
Stability of Persistence Modules

Håvard Bakke Bjerkevik

Master of Science in Mathematics (for international students)

Supervisor: Nils A. Baas, MATH

Department of Mathematical Sciences

Submission date: June 2016

Norwegian University of Science and Technology



 



Abstract

We present a new proof of the algebraic stability theorem, perhaps the main the-
orem in the theory of stability of persistent homology. We also give an example
showing that an analogous result does not hold for a certain class of R2-modules.
Persistent homology is a method in applied topology used to reveal the structure of
certain types of data sets, e.g. point clouds in Rn, by computing the homology of a
parametrized set of topological spaces associated to the data set. Results like the
algebraic stability theorem give a theoretical justi�cation for the use of persistence
homology in practice by showing that a small amount of noise in the input only
in�uences the output by a similarly small amount.
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Samandrag

Vi presenterer eit nytt bevis for det algebraiske stabilitetsteoremet, kanskje det
viktigaste teoremet innan stabilitetsteori for persistent homologi. Vi gir også eit
eksempel som viser at eit tilsvarande resultat ikkje held for ei bestemt klasse av
R2-modular. Persistent homologi er ei metode innan praktisk topologi som blir
brukt til å avdekke strukturen til visse typar datamengder, til dømes punktskyer
i Rn, ved å rekne ut homologien til ei parametrisert mengde av topologiske rom
assosiert til punktskya. Resultat som det algebraiske stabilitetsteoremet gir ei
teoretisk rettferdiggjering for bruken av persistent homologi i praksis ved å vise at
ei lita mengde støy i inputen berre kan gi ei tilsvarande lita endring i outputen.
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Chapter 1

Introduction

Persistent homology is a topological method of analyzing data sets. Though per-
sistent homology belongs to the �eld of applied mathematics, our main focus is
on the theoretical aspects, speci�cally stability of persistence modules. Computing
persistent homology is a process in several steps, where one begins with input data
that can take di�erent forms, and end up with a barcode that describes the topo-
logical structure of the input data. We explain several methods of constructing a
persistence module given a data set in Chapter 2, as well as how to interpret the
barcode.

Because this is a process that has practical applications, we want it to be stable.
The presence of measuring errors and noise means that we can never expect a data
set to be a perfect representation of the phenomenon we are studying, and we do
not want a little noise in the input to completely change the result we get. The
algebraic stability theorem essentially says that a change of ε in the input does not
change the output by more than ε, implying that a little noise does not drastically
in�uence the results we get by computing persistent homology.

The earliest predecessor of the algebraic stability theorem was a statement
about similar functions on topological spaces giving similar persistence diagrams.
Later, the theorem has been recast in a more theoretical and general form, where
persistence modules are the starting points, rather than functions of a speci�c form.
This newer version of the theorem still has practical signi�cance, as similar data sets
often result in similar persistence modules. By de�ning the interleaving distance
between persistence modules and the bottleneck distance between barcodes, we can
say what it means for persistence modules and barcodes to be `close' in a precise
way. In Chapter 3, we give the necessary de�nitions and background for discussing
stability of persistence modules, before we get to the algebraic stability theorem
in Chapter 4. There we �rst discuss previous proofs and di�erent versions of the
theorem, before we present our own, new proof of the theorem. We �nish with a
discussion of possible generalizations of the algebraic stability theorem along with
a counterexample to a conjectured stability theorem for R2-modules.
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Chapter 2

Persistent homology

Though this thesis is about stability in persistent homology, a tool for topological
data analysis, we will hardly be doing any topology after this chapter. Rather,
topological data analysis takes on the role of motivation for what we are doing, and
stability results provide a theoretical justi�cation for using persistent homology in
practical applications. In this chapter, we will show how to construct persistence
modules and barcodes from data sets, and explain some of the ideas and motivation
behind persistent homology. For a more in-depth discussion of the themes in this
chapter, see [6].

2.1 Point clouds and barcodes

We begin with an example of a data set we want to study. Figure 2.1 shows a �nite
set X of points in R2, and the assumption is that this is a sample with noise from
a subspace S ⊂ R2. We want to �nd out what we can about the topology of S.
The strategy is usually to build some topological space as an approximation of S
and compute the homology of this. There is no use in computing the homology of
X directly, as that only tells us that we are dealing with 14 distinct points, and
ignores all information about their position in R2. One solution is to pick some
ε > 0 and use B(ε) =

⋃
x∈X Bx(ε), where Bx(ε) is the closed disk centered at x

with radius ε. That is, we look at the union of the disks with radius ε centered at
each of the points in X. Just by looking at X, we might guess that S is a circle
or at least some connected space with a hole in the middle, so we hope that B(ε)
will reveal this feature. We see in Figure 2.2 that if we pick a suitably big ε, B(ε)
is connected and has a hole in the middle, just as we wanted.

A problem with this approach is that we have to pick a speci�c ε, and there is
a priori no way of knowing which ε will let us detect the features we are interested
in. If we pick ε too small, the area in the middle will not be separated from the
outside, and if we pick ε too big, the area in the middle will be �lled in. In addition,
we might be unlucky and pick up features that are results of noise, and there might
be several important features that show up at di�erent choices of ε. The strategy

3
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Figure 2.1: A �nite point cloud X.

Figure 2.2: Disks with a �xed radius around each point in X.

of persistent homology is to look at B(ε) for all ε > 0 and piece the information we
get from each ε together into something that tells us which features are important
and which are not.

First we note that we have inclusions B(ε) ↪→ B(ε′) for ε ≤ ε′, since Bx(ε) is
included in Bx(ε′) for all x ∈ X. These induce maps

Hk(ε, ε′) : Hk(B(ε))→ Hk(B(ε′)) (2.1)

on the homology. Just as the inclusions, these maps are functorial in the sense
that Hk(ε, ε) is the identity on Hk(B(ε)), and Hk(ε′, ε′′) ◦Hk(ε, ε′) = Hk(ε, ε′′) for
ε ≤ ε′ ≤ ε′′. Most of the theory in persistent homology is developed for vector
spaces, so we will assume that the homology groups are vector spaces over some
�xed �eld F . Now we can actually describe the collection of homology groups as
a functor Hk : R → Vec, where Vec is the category of vector spaces over F , and
we view R as a category with a single arrow from x to y if x ≤ y, and no arrow if
x > y. Hk is an example of what we will de�ne later as a persistence module.

The main point of the construction and the reason why it is called `persistent'
homology is the following: because of the maps Hk(ε, ε′), we do not just have a
bunch of generators at di�erent ε with no idea how to connect them; we can pick a
generator g of Hk(ε) and look at its image under Hk(ε, ε′) for di�erent ε′ ≥ ε. If the
image of g is nonzero, we say that g survives, or persists, from ε to ε′. Returning to
the point cloud in Figures 2.1 and 2.2, we might have that the hole in the middle
appears at ε = x1 and is �lled in at ε = x2, and that no other holes appear at any
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Figure 2.3: A barcode with one interval.

Figure 2.4: A barcode with �ve intervals.

point. In that case, we get one generator of H1 that persists from x1 to x2, and no
other generators. This is illustrated in Figure 2.3.

