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Chapter 1. Introduction 

 

The Barents Sea Shelf is located in northernmost Europe and extends from the 

eastern boundary of North Atlantic and Svalbard archipelago in the west to Novaya 

Zemlya in the east, over a distance of about 1000 km (Fig. 1.1). In the west and 

north, the Barents Sea is bounded by Cenozoic passive margins. The Barents Sea is 

divided into the eastern Barents Sea belonging to Russia and the Norwegian western 

Barents Sea. The eastern and western continental shelves have very different basin 

structures with long-wavelength basins in the east and narrower rift basins in the 

west, more particularly in the southwestern part of the Barents Shelf. In this area, 

sedimentary rocks in the basins range in age from Late Palaeozoic to Quaternary. 

Locally, the sedimentary rock successions have a thickness of more than 14 km.  

 

 

Figure 1.1: Barents Sea shelf and surrounding land masses: bathymetry-topography. 

The study area is the southwestern (SW) Barents Sea (69 °N – 75 °N and 13 °E – 30 

°E). The thin black lines show the tectonic units as defined by the Norwegian 

Petroleum Directorate). 
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Exploration of the Barents Sea is of increasing interest for academic and economic 

reasons due to the hydrocarbon potential of the area (Doré, 1995; Gautier et al., 

2009). Among the productive areas, the eastern Barents Sea sedimentary basins 

have yielded significant gas reserves.  

In the western Barents Sea, exploration efforts were focused on the Finnmark 

Platform, the Nordkapp Basin and the Western Margin. The first major discovery was 

the Snøhvit gas field in the middle of the 80s and the last was the Goliath oil field 

discovered in 2000. 

In order to improve the geological knowledge mandatory to permit new discoveries, 

numerous geological and geophysical studies have been funded in Norway during 

the last 30 years. The present study aims to increase the understanding of the 

geology of the Norwegian Barents Shelf and to optimise the choice of the exploration 

focus. This study has been carried out as part of the project HeatBar (Basement Heat 

Generation and Heat Flow in the western Barents Sea – Importance for hydrocarbon 

systems) and has been funded by the PETROMAKS programme of the Research 

Council of Norway and StatoilHydro. 

The thesis is motivated by the observation that the maturation of 

hydrocarbonreservoirs is dependent on the paleo-temperatures, which are influenced 

among other things by heat production in the basement (e.g. Nadeau et al., 2005). 

Therefore, knowledge of the basement is of huge importance to estimate the thermal 

state of sedimentary basins. The thesis aims at characterising the basement 

lithological variations underlying the deep basins and understanding the relationships 

between structural highs and basins and the deep crustal configuration. 

The characterisation of the basement structure and lithology has also allowed a re-

assessment of the offshore prolongation of the Caledonian structures observed 

onshore Norway. The tectonic framework proposed has implication for the Mesozoic 

to Cenozoic sedimentary basin evolution. 

This thesis presents crustal integrated modelling by implementing a procedure that 

couples 2D and 3D joint gravity and magnetic modelling with isostatic and thermal 

analysis. The integrated modelling of aeromagnetic, gravity, and seismic data 

constrains the basement architecture as well as the intra-basement lithology 

variations. Thermal modelling involving joint modelling of the geoid, gravity and 

topography data permits testing the crustal structure obtained by joint gravity and 

magnetic modelling in terms of surface heat flow estimation.  
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The following section starts with an introduction to the different geological topics 

addressed in the thesis. Then, the theoretical background regarding potential field 

forward modelling, not presented in the individual chapter is developed. At the end, I 

describe in short the content of the individual chapters.  

 

1.1 Topics addressed in the thesis  

 

1.1.1 Basement structure and composition 

From seismic studies it has been shown that the basement in the western Barents 

Sea is characterized by structural highs and lows (e.g., Faleide et al., 1988, 1991, 

1993, 1996; Gabrielsen et al., 1984, 1990).  However, the crystalline basement is 

often difficult to recognize on seismic sections (e.g. Hospers and Ediriweera, 1991) 

due to low acoustic impedance contrast between sedimentary rocks and basement, 

multiples and signal-to-noise ratio at greater depths. 

 

Gravity and magnetic data are potential fields containing, among other signals, the 

signature of the top basement configuration. Due to the ambiguity of the gravity and 

magnetic fields interpretation inherent to the depth and shape of the density contrast 

and magnetic source, respectively; the interpretation of these fields requires 

constraining data. Therefore, in recent studies, the basement structures offshore are 

indirectly investigated through the combination of potential field data with seismic 

reflection and refraction data in addition to well data penetrating the top basement. 

Also, samples from the closest onshore area to the study area can provide 

petrophysical values useful for modelling leading to proposition of onshore-offshore 

correlations. 

 

The Geological Survey of Norway (NGU) has covered large parts of the Barents Sea 

and Svalbard with aeromagnetic measurements (Åm, 1975; Skilbrei, 1990, 2000; 

Olesen et al., 2006), which provide insights into the basement geometry. In the 

southwestern Barents Sea, two different basement surfaces were first mapped from 

aeromagnetic data by Åm (1975). A relatively shallow "refraction and magnetic 

basement" surface was interpreted to represent the top of the Palaeozoic rocks, and 
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a deeper "magnetic basement surface" was considered to represent the top of the 

Precambrian rocks.  

  

Efforts have previously been made to improve the depth-to-top basement estimates 

from combination of seismic information and 2D gravity modelling (Gudlaugsson et 

al., 1987, 1994, 1998; Breivik et al., 2002, 2003, 2005; Mjelde et al., 2002; Ritzmann 

et al., 2004, 2007) giving rise to a new generation of depth to top basement maps 

constrained by a sparse net of 2D refraction and reflection seismic data (Skilbrei, 

1991, 1995; Ritzmann et al., 2007).  

 

1.1.2 The Barents Sea basins evolution 

Extensive work regarding the southwestern Barents Sea basins initiated at 

Palaeozoic times (Ziegler, 1988; Doré, 1991; Gudlaugsson et al, 1998; Ritzmann et 

al., 2007) and their later development at Mesozoic and Cenozoic times (Faleide et 

al., 1988, 1993, 1996; Breivik et al., 1998; Gabrielsen et al., 1984, 1990) has been 

carried out. These studies mainly proposed basin evolution models based on seismic 

interpretation of the sedimentary reflectors and lead to estimation of time of the 

basins formation. Nevertheless, due to the lack of good crustal imaging, little is 

known about the rifting processes at the origin of the southwestern Barents Sea 

basins and no clear reason of the diversity of basin orientation is proposed in the 

literature. Also, the crustal stretching history remains poorly understood.  

 

1.1.3 Thermal state of the Barents Shelf lithosphere 

The thermal state of the lithosphere reflects the tectonic history and geological 

processes controlling its evolution through time. The maturation of organic matter in 

the sedimentary succession is linked to the present and past temperature. Despite 

the importance of addressing these issues and in spite of the increasing industrial 

interest in the Barents Sea, a model of the thermal state of this area had previously 

not been generated. For the study area, only few heat flow measurements have been 

collected in shallow wells made by IKU in the 80s (Zielinski et al., 1986; Sættem et 

al., 1988; Løseth et al., 1992). These data can help constraining surface heat flow 
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estimations. The new knowledge regarding basement structure and composition 

brought by the presented study found the basis for an improved heat flow modelling. 

 

1.1.4 Prolongation of the Caledonian structures in the Barents Sea 

Plate reconstruction and earlier geological models supported the idea of Norwegian 

Caledonides propagating northward through the Barents Shelf. Three main 

geometries of this Barentsian extension have been proposed.  

 

The geophysical studies of Breivik et al. (2002, 2003 and 2005) (Fig. 1.2) led them to 

propose a two branches extension with a NE-trending orogen lying to the east of 

Franz Josef Land and a NNW-trending orogen including the Bjørnøya Island and 

Svalbard. 
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Figure 1.2: The Barents Sea Shelf in the Late Permian-Early Trias (245 Ma). The 

extension of the Timanides, Caledonides, Ellesmerides and Uralides ranges, as well 

as the main sedimentary basins, are represented. FJL (Franz Josef Land), BFZ 

(Billefjorden Fault Zone), TKFZ (Trollfjorden-Komagelva Fault Zone), NZ (Novaya 

Zemlya). The interpreted offshore prolongation of the Norwegian Caledonides into 

the Barents Sea as proposed by Gee (2005) is schematically represented with the 

red dashed lines. The proposed Caledonian sutures by Breivik et al. (2005) based on 

OBS profiles by Breivik et al. (2002, 2003 and 2005) and the Caledonidian model 

modified from Gudlaugsson et al. (1998) are represented with the  green dashed 

lines.  
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Another hypothesis has been developed by Gee and co-workers (Gee, 2005; Gee et 

al., 2006) based on geological investigations including a careful analysis of outcrops 

from all around the Barents Sea (Roberts and Gee 1985; Stephens and Gee 1989; 

Gee et al., 1995; Gee and Pease, 2004; Gee and Tebenkov, 2004; Gee, 2005; Gee 

and Stephenson, 2006; Gee et al., 2006). In their model based on differentiation 

between terranes from Laurentia and Baltica, they propose a one-branch extension 

with a Caledonian suture trending NE and located between the Svalbard and Franz 

Josef Land (Fig. 1.2). 

 

Finally, on the basis of integrated geophysical data analysis Ritzmann and Faleide 

(2007) proposed an offshore continuation of the Caledonides into the Barents Sea 

with Caledonian structures widening substantially in the southwestern Barents Sea 

(Fig. 1.3).   
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Figure 1.3: Map showing the tectonic units of the western Barents Sea, southwest 

Barents Sea (SWBS) 1–3 and northwest Barents Sea (NWBS) 1/2, according to the 

geophysical data interpretation (picture from Ritzmann and Faleide, 2007). Thick grey 

lines are main boundaries. Dots labeled with G*/M* are selected gravity and magnetic 

anomalies. Lineaments suggested from earlier studies are labeled with S*. The thin 

dashed lines in the surrounding of S4 are mapped by gravity and magnetic data and 

outline a possible connection of the Olga Basin main thrust to the units SWBS 2/3. 

The NW-SE trending thrust in the center of the plot is constrained by a steep Moho 

topography along profile IKU-F oriented towards the Trollfjord-Komagelva Fault Zone 

(arrow). Unit SWBS 3 and the onshore regions comprising the Lower to Upper 

Allochthons have affinity to Baltica. Unit SWBS 2 is covered by the Scandian 

Uppermost Allochthon. East of the Troms-Finnmark Fault Complex (TFFC), 

Precambrian rocks were possibly overlain by Uppermost Allochthon rocks prior to 
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their uplift in the Late Jurassic–Early Cretaceous (horizontal hatched). Unit SWBS 1 

is a Laurentian fragment.  

 

The state of the art potential field models as well as the modern seismic profile 

interpreted here focus on deciphering the crustal domains based on their density and 

magnetic properties. Particularly, the models intend at deciphering between Laurentia 

and Baltica terranes involved during the Caledonian orogeny. The suture between 

these terranes is also seeked. Suture zones have a width from few hundred meters 

to a couple of kilometers. They can be networks of mylonitic shear zones and 

associated brittle fault zones. The Caledonian suture is probably an ensemble of 

igneous intrusions and tectonic lenses of all kind of lithologies, from plutonic rocks to 

ophiolitic fragments inherited from the former ocean separating Laurentia and Baltica 

and the colliding terranes. More specifically, the Caledonian suture zone may involve 

metamorphic gneiss complexes originating from large volumes of crust buried during 

the orogeny. Because of the Western Gneiss Region outcropping in southern Norway 

(Cuthbert et al., 2000), we do not exclude a possible eclogisation of the rocks 

involved in the Caledonian suture. In consequence, the Caledonian suture is likely 

made of high-density rocks (2950-3300 kg/m3). Due to the variety of rocks involved 

in the suture and the uncertainty regarding the distribution and degree of 

metamorphism reached by these rocks, the magnetic properties are uncertain. 

Nevertheless, a suture zone may separate terranes of contrasted magnetic 

properties and becomes a major weakness zone within the crust. 

 

 

1.2 Theoretical background  

 

In the following I will outline in short the theoretical background for the studies 

presented in the thesis.  

 

1.2.1 Potential fields 

Magnetic and gravitational attractions are potential fields. A potential field is a vector 

fields varying in three dimensions that can be described by (Blakely, 1996): 
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Where W is the work required to move the particle from point P0 to P. A potential field 

is conservative, thus, its work is independent of the path between P and P0 but 

depends on the difference in potential between the two points. is the potential 

energy of a particle (i.e, charge, masse). The potential  of the vector field F is 

defined as the work function: 

F  (4) 

In regions where there are no particules of energy (i.e, charges/masses), potential 

field also satisfies the Laplace's equation of homogeneity: 

0
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2

2

2

zyx
 (5) 

This mean that in the three dimensions, the potential is never more or less 

concentrated than all surrounding part of the region. 

Geophysical instruments generally measure only the vertical component of a 

potential field. That single component constitutes a continuous scalar field (e.g., gz) 

varying in three dimensions.  
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The amplitude and wavelength of gravity and magnetic data are influenced by the 

source geometry (depth and dimension) and the contrast of the relevant physical 

parameters density and magnetization, respectively, to the surrounding. 

 A variety of methods (i.e., Peter half slope, Euler deconvolution) exist to estimate the 

source depth and geometry (Reid et al., 1990; Skilbrei, 1993). Such inverse methods 

suffer from the ambiguity of the gravity and magnetic fields. An alternative is forward 

modelling of the potential fields, particular if constraints from seismic and bore holes 

are available. In forward modelling, one does between distinguish 2D modelling (e.g. 

on profiles) and 3D modelling. 

 

1.2.2 Gravity field  

The gravitational potential U and gravitational attraction g at point P due to a volume 

of mass with density ρ is defined as (Blakely, 1996): 

dv
r

PU
R

)(  (6) 

dv
r

r
UPg

R

2

ˆ
)(  (7) 

Where r is the distance from the point of observation P to an element of the body dv, 

and  is the gravitational constant.  r̂  is a unit vector pointing from an element of the 

mass to P. 

222 )'()'()'( zzyyxxr  

Gravimeters measure the vertical attraction of gravity. In Cartesian coordinates the 

gravity data can be expressed as: 

'''
)'(

)',','(),,(
3

dzdydx
r

zz
zyx

z

U
zyxg  (8) 

With an observed point P(x,y,z) and a 3D body with density The forward modelling 

requires the repeated calculation of g (x, y, z). The general expression of g(x, y, z) is: 

''')',','()',','(),,( dzdydxzzyyxxzyxzyxg  

Where ψ is named the Green's function, the gravitational attraction at (x, y, z) of a 

point mass located at (x', y', z'): 
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2D modelling computes the vertical attraction of gravity created by a two dimensional 

structure. The geologic structures are often lineated in a particular horizontal direction 

(e.g., simple rift zone, simple anticline). In that context, the key is to model along a 

profile perpendicular to the main structural axis. Consequently, the y-axis is directed 

parallel to the invariant direction leaving only the x and z dimension to consider. 

dS
r

SU
1

log)(2   (10) 

Where S is the cross-sectional surface and r the perpendicular distance to an 

element of the body. 
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For a surface of constant density, the vertical attraction of gravity is given by: 
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2D modelling requires that no significant changes in the third dimension occur close 

to the 2D geometry. Complex geological structures require a 3D definition of their 

geometry. The 3D geometry is approximated by rectangular prisms or polyhedrons 

(i.e., IGMAS; Götze and Lahmeyer 1988). For each prism or polyhedron a constant 

density is defined. For the homogeneous polyhedron, the volume integral (Equ. 8) is 

transformed into a sum of line integrals (Equ. 12, 13) to calculate the gravity field 

(Götze and Lahmeyer, 1988):  
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The surface integral has to be calculated for the whole polyhedron surface S j and the 

cos( zn j ,


) (j=1, 2,… m, the number of surfaces) determines the direction of the 

surface element ds with regards to the Cartesian coordinates system. Since 

cos( zn j ,


) is constant for any polyhedron surface, the attraction effect of a polyhedron 

by the superposition of gravity effect of its individual surfaces Sj is expressed by: 
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 (13) 

 

1.2.3 Free-air gravity field and Bouguer anomaly  

Measured gravity data (Δgobs) contain superposed short wavelength (shallow) and 
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long wavelength (deep) information, and reflect density contrasts along different 

boundaries. The differentiation of the sources is not straight forward but different 

anomalies can be computed to enhance the ground densities distribution. 

The free air (FA) anomaly is the difference between observed gravity and theoretical, 

normal Earth gravity and corrected for the elevation relative to the ellipsoid, and Earth 

tides. 

Latitude correction (γo) and free-air correction (FAC) give the free-air anomaly (ΔgFA):  

FACgg oobsFA  (14) 

The Bouguer anomaly (ΔgB; named after the French scientist Pierre Bouguer) is 

computed from the free-air anomaly by removing the attraction of the masses above 

the sea-level. For the Bouguer correction the mass distribution is approximated by a 

flat plate of thickness H (height of the gravity measurement location above sea-level) 

and constant density.  

 

The Bouguer correction is defined as followed: 

BCFACgg oobsB  (15) 

With BC = Bouguer Correction. 

The Bouguer anomaly corrects the free air anomaly for the mass of rock that exists 

between the station elevation and the sea-level. Offshore, the Bouguer correction is 

equivalent to substituting the water layer by a sedimentary or rock infilling layer. The 

reduction density is traditionally 2670 kg/m3 onshore and is between 2670 and 2200 

kg/m3 offshore depending on the use of the computed map. The Bouguer reduction 

used is already a part of the modelling. The application of a Bouguer reduction 

offshore removes the bathymetric signature from the gravity data. In the Barents Sea, 

the shallow and regular water layer does not prevent from viewing the crustal 

signature in the gravity data.Free air anomalies were used when modelling along 2D 

profiles in paper I, paper III and paper IV; consequently, the water was modelled with 

a density of 1030 kg/m3. However,as the 3D model covers a large area including the 

continental slope, we applied  more accurate modelling of the gravity data using the 

the Bouguer anomalies calculated with a reduction density of 2200 kg/m3 similar to 

the uppermost sediments. 

 

The complete Bouguer anomaly includes the terrain correction: 
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TCBCFACgg oobsBC  (16) 

The terrain correction corrects for the non-planar topography surrounding, In principal 

the terrain correction is always negative.  

The (complete) Bouguer anomaly is conventionally used for regional modelling and 

interpretation. But also the isostatic anomaly is often used (see below).  

 

1.2.4 Isostatic computations 

A correction of the Bouguer anomaly for isostasy can be computed. This correction 

(IC) removes from the Bouguer anomaly the gravity effects of a theoretical isostatic 

Moho from the Bouguer anomaly. The remaining contribution (isostatic gravity 

residual) originates from the crustal mass that is unrelated to isostatic local 

compensation of topographic load. The isostatic gravity residual anomaly is: 

ICTCBCFACgg oobsI  (17) 

Two models of local isostatic compensation co-exist; for both models there is no 

rigidity compensation beneath the load. In the concept of Airy-Heiskanen isostasy 

topographic heights are accommodated by changes in crustal thickness. The Pratt-

Hayford model proposed that different topographic heights are accommodated by 

lateral changes in rock density. The depth of compensation is at the 

lithosphere/asthenosphere boundary and its undulation is due to the lateral variations 

of load. At the depth of compensation the pressure exerted is constant.  

csthgPLoad  (18) 

From under the deepest root to the base of the lithosphere there are parallel isobars 

lines that can be use as computation level. These computations ignore the strength 

of the crust and the upper mantle.  

In the concept of regional or Vening-Meinesz isostasy, the load is on top of a rigid 

plate and the compensation of the load is said "regional". In the context of regional 

isostatic compensation the lithosphere has a finite rigidity. The supporting lithospheric 

material with rigidity is flexured distributing the load over a broad region. Vening-

Meinesz (1939) isostasy implies the lithosphere behaves as a perfect elastic material 

and that its flexure depends on the topographic load and internal loads. The most 

important factor that controls the bending is the flexural rigidity. The loading of a plate 

with a high flexural rigidity will lead to a very limited deflection of the plate whereas 

http://en.wikipedia.org/wiki/Crust_%28geology%29
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the loading of a plate with a low flexural rigidity will lead to a larger deflection of the 

plate. For the extreme case where the flexural rigidity is zero the plate will behave as 

in the case of Airy isostasy.  

