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Abstract 1 

A considerable challenge in evolutionary genetics is to understand the genetic mechanisms that can 2 

facilitate or impede evolutionary adaptation in natural populations. For this we need to understand the 3 

genetic loci contributing to trait variation and the selective forces acting them. The decreased costs and 4 

increased feasibility of obtaining genotypic data on a large number of individuals have greatly facilitated 5 

gene mapping in natural populations. Here we review the methods available to evolutionary biologists 6 

interested in dissecting the genetic basis of traits in study populations that are typically outbred. An 7 

exciting prospect offered by the technological advance is the possibility to study organisms that have 8 

historically been difficult to study in genetic terms, but are now within reach. These new opportunities 9 

should open up much needed information on the genetics of complex traits in a wider taxonomic 10 

context. We present an overview of the current state of research in the field and draw parallels to 11 

studies on crops, livestock and humans.  12 

Keywords: complex trait analysis; genetic architecture; genotype-phenotype map; pedigreed wild 13 

populations; quantitative trait locus; standing genetic variation; 14 

  15 
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1. Mapping standing genetic variation in natural populations 16 

Adaptive evolution is based on selection acting on genetic variants segregating within populations. The 17 

statistical description of segregating genetic variation using the tools of quantitative genetics1 has been 18 

largely successful in predicting the response to selection in animal and plant breeding.2,3 However, 19 

quantitative genetics make the simplifying assumption that allelic effects are small and numerous (the 20 

infinitesimal model)1 and while this assumption is in many cases sufficiently robust to make predictions 21 

and inferences,4 it is not fully accurate because loci vary in their effects on trait variation. Moreover, 22 

quantitative genetics does not address the identity of the genes involved, the distribution of effect size 23 

across loci, the interactions among loci and whether the segregating polymorphisms are regulatory or 24 

structural. These are all relevant aspects of the genetic architecture and quantitative trait locus (QTL) 25 

mapping offers to shed light on them. 26 

The first applications of QTL mapping date back to the early 20th century when Payne5 and Sax6 used 27 

monogenic traits as markers for mapping bristle number in Drosophila and seed weight size in common 28 

bean, respectively. The start of the era of genome-wide QTL scans is marked by a seminal paper by 29 

Lander and Botstein in 1989, in which they present the theoretical framework for interval mapping.7 30 

Since then the possibilities for identifying causal genetic variants have substantially increased, facilitated 31 

by the plummeting costs of genotyping and the increased availability of genome sequences. Genetic 32 

mapping has been widely used by human geneticists for mapping disease susceptibility and other traits8-33 

11 as well as by livestock and crop breeders to improve breeding responses.2,3,12 QTL mapping has also 34 

been used extensively in model organisms such as Drosophila, mice and Arabidopsis but these fields 35 

have been reviewed thoroughly.13-15 Here we here focus on QTL mapping in natural population of non-36 

model organisms, which is a much more recent endeavor.  37 
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QTL mapping in natural population contributes to our knowledge about the within-population standing 38 

genetic variation (SGV) affecting trait variation (hereafter SGV is used in this sense of being connected to 39 

specific phenotypes). A focus on SGV is particularly relevant because a deeper understanding of SGV can 40 

lead to a better understanding of microevolutionary dynamics. First, the number and distribution of loci 41 

gives an indication of the variants that are readily available for adaptation.16 Second, knowledge about 42 

QTL can be used for studying complex interactions such as pleiotropic effects, genotype-by environment 43 

interactions and sex-specific effects.17 Third, known QTL can be used for studying selection on genetic 44 

variants under natural conditions. Selection analyses in different environments allows distinguishing 45 

between antagonistic pleiotropy and conditional neutrality of genetic variants in different 46 

environments.18 Finally, QTL mapping can help identify yet unknown developmental, physiological and 47 

biochemical pathways and therefore serves as a hypothesis generating enterprise for further analyses.17 48 

Gene mapping in outbred non-model organisms have been hampered by the lack of genetic tools (in 49 

particular availability of markers) but due to technological advances have seen a growing interest during 50 

the last few years. Very few studies date back to the 1990ies19 and a manageable number till 200320, but 51 

numbers have rapidly increased since. In contrast to studies on model organisms, there are challenges 52 

and constraints specific to QTL mapping in natural, outbred populations, in particular that allele 53 

frequencies are unmanipulated.20,21 This has the unfavorable consequence that power is reduced, 54 

because loci under selection are expected to show a U shaped distribution of allele frequencies with 55 

large effect variants being uncommon.22  56 

QTL mapping is a classical top-down genetic approach that starts with the phenotype and aims to map 57 

genetic variants linked to phenotypic variation. We here focus on genome-wide scans for genetic 58 

variants, to distinguish QTL analysis (sensu stricto) from association mapping in a priori selected 59 

candidate genes. In some cases, good candidate genes of interest will be known from other (model) 60 
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species and these can be used in targeted association studies23,24. Such targeted candidate gene analyses 61 

have been successfully applied for the identification of causal genetic variants in natural populations 62 

(e.g. 25). Large scale screens of candidate genes have also been used26 and hold some promise for 63 

uncovering loci under selection. Nevertheless, candidate gene approaches are necessarily affected by 64 

the amount of prior knowledge and we therefore focus here on an unbiased forward search for trait loci 65 

using whole-genome scans. 66 

Any genome-wide QTL scans require accurate and error-free genetic marker information distributed 67 

across the genome as well as high-quality phenotypic information on hundreds if not thousands of 68 

individuals. The association between genotypes and phenotypes is typically analyzed in a linear (mixed) 69 

model framework with phenotypes treated as a response variable and marker genotypes as predictors. 70 

There are a large variety of statistical tools that are discussed in detail elsewhere.22,27,28 We here review 71 

genome-wide mapping of trait-specific SGV with a focus on study design. We concentrate on methods 72 

for QTL mapping in unmanaged, outbred populations, our focus being motived by our interest in 73 

understanding microevolutionary processes and adaptation. The overarching goal is to identify loci of 74 

evolution29 and to study its dynamics in action. Because of this aim, we concentrate on approaches for 75 

direct mapping within a single population and only non-exhaustively cover mapping approaches focused 76 

on divergent populations, in particular those concerning inter-species cross.  77 

2. Sampling design and mapping strategies 78 

All QTL mapping approaches require that marker alleles are in linkage disequilibrium (LD) with causal 79 

genetic variants (trait loci) that influence the trait of interest. There are, however, important differences 80 

in how LD enters in the analysis. The most notably distinction can be made between linkage mapping, 81 

which exploits LD that runs in pedigrees, and association mapping (sometimes referred to as linkage 82 
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disequilibrium mapping), which exploits historical population-wide LD (Figure 1). Linkage and association 83 

mapping approaches can both be used for QTL detection in outbred populations and are therefore the 84 

focus of our review on mapping SVG. 85 

However, linkage mapping is more frequently used for mapping in experimental crosses, a strategy that 86 

is efficient for detecting QTL, but gives only partial information about SGV. In order to highlight the 87 

specific challenges within what is commonly subsumed under one term, we discuss linkage mapping 88 

separately depending on whether LD is created by crossing divergent lines (which we call “Experimental 89 

linkage mapping”) or using only naturally occurring LD in outbred pedigrees (which we call “Pedigree 90 

linkage mapping”, Figure 1).  91 

Experimental linkage mapping using line or population crosses 92 

Linkage mapping in line crosses constitutes the oldest5,6 and most widely used approach to QTL 93 

mapping. In experimental crosses, long-ranging LD between marker and trait loci is experimentally 94 

created in the mapping population.17,22 The key advantage of line crosses is that the allele frequencies at 95 

marker and trait loci are equalized, which substantially increases power, because all meiosises are 96 

potentially informative for segregating QTL.21 This is radically different from pedigree linkage mapping in 97 

unmanipulated outbred populations where many matings are uninformative because either marker or 98 

trait loci are homozygous in both parents.  99 

Experimental linkage mapping requires parents that differ substantially in their allele frequencies, ideally 100 

fixed for alternative alleles at trait loci. There are two basic options for selecting parental lines that are 101 

suitable for mapping. One requires selective breeding and hence experimentally created lines 102 

