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Abstract—The wireless access to any service in different con-
texts is nowadays taken for granted. However, the dependability
requirements are different for various services and contexts.
Critical services put high requirement on the service reliability,
i.e., the probability of no service interruption should be close to
one. Dual homing may be used to increase the service reliability
in a multi technology, multi operator wireless environment,
where the user’s mobility necessitates access point selections
and handovers. To allow the user to assess the risk of the
service session, a prediction of the service reliability is necessary.
This prediction must fulfil the need for the optimal sequence
of access point selections and handovers with regard to service
reliability and being computation efficient to accomplish the
need for the real-time operation. We demonstrate how genetic
algorithms (GA) may be used to predict and to improve the (near)
optimal service reliability by fast and simple heuristics, far more
computationally efficient than an Integer Linear Programming
(ILP) optimization.

Index Terms—Critical services, wireless networks, reliability,
genetic algorithms, optimization

I. INTRODUCTION

The evolution of wireless technologies, such as e.g., local
area network (WLAN), High Speed Packet Access (HSPA) and
Long Term Evolution (LTE) combined with the widespread
use of smartphones [1] have made the wireless the preferred
access service. Various contexts and services demand different
dependability requirements.

For critical services, like emergency handling, health care
services, energy control and surveillance/monitoring, the ser-
vice reliability is crucial. In such contexts, the probability of
no service interruption should be close to one. Dual homing
protocols, such as mobile stream control transmission protocol
[2] and Site multi homing by IPv6 Intermediation (SHIM6)
[3], may be used to increase the service reliability where the
diversity of the wireless accesses are utilized across different
technologies and network operators.

Networks are evolving and network topologies change
rapidly. As critical services may be started at any location there
is a need at run-time to predict and to identify the access points
and handovers along a projected route to allow the user to
assess the risk before starting the critical service. A projected
route is the physical movement of the user. Optional routes
may for instance by found by means of navigation tools. For
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Fig. 1. Example network with three network operators (A, B and C) and
their access points (Al and A2, B1 and CI respectively), with planned access
coverage (ellipses). Along a projected route (arrow) the user moves through
a number of virtual cells (hexagons).

each of these there is a probability that the service may be
completed without failures, i.e., no interrupts. A model for
prediction of service reliability of a dual homed critical service
is established [4].

The objective of this paper is to show that genetic algorithms
(GA) may be used to effectively combine simple and fast
heuristics to find an optimal or near optimal route. This ap-
proach closes the gap between the service reliability obtained
by straightforward heuristics and the optimal obtained by ILP
optimization, which is computationally too demanding in an
operational system.

A trajectory is defined as series of access points used for
each of the two radio connections for a dual homed critical
service along a projected route. Most handover algorithms and
dual homing protocols use local hop-by-hop based decisions
and do not consider all handovers during a service session. The
use of the optimal trajectory may be considered as a global
based handover strategy optimized for service reliability.

The service reliability is measured by the metric R(t,,) =
P(Tpp > t,,) where Tpp is time to first failure and ¢,
is the mission time. Assume a network scenario as depicted
in Fig.1. Planned access coverage, indicated by ellipses, is



provided by three operators named A, B, and C' with their
access points Al, A2, B1 and C1 respectively. The access
points may provide coverage from different technologies. An
arrow in Fig.1 represents the projected route. At the starting
location, the objective is at run-time to derive the trajectory
with (near) optimal service reliability.

The work in this paper is based on model for prediction
of service reliability of a dual homed critical service in a
multi technology, multi operator wireless environment, [4],
briefly outlined in Section II. This prediction model defines the
concept of virtual cells as limited geographical areas where the
radio conditions are homogenous. Handovers are performed
between the virtual cells and effectively limit the number of
trajectories for a projected route. Virtual cells are indexed
according to the order they are visited from 1 to m along
the projected route. Access points covering virtual cell d is
identified with the set b;. Let a trajectory be identified by
Sij = {(ilvjl)v R (id»jd)v CER (imvjm)} where id, Jd € bq,
iq # jq and i and j are the two connections for the dual
homed critical service. The user will traverse a number of
virtual cells, shown as hexagons in Fig.1, along the projected
route. The objective of this paper is to efficiently find the
trajectory with the (near) optimal service reliability, i.e.,

argmax R, (t,) (1)
Sij

In [5] the optimal trajectory was derived by ILP optimiza-
tion using the model from [4]. It was shown that increased
service reliability might be obtained with global handover
strategy compared with a local hop-by-hop strategy when
reliability is being optimized. Heuristics were proposed based
on Dijkstra [6] and Bhandari [7] for computation efficiency
on behalf of the optimality of the trajectory. We use GA
combined with results of the heuristics in [5] to improve
the (near) optimal trajectory while still being computational
efficient compared with an ILP optimization.

