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Abstract 

Animals must allocate their energy reserves between growth, reproduction and survival. 

Basal metabolic rate (BMR) is a quantitative trait, which can represent the “cost of living”, 

and is a key component in the energy budget of animals. In this study, I explored the genetic 

basis of BMR through next-generation molecular methods, using individuals from wild 

populations of house sparrows (Passer domesticus). Birds from three genetically connected 

populations off the coast of mid-Norway were genotyped on a custom Affymetrix 200k SNP-

chip, and were subsequently used in genome-wide association study (GWAS). BMR data 

from the study populations were collected during 2012-2015. One of three populations in 

this study was artificially founded in 2012 using a common garden approach. Founders from 

the two source populations had high and low BMR, respectively. Furthermore, the source 

populations were up-selected and down-selected for BMR 2012-2014. By using a recently 

developed GWA method that accounts for relatedness and repeated records from 

individuals, GWA analyses were performed within each island, and on a pooled dataset 

containing all individuals. Genetic variance components of BMR and the chromosomal 

contribution to variance in BMR were estimated via SNPs. In the three study populations of 

house sparrows, additive genetic variance for BMR was significant. Further, genomic 

partitioning of variance suggested an oligogenic architecture of BMR. It is plausible that the 

observed variation in BMR can be partly explained by rare loci of larger effect. The repeated 

GWAS showed mixed results. One suggestive SNP associated with BMR was detected in the 

pooled analysis, revealing a link between a genotype and BMR in wild house sparrows. 

However, within island analyses found no significant or suggestive signal for this SNP. 

Instead, another SNP was found to be associated with BMR within one of the islands. The 

implications of these findings are discussed in terms of the possible genetic architecture of 

BMR in these house sparrows, statistical power, biology and population structure. The 

present study is the very first to use SNPs to map QTLs for BMR in a wild population. 

Additionally, it contains the largest marker density in a wild outbred vertebrate population 

to date. The findings were mixed, but this study provides new knowledge about the link 

between genetics and phenotypic variation in BMR, which again give rise to new questions 

regarding the genetic architecture and eco-evolutionary dynamics of BMR.  
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Sammendrag 

Dyr må allokere sine energireserver mellom vekst, reproduksjon og overlevelse. Basal 

metabolsk rate (BMR) er et kvantitativt trekk som kan representere «kostnaden av å leve». 

BMR er en av hovedkomponentene til energibudsjett hos dyr. I dette studiet utforsket jeg 

det genetiske fundamentet for BMR fra en vill populasjon gråspurv (Passer domesticus), ved 

bruk av de nyeste molekylære metodene som eksisterer innenfor feltet genetikk. Fugler fra 

tre genetisk nære populasjoner fra utenfor kysten av midt-Norge ble genotypet med en 

Affymetrix 200k SNIP-chip. BMR data fra studiepopulasjonene ble samlet inn fra 2012-2015. 

Den ene av de tre øy-populasjonene ble i 2012 kunstig grunnlagt ved en «common garden 

approach», ved bruk av utvalgte individer fra de to andre øy-populasjonene, henholdsvis 

med høy og lav BMR. Populasjonene i de originale øyene har videre blitt kunstig selektert for 

høyere og lavere BMR. Nylig utviklede genkartleggings metoder,som tar hensyn til slektskap 

og repeterte mål, ble brukt innen hver øy og i et «pooled» dataset med data fra samtlige 

individer. Genetisk varianskomponenter til BMR og det kromosomale bidraget til varians i 

BMR ble videre estimert via SNPer. Additiv genetisk varians for BMR var signifikant for de tre 

studiepopulasjonene. Videre, så indikerte genetiske partisjonsanalyser en mulig «oligogenic» 

arkitektur til BMR. Det er plausibelt at den observerte variasjonen I BMR kan delvis forklares 

av sjeldne loci med moderat til stor effekt. Genkartlegging analysen viste blandede 

resultater. En SNP assosiert med BMR ble funnet i pooled analysis, noes om avslørte en 

kobling mellom en genotype og BMR i gråspurv. I analysene innen øy ble det ikke funnet 

signifikante eller suggestive signal for denne SNP. I stedet ble en annen SNP funnet å være 

assosiert med BMR innen en av øyene. Implikasjonene av disse funnene er her diskutert med 

omsyn på den mulige genetiske arkitekturen av BMR i gråspurv, statistisk tyngde, biologi og 

populasjonsstruktur. Dette studiet er det aller første som bruker SNPs til å kartlegge det 

genetiske basis for BMR i frittlevende popuasjoner. I tillegg har dette studiet den største 

markørtetthet i en frittlevende ut-avla vertebrat populasjon. Funnene fra dette studiet var 

blandede, men tilfører ny kunnskap om sammenhengen mellom genotype og fenotype 

variasjon i BMR, som igjen leder til nye spørsmål om den genetiske arkitekturen til BMR.  
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Introduction 

Why is nature so diverse? Living organisms show variation in mostly every way imaginable, 

from how they behave to how their physiology functions. Since the beginning of the 20th 

century, quantitative genetics have emerged as a field searching for the genetic 

underpinnings of variation of continuous traits (Roff, 2007).  Research in this field has mostly 

dealt with interpreting distribution of phenotypes in terms of genetic variance components 

estimated through controlled designs and statistical methodology, without sampling the 

molecular underpinnings of the phenotype (Hill, 2012; Lynch and Walsh, 1998).  Although 

traditional quantitative genetic are useful (Lynch and Walsh, 1998), they cannot give 

answers about the DNA sequence variation that affects phenotype variation. How many 

genes affect a trait? Where are they located, and what is their proportional effect? 

Understanding the link between genotype and phenotype requires molecular level analyses, 

and we must start at the simplest level before we delve into the black box of genetic 

architecture.  Recent advancement in next-generation sequencing methods enables a highly 

specific analyses of the molecular level of quantitative genetics (Mardis, 2008) 

Quantitative trait loci (QTLs) are loci underlying the variation in continuous traits (Mackay et 

al., 2009). Classic examples of continuous traits are height, blood pressure and metabolic 

rate. QTLs can be mapped using visible markers with known genotypes, either in linkage 

disequilibrium (LD) with QTLs, or indirectly linked through LD with markers that are in LD 

with the QTL (Hirschhorn and Daly, 2005). Individuals with different genotypes on markers 

will then have different phenotypic means, and markers will be associated with the 

quantitative trait of interest (Mackay et al., 2009). The first QTL mapping was performed by 

Sax (1923), who found an association between a phenotypic marker and seed weight in 

beans (Phaseolus vulgaris). Current studies of natural animal populations are more complex, 

demanding thousands of molecular markers and mapping methods (Schielzeth and Husby, 

2014). Mapping QTLs in natural populations is advantageous in several ways. Traits studied 

under laboratory conditions might not exhibit the full range of natural variation, and results 

might not be generalized to the natural environment (Mackay et al., 2009). Mapping the 

genes underlying the natural phenotypic variation directly addresses the contribution of the 

genome on phenotype variation. Knowledge of the genetic architecture of quantitative 

phenotypic traits is necessary in search for deeper understanding of evolutionary dynamics 
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in animal populations.  The genetics of natural populations are not only of interest for 

evolutionary biologists. Management of wildlife and vertebrate populations depend on 

predictive models about the evo-ecological dynamics of populations, which is of great 

importance in development of sustainable harvest models of animal populations (Allendorf 

et al., 2008).  

In general, methods of gene mapping of natural populations use either experimentally 

manipulated linkage disequilibrium in the genome of populations (LD), or natural LD to map 

genes (Schielzeth and Husby, 2014). Both approaches have been successful in natural 

populations (Colosimo et al., 2004; Husby et al., 2015; Johnston et al., 2011; Tarka et al., 

2010).  Linkage analyses utilizes long reaching LD, either experimentally manipulated or 

naturally occurring within a pedigree (Schielzeth and Husby, 2014). Another approach is 

association analyses, which utilizes natural occurring short reaching LD, based on historical 

recombination (Mackay et al., 2009; Slate et al., 2010).   

