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Abstract

We propose a generalized reservoir-to-well inflow equation for inhomogeneous reservoirs. The
equation is based on the assumption that reservoir properties may be described by power law
expressions. The objective of the present study is to provide an improved inflow performance
relationship for reservoirs with sparse fracture networks. This study is focused on one phase
flow of low pressure gas under steady state conditions. The fractal flow model leads to rock
properties of power law dependency. Other conceptual models may lead to the same result.

Due to low viscosity, high velocity gas flow is likely to occur in the neighborhood of a well. High
velocity flow leads to an additional pressure drop when compared against Darcy flow. The
additional pressure loss may be taken into account by an additional component of the skin
factor. This component depends on the production rate. The effect of damage and rate
dependent skin is to reduce the production rates. We study the influence of the interaction of
reservoir and well properties on production rates. The objective is to enable estimation of the
improvement in production rate by inf ill drilling and/or stimulation. Application of the method
may improve production forecasting and aid design of wells in sparsely fractured reservoirs of
power law description, fractal or not.
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1. INTRODUCTION

1.1. Introductory remarks

Fluid production from sub surface reservoirs depends on the interaction of the reservoir and the
production string. The production rate depends on reservoir and well characteristics. All
reservoirs cannot be described by conventional models. A fractal description may provide a
valid alternative. A fractal reservoir may be thought of as having a spatial dimension that falls in
between the Eucledian space dimensions, 1, 2 and 3. An additional requirement for fractal



behavior is self-similarity. We investigate the flow of gas in sparsely fractured reservoirs. A
sparse fracture network may not fill the Euclidean space. Such networks could exist in
conventional reservoir rocks, sandstone or carbonates, or gas shale. A fractured water and hot
water reservoir may exist in any kind of rock. We believe the condition of self-similarity is not
required to benefit from application of the methodology.

1.1. Previous work

Some studies investigate use of the concept “fractal network” in pressure transient testing.
Despite considerable efforts, the methodology remains esoteric. This is disappointing
since some pressure signatures may be consistent with a fractal model. The lack of
interest may be due to less intuitive concepts than for conventional models. Also the
economic significance of results obtained by use of the fractal concept may be harder to
assess. For example, the economic consequence of a fractal dimension, D=1 .8, may not
be obvious. This study emphasizes practical rather than theoretical aspects of the
methodology.

Hirata (1989) studied fault systems in Japan by use of the box-counting method. He
observed fractal dimensions between 1.6 down to 0.72. This methodology provides a
fractal dimension based on direct observations of the fault or fracture network. The
technique has the advantage of intellectual as well as intuitive appeal. Fractal dimensions
depend on fracture architecture.

Subsurface reservoirs are not open for visual inspection. Chang and Yortsos (1990)
proposed a one-phase model of fluid flow in fractal networks. They found that permeability
and porosity may be described by simple power law expressions. Their solution is for
single well tests. They derived a limiting equation, of power law type, for pressure change
at large values of time. The equation shows up as a straight line in a log-log coordinate
system. The slope is related to the fractal dimension and the conductivity index.

A well test response is not unique. Different models may lead to the same limiting
behavior. Jelmert (2003) found that the interaction between pressure transients and
external boundaries may lead to pressure changes of power law appearance.

Beier (1990) applied the Chang and Yortsos fractal model to a non-fractured but
disordered inhomogeneous reservoir. Aprillan et al. (1993) studied the pressure behavior
of interference tests. Their methodology was based on a similarity solution and did not
accommodate well bore storage, skin or possible faults. Jelmert (2006) studied the effect
of no-flow boundaries on interference and single well testing. The effect of well bore
storage and skin was included

Doe (1991) studied constant pressure well tests. He found that flow areas of power law
dependency on the spatial coordinate could lead to well test pressure responses of fractal
appearance in otherwise homogeneous reservoirs.
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The rock properties, permeability and porosity, are obtained as average values associated
with an elementary volume, Bear (1972). The permeability- and porosity (functions)
depend on the length scale of the elementary volume. Jelmert (2009) found that power law
description could be a result of the length scale associated with the elementary volume

2. Theory and discussion

2.1. Governing equations

Suppose the properties of a fractal reservoir may be described by a single spatial variable,
r, then the diffusivity equation becomes a one-dimensional partial differential equation.

(Pg (r)qg (r)) = i(r)27rhrä eq.(1)

Integration of the above equation under the assumption of steady state flow yields:

zpTpq ( i
-

= Kk hT (1-fl) (, -i) + S +F0qg J fi 1 eq(2)

and

(p—p)=
ZPTPMsi

(1nrJ)+S+FQqgçr) , fl=1 eq.(3)

The high velocity flow factor is given by:

F)
=,8Qk14, p.M

eq.(4)
p 2,rhRT. r

The dimensionless distance, reD, is defined as relrw, See the appendix for details.

