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Abstract— Increasing efficiency by improving the locomotion
methods is a key issue for underwater robots. Hence, an
accurate dynamic model is important for both controller design
and efficient locomotion methods. This paper presents a model
of the kinematics and dynamics of a planar, underwater snake
robot aimed at control design. Fluid contact forces and torques
are modeled using analytical fluid dynamics. The model is
derived in a closed form and can be utilized in modern
model-based control schemes. The proposed model is easily
implemented and simulated, regardless of the number of robot
links. Simulation results with a ten link robotic system are
presented.

I. INTRODUCTION

For centuries, engineers and scientists have gained inspi-
ration from the natural world while searching for ideal solu-
tions to technical problems. More recently, this process has
been termed as biomimetics. Snake robots have been studied
due to their ability to move in challenging environments,
where other types of robots usually fail [1]. Empirical and
analytical studies of snake locomotion were reported by Gray
[2]. Among the first attempts to develop a snake prototype,
the work of Hirose [3] is essential. The high number of
DOFs of snake robots makes them difficult to control, but
gives them the ability to traverse irregular environments,
surpassing the mobility of conventional wheeled, tracked or
legged robots [1].

Mobile robots continue to challenge researchers with new
applications in a variety of environments [1]. The most recent
fields of interest include the integration of robotic technology
into underwater exploration, monitoring, and surveillance.
Comparing amphibious snake robots to the traditional snake
robots, the former ones have the advantage of adaptability
to aquatic environments. The research on amphibious snake
robots (also referred to as lamprey robots or eel-like robots)
is, however, much less extensive, and fewer prototypes have
been developed [4], [5], [6].

Increasing efficiency by improving the locomotion meth-
ods is a key issue for underwater robots. Increased agility
and maneuverability are connected to a general decrease in
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the size of the robot, as well as more flexibility in its internal
shape. In order to improve these properties, researchers
begun studying aquatic biological systems and their methods
of locomotion [7], [8], [9], [10].

There exist many underwater robots, and these can be
classified into autonomous underwater vehicles (AUVs),
remotely-operated underwater vehicles (ROVs), and bottom-
crawling-legged underwater robots. More recently, there has
been growing interest in the design, modeling and control of
underwater robots that propel themselves and maneuver by
mimicking the movement of a fish. A number of researchers
have developed analytical models for the forces generated
during the motion of these devices in the water [8].

The dynamics of snake robots moving on land have been
derived by utilizing various modeling techniques [1]. The
friction between the snake robot and the ground significantly
affects its motion. In addition to many models of snake robots
that consider sideslip constraints, there have been reported
cases with anisotropic ground friction properties similar to
biological snakes, providing the opportunity to model lateral
undulation locomotion patterns. In [1], the authors provide
an overview on modeling and analysis of snake robot loco-
motion emphasizing the growing trend toward locomotion in
unknown and challenging environments. When it comes to
swimming snake robots, only a few modeling approaches
have been presented for eel-like robots [11], [12], [13].
Generally, studies of hyper-redundant mechanisms (HRMs),
also known as snake robots, have focused on land based
studies. An emerging field of study considers such multi-link
systems suited for aquatic propulsion as well, and several
prototypes of multi-link swimmers have been developed [5],
[6], [11].

Two fundamental works in the field, of Taylor [9] and
Lighthill [14], provide analytical models of fluid forces
acting on the body during undulatory swimming. However,
their analytical methods require a number of major simpli-
fying assumptions. McIsaac and Ostrowski [11] presented
a dynamic model of anguilliform swimming for eel-like
robots and Boyer et al. [12] present the dynamic modeling
of a continuous three-dimensional swimming eel-like robot.
However, the majority of swimming robots modeling omit
fluid moments which are supposed to have a negligible effect
on the overall motion of the system [11], [15]. It should be
noted that fluid moments are directly related to the power
consumption of the system (see e.g. [13]) and thus, they are
neglected in these modeling approaches in order to simplify
the hydrodynamic effects. It is also worth noting that, in [13],
[12] and [16] fluid moments are modeled, but the drag force
and moment are integrated numerically at each sample time



of the algorithm and evaluated numerically, which results in
the lack of a closed form solution. [17] presents the modeling
of the reactive force and moment acting on an elongated
body, moving in a weakly non-uniform potential flow. This
model has been used to investigate the passive and the active
swimming of a fish in a vortex street, while no viscous effects
have been taken into account. In [18], a solution to the fast
dynamics of eel-like robots has been proposed and tested
in comparison with a Navier-Stokes solver. Furthermore, a
number of research groups are currently working to develop
accurate low-cost swimming models required for such prob-
lems [13].

In this paper we present a solution to the modeling
problem that results in a closed form solution, avoiding the
numerical evaluation of drag effects. In addition, it takes
into account the current effect, using an analytical simplified
form. For control design purposes, it is a main advantage
that this hydrodynamic modeling concludes in a closed form,
without the need of an algorithmic way to compute the drag
force and torque and thus it is well suited for model-based
control design of underwater snake robots locomotion. It
is well known that the hydrodynamic forces (fluid forces)
induced by the motion of a rigid body in an underwater envi-
ronment are very complex and highly nonlinear and therefore
several of these effects are often not taken into account when
modeling the system. In this modeling approach, however,
both the linear and the nonlinear drag forces (resistive fluid
forces), the added mass effect (reactive fluid forces), the fluid
moments and current effect are considered.

