying probability
distribution has been demonstrated in the works of Pflug & Wozabal [2007] and
Pflug & Pichler [2011].

Finally, while the optimization over a number of discrete scenarios is the dom-
inant approach within stochastic programming, Kuhn [2009] and Kuhn et al.
[2011] optimize linear decision rules over a continuous probability distribution.
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7.4 Decision-Dependent Probabilities

We will give here several formulations of stochastic programs with decision-
dependent probabilities. The formulations allow the probabilities of scenarios
s ∈ S to be altered by some decision variable y, typically a first-stage variable
in a two-stage stochastic program. In this section we will only consider the case
where the function ps : R→ [0, 1] is an affine function.

min c>x x+ c>y y +
∑
s

ps(y)q>s zs

s.t .

x ∈ X, y ∈ Y, zs ∈ Zs(x, y).

(7.3)

Affine ps

In this formulation we do not directly manipulate the parameters of the prob-
ability distribution, but apply a transformation to one or more predetermined
probability distributions. We will first examine some special cases where the
function ps is an affine function. This is primarily motivated by computational
tractability, as it will yield mathematical programs where, in the case where
the rest of the model is linear, the only nonlinearities are bilinear terms related
to variables controlling scenario probabilities. This can easily be generalized to
non-linear transformations and non-linear stochastic programs.

Linear Scaling

Let s ∈ S be discrete scenarios, each with probability p0s > 0,
∑
s∈S p0s = 1. For

each s ∈ Ŝ ⊂ S we let the variable y scale the probability linearly, whereas we
adjust the remaining scenarios s ∈ S \ Ŝ:

ps(y) =

{
p0sy, s ∈ Ŝ ⊂ S
1−y

∑
s′∈Ŝ p0s′∑

s′∈S\S p0s′
p0s, s ∈ S \ Ŝ. (7.4)

In the special case where the original distribution is uniform, this gives the
function ps:

ps(y) =


1
|S|y, s ∈ Ŝ ⊂ S
1−y

∑
Ŝ

1
|S|

|S|−|Ŝ| , s ∈ S \ Ŝ.
(7.5)
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Figure 7.3: Example of convex combination of normal distributions.

Convex Combination of Distributions

Let i ∈ I be discrete distributions with probabilities pi,s,
∑
s∈S pi,s = 1,∀i ∈ I

associated to each scenario s ∈ S.

Then define
ps =

∑
i∈I

pi,syi,∀s ∈ S. (7.6)

A distribution defined like this is often called a mixture distribution, see, e.g.,
Feller [1943], Behboodian [1970], and Frühwirth-Schnatter [2006]. One interpre-
tation would be that the final outcome is selected at random from the underlying
distributions, with a certain probability yi associated with each of them. In our
model the mixture weights yi ≥ 0 are decision variables, but of course the sum of
weights need to be 1. See Figure 7.3 for some examples of convex combinations
of normal distributions.

Mixture distributions are often used when subsets of the data have specific
characteristics, for example where subpopulations exist in a population. Our
model then gives the opportunity to influence the weights of the different sub-
populations, potentially at a cost.

To reduce the number of y-variables, we may let the one yu is uniquely deter-
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mined by the remaining i ∈ I \ {u} such that:

ps =
∑

i∈I\{u}

pi,syi + (1−
∑

i∈I\{u}

yi)pu,s, u ∈ I,∀s ∈ S. (7.7)

Parameterization of Distribution

In this formulation we change the parameters of a probability distribution di-
rectly, rather than distorting or combining some preexisting probability distri-
butions. Taking a known probability distribution and letting the model choose
the mean, or variability, for example, would allow for a range of interesting ap-
plications. This formulation gives the ability to model general properties such
as an increase of the expected value or reduction of variability. It is often desir-
able to apply continuous distributions. In order to stay within the frameworks
of scenario based recourse models we then have to discretize the distribution.

Here we provide short description of the discretization we use: For a stochastic
parameter x, we define an allowed interval [XL, XU ] which is divided into |S|
subintervals, one for each scenario s ∈ S. The subintervals are [xL,s, xU,s] , X

L ≤
xL,s, xU,s ≤ XU ,∀s ∈ S, using a representative value xM,s for each scenario,

normally xM,s =
xL,s+xU,s

2 . The probability of a scenario ps is given by the
cumulative probability (cumulative density function, cdf) of the upper value less
the cumulative probability of the lower value of each subinterval: ps = cdf(xU,s)−
cdf(xL,s).