Before entering the wellbore, the gas has to flow through the formation and the skin zone
(near wellbore region). There is pressure loss associated with each region. The pressure
loss associated with formation flow is:

/ 2 / 2’ zpTpq(.
) =

1;,J) eq.(5)

Superscript prime denote well pressure on the reservoir side of the skin.
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The pressure drop across the skin is given by:

2 , 2 2 zpTp(.qg(. , zpT/qg /

.ckin =(1) —

= rk1h7( = ck,4,h7
kS + FQqgç(.

eq.(6)

Note that, eq.(6), is the same as for a conventional reservoir. This similarity reflects the
fact that both share the same conceptual model. In both cases, the skin zone may be
thought of as a thin coating around a cylindrical well.

When the apparent skin, S’, is positive, the skin zone represents an impedance to flow.
Hence one may consider removing the skin. Use of the above equations may be used as
an aid to quantify the benefit of reducing the skin.

The flow rate of a well is determined by the interaction of the properties of the reservoir,
the near wellbore region and the flow line. In the present study, we limit the flow line to a
vertical tubing, see Katz and Lee, (1990, ch. 9). The flow through a horizontal flow line and
the choke may be included by two additional equations.

Tubing flow equation — Dry gas

u.s - 0.5 -, 0.5

R (T D. 1 ( se “ 1)
q =1 —II—-—--——I ‘I

_____

I I!_p; I eq.(7)g.sc J M,11 J 7 f,Z1. L] e - I) e
-

s M g (28.97)y g
—= H H eq.(8)
2 z(,1,RT(,.

The vertical flow equation may be reduced to:

= c1. 4—°5
eq.(9)

Were index 1 and 2 refer to intake and outflow end and the tubing constant, CT , is the
product of all the constant factors of eq.(7).

/ o.5 / r 0.5 0.5

CT = 1 1 1 DiT eq.(1 0)
4 } L YJM Z(11,]1, L - 1)



For a production well, the intake is the bottom hole-pressure and the oufflow is the tubing
head pressure. Hence eq.(9) will simplify to:

= p = esf2 p,, + eq.(1 1)

We refer to eq.(2) and eq.(3) as the reservoir flow equations and eq.(11) as the vertical
flow equation. The flow rate of the well may be computed from the condition that the
bottom-hole pressure, obtained by both equations is the same. This can be obtained by
the simultaneous solution of the reservoir- and vertical flow equations.

2.2 Discussion

A bottom-hole pressure vs. production rate, p vs. qgsc, plot is an important tool in well design.
The traditional p vs. qgsc plot implies the assumptions of radial flow in a homogeneous
reservoir which lead to logarithmic dependency of the spatial variable, eq.(3).

For some important cases the traditional assumptions may be too simplistic. For example,
radial flow in homogeneous gas shale is unrealistic. Then an inhomogeneous model based on
rock properties of power law description could be a valid alternative.

The present model can handle more complex cases. It will reduce to the conventional one for
13=1. Both models, logarithmic and power law, share the property that the production rate may
be computed by simple analytical expressions.

The challenge is to determine the best 13-value. This problem may be alleviated with additional
empirical and theoretical experience. Outcrop- and simulation studies may be used as aids to
estimatw reasonable values. A finite element program has the capability to simulate flow in
discrete and continuous fracture networks. Pictures of fracture systems of outcrops may shed
light on fracture architecture.

The economy of a well depends critically on the production rate. Key terms that can be
manipulated by engineering projects are the sum term terms of eq.(2). They are listed below.
The first term is associated with flow through the formation, the two next with the near wellbore
region.

1
(ffi)(1J _1)+S+FQqg(. eq(12)

Inspection of eq.(2) shows that a decrease in the above sum leads to an improved
production rate.



Since 13 shows up with a negative sign in the exponent of the spatial variable, eq.(12), it is
clear that a low 13-value leads to low production rate. Hence the effect of the spatial term
may be reduced by inf ill drilling, which corresponds to a reduction of the external radius of
the drainage area, re. The intuitive explanation is that the average pressure gradient is
increased since since the drawdown is applied to a shorter distance.

Another strategy is to capture the gas deeper into the reservoir by increasing the welibore
radius r. This is problematic for deep wells. The alternative is to create a hydraulic
fracture, which leads to an increase of the equivalent weilbore radius, rwe.
The concept of equivalent radius, rwe, for a fractal reservoir was discussed by Jelmert
(2009).