The basic equation for the deformation of an elastic beam overlying an inviscid fluid, 

in our case represented by the Mantle, is given by Gunn (1943) a differential 

equation of the 4th order: 

0)()(
)(

4

4

xwg
dx

xwd
D m  (19) 

Where 

D  flexural rigidity 

w  vertical deflection of the plate at x 

  the average density above the plate (i.e. crust) 

m
  the average density o below the plate (i.e. mantle) 

g        gravitational acceleration 

The rigidity modulus enter in the computation of the Young Modulus (E): 

)1(2GE   (20) 

Where  is the Poisson ratio. 

G, the rigidity modulus relates shear stress to shear strain (τ= Gγ). 

A link has been established between the temperature and the rigidity modulus G 

(Kusznir and Karner, 1985). Kusznir and Karner (1985) suggested that the 

continental flexural rigidity is controlled by crustal thickness and lithospheric 

thickness through the thermal structure. The elastic thickness parameter (Te) tends 

to express the relation between the lithospheric thickness of the plate and the plate 

rigidity. The flexural rigidity D varies as a function of the lithospheric elastic thickness 

(Te) of the plate through the relation:  

)1(12 2

3TeE
D  (21) 

Where 

E  Young modulus 

Te  Elastic lithosphere thickness 

ν  Poisson coefficient  
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1.2.5 Magnetic field modelling 

Magnetic data collected by magnetometers measure the strength of T, the intensity of 

the geomagnetic field (or total field) in the vicinity of the instrument. The geomagnetic 

field strength is described with inclination, declination and field strength dependent of 

the location on the Earth surface and time of the data acquisition. The geomagnetic 

field is mostly composed of the magnetic field produced by currents in the liquid outer 

core of the Earth. It also includes magnetic fields caused by currents flowing in the 

ionosphere triggered by solar winds and a crustal magnetic field due to outcropping 

and buried magnetic rocks. The total field anomaly T  is calculated by substracting 

the magnitude of a suitable modelled regional field F (IGRF: Interntional 

Geomagnetic Reference Field) from the total field: 

FTT  (22) 

Aeromagnetic data processing tends to isolate the residual crustal magnetic field 

component linked to rock magnetisation. Aeromagnetic data modelling aims at 

understanding the depth to the magnetic source as well as the magnetic susceptibility 

lateral variation. 

According to the Helmholtz theorem, if no currents exist in the region of investigation, 

then B is a potential field and has a scalar potential V such that:  

VB  (23) 

As the gravitational field, the magnetic field respects the Laplace's equation of 

homogeneity.  

At an observation point P, the magnetic field of a volume of magnetic material is:  

dv
r

MCmPB
R

QP

1
)(   (24) 

with 170 .10
4

meterhenryCm (S.I) 

Where 0  is the permeability of free space, M is the magnetisation, and r the 

distance from the observation points P to element dv of the body situated at point Q.  

In magnetic modelling, similarly to what is explained in the gravity-modelling 

paragraph, the concept surface magnetic charges is applied and the magnetic effect 

of a homogeneous magnetised polyhedron can be modelled by magnetic charge on 

the body's surface. Summing the effects of the prisms approximates the magnetic 
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anomaly. The magnetic field of a uniformly magnetised body with volume R and 

surface S is: 

dSnBdvB
SR

ˆ   (25) 
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Where Si represents the surface of the ith facet and 
in̂  its outward normal. 

 

The magnetic scalar potential is only defined in regions of space in the absence of 

currents. These special conditions are approximately obtained in typical geophysical 

measurement of the magnetic field. The total field anomaly is approximated by:   

dv
r

MFCmT
R

QP

1
  (27) 

Where R is the radius over the volume of particles. 

 

1.2.6 Rock magnetisation 

Rock magnetic properties originate from an imbalance in the structural arrangement 

of iron ions. This arrangement causes a transfer of electrons between the different 

irons in a structured path or vector. This electric vector generates a magnetic field. 

The most common minerals defining this rock property are magnetite (Fe3O4) and 

titanomagnetite Fe(Fe,Ti)2O4.  

 

The magnetization M is the vector sum of the induced and remanent components of 

magnetization. Indeed, two types of magnetisation co-exist within a rock, the induced 

(Mi) and remanent magnetization (Mr). 

 

The magnetic particles are generally oriented in random directions but an external 

field can provoke alignment of the magnetic particles and induce magnetisation. The 

magnetic susceptibility of a rock is its ability to become magnetised by an external 

magnetic field. The magnetic susceptibility is dimensionless. Induced magnetization 

aligns with the direction of the Earth's magnetic field H and is proportional to the 

magnetic susceptibility  so that:  
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HM i
 (28) 

The magnetic remanence is the magnetization left behind in a medium after an 

external magnetic field is removed. In our case it is related to the total magnetic field 

existing during the rock formation. 

 

The relative importance of remanent magnetisation (Mr) vs. induced magnetisation 

(Mi) is expressed by the Koenigsberger ratio (Q-ratio). 

H

Mr

iM

Mr
QratiogerKoenigsber _  (29) 

With  = magnetic susceptibility and H=induced magnetic field in A/m. 

 

1.2.7 Thermal modelling 

The physical properties to describe the lithosphere are among others: density and 

flexural rigidity. These properties depend on rock composition but also on 

temperature and pressure. While the best information about the geometry of the 

lithosphere can be taken from seismic studies, the determination of the other 

parameters is far more complex. Between temperature distribution, density and 

flexural rigidity, however, relationships can be found (Zeyen and Fernàndez 1994; 

Zeyen et al., 2005).  

Temperature distribution is generally calculated from measured geothermal gradients 

and, based on it, the surface heat flow. However, these data can only be directly 

measured by drilling and drill holes do in general not exceed 3-5 km in depth. At 

these relatively shallow depths, and particularly in polar areas, the temperatures are 

perturbed by near-surface processes like ground water flow, erosion, sedimentation 

or paleoclimate. In addition, the surface heat-flow is affected by the composition of 

the lithosphere through thermal conductivity variations and radioactive heat 

production that affects strongly the temperature distribution. It is thus impossible to 

obtain reliable estimations of temperature distribution based only on thermal data. 

Therefore, the focus of the thermal modelling in the thesis is on the combined 

interpretation of the density and thermal structure using the influence of the 

temperature on rock density.  
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To introduce the equations used for thermal modelling described within Chapter 5 we 

remind the fundamentals of heat flow  in the next paragraphs. 

 

The Earth’s heat flow is the amount of heat escaping from the interior across a unit 

area of the Earth surface. The heat interior is cooling off by a combination of thermal 

conduction through the basement crust and the delivery of cold material to the interior 

by slabs, a form of advection. Within the crust, crustal contribution comes from the 

crustal radioactivity that is a major contributor to the continental crust heat flow and 

its lateral variation. The crustal heat production is related to radioactive decay of 

predominantly the following isotopes: thorium 232 (232Th), uranium 238, (238U), 

potassium 40 (40K). Continental heat flow is usually plotted as a function of crustal 

age since the last tectonic, magmatic or thermal metamorphic event and the long 

term asymptotic value is taken to be the background heat flow.  

A little of heat is transferred to the surface by hydrothermal circulation. 

 

The conducted heat trough the surface can be decomposed as following: 

TvczxAT
t

T
c


,  (30) 

Where Tvc


 represents heat advection by material movement, is density 

(kg/m3), c is heat capacity parameter (J/K.kg), v


 is material velocity (m/s), and T 

temperature (K), )/,/( zx . zxA ,  stands for crustal contribution, A is 

volumetric radiogenic heat production and T  corresponds to diffusion term 

(background heat flow),  is thermal conductivity (W.m-1.K-1). 

 

The program used in Chapter 5 calculates the thermal steady state of the lithosphere 

considering no change of temperature distribution over time as if the crust would has 

attained thermal equilibration since the last period of tectonic activity. In 

consequence, the transient component is neglected: 
t

T
=0 and v=0. 

The equation of steady state heat transport used in chapter 5 is the following: 

0, zxAT  (31) 

 

Also in chapter 5, the influence of the temperature on mantle rock density is 
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expressed through a thermal expansion parameter relating mantle densities to 

changes in volume in response to changes in temperature. Heat production and 

thermal conductivity values are attributed to mantle, lower crustal and crustal bodies. 

 

1.3 Organisation and outlines of the thesis 

 

The thesis contains four main papers (Chapters 2-6), where I have been the first 

author and a fifth paper in the appendix, where my contribution was minor. This 

paper is included in the thesis for completion as it presents the petrophysical data 

offshore Norway, which are crucial to constrain the outlined models and concepts. 

The successive papers follow the path taken by the flow of ideas all along the study.   

 

Chapter 2 presents a paper published in 2009 in Tectonophysics (Barrère; C. 

Ebbing, J., Gernigon, L., 2009. Offshore prolongation of Caledonian structures and 

basement characterisation in the Western Barents Sea from geophysical modelling. 

Tectonophysics, 470, 71-88).  

The paper presents 2D models built along regional transects (the IKU profiles A, B 

and C), which are at the basis to evaluate the petrophysical values applied in the 3D 

and thermal model. These 2D models were used to evaluate how to distinguish 

different crustal units: the Achaean to Palaeoproterozoic shield, the Caledonian 

nappes and the mafic rocks locally occurring in the Precambrian or involved in the 

nappes. It was established that this distinction is possible by a joint modelling of the 

density and magnetic susceptibility and more specifically by the joint interpretation of 

the density, magnetic susceptibility and Q-ratio of the basement blocks. In addition, 

the paper introduces a discussion about the offshore prolongation of the Norwegian 

Caledonides and the link between the Caledonian structures and the development of 

the sedimentary basins in the western Barents Sea.  

 

Chapter 3 presents a paper submitted to Geophysical Journal International in August 

2009 (Barrère; C. Ebbing, J., Gernigon, L. 3D density and magnetic crustal 

characterisation of the southwestern Barents Shelf: implications for the offshore 

prolongation of the Norwegian Caledonides. GJI, subm.).  
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In this chapter, a new 3D crustal model for the southwestern Barents Sea is 

presented. The density/magnetic crustal model integrates a wealth of geophysical 

and geological data available in the southwestern Barents Sea. The model is 

constrained by well data, industrial depth-converted horizons, seismic data and 

petrophysical data from onshore Norway samples. From the model a new top 

basement and Moho maps are extracted and compared to previous compilations. 

Different crustal domains are characterised by their density and magnetic properties 

and interpreted with respect to their geological history. The paper introduces also for 

the first time a thinning factor map for the entire south-western Barents Sea that 

highlights variations in crustal thickness. In the southwestern Barents Sea, a severe 

crustal thinning is modelled west of the Loppa High, below the western marginal 

basins. The integration of the basement units map with the potential fields maps 

leads to a re-evaluation of the tectonic framework and triggers a discussion about 

sedimentary basin evolution. We propose a asymmetric Caledonian collisional prism 

with a unique Caledonian arm, and a Caledonian suture to the west of the Loppa 

High propagating northward between Svalbard and Franz Josef Land. In addition, on 

the one hand, we suggest that pre-existing Caledonian and Timanian weakness 

zones exerted a strong control on basin evolution east of the Loppa High. On the 

other hand, we interpret that the formation of the western basins (i.e., the Tromsø 

and Bjørnøya Basins) has been controlled mostly by the reactivation of the 

Caledonian suture, which coincides with the alignment of the Bjørnøyrenna and 

Ringvassøy-Loppa Fault Complexes.  

 

The study presented in Chapter 4 has been submitted in august 2009 to Geological 

Society of America Bulletin (Barrère C., Gernigon L. and Ebbing J., The tectonic 

evolution of the Bjørnøya Basin and Loppa High, southwestern Barents Sea - new 

insights into post-Caledonian features, GSA Bulletin subm.).  

The study focuses on the structural relationship between the Bjørnøya Basin and the 

Loppa High. The study is based on the interpretation of an integrated geological 

model built along the seismic profile NBR07-232849. The integrated model reveals 

the crustal thinning system developed to the west of the Loppa High and links the 

detailed basin structure to the deep crust. We interpret post Caledonian features 

affecting the Barents Shelf crust and discuss the stretching model implied by the 

interpreted geometry and lithologies. Finally, a scenario for the Bjørnøya Basin and 
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Loppa High development is presented, which illustrates its evolution from Late 

Devonian to the present-day.  

 

The Chapter 5 is a manuscript in preparation (Barrère C. and Zeyen H., Integrated 

modelling and heat flow estimations, case study along a 2D profile across the 

southwestern Barents Shelf, in prep.).  

Here, the use of an integrated model as input for heat-flow modelling is 

demonstrated. The input crustal structure is a combination of the IKU_B (chapter 2) 

and NBR07-232849 (chapter 3) joint gravity and magnetic models. The thermal 

model allows us to compare modelled heat-flow with observed heat-flow in the 

southwestern Barents Sea. The model provides also heat-flow estimates at top 

basement and a discussion of the heat-transfer from the mantle into the crust. The 

model allows us to discuss and provide preliminary insights into the depth of the oil-

and gas window in the Barents Sea.  

 

The Appendix presents the petrophysical data, published by Slagstad et al. in the 

NGU Bulletin 448. (Slagstad, T., Barrére, C., Davidsen, B. and Ramstad, R. K. (2008) 

Petrophysical and thermal properties of pre-Devonian basement rocks on the 

Norwegian continental margin. NGU Bulletin, 448, 1-6). 

These are key data to constrain the density and magnetic modelling and the related 

geological interpretations. I sampled the cores originating from the Barents Sea crust 

and carried out a part of the petrophysical measurements. 
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Abstract 

 

This study interprets the potential field of the western Barents Shelf at a crustal scale 

and characterises the basement underlying the deep basins in the southwestern 

Barents Sea. Comparing potential fields with onshore geology shows that Archaean 

to Palaeoproterozoic basement and mafic complexes are related to regional 

magnetic highs while Caledonian nappes are associated with lower magnetic 

anomalies. It also shows that crustal structures such as major fault zones can be 

extended offshore. Interpretation of the magnetic data suggests an elbow-shaped 

offshore prolongation of the Caledonides linking structures striking N 50º in northern 

Norway with the N-S structures on Svalbard. The basic interpretation has been tested 

by 2D free air gravity and magnetic forward modelling along selected seismic 

transects. Seismic interpretation is integrated with density and magnetic modelling to 

investigate the crustal and deep-crustal configuration of the southwestern Barents 

Sea. The distribution of density, magnetic susceptibility and Q-ratio values allows us 

to distinguish different basement units.  

Compiling onshore information with the inter-profile correlations of the 2D models has 

allowed us to compile a map of basement units. The distribution of basement 

lithologies leads to a new regional understanding of the crustal architecture of the 

Barents Shelf. The shape and strike of the offshore prolongation of the Caledonian 

structures suggest that terranes affected by the Timanian orogeny propagate across 

the Barents Shelf farther to the northwest than have been interpreted previously.  
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2.1 Introduction  

 

The Barents Sea Shelf is located in northernmost Europe and extends from the North 

Atlantic and the Svalbard Archipelago in the west to Novaya Zemlya in the east, over 

a distance of 1000 km (Fig. 2.1). In the west, the Barents Sea is bounded by its 

Cenozoic passive margins that were formed during the final stages of North Atlantic 

break-up in the Early Eocene (Doré, 1991; Lundin and Doré, 2002).  

 

 

Figure 2.1: Barents Sea shelf and surrounding land masses: bathymetry-topography. 

The study area is the southwestern (SW) Barents Sea (69 °N – 75 °N and 13 °E – 30 

°E). The thin black lines show the tectonic units as defined by the Norwegian 

Petroleum Directorate). 

 

Exploration of the Barents Sea is of great interest for both academic and economic 

purposes due to the hydrocarbon potential in the area. In such a context, a detailed 

knowledge of the basement is fundamental as its geometry and composition provide 

important constraints for basin analysis and heat flow studies.  
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A dense grid of industrial seismic reflection data exists in the area and the western 

Barents Sea has been the subject of many previous investigations and 

interpretations (Breivik et al., 1998; Faleide et al., 1993; Gabrielsen, 1984; Gabrielsen 

et al., 1990; Gabrielsen et al., 1997; Gudlaugsson and Faleide, 1994; Gudlaugsson 

et al., 1987; Gudlaugsson et al., 1998; Johansen et al., 1994; Ritzmann et al., 2007; 

Skilbrei, 1991). On the Barents Shelf, sedimentary thicknesses locally reach to more 

than 14 km; therefore, conventional seismic reflection data do not allow reliable 

mapping below the Permian succession and the complex structure of the deep 

basement still remains poorly constrained. Little information about the regional 

structure of the crust is available from published models based mainly on Ocean 

Bottom Seismometer (OBS) data (Fig. 2.2). Seismic refraction data (Breivik et al., 

2003; Breivik et al., 2005; Breivik et al., 2002; Mjelde et al., 2002) had already been 

presented as an alternative method for constraining the sub-sedimentary crustal 

structure.  

The present study aims to investigate the nature and complex history structure and 

lithology of the Barents Shelf using potential field data. Our specific study area for 

basement characterisation is the southwestern (SW) Barents Sea (69 °N – 75 °N and 

13 °E – 30 °E). Situated offshore from northern Norway where Caledonian thrust 

sheets are well-exposed (Ramsay et al., 1985; Siedlecka and Roberts, 1996; Sturt et 

al., 1975), this area encompasses major structural highs, platforms and basins (Fig. 

2.2; (Gabrielsen et al., 1990; Gudlaugsson et al., 1998)). Offshore, most of the 

sedimentary rocks in the basins range in age from Late Palaeozoic to Quaternary. 

The investigations offshore started at the most prominent basement high of the area, 

the Loppa High (Fig. 2.2), which is surrounded by individual faults or fault complexes 

that were activated during the formation of the positive basement feature observed at 

present day (Gabrielsen, 1984; Gabrielsen et al., 1990).  
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Figure 2.2: Simplified structural and location map. Onshore, the locations of the 

petrophysical samples used to constrain the modelling parameters (Olesen et al., 

1990) are plotted in grey. 

Offshore, the solid lines indicate a simplified structural map. The main structural 

highs are the LH (Loppa High) and the SH (Stappen High). The crosses locate the 

wells that reach down to the basement rocks, and straight solid lines show the 

seismic data used as constraints in this study. The IKU deep reflection data is in 

black. The more significant wide-angle data is in grey: P1, P2, P3, P4, P5, P8 and 

P10 are from Breivik et al. 2002, 2003 and 2005; A and B are from Mjelde et al, 

2002; I is from Ritzmann et al. 2002. 

 

Following a brief presentation of the geological setting, we correlate the geological 

information both available onshore and offshore with the regional potential field data. 

Maps are interpreted using different filtering techniques, onshore-offshore 

relationships and potential field modelling. Reliable crustal models across the SW 

Barents Sea are constructed by integrating structural information derived from 

seismic data and petrophysical constraints.  A map showing principal basement units 

and a regional interpretation focusing on the prolongation of Caledonian structures 

offshore and the origin of sedimentary basins are presented.  

 

2.2 Geological setting 

 

The tectonic evolution of the Barents Sea area was strongly influenced by the 

Palaeoproterozoic (Svecofennian) orogeny, which established the stable Russian-

European platform adjacent to the northern Archaean part of the Fennoscandian 

Shield (Alsgaard, 1993; Gee et al., 2006; Gee and Tebenkov, 2004; Roberts and 

Olovyanishnikov, 2004; Torsvik et al., 1996).  
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Figure 2.3: The Barents Sea Shelf in the Late Permian-Early Trias (245 Ma). The 

extension of the Timanides, Caledonides, Ellesmerides and Uralides ranges, as well 

as the main sedimentary basins, are represented. The question marks highlight the 

uncertain positions of structural boundaries such as the Caledonian suture and front 

and the Timanian front belt. FJL (Franz Josef Land), BFZ (Billefjorden Fault Zone), 

TKFZ (Trollfjorden-Komagelva Fault Zone), NZ (Novaya Zemlya). 

 

The north- to northeastward extension of the Norwegian Caledonides into the 

Barents Sea – generally referred to as the Barentsian Caledonides (e.g., Siedlecka 

1975) is flanked to the east by the late Neoproterozoic Timanide fold belt (Fig. 2.3), 

recognised as far north as on Novaya Zemlya. Accreted and superimposed, 

Neoproterozoic (Timanian) orogenic trends are usually oriented NW-SE (e.g., Timan 

Range, Timan-Varanger Belt), and Timanian basement is present in the western and 

central Pechora Basin (Gee et al., 2006; Ivanova, 2001). On Varanger Peninsula in 

Norway, the Trollfjorden-Komagelva Fault Zone (Fig. 2.3) separates the Baltican 
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platform domain terranes from the Timanian basinal terranes and can be followed 

south-eastwards into the Timan Range (Olovyanishnikov et al., 2000; Roberts and 

Olovyanishnikov, 2004; Roberts and Siedlecka, 2002).  

