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Abstract
The drilling of an oil or gas well is an expensive undertaking. Hence, it is not 
surprising that mistakes and accidents during drilling incur a high cost. Accidents 
could result in the loss of expensive equipment and subsequent delays setting back the 
operation for days or weeks and thus running up large bills on rig-time and personnel 
hours. Some types of accidents also pose a risk to the personnel or the environment. 
In this dissertation we study alarm systems which could give the driller an early 
warning of upcoming problems, and thus provide time to avoid these accidents. We 
explore alarm systems which combine advanced physical models of the well and 
drilling process with artificial intelligence and time series analysis. Finally, we 
determine the advantages as well as the challenges of this approach. 

It is our hope that this dissertation is accessible to both practitioners in machine 
learning and control engineering, as well as to petroleum engineers with a passing 
familiarity with machine learning. Hence this dissertation starts with a quick 
introduction to drilling problems and some terms from time series analysis and 
machine learning. We then briefly describe the theory of observer-based fault 
detection and isolation. Theories of supervisory control systems are also introduced, 
as these concern both the choice of algorithms and how AI-based alarm systems 
integrate with the rest of the operation. From chapter 6 and onward, the challenges to 
fault detection in drilling are discussed. We focus on clarifying what restrictions the 
available training data put on our choice of machine learning methods. In chapter 8 
and 9, we propose ways to combine machine learning and observer-based fault 
detection. Experimental results are presented in chapter 10, before we end with 
concluding remarks in chapter 11. 

Our main conclusion, reflected in our experimental results, is that physical models 
and artificial intelligence can be combined to produce hybrid alarm systems that are 
better than what we could have achieved using these approaches separately.
When using artificial intelligence we treat fault detection in drilling as a machine 
learning problem. In the course of our work we find that this problem domain differs 
in important respects from textbook examples of machine learning problems. 
Determining the distinctive characteristics of this problem domain is crucial in 
designing the alarm system. Drawing on examples from different fields we determine 
these characteristics and propose novel alarm system architectures that build on recent 
developments in machine learning. 
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1 Introduction 

1.1 Today’s challenges 
Drilling for oil and gas is a task with a high risk of costly accidents. One underlying 
cause is noise and uncertainty in the available information. For instance, a drilling 
operation proceeds through different layers of rock which each may require different 
strategies by the driller, but the exact properties and positions of the layers may not be 
known. Feedback from the instruments is also fraught with uncertainty. 
Measurements such as bottom hole pressure, mud flow, and hook load are noisy and 
influenced by a large number of effects. Still, experts analysing time series recorded 
prior to a fault, often concede that the signs of an imminent fault were in fact visible 
and that many of the accidents were avoidable mistakes.  
This leads us to a second underlying cause of faults, real-time information overload. 
Much work has gone into producing software that either condenses the real-time data 
into a more manageable form for the driller, or produces an alarm when the system is 
getting near a fault. The most advanced alarm systems today model the well and the 
drilling process. These models let the driller anticipate the effects of his actions and 
help the alarm systems separate normal behaviour from imminent faults. After 
presenting the necessary background knowledge, we go into more detail on the state 
of the art in chapter 7. 

1.2 Our objective 
The objective of this dissertation is to improve existing alarm systems by 
incorporating both machine learning and physical models.  
Frequent interruptions by false alarms have been recognized as a major problem for 
drillers in the North Sea (Heber and Åsland, 2007). This erodes trust in the alarm 
system, risking that correct alarms go unheeded. Increasing the sensitivity of an alarm 
system tends to increase both the detection rate and the number of false alarms. When 
the false alarm rate is already too high, this in effect puts a cap on the sensitivity, 
meaning that existing alarm systems are not run at their full potential. Finally, false 
alarms distract the driller from his or her job, making it more likely that the driller 
makes a mistake or overlooks signs of real problems. A priority in this dissertation has 
thus been to find ways to reduce the false alarm rate.  

In addition to the main goal of better alarm systems, it has also been an objective to 
analyse artificial intelligence (AI) and hybrid alarm systems as parts of the larger 
supervisory systems in petroleum production and Integrated Operations, where 
information and communication technology enable new work processes in the 
industry (Epsis and ABB, 2006).

1.3 Methods 
In this dissertation we make use of a previously developed physical model of the 
wellbore and drilling process. This model is part of the eDrilling system which has 
been developed by SINTEF and co-operators (Petersen et al., 2006).  
The eDrilling system runs in real-time during a drilling operation, taking real-time 
measurements as input and predicting downhole conditions. This includes pressure, 
temperature, and mass transport along the wellpath. The model calculates factors such 
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as pump rate, movement of the drill string and choice of drilling mud affect the well. 
The eDrilling system also presents a 3D visualization of the well and drilling process. 
It is also possible to feed the eDrilling system with time series recorded during past 
drilling operations. We may then re-run the operation in fast-forward to analyse the 
drilling operation and events therein. 

Several time series recorded during the drilling of wells in the North Sea have been 
available to us. Some of these contained drilling problems or faults. Our method of 
investigation has been to study these time series for early signs of drilling problems 
and re-run time series through eDrilling to study how the model behaves during a 
fault. The time series together with output from the eDrilling model constitutes a data 
set upon which we have tested different machine learning methods.  

This dissertation makes extensive use of machine learning methods, a field which 
tends to overlap with topics such as soft computing, AI, and data mining. Without any 
opinion on the delineation between these subfields, an “AI” in this dissertation is 
simply meant to indicate an instance of a predictor or a classifier. This includes some 
simple and transparent methods that are not normally referred to as AIs, but 
nevertheless share many of the same challenges.  

To address the Integrated Operations perspective and how our work is relevant to the 
larger petroleum industry, we have discussed the AI alarm system as part of a larger 
integrated system of supervision, control and optimization. Such systems are central 
to many IO initiatives and the discussion of these systems further informs our alarm 
system design. 
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Figure 1: Simplified 
drilling schematics 

2 Drilling problems  
The basic offshore drilling operation can, with reference to 
Figure 1, be described as follows: A rotating pipe (1) 
extends from the rig to the bottom of the well, where a 
bottom hole assembly including a drill bit (2) is mounted. 
The drillbit crushes the rock into cuttings. At the same 
time drilling mud is being pumped down the pipe. The 
mud returns to the rig through the annulus, the space 
between the pipe and the wall of the borehole. The mud 
carries the rock cuttings (3) along with it, up to the rig. As 
drilling progresses, the wall of the well is periodically 
fitted with a protective casing (4). To replace worn-out 
drill bits, it is necessary to pull the pipe out of the hole. 
This and the subsequent reinsertion is called tripping.

In this dissertation, we will focus on two complications 
that may arise during this operation. Under certain 
conditions, such as when drilling into a new geological 
formation, the pore pressure of the formation may exceed 
well pressure and gas or fluid may flow into the well. This 
displaces the mud, which leads to a larger mud return rate 
at the rig.
Extra mud return is the most significant sign of a kick (Watson et al., 2003). Bubbles 
of gas will expand as they rise, so that the amount of fluid displaced is not 
proportional to the original influx. In the case of gas, or when the density of the 
formation fluid is less than that of the mud, an influx will cause a pressure reduction 
in the well, which further destabilizes the situation. This pressure loss is another early 
indicator of a kick1. Acoustic methods provide indications of a gas kick but they are 
unsuitable for the earliest detection and unsuitable for deep and high pressure high 
temperature wells (HPHT), because dissolved gas is harder to detect than free bubbles 
(Watson et al., 2003). 

The kick proceeds on a timescale of seconds and minutes and the drilling crew must 
act swiftly to prevent what could in the worst case become a full-scale blow-out. Early 
detection requires both reliable flow measurements and the ability to predict harmless 
changes in the fluid flow, such as fluid displaced by the drill string during tripping. 
Otherwise, these effects will result in false kick alarms.  
The e-drilling software (Petersen et al., 2006) calculates many but not all of these 
harmless effects. Of special significance in this dissertation is pipe draining: When 
the pumps are stopped, the flow of mud out of the well stops abruptly. However, it 
takes a few minutes for the pipes between the well and the flow meter to empty. This 
effect is not included in the e-drilling system at present and the meter readings could 
therefore be misinterpreted as fluid displaced by a kick.

1 In the case of a slim hole, the extra annulus friction pressure, caused by the influx flow, may be higher 
than the reduction in hydrostatic pressure, so that standpipe pressure actually increases. 
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Successful drilling also requires that cuttings are transported to the surface. If not, we 
risk that the cuttings settles out and eventually packs around the drill string. This is 
termed poor hole cleaning and may result in a stuck pipe incident. A worst-case 
scenario is that the drill string breaks, resulting in the loss of the bottom hole 
assembly. In such a case, much of the well will be blocked by the lost pipe. It will be 
required to either drill long side-tracks or perform time-consuming fishing operations
to clear the hole. Poor hole cleaning is a condition that often builds up over time, thus 
the signature of the impending fault should in theory be visible long before the fault. 
The signatures are however less clear-cut than for kicks. Signatures include:  

An erratic torque on the drill string. There could be several factors influencing 
torque, for instance that the string is repeatedly getting stuck in the cuttings, 
wound up and spun free.
An increase in bottom hole pressure that is otherwise unaccounted for, may 
indicate a tight spot with cuttings packings causing flow restrictions further up 
the annulus 
An unexpected hook load. The hook load is the tensional force of the drill 
string exerted as it is suspended from the rig. The drill string may partially rest 
on a tight packing of cuttings while running into the well, causing the hook 
load to be lower than anticipated.

A stuck pipe may also be caused by differential sticking or by a borehole which is 
producing cavings or which is collapsing. These processes share some but not all of 
the characteristics of poor hole cleaning. We refer to (Aldred et al., 1999) for an 
introduction. As in the case of a kick, we compare the measurements with predictions 
of the fault-free case, but for stuck pipe we need to focus more on defining a reliable 
and robust fault signature.  
For both kick and stuck pipe, in particular, there are strong indications of the fault in 
one or two variables and weaker correlated signals in other variables, which we may 
or may not be able to exploit.  
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3 Some machine learning concepts 
In this chapter we briefly introduce some concepts and theories from machine 
learning, which are central to discussions later in this dissertation. 

3.1 The curse of dimensionality 
Both AI methods, such as neural networks, and simpler methods such as linear 
regression, perform a function approximation. Given a set of input examples, each 
with dimensionality d  and corresponding outputs, a function is found which 
reproduces the examples fairly well and manage to predict the output belonging to 
new examples. We know that more examples generally lead to a better approximation 
of the function, but how this depends on dimensionality is perhaps not intuitive. If we 
make no assumptions about the form of the function, a function of d  variables need 
n  examples to get the approximation down to an error of , where (Verleysen, 
2003):
 (1/ )dn  (3.1) 

More precisely, n  is the number of evenly spaced points2 that need to be sampled in a 
d - dimensional hypercube with sides of length 1 so that the distance between the 
points is as low as . This means that the number of examples needed increases 
exponentially with the dimensionality of the input. It has the at first counter-intuitive 
implication that more information may lead to worse performance.  

The problem is mirrored in data-mining approaches that produce a hypothesis about 
the data. In a seminal paper by Ioannidis (Ioannidis, 2005) the case of analysing 
medical data was discussed. n  patients are screened for a large number of variables, 
such as genes or protein expression. Here the dimensionality d  easily exceeds several 
thousands and the output to be determined is whether the patient does or does not 
have a disease. The goal is to find a statistically significant correlation between a gene 
and the disease. Standard techniques have a small chance of reporting an unrelated 
gene as linked to the disease. This is known as a type I error. Ioannidis showed in a 
convincing fashion that when this small probability of error is repeated for thousands 
of genes, type I errors could easily outnumber the true findings. In statistical and 
machine learning terms, this is a bad case of over-fitting or over-learning. 

The curse of dimensionality demands that we enforce some best practices when 
dealing with high-dimensional data. Dimensionality reduction methods need to be 
deployed and our feature selection should not include parameters that we do not 
initially believe have a bearing on the output. Neither should we work with no 
assumptions on the function we try to approximate, but use functions on a form that is 
likely to reflect the problem at hand. That is, we need to employ a-priori information. 

3.2 A-priori information 
The curse of dimensionality makes a strong case for including a priori information in 
the pre-processing and analysis. This sentiment is mirrored in several other well-
known results from machine learning and computer science. The no free lunch 

2 In reality, we may not be able to obtain evenly spaced points 
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theorem (Wolpert, 1996) , makes it clear that no method for optimizing our function is 
better than any other, if no assumptions are made about the underlying true function. 
The bias-variance dilemma goes into more detail on the performance: 

Given a training data set with n examples of inputs and output 
, , 1, 2,...i iD y x i n , we generate a function approximation ,g x D  which 

depends on the training set. The function may perform good or bad on new examples 
(the test set) and the bias-variance dilemma discusses how well the function performs 
compared to the MSE optimal regressor denoted by |E y x . Our function’s mean 
square deviation from the optimal (Theodoridis and Koutroumbas, 2006) is given by: 

22

2

, | , |

, ,

D D

D D

E g x D E y x E g x D E y x

E g x D E g x D (3.2)

We see that the first right hand side term can be identified as the bias, a tendency of 
our function to settle at some configuration different from the optimal. The second 
term is the variance of our function, how much it is prone to vary depending on the 
training set. For a finite number of training examples the dilemma states that 
decreasing the bias increases the variance and vice versa. For instance, a complicated 
model may be tuned and tweaked to fit the training set near perfectly, thus achieving a 
low bias, but it will show a high variance on new data. (Refer to Figure 2.) The use of 
a priori knowledge to restrict the forms the function can take, may however reduce 
both bias and variance at the same time (Theodoridis and Koutroumbas, 2006). 

