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Abstract. Analysis is essential for solving complex problems such as di-
agnosing a patient, investigating an accident or predicting the outcome
of a legal case. It is a non-trivial process even for human experts. To
assist experts in this process we propose a CBR-based approach for au-
tomated problem analysis. In this approach a new problem is analysed
by reusing reasoning knowledge from the analysis of a similar problem.
To avoid the laborious process of manual case acquisition, the reasoning
knowledge is extracted automatically from text and captured in a graph-
based representation, which we dubbed Text Reasoning Graph (TRG),
that consists of causal, entailment and paraphrase relations. The reuse
procedure involves adaptation of a similar past analysis to a new problem
by finding paths in TRG that connect the evidence in the new problem
to conclusions of the past analysis. The objective is to generate the best
explanation of how the new evidence connects to the conclusion. For
evaluation, we built a system for analysing aircraft accidents based on
the collection of aviation investigation reports. The evaluation results
show that our reuse method increases the precision of the retrieved con-
clusions.

Keywords: practical reasoning knowledge, causal relation extraction,
knowledge acquisition, case reuse, textual CBR, automated analysis

1 Introduction

Which is more exciting about Sherlock Holmes stories: learning who the murderer
was, or following Sherlock’s reasoning on the road from evidence to conclusion
leading him to the murderer?

Our overarching goal is to facilitate the reuse of reasoning knowledge resid-
ing in documents written by problem solvers. Such reasoning knowledge can be
found embedded in, for example, accident reports. CBR research recognized ac-
cident reports as reusable experiences, and a special workshop challenge about
analysing air investigation reports was organized as a part of the 4th Work-
shop on Textual case-based Reasoning in 2007 [6]. Accident reports were used
by CBR researchers also before this workshop [11, 10, 22, 9]. Much of these work



combines CBR with information retrieval and focuses on the retrieval stage of
the CBR cycle. It may be considered close to the “weakly textual” end of the
weakly-strongly textual scale defined in [24]. Weakly textual means either that
the concerned documents are sufficiently structured which reduces the need for
sophisticated natural language processing (NLP), or that the type of task under
consideration does not need deep NLP. Weakly textual CBR is appropriate for
tasks that focus on retrieval and classification. However, when moved beyond
retrieval or simple reuse of classes without adaptation, and toward the reuse of
reasoning knowledge, strongly textual CBR becomes more appropriate because
reasoning knowledge is often buried in text making it difficult to discern or pro-
cess without deep NLP techniques. Bruninghaus and Ashley [8] are pioneers in
strongly textual CBR who took in use information extraction and sophisticated
NLP techniques. The work presented in this paper also uses deep NLP techniques
for case acquisition (i.e. mining the reasoning knowledge that in turn comprises
the problem solution part of a case) and reuse purpose.

Causality is recognized as the most fundamental type of reasoning knowl-
edge [18]. In textual CBR research, Orecchioni et al. [17] attempted to extract
causal knowledge by classifying sentences in accident reports as causal or fac-
tual. In our work we also aim to extract and reuse causal knowledge, not as a set
of isolated causal sentences but rather as a chain of causal relations reflecting
the problem solver’s line of reasoning from the evidence to the conclusion. The
rationale behind the proposed CBR-based analysis approach is that computers
may support human analysts in understanding a problem through reuse of pre-
viously constructed reasoning paths that show how the conclusion explains the
evidences. Such a CBR system essentially involves adaptation of past reason-
ing paths. Two challenges pertinent to the textual CBR task we are targeting
and the type of data we are concerned with are: (i) representation and extrac-
tion of reasoning knowledge contained in text (ii) automated adaptation of this
explanatory/reasoning knowledge to a new problem.

The rest of this paper is organized as follows. Section 2 provides an overview
of our approach to CBR-based problem analysis. Section 3 describes Text Rea-
soning Graph (TRG), a graph-based representation for capturing reasoning knowl-
edge extracted from text. In section 4, we present the procedure for automatic
adaptation of reasoning knowledge to a new problem. Section 5 explains details
for extraction of TRG from text. Empirical evaluation of the approach is de-
scribed in section 6 with the results and error analysis in section 7. In section 8
we look at the related work. The conclusion and the future work directions are
presented in section 9.