To the authors’ best knowledge, this modeling approach is
the first modeling approach that takes into account both the
current effect and the combination of linear and nonlinear
drag effect. It is important to notice that the ground snake
robot model [19] falls out as a special case of the developed
snake robot model, by replacing the fluid friction model with
the ground friction model and setting the fluid parameters
to zero. The presented model is thus an extension of the
land based snake robot model [19], and comprise snake
robots moving both on land and in water. In addition to
providing completeness, this also makes the model applicable
for unified control methods for amphibious snake robots
moving both on land and in water.

This paper is organized as follows. Section II presents a
2D model of an underwater snake robot’s kinematics and
dynamics, explaining in detail the hydrodynamic effects,
followed by simulations validations, for both serpentine and
eel-like motions, in Section III. Conclusions and suggestions
for future research are presented in Section IV.
II. MODELING OF UNDERWATER SNAKE ROBOTS

This section presents a continuous model of an underwater
snake robot moving in the horizontal plane, i.e. moving at a
constant depth. The snake robot is assumed to be neutrally
buoyant, such that its depth stays constant unless active depth
control (using rotation of the links around the body-fixed y-
axis) is utilized. The model is derived for the purpose of
analysis and design of motion control of the position and
heading of the snake robot in this horizontal plane. The

kinematics and dynamics of the robot taking into account
the hydrodynamic effects will be presented.

A. Notations and defined symbols

The snake robot consists of n rigid links of equal length
2l, i = 1, . . . ,n interconnected by n− 1 joints. The links are
assumed to have the same mass m and moment of inertia
J = 1

3 ml2. The mass of each link is uniformly distributed so
that the link CM (center of mass) is located at its center point
(at length l from the joint at each side). The total mass of
the snake robot is therefore nm. In the following sections, the
kinematics and dynamics of the underwater snake robot will
be modeled in terms of the mathematical symbols described
in Table I and illustrated in Fig. 1a and Fig. 1b. Vectors are
either expressed in the global coordinate system or in the
local link coordinate system of link i. This is indicated by
superscript global or link,i, respectively. If is not specified
otherwise, a vector with no superscript is expressed in the
global coordinate system. The following vectors and matrices
are used in the subsequent sections:

A =


1 1

. . .
. . .

1 1

 , D =


1 −1

. . .
. . .

1 −1

 ,

where A,D ∈ R(n−1)×n. Furthermore,

e =
[

1 . . . 1
]T ∈ Rn, E =

[ e 0n×1

0n×1 e

]
∈ R2n×2 ,

sinθ =
[

sinθ1 . . . sinθn
]T ∈ Rn , Sθ = diag(sinθ) ∈ Rn×n ,

cosθ =
[

cosθ1 . . . cosθn
]T ∈ Rn , Cθ = diag(cosθ) ∈ Rn×n

sgnθ =
[

sgnθ1 . . . sgnθn
]T ∈ Rn

θ̇
2

=
[

θ̇1
2

. . . θ̇n
2
]T
∈ Rn , J = JIn , L = lIn , M = mIn

K = AT (DDT )−1 D , H =

(
In−

1
n

eeT
)−1

KT , V = AT (DDT )−1 A

The matrices A and D represent, respectively, an addition
and a difference matrix, which will be used, for adding
and subtracting pairs of adjacent elements of a vector.
Furthermore, the vector e represents a summation vector,
which will be used for adding all elements of a n-dimensional
vector. The remaining vectors and matrices have been defined
above since they are used in the model development.
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Fig. 1: Underwater snake robot

B. Kinematics of the underwater snake robot

The snake robot is assumed to move in a virtual horizontal
and flat plane, fully immersed in water, and has n+2 degrees
of freedom (n link angles and the x-y position of the robot).
The link angle of each link i ∈ 1, . . . ,n of the snake robot is
denoted by θi ∈ R and is defined as the angle that the link



TABLE I: Definition of mathematical terms
Symbol Description Vector
n The number of links
l The half length of a link
m Mass of each link
J Moment of inertia of each link
θi Angle between link i and the global x axis θ ∈ Rn

φi Angle of joint i φ ∈ Rn−1

(xi,yi) Global coordinates of the CM of link i X,Y ∈ Rn

(px, py) Global coordinates of the CM of the robot pCM ∈ R2

ui Actuator torque of joint between link i and link i+1 u ∈ Rn−1

ui−1 Actuator torque of joint between link i and link i−1 u ∈ Rn−1

( fx,i, fy,i) Fluid force on link i fx,fy ∈ Rn

τi Fluid torque on link i τ∈ Rn

(hx,i,hy,i) Joint constraint force on link i from link i+1 hx,hy ∈ Rn−1

−(hx,i−1,hy,i−1) Joint constraint force on link i from link i−1 hx,hy ∈ Rn−1

forms with the global x axis with counterclockwise positive
direction, while the joint angle of joint i ∈ 1, . . . ,n−1 is
denoted φi ∈ R and defined as