0 1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

2

2.5

3

Figure 2: A fifth degree polynomial (green) is fitted to a training set of six examples (red) drawn 
from a larger population (blue). The polynomial has low bias in the training set but performs 
badly on new examples. A polynomial trained on six different examples (orange) illustrates the 
large variance of polynomials trained on different training sets. 

In Figure 2 it is obvious that a less complex function, like a first degree polynomial, 
would have generalised better to new examples given the same training set. This 
notion of generalisation performance is made explicit by the VC-dimension
(Theodoridis and Koutroumbas, 2006). Simply put, the VC-dimension is the 
“capacity” of our AI or function, which in the case of neural networks is roughly the 
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number of free parameters to be fixed during training. Good generalisation 
performance can only be expected if the number of examples well exceed the VC-
dimension.  

While the no free lunch theorem instructs us that statements like “Method A is better 
than method B” are false unless specified for a specific problem domain, the bias-
variance dilemma tells us to choose methods based on expert knowledge about the 
system. Both the latter and the VC-dimension further recommend an occhams razor 
approach, where the function or AI should be kept as simple as possible.  

There are many approaches in the literature to formulating and implementing a-priori 
knowledge. Constraining the allowed parameters (Abonyi et al., 2000) (Lauer and 
Bloch, 2008), initializing the model with a-priori information before tuning it with 
training examples (Zhao and Dillon, 1997) and modifying the cost function 
(Papathanassiou and Petrou, 2002) are all possible approaches.
Some pre-processing is also concerned with this. While smoothing a time-series may 
be necessary for some algorithms to work, it is also a sort of dimensionality reduction, 
using a-priori knowledge that useful information is not found in the high-frequency 
range. De-trending or removing seasonality in a time-series may also be said to 
introduce a-priori information and more so employ a simple model of the system, 
predicting part of the raw data. Combined with an AI that has no a-priori information, 
this qualifies as a grey-box approach. 

3.3 Black-, white- and grey-box models 
Black-box models are models which can not be easily examined or where the system 
we try to model is itself a black box. That is, we have knowledge of how it responds 
to input, but not of its components or internal dynamics. In this case, all we ask of our 
model is that it reproduces the behaviour of the system, not that its internal workings 
correspond to that of the real system in any way. 

The term grey-box modelling refers to an approach that lies in between white and 
black box approaches. Examples include neural networks that are fed not only the raw 
data but combinations of the parameters that are known to be relevant, such as the 
Reynolds number in a pipe flow problem. Another grey-box approach is to construct a 
simple physical model where its parameters are determined by the historical data 
(Awasthi et al., 2008) or a model where only some components are black boxes. In 
chapter 8.1 we discuss one such approach in more detail.  

3.4 Ensemble methods 
Ensemble learning is a collection of methods in machine learning which utilize 
several AIs simultaneously. The aim is to achieve a better performance than each AI 
alone or at least avoid the worst-case performance of a single AI. We will here 
introduce one class of methods called bagging.
An acronym for bootstrap aggregating, (Breiman, 1996a) bagging is a method where a 
set of AI classifiers or predictors are presented with the same problem and the 
ensemble output is arrived at by a form of voting. Two simple yet effective choices of 
voting are a majority vote for classifiers and averaging for predictors.  
For bagging to work, the AIs need to be diverse in their predictions. If all the AIs 
produce the same output, the result of bagging would be no different from that of the 
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individual AI. This diversity can be accomplished e.g. by using different types of AIs, 
using different initial configurations of the AIs or choosing different subsets of input 
variables (Polikar, 2008) such as the random subspace method by (Ho, 1998). But the 
most common way to achieve diversity is to train similar AIs using different subsets 
of the available training data. Promoting diversity this way works best for AIs that are 
“unstable” in the sense that a small change in their training set can have a large effect 
on the final configuration of the trained AI. Many AIs such as neural networks and 
classification trees are unstable in this sense, with the k-means algorithm being a 
notable exception (Breiman, 1996b). Ensemble learning has been proposed as a 
solution for many data analysis challenges, such as data fusion and incremental 
learning. For an overview, see (Polikar, 2007, Valentini, 2003). 

Ensemble methods are intuitively appealing, but their reliability and working 
mechanisms have been the subject of numerous studies. It was established by (Hansen 
and Salamon, 1990) that bagging reduces the variance of the prediction. However, the 
full picture has since been a matter of debate, with empirical studies yielding 
contradicting results. In theoretical studies, (Friedman and Hall, 2007) proceeded by 
decomposing smooth estimators into linear and higher-order terms and treated 
bagging using training set resampling. They found that variance reduction improved 
the higher order terms, with the linear term remaining unaffected. (Buja and Stuetzle, 
2000) built on this to identify effects on variance, bias and mean square error. Cases 
were identified where bagging could in fact increase variance. It was also shown that 
(squared) bias always increases during bagging and that the detrimental effect of bias 
could outweigh variance reduction in some cases, typically for small resample sizes. 
(Buhlmann and Yu, 2002) analyzed the case of nonsmooth unstable predictors such as 
decision trees and found that in this case the first order term could be substantially 
improved. It is not clear if these results contradict the claim by (Kong and Dietterich, 
1995) that some methods may reduce both bias and variance simultaneously, or if it 
the different claims are for different ensemble architectures. 
While these approaches focus on the variance, the performance of ensemble systems 
has also been explained in terms of the classification margin, drawing on the theory of 
large margin classifiers such as support vector machines. This explanation has been 
especially convincing for boosting methods, but is also used to explain the effect of 
bagging (Schapire et al., 1998). It was shown in (Domingos, 2000) that margin can be 
expressed in terms of certain notions of variance and bias, allowing a unified 
treatment.  
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4 Theories of supervision and control 
To understand the role of an alarm system, it is necessary to view it as part of a larger 
supervisory system that acts on the alarms. We present the established theory on this 
subject, first by a relevant example, then with an elaboration on the underlying 
structures as presented in the literature. When the drilling alarm system is put into this 
context, it becomes clear what data the system must work with and what forms the 
output can reasonably be permitted to take. This does in turn narrows the choice of 
machine learning methods. The supervisory system also serves as a roadmap for 
future integration and hybridization of machine learning efforts, in an integrated 
operations framework. 

4.1 The rig control loop 
In (Saputelli et al., 2002) the Field Operations Hierarchy was introduced (Figure 3). 
It gives an illustration of an oil field command chain, where information is relayed 
upward in the chain and orders are passed downwards, from the level of field life-
cycle management to the real-time control of pumps.  

Capacity planning 
[months/years]

Business 
headquarters

Operational planning
[months/years]

Scheduling
[days/months]

Supervisory control
[minutes/hours]

Regulatory control
[sec/minutes]

Well and surface 
facilities

Flow, pressure and  
temperature in well

Coordinating SCADA 
systems, wellhead monitoring, 
gas distribution in pipelines

Scheduling of injection, 
opening and closing of wells

Planning injection and drilling, 
supply chain management

Asset life cycle, maintenance

Figure 3: The Field Operations Hierarchy. Figure adapted from (Saputelli et al., 2002) 

Two important observations can be made. First, the natural scales of time and space of 
the different levels increase upwards. To react to an imminent kick, one must take 
action within seconds or a few minutes, while the placement of the well itself may 
have been discussed for months before it is relayed down to the drilling team. 
Similarly, the kick is concerned with one well, while well placement may have taken 
the whole field into consideration. Sticking to this hierarchy simplifies the 
optimization of tasks on each level and makes them manageable both from a human 
and a computing perspective. The orders of the level above can be taken as fixed and 
it is assumed that optimizing each given task separately will bring about an optimized 
result on the level above. 
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This assumption does not always hold in practice. For instance, trying to maximize 
the production from each well may not necessarily maximize the production of the 
field as a whole. The practical solution to this is to develop simplified models of each 
well and their interactions These models can be used in planning and scheduling of 
production even if the well models would be too crude for real-time control of each 
well. This brings us to the second feature of the field operations hierarchy: The degree 
of abstraction changes between the levels. The lowest level deals only in numeric and 
binary data, while further up this is aggregated into more symbolic and abstract 
information such as “open valve”, “pressure within safe limits”, “gallons per minute”, 
“daily production” and “net present value”. 

The natural separation by time scales is not only a feature of command chains but also 
of engineering issues and physical processes. Changes in pressure and fluid flow 
happen on a timescale of seconds while equipment wear happen on a timescale from 
days to months and issues of reservoir exploitation on a timescale of years. According 
to Saputelli (2002) the command chain is then actually induced from the different 
timescales of these processes.  
Each level of the Field Operations Hierarchy will also differ in what models and 
machine learning methods are applicable. The hierarchy points out what the relevant 
time-scale is likely to be at that level, what simplifications may be warranted, whether 
numerical or symbolic data-analysis will be the most relevant and how fast our 
methods will need to be. The needs of the human operator also changes between 
levels, which must influence what output the AI produces. 

The link between the levels and AI requirements are further illuminated by the theory 
of supervisory control systems which we now turn to. 

4.2 Supervisory control systems 
In recent years, the upstream oil industry has drawn inspiration from the oil refining 
industry and its integration of operations. Process units, plants and even entire supply 
chains are being monitored, controlled and optimized. A foundation for this 
integration has been to split up the optimization problem at different levels of detail 
and timescale. We exemplified this by the work of Saputelli (2002).  
For this, the oil refinery industry makes use of supervisory control theory, which 
underlay much of the supervisory systems in various processing and manufacturing 
plants.
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(Sheridan, 1987) identified five main tasks of the human operator in supervisory 
control. This is depicted in Figure 4.

Planning
What tasks to do and how

Teaching
Practical implementation

Monitoring
Real-time adjustments, detect failures

Intervening
Taking control at failure or end of task

Learning
Use the experience in planning

Figure 4: Human supervisory control. The system contains three loops with different time-scales. 
Figure adapted from (Sheridan, 1987) 

Planning is the high/level scheduling of resources to achieve goals and to determine 
what is to be considered abnormal situations and plan ahead how to deal with them. 
Teaching signifies the implementation of these plans.  
Monitoring includes the real-time observation and minor adjustments needed to keep 
the plan on track.
Intervening include both taking over control when a task is at end and taking control 
when abnormal situations occur.  
Finally, learning is using past experience to update plans and models. These tasks 
have three layers of feedback loops with increasing time scales from the innermost 
and outwards. These can be associated with the feedback loops in Figure 3 where data 
is transmitted to a higher layer and looped back as plans and orders. 
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Figure 4 could also be taken to depict the mental process of the individual human 
operator. This is discussed by (Rasmussen, 1986) which, as seen in Figure 5, define 
three types of behaviour:
Skill-based behaviour takes place after stating an intention and is done with little 
conscious deliberation. An example would be the skill needed to steer equipment 
using a joystick.
Rule-based behaviour is behaviour based upon certain process patterns and associated 
actions to be taken. These behaviours can be described verbally by the human 
operator but not necessarily explained.  
Knowledge based behaviour has explicit goals and derived detailed process 
knowledge and reasoning around it. Plans and strategies are selected based on their 
effect on the stated goal.

Select task Plan taskIdentify
problem

Link state
to task

Retrieve
stored

task rules

Identify
state

of system

Perform
actions

Feature 
extraction

Knowledge-based behaviour
(react on symbols)

Rule-based behaviour
(react on signals)

Skill-based behaviour
(react on signals)

Goals

Input from senses Continuous
signals

Manipulations
of the system

Figure 5: Characterisation of the operator's human behaviour. Increasing time scales upward. 
Figure adapted from (Rasmussen, 1986). 

In the model of (Rasmussen, 1986), the translations from signals to symbols we saw 
in the Field Operations Hierarchy are made explicit. 

4.3 Implications for our design 
The theories and structures we have surveyed in this chapter carry some implications 
for the kick and stuck pipe alarm systems. The time-scale of a kick seems to confine 
its analysis to the lower levels of the hierarchy, implying that using purely numerical 
methods is the most suitable angle of attack. The output of the AI must be simple 
enough to fit the operator’s mode of work. The kick alarm helps to identify the state 
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of the system and can be linked unambiguously to a task that the operator quickly 
retrieves and then performs.  

The hierarchical models do not in themselves form a proof of this claim. But as 
outlined in Paper III, it is interesting to note that published work on machine learning 
methods in petroleum production by and large follow a pattern of numerical methods 
on the lower levels and symbolical ones such as case-based reasoning (Skalle and 
Aamodt, 2005) on the higher levels. This trend we believe, can be understood not only 
by the available data. But also by what responses the human in the control loop can 
perform on the different time-scales. Case-based reasoning in its original inception, 
presents the operator with a diagnosis based on causal chains. A form well suited for 
discussions and learning, but less suited for interventions in a manner of seconds. 
That numerical and symbolical methods are complementary is no surprise, but the 
theory of supervisory control systems seems to outline how such methods could most 
beneficially be integrated with each other. The greatest challenge for such an 
integration is probably to present suitably aggregated information to the higher level. 
Aggregation is a problem that can be framed as both feature construction from the 
time series and as classification and this is a topic we will be visiting later in this 
dissertation.
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5 Fault detection and isolation 
Fault detection and isolation (FDI) is the branch of control system engineering 
concerned with methods for monitoring a system through its sensor readings and 
accurately identify faults that occur. In this chapter we give a summary of the 
textbook-theory on observer based fault detection and survey recent attempts at 
extending this theory. 