We will first give a formulation using a discretization of a probability distribu-
tion with closed form cdf Section 7.4, then a discretization of an approximation
of normal distributions in Section 7.4.

Kumaraswamy Distribution

The double bounded pdf proposed by Kumaraswamy [1980] for better matching
observed values in hydrology has the nice property that the cdf is available in
closed form.

The Kumaraswamy probability density function with parameters a, b > 0, x ∈
[0, 1] is given as:

f(x|a, b) = abxa−1(1− xa)b−1. (7.8)

While the cumulative density function is:

F (x|a, b) = 1− (1− xa)b. (7.9)

Note that the original formulation allows parameters a, b ≥ 0, but as this would
allow situations where the probability of all scenarios equal to 0, we exclude
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Type A (a<1, b<1) Type B (a<1, b=1) Type C (a<1 b>1)

Type D (a=1,b<1) Type E (a=1,b=1) Type F (a=1,b>1)

Type G (a>1,b<1) Type H (a>1,b=1) Type I (a>1,b>1)

Figure 7.4: Examples of Kumaraswamy probability density function (pdf) with
different parameters a and b.
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this possibility. When parameters a or b pass from a value less then 1.0 to a
value greater than 1.0, the shape of the probability density function changes, see
Figure 7.4 for examples.

More general general (bounded) random variables z can be normalized:

x =
z − zmin

zmax − zmin
(7.10)

With the cumulative probability given as a closed form expression, the dis-
cretized Kumaraswamy distribution can be directly included in an optimization
model as follows, see also example in Section 7.5:

ps(a, b) = F (xU,s|a, b)− F (xL,s|a, b) =

1− (1− xaU,s)b − 1 + (1− xaL,s)b = (1− xaL,s)b − (1− xaU,s)b,∀s ∈ S.
(7.11)

Approximation of Normal Distribution

The widely applied normal distribution has no closed form cdf, which makes it
difficult to apply directly. Fortunately, there are polynomial and rational ap-
proximations to the standard normal distribution. For example, the cdf of the
standard normal distribution can be approximated for x ≥ 0 with the following
expression (Abramowitz & Stegun [1964, 26.2.19]):

P (x) = 1− 1

2
(1 + d1x+ d2x

2 + d3x
3 + d4x

4 + d5x
5 + d6x

6)−16 + ε(x)

|ε(x)| < 1.5× 10−7
(7.12)

d1 = 0.0498673470 d3 = 0.0032776263 d5 = 0.0000488906
d2 = 0.0211410061 d4 = 0.0000380036 d6 = 0.0000053830.

We can find the cdf of a standard distribution with mean a through a change of
variables x = x′−a (see Figure 7.5) for an example). As the approximation is only
valid for positive x, we exploit the symmetry of the standard normal distribution
and use P−(x) = P (−x) for x < 0 to approximate the normal distribution
N(a, 1) and use this approximation in the mathematical program. This disjunct
formulation will require the use of binary variables, yielding a MINLP.

To express the split formulation of Equation (7.12), we split the expression
into denominators divL+

s and divU+
s for xM,s − a > 0 and divL−s and divU−s for

xM,s − a ≤ 0:
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Figure 7.5: Examples of Normal distribution shifted mean by change of variables.

divL+
s = (1 + d1(xL,s − a) + d2(xL,s − a)2 + d3(xL,s − a)3

+d4(xL,s − a)4 + d5(xL,s − a)5 + d6(xL,s − a)6)16
(7.13)

divU+
s = (1 + d1(xU,s − a) + d2(xU,s − a)2 + d3(xU,s − a)3

+d4(xU,s − a)4 + d5(xU,s − a)5 + d6(xU,s − a)6)16
(7.14)

divL−s = (1 + d1(−xL,s + a) + d2(−xL,s + a)2 + d3(−xL,s + a)3

+d4(−xL,s + a)4 + d5(−xL,s + a)5 + d6(−xL,s + a)6)16
(7.15)

divU−s = (1 + d1(−xU,s + a) + d2(−xU,s + a)2 + d3(−xU,s + a)3

+d4(−xU,s + a)4 + d5(−xU,s + a)5 + d6(−xU,s + a)6)16
(7.16)

We combine the expressions above to express the resulting interval probabilities
for p−s and lp+

s :
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p−s ≤ (1− δs)
1

2

(
1

divL−s
− 1

divU−s

)
(7.17)

p+
s ≤ δs

1

2

(
1

divU+
s

− 1

divL+
s

)
(7.18)

For all discrete scenarios s ∈ S with corresponding possible realization of the
variable xM,s ∈ [xL,s, xU,s] we use xM,s and binary indicator variables δs ∈
{0, 1},∀s ∈ S to indicate the location of the interval. This will give some inaccu-
racy for the interval spanning both definitions. For improved accuracy, separate
indicator variables may be used for upper and lower interval values, doubling the
number of binary variables.