(“Experimental linkage mapping using line crosses”), while the other uses naturally existing differences 103 

among divergent populations (“Experimental linkage mapping using population crosses”). 104 
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Experimental linkage mapping using line crosses 105 

Classic experimental linkage mapping is based on inbred lines that have been produced such that 106 

individuals from each line are (nearly) completely homozygous at both trait and marker loci.17,22 The 107 

development of lines can be done by randomly capturing haplotypes from the base population in inbred 108 

lines either through self-fertilization or, somewhat less efficiently, by repeated mating among full-109 

siblings from the same family. Alternatively, selection lines can be used in line crosses and involve 110 

targeted local inbreeding at trait loci, a strategy that is most efficient for variants of large effect. 111 

The F1 offspring from a cross between two homozygous parental lines are heterozygous and linkage 112 

blocks are only broken up by recombination in the following generation. F1 individuals can be 113 

intercrossed to produce a F2 generation or can be backcrossed to one of the parental lines to produce a 114 

backcross (B1) generation. One option to increase resolution of the mapping is to use recombinant 115 

inbred lines (RILs) that are created by continuously selfing F1 or F2 individuals (typically for six 116 

generations).30 RILs thus consist of (nearly) genetically identical individuals and each RIL captures a 117 

different set of recombination from the original cross. Even more complicated lines, such as near-118 

isogenic lines (NIL), co-isogenic lines or chromosome substitution lines can be generated in some study 119 

systems.15,17,22 While in principle such strategies could be used for mapping SGV in outbred populations, 120 

this is hampered by practical limitations in most non-model organisms and we refer to the literature on 121 

model species such as Drosophila17,31 and Arabidopsis15 for more information. 122 

Each cross and each swarm of RILs captures only two haplotypes from the base population, which does 123 

not represent the genetic variance in the base population as a whole.20,21,32 This can certainly be 124 

responsible for to the low reproducibility of QTL peaks in different crosses as in the case of 125 

Arabidopsis.33 Nevertheless, line crosses can contribute to our knowledge about SGV. First, they can 126 

suggest loci that can be genotyped in the base population in order to study natural allele frequencies 127 
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post hoc. More directly, an experimental design targeting SGV may produce many inbred lines that can 128 

be crossed among each other, each targeting a subset of the alleles segregating in the population. But 129 

while multiple line crosses have been applied in model systems (partly with large joint efforts such as 130 

the Collaborative Cross in mice34,35 or Multiparent Advanced Generation Inter-Crosses, MAGIC, in 131 

Arabidopsis36), we are not aware of any field based study on a non-model organism that has used a large 132 

number of inbred lines (but see population crosses below).  133 

Selection lines may be more efficient for mapping large effect variants because they equalize allele 134 

frequencies in the cross specifically for variants that have responded to selection. However, the 135 

establishment of selection lines is time-consuming, prone to be affected by drift and specific to the trait 136 

under selection. As far as we are aware, selection lines generated from natural populations have not 137 

been used for QTL mapping in natural populations and are likely to be limited to very specific 138 

applications in the future.  139 

The required number of phenotyped individuals in the mapping population is comparatively low, with a 140 

few hundred individuals for effect sizes in the order of 5% of the phenotypic variation.14,32 Conversely, 141 

mapping resolution is also low, with typical confidence intervals larger than about 20 Mb.34 Marker 142 

density required are about 100 times lower and the number of individuals in the mapping population 143 

about 10 times lower when compared to mapping in an outbred population.34 While these numbers 144 

depend heavily on the specifics of the study system and cannot be taken at face value, they nevertheless 145 

give an impression of the difference in power and mapping resolution.  146 

A potential problem when creating experimental lines is differential loss of genetic variants due to 147 

selection or stochastic processes (e.g. 77% loss in Mimulus RILs37). This might impair the possibility to 148 

draw conclusions about SGV. Furthermore, relating the QTL variance to the total phenotypic variance (as 149 

a standardized effect size) can be problematic because the phenotypic variance in the mapping 150 
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population is likely to be reduced due to environmental and genetic homogenization (but is often 151 

increased in species crosses38). It is therefore useful to relate the QTL variance to the variance in the 152 

parental generation.20 153 

While inbred line crosses are frequently used in model systems,13-15 there are relatively few studies that 154 

used line crosses for studying natural populations (Table 1), possibly because of the labor-intensive 155 

breeding process. Even if the list is non-exhaustive, it becomes clear that crosses between naturally 156 

divergent populations are more popular when studying non-model organisms. 157 

Experimental linkage mapping using population crosses 158 

Linkage mapping in population crosses is often the fastest and most efficient way to QTL mapping 159 

because population crosses capitalize on naturally existing genetic difference between populations. 160 

Local adaptation and drift have done the job of the experimenter. If populations are sufficiently diverged 161 

in allele frequencies at trait and marker loci, population crosses allow similar benefits as artificially 162 

created lines by raising minor allele frequencies in the mapping population to near 50%.  163 

Population crosses provide insight into loci that have contributed to population divergence and thus 164 

only indirectly for SGV. The focus is shifted from contemporary microevolution to past processes of 165 

divergence and adaptation. Intraspecies crosses, i.e. crosses among populations of the same species, are 166 

closest to the goal of mapping SGV. Interspecies crosses are possible (and the distinction is somewhat 167 

arbitrary), but the longer the divergence time among populations, the less they are expected to tell us 168 

about contemporary SGV. 169 

Inter-population and ecotype crosses have been conducted in a variety of non-model organisms (Table 170 

1) and a related line of research is the study of loci contributing to domestication in crosses between 171 

domesticated organisms and their wild ancestors.39,40 Most of the studies rely on a mapping population 172 
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derived from a single population cross, but more comprehensive studies are beginning to emerge at 173 

least in model systems such as Arabidopsis.41-43 174 

Pedigree linkage mapping in outbred populations 175 

Pedigree-based linkage analyses use segregation within pedigrees for mapping and are nowadays almost 176 

exclusively based on interval mapping.7 Interval mapping offers the distinct advantage that there is no 177 

bias towards the most variable marker showing the strongest signal44 and that QTL effect size and 178 

location can be separated.45 The main statistical and computational tools have been developed in the 179 

early 1990ies28,46-49. Linkage maps are required for linkage mapping, because the genetic distance 180 

(recombination fraction) among markers is needed for estimating IBD probabilities between marker loci. 181 