φi = θi−θi−1. (1)

The link angles and the joint angles are assembled in the
vectors θ = [θ1, . . . ,θn]

T ∈ Rn and φ = [φ1, . . . ,φn−1]
T ∈

Rn−1, respectively. The heading (or orientation) θ̄ ∈ R of
the snake is defined as the average of the link angles similar
as for land-based snake robots in [19]

θ̄ =
1
n

n

∑
i=1

θi. (2)

The model of the snake robot will be derived using link
angles to simplify the mathematical expressions. The local
coordinate system of each link is fixed in the CM of the link
with x (tangential) and y (normal) axes oriented such that
they are aligned with the global x and y axis, respectively,
when all the link angles are zero. The rotation matrix from
the global frame to the frame of link i is

Rglobal
link,i =

[
cosθi −sinθi

sinθi cosθi

]
. (3)

The global frame position pCM ∈ R2 of the CM (center of
mass) of the robot is given by

pCM =

[
px

py

]
=

[ 1
nm ∑

n
i=1 mxi

1
nm ∑

n
i=1 myi

]
=

1
n

[
eT X
eT Y

]
, (4)

where (xi,yi) are the global frame coordinates of the CM
of link i, X= [x1, . . . ,xn]

T ∈ Rn and Y= [y1, . . . ,yn]
T ∈ Rn.

The forward velocity of the robot is denoted by ῡt ∈ R and
is defined as the component of the CM velocity along the
current heading of the snake, i.e.

ῡt = ṗx cos θ̄ + ṗy sin θ̄ . (5)

The links are constrained by the joints according to
DX+ lAcosθ = 0, DY+ lAsinθ = 0.

(6)
The position of the individual links as a function of the CM
position and the link angles of the robot can be expressed as

X =−lKT cosθ + epx, (7)
Y =−lKT sinθ + epy, (8)

where K = AT
(

DDT
)−1

D ∈ Rn×n, and where DDT is non-
singular and thereby invertible [19]. The linear velocities
of the links are found by differentiating the position of the
individual links (7) and (8) with respect to time, which gives

Ẋ = lKT Sθ θ̇ + eṗx, Ẏ =−lKT Cθ θ̇ + eṗy. (9)

The kinematics of an underwater snake robot is similar to that
of a snake robot moving on land. In this section we provide
a brief presentation of the kinematics for completeness. An
extensive presentation of the snake robot kinematics can

be found in [19]. Additionally, it is necessary to derive
the equation of linear accelerations of the links in order to
express the fluid forces in the following section. Hence, the
linear accelerations of the links are found by differentiating
the velocity of the individual links (9) with respect to time
and using the second derivative of Eq. (4), which gives

Ẍ = lH
(

Cθ θ̇
2
+Sθ θ̈

)
, Ÿ = lH

(
Sθ θ̇

2−Cθ θ̈

)
, (10)

where H =
(
In− 1

n eeT
)−1 KT ∈ Rn×n, and where In− 1

n eeT

is nonsingular and thereby invertible.

C. Hydrodynamic modeling

As has been noted in the bio-robotics community, under-
water snake (eel-like) robots bring a promising prospective
for improving the efficiency and maneuverability of modern-
day underwater vehicles. However, it should be mentioned
that, for swimming robots, the dynamic modeling of the con-
tact forces is most complicated compared to the modeling of
the overall rigid motion and the dynamics of the body defor-
mation. Hence, the hydrodynamic modeling task presents a
major challenge. In addition, the validity of Taylor’s resistive
[9] and Lighthill’s reactive [14] model assumptions varies
significantly depending on the flow regime and geometry of
the swimmer, as it is pointed in [13]. Generally, for slow
swimming devices at low Reynolds numbers, the viscous
forces become dominant. Hence, in this case, the Taylors
resistive model is most applicable. For larger swimmers
in which the added-mass effects dominate, Lighthill argues
that reactive forces are the primary source of thrust and
the resistive ones can be neglected. For, underwater snake
robots, which lie in between these two extremes, both the
resistive forces (drag forces) and reactive ones (added mass
affects) need to be modeled, since both play a critical role in
underwater swimming robotic systems propulsion (see e.g.
[20]).

The force and moment balance equations require that the
fluid terms have to be defined. However, it should be noted
that the hydrodynamic forces (fluid forces) induced by the
motion of a rigid body in an underwater environment are very
complex and highly nonlinear. Consequently, we decided to
solve the hydrodynamic modeling problem using an analyti-
cal simplified form suited for the design of online control
of underwater snake robots. The Navier-Stokes equations
are very difficult to solve and quite unsuited for robotics
control design purposes. Hence, as far as the fluid effects
are considered, for control design purposes, we need to
model the hydrodynamic phenomena in a sufficiently simple
manner while taking into account all the hydrodynamic
effects that are significant for the control design.

It is important to notice that modeling for control de-
sign purposes poses different challenges than hydrodynamic
modeling for simulations. In the latter, high accuracy and
modeling of all hydrodynamic effects are important, while
the model does not need to be in a form suited for analytical
analysis. When modeling for model-based control design
purposes, however, the model needs to be well suited for
analytical analysis while only the significant hydrodynamic



effects need to be included. The closed-loop control system
provides robustness to the less-significant unmodeled hydro-
dynamics, cf. for instance [21] and [22].