Diverse molecular techniques and markers are available, but next-generation sequencing 

and high-density single nucleotide polymorphism (SNP) genotyping are becoming a cost 

effective approach towards QTL/gene mapping in natural populations (Ekblom and Galindo, 

2011; Ellegren and Sheldon, 2008; Slate, 2005; Slate et al., 2010). SNPs appear in high 

density throughout the genome, which make genome-wide association studies (GWAS) 

possible (Hirschhorn and Daly, 2005). Recent developments in genomic analyses also makes 

it possible to partition genetic variance across chromosomes (Yang et al., 2011b). By 

comparing the relationship between variance explained by chromosomes and chromosome 

size, one can get insight to the general genetic basis of a trait (Robinson et al., 2013; Yang et 

al., 2011b), e.g. a polygenic basis would be displayed as a linear relationship between the 

variance explained and chromosome size, assuming effect loci are evenly distributed across 

the genome.  

In the present study, I explored the genetics of basal metabolic rate (BMR), an important 

trait of the energetics family, through recent developed mixed model GWAS methods 

(Rönnegård et al., 2016) and genome partitioning analyses, in free-living populations of 

house sparrows (Passer domesticus), typed on a custom Affymetrix Axiom 200k-SNP-array.  



 
3 

 

Animals must allocate their energy reserves between growth, reproduction and survival. 

BMR is measured within the thermoneutral zone, while the organism is at rest and in a 

postabsorptive state (Bligh and Johnson, 1973). Thus, BMR can be described as the “the cost 

of living” (Hulbert and Else, 2000). BMR show great variation within-species (Konarzewski 

and Ksiazek, 2013), and is recognized as an important factor shaping the ecology, physiology 

and behavior of organisms (Berteaux et al., 1996). BMR is for example associated with a 

slower pace of life (long lived and produce fewer offspring) in tropical birds compared to 

temperate birds (Wiersma et al., 2007). Furthermore, BMR is found to be associated with 

fitness in two of our study populations (Rønning et al., 2015). However, the genetic basis of 

intra-specific variation in BMR is not completely identified (Konarzewski and Ksiazek, 2013). 

Exploring the genetic basis of BMR will thus add to our understanding about an important 

energetic trait associated with the life history of animals.  

Study islands are off the coast of Norway where BMR measurements have been collected 

periodically from 2012-2015. Additionally, one of the three populations in this study was 

founded using a common garden approach. Founders from the two parent populations had 

high and low BMR, respectively.  Further, individuals in parent islands were subsequently up-

selected and down-selected for BMR. In this study, I use a newly developed mixed model 

approach adjusting for repeated observations (Rönnegård et al., 2016), first applied in Husby 

et. al (Husby et al., 2015). This model controls both for relatedness between individuals, and 

repeated observations, which is ideal for our longitudinal dataset.  A GWAS analysis was first 

performed on a pooled dataset including all islands since they are genetically connected via 

the individuals translocated to the common garden population on Lauvøya, and the larger 

sample size was expected to increase power to detect QTL for BMR. Second, I carried out 

GWAS analyses in each population separately. This was because I expected LD-blocks to be 

larger in the “hybrid” population on Lauvøya, which was founded by individuals at the 

opposite phenotypic ends of the phenotypic distribution for BMR, increasing the correlation 

between my SNPs and any genes coding for BMR (Mackay et al. 2009;Schielzeth and Husby, 

2014). In addition, I expected that genes or alleles causing either low or high BMR were 

more likely to show up in the down-selected population on Leka and the up-selected 

population on Vega, respectively.  
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The aim of this study was to explore the genetic architecture of BMR in free-living house 

sparrows, which included four main goals: I) Estimate genetic and environmental variance 

components of BMR II) Find QTLs underlying variation in BMR. III) Estimate the effects of 

QTLs and their location. IV) Partition additive genetic variance across chromosomes to study 

the contribution different chromosomes has on BMR to detect the genetic architecture of 

BMR.   
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Methods 

 

Study area 

The study area include three islands along the coast of mid-Norway, with boreal climate. The 

island locations are; Vega (65.6°N, 11.9°E) and Leka (65°N, 11.6°E) in Nordland, and Lauvøya 

(63.9°N, 9.9°E) in Trøndelag.  

Study species 

The house sparrow (Passer domesticus) is a common passerine bird with a worldwide 

distribution. In this study system the birds inhabit islands, and only 10 % of the fledglings 

that recruit into the breeding population are immigrants (Pärn et al., 2012, 2009) . Each pair 

lay on average 1-3 clutches per season(Kvalnes et al., 2013; Ringsby et al., 2002) with an 

average clutch size of 5 eggs (Husby et al., 2006). Hatching date is from early May until the 

middle of August (Ringsby et al., 2002). A practical feature of the house sparrows is that 

their habitat tends to be associated with farms and human settlements, which makes 

sampling convenient (Jensen et al., 2013).  

Fieldwork 

The fieldwork for this project has been ongoing since 2012-2015. I participated in one field 

season in 2015. Every winter (February-March ) all house sparrows were captured on the 

three islands using mist nets. Birds captured first time were marked with a numbered 

aluminum ring, and three colored plastic rings to enable individual identification. Due to the 

high proportion of ringed individuals in these populations, an individual without rings was 

defined as a recruit from the previous breeding season (see Jensen et al., 2008; Rønning et 

al., 2015). Nests were visited on Lauvøya during the breeding season (May - August), where 

the number of eggs and fledglings (nestlings in the nest 8-12 days after hatching) were 

counted for each nest, and the birds were marked See Ringsby et al. (2002) for procedures 

on gathering nestling data. On first handling, individuals were sampled for 25µL blood taken 

by brachial venipuncture, for the use in e.g. microsatellite- and SNP-genotyping. For details 

on blood sampling see Jensen et al. (2003).  
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Common garden experiment 

In February-March 2012, BMR was collected for virtually all house sparrows on Leka (ca. 180 

individuals) and Vega (ca. 170 individuals). Approximately 40% of the male and female birds 

on each island with lowest (Leka) and highest (Vega) levels of BMR were released back on 

the island, whereas 70 house sparrows from each of the islands were translocated to a 

common environment on Lauvøya in Sør-Trøndelag. Nearly all (97%) of the 72 indigenous 

house sparrows on Lauvøya, and 83% of the 18 house sparrows on the mainland closest 

(<2.5 km) to Lauvøya were moved across mountains and fjords and released in suitable 

habitat >80 km away prior to translocation. From Leka, the 70 individuals with the highest 

levels of BMR were translocated to Lauvøya. Similarly, from Vega the 70 individuals with the 

lowest BMR were selected to be translocated to Lauvøya. By introducing approximately 

twice as many individuals as the original population on Lauvøya, we compensated for the 

fact that many birds would not establish and breed on the island (see Skjelseth et al., 2007). 

The remaining ca. 20% individuals on Leka and Vega (with close to average levels of BMR) 

were removed from the island and released in suitable habitat across mountains and fjords 

>120 km away . BMR selection continued on Leka until 2014 and on Vega until 2013, and any 

responses to selection were recorded until 2015 and 2014 on Leka and Vega, respectively.  

After the experiment there were high BMR individuals on Vega, low BMR individuals on Leka, 

and a mix of high and low BMR individuals from two different populations on Lauvøya. 

Individual measurements on BMR have been collected from all individuals on each study 

island in February-March 2012-2015, with year 2015 missing for Vega (Appendix Fig. A1). 
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Data collection - Basal metabolic rate  

In the present study, BMR was measured as oxygen consumption rates using an open flow 

system. A custom-made climate chamber (Appendix Fig. A2) was used to house eight 

respirometer chambers (metabolic chambers) holding the house sparrows. Here, the 

temperature was constantly held at 25-30°C, which is within the thermoneutral zone of the 

house sparrow (Hudson and Kimzey, 1966). These enable BMR data collection of eight birds 

at the same time. Of the daily catch from different locations on the three islands, 16 birds 

were randomly selected for BMR measurements the same day. The 16 birds were randomly 

divided in two batches of 8 individuals for measurements within their two resting periods. 