2 Automated problem analysis

In this section we introduce our approach to the automated problem analysis
through reuse of reasoning knowledge extracted from textual cases. Under this
approach, the analysis for a new problem is generated by retrieving a similar
problem and adapting its analysis to fit the new problem. For this to work,
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Fig. 1. Case structure and representation.

cases need to contain an analysis as part of their solution, as shown in Figure
1. The analysis should describe the reasoning of an expert connecting evidences
to conclusions where the evidence is part of the problem description that serves
as the starting point for the analysis while a conclusion refers to a decision or
judgement that solves or explains the problem, e.g. the cause of an accident, a
diagnosis for a patient or an outcome of a legal case.

Manual case acquisition is a laborious task. It becomes even more challenging
when a case includes also an analysis part. To overcome the manual knowledge
engineering problem and to take the advantages of abundant free-text analysis
reports existing either in organizations or on the web, we target automated ex-
traction of cases from such reports. First, we propose a case structure with a
hybrid representation, as shown in Figure 1. In this structure, problem descrip-
tion is represented by a vector space model (VSM) with TFIDF weights, which
is a well known representation for free text documents, often used in information
retrieval (IR) and for document classification. We introduce a different represen-
tation for representation of the solution part which we dubbed Text Reasoning
Graph (TRG), a graph-based representation with expressive power to represent
the chain of reasoning underlying the analysis as well as to facilitate the adap-
tation of a past analysis to a new problem.

An overview of our approach is shown in Figure 2. In the case acquisition
stage, the case base is populated by converting each free-text document to a case
of which the problem description part is represented with VSM and the solution
part as a TRG. Given the description of a new problem, the retrieval process
finds a case with the most similar problem description. This is implemented
by converting the new problem description to a VSM representation and then
computing its cosine similarity with problem descriptions of the cases in the case
base. Solution of the retrieved best case in the TRG form, further referred to as
CaseGraph, is then adapted to the new problem description in the reuse step.
The result of the reuse step is the ReuseGraph representing the analysis of the
new problem in the TRG form - the details are described in section 4. Finally,
the ReuseGraph is visualized for manual interpretation by a user.
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For our empirical work, we used a collection of aviation investigation reports
where each report documents an investigation of an aircraft accident including
a brief description of the accident, an analysis, and conclusions reached by a
human expert. The reports have a consistent structure, with different sections
corresponding to different parts in the case structure (Figure 1). For instance,
the “Summary”/“Synopsis” section in a report is considered as the problem
description, the “Analysis” section as the analysis, and several sections with
titles similar to “Finding as to causes and contributing factors”, “Findings as to
risk” and “Other findings” as the conclusion. Hence, the conclusion consists of
one or more sentences highlighting the possible causes and findings.

3 Representation of reasoning knowledge

For our approach, we needed a representation that is able to capture the line of
reasoning embedded in text. Consider this excerpt from the analysis section of
the aviation investigation report a06q0091:

The oil that burned away did not return to the tank and, after a short
time, the oil level became very low, causing the engine oil pump to
cavitate and the engine oil pressure to fluctuate. Furthermore, since the
oil did not return to the tank, the oil temperature did not change, or at
least not significantly, and the pilot falsely deduced that the engine oil
pressure gauge was displaying an incorrect indication.

The type of knowledge contained in this passage is important for understand-
ing the accident because it describes how the human expert reasoned about the
situation. The reasoning (e.g. causal) knowledge is mostly of relational nature.
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Fig. 3. Structure of the CaseGraph generated from report a06q0091. The content of
the darker nodes can be seen in Figure 4.

A graph-based representation is therefore more appropriate than a frame-based
representation, which is commonplace in classical CBR, because the chains/links
of relations can explicitly be represented through edges in a graph. As noted in
[19] causal graphs extracted from domain-specific documents provide a power-
ful representation of the expert’s knowledge. The TRG representation comprises
mainly causal relations, complemented with textual entailment and paraphrase
relations that make the graph more connected. Automatic extraction of TRG
from text relies on various NLP techniques, as described in section 5.