The literature provides three simple analytical models suit-
able for control design purposes. All of them are based on the
fluid mechanics theory of slender bodies. The biomechanics
community suggests the first one, the second one is offered
by the oceanic engineering community and and the third one
is a model that is mostly used in the robotics community.

In particular,
• the first model is a result of the Large Amplitude

Elongated Body Theory (LAEBT) of fish locomotion
by Lighthill [14],

• the second model is devoted to the dynamics of under-
water flexible cables [12] and

• the third one is based on the Morison’s equations and
models the forces between the fluid and the cylindrical
links of underwater snake robots [23], [24].

The underwater snake robotic system that is the subject of
this paper, swims at a Reynolds number of approximately
104 to 105. As already mentioned, the models presented
by Taylor [9] and Lighthill [14] are good candidates to
model the fluid effects for slow swimmers at low Reynolds
number and for fast swimmers at high Reynolds number,
respectively. However, a detailed model of the fluid effects
for Reynolds numbers of approximately 104 to 105 can only
be achieved through a full numerical solution to the Navier-
Stokes equations [13].

Unfortunately, the prohibitive computational costs of such
methods are not suitable for real time control, and the result-
ing models would neither be suited for analytical analysis.
In the modeling approach presented in this paper, we thus
decide to use the Morison’s equations [23], [24], assuming
that the robot is a slender body. To quantify the fluid forces,
each link of the underwater snake robot is considered as an
isolated segment. Each segment of the robot is approximated
as an elliptical cylinder. The fluid forces are modeled in each
cross section of the links and depends only on the transverse
link’s motion. It is worth nothing that, in this modeling
approach, the fluid effects that induced by the corners of
the joints are neglected. We now present some assumptions
underlying the modeling approach.

Assumption 1. The fluid is viscid, incompressible, and
irrotational in the inertia frame.

Assumption 2. The robot is neutrally buoyant, i.e, we
assume that the mass per unit of volume of the robot is
equal to that of the water, such that gravity and buoyancy
cancel each other out.

Assumption 3. The current in the inertial frame, vc =
[Vx,i,Vy,i]

T , is constant and irrotational.
Remark 1. Assumptions 1 and 2 are common assumptions

in hydrodynamic modeling of slender body swimming robots
[12], [13], [25], while Assumption 3 is a reasonable simpli-
fication of the real-world situation [22],[21].

Remark 2. Neutral buoyancy, ensuring that Assumption 2
is satisfied, is achieved by proper ballasting of the snake
robot. The ballast will furthermore be positioned at the

bottom of each snake robot link, in order to prevent it from
rolling, making it self-stabilized in roll.

The fluid forces are functions of the current and it is
shown in hydrodynamics literature, see e.g. [21], that the
force exerted by the current can be characterized by the
current velocity vector. This vector can be added vectorially
to the link speed before calculating the fluid forces. In many
works in ship control, in the presence of ocean currents
the current is assumed to be constant in the body frame,
i.e. it is assumed that v̇c = 0. This assumption is easily
violated during turning [21], and the current velocity should
thus be assumed constant in the inertial frame, as given in
Assumption 3.

The fluid forces will be expressed as functions of relative
velocity, and thus the relative velocity of link i is defined
as vlink,i

r,i = ṗlink,i
i −ν

link,i
c,i [21], where ν

link,i
c,i = (Rglobal

link,i )
T vc =

[νx,i,νy,i]
T is the current velocity expressed in body frame

coordinates (FB) and vc = [Vx,i,Vy,i]
T is the current velocity

expressed in inertial frame coordinates (FI). Due to Assump-
tion 3 v̇c = 0 and thus

ν̇
link,i
c,i =

d
dt

(
(Rglobal

link,i )T vc

)
=

[
−sinθiθ̇i cosθiθ̇i

−cosθiθ̇i −sinθiθ̇i

][
Vx,i

Vy,i

]
(11)

As described by [13],[25], each link is subject to a force
from the fluid acting on the CM of the link and also a fluid
torque acting on the CM. In the following, we will derive
the fluid forces and torques acting on the snake robot, using
Morison’s equations [23]. In particular, we will first state
the assumption on which the development is based, then
present how the force exerted by the fluid on a cylindrical
object is made up of two components: the virtual mass force
(added mass effect) and the drag force. The drag model that
is employed here is in a form which takes into account the
generalized case of anisotropic friction acting on each link. In
particular, this means that each link has two drag coefficients,
ct and cn, describing the drag force in the tangential (along
link x axis) and normal (along link y axis) direction of the
link, respectively. The fluid forces exerted on link i by the
fluid can then be expressed as [23], [25]

f link,i
i =−ĈAv̇link,i

r,i − ĈD vlink,i
r,i − ĈD sgn

(
vlink,i

r,i

)(
vlink,i

r,i

)2
, (12)

where v̇link,i
r,i = p̈link,i

i − ν̇
link,i
c,i is the relative acceleration of

link i, ṗlink,i
i and p̈link,i

i are the velocity and the acceleration of
link i, respectively, expressed in the body frame, and ĈA and
ĈD are constant diagonal (2×2) matrices depending on the
shape of the body and the fluid characteristics. Moreover, it
is worth to mention that the force expressions are formulated
as functions of link x-coordinates, d f link,i

i (x), (see [23] and
[24]) and then integrated over each body section to get the
total force as:

f link,i
i =

∫ l

−l
d f link,i

i (x) (13)

Furthermore, we make the following assumption:
Assumption 4. The relative velocity at each section of

the link in body-fixed frame (FB) is equal to the relative
velocity of the respective center of mass of each link. With
this assumption we avoid the complexity of deriving the drag
forces in analytical form, due to the nonlinear terms.