Individuals of the first batch were measured in the evening (16:00 – 23:00), whereas 

individuals in the other batch were measured during the night 23:00 – 08:00). The birds 

measured during the night were kept in separate cages, supplied with food until they were 

transferred to the metabolic chambers at 23:00. A small piece of bread was fed to the birds 

to assure well-being, not enough to disturb them from entering a postabsorptive state 

during measurement period.  All birds were weighted (to the nearest 0.1 g) before the BMR 

measurements were conducted. Any remaining birds in the daily catch were moved to an 

aviary and kept for BMR measurements the day after. All birds went through the same 

experimental protocol, irrespective if they were measured on catch day or after staying one 

night in the aviary. For more details about the BMR measurement procedure in see Rønning 

et al. (2015). 

Data collection - SNP Genotyping 

The protocol and development of a medium density 10k SNP-array is explained in detail in 

Hagen et al. (2013). In the present study, an improved custom Affymetrix Axiom 200k-SNP-

array was used. Variable sites were identified from a 10x whole genome sequencing of 33 

individual house sparrows, at least one presumably unrelated male and female were 

selected from 15 populations across Norway and Finland. Genome sequences were aligned 

to the House sparrow reference genome (Elgvin et al. ms; Hagen et al. ms) , where 185k 

SNPs with little variation in flanking sequence were selected to be distributed more or less 

evenly, 6000bp apart, across the chromosomes (Elgvin et al. ms; Hagen et al. ms).  

Additionally, 15k SNPs were placed close to selected candidate genes. A total number of 186 

056 SNPs with the highest Affymetrix quality score (Polymorphic High Resolution) were used 
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for genotyping, and were successfully typed in 715 individuals with BMR measurements. 

Genomic filtering was applied with Identical by state (IBS) > 0.95 to identify duplicate 

samples, minor allele frequency (MAF) > 0.01, genotype success rate > 0.9, and callrate > 

0.95 to create map. and ped. files for the three islands Leka, Vega and Lauvøya. This filtering 

resulted in 184 688 markers and 711 genotyped individuals with BMR measures, where 4 

indviduals within the study populations were identified as duplicates, hence excluded from 

the analyses. Positions are correct within scaffolds on the different chromosomes, but not 

within chromosomes because I did not have access to positions in a completed reference 

genome sequence where scaffold were ordered correctly. We also do not have any assembly 

for chromosome 16 probably because of many gene-duplications on this chromosome.  

Genetic analyses – Quality control and population structure 

If not otherwise mentioned, all statistical analyses was performed in R version 3.2.5 (R Core 

Team, 2016). Before GWAS and genome partitioning analyses, a second quality control (QC) 

was performed with the GenABEL R-package (Aulchenko et al. 2007a). First, a QC was 

conducted within islands to remove SNPs likely to have genotyping error. This was done by 

excluding SNPs for which a Hardy-Weinberg (HW) equilibrium test had a level of significance 

of p = 2.7 x 10-7 (0.05/184 688 nr. of SNPs). This was because deviations from Hardy-

Weinberg equilibrium were expected to occur in the dataset due to clear population 

structuring and strong artificial selection. Hence, genotyping error was confounded with 

these factors. Performing QC within population should help mitigate these confounding 

effects and uncover SNPs with real genotyping errors. I then pooled the accepted markers 

and individuals from within islands, and adjusted for callrate > 0.95, genotype sucessrate > 

0.95, minor allele MAF > 0.01, and Identical by state IBS> 0.95. After QC we were left with 

183 876 markers and 697 individuals for the pooled analysis. Four individuals were excluded 

due to disagreement between phenotypic and genotypic sex. One individual was excluded 

due to too high heterozygosity. Nine individuals were excluded due to high number of 

missing genotypes. Population structure was visually examined by performing 

multidimensional scaling (MDS) (Mardia, 1978) on the distance-transformed genomic 

relationship matrix estimated from autosomal markers (GRM). The GRM was estimated 

using the IBS-function in GenABEL (Aulchenko et al. 2007a). In addition to subsequent 

clustering analysis via the k-means algorithm (Hartigan and Wong, 1979). For the within-
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island analyses, QC was performed separately on each island population with the same 

control parameters as for pooled analysis, which gave 181 844 markers and 258 individuals 

for Lauvøya, 181 342 markers and 172 individuals from Vega, and 181 298 markers and 267 

individuals from Leka. Because markers has to be adjusted QC parameters for within-islands 

analyses, some markers will not appear in all islands. For an overview of sample statistics, 

see Table 1. The Cgmisc genomic visualization software R-package was used to create linkage 

disequilibrium (LD) plots (Kierczak et al., 2015), where LD (r2) between markers was 

calculated via the fast LDcompare method developed by Hao (2007).  

Geneetic analyses – Controlling for covariates and factors  

Due to having repeated observations on individuals with different degrees of relatedness, I 

had to control for confounding factors of relatedness  and environment (Wilson et al. 2010; 

Aulchenko et al. 2007b). In addition, I expected that BMR would show average differences 

for sex, age and period of measurement, and there would be an approximate linear 

relationship between body mass and BMR.  Hence, factors and covariates of sex, age and 

mass were selected prior to analyses because of their biological association with BMR, as 

seen in similar studies of the trait (Rønning et al., 2014; Versteegh et al., 2008). 

Measurement time itself can also affect BMR values, hence period of measurement also had 

to be included in the model (Page et al., 2011). Effects of covariates and factors was 

controlled for by performing GWAS analysis in two steps using the repeated measurements 

function (rGLS) implemented in the RepeatABEL R-package (Rönnegård et al., 2016). In short, 

a linear mixed model was fitted with the fixed effects (fixed factors and covariates) and 

random factors of relatedness and identity. Then each marker was fitted as a fixed factor 

(with three levels) on the independent residuals from the first model in a subsequent 

generalized linear model where the environmental- and polygenetic effects on BMR are 

accounted for. This method is similar to the GRAMMAR-method (Aulchenko et al. 2007b), 

but with the inclusion of repeated measurements.  

Likelihood ratio tests (LRT) (Burnham and Anderson, 2002) were utilized to determine the 

significance of each covariate and factor of sex, age , mass and period of measurement. See 

Appendix Table A1 for LRT statistics. Inconveniently, the mixed model part of the rGLS 

function is hardcoded, where likelihood of model is not calculated by default. To gauge if 

covariates explained a significant part of variation in BMR, a HGLM model was fitted only 
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with animal identity as a random factor and covariates and factors to calculate LRT p-values. 

Likelihood ratio of full model (including all covariates and factors) was compared against 

reduced models (one covariate is dropped in each reduced model) to get LRT p-values for 

covariates. Parameter estimates from HGLM model with no GRM was not significantly 

different from rGLS estimates, therefore, parameter estimates for covariates are shown for 

rGLS fit in results, and p-values for fixed effects are from LRT tests where no GRM is 

included.   