A typical approach to FDI is to set up a model of the system which predicts its outputs 
during normal operations. The analysis then centres on the residual, which is typically 
defined as the deviation between the predicted and real outputs.
An initial challenge is to separate deviations due to faults, from deviations due to 
measurement noise, benign variations in the system and deviations due to the model 
being an inaccurate description of the system. Fault isolation is concerned with 
categorizing the type of fault deviation, in other words to establish where in the 
system the fault has occurred. Formally, we may write a general nonlinear system as 
(Garcìa and Frank, 1997):
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Where nx t R is the state of the system, pu t R is the input, my t R the output 

and l
f R the system parameters. We take faults to be unacceptable parameter 

values of the system, so that 0f f  when no fault is present. fs represents
parameters in the output equation, allowing for sensor faults which do not affect the 
system per se. Finally, d represent mismatches between our model and the true 
system. Faults and model mismatches may also be defined as unknown inputs
typically as extra terms in the equation.  
We may then try to find a residual generator r t of the form (Garcìa and Frank, 
1997):
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And a threshold: 

0, 0, , f fsth y t u t  (5.3) 
Which satisfy the following inequalities: 

0 0f f fs fsr t th and  (5.4) 

0 0/f f fs fsr t th and or  (5.5) 

0 0/
ii i f f i fsi fs ir t th and or  (5.6) 

Inequality (5.4) and (5.5) define fault detection by indicating that the value of r should 
be below the threshold if and only if no fault has occurred and above it if and only if 
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at least one fault has occurred. Inequality (5.6) defines the fault isolation by 
demanding that an element of r is above the threshold if and only if a specific 
corresponding fault has occurred. The inequalities also capture the insensitivity to 
modelling errors d .

5.1 State estimation 
We may take z t to be a model of the system and h to be known from the model. We 
may then write a simple residual as:  

0, , fsr t y t h z t u t  (5.7) 
That is: r is equal to the measured output minus the predicted output from a 
simulation assuming no system or sensor faults. In this case the residual and the 
output estimation error, the discrepancy between measurement and prediction, is the 
same. The threshold th  may be set as a constant. In chapter 7 we discuss offshore 
alarm systems that are based on this and similar residuals.  
(Ding, 2008) observes that residual evaluation and threshold computation receives 
surprisingly little study, but list statistical testing and norm based methods as common 
approaches. An example of a typical norm based method is the evaluation of equation 
(5.4)-(5.6) with r  defined as the root mean square of (5.7). The threshold value th
may be the peak value of r  under normal conditions. Replacing r  with a windowed 
r  allows for trend analysis (Ding, 2008). 

Observers are defined (Westphal, 2001) as systems that try to approximate the state 
vector of some other system, using its inputs and outputs. In the original definition, 
the observer’s state vector should be linearly related to the approximation, i.e. ˆz Tx .
The term identity observer refers to those observers where ˆz Ix .

It has been shown (Frank and Ding, 1994) that all linear, time invariant residual 
generators which satisfy (5.4)-(5.5) can be brought into the form: 

ˆ( )r t R t y y  (5.8) 

Where ŷ  is the estimate of y delivered by an identity observer and R t  is a 
parameterization matrix acting as a post-filter. 

The problem of initial values and model uncertainty means that the observer can not 
be expected to make a perfect prediction of the internal states of the system from the 
inputs alone. To correct for this, the residual generator (5.2) allows output 
measurements to affect the state predictions. This is termed output feedback and can 
be seen in for instance the nonlinear identity observer (Frank, 1990) which is defined 
as follows:  
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Here ŷ  denote output estimate. The matrix L , often referred to as the observer gain
or the Luenberger matrix, should be chosen so that the state estimation error 
e t x t z t  is asymptotically stable at 0e . That is, initial estimation errors 
die away. Other approaches, like nonlinear unknown input observer or disturbance 
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decoupling nonlinear observer are alternatives as long as f is assumed to be on 
specific forms (Garcia and Frank, 1997). 
Observers employing the stabilizing term in (5.9) are called Luenberger observers. As 
pointed out by e.g. (Chaves and Sontag, 2002), Luenberger observers may be termed 
deterministic Kalman filters as they amount to Kalman filters which do not take noise 
statistics into account. Kalman filters in turn, are probably the most widely used state 
observers.

5.2 Redundancy 
Instead of estimating the system state, one may attempt parameter estimation, where 
one tries to find a f which results in a model matching the observed outputs. Faults 
are then classified based on the values of f . For instance, one may try to estimate the 
friction parameter for a model of some rotating machinery. If the friction is high, this 
may indicate faults such as loss of lubricant or excessive wear.  
Another method is the parity space approach. Given the equations for a model of the 
system, a vector called the parity check is constructed. This vector will be zero as long 
as the model describes the system faithfully. The parity space approach is in principle 
equivalent to the observer based approach (Magni and Mouyon, 1994) (Frank et al., 
2000).

All these approaches may be said to employ what is termed analytical redundancy, to 
contrast it with sensor redundancy. If a sensor measure a given property of a system, 
adding an extra sensor to measure the same property would be redundant. However, if 
after a while the two sensors start reporting different values, this would be a clear 
signal of sensor fault. Similarly, known relations and correlations between different 
sensor readings give a form of redundancy. Imagine for instance a sealed container of 
a fixed volume filled with a known amount of high-pressure gas. This container is 
fitted with a temperature sensor and a pressure sensor. Given the pressure readings, 
the temperature sensor is redundant as the temperature could instead have been 
calculated using the ideal gas law PV nRT . But given only the pressure readings, 
we might be unable to distinguish between a small leak in the container and a drop in 
temperature. With both the measured and predicted temperature available, a 
discrepancy between the two would signal a leak. 
One may further distinguish temporal redundancy using redundancy between 
measurements from one or several sensors at different times. 

5.3 Banks of observers 
To facilitate a robust fault identification, it is common to use a bank of observers, 
which can be described schematically as in Figure 6. The system under surveillance 
has p  inputs, m outputs and we have set up n  observers. Observer #i may receive 
some system input and output as its input and at the same time makes a prediction ˆiy
of the system output. Observer #i then produces a residual 1 2, , ,i i i imr r r r from 
ˆiy and the system output 1{ ,..., }my y y .
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System

Observer #1

Observer #2

Observer #n

…

r1

r2

rn

Input Output

Residual 
evaluation

Figure 6: A bank of observers producing n residuals 

Following (Frank, 1990) and using sensor faults as an example, we can distinguish 
between two types of observer banks: 

In the dedicated observer scheme, we have as many observers as there are outputs, so 
n m . Observer #i receives all system inputs but only system output iy  as its input. 
Following equation (5.9), the observer corrects its internal state using iy . The 
observer tries to predict all or most outputs. If iy  is measured by a faulty sensor, the 
observer is misled about the internal state of the system. Analytical redundancy means 
that this will affect several of the observers’ predictions and in turn the components of 

ir . A nonzero residual ir  is then an indication of a fault in sensor #i.
In principle, this dedicated observer scheme allow us to detect faults in several 
sensors simultaneously. 

In the generalized observer scheme, observer #i receives all system outputs except iy
as input. The residual is as before determined from a prediction of all or most system 
outputs. Again following equation (5.9), the system outputs are used to correct the 
internal state of the observer. The observer is therefore vulnerable to faults in all 
sensors except sensor #i, which it is robust to. When a fault in sensor #i occurs, 
observer #i is the only observer which still has a zero residual, (ignoring the 
component iir ). This scheme, summarized in Table 1, only allow us to detect one 
sensor fault at a time. But the scheme is nonetheless more robust to unknown inputs 
affecting the true system state, since each observer is more thoroughly informed about 
the system.  
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 Observer 1 Observer 2 Observer 3 Observer 4
Fault 1 0 1 1 1 
Fault 2 1 0 1 1 
Fault 3 1 1 0 1 
Fault 4 1 1 1 0 
Table 1: A one in row j, column i, indicate both that observer #i receives input from sensor j and 
that its residual will be above the threshold during a fault in sensor j.  
Sensor faults are uniquely identified by the specific pattern of residuals in each row, as long as no 
more than one sensor at a time is faulty. A fault in two sensors simultaneously would give the 
pattern 1 1 1 1 which do not distinguish the sensors. 

Following (Alcorta Garcia and Frank, 1996), an observer is said to be robust3 with 
respect to an unknown input d  if the output of the observer is not affected by d .
If we want to include both iy  and ir  in the notion of “output”, it is important to note 
that “unchanging” and “not affected” do not imply each other . As we saw above, the 
generalized observer #i produces a prediction ˆiy which is unaffected by a fault in 
sensor #i. But its residual component iir  will be affected by the fault, since sensor #i
enter in its calculation.  
The observer may also be set to closely track the state measured by sensor #k, so that 
we always have ˆik ky y . In this case, the observer is not robust to faults in sensor #k,
but ikr is unchanged during a fault, since ˆ 0ik k ik k kr y y y y .

It is interesting to note that in the case of a fault in sensor #i, the prediction ˆiiy  by a 
generalized observer may serve as a substitute for the faulty sensor. This falls under 
the topic of virtual or soft sensors (Fortuna et al., 2007). 

Output feedback is further discussed from a machine learning vantage point in (Yu et 
al., 1999) who call observers with and without output feedback dependent and 
independent models respectively. Dependent models tend to track faults, as was the 
case with ikr above, but (Yu et al., 1999) also points out that they can only make one-
step-ahead predictions since they require constant feedback from the real system. An 
observer with one-step-ahead prediction can in principle be made with no internal 
memory of previous states. Predictions with a trained feedforward neural network 
would be an example of this. 

If we “short-circuit” the observer by feeding it its own predictions as input in the next 
time step, the model runs as an independent observer and can in principle make 
predictions arbitrarily far into the future. These observers possess a memory of past 
states by way of the feedback loop. The trouble with independent observers are that 
small errors in the model are allowed to accumulate in successive time-steps and the 
independent model runs further and further away from the true system state. Known 
as drift, this is a shared experience in all fields concerned with time series prediction, 
be it the study of statistical or machine learning prediction methods, industrial control 
or computationally intensive weather prediction 

                                                
3 Alcorta defines robustness for “a system” including the observer as a system in itself 



24

5.4 FDI in Nonlinear systems 
When the system evolution x t  can be described by linear equations, some or all of 
the inequality demands in (5.4)-(5.6) can be satisfied using well-established 
approaches. When the system is highly nonlinear so that linearization of the problem 
become unfeasible, one needs to construct nonlinear observers, which has long been 
recognized as a challenging task (Bestle and Zeitz, 1983). As most systems actually 
tend to be nonlinear, the attention has in recent years shifted to FDI with nonlinear 
models. For a survey, see (Alcorta García and Frank, 1997). The surveyed methods 
dealt with specific classes of nonlinear equations, but did not address FDI for systems 
modelled by a general nonlinear equation. This might be characteristic of nonlinear 
problems, where solutions can not be combined via the superposition principle.
Specific solutions is often desirable, but these FDI methods do not generalize to our 
case, where the e-drilling model is not only nonlinear but not even directly available 
as a set of differential equations. It might therefore best be treated as a black box.

An underlying question has been if it is possible to construct a method for residual 
generation and fault detection, which is valid for any nonlinear system. This had been 
stated as a long-term goal, but comparing (Alcorta García and Frank, 1997) and 
(Gayaka et al., 2007) one may sense a shift away from this aim, acknowledging that 
nonlinear systems are far too diverse to fit into a generalized framework.  
Still, for “difficult” nonlinear systems, it is not unusual to see data-centric and AI-like 
methods being used (Frank et al., 2000). In many of these cases, a good model is 
simply not known. One solution could be to train a neural network to predict system 
behaviour using input and output recorded during the absence of faults. I.e, the AI 
takes the place of g  in equation (5.2). Focus may also be on the problem of 
distinguishing noise, modelling errors and harmless deviations from true faults, in 
which case the AI takes the place of R  in equation (5.2) and the subsequent 
thresholding. These two uses may of course be combined, as seen for instance in the 
methods of (Terra and Tinos, 2001). 