Remark 3. This approximation is valid in our case because
the link’s length is small compared to the total robot’s length,
which means that the velocities will not vary much from
one section to the other. Furthermore, Assumption 4 let us
avoid the numerical calculation of the drag forces due to the
nonlinear terms.

Due to Assumption 4 it is not necessary to evaluate
numerically the drag force and use an algorithmic approach
of modeling, and thus we are able to derive a compact
and closed form model of the underwater swimming robotic
system.

We will now derive the matrices ĈD and ĈA. For the
cylindrical links with major diameter 2a and minor diameter
2b and taking into account that the length of each link is 2l,
we can express ĈD, ĈA in this modeling approach as

ĈD =

[
ct 0
0 cn

]
=

 1
2

ρπC f
(b+a)

2
2l 0

0
1
2

ρCD2a2l

 , (14)

ĈA =

[
µt 0
0 µn

]
=

[
0 0

0 ρπCAa22l

]
, (15)

where C f and CD are the drag coefficients in x and y direction
of motion, while CA denotes the added mass coefficient [5],
[26] and ρ is the density of the fluid. The added mass
parameter in the x direction is considered equal to zero
(µt = 0), because the added mass of a slender body in
longitudinal direction can be neglected compared to the body
mass [26].

After modeling the fluid forces acting on the snake robot,
we will now model the fluid moment τi. Many previous
studies of underwater swimming robots neglect fluid torques,
since it is assumed that they have little effect on the overall
motion of the robot [11], [15]. In [13] a finite segment
approach is employed in order to take into account the fluid
moments, however, in this modeling approach the drag mo-
ment is evaluated numerically. Additionally, in [12] and [16]
the fluid moments are taken into account but concluded in
an algorithmic approach of computing the drag moment. We
decide to include the fluid moments in the model because,
first of all, this implies a more accurate modeling approach
from a hydrodynamic perspective and, secondly, due to the
fact that the fluid moments are directly related to the power
consumption of the system. Since the fluid torques contribute
significantly to the required actuation torques at the joints
[13] and as the research on underwater swimming robots are
expanding, there is increased demand for improved efficiency
to allow for longer missions to be undertaken.

The fluid torque is a result of the link rotation only and
thus the fluid torque on the CM of link i is a result of
fluid forces acting normal to the link during link rotation.
This approach is based on the common approach for a plate
undergoing forced angular oscillation [27]. Each link of
the robot is oscillating similarly to a flat plates oscillating
in rotational motion. In [27] it is shown that under this
assumption, the torque applied on link i by the fluid can
be modeled through the relation

τi =−λ1θ̈i−λ2θ̇i−λ3θ̇i|θ̇i|, (16)

where the λ1, λ2 and λ3 parameters depend on the shape of
the body and the fluid characteristics. It is worth mentioning
that [27] shows that the parameter λ2 can be set to zero,
neglecting the torques due to the linear drag forces. Nev-
ertheless, in our modeling approach we decide to consider,
for completeness, the fluid torques due to the linear drag
forces, since, these torques are dominant for slow swimming
velocities.

We will now derive the fluid force parameters λ1, λ2 and
λ3. It is well-known that, for a cylinder, the added mass
torque reduces to a simple analytical form with the parameter
λ1 expressed for a link with length 2l as [13], [25], [26]

λ1 =
1
12

ρπCM(a2−b2)2l3, (17)

where CM is the added inertia coefficient. Additionally, in
order to derive the parameters λ2 and λ3 we need to integrate
the drag torque. As illustrated in Fig. 2, the drag force on an
infinitesimal length of link i due to the link rotation, produces
a drag torque about the CM of the link, which is given by

dτdrag = sd fdrag =−sCLdx sθ̇ids− sCLdx sgn
(
sθ̇i
)(

sθ̇i
)2 ds, (18)

where s is the distance from the CM of link i to the element
ds and CLdx = (1/2)ρπC f (b+a)/2 [25]. Integrating (18), we
can calculate the total drag torque on link i as

τdrag =−
∫ l

−l

(
sCLdx sθ̇i + sCLdx sgn

(
sθ̇i
)(

sθ̇i
)2
)

ds =−λ2θ̇i−λ3θ̇i|θ̇i|
(19)

where λ2 and λ3 are given by

λ2 =
1
6

ρπC f (a+b)l3 and λ3 =
1
8

ρπC f (a+b)l4 (20)

The matrix ĈD and the parameters λ2, λ3 represent the drag
forces parameters due to the pressure difference between the
two sides of the body, while ĈA and λ1 stand for the added
mass of fluid carried by the moving body.