Linkage maps have to be estimated from the segregation patterns of marker loci in a pedigree or line 182 

cross and are now available for a number of outbred species.50,51 183 

Pedigree linkage mapping in natural populations is based on variance decomposition and involves two-184 

steps.52-54 First, marker genotypes, pedigree data and linkage information (from a linkage map) are used 185 

to estimate IBD probabilities with reference to the base population of founders. This results in a square 186 

(N x N, where N is the number of individuals) matrix Q of pairwise IBD sharing probabilities at a locus of 187 

interest. IBD probabilities can be estimated for arbitrary locations within the genome, provided that 188 

they are flanked by at least on marker on either side.  189 

In a second step, the IBD sharing matrix Q is used in a linear mixed model to predict phenotypes. The 190 

model estimates the amount of variance VQ explained by the Q matrix, which can be scaled by the total 191 

phenotypic variance in the population VP to give the heritability at the putative QTL h2
Q = VQ/ VP. This 192 

ratio provides a naturally standardized effect size with reference to the base population. Because 193 

mapping is done in a pedigree, the model includes the additive genetic relatedness matrix A, which 194 
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describes the pairwise genome-wide IBD sharing probabilities. If the model is fitted without Q, the ratio 195 

of h2 = VA/ VP gives the narrow-sense heritability.22 A and Q describe IBD probabilities at different levels, 196 

which can be referred to as the global (or genome-wide) and local relatedness matrices, respectively. 197 

The two matrices also differ in that A is predicted from a pedigree, while Q is estimated from genotype 198 

data. 199 

Pedigree-based linkage mapping can be conducted in general, multigenerational pedigrees, but also in 200 

fragmented pedigrees of multiple core families. Fragmented pedigrees are typical for studies on 201 

humans, but similar data structures may also be available in many natural animal populations. Particular 202 

statistical tools can be used for analyzing multifamily full-sib data,55,56 but we here focus on mapping in 203 

general pedigrees. The precision of the QTL location estimate is determined by the number of 204 

recombination events and deep, well-connected pedigrees contain information on many meiosis per 205 

individual and are powerful for mapping, but a larger number of families in shallower pedigrees will be 206 

equally suitable. 207 

QTL that are inferred from linkage mapping are characteristics of the founder population. Phenotypes of 208 

offspring merely contribute breeding value information for segregating genetic variants present in 209 

founders. If pedigree-based linkage mapping is applied in natural populations, it is therefore essential 210 

that the population of founders is representative for the base population as a whole. In some systems, 211 

for example many plant and fish species, it is possible to generate very large full-sib families and a single 212 

full-sib family can sometimes be used for QTL mapping in outbred populations (Table 2). However, the 213 

generality of the findings will then be limited to the pair of founders.  214 

Importantly, linkage between marker alleles and trait locus allele can differ between families32: M+T+/M-215 

T- segregating in one family and M+T-/M-T+ in another (where M+/M- are two marker alleles and T+/T- are 216 
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two trait locus alleles). This also implies that the analysis does not identify particular alleles that are 217 

associated with trait variation unlike in an association mapping approach.57 218 

The reliance on segregation within a pedigree constitutes the greatest strength, but also the greatest 219 

weakness of linkage mapping. Markers are coinherited with trait loci even over large genomic distances, 220 

because recombination rates are typically low. Hence, linkage mapping has relatively large power for 221 

mapping variants on scales of a few dozen cM17 and requires comparatively few markers (although 222 

higher marker density safeguards against misestimated IBD probabilities in cases of missing 223 

genotypes57). Unfortunately, these advantages trade off with a lack of resolution, which results in large 224 

QTL confidence intervals.17,49 For example, the largest linkage mapping studies in a well-connected 225 

pedigree of c. 1,000 genotyped individuals found QTL peaks that cover 31 ± 16 cM (mean ± SD, range 9-226 

68 cM), 59 ± 49 Mb (range 3-155 Mb) and 602 ± 370 annotated genes (range 53-1,209) in their ΔLOD=1 227 

intervals.58-60 228 

Pedigree linkage mapping was first applied to natural populations in 2002 for mapping birth weight in 229 

red deer61 and this was the only study to be included in a review of QTL mapping in natural population 230 

from 2005.20 The situation as substantially change in the last 10 years with a number of studies using 231 

this approach, mostly in long-lived species like birds and mammals that are less amenable to 232 

experimental linkage mapping (Table 3). 233 

Association mapping 234 

Genome wide association mapping is an extension of early (local) association studies.62 Instead of 235 

mapping the trait in families as in linkage mapping, allele frequencies are compared at candidate loci 236 

with respect to the trait of interest. Genome-wide association studies (GWAS) take advantage of LD 237 

between a marker and trait loci that exists naturally within populations.63 The statistical tools for 238 
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genome wide analyses were developed in the 1990ies64,65 in connection with increased marker densities. 239 

GWAS have since become the standard tool for gene mapping in human genetics where they have 240 

identified mutations for a wide range of traits and diseases.66 241 

More recently GWA studies are also starting to be employed in natural populations on Soay sheep67, 242 

great tits68 and lodgepole pine69 (Table 3). Due to the increased ease to genotype for a large number of 243 

markers, this method is likely to supplement and possibly replace linkage mapping approaches in the 244 

near future also in ecological genetic studies. There are two reasons for this: firstly, GWAS bypasses the 245 

need to follow many individuals and their relatives over many generations as the analyses requires no 246 

information on recombination within a pedigree and second, GWAS offer both increased power and 247 

resolution compared to a linkage analysis.70 The increased resolution is a direct consequence of utilizing 248 

historic recombination events accumulated over many generations. Thus linkage blocks are substantially 249 

smaller (typically in Kb instead of Mb) with the result that localizing a trait gene or even causative 250 

mutation is easier (though it is still by no means easy).13,17 251 

Population-wide LD determines the probability that one or more of the markers is in LD with trait alleles. 252 

An important consideration is therefore how close we need to be to the causal variant and how many 253 

markers we need to have sufficient coverage of the entire genome. Technical improvements will make 254 

marker densities less of an issue in the future, but at the current state this is still a real problem. For 255 

example, for a typical bird genome of ~1.1 Gb in size71 one will have on average one marker every 110 256 

kb using 10,000 SNPs and with the largest SNP chip used so far in natural populations of non-model 257 

organisms72 this will increase to one marker every 22 kb using a 50,000 SNP chip. Although a 22kb 258 

interval seems still large, comparable LD levels have been found in natural populations,73 particularly if 259 

the effective population size is small.74 However, many natural populations have large effective 260 

population sizes and a long evolutionary history and therefore LD levels are expected to be low75 with 261 
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the consequence that tens of thousands of markers are needed to have sufficient coverage of the 262 

genome.  263 

Detecting the effect of the markers on the phenotype can be tested using several different methods and 264 

in the simplest case of equally unrelated individuals and no population structure, single locus association 265 

scans are based on regressing phenotypes on marker genotypes each locus at a time. The fact that loci 266 

are tested one-by-one requires an appropriated type I error control. This level will depend on the 267 

effective number of tests carried out and can be estimated in a number of different ways, including 268 

stepwise Bonferroni and false-discovery rate control,76,77 both of which can be overly stringent if some 269 

of the markers are in LD with each other.  270 

The absence of cryptic relatedness and population structure is often unrealistic and naïve mapping can 271 

therefore lead to increased rates of false positives. Population stratification therefore need to be 272 

explicitly modeled to avoid spurious associations.78 This problem can be especially problematic if both 273 

phenotypic and genetic differentiation varies with geographical distance. Several methods have been 274 

proposed to control for population stratification but common to them is that they rely on fitting the 275 

genomic kinship matrix in a mixed model framework.79-81 The kinship matrix captures both population 276 

structure and cryptic relatedness in the sample and is therefore an efficient way to reduce false positive 277 

associations. By being marker-based, the kinship matrix estimates realized relatedness, but it can 278 

potentially be replaced by the expected relatedness matrix inferred from a well-connected pedigree. 279 