One use of historical data may be illustrated by the sealed container example above. 
Deviations from the ideal gas law could create a mismatch between measured and 
predicted temperature even in the absence of a leak, so that model mismatch and true 
faults could not be disentangled. These deviations would however occur repeatedly in 
recorded time series and could be learned by a variety of AI methods.  
An example of handling model mismatch can be found in Paper I where we used the 
residual in equation (5.7) and incorporated learned model-mismatch into the threshold 
function (5.3). 
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6 Problem characteristics and the choice of method 
Machine learning offers a bewildering range of methods and tools for data analysis. 
Many of these are implemented in freely available software packages, but it may be 
necessary to build up a familiarity with the algorithm to tailor the pre-processing, 
successfully tune the parameters and interpret the results. Regarding the choice of 
methods, we discussed earlier in this dissertation that for real-time drilling problems, 
we should focus on methods dealing with numeric data, at the expense of more 
symbolically oriented methods.  
Even under this condition, it is within our means to test a large number of methods 
each with a wide range of settings, collectively referred to as AIs. Using the available 
time series, we could simply select the one with the best performance. This would 
however be problematic in the light of chapter 3.1. With a large number of methods, it 
is likely that some will perform very well on the test set by chance, a well-known 
problem in data-mining. As we test more methods, the performance of the best AI on 
the test set will be a more and more inflated measure of its true performance (Hand et 
al., 2001). This remains a problem with cross-validation. We may use an independent 
validation or hold-out set for true performance measurements. If this set reveal that 
we have chosen a bad AI, we would have to pick new AIs to test. But picking from a 
collection is what inflated the performance measure in the first place, this ruins the 
use of the hold-out set.
Large test and validation sets also eats into the size of the training set. Thus instead of 
testing many methods, we take this fork in the path as an opportunity to introduce a-
priori knowledge. In this chapter we discuss ways in which this can be accomplished.  

6.1 Limits brought on by the raw data 
The historical data available to us consists of daily reports by the drilling crew and a 
multivariate time series which has typically been sampled once every 1 or 5 seconds. 
Important measurements include pressure in the well, speed of rotation of the drill 
string, pump rate, depth of the well and torque on the drill string. A typical drilling 
operation may stretch over days or weeks, resulting in a correspondingly large data 
set. A typical representation of a drilling time series is seen in Figure 7. The daily 
reports provide a rough annotation for this time series, indicating when a drilling 
problem occurred and providing a summary of larger time periods. There is however 
no sample-by-sample annotation of the time series. The different drilling operations or 
drilling modes are only specified by approximate times in the log, while routine 
operations such as making a connection, is omitted. The time series are therefore 
mostly unlabeled examples. It is possible for an expert to label some of the modes 
manually and some modes can be identified automatically, at least in retrospect 
(Thonhauser, 2004, Thonhauser and Mathis, 2006). But labeling of faults is more 
difficult. Some faults have an unknown origin, were misinterpreted, or evaded 
detection altogether by the drilling crew.
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Figure 7: Typical presentation of the multivariate time series resulting from a drilling operation. 
An erratic torque (centre blue) indicates poor hole cleaning. The hole is subsequently cleaned 
with bit off-bottom. 

As for other characteristics, drilling experts are likely to list noise as the number one 
characteristic of drilling time series. Calibration errors and inaccurate measuring 
devices are other common issues. Also, the low sample rate means loss of information 
in the high-frequency range. Intermittent loss of real-time downhole signals was until 
recently an unavoidable part of real-time operations, as data-transmission from 
downhole instruments were performed using pressure pulsing driven by the mud flow. 
The transmission then ceased for as long as the pumps were turned off, though 
continuous recordings may be retrieved from the instrument later on. This is set to 
change with new technologies like wired drill pipes, giving a continuous and much 
larger downhole bandwidth. 

The characteristics mentioned above imply that supervised learning of the time series 
need to be tolerant to noise and incorrect labeling or be able to learn from only a small 
set of trustworthy cases.
In a typical drilling operation, the drilling mode will shift many times and 
characteristics such as pressure and rate of penetration will change as the well is 
expanded. The number of drilling problems will be few compared to the number of 
these harmless and normal events, which creates a strong class imbalance (Chawla et 
al., 2004), an obstacle for some computational learning methods. Counted by events 
and not by samples, we are actually limited to a rather small training set, which in 
turn, according to VC theory, (see chapter 3) limit the allowed complexity of the AIs.  

The severity of this can be quantified. Time series prediction usually involves a 
sliding window approach where the d  latest samples are used to predict the value or 
state a few steps ahead. The number of samples in the window then determines the 
dimensionality of each example. Taking a neural network as an example, a fully 
connected feedforward neural network with a d -dimensional input, h  nodes in the 
hidden layer and one output node, has *d h h  free parameters, which roughly equal 
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its VC dimension (Theodoridis and Koutroumbas, 2006) . With n  the number of 
examples, we must then require that:  

*n d h h  (6.1) 

A best case scenario would be one with 50 examples, half of which are drilling faults 
and half no fault and the faults are under similar conditions. We may use a window of 
12 samples, which is equal to one minute if we are sampling at 1/5 Hz. It then follows 
from equation (6.1) that h  can be at most 2 or 3, a severe restriction on the 
complexity of the network. Meanwhile, equation (3.1) indicates 0.72 . This means 
that if the 50 examples were sampled evenly in a 12-dimensional hypercube of length 
1, the distance between neighbours could be as high as 0.72. This goes to show the 
non-intuitive nature of high-dimensional spaces and implies that the accuracy would 
be disastrous for most function approximations. 

6.2 Remedies 
The most obvious remedy to the above problem is to stick to simple methods and do 
some form of dimensionality reduction on the sliding window, but it is also possible 
to multiply certain examples. In Figure 7 we see poor hole cleaning with a 
recognizable signature over half an hour. As poor hole cleaning is a precursor to a 
class of stuck pipe incidents, we may count near-faults among the examples. Further, 
the half-hour signature can be split into several shorter examples, albeit not wholly 
independent ones. In Paper IV we illustrate the above remedies, with further 
discussions in chapter 10.2. 

We may also cast the problem in a new mould. Rejecting events as the basis and 
instead focusing on the individual sample will increase the number of examples 
available. It is possible to train an AI to predict one variable such as pressure based on 
other variables and a deviation from the prediction could serve as an anomaly 
detection (Fruhwirth et al., 2006). This was in essence our approach in Paper I and 
Paper II where the AI needed no labeling of the raw data.

The time series available to us may be from one or several wells. But if an AI is used 
for monitoring a drilling operation, the well being drilled will naturally not have been 
in its training set. One should therefore use a new well as the test or validation set, to 
get a more reliable assessment of the AI’s field performance. The need to prepare the 
AI for an unknown well has some additional implications which we will discuss in 
chapter 6.4. 
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6.3 Interesting and uninteresting correlations 
Among the correlations we may find with faults, we make a distinction between what 
signals an imminent fault and what causes it. For instance, a certain choice of drilling 
mud and a low pump rate may lead to inefficient removal of cuttings and therefore an 
increased chance of stuck pipe. This is important and could possibly turn up as a 
correlation in the time series. But this is also information that would be available at 
the planning stage as soon as mud type and pump rate had been decided on. An AI 
based on this correlation would not be able to distinguish between bad and sufficient 
hole cleaning in a real-time situation. In other words, this correlation only gives an a-
priori probability. Torque on the other hand, is affected by poor hole cleaning. Thus 
we are able to assess the likelihood of a fault, a posteriori the measurements. 
As our task is detection through real-time analysis, we try to avoid picking up a priori 
relations, deferring these to planning-stage data mining. Some variables may of course 
feature in both stages, such as e.g. a pressure drop, which may both indicate a kick 
and be the cause of it.

6.4 Model selection and the true model 
Once a model has been chosen, the estimation of its parameters and a measure of their 
uncertainty can proceed by well-established methods such as maximum likelihood, 
least squares and gradient descent. This is in essence an optimization problem. The 
choice that has to be made between different models precedes the optimization 
process and has until now received less attention. As we described in the previous 
chapter, the shotgun approach of trying out all models has become feasible with 
modern computers, but the method is unreliable and rules of thumb like parsimony 
and incorporation of prior knowledge is necessary.  

Model selection is discussed in depth by (Burnham and Anderson, 1998). They focus 
on biology, but their examples also bring out the challenges in our data gathering and 
model selection in a surprisingly clear manner. We therefore recount parts of their 
argument here. 

If one wishes to study the properties of a mixture of two chemicals, a sound plan is to 
observe it at different combinations of pressure, temperature and ratios. We make sure 
that the experiments evenly cover the parameter space of the model. This was also an 
assumption in equation (3.1). A biologist may want to produce a model of population 
dynamics and make observations by counting animals in an area, recording migratory 
patterns and observing variables thought to influence this, such as temperature, 
availability of food and the number of predators. These are conditions that can not be 
reproduced experimentally and some combinations of parameters may never occur. 
The observations may in the worst case cluster in a corner of parameter space. This 
inability to make controlled experiments is a defining characteristic of an 
observational science.
Our time series analysis of drilling operations and indeed much of data mining, fall 
into this category. While the properties of the drilling fluid is measured 
experimentally for much of its relevant parameter space, we are in no position to e.g. 
provoke a stuck pipe incident by varying drilling fluid viscosity, rock properties and 
pump rate. The behaviour of our models and AIs in badly surveyed parts of the 
parameter space therefore becomes of great concern. 
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In experimental sciences an experiment might be repeated under different conditions 
while holding the relevant parameters unchanged. If the outcome changes, it could 
indicate that a new uncontrolled parameter is having an effect. In an observational 
science we have no guarantee of repeated experiments and it is more difficult to know 
if our model contains all the relevant parameters. That is, the dimensionality of the 
true input space is not necessarily known. 

Suppose for a moment that the dimensionality is known and that we have enough 
evenly spaced observations. One would then think that it is possible to approximate 
the true relationships between the variables. This rests on the underlying assumptions 
that “a true model” exists and that our models, be it AIs or parameterized physical 
models, converge towards it. These assumptions might be reasonable in cases where 
the true relationships are known to be relatively simple. Methods such as Maxium 
Likelihood parameter estimation do converge asymptotically to the true values, under 
certain conditions (Theodoridis and Koutroumbas, 2006).  
That these assumptions hold in general is something (Burnham and Anderson, 1998) 
among others, take issue with. Namely, the true model may not exist. If it exists it 
may not stay fixed and there may be a very large number of parameters to determine.  
This is illuminated by (Burnham and Anderson, 1998) with an example from 
population dynamics:  
We assume that there exist 10 years of observations of a specific colony of seagulls on 
a given island. We want to model the population dynamics but would like more data 
to test and fine-tune our model. We may then import data from colonies on other 
islands or other species of birds. But by doing that, species and location enter as 
variables that must be accounted for. The underlying model thus gets more complex 
the more data we add.  
Our task of learning from drilling time series faces a similar problem. In preparing for 
a new well, we may first train our system on recently drilled wells from the same 
field. To increase the number of samples we also include wells from fields with a 
different geology, drilled using a different type of mud etc. The dimensionality of the 
problem is therefore increasing, unless we know we can discount them or use a 
greybox approach and assume that the new parameters are fully accounted for in the 
physical model. This is unlikely to be the case in stuck pipe incidents, where the 
interplay between rock type and mud chemistry is still an active research topic. 
(Burnham and Anderson, 1998) argue that the dimensionality of the true model may 
well be infinite, only restricted when we discount smaller deviations or limit our 
observations to fewer environments. Oil exploration is a lot simpler than biology, but 
even here we can at least make the case that the dimensionality is not bounded. The 
rapid technological developments in drilling equipment, new control strategies and 
exploitation of successively deeper wells with higher pressure and temperature means 
that new wells will enter territory not seen in the old training set and be described by 
parameters not yet defined.  
A field deployment of an AI-based alarm system will have to take this into 
consideration. One will have to rely on drilling simulators to test its performance in 
novel conditions and the training set may be further tailored to the task. 
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7 Alarm systems in drilling 
We will now give a short overview of the approaches taken to alarm systems used in 
the drilling industry. In (Hargreaves et al., 2001) the tools for supervision and 
diagnosis during drilling were laid out as developing over three generations: 

1st generation: Pre-determined threshold values define normal operation. For 
instance: If the pit volume exceeds a given level a kick may be in progress. 

2nd generation: Noise tolerance is taken into account and more than the very last 
measurement is used to define the threshold. I.e. the threshold is windowed. The 
CUSUM method (Basseville and Benveniste, 1986) is perhaps the best example. 
This method detects step changes in a variable but is not well suited to detecting 
gradual changes, e.g. the typical ramp shape of a kick. It also relies on the 
common assumption that the noise is constant-variance Gaussian, which may not 
be the case. 

3rd generation: The third generation introduces predictive modelling. The false 
alarm rate is reduced because safe predictable events can be ignored. However, 
trend detection is still done using a windowed threshold. This does not take into 
account the shape of the trend nor changes in noise. Neither are rig-dependent 
effects taken into account or they require accurate calibration. Heteroscedasticity
or non-constant variance, remains a problem. Heteroscedasticity in turn, is one of 
the ways in which the stationarity assumption is violated. (Palit and Popovi ,
2005).

These alarm systems can be understood within the framework of chapter 5 as systems 
that analyse a discrepancy between a predicted and a measured value. The first 
generation system implicitly predicts no change in pit volume and raises an alarm 
when measurements deviate from this beyond a threshold value. We may write this as 
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A second generation system using CUSUM can be written on the form 
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For CUSUM, a process showing fluctuations around a mean is taken as the zero-
hypothesis and an alarm is triggered when, by hypothesis testing, the mean is found to 
have shifted. In this way, stretches of the time series can be classified as containing or 
not containing a step change. (Refer to Figure 8.) 

c

Figure 8: A process (blue) fluctuates around a mean. A simple windowed cumulative sum (green) 
detects a step change in the process. Given a threshold th c , the time sequence within the red 
rectangle can be classified as a changepoint. 