q
i

(x ,y )i i

x
global

y
global
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l

dfdrag

s

Fig. 2: The drag fluid torque about the CM of each link
We now will present the expression for the global frame

fluid forces on link i. Using the transformation matrix we
can express the global frame fluid forces on link i as:

f global
i = Rglobal

link,i f link,i
i =

[
cosθi −sinθi

sinθi cosθi

] f link,i
x,i

f link,i
y,i


=−Rglobal

link,i ĈA

(
(Rglobal

link,i )
T

[
ẍi

ÿi

]
−

[
−sinθiθ̇i cosθiθ̇i

−cosθiθ̇i −sinθiθ̇i

][
Vx,i

Vy,i

])

−Rglobal
link,i ĈD(R

global
link,i )

T

[
ẋi−Vx,i

ẏi−Vy,i

]
−Rglobal

link,i ĈDsgn

([
Vrx ,i

Vry ,i

])[
V 2

rx ,i

V 2
ry ,i

]
,

(21)
where [

Vrx ,i

Vry ,i

]
= (Rglobal

link,i )
T

[
ẋi−Vx,i

ẏi−Vy,i

]
. (22)

By performing the matrix multiplications and assembling the
forces on all links in vector form, we can rewrite the global



frame fluid forces on the links as

f =

[
fx

fy

]
=

[
fAx

fAy

]
+

[
f I

Dx

f I
Dy

]
+

[
f II

Dx

f II
Dy

]
, (23)

where fAx and fAy represent the effects from added mass
forces and are expressed as[

fAx

fAy

]
=−

 µn (Sθ )
2 −µnSθ Cθ

−µnSθ Cθ µn (Cθ )
2

[ Ẍ
Ÿ

]

−

 −µnSθ Cθ −µn (Sθ )
2

µn (Cθ )
2

µnSθ Cθ

[ Va
x

Va
y

]
θ̇ ,

(24)

where Va
x = diag(Vx,1, . . . ,Vx,n) ∈ Rn×n and Va

y =

diag(Vy,1, . . . ,Vy,n) ∈ Rn×n. The vectors f I
Dx

, f I
Dy

and
f II

Dx
, f II

Dy
present the effects from the linear (25) and

nonlinear drag forces (26), respectively, where the relative
velocities are given from the Eq. 27.[

f I
Dx

f I
Dy

]
=−

 ct (Cθ )
2 + cn (Sθ )

2 (ct − cn)Sθ Cθ

(ct − cn)Sθ Cθ ct (Sθ )
2 + cn (Cθ )

2

[ Ẋ−Vx

Ẏ−Vy

]
(25)[

f II
Dx

f II
Dy

]
=−

[
ct Cθ −cnSθ

ct Sθ cnCθ

]
sgn

([
Vrx

Vry

])[
Vrx

2

Vry
2

]
(26)[

Vrx

Vry

]
=

[
Cθ Sθ

−Sθ Cθ

][
Ẋ−Vx

Ẏ−Vy

]
(27)

In addition, the fluid torques on all links in matrix form are
τ =−Λ1θ̈ −Λ2θ̇ −Λ3θ̇ |θ̇ |, (28)

where Λ1 = λ1In, Λ2 = λ2In and Λ3 = λ3In.

D. Equations of motion
This section presents the equations of motion for the

underwater snake robot. The forces and torques acting on
link i are visualized in Fig. 1b and the force balance for link
i in global frame coordinates is given by

mẍi = hx,i−hx,i−1 + fx,i, mÿi = hy,i−hy,i−1 + fy,i (29)

The force balance equations for all links may be expressed
in matrix form as

mẌ = DT hx + fx, mŸ = DT hy + fy. (30)

Note that the link accelerations may also be expressed by
differentiating (6) twice with respect to time. This gives

DẌ = lA
(
Cθ θ̇

2 +Sθ θ̈
)
, DŸ = lA

(
Sθ θ̇

2−Cθ θ̈
)
. (31)

We obtain the acceleration of the CM by differentiating (4)
twice with respect to time, inserting (30), and noting that the
constraint forces hx and hy, are cancelled out when the link
accelerations are summed. This gives[

p̈x

p̈y

]
=

1
n

[
eT Ẍ
eT Ÿ

]
=

1
nm

[
eT 01×n

01×n eT

]
f (32)

This equation simply states, as would be expected, that the
acceleration of the CM of an underwater snake robot equals
the sum of the external forces acting on the robot divided by
its mass. The torque balance for link i is given by

Jθ̈i = ui−ui−1− l sinθi (hx,i +hx,i−1)+ l cosθi
(
hy,i +hy,i−1

)
+ τi. (33)

Hence, the torque balance equations for all links may be
expressed in matrix form as

Jθ̈ = DT u− lSθ AT hx + lCθ AT hy + τ, (34)

where τ is given from (28). What now remains is to remove
the constraint forces from (34). Premultiplying (30) by D

and solving for hx and hy, we can write the expression for
the joint constraint forces as

hx = (DDT )−1D(mẌ+µn (Sθ )
2 Ẍ−µnSθ Cθ Ÿ

−µnSθ Cθ Va
x θ̇ −µn (Sθ )

2 Va
y θ̇ − f I

Dx − f II
Dx )

hy = (DDT )−1D(mŸ−µnSθ Cθ Ẍ+µn (Cθ )
2 Ÿ

+µn (Cθ )
2 Va

x θ̇ +µnSθ Cθ Va
y θ̇ − f I

Dy − f II
Dy ).