Figure 3 provides an overview of the CaseGraph structure generated from the
report a06q0091. The graph consists of five connected components (surrounded
by dashed lines) with one of them containing most nodes and relations in the
graph. The content of the darker nodes is shown in Figure 4. As it can be
seen from these figures, nodes in a TRG contain phrases (or sentences) that are



arguments for causal relations extracted from text. Contents of the arguments
are determined through causal patterns described in section 5.1. Each node is
also labelled with two codes: the report id and the code that indicates part(s)
of the report the the node was extracted from, e.g. a node labelled a06q0091
010 is extracted from the analysis part (010) of the report a06q0091. Other
binary codes correspond to the problem description (100) and conclusion (001).
A combination of binary codes means that the concerned phrase is contained in
several parts of the same report, e.g. 101 stands for the problem description and
the conclusion parts together. Further in this paper, nodes extracted from the
conclusion part will be referred to as conclusion nodes.

One of the advantages of the TRG representation is that it can be visualized
and interpreted easily. It represents the reasoning knowledge in a more explicit
way than the original text does. This makes TRG a visual summary providing
a quick overview of the analysis of a case, which is useful in particular when the
user needs to study several similar past cases to solve a new problem.

4 Reuse of reasoning knowledge

The flexibility of the TRG representation allows automatic adaptation of the
retrieved solution to a new problem. The adaptation process generates a Reuse-
Graph from the retrieved CaseGraph and the description of a new problem. This
process consists of the following steps:

1. Find evidence nodes (labelled 100 in Figure 4), i.e. nodes in the CaseGraph
that are entailed by sentences in the description of the new problem.

2. Activate reasoning paths, i.e. one or several shortest paths (type and direction
are ignored) that connect the evidence nodes (found in step 1) to conclusion
nodes in the CaseGraph.

3. Construct a ReuseGraph by combining activated reasoning paths and then
by adding sentences from the new problem description that entail the evi-
dence nodes from step 1.

The first step corresponds to identifying the important pieces of evidence in
the new problem description. These evidences are then used as starting points
for reasoning in the second step where they are connected to the conclusions.
The result of this procedure is the ReuseGraph that represents the analysis of a
new problem based on the analysis of a previously solved problem. Notice that
ReuseGraph may contain fewer conclusion nodes than the CaseGraph if some
evidences in the new case do not link to the conclusions in the past case.

Figure 4 shows the reuse graph for the accident in report a08a0095 (new case)
generated from the CaseGraph for report a06q0091 (past case) shown in Figure
3. Two nodes with bold frames on the left are sentences from report a08a0095
providing evidence that there is an engine failure or malfunction. This evidence
can be explained by the defective engine oil circulation system as pointed out by
the node to the right. There are several reasoning paths pointing to the failure
of bearings, the oil level, the fluctuating oil pressure and, the defective gauge.
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Fig. 4. ReuseGraph representing analysis of the accident a08a0095.

As it turns out, one of the correct conclusions for report a08a0095 is inadequate
lubrication of linkpin bushings (type of bearing), which is close to failure of
bearings and the oil level.

One major advantage of a ReuseGraph as the solution compared to a short
answer, label or category, is that it provides a justification for the reached con-
clusions. At the same time, compared to the whole retrieved case as the output,
a ReuseGraph is specifically adjusted to the new problem and eliminates all
unnecessary information. A ReuseGraph tends to be much smaller than the cor-
responding CaseGraph, e.g. the ReuseGraph in Figure 4 contains only 12 nodes
compared to 34 nodes in the corresponding CaseGraph in Figure 3.

5 Acquisition of reasoning knowledge

TRG contains three types of relations: causal, entailment and paraphrase rela-
tions. These relations are extracted automatically from text and combined in
one graph. The process of generating a TRG is as follows:

1. Preprocessing text documents.
2. Extracting the causal relations.
3. Determining the informativeness of arguments in causal relations.
4. Combining relations where both arguments are informative into one graph.
5. Adding entailment and paraphrase relations between arguments.

Steps involved in the preprocessing stage are HTML scraping, tokenization,
POS tagging, syntactic parsing, lemmatization and stop word removal. HTML
scraping is implemented using custom component specifically designed to obtain
the text and the structure of an investigation report from Transportation Board
of Canada website. The rest of the preprocessing is accomplished using Stanford
CoreNLP pipeline. Further in this section we describe steps 2, 3, 5 in more detail.