Genetic analyses – Repeated measurements model (rGLS) 

The linear mixed model in the first step of the rGLS function uses the estimation algorithm 

for hierarchical generalized linear models (HGLM) (Lee and Nelder, 1996) implemented in 

the R package hglm (Rönnegård et al., 2010).  HGLM allows for high flexibility where fixed 

and random effects can come from diverse distributions, but rGLS assumes multivariate 

Gaussian errors. The first step of rGLS is therefore an animal model (Lynch and Walsh, 1998) 

fitted via HGLM, where phenotypic variance in BMR is partitioned into genetic- and non-

genetic sources of variance. Variance components estimated for BMR include permanent 

environment variance (Vpe), due to differences within individuals caused by fixed effects of 

environment or non-additive effects, and additive genetic variance (Va) due to genetic 

differences between individuals. The GRM was estimated by the GenABEL method 

(Aulchenko et al. 2007a) implemented in RepeatABEL rGLS function. For a practical review of 

the animal model methodology, see Wilson et al. (2010). Note that confidence intervals for 

variance estimates were estimated by the asymptotic normal approximation method, which 

assumes the sample size is large enough to meet normal critera for the likelihood estimators 

(Williams et al., 2002). Additionally, the dataset is not balanced (Table 1), where some 

individuals only have one observation. This causes Vpe to be underestimated, although Va is 

not affected (Rönnegård, pers. comm. 2016).  

The second part of the rGLS model included each marker as a fixed effect on BMR adjusted 

for relatedness, repeated measurements, and covariates and factors from the first step in 

rGLS model. P-values of SNP-effects come from Wald-tests. Additive action of SNPs is 

assumed, where the variance of a SNP (Vsnp) equals 2pq(a + d(q - p))2 (Husby et al., 2015). 

Dominance deviation d is zero, a is the additive effect, p is MAF and q is the major allele 

frequency. Visual examination of residuals, and correlations between fixed effects showed 
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no deviances from model assumptions. Genome-wide significance thresholds was 

determined by dividing chosen significance value of 0.05 by number of markers 

(p = 0.05/183 876 = 2.72 x 10-7, for pooled analysis). Suggestive thresholds for pooled GWAS 

was determined by dividing 1 by number of markers allowing for one false positive 

(p= 5.44 x 10-6) (Husby et al., 2015). The same protocol was used to construct within island 

GWAS significance thresholds: significance threshold within Leka = 2.75 x 10-7 and suggestive 

threshold within Leka = p=5.42 x 10-6, significance threshold within Lauvøya = 2.75 x 10-7, 

suggestive threshold within Lauvøya = 5.50 x 10-6
, significance threshold within Vega = 

2.76 x 10-7 , suggestive threshold within Vega = 5.52 x 10-6.  

Post-hoc mixed models were fitted to visualize the effects of SNPs of interest using the lme4 

package in R (Bates et al., 2014), with confidence intervals constructed through Kenward-

Roger approximation implemented in the R package pbkrtest (Halekoh and Højsgaard, 2014).   

Genome partitioning analysis 

Genome partitioning analysis was performed with the genome-wide complex trait 

analysis v.1.02 (GCTA) software tool (Yang et al., 2011a). BMR measurements from 697 

individuals from all three island-populations, and the 183 876 SNPs that passed QC were 

used in analysis. Additive genetic variance in BMR were estimated for each chromosome 

using chromosomal GRMs. Similar to rGLS, GCTA assumes random contributions of SNPs to 

variation in BMR, which are correlated between individuals who share similar genotypes. By 

fitting chromosomal GRMs as random effects, the particular contribution of a chromosome 

to BMR variation was estimated. The relationship between chromosome size and variation 

explained was studied by plotting phenotypic variance in BMR explained by each 

chromosome against chromosome length. Developers of GCTA denote phenotypic variation 

explained by SNPs as Vg, wheras rGLS developers which use Va. Basically both methods 

estimate and assume additive gene action, but Vg specifically points to the fact that genetic 

effects are estimated via SNPs, and Vg/Vp is the variance explained by all the genome-wide 

SNPs (Visscher et al., 2014). Vg1/Vp would for instance be the variance in BMR explained by 

all SNPs on chromosome 1.  

The genetic architecture was visually examined to check for correspondence with either a 

polygenic-, medium-, or large effect QTL -architecture. See Fig. 2 in Robinson et al. (2013) for 
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simulations of different genetic architecture. A polygenic signature would be represented as 

an increase in variation explained with increasing size of the chromosome, but if large effect 

loci are present one would expect those to break up the linear relationship (Robinson et al., 

2013). In the GCTA analyses, BMR was controlled for the same covariates and factors as in 

the rGLS analyses. However, there was no support for repeated observations in this version 

of GCTA, hence only unique observations were used to control for pseudo-replication. For 

individuals with repeated observations, the first observation was chosen. Several 

chromosomes were excluded in order to make the model converge. Non-convergence is due 

to estimates of variance explained by chromosomes move too far away from their 

parameter space (0 -1), and they become constrained to a negative value by default (Yang et 

al., 2011a). Because non-convergence is more likely when chromosomes contain few 

markers (Santure et al., 2013), the smallest chromosomes where excluded in ascending 

order until the model converged. This was a compromise to be able to perform the analyses.  

BLAST search 

The annotated collared flycatcher genome assembly FicAlb_1.4  (Ellegren et al., 2012) was 

used to see where my SNPs are in relation to known genes. BLAST search was performed 

through the Ensembl project (Kersey et al., 2015), with a sequence 71 bases long which 

included the SNP of interest. E-values were used to assert the significance of the match.   
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Results  

Visual examination of the distance transformed IBS matrix indicated genetic sub-structuring 

of the populations (Fig. 1).  Additional k-means clustering analysis (Appendix Table A2, 

Appendix Fig. A3) showed the same pattern in detail; where cluster 3 corresponds to a mix 

of all populations, cluster 1 corresponds mostly to Vega individuals and cluster 2 

corresponds mostly to Leka individuals, where both cluster 1 and 2 contain translocated 

individuals in addition to recruits from Lauvøya.  

The estimated variance components from the mixed model showed that BMR has significant 

additive genetic variance, which was larger than the variation within individuals (the 

permanent environmental effect) (Table 2). Factors and covariates explained a significant 

amount of variation in BMR (Appendix Table A1). BMR was on average 

4.8 mL O2 h-1 (±0.5, p < 2e-16) higher during night measurement than evening measurement. 

Females had on average 2.4 mL O2 h-1 (±0.6, p = 8.6 x 10-6) higher BMR than males. An 

increase of one year in age on average reduced BMR by 0.9 mL O2 h-1 (± 0.2, p =1.2 x 10-4).  

Finally, an increase in mass by 1 gram increased on average BMR by 3.5 

mL O2 h-1 (± 0.2, p < 2e-16).  

Pooled genome-wide association analyses 

After the covariates and factors had been accounted for, a second model (the GWAS), 

including SNP effects were fitted. Genomic inflation was estimated as 1.0198 (± 2.09 x 10-5) 

which was used to adjust p-values for residual population structure. No SNPs were 

significant after adjustment for genomic inflation, but SNPa91021 (p-value = 7.71 x 10-7) and 

SNPa91020 (p-value = 7.85 x 10-7) passed the suggestive threshold for pooled GWAS 

(p= 5.44 x 10-6) (Fig. 2). Table 3 shows the top 10 SNPs from the GWAS scan, where there is 

almost an order of magnitude difference in p-values between the two top SNPs and the third 

best SNP. 

The suggestive SNPs are on the same scaffold (1931 bp distance between), and linkage 

analyses shows that they are in strong linkage disequilibrium (LD ; r2 = 0.99). Hence, 

suggestive SNPs can therefore be considered as proxies for each other. Patterns of LD 

between SNPs near the two suggestive SNPs is shown in Fig. 3. Fig. 3 shows that SNPs closer 

to the two suggestive SNPs, in general increase their strength of association with BMR, and 
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in LD with the top SNP. SNPa90999 ( r2 =0.72) SNPa91032 (r2=0.71), SNPa91033 (r2=0.71, 

shows the highest degree of LD with SNPa91021.  

Within islands association analysis 

Within island association, analyses gave mixed results. There were no significant or 

suggestive results within Vega or Lauvøya (Appendix Table A3 and Table A4, Appendix Fig. 