The term genetic algorithm was coined by Holland [8]. An
introduction to GA may be found in [9]. In [10] it is proposed
how GA may be used for finding (near) optimal all-terminal
network topology considering cost and reliability. A variable-
length chromosome and population sizing are presented in [11]
for shortest path routing. Both [10] and [11] pinpoint the chal-
lenges for efficient fitness function and control parameters. It is
possible to identify the optimal GA control parameters for the
desired optimization, but this may itself be a time demanding
task [12]. Repair functions are described in [11] and [13] for
chromosomes representing infeasible paths in networks. We
propose a GA where chromosomes have identical length for
a projected route, and the initial population is initialized with
chromosomes from heuristics to allow fast convergence. The
chromosome structure and the fitness function allow efficient
crossover and mutation procedures without complex repair.

The rest of the paper is organized as follows. First in
Section II we present the proposed model, while Section III
describes the proposed GA and functionality. Several network
scenarios are described and generated in IV with stochastic
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Fig. 2. State transition diagram for traversal of virtual cell d and handover
to cell d 4+ 1. Absorbing handover states (grey shaded) represent the initial
conditions for traversal of cell d 4+ 1. Transitions into handover states are
modelled as instantaneous transition given by S;;.

characteristics for verifying the performance of the GA in
section V. Section VI concludes the paper.

II. DEPENDABILITY MODEL OF A TRAJECTORY

In the following we describe how the reliability of a
trajectory of a dual homed critical service is predicted. The
reliability will be used as the basis for fitness value for the
chromosomes in the GA.

In [5] the reliability modelling of a trajectory is described
as a phased mission. Each phase corresponds to handover
from previous cell d — 1 and traversal of virtual cell d,
modelled as a continuous time discrete space Markov model
as given in Fig.2. The names of the states are according
to the state of the two connections of a trajectory S;;. For
instance, the state OK/OK indicates that both connections
are working and the state FH/OH indicates that connection
7 has a failed radio connection and executing handover while
connection j has a working radio connection and executing
a handover. The dependability parameters and attributes are
obtained from measurement reports for user equipment and
signalling in the networks, as explained in [4]. Handover
states Qp = {5,6,...,13} are grey, while the white ones
are coverage states Qo = {1,2,3,4} since loss of radio
connection is the main cause of failure within a virtual cell.
Transitions into €z are modelled as instantaneous transition
given by S;; and will be described later in this section. The
change from phase d to d + 1 takes place at time t; and the
sojourn time of phase d is Tj.

To keep the notation simple, we will in the rest of the paper
use the index ¢4 for dependability parameters and attributes for
an access point ¢4 in a virtual cell d, i.e., Ajq,q — Aiq. In Fig.2
the indexes k = iq, k = igy1 and | = jg, | = jgi1. A radio
connection between a user equipment and an access point 74
covering virtual cell d has a constant radio coverage failure
intensity A;,. The radio coverage from different access points



fail independently. When a radio connection to access point
iq has been lost, the time to recover is n.e.d with mean 1/,
in cell d. Handover time from ¢4 to ¢4+ is n.e.d. with mean
1/B;4iq,, and may fail with a probability of p;,;,,, where
Qigias1 = 1—Digia,, - In case of dual handovers, the handovers
fail independently.

Based on the model and results from [5], the reliability of
a trajectory may be written as

Rs, (tm_) = Ray(T1_) [[ Ba (Ta_|Trr > ta-1)

d=2

2

where Rd(Td_ |Trr > tq—1) represents the reliability of phase
d. The notations t4_ and t4, are used to indicate instants
immediately before and after the handover that takes place.
Transition intensity matrices for Fig.2 may be organized as

A 0 0 A
AC:[ 80 0} andAH:{O Ag;]

where Agc is the transition intensity matrix for Q¢, Agpy
is the transition intensity matrix for 0y and Apc is the
transition intensity matrix for intensities from Qpy to Qc.
As described in [4], the approximated normalized tran-
sient probability of working states p(Ty_|Trp > tq) =
{plap% 0,74,0,0,0,0,0,0, O}Tv where p2 = pl)\id/;u’id and
DPa = P1Aj, /1y, and p1 + P2 + ps = 1. The approximation
holds as long as time spent in virtual cell 7y is more than the
largest of 4/p;, and 4/p;,.