If we had started with a di�erent data set, we might have gotten several holes
at di�erent choices of ε, making the structure of H1 more complicated. We will
see later that, under certain assumptions, we can represent a persistence module
as a direct sum of interval modules, each of which is associated to a generator that
persists over a certain interval. Later, we will de�ne the corresponding collection of
intervals as a barcode. In the case of Figure 2.3, the barcode consists of one interval
[x1, x2). In other cases, we might not get such a clear-cut answer; for example, we
might end up with a barcode as the one in Figure 2.4. This is harder to interpret
than the one in Figure 2.3, but we see that there is still one long interval that
probably corresponds to a real feature, and one shorter interval that also looks
pretty signi�cant. The last three are not long enough that we can say with any
con�dence that they are not results of noise.

Barcodes do not give exact answers to any questions about the homology of the
space S we are studying, but that is part of the purpose of persistent homology. If
we picked just one `ideal' ε and computedHk(ε), we would end up with a description
of the homology of the space we are sampling, but no information about how likely
the generators of Hk(ε) are to represent real features and not noise. In particular,
tiny changes in the data set might lead to our guess for the number of generators
of Hk(S) varying between di�erent values. By computing the persistent homology
and presenting the results as barcodes, we hope to avoid this problem. If we get
clear-cut answers, the barcode will be divided into a set of long intervals and a set
of much shorter intervals with none in between. If we do not get clear-cut answers,
it will be harder to separate the intervals into sets of long and short intervals. This
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way, a barcode simultaneously gives a description of the homology of S and says
something about how con�dent one should be about the description.

2.2 Functions on topological spaces

Another source of persistence modules is real-valued functions on topological spaces.
This is the context in which the main theorem in [9] is formulated, an early and
groundbreaking result in the �eld of persistence stability that we will return to in
Chapter 4. Given a function f : S → R on a topological space S, we de�ne sub-
level sets S≤ε = f−1(−∞, ε], and thus we have spaces S≤ε for ε ∈ R with inclusions
S≤ε ↪→ S≤ε′ for ε ≤ ε′. As before, the homology groups Hk(S≤ε) form a persistence
module.

The sets B(ε) =
⋃
x∈X Bx(ε) for X ⊂ Rn can be de�ned as sublevel sets. Let f :

Rn → R be given by f(p) = inf{|p− x| | x ∈ X}. Then we get B(ε) = f−1(−∞, ε].

2.3 Zigzag modules

There are alternatives to parametrizing the modules over R. Firstly, we can usually
simplify persistence modules over R arising in practice to persistence modules over
Z, or even a �nite subset of Z, by picking points {ai}i∈Z such that the vector spaces
change at at most one point between ai and ai+1 for each i. This way, we only
have to remember the points where the vector spaces change, and the persistence
module over Z contains the rest of the information. In the example above with
B(ε), the homology can only change at values for ε where two or more balls start
to intersect. Since the data set X is �nite, this can only happen at �nitely many
points.

Secondly, there are practical examples where we have vector spaces that are
parametrized over Z, but where not all the maps between the spaces go the same
way. These are called zigzag modules. An example given in [9] is of a data set
X ⊂ R, from which we take samples Xi for i ∈ Z. We do not have any interesting
maps betweenXi andXi+1 in general, but we do have inclusionsXi ↪→ Xi∪Xi+1 ←↩
Xi+1. We get a sequence

. . .←↩ Xi ↪→ Xi ∪Xi+1 ←↩ Xi+1 ↪→ Xi+1 ∪Xi+2 ←↩ Xi+2 ↪→ . . . (2.2)

There are several ways to de�ne a persistence module from such a sequence,
but let us stick with the one we already know. Let Bi =

⋃
x∈Xi Bx(ε). We get a

new sequence with Xi replaced by Bi, and by taking the homology, we get

· · · ← Hk(Bi)→ Hk(Bi∪Bi+1)← Hk(Bi+1)→ Hk(Bi+1∪Bi+2)← Hk(Bi+2)→ . . .
(2.3)

Even though we do not have maps directly between Hk(Bi) and Hk(Bi+1), we
might still be able to match generators in Hk(Bi) with generators in Hk(Bi+1) by
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looking at which generators have the same image in Hk(Bi ∪Bi+1). In fact, zigzag
modules have barcodes in the same way that modules over R do [4]. A disadvantage
of constructing zigzag modules like this is that we might be unlucky and measure
the same feature several times. If a feature of X gives rise to generators of Hk(Bi)
andHk(Bi+2), but notHk(Bi+1), we have no way of connecting them, so it will look
like we are detecting two di�erent features. Still, zigzag modules is an important
class of persistence modules that we will return to brie�y in Chapter 4.

2.4 Simplicial complexes

Recall that we are trying to recover the structure of a space S. The construction of
B(ε) works well to give an intuitive and simple example of how to de�ne topological
spaces that should be a good approximation to S. However, we need something
that we can give as input to a computer program, and it is not obvious how to
do this with B(ε) in a useful way. Instead of subsets of Rn, we can use simplicial
complexes, which can be described in a compact way and whose homology can be
computed.

De�nition 2.4.1. Let S be a set. An abstract simplicial complex is a family
Γ of subsets of S such that if σ ∈ Γ and ∅ 6= σ′ ⊂ σ, then σ′ ∈ Γ, i.e. Γ is closed
under nonempty subsets. A set in Γ with k + 1 elements is called a k-simplex.

This is a purely combinatorial de�nition, but an abstract simplicial complex
can be realized as a topological space by making a point for each 0-simplex, a
line segment for each 1-simplex, a �lled triangle for each 2-simplex, and in general
letting a k-simplex be the convex hull of k + 1 points. If σ = {x0, . . . , xk} is a
k-simplex, it is the convex hull of the 0-simplexes {x0}, {x1}, . . . , {xk}. Thus we
automatically get inclusions of (topological) simplexes when we have inclusions
of abstract simplexes. We often identify abstract simplicial complexes with their
topological realizations and refer to both as simplicial complexes. If a simplicial
complex contains �nitely many simplexes, its homology can be algorithmically
computed [6].

De�nition 2.4.2. A partially ordered set or poset is a set P equipped with a
relation ≤ such that the following hold for all a, b, c ∈ P :

• a ≤ a (re�exivity)

• if a ≤ b and b ≤ a, then a = b (antisymmetry)

• if a ≤ b and b ≤ c, then a ≤ c (transitivity)

De�nition 2.4.3. Let P be a poset. A �ltered simplicial complex is a set {Γε}ε∈P
of simplicial complexes such that we have inclusions Γε ↪→ Γε′ for all ε ≤ ε′.

We will give some examples of types of �ltered simplicial complexes that can be
constructed from di�erent types of data sets. We can place di�erent requirements
on the input set X, and which types of complexes we can de�ne depends on the
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nature of the data set. We only de�ne the Čech complex of X when X is embedded
in euclidean space, while the Rips complex is de�ned on any �nite metric space, and
even on more general spaces where the triangle inequality is not satis�ed. These
simplicial complexes are topological spaces that are meant to model the space that
X is sampled from. First we de�ne the Čech and Rips complexes:

De�nition 2.4.4. Let X ⊂ Rn. The Čech complex of X is

Čε(X) = {{x0, . . . , xk} | Bε(x0) ∩ · · · ∩Bε(xk) 6= ∅}. (2.4)

De�nition 2.4.5. Let (X, d) be a metric space. The Rips complex of X is

Rε(X) = {{x0, . . . , xk} | d(xi, xj) < ε for 0 ≤ i, j ≤ k}. (2.5)

We see that if {x0, . . . , xk} is a simplex in Rε(X) and ε ≤ ε′, then {x0, . . . , xk} ∈
Rε′(X). This means that we get an inclusion Rε(X) ⊂ Rε′(X), and the same holds
for the Čech complex. Thus the Čech and Rips complexes are in fact �ltered
simplicial complexes.