Admixture mapping 280 

Admixture mapping makes use of natural introgression in hybrid zones and, like association mapping, 281 

utilize naturally occurring, population-wide patterns of LD.82,83 The analysis benefits from the increased 282 

LD and increased variation (genetic and phenotypic) in hybridizing populations with different degrees of 283 
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backcrossing.83 An ideal mapping population for admixture mapping therefore harbors recent hybrids 284 

with far-ranging LD as well as advanced intercrosses or backcrosses that have accumulated 285 

recombinations over many generations. The difference in genetic composition between individuals 286 

potentially allows high-resolution QTL mapping with comparatively few markers as compared to 287 

association mapping.83-85 288 

In admixture mapping marker information is used for estimating a hybrid index that describes the 289 

genome-wide degree of mixture among parental genomes for each individual.83 The analysis contrasts 290 

the genome-wide hybrid index with mixture at individual loci. If the locus-specific degree of mixing is 291 

larger or smaller than introgression in the remainder of the genome, this is called excess admixture. The 292 

basic mapping model fits locus-wise excess admixture as a predictor for the phenotype of interest.83,86 293 

Similar to association mapping, linkage maps and an annotated genome are not required,, but they 294 

greatly assist in interpreting the findings.82,83 295 

Admixture mapping is tailored to mapping in natural systems where interbreeding takes place between 296 

species, subspecies, ecotypes or any populations that are genetically sufficiently diverged from each 297 

other. The rather specific conditions of persistent admixture among sufficiently divergent parental lines 298 

make admixture mapping difficult to apply in many natural populations that do not hybridize. 299 

Nevertheless, admixture mapping has been successfully used for mapping variants for human 300 

diseases,87-89 and in a few outbred non-human organisms (Table 3, with a few more example of mapping 301 

in interspecies hybrid zones90,91). 302 

Chromosomal heritabilities 303 

Even relatively well-powered association studies that have used large number of markers and individuals 304 

have often only managed to explain a small amount of the heritability. This is perhaps best exemplified 305 
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by human height where QTL from GWAS only explained around 5% of the heritability.92 Yang et al. 306 

proposed to fit all markers simultaneously instead of testing the significance of markers individually.93 307 

This should provide an unbiased estimate of the variance explained by the sum of all trait loci linked to 308 

markers. Indeed, this method recovered 45% of the additive genetic variance in human height, with the 309 

remaining fraction most likely missing due to incomplete LD between markers and causative sites.93  310 

The same idea can also be used to partition the genetic variance across individual chromosomes94 and 311 

has recently been extended for use in ecological studies under high relatedness levels.95 Under the 312 

infinitesimal model one would expect that larger chromosomes harbor more genetic variance than 313 

smaller chromosomes and thus that chromosome size should scale positively with proportion of genetic 314 

variance. This expectation is indeed fulfilled for many traits,94 indicative of a polygenic basis, but there is 315 

also some variation around a linear relationship that suggests that, for some traits, some chromosomes 316 

contribute disproportionately.  317 

Chromosomal heritabilities are a bit departed from mapping at the level of individual loci, but might still 318 

allow inferences about the genetic architecture and are therefore included here. Outlier chromosomes 319 

could potentially be interpreted as evidence for against a strictly polygenic model.95,96 However, we 320 

would urge caution in using the relationship between chromosome size and proportion of variance 321 

explained to infer too much about the number of loci underlying trait variation. A disproportional 322 

contribution of a chromosome could be caused by a QTL of large effect, but it could also be due to the 323 

clustering of many loci of small effect on a single chromosome. Such clustering is not uncommon43,97 and 324 

therefore even outlier chromosomes could be consistent with a polygenic model. 325 
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Combining linkage and association mapping 326 

Association and pedigree linkage mapping are the most targeted approaches for studying SGV (Figure 1). 327 

As we have outlined above, the two approaches have different benefits and drawbacks, with a 328 

fundamental trade-offs between efficiency (in terms of marker density and sample size) and precision.57 329 

To take full advantage of the data and increase power, it is therefore desirable to combine linkage 330 

mapping and association mapping as they are complementary approaches with different strengths and 331 

weaknesses.40 332 

Few studies have compared results from linkage and association mapping empirically for the same study 333 

population. A recent mapping study on clutch size and egg mass in a population of great tits found no 334 

genome wide significant regions were detected in either approach.68 Moreover, and somewhat 335 

surprising, was that nominally significant QTL regions detected in the linkage analysis did not match up 336 

with those from the association analysis.68 Similarly, a joint linkage and association mapping approach of 337 

flowering time in Arabidopsis found that, while many QTL from the linkage analysis and the GWAS did 338 

align, there were also a number of associations from the GWAS that were not present in the linkage 339 

analysis.43  340 

The discrepancy between results is surprising and requires an explanation. The major difference 341 

between the two approaches is the difference in LD structure. First, it is possible that linkage signals are 342 

composed of multiple small effect QTL that individually are too weak to be detected by association 343 

mapping. Second, it is possible that rare variants of moderate effect are poorly marked in an association 344 

study, but show up as segregating with in families. However, if a trait locus is well marked by a marker 345 

locus, association mapping is more powerful by combining evidence across families. 346 
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A useful approach is therefore to combine linkage and association mapping as two confirmatory 347 

approaches (though not independent replication if based on the same dataset). For example, a 348 

disagreement might be caused by failure to control for population structure in an association study 349 

thereby causing a false positive.43 When planning follow-up studies, it would be most promising to 350 

pursue associations that are identified by both approaches. 351 

3. General challenges 352 

Biased effect size estimation 353 

A notoriously difficult issue is to obtain accurate and unbiased estimation of effect sizes in scans for QTL. 354 

Whenever QTL discovery and effect size estimation are conducted on the same dataset, such that the 355 

effect size estimation is conditional on significance thresholds, the estimates for the amount of variance 356 

explained by a QTL are on average biased upwards. The overestimation of effect sizes is known as the 357 

Beavis effect in the context of QTL mapping,98,99 but applies to conditional effect size estimation in a 358 

more general sense.100 359 

This overestimation is caused by effects near the detection limit, which makes conditional effect size 360 

estimation particularly problematic in underpowered studies. Effects near the detection limit reach 361 

statistical significance only if point estimates are comparatively large in the particular dataset at hand. 362 