By neglecting the handover time, the state just after han-
dover is given as p(Ty,) = (Mg )p(Ty_|Trr > ta,la)
where Ily is the transition probability matrix of Ay and
I = lig N igs1llllja N Ja+1| is the indicator function for
the handovers. Only 3 operations are necessary since 3 is the
largest path from an initial to an absorbing state in f. The
instantaneous transitions from Q¢ to Qg are given by

3)

P(Ty_|Trr > tq,Ig = 11) = p(Ty_|Trr > tq) 4)
p(Ty_|Tpp > tq, Iy =01) = [0,...,51,0,0,p4,0,0,0,0,p5]"
p(Ty_|Tpp > ta, Iy =10) = [0,...,p4,0,0,p2,p1,0,0]"
p(Ty_|Tpp > tq, Iy =00) = [0,...,p4,0,0,p1,0,0,p,0]"

The traversal of cell d is given by Acp(t) = dp(t)/dt
with the initial condition p(0). For first phase p(0) =
{1OOOOOOOOOOOO}Tandforphasedisp()

{p1(Ta-1,),p2(Tu-1,),p3(Tu-1, ), pa(Ta-1,),0,...,0}".
This yields the reliability of phase d
Ra(Ty |Trp > ta—1) =1—ps(Ty ) &)

When the (near) optimal trajectory is found by using the
approximation given by (5), the actual trajectory reliability
, Rs,; (tm_), may be calculated by using p(Ty_|Trr > tq) =
{pl (Td_ )7p2(Td_ )7 07p4(Td_ )a 0; 0,0, 07 Oa Oa O}T

In the following we will describe how Rsij(tm_) is used
by GA. '
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Fig. 3. A graph model of the example network in Fig.3 with sketch indicating
all possible trajectories and a chromosome representing one specific trajectory.

III. DESCRIPTION OF GA

Each of the main procedures in GA will now be described
along with the use of the heuristics in [5] to improve the
(near) optimal trajectory for a dual homed critical services.
First the chromosome structure and the related fitness value
are introduced.

A. Chromosome and fitness

It is seen that we may let the trajectory S;; represents
a chromosome, where (i4,jq) being the d’th gene-pair. The
example network in Fig.1 is represented by a graph model
as shown in Fig.3 that indicates all possible trajectories. One
specific trajectory is shown as a chromosome in the figure
where its third gene-pair is (A2, B1).

A chromosome S;; is given a fitness value according to the
function 1

1- Rsij (tm—)
The chromosome representing the trajectory with the highest
reliability is given by arg I\;lax fs

fsi; = (6)

For making the GA computatlonally efficient the approx-
imation of the reliability derived in (2) is used. The exact
service reliability could be used for the chromosome fitness,
but this would be far more computation demanding.

B. Initialization

The initialization procedure introduces a population, called

generation 1 as G, with |G1| = n feasible chromosomes,
where each chromosome S;; fulfils the constraints

|Si5] = m, V(i j) ()

V(ia, ja) € Sij, where iq,jq € bg,Vd=1,....,m  (8)

V(iq,ja) € Sij, where iq # jq,Vd=1,....,m 9)

The size of the population, n, is be kept constant during the
evolution of the population.

The goal with the GA is to close the gap between the service
reliability of the trajectories obtained with the heuristics and
ILP optimization in [5] and still be computation efficient. The
initial population may therefore be initialized with chromo-
somes representing the trajectories obtained with heuristics
(further explained in section V). A random initialized pop-
ulation may also be generated to benchmark the use of the
heuristics initialization.
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Fig. 4. Example of crossover between two chromosomes of Fig.3.

C. Selection

The selection is either a roulette or a tournament process.
Both selection processes allow some chromosomes to be
selected several times and others to not be selected at all.

For the roulette selection the probability pg,, for choosing
the chromosome S;; from the population G. is proportional
to its relative fitness, i.e.,

fs,

- Z fSkl

VSkie€Ge

Psi; (10)

From generation G, n chromosomes are randomly selected
according to their relative fitness and constitutes the interme-
diate population G..