5.1 Causal relation extraction

The causal relation extraction component implements the approach described
by Khoo [12] which uses manually constructed lexico-syntactic patterns. The
extraction algorithm applies the set of patterns to a given sentence or a pair of
neighbour sentences. If matching succeeds, the cause and the effect phrases are
extracted according to the applied pattern. The patterns contain elements such
as part-of-speech tags, phrase types and specific tokens. For example, given a
pattern “[effect] because [cause]” and a sentence “The rotor blade failed because
its structural integrity was compromised by a manufacturing defect” as the input,
the system will extract “The rotor blade failed” as the effect and “its structural
integrity was compromised by a manufacturing defect” as the cause. The patterns
are built around causal triggers, words that indicate a causal relation between
phrases. Based on Altenberg’s [3] typology of causal linkage. Khoo defines a list
of 651 causal patterns, 382 sub-patterns and 2115 causal verbs in his PhD thesis
[12] where he describes also a pattern matching algorithm. We were unable to
obtain the original implementation of the system and reimplemented the system
using CoreNLP pipeline. We have updated Khoo’s list of patterns, sub-patterns
and causal triggers to improve the performance for our task.

5.2 Node informativeness

The quality of a TRG depends on the quality of the constituent nodes and
relations. The quality of a node is determined by its informativeness. Nodes
that do not carry a concrete piece of information are considered uninformative.
Nodes in a TRG are the arguments of causal relations extracted from text,
which are phrases of different size. Smaller phrases tend to be less informative
than longer ones. Even if a word is relevant to the domain, e.g. “pilot”, “flight”,
“procedure”, “altitude”, it often does not carry specific enough information to
be used in a reasoning process. For phrases that contain more than one word we
need to measure the informativeness of each word first. For this purpose we use
inverse document frequency (IDF), a statistical measure commonly used in IR.
Words with IDF values above 1.0 are considered informative. This threshold was
manually determined by finding an IDF value that would filter out general terms
for our dataset. For a phrase to be considered informative it should contain at
least two non-stop words where at least one is informative.

5.3 Textual entailment and paraphrase relations

Causal relations are typically scattered in text and rarely form connected graphs
with more than two or three relations in one graph. In order to link these graphs
to form larger and more connected ones, we rely on entailment and paraphrase
relations between the arguments of the causal relations. For this purpose, we
employ methods for textual entailment and paraphrase detection.

Paraphrase detection is the task of recognizing text fragments with approx-
imately the same meaning. For example, “the engine failure during take off”



and “in the climb-out, the engine failed abruptly” are paraphrases. In textual
entailment the task is to determine whether one text fragment, called text (T),
infers another text fragment, called hypothesis (H), i.e. if T is true H is also true.
Unlike paraphrase, entailment is not symmetrical, e.g. “the engine failure dur-
ing take off” entails “the engine failed” but “the engine failed” does not entail
“the engine failure during take off” because part of the information, i.e. “during
take off”, is missing. A nice overview of the existing methods for detection of
paraphrases and entailments can be found in the survey paper by [4].

In our system, paraphrase detection and textual entailment are based on the
same text similarity measure. This measure assigns words in one text fragment
to words in another fragment through a word similarity measure. LCH [14] is
used for word similarity measure, which is based on a shortest path between the
corresponding senses in WordNet[16]. The text similarity is computed by solving
the assignment problem, where each word in one text fragment is assigned to a
word in another text fragment so that no two words are assigned to the same
word and the sum of similarities between assigned words is maximized. The final
value is obtained by normalizing this sum by the average number of words in
both fragments.

For paraphrase detection we compute the text similarity between two argu-
ments. If the resulting value is equal to or above a threshold value, a paraphrase
relation between these arguments is added to the graph. For entailment, if H is
smaller than T we extract all substrings of T with the same number of words as
in H + 1. Then the text similarity is computed between T and each substring of
H. If the maximum of the obtained similarities is equal to or above the threshold
value, the entailment relation from T to H is added to the graph. The similar-
ity threshold value is set to 0.6, which was manually determined by considering
the number of correctly identified entailment and paraphrase relations in TRG
graphs constructed with different thresholds.