A4 and Appendix Fig. A5).  However, SNPi43117 (P-value = 2.32 x 10-7) on chromosome 5 

passed significance within Leka (significance threshold = 2.75 x 10-7). Table 4 shows summary 

statistics for the top 10 markers from the Leka GWAS scan, with the corresponding 

Manhattan plot shown in figure 4. SNPi43117 show no strong LD with snips in near vicinity. 

Variance component estimates from Leka are more uncertain, with Va = 14.3 (95 % CI = 10.2 

- 20.1), Vpe = 7.9 ( 95% CI= 5.4 - 11.6 ), and Ve = 42.6 (95% CI = 40.5 - 44.7), but not 

significantly different from the pooled analysis (Table 2). The same is valid for Lauvøya: Va = 

18.4 (95 % CI = 13.0 - 26.1), Vpe = 3.4 (95 % CI =1.7 - 6.7), Ve = 52.9 (95 % CI = 44.3 - 63.0), and 

Vega : Va = 6.2 (95 % CI = 3.5 - 11.0) , Vpe=6.1 (95 % CI = 3.6 - 10.6), Ve = 37.1. (95 % CI = 30.0 - 

45.8 ). SNPa91021 and SNPa91020 where present in all within island analyses but did not 

reach suggestive or significant thresholds in within-populations analyses. 

BLAST results  

SNPa91021 and SNPa91020 were blasted against the collared flycatcher genome and was 

matched with a gene free region approximately 100 kbp away from the TOX3 (TOX High 

Mobility Group Box Family Member 3) gene (E-value = 4 x 10-15, alignment = 96%). The next 

best match had an E-value of 0.19. The closest gene to SNPi43117 was SEL1L 300 kbp away 

(E-value= 4 x 10-17, alignment = 95 %).  

SNP effects 

The estimated additive effect of SNPa91021 was 2.42 mL 02h-1 (± 0.484), and this explains 

3.5 % of phenotypic variance of BMR. Figure 5 corroborates this effect where the median 

BMR differs across genotype, with the highest BMR for the “TT” genotype class. Fig. 5 shows 

also that predicted effects of SNP91021 genotypes on BMR.  The estimated additive effect of 

SNPi43117 was 9.11 mL 02 h-1 (±1.551), and this SNP explains 8.6% of the phenotypic 

variance BMR within the Leka population.  
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Genome partitioning of additive genetic variance 

Variance in BMR explained by the different chromosomes is shown in Fig. 6. There was non-

significant negative relationship between the variance explained by a chromosome and its 

length (- 3.1 x 10-10 (± 1.7 x 10-10), p = 0.088). Chromosomes 7, 5, 4 and 11 were estimated to 

explain most variation in BMR, whereas the larger chromosomes 1, 2 and 3 explained little 

variance.  Estimated variance components for each chromosome had high uncertainty and 

chromosome 1 and 8 had parameter estimates that were constrained to zero. 
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Discussion 

In this study, I found significant additive genetic variance in BMR using genome-wide SNP-

markers in three genetically linked island-populations of house sparrows (Table 2).  Two 

suggestive SNPs, in almost complete LD with each other (r2 = 0.99), explaining 3.5 % of 

variance in BMR within and across populations, were discovered. One SNP explaining 8.6 % 

of variance in BMR was significant within one island-population (Leka). The suggestive and 

significant SNPs were not within any known genes, but the two suggestive SNPs in the 

pooled analysis (SNPa91021 and SNPa91020, from now considered in singular form) were 

the closest to any known gene, being approximately 100 kbp away from the TOX3 gene.  The 

genomic partitioning suggested oligogenic rather than polygenic inheritance of BMR (Figure 

6). There was a trend in genetic architecture corresponding to loci of large or medium effect 

located on the small and medium sized chromosomes. However, estimates of variance 

explained by individual chromosomes were highly uncertain (Fig. 6).  

Pooled GWAS 

The suggestive SNPs (SNPa91021 and SNPa91020, from here considered in singular form) 

from the pooled GWAS show mixed importance as QTL for BMR. Regarding the fact that the 

SNP did not reach genome-wide significance, is a red flag when considering future fine-

mapping of the region of interest. Corrections for multiple tests applied in the present study 

assumes independence of tests, which is clearly not accurate when SNPs are in LD (Fig. 3). 

Hence, the genome wide significance is overly stringent, because it overestimates the 

effective number of tests performed. The effect size of the suggestive SNP (3.5 %) 

corresponds to a SNP of large effect (Fig. 5), and might be overestimated (Slate, 2013; Xu, 

2003). Nevertheless, the sample size of the present study (N=697 individuals, N=920 records) 

is larger than similar studies in outbred populations (Schielzeth and Husby, 2014), which 

should reduce upward bias of SNP effects.  
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Santure et al. (2015) studied the genetic architecture of life history traits in great tits, based 

on 5591 SNPs typed on between 416 and 1949 individuals, where their results indicated that 

the marker density might not have been sufficient for any SNPs to be in strong LD with 

causal variants. The present study however, has over 30 times the marker density compared 

to that of Santure et al. (2015). Thus, this study has higher probability of tagging causal 

variants. The present study contains the largest marker density in any GWAS in a wild 

outbred vertebrate population to date, with a relatively large sample size (see Table 3 in 

Schielzeth and Husby, 2014). Besides, average distance between SNPs in these analyses were 

approximately 6000 bp, which should increase the probability of strong LD between typed 

SNPs and causal genes. Furthermore, power-simulation studies show that power to detect 

large effect loci increases markedly with reduction in effective population size (Ne) (Kardos et 

al., 2015). In general, island-populations are presumed to have low Ne compared to mainland 

populations. In the present study system along the Norwegian coast, relatively low values of 

Ne have been documented, including in the populations at Leka and Vega (Baalsrud et al. 

2014). Thus, the experimental “hybrid” population on Lauvøya should in theory have even 

lower Ne and larger linkage blocks, reducing the numbers of marker needed to tag causal loci 

(Mackay et al., 2009). Other studies in outbred populations, with smaller sample sizes and 

less marker dense QTL mapping, have discovered QTLs. For instance Husby et. al (2015) used 

37 309 SNPs after QC, and discovered significant and suggestive SNPs for clutch size in 

analyses female collared flycatchers (N=313 records, N = 656 observations). Johnston et al. 

(2011) mapped QTL for both horn- type (N = 445 observations)  and size (N = 160 

observations) in soay sheep (Ovis aries) typed on 35 831 SNPs (after QC).  Although the LD 

structure differs, comparing the sample size and marker density of the present study with 

the studies described indicate that large effect loci present for BMR should show up in GWA 

studies in these populations.  

Within islands GWAS 

The GWAS on data from the Leka population suggested that one significant SNP (SNPi43117) 

explained 8.6 % of BMR variation. However, one cannot exclude the possibility that this 

result may be a false positive. The MAF (0.028) is very low and the effect size estimate high 

(Table 4) compared to the suggestive SNP from the pooled GWAS (Table 3). The SNPi43117 

effect can be upwardly biased due to reduced sample size (Table 1) (Slate, 2013). 
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Nonetheless, context dependent effects, such as gene x environment-interactions (G x E), 

are documented to be common in mice (Mus musuculs), where the content dependent 

effects can explain more of the variance in phenotype than fixed effects (Valdar et al., 2006). 

It is plausible that the pooled GWAS averages effects across environments or genetic 

backgrounds, which may mask the effect of SNPi43117 (Mackay et al., 2009). Hence, the 

effect of SNPi43117 is only detectable within Leka. Another plausible explanation is that the 

linkage structure within Leka could have changed due to selection, and that SNPi43117 is 

only in linkage with a causative variant on Leka.  