For the tournament selection process, n pairs of chromo-
somes are compared and the chromosome with the highest
fitness from each pair value is selected. A chromosome is
appointed with probability 1/n for a tournament. The winners
of all tournaments constitute the intermediate population G..

D. Crossover

After the selection process described in Subsection III-C the
intermediate population G. undergoes a crossover procedure.
From the randomly ordered set of chromosomes consecu-
tive pairs of chromosomes are selected for crossover with
an ii. probability p.. Say that the chromosomes S;; and
Sy are selected for crossover. The crossover point z ~
uniform[1, m] and the two new chromosomes are obtained
as S%j {(ilaj1)7 EEE) (k"c; lm)a s (km7 lm)} and Sl}[ =
{(k1»l1)7 ) (ixajm)a ) (im»jm)}'

In Fig.4 the crossover operation between a pair of chromo-
somes from Fig.3 is depicted. At the left hand side of the figure
the marked chromosomes and the gene-pair position 2 for
crossover are identified. The halves defined by the crossover
point are interchanged between the chromosomes, as shown at
the right hand side of the figure. Note that since a handover
between i¢q € by and any i441 € bg41 is possible and since
|Sij| = |Ski| there is no need for a repair after a crossover.

E. Mutation

After the crossover procedure the intermediate population
G. undergoes a mutation procedure. Unlike the crossover, the
mutation procedure allows for mutation of multiple genes in a
chromosome. Each gene of a chromosome is mutated with an
i.i. probability p,,. Define an indicator function I(ij) for the
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Fig. 5. Example of mutation at two genes of a chromosome of Fig.3.

chromosome S,; where I(iq) = 1 if mutation is introduced for
gene iy of connection 7. Likewise is defined for I(j;). Let’s
say a mutation is introduced only in gene i4 of chromosome
Si;. If |bg| > 2 the mutated chromosome, Silj(” ). becomes

SZIJ(”) - {(ilajl)v D) (kdvjd)a e (lma]m)} where kd ~
uniform [bg \ {ia,ja}]. For the cases where |bs| = 2 then
S = {(i1,51); - (asia)s - -, (im, m)}. This may be

seen as a simple repair for not violating constraint (9).

A mutation of a chromosome S;; from Fig.3 is shown in
Fig.5. Here the mutations are marked at the lower half of gene-
pair 1 and at the upper half of gene-pair 2, i.e., I(j;) = 1 and
I(iz) = 1, as shown at the left hand side of the figure. At
the right hand side of the figure the mutated genes are shaded
black for the mutated chromosome Silj(” ). For instance, to
mutate gene io the possible access points are bs \ {Al, B1}
that reduces to {C'1} since by = {Al, B1,C1}.

FE. Elitism

In our implementation of the GA we can use none, simple
or global elitism. In all cases the best fitted chromosome found
in any generation is stored.

Without elitism the new population is equal the intermediate
population after the crossover and mutation procedures, where
Gc+1 = Gc.

When simple elitism is used the new population is the
best fitted chromosomes from previous population and n — 1
best chromosomes from intermediate population, i.e., Ge41 =
(Si; U (éc \ Szy), where S;; = argmax fs,,, VSu € G, and
Szy = argmin fs,,, VS € G..

With global elitism the new population is the n best
fitted chromosomes from the previous and the intermediate
population.

IV. REFERENCE CASES FOR COMPARISONS

To compare the reliability of the trajectory found by GA
with the optimal trajectory found by ILP optimization, we
define a number of scenario-classes adapted from [5]. The
scenario-classes are basis for scenario-instances that represent
a graph model of a network, similar as shown in Fig.3.

In [5] it is described six scenario-classes, each with a de-
fined number of virtual cells and network operators providing
radio coverage with maximum one access point each per
virtual cell. A network operator provides radio coverage for
successive virtual cells along the projected route where one
access point may cover several successive virtual cells. In
cases where a network operator provides coverage for only
a part of the projected route, the first virtual cell is randomly
selected. The scenario-class definitions are given in Table I