The Rips complex is similar to the Čech complex, but simpler, as we only have
to look at pairs of points and automatically �ll inn higher-dimensional simplexes
when possible. Both are computationally expensive, however, since we use all of X
to build the simplicial complex and, especially for large ε, we get a lot of super�uous
simplexes.

One way of reducing the number of simplexes is to pick out a set L ⊂ X of
what we call landmark points, and let the rest of the points in X act as `witnesses'
that decide which subsets of L should make up simplexes.

For x ∈ X, let mx = min{|x − l| | l ∈ L}. We call a point x ∈ X a strong
ε-witness for {l0, l1, . . . , lk} ⊂ L if for all 0 ≤ i ≤ k, |x − li| ≤ ε. If we have
|x−li| ≤ mx+ε for all 0 ≤ i ≤ k, then x is called a weak ε-witness for {l0, l1, . . . , lk}.

De�nition 2.4.6. Let X be a metric space and L ⊂ X a set of landmark points.
The strong ε-witness complex of X is

Ws,ε(X) = {Λ ⊂ L | there exists a strong ε-witness for Λ}. (2.6)

The weak ε-witness complex of X is de�ned as

Ww,ε(X) = {Λ ⊂ L | there exists a weak ε-witness for Λ}. (2.7)

As before, we get �ltered simplicial complexes parametrized by ε.
Finally, we give an example of a �ltered simplicial complex parametrized over

two parameters. Along with the zigzag modules, this example shows that we do
not always want to restrict ourselves to working with persistence modules over R.
Suppose we have a point cloud X ⊂ Rn and a probability density function δ on X.
Such a function can for example be de�ned by δ(x) = |{y ∈ X | |x − y| ≤ c}| for
an arbitrary constant c, or rather δ scaled by a constant to make the sum over all
x ∈ X equal to one. We can de�ne the Rips complex Rrε on {x ∈ X | 1/δ(X) ≤ r}.
We get inclusions Rrε ↪→ Rrε′ for ε ≤ ε′ as always for the Rips complex, but we also



2.4. SIMPLICIAL COMPLEXES 9

get inclusions Rrε ↪→ Rr
′

ε for r ≤ r′, because we include more points in the set the
Rips complex is built on. Thus we get a �ltered simplicial complex parametrized
over two variables.

Looking at the �ltered complex {Rrε}ε≥0 for a �xed r can be a solution if we have
a sample X that does not only contain points from a space S we are interested in,
but is denser in S than outside of S. This situation is problematic if we compute the
Rips or Čech complex, e.g. if we have a point cloud that is heavily concentrated on
a circle, but has a few points inside the circle, as these points will cause the hole in
the middle to be �lled in quickly when we compute the simplicial complex. {Rrε}ε≥0,
on the other hand, does not contain any points from sparse regions, at least not
for small r, so in this case we are more likely to avoid the problem.

Roughly, the algorithm we have outlined goes as follows: data set → �ltered
simplicial complex → persistence module → barcode. We have just seen some ex-
amples of how to go from a data set to a simplicial complex, and the next step
is simply computing homology to get a persistence module. For the rest of the
text, we will focus on the last step. That is, we assume that we have a persis-
tence module of some kind, and we want to investigate the relation between the
persistence module and its barcode. Speci�cally we will de�ne particular distance
functions on persistence functions and barcodes, respectively, and prove that the
distance between two persistence modules gives a bound on the distance between
their barcodes. This will prove that the construction of barcodes from persistence
modules is stable in a precise sense.
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Chapter 3

Persistence modules,

interleavings, and matchings

We will now leave the topological and applied parts of persistent homology, and
start focusing on the main topic: stability of persistence modules. In this chapter,
we will give de�nitions and some results that will allow us to state and discuss the
algebraic stability theorem in the next chapter, where we will also give a new proof
of the theorem.

3.1 Persistence modules

Let k be a �eld that stays �xed throughout the text, and let Vec be the category
of vector spaces over k. If P is a poset, there is a corresponding poset category
which has the points of P as its objects and a single morphism from p to q if p ≤ q
and no morphism from p to q otherwise. We let P denote both the poset and its
poset category.

De�nition 3.1.1. Let P be a poset category. A P -persistence module is a
functor P → Vec.

If the choice of poset is obvious from the context, we usually write `persistence
module' or just `module' instead of `P -persistence module'. If the vector spaces at
all points p ∈ P are �nite-dimensional, we call the persistence module pointwise
�nite-dimensional, or p.f.d.

For a persistence module M and p ∈ P , M(p) is denoted by Mp and M(p→ q)
by φM (p, q). We refer to the morphisms φM (p, q) for p ≤ q ∈ P as the internal
morphisms of M . M being a functor implies that φM (p, p) = idMp

, and that
φM (q, r) ◦ φM (p, q) = φM (p, r). Because the persistence modules are de�ned as
functors, they automatically assemble into a category where the morphisms are
natural transformations. This category is denoted by P -mod. Let f : M → N
be a morphism between persistence modules. Such an f consists of a morphism

11
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fp associated to each p ∈ P . Because f is a natural transformation, we have
φN (p, q) ◦ fp = fq ◦ φM (p, q) for all p ≤ q.

De�nition 3.1.2. An interval is a subset ∅ 6= I ⊂ P that satis�es the following:

• If p, q ∈ I and p ≤ r ≤ q, then r ∈ I.

• If p, q ∈ I, then there exist p1, p2, . . . , p2m ∈ I for some m ∈ N such that
p ≤ p1 ≥ p2 ≤ p3 ≥ · · · ≥ p2m ≤ q.

De�nition 3.1.3. An interval persistence module or interval module is a per-
sistence module M that satis�es the following: for some interval I, Mp = k for
p ∈ I and Mp = 0 otherwise, and φM (p, q) = idk for points p ≤ q in I. We use the
notation II for the interval module with I as its underlying interval.

3.2 Interleavings

The de�nitions up to this point have been valid for all posets P , but we need some
additional structure on P to get a notion of distance between persistence modules,
which is essential to prove stability results. Since we will mostly be working with
R-persistence modules, we restrict ourselves to this case from now on. The poset
structure on R is the usual one given by ≤.

De�nition 3.2.1. For ε ∈ [0,∞), we de�ne the shift functor (·)(ε) : R-mod →
R-mod by letting M(ε) be the persistence module with M(ε)p = Mp+ε and
φM(ε)(p, q) = φM (p + ε, q + ε). For morphisms f : M → N , we de�ne f(ε) :
M(ε)→ N(ε) by f(ε)p = fp+ε.

We also de�ne shift on intervals I by letting I(ε) be the interval for which
II(ε) = II(ε).

De�ne the morphism φM,ε : M →M(ε) by (φM,ε)p = φM (p, p+ ε).