Note that in order to calculate the cumulative probabilities correctly for the
tail scenarios, we use extreme values for the end points xL,1 and xU,|S|.

ps = p−s + p+
s , (7.19)

p+
s ≤ 1− δs, (7.20)

p−s ≤ δs. (7.21)

Ensure appropriate δs is set to 1 with big M constraints using constants M+

and M−:

xM,s − a ≤ (1− δs)M+, (7.22)

xM,s − a ≥ δsM−. (7.23)

Bound probabilities to 1:∑
s

ps = 1,
∑
s

p+
s ≤ 1,

∑
s

p−s ≤ 1,∀s ∈ S. (7.24)

Only allow one shift from negative to positive:

δs ≤ δs−1,∀s = 2 . . . S. (7.25)

This model includes a complex polynomial expression as well as a binary vari-
able resulting in a non-convex mixed integer non-linear formulation.
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7.5 Test Instances and Example

We have implemented a few test instances to investigate how hard they will be to
solve. All test models are implemented as GAMS models and can be downloaded
from http://iot.ntnu.no/users/hellemo/DDP/. We have tried different data
sets with different numbers of scenarios. The results of these experiments can
be seen in Section 7.6. In our test case we look at capacity expansion of power
generation. The investor seeks to minimize the cost of meeting a given demand.
Either unit cost or demand is stochastic. In addition to the available production
technologies, we assume it to be possible to invest in an activity or technology
that will alter the probabilities of the discrete scenarios occurring. By investing
in such a technology or activity, it is possible to alter the probability distribution
as discussed in the subsections of Section 7.4.

Test instances

The mathematical formulations of each test model follow here. We first present
the base model in Section 7.5, in the following sections the deviations from the
base model are presented in accordance with the models discussed above. These
modifications mostly concern the objective function.

Base Model

B Total investment budget,
P set of baseline probability distributions (index g),
I set of available technologies (index i),
J set of modes of electricity demand (index j),
S set of scenarios (index s),
pgs baseline probability of scenario s for probability distribution g,
πjs price of electricity in mode j in scenario s,
xi new capacity of i, decided in first stage,
ci unit investment cost of i,
cg unit investment cost of increasing weight to probabilities g,
djs electricity demand in mode j in scenario s (if stochastic),
qis unit production cost of i in scenario s (if stochastic)
yg weight assigned to group g,
zijs production rate from i for mode j in scenario s,
Xi Upper bound on xi,
Xi Lower bound on xi,
Yg Upper bound on yg,
Yg Lower bound on yg,
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Zij Upper bound on zij ,
Zij Lower bound on zij .

Nomenclature

min
∑
i∈I

cixi +
∑
g∈P

cgyg +
∑
s∈S

∑
g∈P

pgsyg
∑
i∈I

∑
j∈J

(qis − πjs)zijs, (7.26)

subject to: ∑
i∈I

zijs = djs ∀s ∈ S, j ∈ J , (7.27)

∑
j∈J

zijs ≤ xi ∀s ∈ S, i ∈ I, (7.28)

∑
i∈I

cixi +
∑
g∈P

cgyg ≤ B, (7.29)

∑
g∈P

yg = 1, (7.30)

Xi ≤ xi ≤ Xi,∀i ∈ I, (7.31)

Yg ≤ yg ≤ Yg,∀g ∈ P, (7.32)

Zij ≤ zijs ≤ Zij ,∀i ∈ I, j ∈ J . (7.33)

Model description This model takes inspiration from the model of Louveaux
& Smeers [1988], an investment problem from the electricity sector. There are
I technologies available to invest in. The demand for electricity in J modes is
given by the parameter djs. The model is formulated as a two stage stochastic
recourse model.