 

From Late Cambrian time and over a period of 80 Myr, the gradual closure of the 

Iapetus Ocean (Gee, 2005; Gee et al., 2006; Roberts, 2003; Roberts and Gale, 1978; 

Torsvik et al., 1996) involved subduction zones,  associated magmatic activity in 

island arcs and several tectonic events along the margins of both Laurentia and 

Baltica. The major collision between Baltica and Laurentia (forming the Larussia 

plate) began in the Silurian and extended until the Early Devonian, and is known as 

the Scandian orogeny. 

Several studies on Spitsbergen have shown that the Caledonian basement terranes 

and structures (Harland et al, 1994) correlate with similar terranes, faults and thrusts 

mapped on the East Greenland margin (Gee and Tebenkov, 2004; Scott and Turton, 

2001). The affinity of terranes on Svalbard and in East Greenland to the Laurentian 

plate (Torsvik and Cocks, 2005) is well known. Nevertheless, the relative positions of 

these two terranes are still a matter of debate.   

From Silurian to Early Carboniferous time, the Innuitian or Ellesmerian Orogeny (Fig. 

2.3) affected Laurentia (Filatova and Khain, 2007; Piepjohn et al., 2007). Thereafter, 

the deformation regime changed from compression and lateral shortening to regional 

extension (Gee, 2005).  

The Late Palaeozoic and Mesozoic tectonic history of the western Barents Sea was 

mostly dominated by several rifting episodes. Agreement exists about two main 

extensional periods, respectively in Early-Mid Devonian to Early-Mid Carboniferous 

and Permian to Early Triassic times (Gabrielsen et al., 1990; Lippard and Roberts, 

1987).  

The late- to post-Scandian collapse of the Caledonides is recognised throughout 

much of Scandinavia (Andersen, 1998; Fossen, 2000; Roberts, 1983) and in East-

Greenland (Higgins et al., 2004). Gudlaugsson et al. (1998) argued for a post-

Caledonian extensional collapse to the southeast of Bjørnøya. On Svalbard, 

Chorowicz (1992), Manby and Lyberis (1992) and Skilbrei (1991) interpreted the 

Devonian graben of Spitsbergen as a post-orogenic basin. 

With respect to the stratigraphic records on Svalbard and the Barents shelf, it seems 

that both were subjected to broadly similar extensional regimes (Bugge et al., 1995; 
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Gabrielsen et al., 1990; Larssen et al., 2005). These observations provide evidence 

of a regional subsidence leading to the formation of a large interior sag basin, which 

they interpret as the first stage of the rift system formation in the southwestern 

Barents Sea. Gudlaugsson et al. (1998) proposed that the fan-shaped structural 

configuration of the rift system is inherited from the structural axis of the 

Scandinavian and East-Greenland Caledonides (and Barentsian Caledonides) 

interfering with the northerly oriented Caledonian-Innuitian orogenic trend. 

Rifting episodes have also been documented in Carboniferous, Permian, Triassic and 

Late Jurassic to Early Cretaceous times (Johansen et al., 1994). These episodes led 

to the formation of the major rift basins on the Barents Shelf.  

Subsidence and salt tectonics occurred throughout the Triassic period and affect the 

regional depositional patterns of the area (Breivik et al., 1995; Gabrielsen et al., 

1990; Lind, 1987). 

During Mid Jurassic time, rifting and block tilting occurred once again and increased 

through to the Early Cretaceous (Faleide et al., 1993). During this period, up to 3 km 

of sedimentary rocks were eroded (Dimakis et al., 1998), leaving little Cretaceous 

and Jurassic rocks preserved on the Loppa High, but creating well defined Jurassic 

depocentres in adjacent basins.  

The Late Jurassic-Early Cretaceous period was dominated by a composite rifting 

episode, which gave rise to prominent NE-SW trending structures in the Northeast 

Atlantic, such as the Bjørnøya Basin. Following rifting, a wide region subsided and 

was covered by thick Cretaceous strata.  

During Early Cretaceous time, the northern part of the Barents Shelf was affected by 

a significant magmatic event (Grogan et al., 1998), which is considered to have been 

part of the Large Igneous Province (Maher, 2001) linking Greenland, Svalbard, Franz 

Josef Land and adjacent shelf areas. During the Late Cretaceous, "reverse faulting 

and folding, combined with extensional faulting along Bjørnøyrenna Fault Complex, 

became still more common, even though extension may have prevailed on the 

regional scale" (Gabrielsen et al., 1997). 

 

The main continental break-up and the development of the western Barents Sea 

Margin occurred in Mid Cenozoic (Oligocene) time. 
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The last episode of the complex western Barents Sea history is the uplift of the 

westernmost Barents Shelf that started in Late Cenozoic and led to the removal of 3 

kilometres of sediments (Nyland et al., 1992). 

 

2.3 Databases 

 

2.3.1 Seismic data 

We had access to depth-converted industrial seismic profiles including regional deep-

seismic reflection lines (alias, the IKU lines) (Fig. 2.2). Acquired in the mid-1980s, 

these seismic data have been interpreted in several studies (Breivik et al., 1998; 

Breivik et al., 2005; Faleide et al., 1993; Gudlaugsson and Faleide, 1994; 

Gudlaugsson et al., 1987; Sanner, 1995). Velocity models derived from seismic 

refraction data are used to constrain the deep crustal structures (Breivik et al., 1998; 

Breivik et al., 1995; Breivik et al., 2003; Breivik et al., 2005; Breivik et al., 2002; 

Mjelde et al., 2002).  

 

2.3.2 Gravity data 

Gravity data are available from the compilation published by Skilbrei et al. (2000). To 

make the correlation between the onshore and offshore structures possible, terrain-

corrected Bouguer anomaly values were calculated using a Bouguer reduction 

density of 2670 kg/m3 (Fig. 2.4A).  

 

2.3.3 Magnetic data 

Aeromagnetic data are available from a magnetic compilation of the western Barents 

Sea (Olesen et al., 2006) (Fig. 2.4B). The dataset was compiled from reprocessed 

aeromagnetic surveys. The line spacing ranges from 0.5 to 2.5 km over mainland 

Norway and from 3 to 8 km over the continental shelf. To investigate the crustal 

sources, the data are reduced to the pole and upward continued to 600 m.  

 

Further correlations between tectonic units and magnetic anomalies can be detected 

by looking at trends from derivative-filtered magnetic data. The tilt derivative is useful 

for mapping shallow basement structures. The tilt derivative is defined as the first 

vertical derivative of the total magnetic intensity, T, divided by the total horizontal 
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derivatives of T. It enhances the geometrical contrast existing in the internal 

basement structure (Verduzco et al., 2004).  

 

 

Figure 2.4A: Bouguer anomaly and simplified structural map 
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Overlay of the Bouguer anomaly (mGal) (Bouguer density = 2670 kg/m3) and 

simplified structural map. 

 

 Figure 2.4B: Total magnetic field (nT) (pole-reduced and upward-continued to 600m) 

and simplified structural map. 
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Overlay of the total magnetic field (TMF) reduced to the pole (D=24.4º I=7.3º) and a 

simplified structural map. (Refer to the abbreviation list at the end of the paper, page 

81) 

 

2.3.4 Petrophysical information 

Petrophysical constraints were derived from the literature (Olesen et al., 1990; 

Skilbrei, 1991; Skilbrei et al., 1991; Tsikalas, 1992) (Fig. 2.2). Density, magnetic 

susceptibility and remanence values from onshore samples (Troms and Finnmark 

regions) (Olesen et al., 1990) were used to choose starting values in the models 

(Table 2.1).  
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Starting values for the modelling 

 

Unit Density (kg/m3) Mag. Susc. 
(SI) 

Mag. Rem. 
(A/m) 

Q-ratio 

Sediments 1800 to 2710 0.00 0.00 0.00 
Archaean to 

Palaeoproterozoic 
rocks 

2750 to 2800 0.01 to >0.1 0.20 0.05 to 0.5 

Caledonian nappes 2750 1.10-4 to 
0.01 

0.01 0.25 to 21 

Mafic rocks 2800 to 3000 0.01 0.2 0.50 
Lower crust 2950 1.10-4 0.00 0.00 

Mantle 3300 0.00 0.00 0.00 

 
Interpreted values 

 

 Density (kg/m3) Mag. Susc. 
(SI) 

Mag. Rem. 
(A/m) 

Q-ratio 

B1  
Archaean to 

Palaeoproterozoic 
rocks 

 
2750-2800 

 
0.0100.200 

 
0.20 

 
Q<1.00 

B2 
Caledonian  nappes 

on top of Archaean to 
Palaeoproterozoic 

rocks 

 
2750 

 
0.0010.010 

 
0.01 

 
Q>1.00 

B3 
Deep crustal high 

density body 

 
3100-3200 

 
1.10-4 

 
0.00 

 
0.00 

B4 
None-magnetic 

basement 

 
2750-2800 

 
0.000 

 
0.00 

 
0.00 

B5 
Basement affected by 

magmatism 

 
2800-2900 

 
0.007 

 
0.20 

 
0.60 

MI 

(Mafic Intrusions) 

3000 0.015 0.20 0.300.35 

Table 2.1: Starting values: density (kg/m3), magnetic susceptibility, magnetic 

remanence (A/m) and Q-ratio for all geological layers were determined from 

published papers (Tsikalas, 1992; Olesen et al., 1990; Breivik et al, 1998, 2002, 

2003, 2005 and Bungum et al., 2006) 

Interpreted values: The different basement units were defined by a combination  

of petrophysical values obtained by density and magnetic modelling.  
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Along a profile the density is constant within a body. The density value intervals 

originate from the inter-profile correlations and gathering of bodies of compatible 

gravity and magnetic properties.  

 

 2.4 Onshore-offshore correlations of gravity and magnetic anomalies 

 

The geology of Finnmark and Troms, northern Norway regions, was studied by 

examining the available geological maps. The Fennoscandian Shield in that region is 

partly covered by Caledonian nappes, of which the Kalak, Laksefjord and Gaissa 

nappes complexes locally reach up to 5 km in thickness (Olesen et al., 1990; 

Ramsay et al., 1985; Rice et al., 1989; Siedlecka and Roberts, 1996).  

In many of the nappes, the metasedimentary rocks are intruded by mafic dykes of 

Vendian or Devonian age, and at some levels of the tectonostratigraphy there are 

major, mafic-ultramafic, plutonic complexes such as the Vendian-age Seiland 

Igneous Province (Roberts et al., 2006) and the Early Silurian, Honningsvåg Igneous 

Complex (Corfu et al., 2006; Robins, 1998). On the island of Magerøya there are also 

a few mafic dykes of Carbonifereous age (Lippard and Prestvik, 1997).  

 

2.4.1 Geology / Bouguer anomalies  

The Bouguer anomaly reflects the density contrast of the anomalous masses with 

respect to normal densities. The correlation between Bouguer anomalies and 

onshore geological units is not obvious (Fig. 2.4A and 2.5A), only the Seiland 

Igneous Province creates a pronounced gravity high (Olesen et al., 1990).  

A series of gravity highs is located along the outer part of the Finnmark area, facing 

the Barents Sea. They could possibly be related to the ultramafites and gabbros of 

Silurian age that occur on Magerøya (Corfu et al., 2006; Robins, 1998). 

 

The Stappen High, the Veslemøy High and the Senja Ridge are also well delimited 

by positive Bouguer anomalies ranging from 30 to 100 mGal. The Loppa High is 

characterised by a prominent ellipsoidal Bouguer anomaly of 70 mGal striking 

roughly N-S and focused along the Bjørnøyrenna Fault Complex and the 

Ringvassøy-Loppa Fault Complex. The Norsel and the Gardarbanken Highs, as well 
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as the Bjarmeland and the Finnmark Platforms are represented by medium gravity 

anomalies from 20 to 30 mGal.  

Gravity lows between -20 mGal and -40 mGal outline the Tromsø, Maud and 

Nordkapp Basins as well as the Norvarg and Svalis Domes. The Hammerfest, 

Bjørnøya and Sørvestsnaget Basins and the Samson Dome correlate with medium 

Bouguer anomalies of around –10 mGal. The Bouguer anomaly map (Fig. 2.4A) 

highlights a few trends. The regional N 50˚ tectonic trends are perceptible in 

lineaments along the Vestfjorden-Vanna, the Troms-Finnmark and Måsøy Fault 

Complexes as well as along the axis of the Nordkapp Basin. The gravity highs of the 

Veslemøy High and the Senja Ridge do not correlate with magnetic highs.  

 

2.4.2 Geology / magnetic anomalies 

A comparison of the main geological units with the magnetic data (Fig. 2.4B and 

2.5B) highlights correlations between Archaean to Palaeoproterozoic gneiss 

complexes and magnetic highs, e.g., the Raisædno and Jergol Gneiss Complexes 

(amphibolites facies), the Tanaelv Migmatite Complex, the Varanger Gneiss Complex 

(amphibolite to granulite facies) and the Levajok Granulite Complex, all trending at N 

150˚ (marked as AGFMG in Fig. 2.5B). There is a good correlation between magnetic 

highs and the gabbro and ultramafic rocks of the Seiland Igneous Province, as well 

as with the ophiolitic rocks of the Lyngen Province. The Kautokeino and Karajok 

Greenstone Belts (greenschist to amphibolite facies) are associated with magnetic 

highs and represent distinct linear features striking N 165˚ that can be followed 

beneath the Caledonian nappes (Fig. 2.5B) (Olesen et al., 1990; Åm, 1975). 

Even where the samples from Caledonian nappes are magnetic (Table 1), the do not 

produce a significant magnetic anomaly. Therefore, Palaeoproterozoic, mafic and 

felsic, medium- and high-grade metamorphic rocks are recognised as the sources of 

significant regional magnetic anomalies. These rocks are characterised by different 

ranges of density and magnetic pattern.  

Offshore, the upward-continued and pole-reduced total magnetic field (Fig. 2.4B) 

does not show any good correlation with the offshore tectonic units. It is there 

assumed to reflect a combination of top basement topography (i.e., tilted blocks, 

undulations of erosional surfaces) and intra-basement sources (i.e., high-magnetic 

plutons, mafic dykes).  
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The Loppa and Stappen Highs, identified as basement highs (Gabrielsen et al., 

1990), are represented by strong magnetic anomalies ranging from 100 nT to 900 nT. 

In the Loppa High region, two different provinces are distinguished from potential 

field data. The western part of the basement high is characterised by a pronounced 

Bouguer anomaly (70 mGal) and a moderate magnetic anomaly (100 nT). In contrast, 

the eastern part is marked by a gradual decrease in Bouguer anomalies down to 0 

mGal and an increase in magnetic anomalies up to 900 nT. 

Some magnetic anomalies are clearly limited in their spatial extension, such as in the 

northern part of the Norsel High and the Veslemøy High. A low-amplitude but well-

focused magnetic high is located in the northern part of the Senja Ridge. The 

Hammerfest Basin is surrounded by several intense magnetic highs. In the northern 

part of the basin, the magnetic high is related to the Loppa High. In the southeast, the 

magnetic high correlates with the junction of three fault complexes: the Tromsø-

Finnmark Fault Complex, the Asterias and the Nysleppen Fault Complexes. In the 

west, the magnetic high involves the Ringvassøy-Loppa and Tromsø-Finnmark Fault 

Complexes. The gravity lows of the Maud Basin and the faults striking NE-SW to the 

north of the Maud Basin correlate with high-magnetic anomalies. The Sørvestsnaget 

Basin presents an anomaly gradually increasing northwards from -100 to 0 nT. 

Strong and aligned magnetic lows, in the range -100 to -160 nT, strike N 25˚ and 

correspond to the Harstad Basin, the Tromsø Basin and the eastern part of the 

Bjørnøya Basin. 

 



 51 

 

 



 52 

Figure 2.5: Correlation between geological information and potential field maps 

(TMF- High Pass 50 km and Bouguer anomaly) 

A. Bouguer anomalies, Bouguer reduction density = 2670 kg/m3 

B. Total magnetic field (TMF), high-pass filter (50 km) applied. The high-pass filtering 

tends to better focus the magnetic anomalies. 

 

2.4.3 Onshore-offshore magnetic domains established from magnetic trends 

Because a magnetic anomaly has a petrophysical and/or structural origin, the 

magnetic trends outline the pattern of magnetic sources and/or structural elements as 

contacts between magnetic and less magnetic rocks. We overlay the trends of the 

total magnetic field (Fig. 2.6A) with the trends of its tilt derivative version (Fig. 2.6B). 

Five domains have thus been identified (Fig. 2.6C). 

 

1. Onshore northern Norway, short-wavelength magnetic anomalies of the Archaean 

to Palaeoproterozoic gneisses and greenstone belts strike N 150˚ to N 165˚ (Fig. 

2.6C, domain D1). These anomalies can be traced beneath the Caledonian nappes.  

2. In the southwest, sea-floor spreading anomalies strike approximately N 50˚; they 

are bounded by a magnetic high related to the continental/oceanic strike-slip system 

boundary (Fig. 2.6C, D2).  

3. The northeast region east of Svalbard was affected by Cretaceous magmatism 

(Grogan et al., 2000; Maher et al., 2001); on the map it exhibits pronounced, focused, 

high-frequency magnetic anomalies striking from N-S to N 20˚ (Fig. 2.6C, D3).  

4. In the east, a group of trends is noticeably different and depicts a semicircular 

shape abutting the N 150˚ trends of the central part of the area (Fig. 2.6C, D4).  

5. The central area is defined by N-S trends seen on land in Svalbard. These 

anomalies swing towards N 165˚ to N 150˚ trends south of the Svalbard archipelago 

and cross the southwestern Barents Sea to the south Loppa High where they bend to 

N 50˚ and extend along the Norwegian coast. Together, these trends form an elbow 

shape and link the N-S trends on Svalbard with the 150˚ trends of the southwestern 

Barents Sea and the N 50˚ trends of the Finnmark, Måsøy and Nysleppen Fault 

Complexes (Fig. 2.6C, D5). The fault zones defining the Utrøst Ridge (Lofoten), the 

Finnmark Fault Complex and the Nordkapp Basin are also aligned N 50˚. Onshore, 

the N 50˚ trend corresponds to the general strike of the Caledonian thrusts. We 
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propose that the elbow-shaped trends offshore are due to a combined effect of the 

strike of the Archaean to Palaeoproterozoic gneisses and Caledonian structures such 

as Scandian thrusts.  
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Figure 2.6: Magnetic data interpreted 

A. Reduced to the pole and upward-continued total magnetic field (TMF) - magnetic 

trends in blue lines.  

B. Tilt derivative version of the TMF - trends in black dashed lines. 

C. Magnetic domains established from the magnetic trends of Fig. 2.6A and 2.6B. 

The interpretation of the boundaries of D5 are open to discussion. 

 

2.5 Forward modelling 

 

The preliminary interpretation of the maps is now tested by forward modelling along 

three selected seismic transects, IKU A, B and C using the software GM-SYS 2D 

(Geosoft 2005). 

 

2.5.1 Method 

The shallow geometry of the models is based on the interpretation of major seismic 

reflectors including the 1) base Quaternary, 2) base Tertiary, 3) intra Upper 

Cretaceous, 4) intra Lower Cretaceous, 5) base of Upper Jurassic, 6) top Triassic, 7) 

near top Permian and near top basement. The top basement is determined by means 

of seismic interpretation where possible. The existence of a continuous mid-crustal 

boundary at around 20 km depth was inferred from seismic refraction velocity 

models. At this depth, P-wave velocities locally reach 7 km/s and basement 

reflectivity changes.  

 

Density values were applied to all layers (Table 2.1). The densities of the 

sedimentary layers are based on a review of the available well data (Tsikalas, 1992). 