De�nition 3.2.2. An ε-interleaving between R-modules M and N is a pair
of morphisms f : M → N(ε), g : N → M(ε) such that g(ε) ◦ f = φM,2ε and
f(ε) ◦ g = φN,2ε.

If there exists an ε-interleaving between M and N , then M and N are said to
be ε-interleaved. An interleaving can be viewed as an `approximate isomorphism',
and a 0-interleaving is in fact an isomorphism. We call a module M ε-signi�cant if
φM (p, p+ ε) 6= 0 for some p, and ε-trivial otherwise. M is 2ε-trivial if and only if it
is ε-interleaved with the zero module. We also refer to an interval I as ε-signi�cant
if II is ε-signi�cant, and ε-trivial otherwise.

De�nition 3.2.3. We de�ne the interleaving distance dI on persistence modules
M and N by

dI(M,N) = inf{ε | M and N are ε-interleaved}. (3.1)
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Intuitively, the interleaving distance measures how close the modules are to
being isomorphic. One can check that dI is an extended pseudometric. `Extended'
means that the distance between two modules might be ∞, and `pseudo'metric
means that dI(M,N) = 0 does not imply M = N , otherwise the axioms for a
metric are satis�ed. An interesting point is that dI(M,N) = 0 does not even imply
that M and N are isomorphic. For example, I(x,y) and I[x,y], where x ≤ y ∈ R, are
ε-interleaved for all ε > 0, but they are not isomorphic.

3.3 Matchings

De�nition 3.3.1. Suppose M ∼=
⊕

I∈B II for a multiset1 B of intervals. Then M
is interval decomposable. We call B the barcode of M , and write B(M) = B.

Since the endomorphism ring of any interval module is isomorphic to k, it follows
from Theorem 1 in [1] that if a persistence module M is interval decomposable,
the decomposition is unique up to isomorphism. Thus the barcode is well-de�ned
for all interval decomposable modules M , even if we let M be a P -module for an
arbitrary poset P . If M is a p.f.d. R-module, it is interval decomposable [10], so
in this case, the barcode is well-de�ned.

An alternative presentation of a barcode is a persistence diagram. Let R̄ =
R ∪ {−∞,∞}2. We use the notation 〈a, b〉, where a, b ∈ R̄, for any interval with
endpoints a and b. That is, we write I = 〈a, b〉 if I is either (a, b), (a, b], [a, b), or
[a, b]. We may also use this notation on only one side, so for example I = 〈a, b)
means that either I = (a, b), or I = [a, b).

De�nition 3.3.2. The persistence diagram D(M) of an interval decomposable
R-module M is a multiset of points in {(a, b) | b − a > 0} ⊂ R̄2 where (a, b) has
multiplicity n if there are n intervals of the form 〈a, b〉 in B(M).

See Figure 3.1 for an example. Note that if the barcode has intervals on the
form [a, a], these do not show up in the persistence diagram. We de�ne the distance
between two points in a persistence diagram as d∞((a, b), (c, d)) = max{|c−a|, |d−
b|}.

This presentation does not show whether the endpoints are included in an in-
terval, but this problem can be �xed by using `decorated points', which show which
endpoints are included [8]. Persistence diagrams have the advantage that they give
a geometric presentation of the barcode, but, unlike barcodes, they are not de�ned
for interval decomposable modules over general posets.

For multisets A,B, we de�ne a partial bijection as a bijection σ : A′ → B′ for
some subsets A′ ⊂ A and B′ ⊂ B, and we write σ : A9 B. We write coim σ = A′

and im σ = B′.
1We will not be rigorous in our treatment of multisets. A multiset may contain multiple copies

of one element, but we will assume that we have some way of separating the copies, so that we

can treat the multiset as a set. If e.g. I and J are intervals in a multiset and we say that I 6= J ,
we mean that they are `di�erent' elements of the multiset, not that they are di�erent intervals.

2We de�ne addition and subtraction on R̄ whenever the answer is obvious. For example,

∞ + x = ∞− (−∞) = ∞ for x ∈ R, while ∞−∞ is not de�ned. The poset structure on R̄ is

also the obvious one.
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Figure 3.1: The persistence diagram of {(1, 2], (2, 3), [2, 3], (2, 4)}. The point (2, 3)
in the diagram has multiplicity 2.

De�nition 3.3.3. Let A and B be multisets of intervals. An ε-matching between
A and B is a partial bijection σ : A9 B such that

• all I ∈ A \ coim σ are 2ε-trivial

• all I ∈ B \ im σ are 2ε-trivial

• for all I ∈ coim σ, II and Iσ(I) are ε-interleaved.

If there is an ε-matching between B(M) and B(N) for persistence modules M
and N , we say that M and N are ε-matched.

We have adopted this de�nition of ε-matching from [5], which di�ers from e.g.
the one in [7] and [8], where matchings are de�ned between persistence diagrams.
By that de�nition, an ε-matching lets points p and q in the diagram be matched if
d∞(p, q) ≤ ε, and a point (a, b) be left unmatched if (b− a)/2 ≤ ε. This de�nition
is less strict than ours, as it for example allows [x, x + 2ε] to be unmatched in
an ε-interleaving, even though it is 2ε-signi�cant. The stronger de�nition forces
us to work a little harder when we prove the algebraic stability theorem, but it
seems natural to allow intervals to be matched in an ε-matching only when they
are ε-interleaved, and not when they are just `almost' ε-interleaved. Conveniently,
with the de�nition we have chosen, an ε-interleaving is easily constructed given an
ε-matching, and that is not always possible with the weaker de�nition.

De�nition 3.3.4. The bottleneck distance dB is de�ned by

dB(M,N) = inf{ε | M and N are ε-matched} (3.2)
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for any interval decomposable M and N .

Like the interleaving distance, the bottleneck distance is an extended pseudo-
metric.
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Chapter 4

The algebraic stability theorem

In this chapter we will discuss how stability of persistence homology is treated
in a rigorous mathematical manner, and present the algebraic stability theorem.
We give a new proof of the theorem, and �nish with a counterexample to a more
general version of the theorem.

4.1 The theory of stability

As we explained earlier, we view persistence homology as an algorithm where the
input is some kind of data set and the output is a barcode or a persistence diagram.
The earliest version of the algebraic stability theorem, which we state in Theorem
4.2.3, is a statement about how similar functions f, g : X → R give rise to similar
persistence diagrams after computing the persistent homology of the sublevel sets
of f and g. Later, one has moved away from showing stability in such special cases,
and instead used persistence modules as the starting point. This way, one can work
in a purely algebraic setting, and the results one gets hold for all applications where
persistence modules can be constructed from data sets.

With this philosophy in mind, the persistence modules are thought of as the
`input', and the barcodes or persistence diagrams as the `output'. `Stability' means
that if the input changes a tiny bit, the output should not change by much either.
Given that data from the real world almost always carries some noise, some kind
of stability is necessary for the output to be a trustworthy representation of what
the data set is trying to measure. Now that we have de�ned distance functions on
both the input (persistence modules) and the output (barcodes), we are able to
formulate what stability means in a precise mathematical sense. If we are able to
prove, say, dB(M,N) ≤ CdI(M,N) for a constant C and all modules M and N of
a certain kind, we have shown that there is a limit to how much the output can
change given a change in the output of a certain size. Such a statement only makes
sense when the bottleneck distance between M and N is de�ned, which it only is
for interval decomposable modules by our de�nitions. Since we know that p.f.d.
modules are interval decomposable, and data sets usually have to be �nite in every

17
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way, p.f.d. modules is a natural class of modules to prove stability results for. Still,
the bigger class of q-tame (name due to [8]) modules has also been considered.