New capacity of technology i is decided upon and installed in the first stage,
determined by variables xi. The total capacity available in stage two is limited
by the investments in the first stage. A technology i is characterized by the
following parameters: The costs are determined by ci for the unit investment
cost of type i. The unit production cost is qis. The demand for electricity in
each mode j is given by parameter djs and the production rate using technology
i to serve demand in mode j is zijs. For the convex combination of scenario
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probabilities, the scenario probabilities from each distribution are weighted by
yg, and the associated cost is given by parameter cg.

The objective is to minimize the expected total cost while meeting demand.
The objective function is given in Equation (7.26), investment costs cixi and
production costs qis in scenarios occurring with weighted probabilities pgsyg.

Total production
∑
i∈I zijs needs to satisfy demand djs for each mode j ∈ J

and scenario s ∈ S (Equation (7.27)). The total capacity investment for a given
technology in the first time period equals the investment in that period xi and
total production for each technology must be lower than available capacity for
that technology (Equation (7.28)).

To enforce relatively complete recourse, Louveaux and Smeers Louveaux &
Smeers [1988] make sure there is a technology ircr ∈ I with high production cost
which simulates purchases in the market to balance supply

∑
i∈I

zijs and demand

djs. The sum of the weights to all probability distributions
∑
g∈P yg must equal

1 (Equation (7.30)).

All variables are bounded, Equations (7.31) to (7.33).

Scalable Subsets of Scenarios

Here we adjust the probability for a subset of scenarios where each scenario in
the subset has equal probability. We adjust the probability of the remaining sce-
narios proportionally in the opposite direction. By adjusting a fixed proportion
of scenarios, we maintain the same structure independent of the number of sce-
narios chosen. The practical interpretation is that by investing in a technology or
activity, it is possible to increase the probability of some scenarios, while reducing
the probability of the remaining scenarios, or vice versa.

Replace Equation (7.26) with Equation (7.34):

min
∑
i∈I

cixi +
∑
g∈P

cgyg +
∑
g∈P

∑
s∈Ŝ

1

|S|
yg
∑
i∈I

∑
j∈J

(qis − πjs)zijs+

∑
s∈S\Ŝ

1−
∑
g∈P yg

∑
s∈Ŝ

1
|S|

|S| − |Ŝ|

∑
i∈I

∑
j∈J

(qis − πjs)zijs.
(7.34)

Convex Combination of Probabilities

Here we apply the mixture distribution, modeling the possibility to change the
weights of the underlying probability distributions for the subsets of outcomes.
This can be used to model heterogeneous populations where the relative size of

195



Chapter 7 Stochastic Programs with Decision-Dependent Probabilities

each subpopulation g ∈ P can be influenced by a decision variable yg, determining
the relative probability pgs for each scenario s ∈ S.

Replace Equation (7.26) with Equation (7.35):

min
∑
i∈I

cixi +
∑
g∈P

cgyg+

∑
s∈S


G−1∑
g=1

pgsyg
∑
i∈I

∑
j∈J

(qis − πjs)zijs +

[
1−

G−1∑
g=1

yg

]
pGs

∑
i∈I

∑
j∈J

(qis − πjs)zijs

 .

(7.35)

Kumaraswamy

In this formulation the decision maker can change directly parameters a and
b in the distribution, possibly at a cost. For this specific problem, it can for
example be interpreted as changing the characteristics of the cost uncertainty.
See Figure 7.6 for an example of scenario probabilities with parameters chosen
in the example model. Replace the expression for ps in Equation (7.26) with
Equation (7.36):

min
∑
i∈I

cixi + caa+ cbb+
∑
s∈S

ps(a, b)
∑
i∈I

∑
j∈J

(qis − πjs)zijs

=
∑
i∈I

cixi + caa+ cbb+
∑
s∈S

[
(1− xaL,s)b − (1− xaU,s)b

]∑
i∈I

∑
j∈J

(qis − πjs)zijs

(7.36)

Also replace the budget constraint Equation (7.29) with Equation (7.40):∑
i∈I

cixi + caa+ cbb ≤ B (7.37)

Parameters a and b should be positive:

a, b > 0. (7.38)

Approximation of Normal Distribution

We can find the cdf of a standard distribution with mean a through a change of
variables x = x′ − a and using P−(x) = P (−x) for x < 0, we can approximate
the normal distribution N(a, 1) and use this approximation in the mathematical
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Figure 7.6: Probabilities from solution of GAMS implementation of model using
100 scenarios and Kumaraswamy distribution
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program. See Figure 7.7 for an example of resulting probabilities in the test
model.