Unfortunately, QTL scans are always working at the detection limit, because most QTL have small to very 363 

small effects.101 The size of the confidence interval is wider in studies with low power, such that only 364 

truly large effects and small to moderate effects that are overestimated in the particular sample will 365 

yield a point estimated that is large enough so that the CI does not overlap zero. Unfortunately, using a 366 

single population sample it is impossible to determine if an estimated effect is truly large or if it was 367 

overestimated in the particular sample used.  368 
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Empirical data indeed shows a strong negative correlation between estimated effect size and sample 369 

size22,96. Sample size thresholds, above which the Beavis effect is deemed to be less of an issue, have 370 

been suggested (e.g. N > 30021, N > 50099), but this is unlikely to be useful because the problem is 371 

continuous and even applies to conditional effect size estimation on a very small-scale.100 Notably, when 372 

mapping in unmanipulated pedigrees, there is also internal heterogeneity in power, because of variation 373 

in allele frequencies and/or marker densities across the genome. The only sustainable solution is effect 374 

size estimation at a priori defined loci in an independent sample. Unfortunately, replication and 375 

accurate effect size estimation is particularly problematic in pedigree linkage analyses because of the 376 

difficulty in replicating the sampling design. 377 

The overestimation of effect sizes has an intriguing and often overlooked consequence: Replication 378 

studies of similar sample size will tend to result in an inflated number of false-negative finding. The 379 

inability to replicate initially significant findings due overoptimistic expectations concerning effect sizes 380 

is called the winner’s curse.102,103 Hence, somewhat counter-intuitively, replication studies have to be 381 

designed larger than the initial study to avoid the risk of falsely rejecting a QTL.104,105 382 

The need of replication 383 

Confirmation of QTL signals is essential for establishing that associations are genuine and is considered 384 

the gold standard in human studies.106,107 Replication is also important, because any fine-mapping is 385 

demanding in terms of time, money and labor and replication can therefore avoid wasting resources on 386 

spurious signals. Replication of a QTL signal could be done 1) using a different sample from the same 387 

population, 2) using a sample from a different population of the same species, 3) in a different species 388 

(comparative QTL mapping108,109) or 4) ultimately by demonstrating the mechanistic link by functional 389 

assays.107 There are constraints on replication imposed by the study system. For example, a pedigree 390 

linkage analyses in natural population cannot be easily replicated in the same population, because 391 
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pedigree data often need years to be collected. A useful strategy that also generalizes the results is 392 

replication in a different but similar population.107 393 

Replication of QTL results has proven difficult in humans.9 Problems with reproducibility seem to stem 394 

mainly from four main issues:9 Lack of control for population stratification and/or cryptic relatedness, 395 

differences in LD between marker and trait loci in different populations,110 differences in genetic 396 

structure between populations and presence of genotype-by-genotype or genotype-by-environment 397 

interactions.9 Since some of the reasons are rooted in differences among populations and are therefore 398 

of biological relevance, it is advisable to first replicate the analysis in a population that is similar to the 399 

discovery sample and it is important that the phenotype has been measured in a standardized way.107 400 

Replication of QTL studies has so far been relatively rare in natural populations of non-model organisms, 401 

even though several studies contain internal replication in multiple independent samples.111,112 An 402 

impressive demonstration of replication has been achieved in ecotype crosses of threespined 403 

sticklebacks, where a QTL for pelvic spine structures has been identified in a single cross113, and then 404 

been replicated in the multiple populations from the same geographic region114 and from different 405 

continents.115,116 Another instructive case is the case of a candidate gene approach applied to 406 

personality traits in great tits. The DRD4 gene was found to influence personality,117 a result that was 407 

replicated in the same population but not in others.118 This lack of replication has subsequently been 408 

shown not to be due to inter-population differences in LD between the marker and trait locus.119  409 

Strategies for fine-mapping 410 

Confidence regions for QTL signals are typically large, in particular in linkage analyses, and usually cover 411 

dozens or hundreds of genes. A better functional understanding of trait-specific SGV requires a more 412 

fine-scaled mapping of genetic variants to evaluate if a QTL is caused by a single locus of large effect or if 413 
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it constitutes the composite effect of multiple loci with small effect. It is not unusual for a single QTL to 414 

decompose into multiple small-effect loci, possibly even spatially offset from the original signal (‘ghost 415 

QTL’).22,45,120 416 

Fine-mapping within pedigrees or line crosses requires a very large number of individuals, because LD 417 

blocks have to be broken up by recombination. The marginal gain of additional generations for linkage 418 

mapping decreases32 and extending a pedigree is therefore only occasionally a promising option. A 419 

follow-up by association mapping can therefore be an attractive choice.13 This requires a far larger 420 

number of markers, but not such a dramatic increase in sample sizes. The statistical power of 421 

association mapping can be further increased by large-scale phenotype screens with selective 422 

genotyping of extreme phenotypes or sequencing of the QTL region.21 423 

A generally promising strategy is to combine QTL mapping with other approaches such as transcriptome 424 

profiling,121 population genomics51,122 or comparative genomic123 approaches. Population genomics uses 425 

large scale genotyping or resequencing of individuals within populations to identify regions of the 426 

genome that are unusually differentiated, but does not focus on particular phenotypes and it can be 427 

difficult to separate outlier loci thought to be under selection from demographic effects.51,124 Similarly, 428 

comparative genomics of divergent populations123 can also help to identify outlier loci of divergence, but 429 

is again anonymous to specific phenotypes. QTL mapping is needed to bring in a phenotypic perspective 430 

and combining QTL mapping with population and comparative genomics can give evidence that a 431 

putative quantitative trait locus is under selection.125,126  432 

Most successful studies that have mapped QTL to quantitative trait genes (QTG) have pursued QTL 433 

signals by positional searches for candidate genes in the QTL regions (Table 4). The success of such a 434 

positional candidate gene strategy40 depends on the amount of knowledge from other species and is 435 

more likely to be successful if an annotated genome assembly is available and if the study species is 436 
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closely related to a model organism. Ultimately, the study of post-hoc candidate genes has similar 437 

drawbacks as the a priori selection of candidate genes, because even if causal polymorphisms are 438 

identified in the candidate, it will remain unclear if this is the only or even the main locus contributing to 439 

the initial QTL signal.  440 

Some studies in natural populations have been successful in fine-mapping QTL to the level of a single 441 

QTG or even single nucleoid polymorphisms (quantitative trait nucleotide, QTN) (Table 4). Most of these 442 

fine-mapping successes have been supported by evidence from other approaches, including population 443 

genomics and functional analyses. Admittedly, most of the success stories concern traits with a rather 444 

simple genetic architecture. Nevertheless, they nicely demonstrate how QTL mapping can help to 445 

elucidate the genotype-phenotype map.  446 

4. What can we learn from model systems? 447 

Some lessons can be learned from the extensive experience with QTL mapping in humans, livestock and 448 

crops. A particularly striking and at first glance surprising fact is that, despite substantial efforts and 449 

sample sizes in the hundreds of thousands, the QTL that have been identified explain only a small 450 

amount of the genetic variance, a phenomena coined the ‘missing heritability’ mystery.127 A good 451 

example is human height. The trait shows substantial heritable genetic variation that amounts to 80% of 452 

the phenotypic variants. Yet, even very large-scale association studies have identified about 180 loci that 453 

in sum explain only 10% of the phenotypic variance.128-131 Such findings have led some authors to have a 454 

pessimistic view on the future of QTL mapping.132,133  455 

Replication and fine-mapping has been moderately successful in model organisms and humans,120,134 but 456 

the causal functional details of complex traits have remained largely unknown even in humans.4,134 457 