Tables published by Ritzmann and Faleide (2007) based on velocity-density 

relationships of sedimentary units obtained from the seismic refraction and 

reflection/gravity studies are also used (Breivik et al., 1998; Breivik et al., 2003; 

Breivik et al., 2005; Breivik et al., 2002; Mjelde et al., 2002). In our model we chose a 

density of 2950 kg/m3 for the lower crust, and determined the crustal structure by 

density modelling. Then, the magnetic modelling helps to split the crust into blocks of 

contrasting magnetic properties. 
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The remanent magnetisation of the Archaean to Palaeoproterozoic and Caledonian 

rocks is related to the abundance of magnetic minerals within the rocks and the 

thermo-mechanical history and geomagnetic field when the rocks formed. Within 

coarse-grained rocks, the inclination and declination have been aligned to the 

present-day geomagnetic field (inclination I=79˚, declination D=4.3˚). The induced 

magnetisation (H) is proportional to the strength of the induced, present-day, 

geomagnetic field (B) (B = 54000.10-9 T or H = 42.97 A/m). Aligning the induced 

magnetisation and the remanence magnetisation corresponds to adding their 

respective vectors. This simplification tends to give maximum magnetisation values 

and we consider the direction of the remanent field to be the same as for the induced 

field. The relative importance of remanent magnetisation (Mr) vs induced 

magnetisation (Mi) is expressed by the Koenigsberger ratio (Q-ratio). 

97.42*
_

remanence

H

Mr

iM

Mr
QratiogerKoenigsber  

With  = susceptibility. 

 

In order to compute the Q-ratio, both magnetic susceptibility and remanence are 

considered for each unit. The Q-ratio is computed for each block and geologically 

interpreted with respect to published values. From the values published by Olesen et 

al. (1990), a mean remanence of 0.20 A/m for the older Archaean to 

Palaeoproterozoic rocks and mafic complexes and a remanence value of 0.01 A/m 

for the Caledonian rocks have been selected, tested and adjusted.  

 

The Curie temperature for magnetite is 580˚C, and therefore we limit the extension of 

potential magnetic sources to the older Precambrian basement and lower crustal 

blocks. Sedimentary rocks and rocks below the Moho are assumed to be non-

magnetic.  

 

The profiles are compared and correlated with the potential field data (Fig. 2.4) in 

order to map regional basement units. Before making the interpretation we divided 

the units into blocks or groups with compatible magnetic properties. The geological 

interpretation is based on three petrophysical properties: density, magnetic 
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susceptibility and Q-ratio.  

 

We notice that for some of the eastern Archaean to Palaeoproterozoic crystalline 

basement blocks modelled with 2750 kg/m3 and a remanence value 0.20 A/m, the 

computed Q-ratio value was superior to 1 (Table 2.1). We interpret these inexact 

estimations of the Q-ratio as an overestimation of the magnetic remanence or an 

underestimation of the magnetic susceptibility value used in the modelling. We 

interpret this as an indication of a progressive thickening of the Caledonian nappes. 

 

2.5.2 Modelling results 

The models along the IKU_A, B and C transects strike NW-SE (Fig. 2.7A, 2.7B and 

2.7C). They are here presented from south to north. (See Fig. 2.2 for location).  

 

2.5.2.1 IKU_C 

The transect C is 400 km long (Fig. 2.7C). Starting in the northwest, the first 

basement high crossed is the Veslemøy High, the second is the outer part of the 

southwestern corner of the Loppa High and the third is the Finnmark Platform. The 

basins crossed are the Sørvestsnaget, Tromsø and Hammerfest Basins.  

 

The profile cuts the southern extremity of the ellipsoidal gravity anomaly (Fig. 2.4). 

The two gravity highs at 145 km and 225 km are mostly associated with basement 

highs. Nevertheless, the Loppa High block and its well-constrained flanks do not 

permit a good fit for the western slope of the gravity anomaly. Therefore, a deep high-

density body (3200 kg/m3) is placed in the lower crust (2950 kg/m3). The 

northwestern blocks encompass the crust in the vicinity of the margin and the 

Veslemøy High. They are modelled with a density of 2800 kg/m3, decreasing to 2790 

kg/m3 towards the Tromsø Basin, and their susceptibility is zero. The three 

neighbouring blocks constitute the Tromsø Basin basement, the Loppa High and the 

Hammerfest Basin basement; they are all modelled with an average crustal density of 

2750 kg/m3. The magnetic susceptibility of the basement to the Tromsø Basin is fixed 

at 0.011 (SI) and those of the Loppa High and the Hammerfest Basin decrease from 

0.035 (SI) to 0.001 (SI) towards the southeast. The block of the Finnmark Platform is 
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modelled with the average crustal density of 2750 kg/m3 and as its magnetic 

modelling necessitated the use of the low remanence value 0.01 A/m, its 

susceptibility is then fixed at 0.003 (SI). To obtain the best fit for the magnetic curve 

and model the magnetic high at the edge of the Finnmark Platform, a conic body 

(density = 2750 kg/m3, magnetic susceptibility = 0.003) is added.  

For the non-magnetic blocks the computed Q-ratio is 0. For the blocks modelled with 

a magnetic remanence of 0.2 A/m, the Q-ratios are 0.41 (normal), 0.13 (very low) and 

3.66 (very high). For the block modelled with a remanence value of 0.01, the Q-ratio 

is 0.07 (very low) and for the conic body modelled with 0.20 A/m, the Q-ratio is 1.47 

(high). 

 

2.5.2.2 IKU_B  

The B transect is 500 km long (Fig. 2.7B). The model starts in the northwest at the 

vicinity of the margin, crosses the Vestbakken Volcanic Province, then the 

Bjørnøyrenna Basin, the Loppa High, the northern part of the Hammerfest Basin and 

ends on the Finnmark Platform. The profile cuts the middle of the ellipsoidal gravity 

high at the western edge of the Loppa High. As in the case of IKU_C, it is necessary 

to create a high-density body (3200 kg/m3) in the lower crust to fit the western slope 

of the gravity anomaly related to the Loppa High. Ritzmann and Faleide (2007) 

proposed a density model along IKU_B where they put a lower crustal body with a 

flat top of 2980 kg/m3 to 3050 kg/m3 density in a lower crust of 2930 kg/m3 and an 

upper crust of 2770 kg/m3. The density contrast was insufficient to fit the computed 

gravity anomaly to the measured anomaly. The shape and the density of the body 

proposed in our model is sufficient to produce a gravity effect similar to the measured 

gravity anomaly, and both its existence and shape are constrained by the high-

reflectivity underneath the Loppa High (Ritzmann and Faleide, 2007). 

 

In order to control the edge effect due to the direct contact with the oceanic crust, we 

modelled a block of basalt (density = 3000 kg/m3) as part of the oceanic crust. The 

adjacent block is part of the volcanic province; its density is high (2800 kg/m3) and its 

magnetic susceptibility is 0.007 (SI). The rest of the upper crustal blocks are 

modelled with the average crustal density 2750 kg/m3. A small rectangular body with 

a density 3000 kg/m3 is added to model a little bulge visible along the gravity curve. 
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At its location, horizontal high reflectors were reported by Ritzmann and Faleide 

(2007). The modelled magnetic susceptibilities increase from 0.017 (SI) to 0.052 (SI) 

towards the western flank of the Loppa High. The blocks contributing to making the 

highest part of the Loppa High (around 190-230 km) are modelled with a 

susceptibilites of 0.033 (SI) and 0.044 (SI). The block centred on kilometre 280 and 

responsible for the two adjoining magnetic anomalies (around 380 nT) is modelled 

with a magnetic susceptibility of 0.085. The dramatic decrease of the magnetic curve 

requires the use of a low remanence value of 0.01 A/m. The blocks are then 

modelled using a magnetic susceptibility of 0.035.  

 

For the block close to the margin, the Q-ratio is 0.67. Modelled with a magnetic 

remanence of 0.20 A/m, the blocks at the western margin of the Bjørnøya Basin 

present a Q-ratio of around 0.25 and the ones to the east of the Bjørnøya Basin a Q-

ratio of around 0.15. In the extreme east, the block modelled with a magnetic 

remanence of 0.01 A/m presents a Q-ratio of 0.01, which bears witness to a very low 

magnetisation. 

 

2.5.2.3 IKU_A 

The northernmost A transect is about 550 km long (Fig. 2.7A). It starts north of the 

Vestbakken Volcanic Province, crosses the thick crust of the Stappen High with the 

Leirdjupet Fault Complex to the south, the Fingerdjupet and the Maud Basins and 

terminates at the Hoop Fault Complex. Starting with a maximum gravity high of 75 

mGal, the gravity anomaly undulates along the profile, locally without correlating to 

the top basement topography. The strong undulation (from –150 to 265 nT) of the 

magnetic anomaly in the northwestern gradually becomes smoother, between –35 

and 135 nT, along most of the profile.  

 

Several bodies are modelled within the lower crust. Similar to IKU_C and IKU_B, a 

deep, high-density body of 3200 kg/m3 is created in the lower crust (x = 225 km, z = 

30 km). Contrary to profiles IKU_C and B, no high reflectivity is observed at the place 

of the high-density body, but instead one can notice the absence of reflectivity within 

a reflective basement and lower crust. Four other high-density bodies are modelled. 

Another 3200 kg/m3 body in the lower crust is necessary to fit the curve at the 
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eastern edge of the Nordkapp Basin; the others are three intrusions of 3000 kg/m3 

density. The easternmost intrusion (density = 3000 kg/m3 and apparent magnetic 

susceptibility = 0.036) is necessary to model the gravity high and associated focused 

magnetic high at the Norsel High. The remaining two intrusions placed at around 15 

km depth in the crust at 305 km and 365 km (density = 3000 kg/m3 and respective 

magnetic susceptibility = 0.047 and 0.009) are necessary to model the gravity 

undulation in the Maud Basin region and the correlated, focused, magnetic highs. 

The basement blocks from 0 to 100 km are modelled with a decreasing density from 

2990 to 2750 kg/m3. From there on, all the blocks are modelled with the average 

crustal density of 2750 kg/m3. The rather low magnetic susceptibility (0.007, 0.017) of 

the first blocks is fixed at 0 for the blocks to the east of the Stappen High. From 100 

km to 350 km, the blocks have a susceptibility of 0.020 ± 0.005. The block from 350 

km to the end of the profile is modelled with the low magnetic remanence value 0.01 

A/m and a magnetic susceptibility of 0.006. 

 

For the block closest to the margin, the Q-ratio computation gives a value of 0.60. 

The adjacent block presents a Q-ratio of 0.27, and the next two blocks are non-

magnetic (Q-ratio is 0). The block to the west of the Stappen High shows a Q-ratio of 

0.90.  The blocks from 100 to 280 km present similar Q-ratios of 0.20 ± 0.05. The first 

intruded block has a Q-ratio of 0.25 and the two intrusions, respectively, 0.10 (at 305 

km) and 0.39 (at 365 km). The last block is modelled with a magnetic remanence of 

0.01, its Q-ratio is 0.04 and the last intrusion has a Q-ratio of 0.15. 
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Figure 2.7: Integrated density and magnetic modelling along IKU_A, IKU_B and 

IKU_C 

The crustal structure has been determined by density modelling, and magnetic 

modelling allows distinguishing blocks of contrasted magnetic properties. The blocks 

of compatible properties (density, magnetic susceptibility and Q-ratio) are then 

regrouped under a common basement label (B1, B2, B3, B4, B5, MI, PW). The 

values on the block are the magnetic susceptibility  (top value) and the Q-ratio 

(bottom value). The density and magnetic properties are constant within a body. 

Within the GMSYS software, the error between observed and modelled data is 

represented by a red line respect to a horizontal black line corresponding to the zero 

error.  

 

2.6 Basement unit map (Fig. 2.8) – southwestern Barents Sea 

 

Five different basement types are distinguished combining information gained from 

the models and from the magnetic properties measured on rock samples from many 

part of Troms and Finnmark. The abundance of Archaean to Palaeoproterozoic and 

Caledonian rocks is determined by the integrated interpretation of potential fields. 

Mafic intrusions (MI) have also been interpreted.  

 

The B1 basement unit is interpreted Archaean to Palaeoproterozoic basement. The 

first southernmost field is the Fennoscandian Shield cropping out in northern Norway. 

Another area of B1 basement is an onshore-offshore strip starting in the Lofoten 
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Islands, including the outer part of the Troms, and extends towards the northeast. 

Recently, an isotopic age of 2.8 Ga has been determined on a sample of basement 

orthogneiss from the well 7120/12-1 (Fig. 2.2) (Davidsen, 2007). It confirms the 

presence of Archaean basement directly beneath the Palaeozoic sediments at the 

edge of the Finnmark Platform. Also relevant, in this regard, is the report that a 

tonalitic gneiss on the island of Vanna (Fig. 2.4), West Troms, has yielded a 

comparable U-Pb zircon age of 2.88 Ga (Bergh et al., 2007). Therefore, composition 

and age strongly suggests an onshore-offshore correlation between B1 and the 

Archaean rocks of Ringvassøya and Vanna in Troms County.  

A third B1 block has been mapped in the Stappen High region; it includes the 

basement beneath the Stappen High and the northern Sørvestsnaget Basin.  

 

The B2 basement unit is interpreted as Caledonian basement on top of Archean to 

Palaeoproterozoic rocks. This implies that the Caledonian nappes are sufficiently 

thick to reduce the signal of the underlying crystalline rocks of the Fennoscandian 

Shield. Onshore, the B2 unit encompasses the Caledonian nappes and underlying 

Archaean to Palaeoproterozoic basement. Offshore, blocks with a Caledonian 

signature are modelled at the southeastern ends of profiles IKU_A, B and C. 

The B3 unit consists of a high-density body recognised in the deep lower crust along 

profiles IKU_A, B and C. This body is interpreted as a metamorphic core-complex. Its 

density is modelled between 3100 and 3200 kg/m3 and it may be composed of a 

mixture of high-grade metamorphic rocks and/or mafic lower crust. This high-density 

body is positioned directly above the Bjørnøyrenna Fault Complex and the 

Ringvassøy-Loppa Fault Complex. We interpret the deep and curved reflectors 

(Ritzmann and Faleide, 2007) observed to the east of the Ringvassøy-Loppa and 

Bjørnøyrenna Fault Complexes as evidence of the emplacement of a core-complex 

with some modifications of the mineralogy. The profile B crosscuts the N-S trending 

gravity high related to the high-density body. Along IKU_B, the high density is 

interpreted to be linked to the Bjørnøyrenna Fault Complex. We consider that the 

emplacement of this deep crustal body along aligned fault complexes bordering deep 

basins (here the Tromsø and the Bjørnøya Basins) is associated with the late post-

orogenic Scandian collapse and crustal exhumation controlled by large crustal scale 

detachment. Several studies have reported the development of core-complexes 

during late to post-orogenic collapse (Burg et al., 2006; Vanderhaeghe, 1999). It is 
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also possible that a segment of oceanic crust from the former Iapetus Ocean may 

constitute a part of the lower crust. This interpretation is an alternative to the 

interpreted Caledonian suture inferred by Ritzmann and Faleide (2007) at that 

location. 

 

Units B4 and B5 are distinguished along the shelf margin. In the southwest, B4 

extends from the oceanic crust to the high-density lower crust of unit B3. The lack of 

correlation between the gravity high and magnetic high for the basement highs of 

Veslemøy High and Senja Ridge leads us to consider that the gravity high could have 

a deeper origin (i.e. crustal underplating, serpentinisation, intrusion of inversed 

polarised magmatic material), but the poor-quality seismic data do not provide any 

information in favour of this hypothesis.  

 

B5 encompasses the Vestbakken Volcanic Province and terranes immediately to the 

north. From the literature (Faleide et al., 1993), the Vestbakken Volcanic Province is 

characterised seismically by a high reflectivity level interpreted as lava flows covering 

older sediments. A few associated intrusions have also been reported. Out of the 

scale of the 3D model, these intra-sedimentary volcanic rocks are not represented 

and the high-density blocks B5 model all the mass. 

 

High-density bodies that can be interpreted as two stacks of sills are modelled north 

of the Loppa High (IKU_A). Another high-density body is interpreted at the origin of 

the focused magnetic high marking the Norsel High. The magnetic highs aligned 

between the Finnmark Platform and the Hammerfest Basin are interpreted as 

windows of Precambrian rocks similar to the Alta-Kvænangen Window onshore.  
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Figure 2.8: Basement units map 

Overlay of the TMF (nT) reduced to the pole, the simplified structural map (solid black 

line) and the basement unit interpreted. 

The basement units map is established by interpretation and inter-profile correlations 

of the 2D density and magnetic models, which allow for discrimination between 

basement lithologies offshore. Integrating this interpretation with the onshore-offshore 

correlations of the major lithologies, a map of the different basement units can then 

be compiled for the southwestern Barents Sea. 

B1: Archaean to Paleaoproterozoic rocks 
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B2: Caledonian nappes over Archaean to Palaeoproterozoic rocks 

B3: High-density lower crustal body 

B4: Intermediate continental/oceanic crust? 

      Presence of rocks with a reverse magnetic remanence polarity? 

B5: Basement affected by magmatic episode at the origin of the Vestbaken Volcanic 

Province 

(Geological units offshore in black letters, see abbreviation list page 81) 

 

2.7 Regional interpretation  

 

The prolongation of basement lithologies offshore towards the north is still 

speculative but insights regarding the extension of certain structures are possible. To 

provide a wider regional interpretation we integrate the present study with the seismic 

data and the terrane correlations between Svalbard, Bjørnøya and East Greenland 

(Gee and Tebenkov, 2004). 

 

2.7.1 Revised regional interpretation based on our integration (Fig. 2.9) 

The basement structure south of Svalbard is poorly imaged by seismic data; 

however, information may be gained by integrating the seismic velocity model 

(Breivik et al., 2005) and crustal reflectivity (Ritzmann and Faleide, 2007) together 

with our interpretation of the potential field maps. 

 

North of N 74º, Ritzmann and Faleide (2007) interpreted crustal lineaments 

recognised in previous studies as convergent elements continuing the Laurentia-

Baltica collision zone. The lineaments S1, S2, S3 and S4 were inferred from 2D 

reflection and refraction seismic data (S1, Gudlaugsson et al. (1987); Breivik et al., 

(2003); S2 and S3, Gudlaugsson et al. (1987) and S4, Breivik et al., (2002)). As 

these lineaments correlate with magnetic trends, we propose a reorientation of the 

lineaments following these magnetic trends (Fig. 2.2 and 2.9).  

 

Ritzmann and Faleide (2007) interpreted S1 as the offshore prolongation of the 

Billefjorden Fault Zone (BFZ) on Svalbard, but on our magnetic data the prolongation 
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of the BFZ is characterised by a double linear magnetic anomaly trending N-S to the 

west of the S1 lineament. These linear magnetic anomalies continue to the north of 

Stappen High. In the present study, the magnetic data (Fig. 2.6A and 2.6B) even 

support a connection between the southern extension of the BFZ and a northward 

prolongation of trends coming from the south. The interpretation of the BFZ as a 

suture by (Breivik et al., 2005; Ritzmann and Faleide, 2007) is questioned as no 

evidence of a suture has been reported from Svalbard. Moreover, all of Svalbard‟s 

terranes from west to east are considered to be Laurentian (Cocks and Torsvik, 

2005; Fortey, 1975; Gee, 2005; Gee and Tebenkov, 2004; Torsvik and Cocks, 2005). 

We suggest that the BFZ and its prolongation along the Leirdjupet, Bjørnøyrenna and 

Ringvassøy-Loppa Fault Complexes is likely to represent a Caledonian, deep seated, 

weak zone (Fig. 2.9) rather than a suture.  

 

On our magnetic grid, S1, S2 and S3 correlate with magnetic highs trending NNW-

SSE. These trends can be followed towards the SSE to the Norsel High on both the 

total magnetic field and its tilt derivative. We interpret S1, S2 and S3 as lineaments 

linking to a Caledonian trend converging towards Svalbard. We propose that these 

lineaments can be connected one by one to of the Caledonian thrusts mapped 

onshore. In Fig. 2.9 we indicate preferred paths for these interpreted prolongations of 

Caledonian thrusts. 

 

S4 is located at the limit of our study area and cannot be interpreted with any 

confidence; nevertheless, we do not interpret it as a Caledonian structure, mostly 

because of its convex shape. We link S4 to other convex lineaments in the magnetic 

domain D4 (Fig. 2.6C).  