From Hargreaves survey, it appears that it is only in the third generation that models 
are stated explicitly and separated from the analysis of the residual. The third 
generation then conforms to the long-established (Frank, 1990) division between 
residual generation and evaluation. One where the physical model is restricted to the 
generating stage.
Meanwhile, the scope and sophistication of physical models in the petroleum industry 
have advanced steadily over the years. Physical models feature in the planning and 
optimization of wells, training of personnel and real-time control of oil field 
operations.
This is a tremendous advantage for third-generation alarm systems. The physical 
models can be plugged into the residual generation stage, models which have a level 
of sophistication and independent verification which would not have been feasible in 
a stand-alone alarm system.  

The residual evaluation stage has in contrast not seen a comparable development in 
offshore alarm systems, with the related field of predictive maintenance as a possible 
exception. In the next chapter we will discuss if the problem could have been split up 
in a manner different from the one we have seen here. 
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8 A combined approach 
Taking a machine learning view on the split between residual generation and 
evaluation, we realize that the generative stage is a prediction task while the 
evaluation stage is framed as classification. The latter is also observed by e.g. (Marcu 
et al., 2003).
It is interesting to note that the prediction/classification split runs parallel to another 
split, that between physical models and data-centric methods. Physical models tend to 
be employed for prediction tasks in the residual generation, while the data-centric 
methods are mostly confined to the residual evaluation stage.

We ask if this is a necessary design restriction, or if alternatives exist. An example of 
physical or model-centric classification would be to use expert knowledge to infer a 
fault. A framework for doing this on a large scale would be expert systems, but as we 
argued in chapter 4.1 expert systems are best suited at higher levels in the field 
operations hierarchy.
A data-centric prediction would seem attractive, with the possibility of learning from 
recordings of past drilling operations, but it would be a daunting task to create 
something matching today’s physical models in accuracy. This is perhaps impossible 
with a purely data-driven method, given the state of the art of machine learning and 
the available data sets.  
This does not exclude the possibility that a combination of physical models and data-
centric prediction could together achieve better accuracy at the prediction stage. The 
simple greybox method explained below goes a long way in achieving this.

8.1 Greybox prediction 
We recall from chapter 5 the residual defined as ...r t y t h  where y  is the 
system output and h  is our model prediction. Rearranging the equation into 

...y t h r t  we see that we have effectively split the observed behaviour into 
an explained and an unexplained term. The greybox approach found in for instance 
(Forssell and Lindskog, 1997) proceeds by delegating the unexplained data to an AI 
and sum its result with the physical model. I.e. for a given training set we compute the 
residual:

... ,...tr y t h u  (8.1) 

This gives us a time series of pairs of inputs and residuals ,t tu r which is used to 
train an AI with these as inputs and outputs respectively. The combined prediction 
becomes:   

ˆ ˆ... ,... ( )t ty h u r u  (8.2) 
Where r̂  is the AI prediction of r . We may then form a new residual: 

ˆ... ...newr y t y  (8.3) 

This residual newr  is what is left unexplained after an analysis by both the physical 
model and the AI. The procedure is described schematically in Figure 9. 
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Figure 9: The greybox method with the training stage of the AI a) and the prediction stage b). In  
the learning stage the AI learns the errors made by the physical model. In the prediction stage, 
the output of the AI and the physical model is combined, yielding a more accurate prediction and 
consequently a smaller residual. 
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In Paper I we tested this approach on predictions of return flow rate, an important 
indicator of kicks. We found that given the residual and measurements of mud density 
and pump rate, the AI was able to learn a common harmless phenomenon that was 
unaccounted for in the physical model. Using the above approach the overall 
prediction was improved, reducing the number of false alarms generated in the 
residual evaluation stage. (Refer to chapter 10) A similar approach can be found in 
e.g. (Zak et al., 2001). 

8.2 Quality criteria and greybox design strategies 
During training, we need to decide how good the AI must be to improve on the overall 
prediction. The prediction is improved if less of the data remains unexplained, that is:  

newr r  (8.4) 

Rearranging equation (8.1)-(8.3), we find that ˆnewr r r  and it follows that we 
achieve an improvement if: 

ˆ 0, 2r r  (8.5) 
This would appear as a fairly lax bound, but may nonetheless be a challenge if r has
sign-changes in the time series or if it varies widely in size while the AI has a noise 
term that is not a percentage of the output.  

There is also an underlying assumption that it is easier for the AI to learn the residual 
than the full time-series, i.e. that the residual is “simpler”. This requires a good model 
h . With reference to equation (8.1), we want many of the terms in y to cancel or 
almost cancel with corresponding terms in h , so that the residual may be 
approximated by the remaining fewer terms. For instance, the term describing the well 
understood mud displacement by the drill-string will cancel, while the term in y
representing draining pipes remain.  

It is easy to construct examples where h  is good, but where equation (8.1) does not 
produce a simplification. For instance if ...yy c f  and ...hh c f  with c  a 

constant to be calibrated, the residual becomes ...y hr c c f  which has all the 
complexity of the original time series. The obvious solution is to redefine the residual 
as:

... / ...r y t h  (8.6) 

This is in line with the findings by (Forssell and Lindskog, 1997). They found that 
equation (8.6) could in some cases produce better results than equation (8.1). In a few 
cases it might be possible to guess the form y  and r  takes, typically where the 
residual is only due to parameter uncertainty in the model. In such a case, it might be 
possible to craft r  to be as simple as possible, facilitating quick training of the AI. 
This translates into a newr which is robust to parameter uncertainty, a criteria for 
residuals in FDI (see equations (5.4) - (5.6) ). 
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Having produced newr  we transmit it to the residual evaluation stage. Here we again 
face the criterion that newr  should be better than r , for the purpose of fault 
classification. This demand may in fact sometimes conflict with the prediction 
criterion in equation (8.4). A hypothetical AI may produce a good prediction in the 
squared error sense, but add noise in a high-frequency range crucial to detecting a 
certain drilling problem. Nor is squared error alone a good check on the requirement 
that newr  deviates markedly during faults.  
The choice of r  is further complicated by the fact that terms may almost cancel only 
for certain states of the system. In short, what constitutes the ideal residual depends on 
the real system, the physical model, the choice of AI, and the specific drilling 
problem.  
To have a chance at working with these conflicting demands, it would be preferable to 
employ different AIs simultaneously. In chapter 9 we return with a proposed 
architecture that incorporate this specification.  
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8.3 Restrictions and opportunities in residual design 
We have now covered the requirements on the output of the residual function, namely 
simplicity and adhering to the requirements in FDI. For nonlinear observers, FDI do 
not specify further restrictions on the residual function itself. However, the greybox 
approach introduces an additional restriction. In equation (8.2) we are reconstructing 
the system data from the residual, the equation is effectively inverting the result of 
(8.1). So the residual r  must be invertible.  
That is, we require that:  

, ,r h f y h  (8.7) 
has the inverse 

1, ,y h f r h  (8.8) 

An invertible function has a one-to-one correspondence between the input and output 
and must be strictly increasing or decreasing. We see that equation (8.6) only has a 
partial inverse, for positive values of h . With f  a general nonlinear function, a 
sufficient condition for invertibility is that the Jacobian of f  is nonsingular (Renardy 
and Rogers, 2004). I.e. the Jacobian determinant should be nonzero.  

It is not our intention to produce an overly complicated residual function, in fact we 
will mostly use equation (8.1) or other simple variations over equation (5.8). Instead 
we want to point out that many well-known operations that we think of as pre-
processing of the data, form valid residuals. Scaling and shifting of the variables as 
well as rotation of the input space are all invertible operations and could be part of a 
residual. Principal Component Analysis (PCA) examplifies this (Nortvedt et al., 
1996). PCA basically performs scaling and rotation operations in the input space to 
capture as much of the sample variance as possible with a projection onto two or three 
orthogonal axes. The residual variance remains as what is unexplained by these 
projections. Even some sliding window methods and filters can be implemented as 
invertible operations. An example is the invertible multivariate MIMO FIR filter 
described by (Rajagopal and Potter, 2003). This opens up for intuition developed in 
data pre-processing to be used in nonlinear observer design.
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9 Proposed architectures 
As explained in chapter 5.4, traditional ways to construct observer-based alarm 
systems are somewhat obstructed by insisting on a black-box model. Yet an 
architecture like the generalized observer scheme (GOS) is an appealing way to 
structure our a-priori knowledge about the system inputs and outputs and properties of 
the faults.  
A simple solution is to replace the traditional observer with an AI. (Erdogmus et al., 
2002) even shows equivalence between a certain AI and a Luenberger observer. From 
this it is in principle easy to construct a GOS for sensor or actuator fault detection. See 
for instance (Marcu et al., 2003) for an example of a GOS which employs neural 
networks in both observers and in the residual evaluation stage.  

For sensor and actuator faults, the signatures in a GOS system are straightforward. 
But the isolation of a system fault requires a bit more system knowledge. A fault may 
or may not affect the output of more than one sensor, which must be taken into 
account when making observers robust to the fault. A generic approach could be to set 
up observers with all possible combinations of inputs and feedbacks. A sufficiently 
advanced pattern recognition working at the residual evaluation stage could then in 
theory detect and isolate faults by learning on this large set of residuals. Though 
feasible, it might be too complex to be reliably trained by the available data. Instead 
of packing the complexity into the AI algorithm, we will in this chapter attempt to 
take more of the classification complexity out into the GOS framework.  

9.1 Training strategies for the AIs  
In the traditional GOS, the role of each observer is defined by its set of inputs, output 
feedbacks, and which outputs it predict. When the observer is a black-box AI, we can 
sometimes also influence the feedback strength, but otherwise our involvement in the 
architectural design stops at this point.
Even though we have discussed the choice of AIs for drilling problems at length, it 
seems difficult to prescribe different optimal parameters for each different observer in 
the GOS. We therefore leave these considerations inside the black boxes. 

The choice of training set for the AI on the other hand, appears as a highly relevant 
choice. A properly configured AI should be able to reproduce system behaviour if the 
system behaves similarly to how it behaves in the training set. As an observer, the AI 
will then produce a small residual. Conversely it may produce a large residual if the 
system is in a mode not seen in the training set. We may interprete this as the residual 
acting as a similarity measure between the stretch of time in the training set and the 
current state of the system. If we train several AIs on different training sets, we can 
take the resulting residuals and their thresholds as a classification system, with labels 
corresponding to the training sets.

The idea of cross-prediction error between data sets as a similarity measure, were to 
the author’s knowledge first presented by (Hernandez et al., 1995, Schreiber, 1997). 
Schreiber (1997) uses the cross-prediction error for analyzing nonstationarity and 
parameter drift and in (Schreiber and Schmitz, 1997) also applies it to clustering of 
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the data sets. Clustering in itself is also well-known as an anomaly detector and has 
been studied for fault detection (Tanaka et al., 1995).
Our main motivation for introducing cross-prediction is that it acts as an unsupervised
classification of the time series. As was explained in chapter 6.1, our time series are 
mostly unlabeled. Since trained AIs capture the dynamics of the system, it is quite 
possible that these classifications will be relevant and can be further interpreted in 
light of the input subspace of the AI. 

In the GOS, this similarity measure could potentially add a richer structure. If the 
observer is trained on a time series containing only drilling mode A and the system 
progresses from drilling mode A to B, the observer would still predict A, resulting in 
an increase in the residual. We could then claim that the observer is robust to the 
mode change, taking the cause of the mode change as an unknown input.  

We recall that training otherwise identical observers on different subsets of the 
available training set is how ensemble diversity is usually induced in ensemble 
learning. An alternative was the subspace method, where the AIs were trained with 
different subsets of the available inputs. The subspace method was originally used by 
(Ho, 1998) for a classification task and it is interesting to note the similarity with the 
classical GOS where the observers also work on input subspaces and are combined for 
a classification task. 
We will not go so far as to claim that a GOS is an ensemble system, but there are 
similarities in their tactics and it appears relatively straightforward to integrate them.  
In ensemble terms, we claim that the GOS sketched above is enhanced in that it has 
two sources of ensemble diversity instead of only one.

We have not touched on how the residual evaluation stage should be carried out in the 
proposed architecture. This is a separate issue, but in the next section we will discuss 
whether or not ensemble methods could play a part in the evaluation stage as well. 

9.2 Structured residuals for classification 
We said that the residuals generated in our proposed architecture could be interpreted 
as similarity measures which in turn could be interpreted as classifications. The task 
of the residual evaluation stage would then be to combine and interpret these 
classifications into fault identifications. This fall under the topic of classifier 
combinations, which include some ensemble methods. (Ho, 2000) identified two 
parallel lines of study in classifier combinations: 

1. Decision optimization: Assume that we have a fixed set of specialized and 
carefully designed classifiers. Our task is then to find the best combinations of 
their decisions 

2. Coverage optimization: Assume that the way we combine the classifiers is 
fixed. Our task is then to generate a set of mutually complementary generic 
classifiers that achieve an optimal accuracy.  