Challenges of population structure 

Interestingly, the population structure analysis reflects the experimental manipulation of the 

populations. Both cluster analysis (Appendix Table A2, Appendix Fig. A3) and visual 

inspection of genetic similarity between individuals, corresponds with present knowledge of 

the populations. The common garden population on Lauvøya seems to be genetically 

intermediate between the Leka and Vega populations (Fig. 1). As expected, only a subset of 

translocated individuals established and bred on Lauvøya, which is reflected in Fig. 1, where 

the individuals on Lauvøya are not uniformly distributed. For example, some individuals 

translocated from Leka are clustered near recruits from Lauvøya or near individuals from 

their native population. Parentage analyses determining which individuals that established 

and bred on Lauvøya might improve genetic analyses and shed light on the effects of the 

suggestive SNP from the pooled analysis. Considering that sample size is reduced within 

islands, and power to detect loci is also reduced (Mackay et al., 2009). A linkage mapping 

approach, similar to the study done by Tarka et al. (2010) on the great reed warblers 

(Acrocephalus arundinaceu), might be able detect genomics regions containing genes 

explaining variation in BMR with higher power, albeit at the loss of resolution, in the 

pedigreed mixed population on Lauvøya (Schielzeth and Husby, 2014). Then, 

correspondence between findings of linkage analysis and pooled GWAS could be 

investigated.   

This study also highlights an important issue regarding population structure and the 

distribution of phenotype variation in BMR between and islands and between years. The 

present study assumes that phenotypic differences in BMR between islands and years (Table 

1, Appendix Fig. 1) were due to genetic effects (i.e caused by artificial selection). SNPs were 
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therefore assumed to be correlated with QTLs coding for high or low BMR in Vega or Leka, 

respectively. However, subpopulations can also differ genetically by chance, i.e. genetic drift. 

If mean BMR between islands varies proportionally with allele frequencies present in the 

population by random chance, an association signal between SNPs and trait can be spurious 

(Marchini et al., 2004). Fitting Island as a fixed factor in the pooled GWAS can control for 

average differences in BMR between islands, but it will also control for differences due to 

genes having an additive effect on BMR, and this will cause a reduction in power in the 

GWAS. Johnston et al. (2014) had a similar population structure in atlantic salmon (Salmo 

salar) in a study on sea age variation, where they applied an Fst outlier test to identify 

differential selection between population clusters of salmon. Applying Fst outlier tests in my 

populations might be a future prospect for this study; in any case, a quantification of how 

population structure affects GWAS results is an aim in future studies. 

SNPs as possible QTLs 

Exact knowledge of all genes located on chromosome 11 near the suggestive SNP 

(SNPa91021/SNPa91020) in house sparrows is yet unknown. In this study, BLAST results 

showed that the gene with highest proximity to the suggestive SNP is TOX3. TOX3, have 

been associated with human breast cancer in a previous GWAS study (Easton et al., 2007). 

TOX3 contains a high-mobility group (HMG-box) (O’Flaherty and Kaye, 2003), which affects 

DNA modification, and can hence change chromatin structure (Bustin, 1999). In a study by 

Yuan et al. (2009), TOX3 was identified as a neuronal transcription factor, indicated to affect 

neuron survival (Dittmer et al., 2011). The function of TOX3 in birds is yet unknown, but the 

annotated House Sparrow genome (Elgvin et al. ms) will show whether TOX3 is a possible 

QTL for BMR in house sparrows.  

Genome partitioning analysis 

The genome partitioning analysis reflects the GWAS results, that large effect loci might be 

present for BMR (Fig. 6). Chromosome 4, 5, and 11 explain each a substantial part of 

phenotypic variance in BMR (Fig. 6). These chromosomes have top 10 SNPs in the pooled 

analysis (Table 3). The relationship between chromosome size and variance in BMR 

explained by each chromosome (Fig. 6)  support BMR having large to moderate effect QTLs 

(see also Fig. 2 in Robinson et al., 2013). One outlier in the analysis is chromosome 7, which 

had no top 10 SNPs from the GWAS analyses, except for a non-significant SNP from GWAS 
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analysis within Lauvøya (Appendix Table A4) with relatively large effect (14.66 mL O2 h-1).  

This SNP might describe why chromosome 7 explains a large part of BMR variation. One 

must also consider that uneven LD across the genome, or clustered SNPs of small effect 

could give a false signature of large effect loci (Schielzeth and Husby, 2014). Nevertheless, it 

is interesting that results from GCTA analysis correspond with GWAS scans, and a trend in 

moderate/large effect QTL genetic architecture is visible. However, the uncertainty of the 

GCTA estimates were high (Fig. 6), and one cannot exclude the possibility of a polygenic 

basis for BMR in these house sparrows.  

Variance components of BMR 

From the estimated variance components of BMR, an approximate heritability of 0.2 (h2= 

Va/Va+Vp+Ve) can be calculated. This estimate disregards covariance between- and 

uncertainty in variance component estimates, and the heritability estimate should therefore 

be taken with caution (pers. comm. Rönnegård, 2016). Nevertheless, the estimate for Va  

(Table 2) should be unbiased and confirms there is a genetic component of BMR variation in 

the study populations.  For the sake of comparison, estimates of evolvability (Hansen et al., 

2011) could be better suited for comparison of variance components from this study with 

other studies, because it enables comparison of the evolutionary potential of traits in 

different populations and species (Hansen et al., 2011). An approximate estimate for 

evolvability can be calculated from Table 1 and Table 2: (12.4/ 79.42) x 100 % = 0.19 %. This 

measurement of evolvability predicts a 0.19 % change in mean BMR per generation under 

one unit strength of selection (Hansen et al., 2011). One unit of selection means that a 1 % 

change in the trait would yield a 1 % change in fitness. See Hansen et al (2011) for a 

biological interpretation of evolvability. Hence, the estimated h2 and evolvability for BMR 

indicates that the “cost of living” in these house sparrows is an adaptable trait across 

evolutionary time. Robust calculations of heritability and evolvability with unbiased 

confidence estimates are elements considered in the future development of the rGLS model 

(pers. comm., Rönnegård, 2016). Setting this issue aside, the approximate estimate of h2 for 

the house sparrows is similar to the estimate from captive zebra finches (Taeniopygia 

guttata) found in Rønning et al. (2007), but lower than the estimate from a natural 

population of pied flycatchers (Ficedula hypoleuca) (Bushuev et al., 2012). Estimates of h2 for 

BMR show great range between vertebrate species (White and Kearney, 2013). It is 
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therefore plausible that the approximate h2 for BMR in house sparrows is within the range 

found in other bird species. The same is valid for the approximate evolvability estimate (see 

Table 1 in Hansen et al., 2011). To my knowledge, this is the first study that estimates 

genetic variance components for BMR via SNPs, which should be of use in comparative 

studies of BMR evolvability in the future.  

Conclusion  

In this study, genetic variation in BMR in three genetically linked house sparrow populations 

has been explored using next-generation molecular methods. A new genome-wide 

association procedure utilizing repeated observations was successfully applied for the 

second time, as first seen used in Husby et. al (2015). Additive genetic variance is for the first 

time established for BMR in a free-living vertebrate population using SNPs. Another novel 

result is the discovery of a suggestive SNP of large effect associated with BMR in free-living 

birds, explaining 3.5 % of variation in BMR in three genetically linked populations. However, 

further research on phenotype differences between islands and population sub-structuring 

is needed, in order to clarify the relationship between the suggestive SNP and BMR variation. 

Additionally, future studies should further examine the genomic region in LD with the 

suggestive SNP from the present study.  The TOX3 gene could possibly be a candidate for a 

QTL underlying BMR. However, we will have to wait until the positions of genes close to the 

suggestive SNP will be revealed by the annotated house sparrow genome. Genomic 

partitioning of additive genetic variance across chromosomes corroborated by GWAS results, 

lending support to an oligogenic genetic architecture for BMR, where loci of large to medium 

effect might be present. Such a genetic architecture may allow future studies on the eco-

evolutionary dynamics of BMR at the genetic level.  

 

 

 

 

 



 
22 

 

References  

Allendorf, F.W., England, P.R., Luikart, G., Ritchie, P. a., Ryman, N., 2008. Genetic effects of 
harvest on wild animal populations. Trends Ecol. Evol. 23, 327–337. 