 

A lack of seismic data across the hypothetical prolongation of the frontal Caledonian 

thrusts has precluded their tentative mapping offshore. However, working with high-

resolution magnetic data, Gernigon et al. (2007) have interpreted the extension of a 

Caledonian thrust exposed in the northwestern part of the Varanger Peninsula 

indicating its northward prolongation towards the Nordkapp Basin. Although, this 

observation is an element in favour of the idea of Caledonian structures striking 

northwards, the link between the interpreted northward-striking frontal thrust and its 

likely propagation towards Svalbard has yet to be proved. 
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The hypothesis of an arm of the Caledonides branching northwards in the SW 

Barents Sea was first proposed by Harland and Gayer (1972), Siedlecka (1975) and 

Ziegler (1988). More recently, Gee and Tebenkov (2004b) have advocated the 

possibility of a prolongation of the Svalbardian extension of the Caledonides even 

farther north. Their work established terrane similarities, for example, between 

Bjørnøya and NE Greenland, west Ny-Friesland and NE Greenland and Svalbard's 

Nordaustlandet and central east Greenland, and combined with our magnetic trends 

they support a northward prolongation of the Caledonian structures. The Stappen 

High appears as a key element at the junction of the proposed weakness zone and 

the strike-slip fault (with 5 km of offset) necessary to join the BFZ with the sinistral 

shear zone (Gudlaugsson et al., 1987) separating the thrust sheets from the foreland 

allochthon of NE Greenland. 

 

The structure developed between Laurentia and Baltica would comprise an extension 

of Svalbard located at the northeastern corner of the Laurentian plate. The 

hypothesis of thrusts swinging towards Svalbard implies a change in the tectonic 

settings in the N-E direction with the limitation of the deformation through the NE and 

E. This impediment could be due to the existence of more competent blocks or 

terranes. An explanation for the uncertain tectonic settings along the offshore 

prolongation of the Caledonides may relate to the idea of the existence of a micro 

plate or cratonic block within the Iapetus subduction zone and Barents shelf (Breivik 

et al., 2005; Siedlecka, 1975). However, our preference is for the possible 

prolongation of the Baltican plate farther north into the Barents Sea. This 

prolongation does not involve Svalbard (Gee and Tebenkov, 2004; Torsvik and 

Cocks, 2005) and would extend, across the Barents Shelf, the Timanian terranes 

reported at the northeastern margin of Baltica (Kostyuchenko et al., 2006). Where it 

was affected by the Timanian orogeny, the crust would be expected to have been 

thicker than the rest of the Baltican terranes. The presence of a relatively more 

competent terrane or craton (e.g. Siedlecka, 1975) to the N and NE of Baltica could 

explain both the northward bending of the Caledonian thrusts and the contrast in 

tectonic setting between the southwestern Barents Shelf, where the basins are deep 

and narrow, and the northwestern Barents Shelf which is mostly made up of 

platforms. In other words, these Timanian terranes would have limited the 
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propagation of the Caledonian thrusts and the formation of weakness zones to the 

east. Consequently, the development of basins during rifting was limited.   
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Figure 2.9: Structural interpretation of the western Barents Sea lineaments. The 

crustal lineaments S1, S2, S3 and S4 interpreted from seismic data by Gudlaugsson 

et al. (1987) and Breivik et al. (2002, 2003) are here reoriented based on the 

integration of magnetic trends. 

A. Structural interpretation proposed of the offshore Caledonian structures integrating 

all published data into a wider regional interpretation. The figure shows the proposed 

prolongation of Caledonian thrusts and faults related to Billefjorden Fault Zone 

(Svalbard) as well as a main weak zone (Caledonian suture?). 

B. Overlay of the structural map and the Bouguer anomalies (Fig 2.4A). 

C. Overlay of the structural map and the total magnetic field anomalies (Fig 2.4B). 

D: Schematic EW cross-section across the Bjørnøya Basin (BjB), the Loppa High 

(LH) and the Bjarmeland Platform (BP). The sketch illustrates the EW evolution of the 

Caledonian deformation mode: from thick skin in the west with fault cutting through 

the Shield to progressively thin skin deformation with thrusts rooted at the 

nappes/shield décollement. 

 

2.8 Caledonian structures and development of the sedimentary basins in 

the western Barents Sea 

 

The elbow-shaped prolongation (Fig. 2.6C (D5) and 2.9) of the Norwegian 

Caledonides illustrated here challenges the interpretation of two Caledonian 

branches proposed by Breivik et al., (2002); Gudlaugsson et al., (1987); Harland and 

Gayer, (1972); Siedlecka, (1975). When they adopted this theory they took the 

geometry of the basins as evidence for the existence of these two Caledonian arms. 

Recent work (Ritzmann and Faleide, 2007) has demonstrated the inhomogeneity of 

the basement in the southwestern Barents Sea and the existence of a single, large, 

fan-shaped collision zone diverging to the northeast. Ritzmann and Faleide (2007) 

suggested that the geometry of the basins was inherited from subjacent Caledonian 

structures, and their tectonic model located the deep basins (Bjørnøya Basin, 

Tromsø Basin, Sørvestsnaget Basin) on a continental fragment of Laurentian affinity 

with a specific rheology. 
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The fan-shaped collision zone interpreted by Ritzmann and Faleide (2007) in the 

southwestern Barents Sea is in broad agreement with the elbow-shaped prolongation 

of the Caledonides suggested in the present study. In our view, the fan-shaped 

collision zone is the southern part of the elbow, such that a northeastward 

propagation of the Caledonian thrusts would have been impeded by the presence of 

more resistant Timanian terranes. We attribute the deep and narrow basins west of 

the Loppa High to a reactivation of deep detachments inherited from thick-skinned 

Caledonian allochthons (Fig. 2.9A). Towards the east and northeast, the Caledonian 

deformation became gradually more thin-skinned with low-angle thrusts and high-

angle faults until the deformation waned due to an imbalance between the strength of 

the deformation stresses and the resistance of the underlying basement. Such a 

distribution in space and depth of the Caledonian thrusts can explain the observed 

distribution of the sedimentary basins in the southwestern Barents Sea (Fig. 2.9A). 

To the west of the Loppa High, subsidence of the deep basin, recorded particularly 

during the Cretaceous rift phase, was facilitated along the aligned Ringvassøy-

Loppa, Bjørnøyrenna and Leirdjupet Fault Complexes, a reactivation of a major high-

angle Caledonian thrust. The platform domain to the east and northeast of the Loppa 

High remains almost non-rifted, providing an argument in favour of the absence of 

deep, pre-existing, weakness zones. The E-W orientation of the Hammerfest Basin 

and the segmented Nordkapp Basin oriented N˚50 should then be related to the 

expected complex geometry of lineaments inherited from the Timanian and the 

Scandian orogenies, in addition to a set of lineaments linked to the margin of the 

Baltican plate characterised by the TKFZ and its correlated faults in the Timans.  

 

In our view, the Iapetus suture is difficult to define precisely and basal or frontal 

thrusts are not well constrained. Based on basin geometry and distribution we argue 

for a limited propagation of the Caledonian thrusts and related deformation towards 

the northeast (Fig. 2.9). We consider there to have been a thicker and more 

competent crust in the eastern and northern part of the Barents Sea. We suggest that 

terranes of contrasting rheology were involved in this region when the Caledonian 

thrust sheets were emplaced formed and, consequently, we envisage a combination 

of sutures rather than a simple straight suture between Laurentia and Baltica.   
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Although we draw the path of the interpreted Caledonian thrusts based on the 

magnetic data trends (Fig. 2.9C), we did not use the gravity data. Therefore, some 

comments on the correlations between the traces of the Caledonian thrusts and the 

Bouguer anomalies (Fig. 2.9B) are pertinent. The overlays of the structural data on 

top of the Bouguer anomalies reveal that the suggested prolongation of the frontal 

thrust (dashed grey linein Fig. 2.9D) would separate the rifted southwestern Barents 

Sea Shelf (Bouguer anomaly lows) from the eastern platform (Bouguer anomaly 

highs).  It is also interesting to see how the segmentation of the Nordkapp Basin 

correlates with the successive cross-cutting interpreted thrusts. Indeed, a thrust is 

located perpendicular to the transition between the southern and northern parts of 

the Nordkapp Basin. Another thrust is interpreted where the northern part of the 

Nordkapp Basin becomes narrower (73ºN 31ºE). This observation leads us to 

suggest that the inhomogeneity of the basement has played a role during the rifting 

and, consequently, impacted the processes that have segmented the shape of the 

Nordkapp Basin. We also note the closeness of the interpreted thrusts and the large 

Bouguer high observed north of 74ºN. There is indubitably a dramatic change from 

the undulating top-basement topography in the south to the rather flat, top-basement 

topography north of 74ºN. We interpret this change to be related to a contrast in 

basement rheology and/or a contrast in the stress regime through time. We interpret 

that this change in the deformation mode is one of the consequences of the 

interpreted presence of a thicker basement affected by Timanian accretion advocated 

earlier. 

 

Our potential field study does not unravel the complexity of the Svalbard terrane 

assemblage. It is, however, compatible with the existence of an elbow-shaped 

Barentsian Caledonides developed between Laurentia and Baltica. This involves the 

extension of the Timanian terranes, a northernmost part of Baltica, farther to the 

northwest than they have usually been mapped. In this model, the strike-slip fault 

movements that contributed to the formation of Svalbard's terranes would be quite 

modest as the terranes would have been fairly near to the places where they are 

observed today with respect to northeast Greenland and Norway.  
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2.9 Conclusions 

 

(1) Correlating potential fields with the onshore geology shows that Archaean to 

Palaeoproterozoic medium to high-grade, gneissic and mafic complexes are related 

to regional magnetic highs whereas Caledonian nappes clearly show lower magnetic 

anomalies. Corresponding petrophysical data allow a characterisation of the 

basement rocks by their associated density, magnetic susceptibility and Q-ratio 

values. The correlations of onshore potential fields and geological information confirm 

the northwestward prolongation of Fennoscandian, Archaean to Palaeoproterozoic 

lithologies (gneisses and greenstone belts) beneath the Caledonian nappes.  

 

(2) The study confirms the offshore continuation of the Caledonian nappes and rocks 

of the Fennoscandian Shield with the Caledonian nappe cover getting thicker to the 

east of the Loppa High (B2). More locally, we interpret the presence of a 

Precambrian window, similar to that of Alta-Kvænangen window in western Finnmark 

and stacks of sills to the northeast of the Loppa High and intruding the Norsel High. 

The modelling confirms that crust affected by volcanism and with intra-sedimentary 

volcanic rocks exists along the margin (B5 and B4). To the south of the Loppa High, 

a low-magnetic basement (B4) requires more investigation before it can be fully 

interpreted.  

 

(3) One of the most interesting features is the lower-crustal high-density (3100 to 

3200 kg/m3) body (B3) modelled along the western flank of the Loppa High. Features 

resembling a core-complex (B3) are associated with deep, listric, fault zones and a 

rather flat Moho. From its geometry, the formation of this inferred core-complex is 

considered with the late- to post-Caledonian (Scandian) collapse and the consequent 

development of the fault zones. The modelled flat Moho leads us to suggest that an 

isostatic re-equilibration push was also involved in the generation of the core 

complex.  

 

(4) The present study interprets basement lineaments striking towards Svalbard. The 

hypothesis of an elbow-shaped Caledonian structure propagating northwards is 
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based on onshore-offshore correlations and a study of magnetic trends. The 

basement unit map compilation also supports this idea.  

 

(5) The first-order structure aligning the Billefjorden Fault Zone with the Leirdjupet, 

Bjørnøyrenna and Ringvassøy-Loppa Fault Complexes is here interpreted as a 

major, deep-seated weak zone.  

 

(6) From our tectonic model, the geometry of the basins is directly linked to the pre-

existing Caledonian thrusts and therefore it reflects the deformation mode of the 

Caledonian orogeny in the region, changing from thick-skinned in the west to thin-

skinned in the east.   

 

(7) The correlations between Svalbard, Bjørnøya and Greenland established by other 

authors, together with our understanding of the geophysical characteristics of the 

region, suggest to us that the elbow-shaped swing of the strike of the Caledonides is 

a consequence of the presence of more competent terranes or blocks to the E and 

NE of Baltica. These terranes are suggested to be of Timanian origin. In our model, 

the strike-slip fault movements that led to the formation of Svalbard's terrane 

gathering would have been quite modest.  
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Abbreviation list (Fig: 2.4A, 2.4B, 2.5A, 2.5B, 2.6, 2.7) 

Onshore 
AKW:   Alta –Kvænangen Window 
BFZ:  Billefjorden Fault Zone 
BI:   Bjørnøya Island 
CFT:  Caledonian frontal thrust 
GN:   Gaissa Nappe Complex 
JGC:  Jergol Gneiss Complex 
KN:   Kalak Nappe Complex 
KuGrB: Kautokeino Greenstone Belt 
KrGRB:  Karasjok Greenstone Belt 
LGrB:   Levajok Greenstone Belt 
LN:  Laksfjord Nappe Complex  
LP:  Lyngen Magmatic Complex 
RGC:  Raisædno Gneiss Complex 
RW:  Repparfjord-Komagfjord Window 
RLFC:  Ringvassøy-Loppa Fault Complex 
SI:  Spitsbergen Island 
SP:   Seiland Igneous Province 
TFFC:  Tromsø-Finnmark Fault Complex 
TKFZ:  Trollfjorder-Komagelva Fault Zone 
TVG:  Tanaelv and Varanger Complexes 
VVFC:  Vestfjorden Vanna Fault Complex 
 
Offshore 
AFC:   Asterias Fault Complex 
BB:   Bjørnøya Basin 
BjFC:   Bjørnøyrenna Fault 
Complex 
BP:  Bjarmeland Platform 
EP:  Edgeøya Platform 
FFC:   Finnmark Fault Complex 
FP:  Finnmark Platform 
FSb:  Fingerdjupet Subbasin 
GH:  Gardarbanken High 
HB:   Harstad Basin 
HFC:  Hoop Fault Complex 
HmB:   Hammerfest Basin 
LFC:  Leirdjupet Fault Complex 
LH:  Loppa High 
MB:  Maud Basin 
MFC:  Måsøy Fault Complex 
MI:  Magerøya  
NB:  Nordkapp Basin 
ND:  Norvarg Dome 
NFC:    Nysleppen Fault 
Complex 
NH:  Norsel High 
RLFC:  Ringvassøy-Loppa Fault 
Complex 

SB:  Sørvestsnaget Basin 
SD:   Samson Dome 
SG:  Swaen Grabben 
SH:   Stappen High 
SR:  Senja Ridge 
SvD:  Svalis Dome 
SøB:  Sørkapp Basin 
TB:  Tromsø Basin 
VH:   Veslemøy High 
Vvp:  Vestbakken volcanic 
province



 

 80 

 

 

 

Chapter 3 

3D density and magnetic crustal characterisation of the 

southwestern Barents Shelf: Implications for the offshore 

prolongation of the Norwegian Caledonides 

 
 
Cécile Barrère, Jörg Ebbing and Laurent Gernigon 
 
 
Submitted to Geophysical Journal International, August 2009 

 

 

 

 

 
 
 

 



 

 81 

Abstract 

 

3D joint gravity and magnetic modelling of the southwestern Barents Shelf provides 

new information on key geological interfaces and allows characterisation of the crust 

with respect to its density and magnetic properties. The model presented here is 

based on a wealth of offshore seismic and onshore geological information. One of 

the main outcomes of this study is a new top basement map and a crustal units map 

for the southwestern Barents Sea, which improves our understanding of the tectonic 

evolution of the region. In the upper crust, a NW-SE trending density contrast is 

mapped and interpreted as the contact between the terranes inherited from the 

Caledonian collisional prism and Baltican terranes not affected by Caledonian 

tectonism. A system with a unique Caledonide branch propagating towards the north 

and Caledonian nappes emplaced asymmetrically in the western Barents Sea is 

confirmed, with a geometry interpreted as linked to the palaeogeography of the 

Baltican Plate. In addition, our crustal units map helps in our understanding of the 

crustal properties locally and also allows us to propose onshore-offshore links. High-

density bodies modelled along the coast of Finnmark suggest a likely offshore 

prolongation of the Caledonian Middle and Upper Caledonian Allochthons. To the 

west of the Loppa High, a feature evocative of a core-complex is modelled, 

associated with fault complexes and strong crustal thinning. A computed crustal 

thinning ratio map shows that the crustal thinning pattern is complex and suggests a 

complex deformation mode and timing for the origin of the deep basins. Our study 

also highlights disparate basin evolution east and west of the Loppa high. To the 

east, a combination of Timanian and Caledonian faults and weakness zones played 

an important role in the evolution of the Mesozoic and Cenozoic sedimentary basins. 

To the west, the basinal evolution was mostly controlled by the reactivated 

Caledonian suture. 

 

Key words: Composition of the continental crust, Gravity anomalies, Earth structure, 

Magnetic anomalies: modelling and interpretation, Sedimentary basin processes 
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3.1 Introduction 

 

The southwestern Barents Shelf north of the Finnmark onshore area of northern 

Norway (Gabrielsen 1984, Gabrielsen et al. 1990), is tectonically complex and 

represents an ensemble of deep basins, basement highs and platforms (Fig. 1). A 

large number of seismic profiles have been collected during the last decades south of 

74°N, but most of these seismic data do not allow imaging the top basement and 

below due to a lack of deep seismic penetration and the presence of salt and 

carbonate in the deep basins. Skilbrei (1991, 1995) presented top basement maps 

combining magnetic depth estimates and seismic profiles, which until the present 

study has been the best available compilation. Hitherto, the IKU seismic reflection 

dataset has been the main resource for deep-crustal imaging (e.g., Gudlaugsson et 

al. 1987, Faleide et al. 1993, Gudlaugsson & Faleide 1994, Sanner 1995, Breivik et 

al. 1998, 2005). More specifically, wide-angle data (Breivik et al. 2002, 2003, 2005) 

and the IKU reflectivity have previously been used (Ritzmann & Faleide 2007) to 

investigate the geometry and extent of the inferred prolongation of the Norwegian 

Caledonides across the Barents Shelf.  

 

Barrère et al. (2009) presented 2D joint density and magnetic modelling along the 

IKU A, B and C seismic profiles integrated with the geological data and potential field 

maps that were available onshore and offshore. They presented a preliminary 

basement unit map for the southwestern Barents Shelf. In our study area of the 

southwestern Barents Sea (Fig. 3.1), continental crust and a stripe of oceanic crust 

along the margin are present; an intermediate crustal type may also be present along 

a sharp Continent-Ocean Transition (COT), previously interpreted as a strike-slip 

system along the western Barents Sea margin (Ziegler 1988, Faleide et al. 1993). 

Based on the basement characterisation, Barrère et al. (2009) suggested a new 

regional interpretation for the offshore prolongation of the Norwegian Caledonides, 

which links the southern part of the west Barents Shelf to an elbow-shaped 

Caledonian structure propagating towards the north. In the present contribution we 

describe a new 3D density/magnetic model which is then applied to evaluate, 

enhance and extend the earlier interpretation regarding the distribution of crustal 

units and the offshore regional geology.  
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Figure 3.1: Tectonic units and main faults of the study area of the southwestern 

Barents Sea (see abbreviations list at the end of the paper, page 128). 

 

3.2 Geological and tectonic setting  

 

The southwestern Barents Sea basement composition and structure is inherited from 

a complex geological history. The basins observed today originate from a succession 
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of major rifting episodes, which occurred in the Late Palaeozoic and from the Late 

Jurassic to the Early Cretaceous (Faleide et al. 1993, Gudlaugsson et al. 1993). Most 

of the major rift basins on the Barents Shelf were formed during these episodes. A 

last rifting episode in the latest Cretaceous-Paleocene (Faleide et al. 1996) led to 

continental break-up and onset of seafloor spreading in the Norwegian Greenland 

Sea.  

 

The basement in the Barents Sea is characterised by the diversity of the terranes 

involved in its composition. This diversity originates from the successive orogenies 

that took place from the Palaeoproterozoic to the Caledonian times. The 

neighbouring terranes to our study area witness on this terranes assemblage. 