Assuming that the residual generation stage is fixed, a subsequent discussion would 
lock us on to decision optimization. In this section we will not attempt to present an 
optimal classifier combination nor to give a full survey of the many methods for this. 
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We only seek to demonstrate that the residual evaluation part of the classical GOS 
yields as easily to an ensemble method analysis as did the residual generation part.

We start by recalling the fault classification in a standard generalized observer. As 
seen in Table 1 on page 23 and repeated below, each fault has a specific pattern of 
residuals: 

 Observer 1 Observer 2 Observer 3 Observer 4
Fault 1 0 1 1 1 
Fault 2 1 0 1 1 
Fault 3 1 1 0 1 
Fault 4 1 1 1 0 
Table 2: Reprodution of Table 1. 

Other sets of structured residuals are possible (Magni and Mouyon, 1994). We will 
here frame the problem in its equivalent ensemble form:  
For each observer the residual evaluation issues alarm/no alarm by evaluating some 
threshold expression such as ( )ir th  which is either true or false. For each observer 
we then have a binary classifier. The generalized observer uses the table above to turn 
four binary classifiers into one multi-class classifier that can distinguish between four 
fault classes. While being a part of basic observer system theory, this form of 
classifier combination is also a very attractive method from a machine learning point 
of view, as setting up and training a binary classifier is often much easier than 
creating a multi-class classifier.  

The classical GOS decision table has some well-known shortcomings. As we have 
mentioned earlier, Table 1 with its corresponding output feedbacks implies that the 
GOS does not handle two simultaneous faults, nor a misclassification by any of the 
observers. It is suitable to analyze this problem using the Hamming distance between 
the rows, as has been recognized both by the fault detection and isolation community 
(Staroswiecki and Comtet-Varga, 2001) and the ensemble community where 
(Dietterich and Bakiri, 1995) employed error correcting codes from signal theory. The 
scheme of the latter is called Error Correcting Output Codes (ECOC) and we will take 
a moment to explain their procedure:  

9.2.1 Error Correcting Output Codes (ECOC) 
We start by augmenting the original GOS table with three new classifiers: 

 O1 O2 O3 O4 O5 O6 O7
Fault 1 0 1 1 1 1 0 0 
Fault 2 1 0 1 1 0 1 0 
Fault 3 1 1 0 1 0 0 1 
Fault 4 1 1 1 0 0 0 0 
Table 3: Table 1 with three new classifiers. 

Each of the four rows in Table 3 now correspond to a code word generated by the 
Hamming(7,4) code. These have the property that a single mistake by one of the 
classifiers (a bit flip) can not turn one row into another.  



42

For instance, a mistake in observer two during fault one results in [0 0 1 1 1 0 0] 
which is still closest to Fault1 measured by Hamming distance. Hamming(7,4) also 
guarantees that if two observers make a mistake simultaneously, this will be detected 
as an error. 

The extra observers O5-O7 turn out to be dedicated observers receiving input from 
only one output sensor. This may not be desirable for some observers but we are free 
to choose a different set of code words, such as Table 4, where all observers get at 
least two output feedbacks.

 O1 O2 O3 O4 O5 O6 O7
Fault 1 0 1 1 0 0 1 1 
Fault 2 1 0 0 1 0 1 1 
Fault 3 0 0 1 1 1 1 0 
Fault 4 1 1 1 1 1 1 1 
Table 4: Alternative with more output feedback. 

Note that Table 4 still retain the link between “Fault i” and “sensor i”. For instance, 
even though no observer is robust to a fault in sensor 4, it can still be uniquely 
identified from the table.  

While Table 4 would seem to offer a straightforward improvement over Table 1, our 
treatment of observers as binary classifiers brings in its own set of issues. 
The response of O6 in Table 4 may represent a plausible observer, for instance the 
dedicated fault detector in (Zhang et al., 2008). But as a classifier it is meaningless, 
unless we add the fault-free state as a fifth row in the table. Dietterich and Bakiri 
(1995) also recommend that the observers are uncorrelated, as a correlation could 
produce several simultaneous bit flips. They also specify that Hamming distance 
between the columns should be maximised. The rationale for the latter is that 
classifiers trained on similar classification tasks will themselves be similar and thus 
correlated. Similarity includes complements because binary classes are treated 
symmetrically by most algorithms. Observer 3 and 7 in Table 3 for instance, produce 
opposite classifications but have identical class boundaries.

It is not immediately obvious how correlation between observers and column distance 
would play out in our case. Ensemble diversity by training subsets go some way 
towards alleviating correlation, but it is also dependent on the hard-coded threshold 
functions. Worse is that ECOC has not solved the problem of simultaneous faults. If 
for instance fault 3 and 4 in Table 3 occurred simultaneously, this would be 
misclassified as fault 3 plus a bit flip.  
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To address these problems, we would have to construct longer code words and thus 
use more observers. The next section exemplifies an easy way to increase the number 
of observers with meaningful information, especially for distinguishing system and 
sensor faults. 

9.3 The model as an observer 
The pipe draining effect described earlier, is typically visible via only one sensor. It 
would therefore be difficult for a GOS to distinguish it from a sensor fault. We 
address this problem by introducing new observers. We first add the physical model 
as observer O1. It has model prediction of flow out as its prediction, thus its residual 
is predicted minus measured flow. We also add the system described in Paper I as 
observer O2. It receives two inputs: Pump rate and model prediction of flow out. It in 
turn produces a prediction of measured flow out, with a corresponding residual. The 
result is presented in Table 5: 

 O1 O2 (AI)
Static pump rate 0 0 
Kick4 or AI fault 0 1 
Pipe draining/filling 1 0 
Kick or sensor fault 1 1 
Table 5: O1: Observer similar to physical model, O2: AI pipe draining observer. 

Combining observer O1 and O2 allows us to tell pipe draining apart from other 
effects. While we in Paper I only subtracted the pipe draining effect, row one and 
three in Table 5 now produce a rudimentary drilling mode classification. Here, the 
output of the physical model observer O1 is used both as an observer output and as a 
“virtual sensor“ which can serve as input for our AI observers.
This cocept is generalized in Figure 10. In this figure the physical model is 
represented by one observer for each model output. The AI observers only treat the 
model as extra system output. 

                                                
4 A combination of kick and pump start could in theory give this combination of signatures 
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Figure 10: Observers and residual generation when combined with the physical model. The 
figure reflects that the physical model is not using output feedback at the time of writing. 

The e-drilling physical model is not limited to predicting sensor outputs. It can also 
act as a virtual sensor in the usual sense, for instance by predicting the pressure or 
temperature at a point in the well where no sensor is placed.
In the next section, we will conclude our discussion on ensembles by presenting 
methods from a problem-domain which most closely resembles our own.  

9.4 One-class classifiers 
The direct application of ECOC to the structured residuals that we performed earlier, 
while close to the original GOS approach, had some shortcomings. Not least with 
regard to the monolithic matrix which had all observers entering equally in each fault 
signature, raising issues of how well the approach would scale. Another less visible 
problem is that we are assuming that all fault signatures will be listed in the matrix.  
Similarly, most AI classifiers assume that the classes to be distinguished are present in 
the training set. Both the class imbalance of our examples and the unbounded true 
model discussed in chapter 6.4 seem to indicate that this assumption is in fact not true 
for drilling problems in general.  

A classification problem where classes not seen in the training set may be 
encountered, is referred to as open set classification (Gori and Scarselli, 1998) and 
detecting previously unseen behaviour falls under the topic of anomaly or outlier 
detection. This is also referred to as one-class classification and is especially relevant 
for binary classifiers with a high class imbalance, where the goal is reduced to telling 
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apart one well-documented class of objects from all other seen and unseen classes. 
The AI observers we presented earlier can be re-interpreted as such anomaly 
detectors. Ideally, the AI will produce a low residual when the time series falls within 
the class or classes of behaviour seen in its training set and produce a high residual 
when presented with new classes of behaviour.

A problem domain with surprising parallels to drilling is intrusion detection in 
computer networks. As pointed out by (Giacinto et al., 2008), the class of intrusions to 
be detected is an open set as new exploits are continually being produced. This 
problem domain is also one with a high class-imbalance as most network traffic is 
legitimate. Also, most data remain unlabeled. Not only is labeling of traffic data time-
consuming, but the set of normal traffic can not be guaranteed to not include an 
overlooked hacking attempt. As we have seen, these problems are mirrored in the 
drilling domain. The response of the intrusion detection community has been to 
develop unlabeled or unsupervised anomaly detection, though these have a higher 
false alarm rate. A weakness in this approach is that normal behaviour is composed of 
many different behaviours which are hard to fit within one “normal behaviour” class. 
We find an echo of this in the naïve structured residuals proposed earlier, which 
assumed only one signature for the no-fault case. Giacinto (2008) and others have 
therefore turned to ensembles of one-class classifiers. The approach of Giacinto 
(2008) is to produce one classifier for each service on the network. A parallel for 
drilling would be to have one classifier for each non-faulty drilling mode.  
As pointed out by (Ding, 2008), research on residual evaluation and threshold 
computation have received little attention in the FDI community. In Paper IV we saw 
that a hand-crafted evaluation and threshold function was necessary to detect stick-
slip in the torque signal, a situation that is likely to be repeated for other drilling 
problems. In this regard, the value of introducing observers as anomaly-detectors 
would be a much more thorough and varied analysis of residual evaluation and 
thresholding. If we are to expand our reach to new or unseen faults, anomaly-
detection offers valuable additions to our toolbox. 

9.4.1 Kick detectors as anomaly detectors 
In chapter 7 we presented existing kick-detection systems. These kick-detectors are in 
essence anomaly or one-class detectors. This can be seen from the fact that most novel 
behaviour will be classified as a kick. We also see that CUSUM relies on noise 
statistics for the fault-free case, thus focusing on the training examples of one class. 
The strengths and weaknesses of the alarm systems are thus essentially the same as 
for one-class detectors (Giacinto et al., 2008), namely robustness in the face of unseen 
phenomena but also a high number of false alarms. A sketch that illustrates the 
problem is shown in Figure 11.  
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Normal behaviour

Pipe draining

Kick

Figure 11: Illustrating classifiers in input space. Black dots indicate examples. The classes are 
small changes in pit volume (centre), pipe draining (top left) and kick (top and bottom right). 

The centre oval in Figure 11 represents the traditional system, which raises an alarm 
whenever the pit volume increases or decreases significantly, in other words when the 
example lies outside of the border of the oval. As a one-class or anomaly classifier, 
this is very robust in the sense that we do not need a large number of kick examples to 
specify it. However it produces false alarms on safe events such as pipe draining 
(top left), an effect we explained in chapter 2.

As we have discussed earlier, it is sometimes advantageous to combine several one-
class classifiers. As we have also touched on in this dissertation, it is difficult to build 
a classifier or predictor that relies directly on fault examples in the training set.  
On the other hand, we have ample opportunity to combine predictors and classifiers to 
correctly classify more of the safe events, since there are plenty of examples of many 
safe states. Hence, the data allow us to reduce the false alarm rate.  

Reducing the number of false alarms is a goal in itself when it comes to improving 
security in drilling operations (Heber and Åsland, 2007), but it also carries an 
additional bonus. The sensitivity of today’s kick detection systems is typically given 
by a threshold value for the deviation between measured and predicted pit volume. 
This threshold value is set so that it strikes a balance between detecting a kick early 
and keeping the number of false alarms at a tolerable level. If we can independently 
weed out some of the false alarms, the driller can increase the sensitivity of the kick 
detector and get an even earlier warning of kicks.  

By this strategy, we are thus able to reduce both type I and type II errors in the alarm 
system without presenting the AI with kick examples, circumventing a deficiency in 
the data set. In chapter 10.1 we present our experiments using this strategy. 
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10 Experimental results  
In this chapter we summarize our experiments and findings, both those presented in 
more detail in the papers and complementary experiments.  

10.1 Increasing the sensitivity of the kick-detection system 
In chapter 9.4 we discussed one-class detectors and laid out a strategy for improving 
kick detection using supervised learning, while handling the class imbalance. Here we 
summarize our experiments using this strategy, which also includes a grey-box 
approach.

10.1.1 Experiments 
In Paper I and Paper II we presented an experiment which is a proof-of-concept of this 
strategy and in this section we briefly review the results. 

In Paper I we implemented the greybox approach when we corrected for the pipe 
draining. We showed that while the AI alone was not able to make a better prediction 
than the physical model, the greybox approach reduced the false alarm rate by around 
25% compared to the physical model. The AI used pump rate and measured mud 
density of the outflow to predict flow rate. As a bonus, the mud density also allowed 
the AI to correct for a weakness in the physical model that we were at first unaware 
of. We take this as a proof-of-concept that the greybox approach can be used to 
correct for different modelling errors and through that reduce the number of false 
alarms. 