De�nition 4.1.1. An R-module M is q-tame if φM (x, y) has �nite rank for all
x < y.

This is a slight generalization of p.f.d. modules, as all p.f.d. modules are q-
tame, but for example

⊕
n∈N I(− 1

n ,
1
n ) (or simply a module whose barcode contains

in�nitely many copies of [0, 0] and nothing more) is q-tame, but not p.f.d. De�ning
persistence diagrams for q-tame modules requires some work, as q-tame modules
are not interval decomposable in general; an example due to Crawley-Boevey of
a q-tame module that is not interval decomposable is given in [8]. The following
shows that for any q-tame module M and ε > 0, we can �nd a p.f.d. module
N such that dI(M,N) ≤ ε. Considering this, we do not lose much by restricting
ourselves to p.f.d. modules.

For a module M and x ≤ y, let imM (x, y) be the image of φM (x, y). If M is
q-tame and ε > 0, the module M+ε given by M+ε

x = imM (x− ε, x) is p.f.d., as the
vector spaces at all points are images of morphisms with �nite rank. We have an
ε-interleaving

φM,ε :M →M+ε(ε)

φM,ε|M+ε :M+ε →M(ε),
(4.1)

where the second morphism is the restriction of φM,ε.

4.2 The algebraic stability theorem

What we mean by the algebraic stability theorem is the following:

Theorem 4.2.1. Let M and N be δ-interleaved p.f.d. R-modules. Then there is a
δ-matching between B(M) and B(N).

This implies dB(M,N) ≤ dI(M,N) for p.f.d. modules M and N . Since an
ε-interleaving between M and N can always be constructed given an ε-matching
between B(M) and B(N), the opposite inequality also holds. Together, the in-
equalities give the isometry theorem:

Theorem 4.2.2. Let M and N be p.f.d. R-modules. Then dB(M,N) = dI(M,N).

As the reader might start to suspect, there are a lot of di�erent versions of
the algebraic stability theorem that are almost equivalent. We can use di�erent
de�nitions of ε-matchings, we can choose between stating the result for p.f.d., q-
tame, or other classes of modules, and we can either talk about the interleaving
and bottleneck distances, or an ε-interleaving inducing an ε-matching. We will try
to keep track of all the subtleties.

The �rst theorem of this sort was published in [9], where they proved the
following:
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Theorem 4.2.3. Let X be a triangulable space with continuous tame functions
f, g : X→ R. Then dB(D(f), D(g)) ≤‖ f − g ‖∞.

This is quite di�erent from the isometry and algebraic stability theorems as we
phrased them above, but we will show that those are generalizations of Theorem
4.2.3.

We will not go into detail about what triangulable spaces and tame functions
are. By de�nition, ‖ f − g ‖∞= sup{|f(x) − g(x)| | x ∈ X}. If ‖ f − g ‖∞≤ ε, we
have inclusions f−1(−∞, x] ↪→ g−1(−∞, x+ ε] and g−1(−∞, x] ↪→ f−1(−∞, x+ ε]
for all x ∈ R.

We get persistence modules F and G by taking the homology of the sublevel sets
of f and g. In other words, Fx = Hn(f−1(−∞, x]) and Gx = Hn(g−1(−∞, x]), and
the internal morphisms φF (x, y) and φG(x, y) are the morphisms induced from the
inclusions f−1(−∞, x] ↪→ f−1(−∞, y] and g−1(−∞, x] ↪→ g−1(−∞, y]. Composing
the inclusions above, we get

f−1(−∞, x] ↪→ g−1(−∞, x+ ε] ↪→ f−1(−∞, x+ 2ε]

= f−1(−∞, x] ↪→ f−1(−∞, x+ 2ε]

g−1(−∞, x] ↪→ f−1(−∞, x+ ε] ↪→ g−1(−∞, x+ 2ε]

= g−1(−∞, x] ↪→ g−1(−∞, x+ 2ε]

(4.2)

We get corresponding equalities on the induced maps on homology:

Fx → Gx+ε → Fx+2ε = φF (x, x+ 2ε)

Gx → Fx+ε → Gx+2ε = φG(x, x+ 2ε)
(4.3)

The morphisms Fx → Gx+ε and Gx → Fx+ε assemble into morphisms F → G(ε)
and G → F (ε), and the equations 4.3 are exactly what is needed for these mor-
phisms to be ε-interleaving morphisms. D(f) and D(g) are de�ned as the persis-
tence diagrams of F and G. In [9], they do not de�ne persistence diagrams the
same way we do, and they do not rely on interval decompositions of F and G.
Instead, they make strong tameness assumptions on f and g from which it follows
that F and G are p.f.d., and that F and G only `changes' at a �nite set of points.
This allows them to de�ne D(f) and D(g) without decomposing F and G into
interval modules, and this de�nition agrees with our de�nition of D(F ) and D(G)
using interval decompositions.

The algebraic stability theorem now says that because F and G are p.f.d. and
ε-interleaved, there is an ε-matching between D(F ) and D(G) and thus between
D(f) and D(g), so dB(D(f), D(g)) ≤ ε. In other words, Theorem 4.2.3 follows
from the algebraic stability theorem.

Though Theorem 4.2.3 was a groundbreaking result for stability in persistent
homology, it has some weaknesses. It only applies for the speci�c situation where
we have functions f and g from the same topological space X to R, and there are
assumptions on f , g, and X that might not be necessary. In [7], a more general result
was proved, where they worked directly with persistence modules (introduced in
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[12]) and proved dB(M,N) ≤ dI(M,N) for q-tame modules. This result is almost
the same as the algebraic stability theorem as we have stated it.

Since [9], a couple of other versions of the algebraic stability theorem have been
proved. In [8], Chazal et al. prove that an ε-matching between the persistence
diagrams of q-tame modules M and N exists if M and N are ε-interleaved, though
with a weaker de�nition of a ε-matching than the one we use. In [2], the following
situation is considered: letM and N be p.f.d. modules, and suppose f : M → N(ε)
has 2ε-trivial kernel and cokernel. Bauer and Lesnick prove that such a morphism
induces an ε-matching between B(M) and B(N). Since any ε-interleaving mor-
phism has 2ε-trivial kernel and cokernel, this implies that an ε-interleaving induces
an ε-matching for p.f.d. modules.

4.3 A new proof

To our knowledge, the proofs mentioned above are the only known proofs of the
algebraic stability theorem. In this section, we present a new proof that di�ers
signi�cantly from the previous ones. Our proof is combinatorial in nature, with
Hall's theorem, a combinatorial result concerning matchings, playing an important
role. The proof below is an amended version of a proof of a more general theorem
in [3] saying that if M and N are ε-interleaved rectangle decomposable p.f.d. Rn-
modules, then M and N are (2n − 1)ε-matched. In dimension 1, rectangles and
intervals are the same, so for n = 1, this is exactly the same as the algebraic
stability theorem for p.f.d. R-modules. The fact that our method of proof gives
stability results for a broader class of modules than R-modules makes us optimistic
that our combinatorial approach to stability problems is a good one.