 

3.2.1 Adjacent onshore geology to the study area 

The outcropping and subcropping Fennoscandian (Baltic) Shield comprises several 

geological provinces. Six major units can be distinguished (Fig. 3.2) (Gaal & 

Gorbatschev 1987): the Sveconorwegian (1.25-1 Ga), Svecofennian (1.9-1.8 Ga) and 

Lapland-Kola-Karelian (2.4-1.9 Ga) terranes constitute the substratum (Gee & 

Stephenson 2006). A belt of high magnetic granitoid, plutonic and extrusive rocks the 

Transscandinavian Igneous Belt (TIB) (1.8-1.6 Ga) occurs at the southwestern margin of 

the Svecofennides. The Caledonian fold belt (450-400 Ma) and sedimentary rocks of 

the Palaeozoic platform cover the westernmost and easternmost parts of the 

Archaean to Palaeoproterozoic rocks, respectively. The various terranes of Lapland-

Kola-Karelian block and the Caledonian fold belt are known to propagate offshore 

beneath the Barents Sea. The Lapland-Kola-Karelian block is characterised by a 

complex association of geological terranes and structures of diverse origin and age 

(Daly et al. 2006, Kostyuchenko et al. 2006). The result is a patchwork of greenstone 

belts and granitic and gneissic complexes, producing a set of characteristic magnetic 

and gravity anomalies in mainland Finmark (Olesen et al. 1990) and neighbouring 

areas of Russia and Finland (Kostyuchenko et al. 2006). 
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3.2.2 Post Sveconorwegian tectonic events 

Baltica's northeastern margin is characterised by structures related to the Late 

Neoproterozoic Timanian orogeny (Ivanova 2001, Roberts & Siedlecka 2002, Gee & 

Pease 2004, Siedlecka et al. 2004, Gee et al. 2006). On the Varanger Peninsula the 

exposed part of the NW-SE-trending Timanide orogen occurs northeast of the dextral 

strike-slip Trollfjorden-Komagelva Fault Zone (TKFZ) (Roberts & Gee 1985, Roberts 

& Siedlecka 2002). 

 

The Caledonian orogen formed as a result of the continent-continent collision 

between Laurentia and Baltica in Silurian to Early Devonian time, the so-called 

Scandian orogeny (Roberts & Gale 1978, Torsvik et al. 1996, Roberts 2003, Gee 

2005, Gee et al. 2006). Onshore Norway, Scandian thrust-sheets emplaced onto the 

autochthonous Fennoscandian Shield are recognised as four major groups of 

allochthons (Lower, Middle, Upper and Uppermost) (Roberts 1983, Roberts & Gee 

1985, Siedlecka et al. 2004, Gee 2005, Nystuen et al. 2008). The Lower and Middle 

Allochthons consist of rocks derived from the Baltoscandian-margin shelf 

(Neoproterozoic to Silurian pericratonic deposits and continental rise, respectively) 

and their underlying crystalline basement. Mafic intrusions characterise the 

uppermost units of the Middle Allochthon (Särv and Seve Nappes) with the Seve 

nappes interpreted as belonging to the outermost part of the pericontinental 

Baltoscandian margin. The Upper Allochthon comprises thrust sheets (Köli Nappes) 

of lithologies derived from the Iapetus. Some of the Köli Nappes have Baltican 

affinities whereas some higher thrust sheets contain faunas of Laurentian origin. The 

Uppermost Allochthon derives from the Laurentia margin and comprises shelf and 

slope rise successions, some ophiolites and major granitic batholiths (Stephens & 

Gee 1989, Gee 2005, Barnes et al. 2007, Roberts et al. 2007).  

 

In many parts of the Caledonides there is evidence of late Scandian transverse and 

orogen-parallel extension of the Caledonides (Roberts 1983, Hossack 1984, 

Andersen 1998, Braathen et al. 2002), interpreted as signs of late orogenic 

gravitational collapse with coeval rapid erosion of the mountains. Broad detachment 

zones developed obliquely to the recorded Scandian thrust direction have been 

described (e.g. Braathen et al. 2002, Olesen et al. 2002, Osmundsen et al. 2002, 

2003) and are associated with Devonian supra-detachment basins. Extensional 
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collapse of the Caledonide orogen has been inferred to also have taken place in the 

Barents Sea Caledonides (Gudlaugsson et al. 1998). Gudlaugsson et al. (1998) 

studied the Carboniferous–Permian rifting structures and suggested that weakness 

zones in the basement were inherited from the Caledonian orogeny. They considered 

that Carboniferous-Permian rift structures continued along the strike of the North 

Atlantic rift at least 600 km into the Barents Sea.  

 

Figure 3.2: Simplified subdivision of the Fennoscandian Shield (after Gaal & 

Gorbatschev 1987). The Fennoscandian Shield comprises six major geological 

provinces: the substratum consists of the Sveconorwegian (1.25-1 Ga), Svecofennian 

(1.9-1.8 Ga) and Lapland-Kola-Karelian (2.4-1.9 Ga) terranes. The 

Transscandinavian Igneous Belt (TIB) (1.8-1.6 Ga), occurs along the southwestern 

margin of the Svecofennides; this is an intrusive complex of mostly granitoid 

composition that is propagating northward underneath the Caledonian nappes. The 

Caledonian fold belt (450-400 Ma) and the Palaeozoic platform cover occur in  the 

westernmost and easternmost parts of the Fennoscandian shield, respectively.  
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3.3 Methodology 

 

We have modelled the crustal structure of the SW Barents Sea in order to determine 

the main crustal characteristics. For this, we established a 3D forward modelling of 

potential field data integrated with a wealth of seismic information. 

 

3.3.1 3D modelling 

The IGMAS software (Götze & Lahmeyer 1988) has been used for forward modelling 

of the potential field data. Within IGMAS, the geometry is defined along parallel 

vertical cross-sections (Fig. 3.3). In our model, the line spacing is ranging from 10 to 

20 km depending on the complexity of the modelled structures. The geometry is 

triangulated between the sections in order to define the 3D geometry. The gravity 

and magnetic fields are then calculated and the resulting field is compared with the 

observed potential field. Constraints are provided by geometry and petrophysical 

parameters. A large amount of additional data (e.g. well data, seismic horizons and 

profiles) was integrated to constrain our 3D model. Note that the resolution of the 

regional model (> 10 km) is not high enough to allow an integration of smaller intra-

sedimentary features (e.g., salt domes). 

 

In order to use absolute densities comparable with the petrophysical database in the 

modelling, a reference model has to be defined to model the Bouguer anomaly 

without an arbitrary shift. The densities in the model are defined with respect to 

reference densities representing the „normal‟ crustal column at the coast (Table 3.1). 

 

 Depth to boundaries (km) Density (kg/m3) 

upper crust 0-15 2750 

lower crust 15-32 2950 

mantle 32-120 3265 

Table 3.1: Reference model description 

 

Magnetisation of crustal rocks is mainly related to the magnetite content in the rock. 

The Curie temperature of magnetite is 580ºC and at this temperature rocks lose their 

ability to remain magnetised. Assuming a normal thermal gradient, the Curie 

temperature is located in the deep crust (e.g., Ebbing et al. 2009). Therefore, we can 
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limit the extension of magnetic sources to the crust.  Magnetic field calculations 

require the definition of an external magnetic field. The Earth magnetic field and the 

remanent field were modelled parallel to the induced magnetic field. We define the 

normal inducing magnetic field with constant field strength of 53300 nT, and 

inclination of 79º and declination of 4.3º.  

 

 

 

 

 

 

 

 

 

 

A. 
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Figure 3.3: (A) Bouguer anomaly and (B) total magnetic field (reduced to the pole) 

with the main faults superimposed. The white lines indicate the location of the vertical 

planes defining the 3D model; also represented: the IKU deep-seismic reflection data 

(thick black lines), the wide-angle data (thick grey lines) and the deep wells reaching 

the basement (black crosses). The modelling parameters are constrained by the 

onshore petrophysical database; the measured samples are located by white dots. 

 

3.4 Databases 

 

3.4.1 Potential field data 

3.4.1.1 Bouguer anomaly 

The Bouguer anomaly (Fig. 3.3A) was calculated from the free air anomaly 

compilation by Skilbrei et al. (2000). The applied bathymetric data are based on the 

International Bathymetric Chart of the Oceans (IBCAO) (Jakobsson et al. 2000) 

combined with the GTOPO30 grid (onshore data) 

B. 

nT 

http://www.ngdc.noaa.gov/mgg/bathymetry/arctic/arctic.html
http://edcdaac.usgs.gov/gtopo30/gtopo30.asp
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(http://edc.usgs.gov/products/elevation/gtopo30/dem_img.html), with  resolutions of 

2.5 and 1 km, respectively. 

A simple Bouguer correction at sea was carried out using a bathymetric grid with a 

resolution of 2 km and reduction densities of 2200 kg/m3 and 2670 kg/m3 for offshore 

and onshore, respectively.  

 

3.4.1.2 Magnetic anomaly 

Aeromagnetic data are available from a magnetic compilation (Fig. 3.3B) of the 

western Barents Sea by Olesen et al. (2006). The dataset is compiled from 

reprocessed aeromagnetic surveys and line spacing ranges from 0.5 to 2.5 km over 

mainland Norway and from 3 to 8 km over the continental shelf.  

 

3.4.2 Petrophysical data 

In our model the density values from the gravity modelling along IKU profiles A, B 

and C by Barrère et al. (2009) were used as initial parameters. Densities of the 

sedimentary layers were based on well data (Tsikalas 1992) and published tables 

based on velocity-density relationships of sedimentary units obtained from seismic 

refraction and reflection/gravity studies. Bedrock densities are based on direct 

onshore measurements (Olesen et al. 1990, Galitchanina et al. 1995); deep-crustal 

densities are based on published values from refraction data models (Breivik et al. 

1998, 2002, 2003, 2005, Mjelde et al. 2002)  inferred from velocity-density 

relationships and gravity modelling. The errors from the velocity-density relations on 

these densities are of the order of ±50 kg/m3 and ±100 kg/m3 for the upper-crustal 

layers and deep-crustal layers, respectively. 

 

In the upper crust, the magnetic sources mainly relate to Caledonian and Archaean 

to Palaeoproterozoic rocks and mafic intrusions within the sedimentary basins (Åm 

1975, Olesen et al. 1990, Skilbrei 1995, Barrère et al. 2009). For the magnetic field, 

the magnetic susceptibility and remanence from the magnetic modelling along IKU 

profiles A, B and C by Barrère et al. (2009) were used as initial parameters. Those 

values were derived from onshore samples (Troms and Finnmark regions) (Olesen et 

al. 1990, Slagstad et al. 2008). Q-ratios were applied according to the samples and 

http://edc.usgs.gov/products/elevation/gtopo30/dem_img.html
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modified during the modelling. We set a homogeneous and low Q-ratio and magnetic 

susceptibility for lower crust with Q=0.4 and magnetic susceptibility=1000.10-5 (SI). 

Sedimentary rocks are set to 30.10-5 (SI) as they have very low magnetic properties 

in comparison with the basement rocks (e.g. Olesen et al. 1990). 
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Table 3.2: Compilation of density/velocity laws applied in the Barents Sea and starting value used in this study. 

 

 

Breivik et al. (1995) 
Ottar Basin 

Nordkapp Basin 

Mjelde et al. (2002) 
Sørvestsnaget Basin 

Ritzmann et al. (2007) 
(Barents50)  

Average Barents Sea 

Breivik et al. 
(2002) 

SE Svalbard 

Breivik et al. 
(2003) 

S. Svalbard  

 
Breivik et al. 

(2005) 
S. Svalbard 

  
Clark et al. (2008) 
SW Barents Sea  

Loppa High 
Barrère et al. (2009) 

SW Barents Sea 

 Density  
(kg.m

-3
) 

Velocity 
(m/s) 

Density  
(kg.m

-3
) 

Density 
(kg.m

-3
) 

Velocity 
(m/s) 

Velocity 
(m/s) 

Velocity 
 (m/s) 

Velocity 
 (m/s) 

Velocity 
 (m/s) 

Density  
(kg.m

-3
) 

Magnetic 
properties 

Quaternary 1800-
2050 

1800-2360 2050 1800-2050 1800-2250 - 1800-2250 - 1040-2000 2300 0 

Cenozoic 2050 2360 2200 2050-2280 2250-3260
 

- 2250-3500 - 2000-3000 2300 0 

 
 

Cretaceous 2140 2750 
2300 

2240 

2750-3600 
3200-3360

 
3500-3600 

3200-3600 3000-4500 2450 0 
2370 

2400 2590 3300-4050 3800-5000 

 
 

Triassic 

2340 3700 

2480 

2380-2590 

4000-5450 

4000-4800 4000 
4000-5450 

4500-5000 2550 0 2390 4000 2470-2590 4000-4800 4600-5450 

2430 4200 2520-2590 4000-4800 4600-5450 
4500-5450 

2500 4600 2520-2590 4500-4950 5100-5450 

Palaeozoic 2610 5200 2620 2640 4500-5900
 

5100-5520 5650-5900 5100-5900 5000 2600 0 

Near top 
Basement 

2660
 

5500  2710 5500-6000
 

5800-6000 5920-5950 
 
5800-6000 

   

Salt 2200  2150  
 

     0 

 

 
 
 

Upper 
Crust 2770 6000 2750-2820 2770 6200-6600

 
Density  
(kg.m

-3
) 

2800-2990 

Density  
(kg.m

-3
)  

2793-2880 

Density 
(kg.m

-3
) 

2793-2915 
6000-6500 

Caledonian 

Nappes 
2750 

(0.0001 to 0.01 

SI, 0.01 A/m,  
Q>1) 

Archaean To 
Proterozoic 

rocks 
2750-2800    

(0.010 to 0.200 
SI, 0.20 A/m, 

Q<1) 

Mafic Intrusions 
3000 

(0.015 to 0.05 

SI, 0.2 A/m,  
Q<1) 

Deep 
Crustal 
High 

Density 
Body 

  
Velocity(m/s) 

7400 
2980-3050 7100-7600     3100 

(0.0001 SI, 0 
A/m, Q=0) 

Oceanic 
Layers   

Density (kg.m
-3

) 
2800-2850 

 
 

 2900-2950 2900-2950    

 
Lower 
Crust 

2930 >6600 2950  
 

2910-2950 
Density  
(kg.m

-3
) 

2900-2950 
 6500-7000 2950 

(0.0001 SI, 0 
A/m, Q=0) 

Mantle 3330 >8000 3200-3280 3300 
 

3330-3450  3330-3340 7500 3300  



 

 93 

3.4.3 Geometric constraints  

To constrain the sedimentary layers we obtained access to three industrial, depth-

converted seismic horizons: top Tertiary, base Cretaceous and top Permian. These 

horizons were produced by depth-conversion of seismic horizons using regional 

velocity functions calibrated by well data. The sedimentary rocks were then 

subdivided into four principal units: Quaternary, Neogene-Paleocene-Cretaceous, 

Jurassic-Triassic and Palaeozoic. In the southwestern Barents region, six wells 

(black crosses, Fig. 3.2) reach the top basement; they were used to calibrate the 

modelled top basement and check the reliability of the depth-converted seismic 

horizons.  

 

We set up our initial model using the Barents50 model of Ritzmann et al. (2007) and 

the top basement reported by Skilbrei (1991, 1995). The former describes a crustal 

velocity model with a resolution of 50 km, which also provides information along all 

available regional seismic profiles with 25 km sampling. The top basement of the 

Barents50 model is roughly similar to the depth to magnetic basement established by 

Skilbrei (1991, 1995), which provides a locally higher resolution. The IKU deep-

seismic reflection profiles and the seismic refraction data (Breivik et al. 2002, 2003, 

2005, Mjelde et al. 2002) were used to refine the crustal structure of our model. The 

boundary between the upper and lower crust varies between 20 and 22 kilometres 

depending on the reflectivity along the IKU profiles and the seismic velocities from 

refraction seismic lines. In addition, a recent OBS profile (Clark et al. 2009) has been 

included in the final phase of the modelling. 
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3.5 Modelling results 

 

3.5.1 Comparison between observed and modelled potential fields  

3.5.1.1 Density modelling 

The final differences between the measured and modelled gravity anomalies have a 

standard deviation of less than ±8.0 mGal. This value is well above the accuracy of 

the gravity data (±2 mGal). The remaining mismatch can be largely explained as 

relating to local structures below the resolution of our model (e.g. salt domes). The 

short-wavelength anomalies (<10 km) onshore have not been modelled and 

consequently create local deviations from the modelled Bouguer anomalies.  

 

3.5.1.2 Magnetic modelling 

The observed and modelled magnetic anomalies show a reasonable match. The 

anomalies linked to basement topography (wavelengths: 100-200 km) are better 

matched than the short-wavelength (<100 km) anomalies linked to intra-basement 

magnetic sources and/or shallow magnetic sources. Because of our simplified 

settings, the magnetic modelling represents the general magnetic trends but not the 

absolute amplitudes of the magnetic field. 

 

3.5.2 Density and magnetic properties 

Figures 3.4 and 3.5 show the set-up of the model and the main 3D horizons. In Fig. 

3.5, the profiles show a good regional fit, but local deviations occur, especially in 

magnetic modelling. 

 

The model densities and magnetic properties are summarised in Table 3.3. The 

modelled values are used to distinguish between different basement units, the spatial 

extensions of which are presented in Figure 3.4A. 
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Density 

(kg/m
3
) 

Magnetic properties 
Q-

ratio 
Susceptibility  

(.10
-5 

SI) 
max.        min. 

Mantle continental mantle 3300 0.4 800 

oceanic mantle 3230 

 
lower crust 

standard lower crust 2950 0.4 800 

LCB - lower crustal body 3000 0.4 800 

oceanic crust basalt 2900 1 2000 

 
 
 
 
 
 
 
 
 
 
 
 
 

Upper crust 

 
 

onshore 
zone 

BAS1 
onshore Fennoscandian 

Shield 

 
2700-2750 
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sedimentary 

rocks 

Quaternary 2300 0.3 30 

Neogene-Paleogene-Cretaceous 2450 0.3 30 

Jurassic-Triassic 2550 0.3 30 

Palaeozoic 2600 0.3 30 

Table 3.3: Modelling parameters: the different crustal units are defined by a 

combination of petrophysical values obtained by density and magnetic modelling. 

The association of neighbour crustal units defines the zones geologically interpreted. 
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Figure 3.4: (A) Crustal units are established by grouping blocks of comparable 

density and magnetic properties. LCB = lower crust high-density body; UCB= upper 

crust high-density body; BAS0= Onshore Fennoscandian Shield; BAS1 = Archaean 

to Palaeoproterozoic rocks affected by the Caledonian orogeny; BAS2 = Archaean to 

Palaeoproterozoic rocks weakly affected by the Caledonian orogeny, clearly with 
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lower magnetisation than the type BAS1; MB1 = high-density/medium-magnetic 

crust; MB2 = Vestbakken volcanic province; MB3 = high-density/high-magnetic crust. 

(B) New Moho map from our 3D model. (C) Depth to top basement taken from our 3D 

model. The depth to top basement coincides over most of the area with the depth to 

the top of the Caledonian nappes. (D) Crystalline basement thickness map computed 

from the modelled depth top basement (Fig. 3.4C) to the Moho (Fig. 3.4B), and 

simplified structural map (solid grey lines). The map shows the intense crustal 

thinning to the west of the alignment of the Ringvassøy-Loppa and Bjørnøyrenna 

Fault Complexes. (E) Crustal thinning factor map. This factor is computed dividing 

the reference thickness of 33 km by the crustal thickness modelled. The map 

provides a quantitative estimation of the thinning intensity and a qualitative estimation 

of the main directions of extension. (F) Five ´crustal zones‟ consisting of one or 

several basement units are distinguished: (1) onshore zone, (2) offshore coastal 

zone, (3) marginal zone, (4) central zone and (5) zone covering the eastern and 

northern areas. 

 

3.5.2.1 Modelled densities (Table 3.3) 

On the Bjarmeland Platform (Fig. 3.1), the densities are slightly higher than the 2750 

kg/m3 average values usually considered for the Fennoscandian Shield basement 

(BAS0) (Galitchanina et al. 1995). Also, to produce a Moho depth compatible with the 

seismic Moho (Ritzmann et al. 2007), a lower crustal body (LCB) had to be 

introduced over the central part of the SW Barents Shelf. The LCB‟s 3000 kg/m3 

density value contrasts with the surrounding 2950 kg/m3 density of the regular lower 

crust density. 

Along the western margin, the basement units MB1, MB2 and MB3 are modelled with 

density values around 2850 kg/m3. Locally, blocks (MI) of 2900 kg/m3 density were 

introduced in the model. 

 

3.5.2.2 Modelled susceptibilities (Table 3.3) 

The tops of the magnetic sources are assumed to be the top basement and the top of 

the oceanic basalts obtained by density modelling, for the continental and oceanic 

crust, respectively. Due to the resolution of the model and lack of constraining data, 

no intra-basement magnetic sources are distinguished. Therefore, the resulting 



 

 98 

magnetic modelling highlights the main changes in magnetic properties of the upper 

crust. 