Furthermore, the results from studies from model organisms are ambiguous with respect to the sharing 458 
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of QTL across populations and species with shared QTL among some populations and species,135 but not 459 

in others cases.33 460 

The history of QTL studies in model organisms is characterized by widespread reports of large QTL in the 461 

initial phase, with smaller effect sizes and a more complex picture of quantitative genetic variation in 462 

later studies.101,120 It seems likely that QTL studies on outbred population are in the process of repeating 463 

this history, which is indicated by trends expressed in recent reviews.50,96 Hence, the field of ecological 464 

genomics might ultimately also realize that most quantitative traits are governed by large numbers of 465 

loci with small effect, while large effect variants are rare.101 This observation appears remarkably valid 466 

across a wide range of traits and species,34,120,134,136 even if exceptions do exist.137 Hence, the 467 

infinitesimal model might be surprisingly valid and we cannot expect every QTL mapping effort to 468 

discover segregating large effect variants.  469 

5. Outlook 470 

As the costs of sequencing and genotyping continues to decrease,138 it will become increasingly feasible 471 

to use resequencing based methods for QTL mapping. Resequencing will ensure that the causal variants 472 

are covered, which will solve the issue with low LD in association studies. However, it will be of little use 473 

when mapping in pedigrees, because linkage analyses are not limited by the linkage among markers, but 474 

by the lack of recombination. So far resequencing approaches have rarely been used for mapping SGV 475 

for fitness traits in natural populations but a notable exception is the detection of candidate genes for 476 

adaptation to serpentine soil in Arabidopsis lyrata.139 More resequencing studies are on their way in 477 

other organisms and this should yield important insights into the role of other genetic variants such as 478 

insertions, deletions, inversions and transposable elements in influencing trait variation in natural 479 

populations. Resequencing approaches will also aid QTL identification indirectly, by boosting the 480 
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potential for complementary analyses using population genomicc and comparative genomic 481 

approaches.  482 

Most QTL mapping studies in natural populations have focused on morphological and life-history traits 483 

that are comparatively easy to measure (see Tables 1-3). However, behavioral traits, such as mating and 484 

feeding rates, calling activities, aggression and exploration, would be equally interesting (see e.g.140), 485 

even if it is harder to collect sufficient behavioral data on hundreds or thousands of individuals. As such 486 

access to high-quality phenotypes will become highly valuable57 and long-term studies are therefore 487 

likely to continue to play an important role in evolutionary genetics also in the future.141 Because of the 488 

central role of behavioral variation in evolutionary studies of animal populations,142 we expect to see 489 

more attempts of mapping behavioral traits in the future. 490 

The use of linkage mapping and association mapping studies on natural population have successfully 491 

allowed the identification of loci important in adaption thereby providing greater insight into the 492 

mechanistic underpinnings of evolution. However, identifying the location of a QTL is in itself only the 493 

first step towards this goal. What is needed is a mechanistic link between the genotype, phenotype and 494 

fitness.143,144 The paucity of functional knowledge about most loci, even in model organisms, represents 495 

a considerable obstacle in genotype-phenotype mapping. Two solutions have been suggested to remedy 496 

this situation: the construction of an ecological association ontology database (similar to the gene 497 

ontology database available for model organisms) and the use of more functional studies.143 498 

It seems likely that the immediate next steps in gene mapping in ecological genomics will be one of 499 

scale: more markers and more individuals will be scored to try to find the elusive QTL of quantitative 500 

traits. A particularly enticing prospect of this endeavor is measuring selection on the level of the 501 

QTL72,145-147 to better understand how traits can respond to selection and how genetic variance can be 502 

maintained in populations. This could be done either experimentally146 or by measuring fitness of 503 
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individuals with known genotype.145 Fortunately, even if the causal genes remain anonymous, selection 504 

analyses can be successfully conducted by studying selection on the closest marker locus.148-151 505 

The advance in technology also means that a more diverse range of organisms can be studied, a process 506 

that will add important new knowledge about the genetic underpinnings of fitness related traits in 507 

natural populations. Hopefully such work will be pursued using a combination of approaches replicated 508 

across populations and followed, ultimately, by functional analyses and fitness assays. As more such 509 

studies accumulate it should allow for a deeper and more complete understanding of the molecular 510 

mechanisms responsible for adaptation. 511 
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Figure 1: Conceptual overview of different mapping strategies targeting standing genetic variation. LD = linkage disequilibrium, SGV = Standing 950 
genetic variation for trait of interest. 951 
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Table 1: Non-exhaustive sample of QTL mapping studies using experimental crosses derived from natural populations of non-model organisms 953 

sampled (excluding crops, livestock and crosses of such with their wild ancestors). ‘Population cross’ refers to geographically separated 954 

populations of the same species. ‘Ecotype cross’ refers to populations of the same species in discretely different habitats. Abbreviations: RFLP = 955 

Restriction fragment length polymorphism, AFLP = Amplified fragment length polymorphism, RAPD = Random amplified polymorphic DNA, SSR = 956 

Simple sequence repeats (microsatellites), ISSR = Inter inter simple sequence repeat, SNP = Single nucleotide polymorphisms, Iso = Isozymes, Alu 957 

= Alu transposable elements, EPIC = Exon-primed intron-crossing markers. 958 

    Sample size  
Phylogenetic 

group Species Trait Method 
individual

s 
Markers 

Ref. 
Plants  
(Pinaceae) 

Scots pine  
(Pinus sylvestris) 

Timing of bud set and frost hardiness Population backcross 113 164 RAPD 152 

Plants 
(Myrtaceae) 

Shining gum  
(Eucalyptus nitens) 

Seedling height and leaf area F2 population cross 178 210 RFLP 153 

  Frost tolerance F2 population cross 118 210 RFLP 154 
Plants 
(Phrymaceae) 

Yellow monkeyflower 
(Mimulus guttatus) 

Floral traits, plant morphological traits, 
age at flowering, pollen viability  

F2 ecotype cross 539 112 AFLP+SSR  155 

  Salt tolerance RILs from ecotype cross 186 RILs 189 EPIC 146 
  Corolla and plant morphology and size, 

flower number, survival, fecundity, 
timing of flowering 

RILs from ecotype cross 
backcrossed to parental 
lines (parental inbred 
lines, PIL) 

191 RILs 189 EPIC 37 

  Accumlation of 17 elemental nutrients 
and three toxic elemetns 

RILs from ecotype cross 186 RILs 189 EPIC 156 

  Critical photoperiod F2 population cross, bulk 
segregate analysis 

360 156 EPIC  157 

  Vernalization F2 population two crosses, 
bulk segregate analysis 

360 + 360 156 EPIC 157 
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Plants 
(Brassicaceae) 

Shepherd's-purse  
(Capsella bursa-pastoris) 

Timing of flowering, plant morphology, 
number of (sterile) fruits, fecundity, fruit 
and pedicel length 

F2 population cross 113 107 RAPD, 6 Iso 158 

 Drummond's rockcress 
(Boechera stricta) 

Resistence to herbivory F2 inbred line cross 192 58 SSR 159 

  Flowering time, leaf number RILs from population cross 178 RILs 105 SNP, 62 SSR 160 
Plants 
(Asteraceae) 

Common groundsel 
(Senecio vulgaris) 

Phenological, vegetative and 
reproductive traits 

F2 ecotype cross 120 RAPD 161 

Plants 
(Poaceae) 