TABLE I
SCENARIO-CLASSES AND OPERATOR ACCESS COVERAGE

TABLE III
OVERVIEW OF TOTAL 22 DIFFERENT GA CONTROL PARAMETER SETS

Characteristics
Coverage Operator A  Coverage Operator B Coverage Operator C  Coverage Operator D
Class Cells || cells per AP total cells | cells per AP total cells | cells per AP total cells | cells per AP total cells
1 51| U231 5 2 2 5 5
2 10 || as class 1 10 as class 1 4 as class 1 10
3 15| as class 1 15 as class 1 6 as class 1 15
4 5[ U231 5 2 2 5 5 U[1,2]
5 10 || as class 4 10 as class 4 4 as class 4 10 as class 4 4
6 15 || as class 4 15 as class 4 6 as class 4 15 as class 4 6
TABLE I
DEPENDABILITY PARAMETERS FOR SCENARIO-INSTANCES
Values (for X, pu and 3 the unit is s — 1)
. A . B . el ; D
Parameters || g4 Ebd+1 iq41 Ebd+1 id41 Ebd+1 id+1 Ebd+1
Nigia U[1/998,2/998] U[2/998,5/998] U[1/998,3/998] U[1/998,2/998]
migy, ||v0/ac1/2) Ul1/4,1/2] Ul1/4,1/2] Ul1/4,1/2]
‘C_D'u Pigigir U[0.01,0.02] U[0.01, 0.04] U[0.01,0.03] U[0.01, 0.04]
w
S Bigigy, ||[UA 8 Ul2, 4] Ul4, 8] U(2, 4]
Qs Pigigyr U[0.01, 0.04] U[0.01, 0.03] U[0.01, 0.04] U[0.01, 0.05]
w
T Bigigy, ||VIB6) Ul4, 8] U3, 6] U3, 6]
O Pigigyr U[0.01,0.03] U[0.01, 0.04] U[0.01, 0.04] U[0.01, 0.04]
w
3 ’BidicH»l U[2, 4] U4, 8] U4, 8] U[2, 4]
Q= Pigigyy U[0.01, 0.04] U[0.01, 0.02] U[0.01, 0.02] U[0.01,0.03]
w
S PR
J ﬁld"d-f—l U([3, 6] U[3, 6] U[2, 4] Ul4, 8]

Note that only network operators A and C provide coverage
for all virtual cells. From each of the scenario-classes 100
scenario-instances were created with dependability parameters
as defined in Table II where all parameters are i.i.d. uniform
distributions and where sojourn time 7} in each virtual cell is
i.i.d. ~ uniform[20, 30] seconds. The access points covering
a virtual cell d is given by by = b4 |JbZ JbY UbL where
b7, b, bS and bE are the set of access points for the different
network operators covering virtual cell d.

For 80 of total 600 scenario-instances, none of the seven
heuristics in [5] found the optimal trajectory as identified
by the ILP optimization. These 80 scenario-instances are the
reference cases used for comparing the performance of GA
with the heuristics and ILP. The reference cases are numbered
from 1 to 80, where reference case numbered 1 belongs to
scenario-class 1, references 2,...,10 to class 3, 11,...,14 to
class 4, 15,...,36 to class 5 and 37,...,80 to class 6.

V. RESULTS

In the following, the reliability of the trajectories for differ-
ent scenario-instances found by the GAs are compared with
the optimal trajectories as identified by the ILP optimization.
Details of the ILP optimization are found in [5].

A total of 22 different GA control parameter sets were
defined and are summarized in Table III. The sets are named
according to values of the control parameters, for example
R-H-95-03-G defines roulette (R) selection, heuristics (H)
initialization, p. = 0.95, p,,, = 0.03 and global (G) elitism.
The heuristics initialization refers to an initial population with
the seven chromosomes representing the results from the seven

Selection [ Initialization [ Crossover, pc [ Mutation, p [ Elitism

{Roulette, Tournament } | Heuristics 095 0.01 {None, Simple, Global }
{Roulette,Tournament } | Heuristics 0.70 0.01 {None, Simple, Global }
{Roulette, Tournament} | Random 095 0.01 {None, Global }
{Roulette,Tournament } | Random 0.70 0.001 {None, Global }
{Roulette, Tournament } | Heuristics 0.95 0.03 Global

heuristics in [5] along with 93 randomly created chromosomes.
All parameters sets have a population size of n = 100.

For each of the reference cases as defined in Section IV 100
replications of the GA are run with exit criteria of maximum
100 generations or when the difference between the max
and average fitness of a generation is less than 107°. The
GA was implemented in Mathematica 8 [14] running on a
PowerEdge M610 blade with 2.67GHz quad-core CPU with
24GB memory and a 64 bits Linux kernel.