6 Experimental evaluation

For evaluation, we implemented a system that, given a short textual description
of an accident and a collection of investigation reports for previous accidents,
automatically generates an analysis of the new accident following the approach
described in section 2. As the dataset, we use a collection of 494 aviation inves-
tigation reports from Transportation Board of Canada for years 1994-2008.

An analysis generated by our system is represented by a ReuseGraph. Eval-
uation of a ReuseGraph directly is problematic because of the lack of standard
evaluation measures or baseline systems. To overcome this problem, we evaluate
only conclusions in a ReuseGraph. Our assumption is that since reasoning paths
in a ReuseGraph link the evidences in the new problem with conclusions in a
similar past accident analysis, validity of the conclusions will reflect the quality
of the reasoning paths and thus of the whole ReuseGraph. Validity of conclusions
is determined by the similarity between the actual conclusions in the test case



report and the ones generated by the system. For the baseline we use conclusions
in the retrieved report, i.e. immediately after retrieval, without adaptation.

6.1 Evaluation procedure

Every investigation report in our dataset contains one or two sections that cor-
respond to what we refer to as conclusions. These sections contain sentences
enumerating findings, causes and contributing factors for an accident. The fol-
lowing is from report a06q0091:

1. The area adjacent to bearings 6 and 7 had exceeded a temperature
of 900 ◦C. The bearings were destroyed for undetermined reasons,
causing an engine failure.

2. Moving the helicopter towards the road when the engine was showing
signs of malfunction contributed to the failure of bearings 6 and 7.

3. During the auto-rotation, the helicopter was not levelled at the time
of the landing, which resulted in a hard landing.

Conclusion nodes in a ReuseGraph usually do not contain full sentences from
the conclusion part but rather phrases extracted from these sentences or entailed
by them. Evaluation procedure outlined in the algorithm 1 contains separate
functions for evaluation of the retrieval (i.e., baseline) and reuse steps. In both
of them conclusion sentences are compared with the actual conclusions in the test
case. The difference between them is that the first one takes all the conclusion
sentences in the retrieved case while the latter makes use of the ReuseGraph to
select the subset of the conclusion sentences.

In the retrieval evaluation, a case most similar to the problem description
of the test (i.e, new) case is retrieved from the case base (line 2). Conclusion
sentences are obtained (line 3) from this case and compared with reference con-
clusion sentences, i.e. the conclusion in the test case (line 4 and 5). The result of
this comparison is the retrieval score which is based on the similarity between
the retrieved and the reference conclusion sentences.

Reuse is evaluated in a similar way. The difference is that after the retrieval
step (line 9), the reuse procedure is applied to generate a ReuseGraph based on
the problem description of the test case and the CaseGraph of the retrieved case.
A subset of conclusion sentences from the retrieved case is obtained through the
conclusion nodes in the ReuseGraph (line 11). Unlike evaluation of the retrieval
step where all the conclusion sentences are taken, only sentences that entail or are
the source of one or more conclusion nodes in the ReuseGraph are retained. This
results in fewer conclusion sentences than in the retrieval evaluation because the
ReuseGraph contains only the conclusion nodes that are connected to evidence in
the problem description of the test case, discarding all other nodes. The retained
conclusion sentences are then compared with reference conclusion sentences in
the same way as for the retrieval evaluation (line 13).

For both reuse and retrieval evaluation we use the same evaluation mea-
sure outlined in lines 16-22. This measure is based on the similarity between



Algorithm 1 Evaluation procedure

1: function EvaluateRetrieval(TestCase, CaseBase)
2: RetrievedCase = Retrieve(TestCase.Problem, CaseBase)
3: RetrievedCS = RetrievedCase.Conclusion.Sentences
4: ReferenceCS = TestCase.Conclusion.Sentences
5: RetrievalScore = Compare(RetrievedCS, ReferenceCS)
6: return RetrievalScore
7: end function
8: function EvaluateReuse(TestCase, CaseBase)
9: RetrievedCase = Retrieve(TestCase.Problem, CaseBase)