We say that two intervals I and J are of the same type if I \ J and J \ I are
bounded. This means that there are four types of intervals:

• �nite intervals

• intervals of the form 〈a,∞〉

• intervals of the form 〈−∞, a〉

• (−∞,∞),

for some a ∈ R.
Our goal is to prove the algebraic stability theorem for p.f.d. R-modules. We

repeat it here for convenience.

Theorem 4.3.1. Let M and N be δ-interleaved p.f.d. R-modules. Then there is a
δ-matching between B(M) and B(N).

Since M and N are δ-interleaved, we have interleaving morphisms f : M →
N(δ) and g : N → M(δ). Recall that this means that g(δ) ◦ f = φM,2δ and
f(δ) ◦ g = φN,2δ. For I ∈ B(M), we write f |I for the morphism we get by
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restricting f to II . We de�ne g|J similarly for J ∈ B(N). For I ∈ B(M) and
J ∈ B(N), we de�ne

fI,J = πJ(δ) ◦ f |I : II → IJ(δ)

gJ,I = πI(δ) ◦ g|J : IJ → II(δ),
(4.4)

where πI and πJ are the projection morphisms onto the summands of M and N .
We begin by describing morphisms between interval modules. For any interval

I, we de�ne minI and maxI as the elements in R̄ for which I = 〈minI ,maxI〉.
Lemma 4.3.2. Let χ : II → IJ be a morphism between interval modules. Then,
for all a, b ∈ I ∩ J , χa = χb as k-endomorphisms. Moreover, if χ 6= 0, then
minJ ≤ minI and maxJ ≤ maxI .

Proof. If χ = 0, we are done. Otherwise, pick an s such that χs is not the zero
morphism, and let s ≥ r ∈ I. Then χs ◦ φII (r, s) = φIJ (r, s) ◦ χr. In addition,
for any s ≤ t ∈ J , we have χt ◦ φII (s, t) = φIJ (s, t) ◦ χs. The internal morphisms
are identities, so for r and t as above, we have χr = χs = χt. Since either
s ≥ p ∈ I or s ≤ p ∈ J holds for all p ∈ I ∩ J , we have proved the �rst part of
the lemma. But the equations above also imply χp 6= 0 for all p ∈ (minI ,maxJ),
so (minI ,maxJ) ⊂ I ∩ J , which gives minJ ≤ minI and maxJ ≤ maxI .

By the lemma, we can describe a morphism between two interval modules
uniquely as a k-endomorphism if their underlying intervals intersect. A k-endomorphism,
in turn, is simply multiplication by a constant.

We de�ne a function w : (B(M) × B(N)) t (B(N) × B(M)) → k by letting
w(I, J) = x if (fI,J)p is given by multiplication by x for p ∈ I ∩J , and w(I, J) = 0
if fI,J is the zero morphism. w(J, I) is given by gJ,I in the same way.

With the de�nition of w, it is starting to become clear how combinatorics comes
into the picture. We can now construct a bipartite weighted directed graph on
B(M)tB(N) by letting w(I, J) be the weight of the edge from I to J . The reader
is invited to keep this picture in mind, as a lot of what we do in the rest of the
proof can be interpreted as statements about the structure of this graph.

The following lemma allows us to break up the problem and focus on the inter-
vals in B(M) and B(N) of the same types separately.

Lemma 4.3.3. Let I and K be intervals of the same type, and J be a interval of
a di�erent type. Then ψχ = 0 for any pair χ : II → IJ , ψ : IJ → IK of morphisms.

Proof. Suppose ψχ 6= 0. By Lemma 4.3.2, minK ≤ minJ ≤ minI and maxK ≤
maxJ ≤ maxI . It follows that if I and K are of the same type, then J is of the
same type as I and K.

Let f ′ : M → N(δ) be de�ned by f ′I,J = fI,J for I ∈ B(M) and J ∈ B(N) if I
and J are of the same type, and f ′I,J = 0 if they are not, and let g′ : N → M(δ)
be de�ned analogously. Here f ′ and g′ are assembled from f ′I,J and g′J,I the same
way f and g are from fI,J and gJ,I . Suppose I, I

′ ∈ B(M). Then we have∑
J∈B(N)

gJ,I′(δ)fI,J =
∑

J∈B(N)

g′J,I′(δ)f
′
I,J . (4.5)
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When I and I ′ are of di�erent types, the left side is zero because f and g are
δ-interleaving morphisms, and all the summands on the right side are zero by
de�nition of f ′ and g′. When I and I ′ are of the same type, the equality follows
from Lemma 4.3.3. This means that g′(δ)f ′ = g(δ)f . We also have f ′(δ)g′ = f(δ)g,
so f ′ and g′ are δ-interleaving morphisms. In particular, f ′ and g′ are δ-interleaving
morphisms when restricted to the components of M and N of a �xed type. If we
can show that f ′ and g′ induce a δ-matching on each of the mentioned components,
we will have proved Theorem 4.3.1. In other words, we have reduced the problem
to the case where all the intervals in B(M) and B(N) are of the same type.

De�ne a real-valued function α on intervals as follows. For a, b ∈ R, let

• α(〈a, b〉) = a+ b

• α((−∞, b〉) = b

• α(〈a,∞)) = a

• α((−∞,∞)) = 0

The purpose of α is to allow us to de�ne an order ≤α with useful properties
on intervals of the same type. Though we de�ne ≤α on all intervals, we will never
compare intervals of di�erent types in view of the discussion following Lemma 4.3.3.
It turns out that naively de�ning ≤α by letting I ≤α J if and only if α(I) ≤ α(J)
is only almost enough.

We say that an interval I ⊂ R is open to the left if it is of the form (x, y〉 for
x, y ∈ R̄. If I is of the form [x, y〉, we say that it is closed to the left. We de�ne
open/closed to the right similarly. Let I ≤α J if either α(I) < α(J) or all of the
following hold:

• α(I) = α(J)

• either I is closed to the left, or J is open to the left

• either I is open to the right, or J is closed to the right.

This de�nes a preorder. In other words, it is transitive and re�exive. We write
I <α J if I ≤α J and not I ≥α J .

The order ≤α is one of the most important ingredients in the proof. The point
is that if there is a nonzero morphism from II to IJ(ε) and I ≤α J , then I and J
have to be close to each other. If ε = 0, I and J actually have to be equal.

This `closeness property' is expressed in Lemma 4.3.4, and is also exploited in
Lemma 4.3.5. Finally, in the proof of Lemma 4.3.6, we make sure that we only
have to deal with morphisms gJ,I′(δ) ◦ fI,J for I ≤α I ′ and not I >α I

′, so that
our lemmas can be applied.

Lemma 4.3.4. Let I, J , and K be intervals of the same type with I ≤α K.
Suppose there are nonzero morphisms χ : II → IJ(ε) and ψ : IJ → IK(ε). Then IJ
is ε-interleaved with either II or IK .

Proof. Since ψ, χ 6= 0, we have
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• minJ ≤ minI + ε

• minK ≤ minJ + ε

• maxJ ≤ maxI + ε

• maxK ≤ maxJ + ε.

This follows from Lemma 4.3.2. For instance, the �rst bullet point is a consequence
of minJ(ε) ≤ minI .