A. Heuristics (H) vs. random (R) initialization

The objective is to investigate whether the initialization
based on the heuristics, allows the GA to find the optimal
trajectory as identified by an ILP optimization or a (near)
optimal trajectory better than those found by the heuristics. A
heuristics initialized GA provides at least as reliable trajectory
as the best of the heuristics since the best fitted chromosome
are always stored during the evolution of the population.

To visualise the reliability of the trajectories obtained by
the GA with the parameter set R-H-95-03-G for the different
reference cases, a boxplot is presented in Fig.6. The boxplot
includes the 25% and 75% quantiles with the median and
outliers of the difference between reliability of the trajec-
tories found by the each replication of R-H-95-03-G and
the optimal trajectory found by the ILP optimization, i.e.,
Rs,;(tm_)rp — Rs,, (tm_)ca. The reference cases within
each scenario-class are sorted according to the medians of the
differences. In the figure the differences between the trajectory
reliability obtained by ILP optimization and the best of the
heuristics are depicted as a dashed line for each reference case.
The reliability of the optimal trajectory identified by the ILP
optimization is represented with the solid line in the figure. As
may be seen in Fig. 6, the parameter set R-H-95-03-G finds the
optimal trajectories except for the reference case 73 and for
the reference case other than 78,79 and 80, the 75% quantiles
of the differences are less than 1-10~%. As indicated in Fig. 6,
the differences of the reliability of the trajectories found by
ILP optimization and the set R-H-95-03-G are not directly
related to the reliability of the optimal trajectory identified by
the ILP optimization.

The parameter set R-H-95-03-G obtained the overall best
results, determined by medians and standard deviations of the
reliability of the trajectories for the reference cases, compared
with other parameter sets using heuristics initialization, as
classified in Table III. It may be noted that a) GA with
parameter sets using heuristics initialization without elitism
obtained significantly worse results than the R-H-95-03-G
while b) the sets T-H-95-03-G, R-H-95-01-G and T-H-95-01-G
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Fig. 6. Boxplot of Rg,; (tm_)rLp — Rs,, (tm_)ca with median and
outliers for parameter set R-H-95-03-G. The dashed line represents the
differences between the ILP optimization and the best of the heuristics. The
solid line represents the reliability of the optimal trajectory identified by the
ILP optimization. Observe that the optimal trajectories except for the reference
case 73 are found. In addition, except for the reference case 78,79, 80, the
75% quantiles of the differences are less than 10~%.

obtained slightly reduced results, but specific reduced results
for reference case 80.

To investigate whether the global elitism combined with
heuristics initialization cause the GA to converge to local
optimums, the initialization based on heuristics was omitted.
The resulting boxplot is shown in Fig. 7 for the set R-R-
95-01-G. As may be seen, the overall results, determined by
medians and quantiles for the trajectories reliabilities obtained,
get significantly worse than the set R-H-95-03-G. Observe
that the parameter set R-R-95-01-G only rarely finds the
optimal solution as identified by the ILP optimization and
significantly less frequent than the set R-H-095-03-G. For the
parameter sets with random initialization without elitism the
results were even significantly worse than the set R-R-95-01-
G. Using simple elitism, the parameter sets T-H-95-01-S and
R-H-95-01-S, improved the means and standard deviation of
the trajectories reliabilities for the reference cases 78,79 and
80, but overall they found less optimal trajectories for the other
reference cases.

With the GA parameters sets and the reference cases studied
these results indicate that a GA with heuristics initialization
combined with global elitism is a good candidate for finding
(near) optimal trajectories.

B. Computation effort

In Section V-A the reliability of a trajectory found by GA
was compared with the optimal trajectory found by the ILP
optimization. We now compared the computation effort of the
GA compared with an ILP optimization [5].

As indicated in Fig.6, a number of replications of the GA
may be needed to ensure that the (near) optimal trajectory
is found for each of the reference cases. The difference of
the reliability of the trajectories found by ILP optimization
as obtained by the percentage of all replications of the set
R-H-95-03-G is depicted in Fig. 8. Similar differences are
indicated for the best of the seven heuristics for each reference
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Fig. 7. Boxplot of Rg,; (tm_)rLp — Rs,, (tm_)ca with median and

outliers for parameter set'R-R-95-01-G. Observe that the parameter set R-
R-95-01-G only rarely finds the to the optimal solution as identified by ILP
optimization and significantly less frequent than the set R-H-095-03-G.

case. Likewise, the Fig. 8 depicts the differences for scenario-
class 6 only for both the set R-H-95-03-G and best of the
seven heuristics. As may be seen in the figure, approximately
80% of all R-H-95-03-G replications find the same trajectory
as the ILP optimization for all scenario-classes and scenario-
class 6 only. On the opposite side, approximately 80% of the
heuristics have differences of more than 1-1074.