10: ReuseGraph = Reuse(TestCase.Problem, RetrievedCase.CaseGraph)
11: ReusedCS = ReuseGraph.Conclusion.Nodes.Sentences
12: ReferenceCS = TestCase.Conclusion.Sentences
13: ReuseScore = Compare(ReusedCS, ReferenceCS)
14: return ReuseScore
15: end function
16: function Compare(CandidateCS, ReferenceCS)
17: Cost = Assignment(CandidateCS, ReferenceCS, TextSimilarity)
18: Precision = Cost / |CandidateCS|
19: Recall = Cost / |ReferenceCS|
20: F-score = 2 · Precision · Recall / (Precision + Recall)
21: return (Precision, Recall, F-score)
22: end function

two sets of sentences, candidate conclusion sentences (CandidateCS) and the
reference conclusion sentences (ReferenceCS). CandidateCS correspond to con-
clusions under evaluation, i.e. either RetrievedCS or ReusedCS. ReferenceCS are
the correct conclusion sentences, i.e., the ones in the test case. Higher similar-
ity between a CandidateCS and the ReferenceCS results in a higher evaluation
score. The similarity is computed by using the notion of the assignment problem
where each sentence in CandidateCS is assigned to a sentence in ReferenceCS
so that no two sentences are assigned to the same sentence and the sum of text
similarities between assigned sentences is maximized. This sum is referred to as
Cost (line 17) and is used to compute precision, recall and F-score in lines 18-20.
For the text similarity we use the same measure as described in section 5.3.

Our evaluation procedure follows leave-one-out cross-validation strategy, where
one case is selected as the test case while the rest are considered as the case base.
The evaluation scores are obtained for each test case to compute mean and stan-
dard deviation. Paired difference tests are carried out to compare the scores for
retrieval and reuse steps.

7 Results and error analysis

Our system was able to generate ReuseGraphs for 118 of 494 reports that were
used as the test cases. For the remaining cases, no connection was found between
the evidence in the problem description of the test case and the conclusions of



Step Precision Recall F-score

retrieval 19.71 ± 7.11 20.97 ±7.40 18.70 ± 5.18

reuse 25.03 ± 8.90 11.35 ± 7.99 13.74 ± 6.99

reuse - retrieval 5.32 -9.62 -4.96

Table 1. Evaluation results, mean ± standard deviation in % values.

the most similar case from the case base. This is mostly because the “Summary”
sections used as the problem descriptions did not provide enough evidence for
reuse.

Table 1 summarizes the results. Retrieval scores indicate the correctness of
conclusions in a retrieved case before the reuse procedure, and the reuse results
those of after the reuse procedure. Since the reuse can’t add any new conclusions
but merely removes conclusions that can’t be connected to the evidence in the
new/test case, the recall score after reuse is expected to be equal to or lower
than that of before reuse. At the same time, reuse is expected to increase the
precision score because conclusions are selected based on the reasoning paths
originating from the new evidence. In contrast, a randomly selected subset of
retrieved conclusions should not change the precision.

Evaluation results confirm our hypothesis about an increase in the precision
and a decrease in the recall scores after reuse. The F-score decreased as well.
Paired t-test and Wilcoxon signed-rank test show that the difference in scores is
statistically significant with p-value < 0.0001. Increased precision indicates that
the analysis generated by the system is able to connect the evidences in the test
case to the correct conclusions, at least to some degree. It can also be argued
that for our task precision is more important than recall because it reduces
information overload for the user of the system by eliminating conclusions that
the system is not able link to the new evidences. If necessary, the user can always
see the solution before the reuse.

Manual inspection of the generated CaseGraphs and ReuseGraph indicates
that although a lot of relations and paths through these graphs are coherent,
there are many errors as well. These errors are mostly attributed to automatic
generation of TRG from text. The used dataset is quite complex having long
sentences and domain-specific terminology. Components in our NLP pipeline
that rely on supervised machine learning are mostly trained on news articles
and other corpora unrelated to the aviation domain which results in suboptimal
performance. These errors propagate further in the system and decrease the accu-
racy of causal extraction, entailment and paraphrase identification components,
which introduce errors of their own. We believe it is possible to improve each
of these components by combining multiple approaches together and adjusting
them specifically to the target domain.