 

The final model shows a variation of the upper-crustal magnetic susceptibility values 

from 500.10-5 (SI) to 5000.10-5 (SI).  
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Figure 3.5: Location map: integrated modelling cross sections A, B, C and D (red 

solid lines) parallel to existing seismic data: (A) P3 and IKU D, (B) IKU A, (C) IKU F 

and (D) IKU B. Cross sections: the two top frames show the modelled (dash line) and 

observed (solid line) Bouguer (red) and magnetic (blue) anomalies. The bottom 

frames display the model; black numbers represent densities in kg/m3 and basement 

units are interpreted. The model is overlain by the line drawings reflectivity of the IKU 

data. The triangles represent Vp velocities extracted from the Barent50 model 

(Ritzmann et al. 2007). In figure (A) the fourth frame presents a comparison of our 

model with the model of Breivik et al. (2002) along P3. In figure (D), the model does 

not reflect the Barents50 constraints (Vp velocities) but rather a recent seismic 

refraction dataset named Petrobar-07 (Clark et al. 2009). 

 

3.5.3 3D Crustal configuration 

Our 3D model allows us to define and present key elements of the southwestern 

Barents Sea crustal architecture. As a result we have compiled maps of the depth to 

Moho (Fig. 3.4B), the top basement (Fig. 3.4C) and crystalline crust thickness (Fig. 

3.4D) extracted from the 3D model.  

 

3.5.3.1 Depth to the crust-mantle boundary (Moho)  

The Moho (Fig. 3.4B) is, in general, associated with a density contrast of 350 kg/m3 

between the lower crust and the upper mantle. Only across the lower crustal body 

(LCB) is this contrast slightly smaller (Fig. 3.4A). The resulting Moho geometry 

reflects the Moho of the Barents50 model at the continental margin and onshore. 

Over most of the margin, the Moho is similar to the Barents 50 model, but varies 

significantly in the trend of anomalies. Along the IKU profiles (Fig. 3.2) the Moho 

depths (Fig. 3.4B) are essentially the same with the exception of IKU-B where a new 

OBS interpretation suggests a deeper Moho and provides an update of the 

Barents50 model (Clark et al. 2009). 

 

The Moho (Fig. 3.4B) undulates over the continental shelf between depths of 20 and 

35 km. In the central study area, an E-W shallowing trend correlates with the location 

of basins and highs. We also observe a steep deepening of the Moho, from 20 km to 
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30 km, between the continent-ocean transition and the Ringvassøy-Loppa and 

Bjørnøyrenna Fault Complexes. Interestingly, the depth to the Moho is in the order of 

30-32.5 km below the Bjarmeland Platform and northwards and shows a gradual 

shallowing from north to south offshore. 

 

3.5.3.2 Depth to top basement  

The density contrast between the crystalline basement and Palaeozoic sedimentary 

rocks is at least 50 kg/m3. In our model, sedimentary rocks are considered to be 

relatively non-magnetic and the top basement (Fig. 3.4C) was regarded as the upper 

limit of the magnetic sources. Over large parts of the shelf, this interface is located at 

depths between 4 and 8 km. The shallowest crystalline basement (<2 km) occurs at 

the Gardarbanken High, north of the Stappen High and on Bjørnøya, where it 

outcrops (Fig. 3.1). 

In the northern part of the Nordkapp Basin, where the depth to crystalline basement 

reaches 12 km, there is a deep graben. Much deeper basins to the west of the Loppa 

High and south of the Stappen High were modelled with a depth to basement locally 

reaching >15 km.  

 

3.5.3.3 High-density lower crustal body (LCB) 

We have modelled the LCB in 3D (Fig. 3.4A), a body previously interpreted in the 

deep lower crust at the western rim of the Loppa High along profile IKU B (Barrère et 

al. 2009). The presence of this deep buried high-density body was necessary to 

model correctly the Bouguer high at the location of the Loppa High. The 3D modelling 

allowed us to evaluate the northward and southward extension of this LCB (Fig. 

3.4A), but the lack of good seismic constraints did not allow us to determine its exact 

thickness.  

 

3.5.3.4 High-density bodies in the upper crust (UCB and MI)  

A basement stripe of high-densities (UCB) about 2800 kg/m3 and magnetic 

susceptibility of 1000.10-5 (SI) has been modelled along most of the coast of 

Finnmark (Fig. 3.4A, UCB). Local high-density bodies (Fig. 3.4A, MI) with a density of 
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2900 kg/m3 and a magnetic susceptibility of up to 2500.10-5 (SI) have also been 

modelled between two profiles at the Norsel High and northeast of the Loppa High. 

  

3.5.3.5 Crystalline crust  thickness and thinning factor maps 

The crystalline basement thickness map (Fig. 3.4D) is computed from the difference 

between the modelled Moho and top basement. The 20 km isopach contour 

separates a narrow thin crust (10 to 20 km) between the continental margin and the 

alignment of the Ringvassøy-Loppa and Bjørnøyrenna Fault Complexes from a large 

eastern area with a crustal thickness between 20 and 28 km.  

 

An estimation of the apparent crustal thinning through a crustal thinning factor (β-

factor) (McKenzie 1978) was computed (Fig. 3.4E) from the crustal thickness grid 

inferred from our 3D model.  The 33 km thickness of the Bjarmeland Platform is 

considered as the reference crystalline basement thickness before basin formation: 

thicknessbasementecrystallinfactor __/33  

β-factors greater than or equal to 2 are mapped west of the Ringvassøy-Loppa and 

Bjørnøyrenna Fault Complexes (at the location of Sørvestsnaget Basin >3; Harstad 

Basin >3; Tromsø Basin 2 to 3 and Bjørnøya Basin 0.5 to 3.5). The North Nordkapp 

Basin shows a maximum β-value of 2.5 and in the Hammerfest Basin β-values <1.5. 

Apart from along the continent-ocean transition, the maximum crustal thinning seems 

to follow the trend of two fault alignments; (1) the ENE-WSW alignment of the 

Finnmark, Måsøy and Thor Iversen Fault Complexes and (2) the N-S alignment of 

the Ringvassøy Loppa and Bjørnøyrenna Fault Complexes.  

In addition to the strong crustal thinning along the margin, the zone between 74 N 

and the Finnmark and Måsøy Fault Complexes shows β-values of about 1.5. One 

can observe that this area correlates with a shallower Moho (30-32 km) compared to 

the platform areas. Towards the east the crustal thickness increases to 32 km, and is 

clearly associated with the transition from the Eastern to the Western Barents Sea. 
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3.6 Interpretations and discussion 

 

3.6.1 Comparison with previous top basement estimates 

In Fig. 3.6, the new top basement model is compared with the compilations by 

Ritzmann et al. (2007) (Fig. 3.6A) and the depth to magnetic basement maps 

published by Skilbrei (1991, 1995)  (Fig. 3.6B). North and east of the Loppa High, 

differences greater than 5 km are observed, where the low-amplitude magnetic 

anomaly and lack of seismic data prevented Skilbrei (1991, 1995) from obtaining 

magnetic depth estimates. North of 74°N our model shows a shallower top basement 

than Skilbrei (1991, 1995). Here, the low amplitude magnetic anomalies have been 

interpreted by him as a consequence of a deepening of the top basement. In our 

model, the magnetic susceptibility in the basement changes to lower values, which 

consequently leads to a shallower top basement. 

The Barents50 model integrates the refraction data north of 74°N and we expected 

the correlation between our modelled top basement and the Barents50 top basement 

to be reasonable. However, the difference map between the two (Fig. 3.6A) shows a 

significant underestimation (i.e., 6 to 10 km) of the top basement in the Barents50 

model despite seismic constraints. Comparing the seismic refraction model and our 

geological model (Fig. 3.5A), it appears that a layer with a density of 2750 kg/m3 is 

interpreted as sedimentary rocks in the refraction model. In our model, sedimentary 

rocks have densities <2750 kg/m3 whilst crystalline rocks have densities greater than 

2750 kg/m3. The misfit can consequently be attributed to differing definitions of the 

top basement. From the density tables established by Tsikalas (1992) for the 

sedimentary rock samples and from measurements of onshore basement samples 

(Olesen et al. 1990, Galitchanina et al. 1995), we regard a density higher than 2750 

kg/m3 to be more appropriate for basement rocks. 
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Figure 3.6: Difference map between our new top basement estimates (Fig. 3.4C) and 

the top basement (A) from the basement grid based on estimates of depth to 

magnetic basement. (Skilbrei 1991, 1995) and from the Barents 50 model (Ritzmann 

et al. 2007) (B). 

 

3.6.2 Interpretation of the crustal units map 

The densities allow us to distinguish between different basement units but resolve the 

Caledonian nappes only in general terms. In fact, except for exotic terranes the 

Norwegian Caledonian nappes correspond to a low-magnetic basement on top of an 

Archaean to Palaeoproterozoic basement with higher magnetisation properties 

(Olesen et al. 1990). The northward extension of the Caledonian nappes is based on 

the assumption of the offshore propagation of the nappes that occur in northern 

Norway (Åm 1975, Olesen et al. 1990, Skilbrei 1995, Siedlecka & Roberts 1996, 

Gernigon et al. 2007). Estimations of their extension and thicknesses from our model 

are difficult as the density and magnetisation contrasts between the nappes and the 

Archaean to Palaeoproterozoic basement are low.  

 

After interpretation and correlation, five crustal zones consisting of one or several 

units (Fig. 3.4F) have been distinguished:  (1) an onshore zone, (2) an offshore 

coastal zone, (3) a zone along the continent-ocean transition, (4) a central zone and 

(5) a zone covering the eastern and northern parts of the study area. 

B A 
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3.6.2.1 Onshore Zone 

For the BAS0 onshore zone (Fig. 3.4A), the Fennoscandian Shield was divided into 

two bodies, one of 2750 kg/m3 density interpreted as Archaean to Palaeoproterozoic, 

high-grade metamorphic rocks (potential granulites), and the second with a slightly 

lower density (2700 kg/m3) which is interpreted as lower-grade metamorphic rocks 

such as Archaean to Palaeoproterozoic granitic gneisses.  

 

3.6.2.2 Coastal zone 

Offshore, along the coast, the high-density upper crustal body (UCB) (Figs. 3.4, 3.5D) 

with intermediate magnetic properties is considered to be related to rocks within the 

Middle and Upper Allochthons intruded by major mafic-ultramafic, plutonic complexes 

similar to the onshore Vendian-age (570-560 Ma) Seiland Igneous Province (Roberts 

et al. 2006) and the Early Silurian, Honningsvåg Igneous Complex (Robins 1998, 

Corfu et al. 2006). In compliance with the onshore observations and the samples of 

Caledonian nappes samples taken from drillcores (Slagstad et al. 2008), we have 

modelled a body consisting of Caledonian nappes at the top of the upper crustal 

body.  

 

3.6.2.3 External margin  

In the western part of the study area, four bodies are distinguished which correlate 

with distinctive structural elements: (1) the Harstad Basin, (2) the Vestbakken 

Volcanic Province, (3) the Sørvestsnaget Basin and (4) the Hornsund Area west of 

the Stappen High. The four bodies have high densities of around 2850 kg/m3 and 

very variable magnetic susceptibilities from 1000.10-5 to 5000.10-5 (SI). The good 

correlation between basement units and tectonic units reflects the strong 

relationships between the different basement types and the evolution of the 

continental margin.  

Over the Sørvestsnaget Basin, the Bouguer anomaly high and the low magnetic 

signature may be comparable with a 'quiet zone' that has been described from the 

vicinity of some margins (Gunn 1997). This 'quiet zone' could be interpreted either as 
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extremely thinned crust or as attenuated crust with an intermediate character 

between true continental and true oceanic crust that developed close to the 

continent-ocean transition. Alternatively, it could possibly be due to a specific 

chronostratigraphic period of reverse polarity. Whatever the case, both a better 

seismic imaging and a more focused study of the Sørvestnaget Basin are necessary 

in order to understand this very complex area.   

 

3.6.2.4 Central zone 

This elongate zone encompasses the Loppa High, the Bjørnøya Basin and the 

southern part of the Stappen High. Several units with the same density value (2750 

kg/m3) and high susceptibility were distinguished in the upper crust. Compared to the 

onshore geology, the relatively high susceptibility is interpreted as indicating a crust 

consisting of magnetic gneisses comparable to the ones mapped and sampled 

onshore Norway (Olesen et al. 1990). They are here grouped under the label BAS1. 

 

In the lower crust, a high-density body (LCB) of 3000 kg/m3 is modelled to the west of 

the Loppa High (Figs. 3.4, 3.5D). The modelling indicates its approximate extension 

along the Ringvassøy-Loppa and Bjørnøyrenna Fault Complexes. Locally, it reveals 

the existence of a lower crustal bulge. The elongation of the high-density body 

suggests a close genetic link to the development of these major faults. It suggests 

that the crustal thinning was accommodated along the Ringvassøy Loppa and/or the 

Bjørnøyrenna Fault Complexes in a manner comparable to the major detachments 

documented onshore (Braathen et al. 2002, Osmundsen et al. 2002, 2003) and 

offshore Norway (Olesen et al. 2002). In addition to changes in the reflectivity and 

density, the LCB modelled along profile IKU-F correlates with a steep jump in Moho 

depth (Ritzmann & Faleide 2007) below the central Loppa High (Fig. 3.5C, kilometre 

85). The structural and geophysical characteristics of this LCB strengthens our 

interpretation of it as a core complex (Barrère et al. 2009) but better seismic imaging 

is needed in order to understand how the structures are linked to each other.  

 



 

 110 

3.6.2.5 Eastern and northern zones 

East and north of the Loppa High the upper crust (BAS2) consists of two bodies that 

are different from the upper crust type BAS1. On a regional scale, the BAS1/BAS2 

(Figs. 3.4A, 3.5) boundary clearly separates a northeastern zone of platforms from a 

deeply rifted southwestern zone. The BAS2 crust appears to have a slightly lower 

magnetic susceptibility (< 3500.10-5 SI) to the east and north of the Loppa High and a 

little higher density (2790 kg/m3) in the northern areas of the study area.  

In the East Barents Sea, the NW-SE striking trends have been interpreted as related 

to Timanian structures formed in Late Neoproterozoic times (Ivanova 2001), but the 

northwestern limit of the Timanides, as well as the interactions between Timanian 

and Caledonian structures remains unclear. Although the western boundary of the 

BAS2 crustal unit (Fig. 3.4A) is schematic in its definition of the geometry along the 

vertical sections, the seismic profiles P3 (Fig. 3.5A) and IKU A (Fig. 3.5B) confirm the 

presence of both a reflectivity change and a possible structural boundary coinciding 

with contrasting density/magnetisation values. Local basement units (MI bodies, Figs. 

3.4A, 3.5B) are interpreted as mafic intrusions; they could be sheets emplaced 

between the Caledonian nappes or bodies linked to the formation of the Mesozoic 

basins. 

 

3.6.3 Interpretation of the crustal thinning factor map 

Breivik et al. (1998) showed a previous crustal thinning factor map highlighting the 

complexity of the β-ratio pattern over the Tromsø, Bjørnøya and Sørvestsnaget 

basins, which led them to the theory of a margin formed by continental transform 

faulting rather than by rifting. Our new map (Fig. 3.4E) shows the composite pattern 

of the β-ratio over the entire southwestern Barents Sea. High β-factors and an 

extension mostly N-S to NNE-SSW are confirmed for the basins initiated in 

Palaeozoic and Cenozoic times along the margin and a E-W to ENE-WSW extension 

and lower β-factors are mapped for the North Nordkapp and Hammerfest basins that 

were initiated in Palaeozoic times (Rønnevik & Jacobsen 1984, Gudlaugsson et al. 

1987, 1998, Faleide et al. 1991, 1993, 1996, Breivik et al. 1998). The trends of the 

extension, as well as the intensity of crustal thinning, do not correlate with the ages of 

the basins. This mismatch is an argument in favour of pre-existing weakness zones 
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locally controlling the development of the basin architecture. It may also be due to 

interplay of successive, complex, crustal thinning episodes.  

 

3.6.4 Tectonic Framework  

3.6.4.1 The Laurentian/Baltican suture 

No evidence of a suture between Laurentia and Baltica has been observed on 

Svalbard and the Svalbard Caledonian terranes are recognized as the northerly 

continuation of the Caledonides of eastern Greenland (Gee et al. 1995, Witt-Nilsson 

et al. 1998). In addition, all of Svalbard‟s terranes from west to east are generally 

considered to be Laurentian (Fortey 1975, Gee & Tebenkov 2004, Cocks & Torsvik 

2005, Gee 2005, Torsvik & Cocks 2005), and since the Billefjorden Fault Zone N-S 

strike-slip system (n°1, Fig. 3.7) occurred between two Laurentian-affinity terranes 

we disagree with the interpretation of a Caledonian suture along the Billefjorden Fault 

Zone as suggested by Ritzmann & Faleide (2007). Furthermore, recent studies on 

Nordaustlandet (eastern Svalbard) (n°2, Fig. 3.7) (Tebenkov et al. 2002, Johansson 

et al. 2004, Johansson et al. 2005) have reported an increasing metamorphic 

gradient and intensity of deformation from west to east (Tebenkov et al. 2002). High-

grade complexes with widespread migmatisation have proven to be Caledonian, 

high-temperature, low-pressure terranes (Harland 1997) and Caledonian 

migmatisation has been documented as far northeast as Kvitøya (n°3, Fig. 3.7) (Gee 

2004).   

 

For these reasons, we placed the Caledonian suture between Nordaustlandet and 

Franz Josef Land, in agreement with studies by Gee et al. (2006), Mazur et al. 

(2009). We observe a NNE-SSW alignment of strongly focused magnetic anomalies 

correlating with positive Bouguer anomalies east of Spitsbergen. Despite the fact that 

these focused magnetic anomalies most likely relate to Late Mesozoic intrusions 

linked to the significant magmatic event (Grogan et al. 1998) at the origin of a Large 

Igneous Province (Maher 2001), we interpret these intrusions to be controlled in 

depth by an older weakness zone (n°4, Fig. 3.7) which may coincide with the 

Caledonian suture.  
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Consequently, we interpret the offshore path of the Caledonian suture to occur along 

the outer part of Lofoten, west of the Hammerfest Basin, the Loppa High and the 

Gardarbanken High (n°5, Fig. 3.7) and then to propagate north-northeastwards 

towards Kvitøya (n°5, Fig. 3.7). The N-S alignment of the Ringvassøy Loppa, 

Bjørnøyrenna and Fingerdjupet Fault Complexes and the proposed link to the 

Billefjorden Fault Zone on Svalbard were consequently interpreted as associated with 

a deep-seated weakness zone (Skilbrei 1991; Barrère et al. 2009) instead of a suture 

(Breivik et al. 2005, Ritzmann & Faleide 2007).  

 

The location of the Caledonian suture between Nordaustlandet and Franz Josef Land 

(Gee et al. 2006) implies the existence of Caledonian thrust sheets in this area. 

Because the Svalbard Caledonian terranes are direct northerly continuations of the 

Caledonides of East Greenland (Gee & Tebenkov 2004, Higgins et al. 2004), the 

westward thrusting of the Nordaustlandet Terrane (Gee 2005) is in agreement with 

the expected general geometry. If the Caledonian suture lies east of Svalbard and if 

no other mega structure separates the suture and the BFZ it is most likely that the 

BFZ originated from a mechanism of terrane extrusion linked to an oblique collision of 

Laurentia and Baltica in that region. 

 

3.6.4.2 Interaction between Timanian and Caledonian structures 

In a previous study we interpreted a branch of the Caledonian thrust belt propagating 

towards the north from NE Finnmark (Barrère et al. 2009), with nappes emplaced 

asymmetrically in the western Barents Sea (n°6, Fig. 3.7). The new 3D model and 

information derived from the potential fields allow us to elaborate on this scenario and 

on the complexity of crustal structures. 

 

The major NW trending BAS1/BAS2 boundary in the centre of the southwestern 

Barents Shelf (n°7, Fig. 3.7) challenges the concept of a Caledonian branch 

propagating north-eastward (Breivik et al. 2002) or a collision fan widening towards 

the NE (Ritzmann & Faleide 2007).  

Empirical and numerical modelling of fold-thrust belt geometry (Macedo & Marshak 

1999) have tested the relationship between thrust geometry and geological setting in 

which the fold belt formed. The hypothetic geometry combining a unique northward 
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branch and asymmetric nappes emplacement would imply an oblique convergent 

model and the presence of an asymmetric basin at pre-Caledonian times in the 

southwestern Barents Sea. In this concept of oblique convergent model, a strike-slip 

fault forms parallel to the direction of backdrop movement at the vicinity of the fold 

belt long limb foreland boundary (Macedo & Marshak 1999). Following this model, we 

interpret the distribution of the nappes as inherited from the Baltica plate geometry. 