Replace the objective function given in Equation (7.26) with Equation (7.39)
and use the discrete scenarios s ∈ S with corresponding possible realization of
the variable xM,s ∈ [xL,s, xU,s]:

min
∑
i∈I

cixi + caa+
∑
s∈S

ps
∑
i∈I

∑
j∈J

(qis − πjs)zijs (7.39)

where ps follows the definition from Section 7.4 and is defined by Equation (7.13)
to Equation (7.25).

Also replace the budget constraint Equation (7.29) with Equation (7.40):∑
i∈I

cixi + caa ≤ B (7.40)

Parameter a should be positive:

a > 0. (7.41)

Example of the Effects of DDP

To illustrate the effects of decision dependent probabilities in our models, we will
look at the results from one particular test instance with the approximation of the
Normal distribution from Section 7.5. This instance has stochastic demand, and
we assume the demand can be increased by engaging in some activity, for example
by investing in campaigning, improving the safety or by reducing emissions from
production if the demand is sensitive to these parameters. In the model, demand
is influenced by shifting the mean of the probability distribution by a.

In this instance the mean may be shifted by a ∈ [−1.0, 0]. We shift the mean
in the opposite direction from the original model, hence a ≤ 0. The uncertain
parameters are discretized with 10 scenarios. The outcomes for the stochastic
parameters are fixed for each scenario, while the probabilities for each scenario
occurring are determined by selecting the mean of the distribution. The in-
vestment decisions are whether to invest in any of the 10 available technologies
xi, i ∈ 1, 2, ..., 10.

The results are summarized in Figure 7.8. In the figure we show the optimal
expected profit for different values of a in the upper pane, while the corresponding
investment levels of technologies x8, x9 and x10 are shown in the lower pane.
Expected profit increases with more negative a (increasing demand), and so does
investment in the different technologies. As demand shifts it becomes profitable
to invest in more technologies, also the ones with higher operating costs as the
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Figure 7.7: Probabilities from optimal solution of GAMS implementation of
model using 100 scenarios and approximation of normal distribution
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Figure 7.8: Results from example model. Investments and profit increase with
more negative a.

maximum investment level is reached for technologies with lower operating cost.
See also Table 7.1 for details.

This simple example shows how the inclusion of decision-dependent proba-
bilities changes the problem. Note that for fixed a, the resulting problem is a
traditional stochastic program with recourse. While finding the optimal solution
of the problem with DDP is easy to do by inspection for this simple example
this is of course in general not a practical solution approach for such non-convex
models where decision-dependencies are linked to several variables.

The test instances for which we provide computational results in the next
section, are all based on synthetic data. We provide the aggregated results from
a series of test instances to illustrate the computational difficulty of this class of
problems.
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Table 7.1: Summarized results from one test instance with different values of a,
the objective function value, and values for investment in technologies
x8, x9 and x10.

a Profit x8 x9 x10

0 0.009 0 0 1
-0.1 0.011 0 0 1
-0.2 0.015 0 0 1
-0.3 0.024 0 0.67 1
-0.4 0.035 0 0.89 1
-0.5 0.048 0 0.9 1
-0.6 0.062 0 0.9 1
-0.7 0.078 0.22 0.9 1
-0.8 0.1 0.22 0.9 1
-0.9 0.12 0.22 0.9 1
-1.0 0.134 0.44 0.9 1

7.6 Computational Results

In this section we present the computational results from all four variations of
the base model. The models are all implemented in GAMS. We first present our
solution strategy, followed by a summary of the computational results.

Solution Strategy

All of the formulations presented above introduce many non-linear terms in the
corresponding optimization problems. In general, this gives a non-convex bilinear
program. Many of the potential applications of such models involve investment
decisions. Fixed investment costs often necessitate the use of discrete variables.
Hence, the models where these modeling techniques should be applied will often
already have integer variables, yielding a deterministic equivalent that is a mixed
integer non-linear (non-convex) model.