8 Related Work

Adeyanju’s PhD work [1] extends Case Retrieval Network (CRN) [15] to Case
Retrieval Reuse Network (CR2N) to enable case reuse. Nodes in CR2N represent
cases and keywords from solutions of these cases, and the edges connect cases
to keywords or keywords to each other. While both CR2N and our approach
use graph-based representations and have a focus on reuse, the content of the
representation and the reuse process in the two approaches are substantially dif-
ferent. First of all, CR2N is a more general approach, not aiming to capture the
reasoning knowledge. In the reuse process CR2N identifies reusable keywords
in the retrieved solution,while our system translates the retrieved solution to
a CaseGraph and, in turn, modifies it to a ReuseGraph. This modification in-
volves addition and deletion of solution elements, which can be considered a
structural form of reuse in terms of adaptation models described by Wilke et
al. [23]. Although CR2N is also considered as a transformational form of reuse,
our approach does not only identify what can be reused but generates the actual
solution to be reused.

There are several other textual CBR systems that do structural reuse but
without transforming a textual case to a more structured representation similar
to TRG. Most of these are aimed at assisting users in text authoring. For example
Lamontagne et al. [13] system adapts email responses by determining a subset of
sentences relevant to the new request and replacing some specific information in
these sentences such as individuals, locations and addresses. A somewhat similar
approach has been applied by Swanson et al. [21]. The authors developed “Say
Anything” CBR system for interactive storytelling. Given the story so far, the
system proposes next sentences. The adaptation involves modification of the
retrieved sentences by replacing proper nouns and pronouns with corresponding
frequent substitutes from the already written part of the story. GhostWriter-
2.0 developed by Bridge et al. [7] assists users in writing product reviews. The
system suggests phrases extracted from previous reviews similar to what the
user has already written. In the work by Recio-Garćıia et al. [20], the authors
experimented with the same aviation accident report dataset as we do. The
user is supposed to rewrite the solution of a retrieved similar report using text
spans retrieved from other reports. The system assists the user by finding and
clustering sections from the past aviation investigation reports that are relevant
to the user’s query. One interesting aspect of these text authoring systems is
that they are focusing on providing assistance to the user rather than doing
adaptation automatically. This assistance involves a graphical user interface to
support human interaction, which often makes systems more practical for real-
life applications. A branch of CBR research called conversational CBR[2] studies
such systems. Currently, we don’t have a conversational component in our system
but it is highly relevant for future work.

The importance of reasoning knowledge, such as contained in the analysis
section of aviation accident reports, is underrated in textual CBR research. Our
work captures this knowledge in TRG predominantly through causal relations.
A representation containing causal relations similar to TRG has been previously



proposed by Ashley et al. [5]. For their LARGO system, the authors developed
a diagrammatic representation capturing arguments in a legal case. Their di-
agrams very much resembles TRG but with stronger semantics, which allows
more sophisticated types of domain-specific adaptation. However, the diagrams
were constructed manually by human experts, which is a very laborious pro-
cess compared to automatic generation of TRG from text. In general, reasoning
knowledge is crucial for legal cases and TRG representation seems like a good
fit for this domain.

9 Conclusion and future work

We have presented a novel CBR approach that opens up for reuse of reason-
ing knowledge in textual cases. Our approach relies on a textual graph-based
representation TRG, which captures reasoning/explanatory knowledge through
causal, entailment and paraphrase relations automatically extracted from text.
We also developed a reuse procedure to adapt the explanatory path used for a
previous problem to a new problem. The approach was evaluated on a collection
of aviation investigation reports, demonstrating the ability to capture and adapt
the analysis of a previous accident to a new accident.

The novelty of the approach suggests many directions for future work. First,
automatic extraction of TRG from text is a challenging tasks, with subtasks such
as causal relation extraction, entailment and paraphrase identification leaving a
lot of room for improvement. Second, conversational elements can be introduced
to allow users to guide the analysis. Third, the reuse procedure can be enhanced
by upgrading the shortest path with a more sophisticated heuristic that takes
type and directionality of relations into consideration. Forth, structured domain
knowledge can be integrated in the approach to improve TRG graphs. Fifth, it
makes sense to use TRG in the retrieval step as well as in the reuse. Finally,
extrinsic evaluation by human experts is required to confirm the validity of the
approach in practical settings.
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