(35)

Inserting in Eq. (34) the joint constraints forces Eq. (35)
and also replacing DẌ, DŸ with (31) and Ẍ,Ÿ with (10),
and solving for θ̈ , we can finally rewrite the modeling of an
underwater snake robot as

Mθ θ̈ +Wθ θ̇
2
+Vθ θ̇ +Λ3|θ̇ |θ̇ − lSθ KfDx + lCθ KfDy = DT u, (36)

where fDx = f I
Dx

+f II
Dx

and fDy = f I
Dy

+f II
Dy

are the drag forces
in x and y directions, respectively, and Mθ , Wθ and Vθ are
defined as

Mθ = J+ml2Sθ VSθ +ml2Cθ VCθ +Λ1 + l2Sθ Kµn(Sθ )
2HSθ

+ l2Sθ KµnSθ Cθ HCθ + l2Cθ KµnSθ Cθ HSθ + l2Cθ Kµn(Cθ )
2HCθ

(37)

Wθ = ml2Sθ VCθ −ml2Cθ VSθ + l2Sθ Kµn(Sθ )
2HCθ

− l2Sθ KµnSθ Cθ HSθ + l2Cθ KµnSθ Cθ HCθ − l2Cθ Kµn(Cθ )
2HSθ

(38)

Vθ = Λ2− lSθ KµnSθ Cθ Va
x − lSθ Kµn (Sθ )

2 Va
y − lCθ Kµn (Cθ )

2 Va
x

− lCθ KµnSθ Cθ Va
y

(39)

The equations of motion for the underwater snake robot are
in other words given by (32) and (36). By introducing the
state variable x =

[
θ

T , pT
CM , θ̇

T
, ṗT

CM

]T
∈ R2n+4, we can rewrite

the model of the underwater snake like robot compactly in
state space form as

ẋ =
[
θ̇

T
, ṗT

CM , θ̈
T
, p̈T

CM

]T
= F(x,u) (40)

where the elements of F(x,u) are easily found by solving
(32) and (36) for p̈CM and θ̈ , respectively.

Remark 4. It is interesting to note that if, in the dynamic
model (32) and (36), we set the fluid parameters to zero
and replace the drag forces in x and y direction with ground
friction models [19], then the model reduces to an identical
dynamic model of a ground snake robot, described in [19].
The underwater snake robot model is thus an extension of
the land snake robot model, and may be used for amphibious
snake robots moving both on land and in water.

III. SIMULATION RESULTS
In this section, simulation results will be presented for

three different modeling approaches: case 1 – Added mass
and nonlinear drag effect, case 2 – Added mass, linear
and nonlinear drag effect and case 3 – Added mass, linear
drag effect, nonlinear drag effect and current effect. In the
following, the mathematical expressions for lateral undula-
tion and eel-like motion are presented. Moreover, we explain
how to choose the fluid parameters. Finally, the simulation
results are presented for both lateral undulation and eel-like
motion. The models were implemented in Matlab R2011b.
The dynamics was calculated using the ode23tb solver with
a relative and absolute error tolerance of 10−4.

A. Lateral undulation
The mathematical expression for the snake’s gait in lo-

comotion studies depends on its construction and model.
Lateral undulation [1] is the fastest and most common form



of snake locomotion, where the motion is achieved by cre-
ating continuous body waves that are propagated backwards
from head to tail. In order to achieve lateral undulation, the
snake is commanded to follow the serpenoid curve [3]. The
proposed lateral undulation is realized by controlling each
joint of the snake robot according to the sinusoidal reference

φ
∗
i = α sin(ωt +(i−1)β )+ γ, i = 1, . . . ,n−1 , (41)

where the parameter α corresponds to the amplitude of the
serpentine wave that propagates along the body of the snake
robot, ω is the angular frequency of the sinusoidal joint
motion, β determines the phase shift between the sequential
joints, and γ is the joint offset that is used to control the
direction of the motion.

B. Eel-like motion
Eel-like motion is achieved by propagating lateral axial

undulations with increasing amplitude from nose to tail [8].
A simple equation is derived for the eel-like motion by
controlling each joint of the snake robot according to the
reference signal

φ
∗
i = α

(
n− i
n+1

)
sin(ωt +(i−1)β )+ γ, i = 1, . . . ,n−1 , (42)

where the parameter α(n− i)/(n+1) corresponds to the
increasing amplitude, from nose to tail, of the wave that prop-
agates along the body of the snake robot, ω is the angular
frequency of the sinusoidal joint motion, β determines the
phase shift between the joints, and γ is the joint offset.