Global optimization techniques must be applied to guarantee an optimal solu-
tion. BARON is the state-of-the-art global optimization solver, using convex re-
laxations for non-convex terms. A widely applied technique is to use McCormick
relaxations to construct convex relaxations of factorable functions. BARON also
applies techniques for constraint propagation to reduce the search space Tawar-
malani & Sahinidis [2002]. We have tested BARON using three different ap-
proaches Baron1: the problem were fed into BARON without information about
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structure and bilinear expressions expanded; Baron2: the same as the previous
but using a selective branching strategy on the complicating variables motivated
by Epperly & Pistikopoulos [1997]; Baron3: The problem was fed into BARON
using the original un-expanded bilinear expressions in GAMS and solved directly.
In addition we tested the instances using an approach combining relaxations of
algorithms (Mitsos et al. [2009]) and generalized Benders decomposition (Benders
[1962], Geoffrion [1972]) that we implemented for the purpose (GGBD).

We observed initially what appeared to be good results decomposing these
stochastic programs based on GGBD and comparing it to the Baron1 approach.
The Baron3 approach with a GAMS implementation of the same model showed
much better performance, though. We tested Baron2 using a selective branching
strategy inferred from the problem structure, and achieved the same behavior as
Baron3. Our conclusion is that solution times for these problems can be dra-
matically improved by using a selective branching strategy on the complicating
variables controlling the scenario probabilities. Selective branching can be readily
implemented through setting branching priority in BARON. Interestingly, using
the original, un-expanded formulation achieved similar results to the selective
branching strategy. Note that when fixing the variables that influence the proba-
bilities of the scenarios, the resulting sub problems are much easier to solve. For
the affine formulations given in Section 7.4, the remaining problem is a standard
linear or mixed integer stochastic program.

Solution Times for Test Instances
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Chapter 7 Stochastic Programs with Decision-Dependent Probabilities

In Table 6.10 we present results from running our test instances. Each test
instance is run with different numbers of scenarios. The resulting problem sizes,
both in terms of number of rows, columns and number of discrete and non-linear
variables are all reported in the table. All problems were run with a time limit of
one hour, and most test instances were close to optimal after one hour, although
not as close as the stopping criterion of a relative gap less than 1× 10−5 . All
numbers presented are from Baron2 (Baron3 gave similar results).

Our numerical experiments show that BARON is generally able to solve the
instances of the Convex combination of probabilities from Section 7.5 as well as
the instances using the approximation of the normal distribution from Section 7.5.
The scalable subsets of scenarios from Section 7.5 and the Kumaraswamy models
from Section 7.5 proved harder to solve, and while the solver has found a good
solution, optimality remains to be proved within the time limit. BARON is able
to solve relatively large problems in reasonable time if the problem formulation
provides enough structure for the solver to choose an efficient solution strategy. In
cases where we provided an unstructured problem without a selective branching
strategy, BARON would often end up doing a lot of unnecessary branching, which
made convergence very slow and in general slower than our GGBD (Results not
included).

For larger problems in the harder categories, specialized solution techniques
may be necessary, and we hope that our test instances may come of use in future
research in this area.

7.7 Conclusions and Further Work

Little work has been done on stochastic programming problems with decision-
dependent probabilities. We extend previous taxonomies of stochastic program-
ming problems with decision-dependent uncertainty, and present some examples
of models with decision-dependent probabilities. We show how direct or indi-
rect manipulation of probability distribution can be incorporated in stochastic
programs with recourse. We demonstrate that such problems may be solved by
the commercial solver BARON, using selective branching in the complicating
variables. For the test instances we considered, choosing a selective branching
strategy for the scenario probability variables proved much more efficient than
the decomposition method we implemented and tested. We provide a set of test
cases for this class of problems.

We only considered linear dependency between cost and a change on the un-
derlying probability distribution. An extension would be to introduce some non-
linear cost such as diminishing return to scale.

Our test cases were based on a risk neutral approach. Investigating the effects
of different risk attitudes on decision-dependent probabilities is another area of
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research that would be very interesting to pursue.
Finally, as these large scale non-convex problems grow more complex, finding

good and robust decomposition techniques would greatly improve the scale at
which such techniques could be applied. We hope that the test problems we
provide can be a starting point for further research on solution methods for
stochastic programming problems with decision-dependent probabilities.
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7.A Hardware and Software Used

All computations were performed on a Six-Core AMD Opteron processor 2431
with 24Gb memory. The computer was running Linux 2.6.18 (Rocks 5.3).

GAMS versions 23.6.2 and 23.7.2 with BARON using CPLEX in combination
with CONOPT or MINOS.
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