Aulchenko, Y.S., De Koning, D.J., Haley, C., 2007a. Genomewide rapid association using 
mixed model and regression: A fast and simple method for genomewide pedigree-
based quantitative trait loci association analysis. Genetics 177, 577–585. 

Aulchenko, Y.S., Ripke, S., Isaacs, A., van Duijn, C.M., 2007b. GenABEL: An R library for 
genome-wide association analysis. Bioinformatics 23, 1294–1296. 

Bates, D., Mächler, M., Bolker, B., Walker, S., 2014. Fitting Linear Mixed-Effects Models using 
lme4. arXiv 67, arXiv:1406.5823. doi:10.18637/jss.v067.i01 

Berteaux, D., Thomas, D., Bergeron, J., Lapierre, H., 1996. Repeatability of daily field 
metabolic rate in female Meadow Voles (Microtus pennsylvanicus). Funct. Ecol. 10, 
751–759. doi:10.2307/2390510 

Bligh, J., Johnson, K.G., 1973. Glossary of terms for thermal physiology. J. Appl. Physiol. 35, 
941–961. doi:10.1016/S0306-4565(02)00055-4 

Burnham, K.P., Anderson, D.R., 2002. Model selection and multimodel inference: a practical 
information-theoretic approach, Ecological Modelling. 
doi:10.1016/j.ecolmodel.2003.11.004 

Bushuev, A. V, Husby, A., Sternberg, H., Grinkov, V.G., 2012. Quantitative genetics of basal 
metabolic rate and body mass in free-living pied flycatchers. J. Zool. 288, 245–251. 
doi:10.1111/j.1469-7998.2012.00947.x 

Bustin, M., 1999. Regulation of DNA-Dependent Activities by the Functional Motifs of the 
High-Mobility-Group Chromosomal Proteins. Mol. Cell. Biol. 19, 5237–5246. 
doi:10.1128/MCB.19.8.5237 

Colosimo, P.F., Peichel, C.L., Nereng, K., Blackman, B.K., Shapiro, M.D., Schluter, D., Kingsley, 
D.M., 2004. The genetic architecture of parallel armor plate reduction in threespine 
sticklebacks. PLoS Biol. 2, 635–641. doi:10.1371/journal.pbio.0020109 

Dittmer, S., Kovacs, Z., Yuan, S.H., Siszler, G., Kögl, M., Summer, H., Geerts, A., Golz, S., 
Shioda, T., Methner, A., 2011. TOX3 is a neuronal survival factor that induces 
transcription depending on the presence of CITED1 or phosphorylated CREB in the 
transcriptionally active complex. J. Cell Sci. 124, 252–60. doi:10.1242/jcs.068759 

Easton, D., Pooley, K., Dunning, A., Pharoah, P., Thompson, D., Ballinger, D., Struewing, J., 
Morrison, J., Field, H., Luben, R., Wareham, N., Ahmed, S., Healey, C., Bowman, R., 
Collaborators, S., Meyer, K., Haiman, C., Kolonel, L., Henderson, B., Le Marchand, L., 
Brennan, P., Sangrajrang, S., Gaborieau, V., Odefrey, F., Shen, C.-Y., Wu, P.-E., Wang, H.-



 
23 

 

C., Eccles, D., Evans, D., Peto, J., Fletcher, O., Johnson, N., Seal, S., Stratton, M., Rahman, 
N., Chenevix-Trench, G., Bojesen, S., Nordestgaard, B., Axelsson, C., Garcia-Closas, M., 
Brinton, L., Chanock, S., Lissowska, J., Peplonska, B., Nevanlinna, H., Fagerholm, R., 
Eerola, H., Kang, D., Yoo, K.-Y., Noh, D.-Y., Ahn, S.-H., Hunter, D., Hankinson, S., Cox, D., 
Hall, P., Wedren, S., Liu, J., Low, Y.-L., Bogdanova, N., Schürmann, P., Dörk, T., Tollenaar, 
R., Jacobi, C., Devilee, P., Klijn, J., Sigurdson, A., Doody, M., Alexander, B., Zhang, J., Cox, 
A., Brock, I., MacPherson, G., Reed, M., Couch, F., Goode, E., Olson, J., Meijers-Heijboer, 
H., van den Ouweland, A., Uitterlinden, A., Rivadeneira, F., Milne, R., Ribas, G., 
Gonzalez-Neira, A., Benitez, J., Hopper, J., McCredie, M., Southey, M., Giles, G., 
Schroen, C., Justenhoven, C., Brauch, H., Hamann, U., Ko, Y.-D., Spurdle, A., Beesley, J., 
Chen, X., kConFab, Group, A.M., Mannermaa, A., Kosma, V.-M., 2007. Genome-wide 
association study identifies novel breast cancer susceptibility loci. Nature 447, 1087–
1093. doi:10.1038/nature05887 

Ekblom, R., Galindo, J., 2011. Applications of next generation sequencing in molecular 
ecology of non-model organisms. Heredity (Edinb). 107, 1–15. 
doi:10.1038/hdy.2010.152 

Ellegren, H., Sheldon, B.C., 2008. Genetic basis of fitness differences in natural populations. 
Nature 452, 169–175. doi:10.1038/nature06737 

Ellegren, H., Smeds, L., Burri, R., Olason, P.I., Backström, N., Kawakami, T., Künstner, A., 
Mäkinen, H., Nadachowska-Brzyska, K., Qvarnström, A., Uebbing, S., Wolf, J.B.W., 2012. 
The genomic landscape of species divergence in Ficedula flycatchers. Nature 491, 756–
760. doi:10.1038/nature11584 

Hagen, I.J., Billing, A.M., Ronning, B., Pedersen, S.A., Parn, H., Slate, J., Jensen, H., 2013. The 
easy road to genome-wide medium density SNP screening in a non-model species: 
development and application of a 10 K SNP-chip for the house sparrow (Passer 
domesticus). Mol Ecol Resour 13, 429–439. doi:10.1111/1755-0998.12088 

Halekoh, U., Højsgaard, S., 2014. A Kenward-Roger Approximation and Parametric Bootstrap 
Methods for Tests in Linear Mixed Models - The R Package pbkrtest. J. Stat. Softw. 59, 
1–32. doi:10.18637/jss.v059.i09 

Hansen, T.F., Pélabon, C., Houle, D., 2011. Heritability is not Evolvability. Evol. Biol. 38, 258–
277. doi:10.1007/s11692-011-9127-6 

Hao, K., Di, X., Cawley, S., 2007. LdCompare: Rapid computation of single- and multiple-
marker r2 and genetic coverage. Bioinformatics 23, 252–254. 
doi:10.1093/bioinformatics/btl574 

Hartigan, J.A., Wong, M.A., 1979. Algorithm AS 136: A K-Means Clustering Algorithm. J. R. 
Stat. Soc. Ser. C (Applied Stat. 28, 100–108. doi:10.2307/2346830 

Hill, W.G., 2012. Quantitative genetics in the genomics era. Curr. Genomics 13, 196–206. 
doi:10.2174/138920212800543110 



 
24 

 

Hirschhorn, J.N., Daly, M.J., 2005. Genome-wide association studies for common diseases 
and complex traits. Nat. Rev. Genet. 6, 95–108. doi:10.1038/nrg1521 

Hudson, J.W., Kimzey, S.L., 1966. Temperature regulation and metabolic rhythms in 
populations of the house sparrow (Passer domesticus). Comp. Biochem. Phsiology 17, 
203–217. 