Wild oat  
(Avena barbata) 

Number of spikelets, plant dry mass RILs from ecotype cross 188 RIL 129 AFLP 162 

 Wild barley  
(Hordeum spontaneum) 

Viability, fecundity, various seed traits, 
flower heads per plant and seeds per 
head 

F3 ecotype cross 140 196 AFLP, 6 SSR 163 

  Flowering time, seed weight, growth 
rate 

F3 ecotype cross 140 196 AFLP, 6 SSR 164 

Isopoda Waterlouse 
(Asellus aquaticus) 

Body pigmentation and pattern, eye loss F2 ecotype backcross 194 100 SNP 165 

Insects 
(Aphididae) 

Pea aphid  
(Acyrthosiphon pisum) 

Fecundity, food choice F2 ecotype cross 194 173 AFLP 166 

Fish Theespined stickleback 
(Gasterosteus aculeatus) 

Bony armor, feeding morphology Ecotype backcross 92 227 SSR 167 

  Bony armor F2 ecotype cross 360 160 SSR 168 
  Pelvic spines Multiple F2 ecotype 

crosses 
33-281 227 SSR 114 

  Pelvic spines F2 ecotype cross 375 53 SSR 113 
 Rainbow trout 

(Oncorhynchus mykiss) 
Embryonic development rate F2 inbred line cross 170 219 AFLP, 2 SSR, 1 

Alu 

169 

  Body size, condition, growth, 
morphology, skin reflectance, and 
osmoregulatory ability 

F2 ecotype cross 235 164 SSR, 414 SNP 170 

 Mexican tetra  
(Astyanax mexicanus) 

Eye size, melanophore number, 
condition factor, albinism 

Ecotype backcross 111 81 RAPD 171 

  Albinism Ecotype backcross 111 267 SSR 111 
  Eye size (jaw size, number of teeth, tast F2 ecotype cross 539 178 SSR 172 
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buds and melanophores) (117-227) 
  Eye size, body length, body condition 

(melanophore number, chemical 
sensitivity, body and jaw morphology, 
body length,body condition) 

F2 ecotype cross 533-539 
(113-361)  

177 or 294 SSR 173 

  Brown phenotype F2 ecotype cross 488 262 SSR 174 
  Retina thickness F2 ecotype cross 115 463 SNP, 235 SSR 175 

Page 38 of 47

http://www.nyas.org/forthcoming

Annals of the New York Academy of Sciences

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



unedited manuscript

39 
 

Table 2: Examples of linkage mapping studies for in outbred large fullsib families with parents or recent ancestors collected from natural 959 

population. Abbreviations: RFLP = Restriction fragment length polymorphism, AFLP = Amplified fragment length polymorphism, RAPD = Random 960 

amplified polymorphic DNA, SSR = Simple sequence repeats (microsatellites), SNP = Single nucleotide polymorphisms, SCAR = Sequenced 961 

characterized amplified regions, INDEL = Insertion/deletion polymorphisms. 962 

    Sample size  
Phylogenetic 
group Species Trait(s) Mapping approach 

Individual
s Markers Ref 

Plants  
(Pinaceae) 

Douglas-fir  
(Pseudotsuga menziesii) 

Timing of spring bud flush One fullsib family (parentally 
selected extreme phenotypes) 

190 74 RFLP 176 

  Cold-hardiness One fullsib family 186 74 RFLP 177 
   One fullsib family 383 74 RFLP 112 
  Timing of seasonal growth 

initiation, cessation and bud flush 
One fullsib family 357-429 72 RFLP 178 

Plants 
(Salicaceae) 

Common osier  
(Salix viminalis) 

Parasite resistence One fullsib family 282 214 SNP, 41 SSR 179 

Plants 
(Myrtaceae) 

Southern blue gum  
(Eucalyptus globulus) 

Parasite resistance One outbred families (parentally 
selected phenotypes) 

112 132 AFLP, 33 
SSR 

180 

   Two outbred families (selected 
genotyping of extremes) 

50 + 40 132 AFLP, 33 
SSR 

180 

Plants 
(Fagaceae) 
 

Pedunculate oak 
(Quercus robur). 

Leaf morphology One outbred full-sib family 390 34 SSR, 84 AFLP, 
1 SCAR, 9 RAPD 

181 

  Vegetative propagation One outbred full-sib family 232 34 SSR, 84 AFLP, 
1 SCAR, 9 RAPD 

182 

 European beech  
(Fagus sylvatica) 

Leaf number, leaf area and shape, 
tree height 

On full sib family  143 28 RAPD, 274 
AFLP, 10 SSR 

183 

Fish Atlantic salmon  
(Salmo salar) 

Body weight, body condition Three outbred full-sib families 3 x 46 91 SSR 108 

  Time of emergence, tail fork Two outbred full-sib families 370 + 279 50 INDEL, 77 184 
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length SSR 
 Arctic charr  

(Salvelinus alpinus) 
Body weight, body condition, age 
at maturation 

Two outbred full-sib families 2 x 94 100 SSR 185 

963 
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Table 3: Overview of QTL mapping studies in outbred populations of non-model organisms. The overview covers pedigree linkage mapping, 964 

genome-wide association mapping and admixture mapping approaches. In the second part of the table, we also include examples of studies that 965 

analyze a small number of full-sib families when parents were sampled from natural populations. Abbreviations: AFLP = Amplified fragment 966 

length polymorphism, SSR = Simple sequence repeats (microsatellites), SNP = Single nucleotide polymorphisms, Iso = Isozymes. 967 

    Sample size  
Phylogenet
ic group Species Trait(s) Mapping approach 

Individual
s Markers Ref 

Mapping in large, diverse mapping populations 
Plants 
(Pinaceae) 

Lodgepole pine 
(Pinus contorta) 

Cone serotiny Association mapping based on 
selection of extreme 
phenotypes  

98 97,616 SNP 69 

Fish Threespined stickleback 
(Gasterosteus aculeatus) 

Nuptial coloration Admixture mapping in ecotype 
hybrid zone (used for QTL 
confirmation) 

508 576 SSR 186 

Birds Great tit  
(Parus major) 

Clutch size, egg mass Chromosome partitioning, 
pedigree linkage mapping, 
association mapping 

902-969 7,203 SNP 68 

  Wing length Chromosome partitioning 2,644 7,203 SNP 95 
 Great reed warbler 

(Acrocephalus arundinaceus) 
Wing length Pedigree linkage mapping 333 57 SSR, 36 AFLP 187 

 Zebra finch  
(Taeniopygia guttata) 

Wing length Pedigree linkage mapping 1,066 1,404 SNP 59 

  Beak color Pedigree linkage mapping 1,019 1,404 SNP 60 
  Beak morphology Pedigree linkage mapping 992 1,404 SNP 58 
Mammals Soay sheep  

(Ovis aries) 
Horn type, coat color, coat 
pattern 

Pedigree linkage mapping 560 247 SSR, 4 Iso 188 

  Pathogen resistance  Pedigree linkage mapping 588 247 SSR, 4 Iso  189 
  Birth date, birth weight, leg 

length, body weight, jaw and 
Pedigree linkage mapping 588 247 SSR, 4 Iso  190 
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metacarpal length 
  Horn type, horn size Linkage mapping (local only) 588 21 SSR 191 
  Horn type Association mapping 445 35,831 SNP 67 
  Horn size Association mapping 160 35,831 SNP 67 
 Bighorn sheep  