When the physical model was later corrected, the mud density readings were no 
longer needed. Thus in Paper II we only used pump rate as an input. In light of the 
curse of dimensionality, this was important for reliability. It would be easier to test the 
behaviour of the AI under all conceivable circumstances if there were few inputs and 
the behaviour of the pump signal is well understood.
It was also crucial that the AI did not learn a kick signature. We could not guarantee 
that the time series did not include small fluid kicks or examples of wellbore 
breathing. It is not inconceivable that at least the latter could have been learned by the 
AI, for instance through mud density or bottom hole temperature. This would hide the 
wellbore breathing from the operator, masking it as pipe effects.  
Limiting the AI to learn from the pump rate avoids this. While a change in pump rate 
may cause a kick or wellbore breathing, these examples will belong to the minority in 
most time series and predicting “no kick during pump stop” is the optimal choice for 
any learning algorithm. Conversely, a kick causes no change in the pump rate. We can 
therefore guarantee that the AI will not learn and mask kicks even if its training set 
contained a few examples of it. We have met this consideration before, in the 
robustness criteria of the observer. The pump rate is best understood as a system input 
and our AI can therefore be seen to have no output feedback. This makes it robust to 
all faults except that of the pump sensor, but also means that it will be prone to 
drifting. This is however not a problem for pipe draining, which takes place on a time 
scale too short for the drifting to have an effect. 

In Paper II we focused on pump stop events instead of time samples, and counted the 
percentage of pump stops that gave a false alarm, believing this to be an alarm rate 
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measure more relevant to the driller. Focusing only on the first 15 minutes after a 
pump stop, we did not use the greybox approach. None the less we achieved good 
results, as many of the effects modelled by the physical model were not taking place 
at these times. Well A contained 34 examples, of which two thirds were used for 
training and 10 for performance testing. Well B drilled from the same rig contained 
131 examples of which all were used for performance testing.  
We found that the false alarm rate was reduced from near 100% to 47% and 26% at 
3bbl sensitivity for well A and B respectively.

From the above results it appears that the trained AI were able to generalise to new 
wells. Though the false alarm rate may still be too high for real-world use, the AI 
delivers a real improvement on flow predictions. The fact that it actually performs 
better on the unseen well may be a coincidence, but we also speculate that well A 
contained examples of wellbore breathing so that some of the examples were in fact 
true alarms. If this was the case, it lends support to our claim that the AI in this case 
could learn from a data set with a few mislabeled examples.  

10.1.2 Evaluating the choice of AI 
For the AIs in Paper I and Paper II, we chose the Echo State Network (ESN) (Jaeger, 
2001, Jaeger, 2002) and it was our starting hypothesis that the ESN had several 
characteristics that made it especially well suited to this task. First of all, the ESN 
does not require that we specify the length of the input window, which is an 
advantage when the optimal window length is not known. Secondly, a pipe or a tank 
which drains is a dynamic system which is easily modelled by a few feedback loops. 
Since the ESN consists of feedback loops, we believed that pipe draining would have 
a particularly simple representation inside ESNs and therefore be easier to learn for an 
ESN than for AIs with no recurrent couplings. 

We compared the ENSs performance against the well-known Autoregressive Moving 
Average (ARMA) (Theodoridis and Koutroumbas, 2006) and found that the ESN did 
indeed outperform ARMA. However, as is often the case when new methods are 
compared against old ones, the new method had more effort invested in its 
implementation. We can not rule out that the performance of ARMA or a similar 
method could have been improved with more careful tuning. Neither is it clear if 
ARMA was more adversely affected by the possible wellbore breathing in well A.
Our results are therefore inconclusive on the question of ESN as a superior or inferior 
choice.

10.2  Stuck pipe detection using statistical features 
In Paper IV we presented a statistical method for stuck pipe prediction which has been 
studied at SINTEF and as a part of this dissertation. This diagnosis seeks to detect 
poor hole cleaning by constructing statistical features from bottom hole pressure 
(BHP) and torque (TRQ) signals.  
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10.2.1 Summary of the method 
For a window of n  samples 1,..., nX x x , their average  and standard deviation 

, the skew is defined as: 
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The normalized standard deviation is a dimensionless quantity defined as: 

n  (10.2) 

We build on previous work by (Jardine et al., 1995, Rezmer-Cooper, 2002) when we 
propose the diagnostic signal

* nF skew BHP TRQ  (10.3) 

However, in our analysis of F we depart from the methods Jardine (1995) and 
Rezmer-Cooper (2002). They suggested integrating the diagnostic signal over time 
and thresholding the resulting values. It is difficult to separate poor hole cleaning 
from harmless deviations using this scheme, which in turn leads to many false alarms. 
We observe that for normal conditions, the diagnostic signal will fluctuate around 
zero but during poor hole cleaning will show spikes with a positive sign. In our 
implementation, F is computed for every n  sample. After w calculations of the 
diagnostic, (for *n w  samples) we compute the percentage of positive diagnostic 
signals R  and note the maximum value maxP  of the positive signals. We then raise an 
alarm if these values exceed given thresholds: 

max maxandR Th P Th  (10.4) 

10.2.2 Experiments 
As detailed in Paper IV, real-world data indicate that the percentage of positive spikes 
is a more robust indicator than the integrated diagnostic signal. We also find that the 
alarms produced by our method correlate well with an existing alarm system in the e-
drilling model, which works by predicting cutting concentrations along the well. This 
served as a reality-check on the link between hole cleaning and our diagnostic signal.
We also had the opportunity to test the diagnostic signal against recent poor hole 
cleaning and stuck pipe events. Figure 12 shows the bit depth in a north-sea well over 
48 hours. A period of poor hole cleaning occurred at 15-20 hours and a stuck pipe 
incident at 26 hours. In both cases we see that the bit was eventually pulled off bottom 
to perform a hole-cleaning procedure, in response to the problems. In Figure 13 we 
see the diagnostic signal and warnings produced over these 48 hours. For the first 
problem, our method seems to detect poor hole cleaning as it occurs. For the stuck 
pipe incident, we find that the alarm is raised approximately 23 minutes before the 
stuck pipe incident. The proposed method could therefore in this case have provided 
an early warning of stuck pipe.
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Figure 12: Bit depth over a 48 hour period. Poor hole cleaning is reported at 15-20 hours and a 
stuck pipe is reported at about 26 hours.  

Figure 13: Diagnostic signal and warnings running in parallel with Figure 12. Both problems are 
detected, with no false alarms in this time series. 8w , 0.85Th  and max 0.2Th
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In time series from a separate well, a drill string twist-off due to drill string wash-out 
was recorded and we had the opportunity to observe how our diagnostic signal 
behaved in this case. This is shown in Figure 14. The twist-off occurred at around the 
400 point and warnings were generated more than 3 hours in advance. Different 
parameters of the diagnostics could have given even earlier warnings, but the method 
does not appear dependent on fine-tuning of the parameters for early detection. 

Figure 14: Value of diagnostic signal with a 60 minutes window, 1Th  and max 0Th with 
alarms in red. Drill string twist-off occurred at around 400. The first warning is generated about 
3 hours and 20 minutes before the twist off.  

10.2.3 Sufficiency of data 
The approach of Paper IV exemplifies the remedies to the raw data problem we 
described in chapter 6.2. The algorithm is based on expert knowledge, employs near-
faults as well as faults, and has only four free parameters: , ,n w Th  and maxTh  of 
which two enter in the feature dimensionality reduction. We will not attempt to derive 
bounds on the VC dimension for this algorithm, but we note that the threshold 
functions in equation (10.4) may be represented by neurons with these threshold 
functions. Also the ratio R  may be similarly constructed, implying that a neural 
network with only 3-4 free parameters could have accomplished the classification. We 
are therefore led to a VC dimension of 4 in this equivalent problem. This in turn 
implies that around 40 examples is a minimum for good generalisation performance. 
In our paper, *n w  samples could typically span an hour. Two days of varied 
examples from drilling would then satisfy the minimum number of examples. 
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Available time series therefore offer a solid basis on which to tune, assess and further 
develop the proposed method 

10.3 Improving pipe-draining prediction by ensemble 
averaging

In chapter 10.1 we trained several ESNs and selected the one with the best 
performance. Here we explore the hypothesis that that method could be improved if 
we instead employed ensemble methods as discussed in chapter 3.4 and 9. 

We start by training 50 randomly initialized echo state networks using the first 60 
percent of the well A data as a training set. Each ESN is initialized with between 150 
and 250 nodes and trained on a randomly chosen but contiguous subset of the training 
data.

In Figure 15 we see a typical behaviour of an ESN on two hours of the test-set data. It 
predicts the first two pump drainings fairly well except for a spike, but shows erratic 
behaviour about halfway. This can be compared with Figure 16 and Figure 17 
showing the performance when taking the average or median of the 50 ESNs. 
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Figure 15: Residual flow (blue), prediction by a single ESN (green), pump rates not to scale (red). 
Prediction and residual flow have been synced at the start of the plot 
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Figure 16: Same plot as in Figure 15 but using the average of the 50 ESNs 
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Figure 17: Same plot as in Figure 15 but using the median of the 50 ESNs 
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Figure 18: The individual predictions by five of the ESNs 
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We find that the ensemble approach using the median removes noise such as spikes or 
sudden jumps from the predictions. This can be seen from Figure 18 which shows 
how five different ESN predictions compare. We see that the predictions tend to agree 
when making correct predictions, while the errors in the seemingly difficult parts tend 
in no particular direction, leading to an average close to the true value. This seems to 
agree well with ensemble theory, which states that the predictions are improved by 
reducing the variance. 

In our case, median seems to outperform average. This can be understood as 
pathological outliers having a disproportionate effect on the average. We should also 
compare median against the strategy of choosing the ESN that performs best on the 
training set. We find that the best single ESN judged by its training set performance, 
has a false alarm rate of 32% on the training set and 60% on the test set. The ensemble 
has a false alarm rate of 37% on the training set and 14% on the test set.
We find that the ensemble performs better than the best member and also that it 
outperforms the best ESN in Paper II. It should however be mentioned that the 
ensemble seem to make little or no improvement in the parts of the time series that are 
already predicted fairly well by individual ESNs.

In a real-world setting, where plots of the predictions may be analyzed by a human in 
real-time, reliability is perhaps more important than accuracy. The greatest 
contribution of the ensemble is not a closer fit to the pipe draining curve, but that the 
ensemble reduce the number of complete failures in the prediction. Reducing the 
number of such “breakdowns” is crucial if predictive AIs are to be integrated into the 
data-flow. On the other hand, these failures could be a characteristic of echo state 
networks or the fact that the observer has no output feedback. Until these issues are 
settled, the utility of the ensemble approach should be judged on a case-by-case basis. 
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11 Concluding remarks 
Calls for improvement in machine learning and data mining often fall into one of two 
camps: Either we need more data or we need better algorithms. Even as the data rate 
from drilling operations is making large leaps in terms of bandwidth, the number of 
examples of drilling problems is luckily not set to increase in the same fashion. In this 
dissertation we have taken the view that training set size will not increase by leaps and 
bounds in the future. The training set will continue to show noise, be class-
imbalanced, mostly unlabeled and drilling problems will remain an open set 
classification problem even with more data. We therefore find ourselves at the latter 
camp, calling for better algorithms and smarter architectures. 

11.1 Conclusions 
With the above viewpoints in mind, we have pursued two approaches: Greybox 
models and ensemble learning. We have shown that the greybox approach succeeds at 
simplifying the learning task, allowing us to easily implement AIs that quickly bring 
added value to prediction tasks and alarm systems. The greybox approach is therefore  
an attractive strategy for bringing machine learning technology to market. 
We have also demonstrated that ensemble learning can improve the predictions of our 
AIs and that the problems of unlabeled data and class imbalance can be circumvented. 
The problem of kick-detection suffers from the latter two problems. We have shown 
that when traditional kick alarm systems and AIs are combined, there exists a machine 
learning strategy that leads to an improved alarm system, even in the absence of 
known kick examples in the training set. This is a strategy that takes into account both 
the scarcity of relevant fault examples and the high cost of manual labelling of drilling 
time series.  
Furthermore we have presented a stuck pipe detection algorithm demonstrating the 
value of analysing the “noisy” components in the time series.  
The greybox approach used in our studies combined the best from machine learning 
and physical models. In line with this, we have investigated architectures that 
combine techniques from traditional fault detection and isolation (FDI) with methods 
from machine learning. It is our impression, as outsiders, that the field of FDI has 
reached an impasse in recent years. Results from linear FDI are unified and firmly 
established, but approaches that reflect the nonlinearity of the system under 
supervision deal with models of only limited complexity and advances are tied to 
specific models. Machine learning is acknowledged as a way forward for FDI (Patan, 
2008) and AIs have been produced that solve fault detection problems. These efforts 
however, do seemingly not bridge the gap between the FDI field and machine 
learning by combining experience from the two fields. Instead, generalist machine 
learning algorithms are imported and applied relatively unchanged. We have proposed 
architectures that combine machine learning with existing design in FDI. More 
importantly, we have proposed that ensemble learning theory can be used to analyse 
observer schemes from a new angle and serve as an interface between FDI and 
machine learning. This is our contribution to rejuvenating the discussion on machine 
learning in FDI.  
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11.2 Further work 
Here we summarize avenues of directions that may be pursued further. 

Experiments with our proposed GOS-like architectures should be carried out 

The systems we have experimentally tested should undergo further testing to 
confirm that they are robust to new situations. 

Some effects that can be learned are specific to a formation, to a rig or could 
change while drilling. One such case is the pipe-draining signature that could 
change as the flow is re-routed in the rig’s pipe system. Thus it might be 
beneficial to explore online learning, where the AI is updated on-site. 
However, this brings in issues of stability and predictable performance which 
must be addressed. Ensemble learning offers an attractive way to do online 
learning, where new data is incorporated simply by training new AIs on it, 
leaving AIs trained on old data unchanged. 