Suppose II and IJ are not ε-interleaved. Then either

• minJ ≤ minI − ε and minJ 6= −∞, or

• maxJ ≤ maxI − ε and maxJ 6=∞

holds; let us assume the former. (The latter is similar.) If I, J , and K are of the
type with in�nite right endpoints, then α(J) < α(I). If not, I, J and K are �nite
intervals, and

α(J) = minJ + maxJ

≤ minI − ε+ maxJ + ε

= α(I).

(4.6)

Equality holds only if J = 〈minI−ε,maxI+ε〉. Since there is no nonzero morphism
from IJ to II(ε), J is closed to the left and I is open to the left. On the other hand,
since there is a nonzero morphism from II to IJ(ε), it is not true that I is open to
the right and J closed to the right. By the de�nition of ≤α, we get I >α J .

Similarly, we can prove J >α K if IJ and IK are not ε-interleaved, so we have
I >α K, which is a contradiction.

Lemma 4.3.5. Let I, J , and K be intervals of the same type with I and K 2ε-
signi�cant and α(I) ≤ α(K). Suppose there are nonzero morphisms χ : II → IJ(ε)
and ψ : IJ → IK(ε). Then ψ(ε) ◦ χ 6= 0.

Proof. Again, we use Lemma 4.3.2. Firstly, we have

minK − 2ε ≤ minJ − ε ≤ minI

maxK − 2ε ≤ maxJ − ε ≤ maxI ,
(4.7)

which gives (minI ,maxK − 2ε) ⊂ I ∩ J(ε) ∩K(2ε). Secondly, if ψ(ε) ◦ χ = 0, we
have I ∩ J(ε) ∩K(2ε) = ∅. Thus minI ≥ maxK − 2ε. We get

α(I) = minI + maxI

≥ 2minI + 2ε

≥ 2maxK − 2ε

≥ minK + maxK

= α(K)

(4.8)
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Since α(I) ≤ α(K), we have equality, which implies K = I = 〈minI ,minI + 2ε〉.
Since I and K are 2ε-signi�cant, K = I = [minI ,minI + 2ε]. But then (ψ(ε) ◦
χ)minI

6= 0, so we have a contradiction.

We de�ne a function µ by

µ(I) = {J ∈ B(N) | I and J are δ-interleaved} (4.9)

for I in B(M). In other words, µ(I) contains all the intervals that can be matched
with I in a δ-matching. We de�ne µ(J) similarly for J ∈ B(N). Let I ∈ B(M)
be 2δ-signi�cant, and pick p ∈ Rn such that p, p + 2δ ∈ I. Then, p + δ ∈ J holds
for every J ∈ µ(I). Since N is p.f.d., this means that µ(I) is a �nite set. For
A ⊂ B(M), we write µ(A) =

⋃
I∈A µ(I).

Lemma 4.3.6. Let A be a �nite subset of B(M) containing no 2δ-trivial elements.
Then |A| ≤ |µ(A)|.

Before we prove Lemma 4.3.6, we show that it implies that there is a δ-matching
between B(M) and B(N) and thus completes the proof of Theorem 4.3.1. In what
follows, we assume that we are working with sets and not multisets, even though
barcodes are strictly speaking de�ned as multisets. This makes no di�erence for
the combinatorial arguments.

We apply Hall's theorem [11]:

Theorem 4.3.7. If S is a family of �nite sets, then the following are equivalent:

• for all S′ ⊂ S, |S′| ≤
∣∣⋃

s∈S′ s
∣∣

• there exists a set T and a bijection σ : S → T such that σ(s) ∈ s for all s ∈ S

If we let S = {µ(I) | I ∈ B(M) and I is 2δ-signi�cant}, Lemma 4.3.6 says
that the �rst condition in Hall's theorem is satis�ed1, so there is a matching γ :
B(M) 9 B(N) that matches each 2δ-signi�cant I ∈ B(M) with an element of
µ(I). By symmetry, there is also a matching τ : B(N) 9 B(M) that matches each
2δ-signi�cant J ∈ B(N) with an element of µ(J). Neither γ nor τ is guaranteed to
match all the 2δ-signi�cant elements of both B(M) and B(N), so we construct a
new matching σ : B(M) 9 B(N) that does.

If I ∈ B(M) is 2δ-signi�cant and of the form (τ ◦ γ)i(I ′) for some i ≥ 0 and 2δ-
signi�cant I ′ not in the image of τ , let σ(I) = γ(I). In particular, I ′ = (τ ◦γ)0(I ′).
Otherwise, let σ(I) = τ−1(I) if I is in the image of τ .

It is not hard to see that I cannot be written as (τ ◦ γ)i(I ′) for I ′ outside the
image of τ in more than one way, so σ is a well-de�ned function on a subset of
B(M) that includes the 2δ-signi�cant intervals.

Suppose σ(I) = σ(I ′), I 6= I ′. Then either σ(I) = γ(I) = τ−1(I ′) or σ(I) =
τ−1(I) = γ(I ′), let us assume the former. Then I is of the form (τ ◦ γ)i(I ′′) for a
2δ-signi�cant I ′′ not in the image of τ , and I ′ = (τ ◦γ)(I). Thus I ′ = (τ ◦γ)i+1(I ′′)
and σ(I ′) = γ(I ′) 6= τ−1(I ′), a contradiction. This shows that σ is injective.

1Strictly speaking, Lemma 4.3.6 says nothing about in�nite A, but the case with A countably

in�nite follows from the �nite cases, and since M is p.f.d., B(M) is countable.
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To show that σ is a δ-matching, it only remains to show that all 2δ-signi�cant
intervals J ∈ B(N) are in the image of σ. J is in coim τ , so either σ(τ(J)) = J ,
or τ(J) is of the form (τ ◦ γ)i(I) for some i ≥ 1 and 2δ-signi�cant I outside the
image of τ , and then J = σ(τ ◦ γ)i−1(I). Thus σ is a δ-matching, so Lemma 4.3.6
completes the proof of Theorem 4.3.1.

Proof of Lemma 4.3.6. Because ≤α is a preorder, we can order A = {I1, I2, . . . , Ir}
so that Ii ≤α Ii′ for all i ≤ i′. Write µ(A) = {J1, J2, . . . , Js}. For I ∈ B(M), we
have

φII ,2δ = πI(2δ)g(δ)f |I

= πI(2δ)

 ∑
J∈B(N)

g|JπJ

 (δ)f |I

=
∑

J∈B(N)

πI(2δ)g|J(δ)πJ(δ)f |I

=
∑

J∈B(N)

gJ,I(δ)fI,J .

(4.10)

Also,
∑
J∈B(N) gJ,I′(δ)fI,J = 0 for I 6= I ′ ∈ B(M), since φM,2δ is zero between

di�erent components of M . Lemma 4.3.4 says that if gJ,I′(δ)fI,J 6= 0 and I ≤α I ′,
then J is δ-interleaved with either I or J ′. This means that if i < i′, then

0 =
∑

J∈B(N)

gJ,Ii′ (δ)fIi,J

=
∑

J∈µ(A)

gJ,Ii′ (δ)fIi,J ,
(4.11)

as gJ,Ii′ (δ)fIi,J = 0 for all J that are not δ-interleaved with either Ii or Ii′ . Simi-
larly,

φII ,2δ =
∑

J∈B(N)

gJ,Ii(δ)fIi,J

=
∑

J∈µ(A)

gJ,Ii(δ)fIi,J .
(4.12)

Writing this in matrix form, we get

 gJ1,I1 (δ) ... gJs,I1 (δ)...
. . .