(Ovis canadensis) 
Horn size, body mass Pedigree linkage mapping 310 247 SSR 192 

  Docility, boldness Pedigree linkage mapping 310 238 SSR 140 
 Red deer  

(Cervus elaphus) 
Birth weight Pedigree linkage mapping 295 90 SSR 61 
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Table 4: A selection of QTL mapping case studies in natural populations illustrating how a variety of 968 

approaches can lead to the identification, replication and fine-mapping of trait loci. The studies also give 969 

examples for how knowledge about QTL can be used for studying selection under natural conditions. 970 

Serotiny in lodgepole pines (Pinus contorta) 

In many species of conifers the ability to release the seeds inside cones in response to an 

environmental trigger, such as wildfires, is an important adaptive trait but the genetic basis to this 

has been unknown. Recently, Parchman and colleagues69 used high throughput sequencing and a 

GWA mapping approach to remedy this situation. They sampled three populations of lodgepole 

pines from the Rocky Mountains and obtained a reference assembly from which they called more 

than 97,000 SNPs to be used in a GWAS on 98 individuals that were selected for unambiguous 

serotinous or non-serotinous phenotypes. Rather surprisingly given the low number of markers 

(compared to the genome size) and individuals, the authors were able to detect eleven loci that 

were associated with serotiny, although the function of these loci was unknown.69 This study 

illustrates the possibilities offered by high throughput sequencing and a GWA approach in a species 

with huge genome (18-40,000 Mbp193) to detect genetic polymorphisms affecting fitness traits in 

natural populations. 

Local adaptation and life-history evolution in yellow monkeyflowers (Mimulus guttatus) 

Yellow monkeyflowers are distributed throughout western North America and show two distinct 

ecotypes that are locally adapted to coastal and inland habitats. Ecotypes differ in many 

characteristics including whether they are annual or perennial, time of flowering, plant height and 

other morphological traits.155 Experimental linkage mapping in population crosses were used to 

uncover the genetic basis of traits contributing to local adaptation, including mapping of a suite of 

20 morphological and life-history traits in a 539 F2 indiviudals.155 However, most of the mapping was 
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done using the possibility of constructing RILs in monkeyflowers. For example, Lowry et al.146 

mapped salt tolerance in RILs and performed reciprocal transplant experiment to demonstrate the 

fitness benefit of the salt tolerance QTL. Furthermore, population crosses based on sampling from a 

larger geographical range helped to pinpoint an inversion polymorphism affecting flowering time 

and reciprocal transplants demonstrated its contribution to local adpatiation.194 Other work from 

the same group also shows the potential for studying selection on QTL under natural conditions. For 

example, key life-history traits have been found to be under spatially and temporally variable 

balancing selection.195 

Adaptation to freshwater habitats in Threespined stickleback (Gasterosteus aculeatus) 

Threespined sticklebacks occur globally widespread in marine habitats, but have colonized 

freshwater habitats on multiple independent occasions. Adaptations to freshwater habitats involve 

striking changes in morphology, most prominently the loss of pelvic spines and armor plates. Both of 

these traits have been mapped in genome-wide linkage scans based on F2 population crosses 

between marine and benthic populations sampled from native habitats.113,168 The identification of 

the Eda locus as a QTG for armor plates was based a positional candidate genes approach and 

validated by positional cloning and high-resolution association mapping.196 The initial linkage 

mapping of pelvic spines revealed one major and 4 minor QTL.113 The leading QTL signal was 

confirmed in multiple independent crosses, including some from independently derived 

populations.114,115 Fine-mapping to a very small genomic region upstream of the Pitx1 gene was 

done by combining positional cloning, comparative genomics, expression analysis and artificial 

breeding.113,116 Knowledge about the Eda QTG was used for studying pleiotropic effects under 

laboraroty and selection under field conditions.147,197. 

Regressive evolution in Mexican tetra (Astyanax mexicanus) 
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Mexican tetra is a central American fish species that has colonized cave habitats at least three times 

independently.198 Cave-dwelling populations are characterized by several regressive characters, 

most notably the loss of pigmentation and eye reduction. The species readily reproduces in the 

laboratory and crosses between cave-dwelling populations and their surface-dwelling conspecifics 

have been used for mapping cave-specific traits. For example, Protas and collegues111 mapped 

albinism in a backcross family and found one strong QTL signal. The QTL was confirmed in an 

independent F2 cross that involved a different cave population. Lack of complementation in a cross 

between the two cave populations further suggested that the very same locus was involved in loss 

of pigmentation in both populations. A positional candidate genes search resulted in only one gene 

(Oca2) that matched the linkage peak. The functional role of Oca2 was validated by genetic 

transfection in mouse cells. Further analyses suggest at least three independent mutations in the 

Oca2 gene that have led to a albinism in cave populations, including two different exon deletions in 

two different cave populations.111 This study nicely demonstrates the general stepwise procedure of 

linkage mapping, replication and fine-mapping with careful choice of good candidate genes in QTL 

regions. 

Life history traits in great tits (Parus major) 

Clutch size in birds is a classical avian life-history trait and numerous studies have demonstrated that 

clutch size is under selection and has a genetic basis,199 yet so far no genes influencing this trait is 

known from natural populations. To address this Santure et al.68 genotyped 650 females using 5500 

polymorphic great tit SNPs 200 to map QTL for clutch size and egg mass using a combination of three 

approaches: chromosome partitioning, linkage analysis and genome wide association mapping. 

Neither the linkage mapping approach nor the GWAS were able to detect any genome wide 

significant QTL, probably because power was too low to detect loci with the small effect sizes 
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 971 

expected from a polygenic trait. This latter conclusion is supported by the fact that the amount of 

genetic variance on each chromosome and the size of the chromosome was strongly positively 

correlated, which is suggestive of a largely polygenic basis to these traits.68 The study illustrates that 

even with a relatively large sample size it may be problematic to detect loci for ecologically 

important quantitative traits in natural populations. For the great tits the search for clutch size QTL 

continue. 

Genetic basis of sexual ornamentation in Soay sheep (Ovies aries) 

One of the first large-scale QTL study in a natural population aimed to map the genetic basis of horn 

morphology in island population of Soay sheep.67 The discrete horn type polymorphism observed 

suggests a largely Mendelian basis to this trait and previous research has indicated that it may be 

controlled by a single locus with three alleles.201 Using linkage mapping Johnston et al. were able to 

map the location to a QTL on chromosome 10 covering 7.4 cM region.191 With the availability of a 

commercial Ovine 50k SNP chip, it was possible to follow this up with a genome wide association 

scan, which confirmed the linkage mapping signal on chromosome 10 and narrowed it down to 

three markers located close to the RXFP2 gene67 that has previously been found to associate with 

horn type in domestic sheep.202 The result was further strengthened by a smaller scale SNP array for 

genotyping 17 SNPs within and around the RXFP2. Johnston et al. then used the QTL mapping results 

for further study of the selective processes that maintain variation and found that the two alleles 

had opposing effects on reproductive success and survival, with heterozygotes being the most 

successful genotype overall, a pattern that could contribute to maintenance of genetic variance at 

this locus.72  
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