More precisely, the geometry of the Caledonian thrusts is probably due to the 

existence of an asymmetric Neoproterozoic basin or at least a relatively low area 

through the southwestern Barents Sea with respect to the NW-SE trending Timanian 

structures. The following elements are in favour of that interpretation: 

(1) The presence of Neoproterozoic pericratonic deposits and deep-water basinal 

successions in the Parautochthon and Lower Allochthons in Finnmark (Fig. 3.7) 

(Roberts & Siedlecka 2002, Siedlecka et al. 2004, Nystuen et al. 2008) have 

demonstrated the existence of a Neoproterozoic basin  along the northeastern 

Timanian margin. 

2) The boundary between the two basement types BAS1 and BAS2 (green solid line, 

Figs. 3.7B, 3.7C) may be interpreted as the approximate position of the Proterozoic 

basin border. Due to its position, the immediate surroundings of the basin border 

were likely of Timanian nature. We interpreted the BAS1/BAS2 boundary (green solid 

line, Fig.s 3.7B, 3.7C) as a contact between the Caledonian collision prism and 

Baltica terranes accreted at Late Proterozoic. Thus, we suggest a propagation of the 

Timanides northwestward until the Caledonian suture (n°7, Fig. 3.7).  

(3) The alignment of the Finnmark, Måsøy and Thor Iversen Fault Complexes is 

interpreted as inherited from a strike-slip fault dextral (n°8, Fig. 3.7) developed 

parallel to the direction of oblique convergence.  

(4) On the Varanger Peninsula, the ENE-WSW-trending frontal Caledonian thrust is 

mapped overriding the TKFZ (n°9, Fig. 3.7) and truncates the NW-SE-trending 

Timanian structures.  
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Figure 3.7:  

A. The map shows interesting correlations between the known structural elements, 

the modelled crustal thickness and the interpreted basement units.  

B. The map presents the interpreted structural lineaments after integration of our 3D 

density/magnetic model with the geophysical and geological information available on 

top of the magnetic data modelled. We show the suggested locations of a 

Caledonian suture, the offshore prolongation of the Caledonian thrusts, main 

Caledonian weakness zones as well as the delimitation of a Palaeoproterozoic basin 

part of the Baltica Plate. The map also shows that the magnetic anomalies are 

closely related to both basement lithology and structural elements. For further 

explanation and reference to numbers, see text. 

C. The structural map shows the interpreted lineaments and offshore prolongations of 

the Caledonian nappes. This map summarises our regional geological interpretation 

presenting our vision of the distribution of the Caledonian orogenic extension and 

associated weakness zones. Our study also suggests the existence of a 

Palaeoproterozoic basin that controlled the Caledonian trend of the thrusts and the 

later suture geometry. 

 

3.6.5 Evolution of sedimentary basins  

We now discuss the relationship between the weakness zones (n°1, 4, 5, 6, 7 and 8 

Fig. 3.7) and the crustal thickness (Figs. 3.4C, 3.7).  

The Ringvassøy-Loppa and Bjørnøyrenna Fault Complexes to the west of the Loppa 

High (Figs. 3.1, 3.4D, 3.7) dip westwards and are interpreted as structures controlling 

the crustal thinning that created the Tromsø and Bjørnøya Basins. The existence of 

important fault complexes bounding these two basins provides arguments in favour of 

a crustal thinning controlled by pre-existing large-scale faults. Nevertheless, the fact 

that shallow deformation (i.e., at crustal scale) was focused along pre-existing 

weakness zones does not necessarily mean that this scenario is valid at lithospheric 

scale. More complex depth- and/or time-dependent, lithospheric thinning processes 

may also be involved (e.g., Kuzsnir et al. 2004). 

 

Previously, we highlighted the fact that the trends of the offshore prolongation of the  

Caledonian thrusts correlate with the segmentation of the Nordkapp Basin, 
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suggesting a direct link between ancient Caledonian weakness zones trending NNW-

SSE and changes in the shape of the Nordkapp Basin (Gernigon et al. 2007, Barrère 

et al. 2009). The new 3D modelling suggests that the Nordkapp Basin developed 

within both the BAS1 and the BAS2 crustal units. Thus, we interpret the Nordkapp 

Basin to be located at the meeting point of the Timanian and Caledonian trends. 

Ancient Caledonian thrusts and older Timanian weakness zones may have facilitated 

rifting. In that concept, the NW-SE magnetic trends east of the Loppa High have an 

uncertain origin; (1) they may be linked to susceptibility contrasts between 

Caledonian nappes or (2) to susceptibility variations within the Timanides similar to 

the strong linear magnetic anomalies observed in association with the Timanian 

terranes in the Timan Range and Pechora Basin farther southeast. 

 

3.7 Conclusions 

 

In this contribution, we present a new 3D model for the SW Barents Shelf that 

provides new insights into the complex 3D crustal architecture.  

 

(1) The new top basement map highlights the regional differences between the 

platforms, the deep basins and the transition to the North Atlantic Ocean. The 

resulting crustal thickness and crustal thinning ratio maps show the occurrence of 

significant thinning processes in the western part of the Barents Sea. Furthermore, 

the trends of the extensions, as well as the intensity of crustal thinning, do not 

correlate with the ages of the basins, a feature that favours the pre-existence of 

crustal weakness zones, which controlled the initiation of the basin architecture and 

ensuring complex basin evolution. On the one hand, we suggest that pre-existing 

Caledonian and Timanian weakness zones exerted a strong control on basin 

evolution east of the Loppa High. On the other hand, formation of the western basins 

(i.e., the Tromsø and Bjørnøya Basins) was controlled mostly by the reactivation of 

the Caledonian suture, which coincides with the alignment of the Bjørnøyrenna and 

Ringvassøy-Loppa Fault Complexes. 

 

(2) Our new crustal units map proposes a noticeable NW-SE trending upper crustal 

boundary interpreted as the contact between terranes inherited from the Caledonian 
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fold and thrust belt and Baltican terranes only weakly affected by the Caledonian 

orogeny.  

 

(3) The regional interpretation integrating the 3D model with the interpreted 

weakness zones shows a very asymmetric Caledonian collisional extension with an 

unique Caledonian arm, and a Caledonian suture to the west of the Loppa High 

propagating northwards between Svalbard and Franz Josef Land. East of this suture, 

there is a fan of nappes thrusted eastward in the southwestern Barents Sea and 

bounded to the south by a fault zone parallel to the oblique convergence between 

Baltica and Laurentia. This strike-slip fault system lies along the alignment of the 

Finnmark and Måsøy and Thor Iversen Fault Complexes. West of the suture, we 

observe the development of a complex fault system involving the transport of 

Laurentia terranes along strike slip systems such as the Billefjorden Fault Zone. 

These transported terranes would be the origin of the Svalbard assemblage.  
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Abbreviation list: 

AFC:   Asterias Fault Complex 
BB:   Bjørnøya Basin 
BFC:   Bjørnøyrenna Fault  
  Complex 
BI:  Bjørnøya 
BP:  Bjarmeland Platform 
FFC:   Finnmark Fault Complex 
FP:  Finnmark Platform 
FSb:  Fingerdjupet Subbasin 
GH:  Gardarbanken High 
HB:   Harstad Basin 
HmB:   Hammerfest Basin 
LFC:  Leirdjupet Fault Complex 
LH:  Loppa High 
MB:  Maud Basin 
MFC:  Måsøy Fault Complex 
MI:  Magerøya  
NB:  Nordkapp Basin 
ND:  Norvarg Dome 
NH:  Norsel High 
RLFC:  Ringvassøy-Loppa Fault Complex 
SB:  Sørvestsnaget Basin 
SD:   Samson Dome 
SG:  Swaen Graben 
SH:   Stappen High 
SR:  Senja Ridge 
SvD:  Svalis Dome 
SøB:  Sørkapp Basin 
TB:  Tromsø Basin 
TbB:  Tiddlybanken Basin 
TIFC:  Thor Iversen Fault Complex 
VH:   Veslemøy High 
Vvp:  Vestbakken volcanic  
  province 
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Chapter 6. Synthesis 

 
6.1 Workflow 

The different chapters in this thesis present the different steps necessary to 

understand the lithospheric and thermal structure of the Western Barents Sea. 2D 

forward gravity and magnetic models (Paper I) constrained by  industrial seismic 

profiles, well data and onshore geological and petrophysical database are used as a 

preliminary work providing modelling parameters, hypothesis for the interpretation of 

the potential field maps and an initial  crustal architecture to the 3D modelling 

presented  (Paper II). The 3D forward gravity and magnetic modelling benefits of new 

constraints as industrial depth converted sedimentary horizons enhances and 

extends the crustal structure. The 3D model provides key elements as the top 

basement and Moho depth  and highlights the complexity of the deep crust to the 

west of the Loppa High and a contrast in density and particularly magnetic properties 

within the southwestern Barents Sea basement rocks. More particularly, it provides a 

regional geological interpretation. 

The papers III and IV further  assist in increasing our geological knowledge about the 

southwestern Barents Shelf. The modelling presented in paper III follows basically 

the same workflow presented within paper I but the high quality 2D seismic profile 

offers very good constraints on the top basement and crustal reflectivity enhancing 

details in the gravity and magnetic model, which allow to develop new concepts 

regarding the tectonic relationship between the Loppa High and Bjørnøya Basin. 

The modelling in paper IV further extends the modelling from gravity and magnetic 

data to geoid, topography and heat flow data. The modelling uses crustal structures 

from paper III as input and changes the crustal model in a lithospheric scale model 

allowing to model the lithosphere asthenosphere boundary (LAB). Although the heat 

flow modelling is poorly constrained due to a sparse heat flow database offshore, the 

relative effect of the Caledonian nappes on top of the Archaean to Palaeoproterozoic 

rocks on surface heat flow is investigated. Moreover, geoid and topography modelling 

provide an interesting picture of the geometry of the LABsupporting geological and 

geodynamical interpretations. Finally, together with the topography modelling, elastic 

thickness modelling allows to discuss 
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the isostatic state of the Barents Sea region. 

 

6.2 Main results of the thesis 

 

6.2.1 2D potential field modelling and map interpretation: A first step towards a 

review of the Caledonian thrusts geometry 

We constructed 2¾D density and magnetic models, which allowed a preliminary 

basement characterisation and insight into deep crustal structures. We propose a 

new regional interpretation with an elbow shaped prolongation of the Caledonian 

orogene into the southwestern Barents Sea. Furthermore, an east-west gradient of 

the Caledonian deformation is proposed with thick-skinned deformation to the west of 

the Loppa High becoming thin-skinned towards east. 

 

6.2.2 Integrated 3D modelling: Evolution of the western Barents Shelf 

Our 3D potential field model produces a revised set of maps for top basement, Moho, 

crustal thickness and related thinning-ratio. These maps reveal an appreciable 

thinning of the crust to the west of the Ringvassøy-Loppa and Bjørnøyrenna Fault 

Complexes. Our 3D model allowed to classify basement units. The basement units 

distribution and potential field maps support the hypothesis of a swing toward 

Svalbard of the Caledonian thrusts mapped onshore. This leads to a re-evaluation of 

the tectonic framework and triggers a discussion about sedimentary basin evolution. 

Pre-existing Caledonian and Timanian weakness zones have probably exerted a 

strong control on basin evolution east of the Loppa High. However, formation of the 

western basins (i.e., the Tromsø and Bjørnøya Basins) was also heavily controlled by 

the reactivation of the Caledonian suture, which coincides with the alignment of the 

Bjørnøyrenna and Ringvassøy-Loppa Fault Complexes. We further propose a very 

asymmetric Caledonian collisional prism with an unique Caledonian arm, and a 

Caledonian suture to the west of the Loppa High propagating northwards between 

Svalbard and Franz Josef Land. 

 

6.2.3 The Bjørnøya Basin formation: Crustal structure and rifting processes  

The seismic interpretation and joint magnetic and gravity modelling along the NBR07-

232948 seismic reflection transect precise the crustal structure that has led to the 
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severe crustal thinning highlighted to the west of the Loppa High. This high quality 

seismic data highlight the tectonic relationships between the Bjørnøya Basin and the 

Loppa High. Post Caledonian structures comparable to the ones typically observed of 

mid-Norway seismic data are observed. An updated scenario for the Bjørnøya 

Basin/Loppa High tectonic evolution is proposed. Also, the crustal structure is 

discussed in terms of stretching model. 

 

6.2.4 Thermal Modelling: Lithosphere and tectonics 

A 2D lithospheric scale model across the southwestern Barents Shelf was developed 

using the well constrained geometry of profile NBR07-232948 combined with the 

IKU_B profile as input into a heat flow modelling software  (CAGES).  

The model shows that Caledonian nappes contribute to the surface heat flow with 10 

mW/m2. The elevation modelling required a high flexural rigidity for the compensation 

of the load in the southwestern Barents Shelf. We recommend an elastic plate 

thickness of about 30 km for our model.  Finally, the model analysis suggests that the 

Loppa High is situated at the transition between the Archaean to Palaeoproterozoic 

and Palaeozoic lithospheres. This result supports our previous regional 

interpretations, which place the Loppa High at the boundary of the Baltica Plate and 

suggests that the elbow shaped geometry of the Caledonian thrusts originates from 

the palaeogeography of the Baltica Plate in Silurian time. 

 

6.3 Conclusions 

 

The integration of geophysical modelling, geological information  and the potential 

field maps leads to a re-evaluation of the tectonic framework of the western Barents 

Shelf. In this thesis, I propose an offshore prolongation of the Caledonian orogen with 

a swing towardSvalbard with respect to the Caledonian thrusts mapped onshore. 

Also, the Caledonian suture is placed to the west of the Loppa High and its northward 

propagation between Svalbard and Franz Josef Land. These Caledonian structures 

greatly impact the evolution of the southwestern Barents Sea basins. Variation in the 

crustal composition correlate with variation of lithosphere thickness: The Loppa High 

appears at a key location with Palaeozoic lithosphere inherited from the Caledonian 

orogeny to its west and Precambrian lithosphere inherited from the Timanian orogeny 
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to the east. The contrast in lithosphere characteristics (i.e., temperature and related 

rheology) appears to be caused by a limited propagation of the Caledonian 

deformation towards the east. The diversity of basin orientations and crustal 

structures is related to the complex association of ancients Caledonian weakness 

zones, crustal composition and lithosphere age. The high elastic thickness estimated 

for the study area implies a flexural component in the compensation for the 

sedimentary load and consequently in the basin formation supporting the formation of 

asymmetric basins. 

 

6.4 Closing remarks 

 

As every research work in applied geophysics, this large scale study of the 

southwestern Barents Shelf should be improved including more detail and accuracy 

in the interpretations using the most modern and high-quality data available. I think a 

significant improvement of the 3D joint density and magnetic model is possible by 

using models based on the entire NBR07 dataset as constraints. The high quality of 

the NBR07 dataset would allow the restoration and balancing of the geological 

structures interpreted along the profile. Even better, a complete restoration of the 

Loppa High in 3D could be achieved. Introducing thermal calculations in the 

modelling process opens the way to reconstruct the entire present-day lithospheric 

structure. 

 

Based on the presented work, 3D thermal modelling from the southwestern Barents 

Shelf is currently being carried out at NGU. Interesting results including an estimation 

of well constrained surface heat flow and heat flow maps at the base of the 

sedimentary basins and at Moho are expected. 
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This Geological note presents petrophysical and thermal properties of pre-Devonian basement 

rocks along the Norwegian continental margin. The dataset is the first to present ground-truth 

data from basement rocks along the continental margin, and can be used to constrain future 

geophysical and thermal models of the margin’s structure.
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rocks on the Norwegian continental margin. Geological Survey of Norway Bulletin, 448, xxx–xxx

GEOLOGICAL NOTE 

Introduction

Gravimetric and magnetic surveys along the Norwegian 
continental margin has significantly improved our understanding 
of the margin’s crustal architecture and has allowed correlations 
between the onshore and offshore realms (e.g., Doré et al. 
1997, Olesen et al. 2002, Skilbrei et al. 2002, Lyngsie et al. 
2006), in addition to yielding important information to the 
petroleum industry.  Furthermore, the location of hydrocarbon 
accumulations is believed to depend on the temperature 
structure of the subsurface (e.g., Bjørkum and Nadeau 1998), 
which in turn varies with variations in thermal conductivity 
and radiogenic heat production.  However, models based on 
gravimetric, magnetic and thermal methods are hampered by 

a lack of ground-truth data, and at present, the petrophysical 
and thermal properties of basement rocks along the Norwegian 
continental margin have to be inferred from onshore datasets 
and educated estimates.  Here, we present new data that help 
characterise the basement along the Norwegian continental 
margin (defined here as the dominantly pre-Devonian crystalline 
rocks underlying the ubiquitous Mesozoic cover) in terms of 
mineralogical and chemical composition, and petrophysical/
thermal properties.  The work is based on samples from 22 
wells that have penetrated basement rocks, made available 
by the Norwegian Petroleum Directorate and Statoil.  The 
purpose of this brief communication is to present petrophysical 
data from 12 wells (15 samples) in the North Sea, 4 wells (6 
samples) in the Norwegian Sea and 6 wells (12 samples) in the 
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Trond Slagstad, Cécile Barrére, Børre Davidsen, Randi K. Ramstad

Barents Sea (Figure 1).  The analyses include determination of 
density, magnetic remanence, magnetic susceptibility, thermal 
conductivity and radiogenic heat production.  The samples are 
described in Appendix 1 and a discussion on the geological 
significance of a subset of the samples is presented by Slagstad 
and Davidsen in Olesen et al. (2007).  A few super-basement 
samples were also analysed for petrophysical properties.  These 
samples are described in Appendix 2 and the data presented in 
Table 1.

Figure 1. Overview of the Oslo Rift and distribution 
of larvikite and similar rocks. Modified from NGU 
digital maps of the Oslo region.

Analytical methods

Petrophysical properties
Measurements of density, remanence and magnetic susceptibil-
ity are conducted following procedures described by Torsvik 
and Olesen (1988) and Olesen (1988).

Thermal conductivity
Measurements of thermal conductivity are conducted on 2 cm 
thick circular disks.  A constant heat flow is induced to the top 
of the sample by placing a heat source with a constant tempera-
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ture approximately 10 mm above the top surface of the sam-
ple. Th e heat is transferred as radiation. Th e sample is insulated 
on all other surfaces and the temperature is measured at the 
base of the sample. Th e thermal conductivity (K) is calculated 
from Equation 1 based on measured thermal diff usivity (α) and 
density (ρ), and assumed specifi c heat (Cp) of the sample. Th e 
specifi c heat capacity is assumed to be 850 J kg-1 K-1 for all rock 
types.

    (1)

Radiogenic heat production
Radiogenic heat production is calculated from U, Th  and K 
concentrations determined by standard XRF and LA–ICP–MS 
techniques at NGU and measured densities (б) using Equation 
2 (Rybach 1988).

    (2)

where CU and CTh  represent U and Th  concentrations in ppm, 
respectively, and CK represents K concentration in wt.%.

Petrophysical and thermal properties

Th e petrophysical and thermal data are presented in Tables 1 
and 2, respectively.  Compilations of onshore petrophysical data 
show that most geological units display highly varied magnetic 
properties, typically ranging between 2 and 3 orders of magni-
tude (Skilbrei 1989), greatly limiting the value of a small data-
set with poor geological control (due to pinprick off shore sam-
pling).  However, despite the diffi  culties in extending these very 
localised measurements to a larger rock volume, they represent 
additional information to the onshore petrophysical database 
at NGU.  Th e main purpose of this contribution is therefore to 
disseminate the available data so that they are available to other 
researchers who may fi nd them useful.  For the same reason, we 
limit ourselves to a very brief and general discussion.

Most of the off shore samples are relatively low-magnetic, 
which is compatible with the geological information (Slagstad 
and Davidsen, in Olesen et al. 2007) suggesting that the shallow 
basement along much of the continental margin consists of rock 
types that may be correlated with the Caledonian Uppermost 
Allochthon on land (cf., Olesen et al. 2002).  In particular, 
the granites encountered in wells 16/3-2, 16/4-1, 16/5-1 and 
6407/10-3 yield Caledonian ages and may be correlated with 
the low-magnetic Bindal batholith (Olesen et al. 2002).  Th e 
diabase from well 7120/2-1 confi rms the presence of thick 
mafi c dykes within the basement of the Loppa High.  Th is is 
in agreement with the joint interpretation of potential fi eld 
modelling (Barrére et al. 2007) that proposes a tongue of 
basement aff ected by mafi c dykes all along the fault complexes 
bordering the west of the Loppa High.
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