While our end goal was fault detection, the greybox approach on its own 
produced a more accurate prediction of a key variable, which is valuable in 
itself. It might be worthwhile to apply this more broadly to correct for 
calibration errors and improve prediction accuracy.
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Abstract. Soft computing techniques have gained greater interest and acceptance 
in the oil industry in recent years. Some, who advocate the education of more 
interdisciplinary petroleum engineers, even list soft computing as one of the core 
competencies for such engineers. This paper will give a brief introduction to the 
challenges and opportunities for applied time series prediction in the oil industry 
and recent trends in research, with a focus on fault prediction.  

1 Introduction 

The petroleum industry, while traditionally conservative, has a surprisingly long 
history of testing and deploying artificial intelligence (AI) or soft computing systems. 
Early examples include expert systems like “Prospector” from the late 70’s for 
evaluating mineral deposits and “Dipmeter advisor” from the 80’s [1], which dealt 
with inferring 3D geological structures from measurements taken along the borehole. 
The early 90’s saw the commercial launch of “ODDA”, an expert system advisor for 
directional drilling developed by Total and Norsk Hydro [2] and the “Analysis While 
Drilling” package developed by Total and Nordic Offshore Systems [3].  
 When an oil well is drilled, equipment failure or a misjudgement of downhole 
conditions may delay the operation by days or weeks. One need only consider the cost 
of renting a drilling rig, now exceeding half a million dollars per day, to see that the 
cost of faults may easily enter the million dollar range. These high stakes increase the 
risk or perceived risk of trying out unproven technology, partly explaining the 
conservative attitude [4]. On the other hand, the drilling contractor would get an 
immediate return on their investments in fault prediction software even if it delivered 
only a small increase in the ability to predict and avoid faults. Thus ideally, a fault 
prediction system could be developed incrementally and still be useful and justify 
industry support in its early stages.  
 This paper seeks to give an overview of recent developments in the petroleum 
industry, its use of time series prediction methods as well as the characteristics of its 
time series, research challenges, open problems and possible development. 

                                                           
* This work is funded in part by the "Center for Integrated Operations in the 
Petroleum Industry" (http://www.ntnu.no/iocenter) 



2 Integrated operations 

Currently AI or “soft computing” methods are finding increased acceptance as one of 
the tools for deploying “Integrated Operations” (IO). Also known variously as e-
operations and digital oil fields, the term loosely encompass a move for cutting costs 
and increasing oil recovery using new computer technology. Some broad themes can 
be outlined. One is how the oil industry is importing ideas from the process industries, 
such as a tighter integration between the oil companies and their suppliers when it 
comes to logistics and project management, as well as analyzing and optimizing 
offshore oil platform performance on the same terms as for a factory.  
 Another eye-catching feature of IO is the use of extensive video-conferencing 
between on- and offshore facilities and 3D visualization of the oil field and ongoing 
well drilling [5]. This has the aim of integrating different disciplines into planning and 
real-time operations. It also advances the industry’s goal of keeping more of their 
personnel in onshore offices, being available for consultation with several platforms.   
 Of most interest may be the increase in real-time data that the oil industry has 
seen in recent years. This is mainly due to new downhole measurement equipment 
and an increase in bandwidth between this equipment and the offshore rig [6, 7] as 
well as the rig and land based facilities. Much of the ongoing research in IO seeks to 
take advantage of this torrent of data. Efforts include real-time production 
optimization [8]  detailed monitoring of fluid flow [9] and adjusting the path of a well 
during drilling, based on real-time downhole surveys of the rock formation. While 
such real-time measurements have been available for years, their bandwidth was 
previously limited to around 20 bits/sec [10]. Challenging optimization problems also 
abound in the area of time series data analysis, such as predicting the interactions 
between a large number of wells in order to optimize their total production.  
 All this has created a need for a stronger ICT-literacy in the oil industry, where 
people such as Prof. Ershaghi at the Center for Interactive Smart Oilfield 
Technologies † at U. of Southern California are among the ones arguing for a revision 
of the petroleum engineering education, with data mining and soft computing as two 
of the core competencies.  

3 Properties of oil industry time series 

Time series in the oil industry are of course generated from a multitude of different 
processes, but a short overview may still give a feel of how it differs from the 
textbook examples of time series. Asking an industry professional about the series 
most prominent feature, the answer is likely to be “noise”. Grave inaccuracies in the 
measurements contribute substantially, but “noise” may also be aspects of the system 
not covered by our models. For instance, the drillstring (Figure 1), as any rotating 
equipment, may fall prone to vibrations and wobbling. This may affect not just 
measurements of the drillstring’s torque and weight, but also fluid flow and pressure 
[11]. The drillstring, several kilometres long, may in turn have had its movement 
affected by the type and amount of gravel in the well.  

                                                           
† http://cisoft.usc.edu/ 



 This messy and very much “real world” interconnectedness of different 
processes has long been acknowledged as a challenge for traditional models [3]. 
However, it also lets a feature such as wobbling make its fingerprint on many 
variables. It is enticing that this correlation may let a multivariate analysis extract 
early warning signs from what is generally regarded as noise.  

 
 

 
Figure 1: Simplified schematics of oil well drilling.  A rotating pipe (1) extends 
from the rig to the bottom of the well, where it drives a drillbit. (2) At the same 

time fluid is being pumped down the pipe. This returns to the rig along the outside 
of the pipe, carrying the crushed rock (3) along with it. As drilling progresses, the 

wall of the well is periodically fitted with a protective casing (4). 

 

 

3.1 Pre-processing and problem definition 

For the purpose of downhole monitoring, our task can often be framed as that of an 
inverse problem: Given our measurements, reconstruct the downhole conditions that 



caused them. Measurements of rock formation properties are coarse and real-time 
measurements along the well are sparse with current technology, frequently making 
the inverse problem an ill-posed one [12].  
 Fault detection and prevention may also be framed as a time-series prediction 
problem: Given the time-series up to now, predict if a fault is likely to occur. The 
horizon of such a task will be problem-specific. While the first signs of gas having 
entered a well become visible only minutes before the operator must respond, bad 
hole-cleaning is a situation that may deteriorate gradually over several hours.  
 Current alarm systems tend to employ simple pattern classification such as 
threshold values and trend detection, with more sophisticated systems focusing on 
recognizing the safe events that cause false alarms [13]. In the case of drilling, false 
alarms are today a major complaint among the users [14]. Attempts at pattern 
recognition by supervised learning may learn to foresee these common events, but the 
most severe events are rare in comparison. With few examples, a straight-forward 
approach taking into account all system parameters and using a large sliding window 
is then bound to experience the "curse of dimensionality” [15]. 

3.2 The Hierarchy 

To get a grip on the data and underlying processes, one approach is a hierarchical 
decomposition. In [16] Saputelli et.al introduced the “Field Operations Hierarchy” in 
Figure 2 as a convenient structuring for the problem of optimizing the production of 
oil and gas.   
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Figure 2: The Field Operations Hierarchy according to Saputelli 



 
 The structure will be familiar from other industries. In this figure, information 
travel upwards and orders are sent downwards. Both scales of time and space increase 
for higher levels. These levels are a result not just of management structure but of the 
time-scales of the physical processes involved. For instance, a flow measurement has 
a time-scale of seconds and may relate to a branch of a single well. The measurement 
is relayed to the scheduling level which may plan for days ahead taking the gradual 
wear of equipment into account. Operational planning in turn must plan for the even 
slower depletion of the whole oil-field.  
 Orders are subsequently relayed downward e.g. for the closing of valves in the 
well. This forms a closed loop of supervisory control, where time series fault 
detection and prediction as well as predictive control becomes important.  
Such a hierarchy draws on theory from supervisory control theory, where such nested 
loops may also be associated with the supervisor’s learning process [17, 18]. 

3.3 The characteristics of different levels 

In addition to being a layout for optimization problems, the hierarchy is a useful 
roadmap for time series prediction. It appears that the demands placed on a time series 
prediction system depends very much on where in the hierarchy it is implemented. 
One may for instance notice that the information relayed becomes increasingly 
symbolic and aggregated as one move upward in the hierarchy. From numerical 
values that are interpreted higher up as states of the equipment and status reports, on 
to “net present value” at headquarters. It is telling that we find a symbolically based 
method like Case Based Reasoning analyzing job reports in the day to month range 
[19, 20], while typical applications of more numerical methods like neural networks 
focus on the lower levels [21-23]. In the lower levels it also usually demanded that we 
restrict ourselves to algorithms that work in real-time systems.  
 An exception to the symbolic trend is the task of simulating oil and gas 
reservoirs. This deals with large scales of time and space but mainly numerical data. 
Prediction of the movement of gas, oil and water in the rock is a computing-intensive 
problem, made harder by sparse measurements.  
 Soft computing on time series is here found in two niches.  The first is as an aid 
in history-matching of the model. With many free parameters and much time spent on 
each run, it is tempting to use soft computing methods to optimize the parameter 
search. Efforts include evolutionary algorithms [24] and ensemble Kalman filters 
[25]. This also allows us to use deterministic models while moving towards a 
probabilistic assessment of subsurface conditions. This probabilistic viewpoint is 
another trend in the petroleum industry made possible by increased computing power. 
 The second application sees the time-consuming simulator replaced by a 
surrogate model, such as a neural network. Trained on input and output from a 
traditional model, the neural network gives quicker predictions, allowing us to e.g. try 
out a larger number of different well placements, or explore more of the parameter 
space. This approach is sometimes referred to as “neuro-simulation” in the literature 
[26]. 
 Moving down to real-time measurements, a typical issue here is the non-
stationarity. Time series from drilling record a system with frequent exogenous 



inputs, as the drilling operator frequently intervenes to change rates of flow, pipe 
rotation or type of fluid used. A drilling operation is composed of several different 
tasks and a parameter value that indicates imminent danger in one situation may be in 
the normal range in another. The classification of “drilling modes” would therefore 
feature prominently as a pre-processing step on the way to more sophisticated fault 
predictions.  
 The drilling mode classification is also becoming an increasingly pressing issue 
for symbolic analysis at the higher levels. Much of the system knowledge gathered by 
methods such as CBR derives from human-made logs and reports of operations. But if 
such systems are to offer analysis and advice in real-time, they would need real-time 
reports. A drilling mode classification could correspond to such reports, which shows 
how applications of hybrid systems may arise naturally in the field operations 
hierarchy.  
 Recent efforts at automated classification include a rule-based system by 
Thonhauser et.al. for the automatic generation of drilling reports [27, 28], but the 
problem of  a reliable real-time classification is still an unsolved problem.  

4 Combined approaches 

The hierarchical approach gives us some leads on overcoming the curse of 
dimensionality, but not all methods rely on this. For instance, in [29] Lorentzen et.al 
study an optimization problem where they make a leap directly from choke control to 
net present value. A common factor in their approach and the previously discussed 
soft computing methods in reservoir simulation is the combination of soft computing 
with physical models. Advanced simulators exist for all levels from reservoirs to well 
drilling [5] and is in a sense an encoding of our knowledge of the system.  
 It is recognized in system identification and grey-box modelling [30] that 
“fictious data” is a convenient way to encode expert knowledge, which the simulators 
readily provide. It is the author’s opinion that a combined hard and soft computing 
approach would be viable not only for the aforementioned optimization problems, but 
also for fault prediction in time series. However, as mentioned, the physical models 
do not necessarily reproduce fault signatures; properties of the noise or some complex 
effects may lead to false alarms.  
 An approach taken by e.g. Forssell and Lindskog in [31] is to run the best 
available model alongside measurements and train the AI on their difference or the 
unexplained “residual”. That is, to predict: 

residual model predictionT T T   

We may then re-order the equation to yield an improved prediction: 

combined prediction Prediction of residual Model predictionT T T T    

This improved prediction may in turn be used to remove false alarms or increase the 
sensitivity of established fault detection methods, as implemented by this author in 

[32]. However, this approach tends to assume that the task of predicting residualT  is a 

simpler or lower-dimensional task than the prediction ofT . While often true, 
counterexamples show that this is not true in general. Other possibilities for injecting 



prior knowledge from simulations exist, but the author is not aware of well-
established methods for the general case.  

 

5 Conclusions 

Petroleum exploration and production is an industry that provides researchers with 
multivariate time-series with challenging “real-world” properties. The time series call 
for different prediction tasks which seem suited to wildly different schools of 
prediction systems, while at the same time hinting at a need for a “deeper”, perhaps 
hybrid, system architecture. 
 Regarding applied research and commercial applications of time series 
prediction, we find that management now has an open mind towards new methods, 
under the umbrella of Integrated Operations. However, applications such as real-time 
fault detection will find that there is a low tolerance of false alarms while time series 
prediction as part of e.g. production optimization, would have to compete against 
successful traditional methods. To find acceptance in the industry, and more 
importantly, to be useful, it is the authors’ opinion that time series prediction results 
must be in a form that can be combined with those from existing physical models. 
This approach has the potential of yielding better accuracy, stability and 
generalisation capability than each method alone. It would also be in the spirit of 
Integrated Operations for us to integrate the experience inherent in time series with 
the knowledge inherent in physical models.  
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