We may compute the production rate as a function of each variable and the corresponding
derivative. The derivative gives the sensitivity of the production rate to a small change. For
example

dq

—

eq.(1 3)

It is important to locate variables with steep gradients if acceleration projects are up for
evaluation. The production rate may be improved by several methods: infill drilling,
hydraulic fracturing, acid treatment etc.

High velocity flow is a near welibore phenomenon. In case of restricted entry or partial
penetration the height of the inflow zone is essentially the perforated height, h. One may
also capture the fluid out in the reservoir by hydraulic fracturing. A valid modification of the
equation for FQ as follows:

,ôQk1, PM I
FQ=

p 2rh,,RT(1
eq.(14)

As pointed out by Beier (1990) the fractal model may also be applied to disordered
reservoirs without important fracture networks.

2.3. Case studies

Fig. 1 shows the variation of the production rate with 13-values and the dimensionless
distance to the external boundary. As expected, increasing 13-values and reduced
dimensionless distance, reD, leads to higher production rates.

In a deep well, the wellbore radus is in the order of 10 cm. A dimensionless distance of reu
= 170 corresponds to 17 m. In a shallow well, the wellbore radius may be larger. Also
hydraulic fracture mays increase the effective wellbore radius to even much larger values.
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Fig.1: Effect of infill driIIng on production rate.

The production rate is obtained by the simultaneous solution of the reservoir and vertical
flow equations. The solution may be obtained by a graphical technique.The welibore
pressure is plotted vs. the gas flow rate. The key equations are: the reservoir flow
equations, eq.(2) and eq.(3), and the vertical flow equation, eq.(11). We specify the
reservoir pressure, Pwe, and the wellhead pressure, Pwh, and calculate the corresponding
bottom hole pressure, p. The production rate may be obtained as the intercept of the
curves associated with the reservoir- and vertical flow equations. Fig. 2 and 3 illustrates
the technique.

Both Fig. 2 and Fig. 3 shows 9 possible flow rates depending on the reservoir flow curves
(for 3 different 13 —values, unbroken curves) and the vertical flow curves (for 3 different
values of wellhead pressures, broken lines). In each case the pressure at the external
boundary is 100 bar. The skin factor is S=0.55. The high velocity flow factor, FQ, is 0 and
= 0.04 (S M m3/day)1 respectively. There is not much difference between the two cases
except for the high 13-value. The interpretation is that the rate dependent skin is negligible
in comparison to the reservoir flow term, reD.
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k=18 rnD p.=0 018 op S=O 55 FQ=O CM (M Sm3/f)ay)’

100 - . - . V

V P = 10 Bir lO-9wh
P - 20 Ear 1=1

on wh
P 30 Bar

V li—i I
wh

80 V

70
Cl)
(I)
a)

a)
0 P =lOOBar

50
F? 750

rr)

40

30

0 0.5 1 1.5 2 2S5 3 35

Howrite. IM Sm3fL)yJ
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Fig. 4 shows the influence of selected 13-values and wellhead pressures on the production
rate as a function of the high velocity flow factor, see eq.(2) and eq.(1 1). Fig. 5 shows the
sensitivity (derivative) of the production rate to the same parameters.

Fig. 6 shows the variation of the production rate with the high velocity factor and the
dimensionless distance to the external boundary
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Fig. 7 shows a similar plot, but with the skin, S, and the dimensional distance on the
horizontal axes.

A fractal reservoir will almost always have 13-values less than 1. In Fig. 8 we plot the
difference in production rate between homogeneous, f3=1, and a fractal reservoir with
13=0.75. The homogeneous reservoir will lead to higher production rates.
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Z4 Conduons

A generalized reservoir inflow equation has been proposed. It is valid for, but not limited to,
fractal reservoirs, fractured or not. The traditional radial flow equation is included as a special
case.

The proposed inflow equation is easy to program on a spreadsheet. Due to simplicity and
flexibility we believe the method may be of use as an aid in production forecasting, well
monitoring and design.

The power law model has an additional parameter to calibrate the reservoir flow equation to
production data.

The method may need support of simulation and outcrop studies to define a reasonable 13-
value.
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The production rate of a well has been computed by the simultaneous solution of the fractal

reservoir flow equation and the vertical flow equation.

The sensitivity of the production rate to the reservoir- and near weilbore region properties has

been investigated.