C. Low-level joint control
A standard PD-controller is used to calculate the joints’

actuator torques from the joints’ reference angles according
to

ui = Kp,i(φ
∗
i −φi)−Kd,iφ̇i, i = 1, . . . ,n−1 , (43)

where Kp,i > 0 and Kd,i > 0 are the gains of the controller. A
velocity reference is not included in (43) since the purpose
of the derivative part is simply to damp the joint motion,
if the joint velocities become large. The advantage of this
controller is that it does not require calculation of the
derivative of φ ∗i with respect to time, while its disadvantage
is that it is unable to track time-varying joint reference angles
perfectly.

D. Fluid parameters
As already mentioned, in our modeling approach, we

decide to use Morison’s equation assuming that each link of
the robot is an elliptical cylinder. Hence, it is important to
investigate the influence of the current effects on cylindrical
objects. Even though the force coefficients vary very much
in the presence of current, Sarpkaya and Storm [28] found a
modified Morison equation to represent the measured force
in a coexisting flow field as well as the original equation in
a no-current field.

It must be noted that, ideally, the drag and added mass co-
efficients of the system should be determined experimentally.
This information is not available and the coefficients will be
chosen under the assumption of a steady-state flow [20], [16].
The added mass coefficients are simply set to their theoretical
values, CA = 1 and CM = 1 [13]. In [29], Guskova et al.

investigate the CD and CA of laterally oscillating elliptical
cylinders under conditions dimensionally equivalent to those
of our underwater snake robot. The parameter CD is found to
vary from approximately 2 to 3 and CA varies between 0.93
and 1. In [29], it is mentioned that the lateral coefficients
of the simulated robot may not deviate significantly from
their steady-state values. In our simulations, we decide to
apply the steady-state coefficients. The axial viscous force’s
coefficient is selected as C f = 0.03 from a review of exper-
imental data presented in [30]. In addition, for a cylindrical
obstacle immerged in a flow with a Reynolds number of
approximately Re ' 105, the fluid parameters can be set as
CD = 1, CA = 1, C f = 0.01, CM = 1 [16].

E. Simulation parameters

A snake robot was considered with n = 10 links, each
one having length 2l = 2× 0.14 m. The mass of each link
is m = 0.6597 kg and is chosen so to fulfil the neutrally
buoyant assumption. The initial values of the states of the
snake robot were set to zero, i.e. the snake robot is initially
at rest at the origin, with its heading along the inertial x axis.
The hydrodynamic related parameters for the elliptic section
with half small and great axis’ length 0.03 m and 0.05 m,
respectively, ρ = 1000 kg/m3, C f = 0.03, CD = 2, CA = 1
and CM = 1 were chosen as: ĈD = diag[0.2639 8.4], ĈA =
diag[0 0.3958], λ1 = 4.3103× 10−4, λ2 = 2.2629× 10−5,
λ3 = 2.2988×10−7. It should be noted that the anisotropic
friction property is achieved by a low drag coefficient in the
tangential direction and a higher one in the perpendicular.
The values of a constant current in inertial frame are set
to [0.1,0.1] m/sec. In this simulation a joint PD-controller
(43) is used with parameters Kp = 200,Kd = 50, while lateral
undulation or eel-like motion are achieved by moving the
joints according to the (41) or (42), respectively, with gait
parameters α = 30o, β = 30o, ω = 70o/sec and γ = 0o.

F. Lateral undulation: simulation results

In this section, we let the snake robot move by the motion
pattern of lateral undulation (41). We include this motion
pattern since it is commonly used for ground snake robots,
and we therefore, want to show how this (forward) motion is
obtained by an underwater snake robot. Simulation results for
lateral undulation of the underwater snake robot is presented
for the three different cases. In particular, the motion of
the center of mass is presented in Fig. 3a and the forward
velocity (5) is presented in Fig. 3b. It should be noted that
the robot is is moving in a straight line in case 3, although
the presence of current.

G. Eel-like motion: simulation results

In this section, we present and compare the simulation
results for the eel-like motion pattern for the three different
cases. In particular, the motion of the center of mass is
presented in Fig. 4a and the forward velocity is presented
in Fig. 4b. In contrast to the lateral undulation, the robot
is moving almost in a straight line in case 3, although the
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Fig. 3: Simulation results for lateral undulation
presence of current (Fig. 4a). A more efficient way for eel-
like motion pattern have to be analysed, in the future, in order
to mimic exactly the biological motion of eels and also take
into account the power consumption.
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Fig. 4: Simulation results for eel-like motion

IV. CONCLUSIONS AND FUTURE WORK

This paper has presented a model of the kinematics and
dynamics of a planar, underwater snake robot. The model
is in closed-loop form and is thus particularly well suited
for modern model-based control design schemes. As it is
mentioned before, the fluid forces induced by the motion of
a rigid body in an underwater environment are very complex
and highly nonlinear and therefore several of these effects are
often not taken into account when modeling the system. In
this modeling approach, however, the combination of linear
and the nonlinear drag forces, the added mass effect, the
fluid moments and current effect are considered. Simulation
results for the serpentine motion pattern for lateral undulation
and eel-like motion are presented. In future work, the authors
will employ the proposed model in order to develop and
analyze controllers for underwater snake robot. In addition,
an extension of the modeling in any 2D plane of 3D will be
investigated in order to provide the ability to use it for depth
control purposes in the future.
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