The exact time consumption is not of the main interest,
but how the computation effort changes with increasing com-
plexity of the scenario-instances. For having an equal HW
platform for the computation effort comparisons, the ILP
optimizations in [5] were recomputed with the same HW as the
GA implementation and the heuristics. The ILP optimizations
were solved with the modelling language AMPL, version
20131213, with the commercial solver Gurobi, version 5.6.0.

The time complexity of the GA with parameter set R-H-
95-03-G is analysed as follows. The heuristics initialization is
dominated by the Bhandari algorithm which takes O(b+m)?
time [5], where b = |[J}__; ba|. For the GA the roulette wheel
selection takes O(nlogn) time, crossover operation O(n)
time, mutation operation O(nm) time and elitism O(nlogn)
time. Combined together, the GA with parameter set R-H-95-
03-G takes O(b +m)? + O(nm) time, where O(nm) is the
time needed for each replication.

The mean computation effort for one replication of GA with
the parameter sets R-H-95-03-G and R-R-95-01-G is depicted
in Fig.9 for each of the reference cases. The computation time
for ILP optimization and total computation time for the heuris-
tics are also indicated. For a GA with heuristics initialization,
the computation time for the heuristics is needed regardless
of the number of replications. The mean computation time is
comparable when using R-H-95-03-G and R-R-95-01-G. As
may be observed in the figure, the computation time correlates
with the complexity of the scenario-classes.

As indicated in Fig.9 the ILP optimization computation
times for the scenario-class 6 reference cases have significant
differences, ranging from approximately 150 seconds to more
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Fig. 8. The difference of the reliability of the trajectories found by ILP

optimization as obtained by the percentage of all replications and the set R-
H-95-03-G and the best of the heuristics. Observe that approximately 80% of
all R-H-95-03-G replications find the same trajectory as the ILP optimization,
while 80% of the heuristics have differences of more than 1- 1074

than 3000 seconds. The ILP optimization computation time
is approximately five times higher for a class 5 instance than
a class 4 instance, and on average approximately ten times
higher for a class 6 instance than a class 5 instance. The
GAs with the given parameter sets are not that sensitive to
the complexity of the reference cases as the ILP optimiza-
tion. For instance, the set R-H-95-03-G computation effort is
approximately 2.5 times higher for a class 6 instance than a
class 5 instance. When using random initialization with no
elitism the R-R-95-01-N increased the computation time with
approximately five times compared with the R-H-95-03-G.

Given the mean computation time for one replication of
R-H-95-03-G combined with the percentage of replications
obtaining the optimal trajectory, this indicates that a better
(near) optimal trajectory may be found by the GA than the
heuristics alone and with less computation effort than ILP
optimization. For instance, using the results depicted in Fig.8
the number of replications needed by the R-H-95-03-G to
find the optimal solution may be estimated as independent
Bernoulli trials with success probability of 80%.

VI. CONCLUSION

For critical service the probability of no service interruption
should be close to one. The use of the proposed GA is com-
putationally efficient. In most cases it finds optimal or close
to optimal trajectories when seeded by simple heuristics. This
approach is not computationally demanding, i.e., very fast, and
hence, it is extremely useful for practical implementation. A
few cases are identified, where there is a notable gap between
what is found by this method and the optimal trajectories.
These are studied in depth, and we have not been able to
get a significant improvement by using the full potential of
GA, through large initial populations, many replications and
parameter tuning.

The proposed method is a very good trade off between com-
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Fig. 9. The mean computation effort for GA with parameter sets R-H-95-03-
G and R-R-95-01-G. The computation effort for ILP optimization and total
time for the heuristics are also shown. Observe that the heuristics and the GA
are less sensitive to the scenario-class complexity than the ILP optimization.

putationally efficiency and optimality of the found trajectory.
It is sufficiently accurate and efficient for use in provision of
dual homed wireless critical services with non stationary user
equipment.
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