...
gJ1,Ir (δ) ... gJs,Ir (δ)

[ fI1,J1 ... fIr,J1
...

. . .
...

fI1,Js ... fIr,Js

]
=


φMI1,2δ

? ... ?

0 φMI2,2δ
... ?

...
...

. . .
...

0 0 ... φMIr,2δ


That is, on the right-hand side we have the internal morphisms of the Ii on the
diagonal, and 0 below the diagonal.
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Recall that a morphism between rectangle modules can be identi�ed with a k-
endomorphism, and that in our notation, fI,J and gJ,I are given by multiplication
by w(I, J) and w(J, I), respectively. For an arbitrary morphism ψ between rect-
angle modules, we introduce the notation w(ψ) = c if ψ is given by multiplication
by c. A consequence of Lemma 4.3.5 is that w(gJ,Ii′ (δ)fIi,J) = w(gJ,Ii′ )w(fIi,J) =
w(J, Ii)w(Ii′ , J) whenever Ii ≤α Ii′ , in particular if i ≤ i′. We get

1 = w
(
φII ,2δ

)
= w

 ∑
J∈µ(A)

gJ,Ii(δ)fIi,J


=

∑
J∈µ(A)

w(gJ,Ii(δ)fIi,J)

=
∑

J∈µ(A)

w(J, Ii)w(Ii, J),

(4.13)

and similarly 0 =
∑
J∈µ(A) w(J, Ii′)w(Ii, J) for i ≤ i′. Again we can interpret this

as a matrix equation:w(J1, I1) . . . w(Js, I1)
...

. . .
...

w(J1, Ir) . . . w(Js, Ir)


w(I1, J1) . . . w(Ir, J1)

...
. . .

...
w(I1, Js) . . . w(Ir, Js)

 =


1 ? . . . ?
0 1 . . . ?
...

...
. . .

...
0 0 . . . 1

 .
That is, the right-hand side is an r × r upper triangular matrix with 1's on the
diagonal. The right-hand side has rank |A| and the left-hand side has rank at most
|µ(A)|, so the lemma follows immediately from this equation.

4.4 Stability theorems for other posets

Given that we have proved the algebraic stability theorem for R-modules and we
have de�ned persistence modules for other posets, one can wonder if the algebraic
stability theorem for R-modules is a special case of a more general theorem that says
that an ε-interleaving between p.f.d. P -persistence modules M and N induces an
ε-matching between B(M) and B(N) for a broad class of posets P . One problem
with such a generalization is that p.f.d. modules are not interval decomposable
in general, even for very simple posets. The following is an example of a p.f.d.
P -module for a poset P with four points that is not interval decomposable.

k k2 k

k

(
1 0

) (
1
1

)

(
0 1

) (4.14)
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Given that such a simple example of a non-interval decomposable module exists, it
is hard to imagine that there are many posets P for which all p.f.d. P -modules are
interval decomposable. Another problem with generalizing the algebraic stability
theorem is that it is not clear how to de�ne the shift functors, which we use to
de�ne interleavings, for posets that do not have such a nice algebraic structure as
R.

There are some posets, however, where we might still hope for an algebraic
stability theorem. Let ZZ be the poset whose underlying set is Z, and m ≤ n holds
if and only if n is even and |m − n| ≤ 1. That is, we have · · · < −2 > −1 < 0 >
1 < 2 > . . . . We call ZZ-modules zigzag modules. We see that the modules we
described in section 2.3 are indeed zigzag modules by this de�nition. P.f.d. ZZ-
modules are interval decomposable [4], and one can de�ne ε-interleavings between
ZZ-modules [5]. In fact, combining the work in [5] and [3], one gets the analogue
of the algebraic stability theorem for ZZ-modules, too.

Shift functors can also be de�ned for Rn-modules for n ≥ 1. We de�ne the
poset structure on Rn by letting (a1, a2, . . . , an) ≤ (b1, b2, . . . , bn) if and only if
ai ≤ bi for all 1 ≤ i ≤ n. In other words, the poset Rn is the n-fold product of
the poset R with itself. For ε ∈ R, we abuse notation and write ε when we mean
(ε, ε, . . . , ε) ∈ Rn.

De�nition 4.4.1. For ε ∈ [0,∞), we de�ne the shift functor (·)(ε) : Rn-mod→
Rn-mod by letting M(ε) be the persistence module with M(ε)p = Mp+ε and
φM(ε)(p, q) = φM (p + ε, q + ε). For morphisms f : M → N , we de�ne f(ε) :
M(ε)→ N(ε) by f(ε)p = fp+ε.

Before we start talking about a stability result for Rn-modules for n ≥ 2, we
have to get a few things out of the way. Firstly, p.f.d. Rn-modules are not interval
decomposable in general; an example showing this can be constructed using the
same idea as the example above with the poset with four points. We can get around
this problem by assuming that the modules we work with are interval decomposable,
but that means that we exclude a lot of modules right o� the bat.

Secondly, an example given in [5] shows that for any constant C, there are
interval decomposable R2-modules M and N with B(M) and B(N) containing in
total three intervals such that dB(M,N) ≥ CdI(M,N). That means that we have
to put some restriction on which intervals we allow in the barcodes. One natural
choice is to consider convex intervals, and it was conjectured in an earlier version
of [5] that all ε-interleaved interval decomposable Rn-modules M and N for which
all the intervals in B(M) and B(N) are convex, are ε-matched. We present a
counterexample to this conjecture, which is also the reason why they have since
modi�ed it.

Example 4.4.2. Let B(M) = {I1, I2, I3} and B(N) = {J}, where

• I1 = (−3, 1)× (−1, 3)

• I2 = (−1, 3)× (−3, 1)

• I3 = (−1, 1)× (−1, 1)
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Figure 4.1: M and N . I1 and I2 are the light purple squares, I3 is deep purple,
and J is pink.

• J = (−2, 2)× (−2, 2).

See Figure 4.1. We can de�ne 1-interleaving morphisms f : M → N(1) and
g : N → M(1) by letting w(I1, J) = w(I2, J) = w(I3, J) = w(J, I1) = w(J, I2) = 1
and w(J, I3) = −1, where w is de�ned as in the proof of Theorem 4.3.1. On the
other hand, in any matching between B(M) and B(N) we have to leave either I1
or I2 unmatched, and they are ε-signi�cant for all ε < 4. In fact, any possible
matching between B(M) and B(N) is a 2-matching, but not an ε-matching for any
ε < 2. Thus dI(M,N) = 1 and dB(M,N) = 2.

In [3], we give a more complicated example with dB(M,N) = 3dI(M,N) and
prove dB(M,N) ≤ (2n− 1)dI(M,N) for interval decomposable Rn-modules whose
barcodes only contain rectangles, which are de�ned as intervals of the form I =
I1 × I2 × · · · × In, where I1, I2, . . . , In are R-intervals. Thus there exists a stability
result for a class of Rn-modules that is a generalization of the algebraic stability
theorem, though we only have dI = dB for n = 1.
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