In many cases of interest the production rate may be improved by infill drilling and stimulation.
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3.2 Nomenclature

A = Area, L2
D = fractal dimension, dimensionless
DT = Inner diameter of tubing
d = Eucledian dimension, dimensionless
°T= Tubing constant, eq.(1 0)
FQ High velocity flow factor
fM = Mody friction factor of tubing
H = True vertical height of vertical flow line (tubing)
h = Height
k = Permeability
L= Length of vertical flow line
M= Molecular weight of gas
iii = Mass rate of flow
p= Pressure
p’ = Pressure on the reservoir side of the skin
q = Production rate
R = Universal gas constant
r= distance
r Dimensionless distance, r/re
S = skin
S’ = Apparant skin, mechanical and rate dependent, Dimensionless
s = Vertical flow parameter, see eq.(8)
u volumetric flux
V = Volume
z= Gas deviation factor

Greek Letters
a= Angle
13 = Dimensionless exponent. For fractal reservoirs: fl=D—8—1
J3 = High velocity coefficient
Y = Specific gravity of the gas relative to air, Dimensionless

= Change
P= Density

= Porosity
o = connectivity index, dimensionless
P = Viscosity
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Subscripts:
e = External
ew= Equivalent wellbore radius
D = Dimensionless
g = Gas
p = perforated
Q= Related to high velocity flow
sc = Standard conditions
ref = Arbitrary reference condition
wf = Well flowing

Conversion Factors

1 bara = i05 Pa
1 m3/ciay = 86400 m3/s
lcp = 103Pas
1 mD = 1015m2

4 APPENDIX
Conservation of mass leads to the following equation:

(r)qg (r)) = ço(r)2irhr eq.(A. 1)

Under steady state conditions, the right hand side is zero. Hence:

(pg(r)qg (r))=O eq.(A.2)

Integration leads to the conclusion that the mass rate of flow is independent of position but
the volumetric flow rate and density depends on position.

= Pg (r)qg (r) = Pq = Pgsiqgs = Const eq.(A.3))

The equation of state for a gas is given by:
pM

p =—--- eq.(A.4)zRT

The relationship between pressure gradients and volumetric flux is given by the
Forscheimer equation.

I3OPg u2 eq.(A.5)
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Where the volumetric flux, u, is flow rate pr. unit area.

eq.(A.6)
A

=L+iopg
2

eq.(A.7)dr kA

Substitution of eq.(A.4) into eq.(A.7) yields:

dp zRTI1Pq (qfl

drpM kA
+fiQP J eq.(A.8)

Substitution of eq.(A.3) and eq.(A.4) into the above equation leads to:
.zRT phi ni I

+fiQ dr eq.(A.9)M 12irkhr 4.irhrj

The permeability of the fractal flow model is given by a power law expression.

k(r) = k,1,

D-d-O

eq.(A.1 0)
c

We restrict our analysis to the special case where a sparse fracture network of fractal
dimension, D, is embedded in a cylindrical space of Euclidian dimension, d=2.

r
A(r) = 2irhç,

— eq.(A. 11)
1;,.

l)—2—O

k(r) A(r) = 2Khç, k,, I = 2hç, k, eq.(A. 12)
c)

Where:

eq.(A.1 3)

Since the mass rate of flow is constant it has no influence on the integration operation.
zRTth( prf

_____

_____ _______

th ‘ Ipdp
M k2hç,

f di+flQ
42h2

eq.(A.14)
1’

The result is:

1 zRTth.( p
‘ (r’—)

m (1 1
eq.(A.15)-fl j—-—M L2k,h(1—fi) 4hi ,

Since re usually is large in comparison to r:

2 2 zpTp.(.qgç, ( 1 (r1 + pMq,
(p —

= (I—fl) J p 2hRT —J eq.(A.1 6)
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The above equation has a singularity for fl=l. Eq.(A.14) has to be integrated separately for
this case. The result is the standard equation for the flow of a low pressure gas.

/ 1 1 \ zpTp(q, ( r /3QkW p Mq1 I
. (A. 17)1n — 1+

—

= KkhT
, J p 2ghRT J eq

Contact resistance between the sand face and the wellbore may be taken into account by
a skin factor. The total pressure change squared may be obtained as:

/ 1 ( 1 (,-fi
— +

1
k1çhT. L(1)L.- J p 2hRTjJ

eq.(A.18)

/ 1 1 \ zpTp%(q,
1n+S+

flk1ç p(Mq( 1 eq.(A19)(ii;
—

= KkIh.C J p 2hRT(. 1

Pskin
zpTp(q(

=

zpTp(q, (s + eq.(A20)rk1,hT(. irk1hT

where

FQ
— /3Qk, J)(.M 1
— eq.(A.21)p 22rhR1. ç,

I