Hulbert, A.J., Else, P.L., 2000. Mechanisms underlying the cost of living in animals. Annu. Rev. 
Physiol. 62, 207–235. doi:10.1146/annurev.physiol.62.1.207 

Husby, A., Kawakami, T., Rönnegård, L., Smeds, L., Ellegren, H., Qvarnström, A., 2015. 
Genome-wide association mapping in a wild avian population identifies a link between 
genetic and phenotypic variation in a life-history trait. Proc. Biol. Sci. 282, 20150156–. 
doi:10.1098/rspb.2015.0156 

Husby, A., Saether, B.E., Jensen, H., Ringsby, T.H., 2006. Causes and consequences of 
adaptive seasonal sex ratio variation in house sparrows. J. Anim. Ecol. 75, 1128–1139. 
doi:10.1111/j.1365-2656.2006.01132.x 

Jensen, H., Moe, R., Hagen, I.J., Holand, A.M., Kekkonen, J., Tufto, J., Saether, B.E., 2013. 
Genetic variation and structure of house sparrow populations: is there an island effect? 
Mol Ecol 22, 1792–1805. doi:10.1111/mec.12226 

Jensen, H., Saether, B.E., Ringsby, T.H., Tufto, J., Griffith, S.C., Ellegren, H., 2003. Sexual 
variation in heritability and genetic correlations of morphological traits in house 
sparrow (Passer domesticus). J Evol Biol 16, 1296–1307. doi:10.1046/j.1420-
9101.2003.00614.x 

Jensen, H., Steinsland, I., Ringsby, T.H., Saether, B.E., 2008. Evolutionary dynamics of a sexual 
ornament in the house sparrow (Passer domesticus): the role of indirect selection 
within and between sexes. Evolution (N. Y). 62, 1275–1293. doi:10.1111/j.1558-
5646.2008.00395.x 

Johnston, S.E., McEwan, J.C., Pickering, N.K., Kijas, J.W., Beraldi, D., Pilkington, J.G., 
Pemberton, J.M., Slate, J., 2011. Genome-wide association mapping identifies the 
genetic basis of discrete and quantitative variation in sexual weaponry in a wild sheep 
population. Mol Ecol 20, 2555–2566. doi:10.1111/j.1365-294X.2011.05076.x 

Johnston, S.E., Orell, P., Pritchard, V.L., Kent, M.P., Lien, S., Niemelä, E., Erkinaro, J., Primmer, 
C.R., 2014. Genome-wide SNP analysis reveals a genetic basis for sea-age variation in a 
wild population of Atlantic salmon (Salmo salar). Mol. Ecol. 23, 3452–3468. 
doi:10.1111/mec.12832 

Kardos, M., Husby, A., Mcfarlane, S.E., Qvarnström, A., Ellegren, H., 2015. Whole-genome 
resequencing of extreme phenotypes in collared flycatchers highlights the difficulty of 
detecting quantitative trait loci in natural populations. Mol. Ecol. Resour. 727–741. 
doi:10.1111/1755-0998.12498 



 
25 

 

Kersey, P.J., Allen, J.E., Armean, I., Boddu, S., Bolt, B.J., Carvalho-Silva, D., Christensen, M., 
Davis, P., Falin, L.J., Grabmueller, C., Humphrey, J., Kerhornou, A., Khobova, J., 
Aranganathan, N.K., Langridge, N., Lowy, E., McDowall, M.D., Maheswari, U., Nuhn, M., 
Ong, C.K., Overduin, B., Paulini, M., Pedro, H., Perry, E., Spudich, G., Tapanari, E., Walts, 
B., Williams, G., Tello-Ruiz, M., Stein, J., Wei, S., Ware, D., Bolser, D.M., Howe, K.L., 
Kulesha, E., Lawson, D., Maslen, G., Staines, D.M., 2015. Ensembl Genomes 2016: more 
genomes, more complexity. Nucleic Acids Res. 44, 574–580. doi:10.1093/nar/gkv1209 

Kierczak, M., Jablonska, J., Forsberg, S.K.G., Bianchi, M., Tengvall, K., Pettersson, M., Scholz, 
V., Meadows, J.R.S., Jern, P., Carlborg, Ø., Lindblad-Toh, K., 2015. Cgmisc: Enhanced 
genome-wide association analyses and visualization. Bioinformatics 31, 3830–3831. 
doi:10.1093/bioinformatics/btv426 

Konarzewski, M., Ksiazek, A., 2013. Determinants of intra-specific variation in basal 
metabolic rate. J. Comp. Physiol. B Biochem. Syst. Environ. Physiol. 183, 1–26. 
doi:10.1007/s00360-012-0676-5 

Kvalnes, T., Ringsby, T., Jensen, H., Sæther, B.-E., 2013. Correlates of egg size variation in a 
population of house sparrow Passer domesticus. Oecologia 171, 391–402. 
doi:10.1007/s00442-012-2437-2 

Lee, Y., Nelder, J.A., 1996. Hierarchical Generalized Linear Models. J. R. Stat. Soc. Ser. B 58, 
619–678. 

Lynch, M., Walsh, B., 1998. Genetics and analysis of quantitative traits, Genetics and analysis 
of quantitative traits. Sinauer Associates, Inc. {a}, 108 North Main Street, Sunderland, 
Massachusetts 01375, USA. 

Mackay, T.F.C., Stone, E.A., Ayroles, J.F., 2009. The genetics of quantitative traits: challenges 
and prospects. Nat Rev Genet 10, 565–577. 

Marchini, J., Cardon, L.R., Phillips, M.S., Donnelly, P., 2004. The effects of human population 
structure on large genetic association studies. Nat. Genet. 36, 512–517. 
doi:10.1038/ng1337 

Mardia, K. V, 1978. Some properties of clasical multi-dimesional scaling. Commun. Stat. 
Methods 7, 1233–1241. 

Mardis, E.R., 2008. The impact of next-generation sequencing technology on genetics. 
Trends Genet. 24, 133–141. doi:10.1016/j.tig.2007.12.007 

O’Flaherty, E., Kaye, J., 2003. TOX defines a conserved subfamily of HMG-box proteins. BMC 
Genomics 4, 13. doi:10.1186/1471-2164-4-13 

Page, A.J., Cooper, C.E., Withers, P.C., 2011. Effects of experiment start time and duration on 
measurement of standard physiological variables. J. Comp. Physiol. B Biochem. Syst. 
Environ. Physiol. 181, 657–665. doi:10.1007/s00360-011-0551-9 



 
26 

 

Pärn, H., Jensen, H., Ringsby, T.H., Sæther, B.E., 2009. Sex-specific fitness correlates of 
dispersal in a house sparrow metapopulation. J. Anim. Ecol. 78, 1216–1225. 
doi:10.1111/j.1365-2656.2009.01597.x 

Pärn, H., Ringsby, T.H., Jensen, H., Sæther, B.E., 2012. Spatial heterogeneity in the effects of 
climate and density-dependence on dispersal in a house sparrow metapopulation. Proc. 
R. Soc. B-Biological Sci. 279, 144–152. doi:10.1098/rspb.2011.0673 

R Core Team, 2016. R: A language and environment for statistical computing. R Foundation 
for Statistical Computing, Vienna, Austria. URL http://www.R-project.org/. ISBN 3–
900051–07–0, URL http://www.R–project.org/. 

Ringsby, T.H., Saether, B.E., Tufto, J., Jensen, H., Solberg, E.J., 2002. Asynchronous 
spatiotemporal demography of a house sparrow metapopulation in a correlated 
environment. Ecology 83, 561–569. doi:10.2307/2680035 

Robinson, M.R., Santure, A.W., Decauwer, I., Sheldon, B.C., Slate, J., 2013. Partitioning of 
genetic variation across the genome using multimarker methods in a wild bird 
population. Mol. Ecol. 22, 3963–3980. doi:10.1111/mec.12375 

Roff, D.A., 2007. A centennial celebration for quantitative genetics. Evolution (N. Y). 61, 
1017–1032. doi:10.1111/j.1558-5646.2007.00100.x 

Rönnegård, L., McFarlane, E., Husby, A., Kawakami, T., Ellegren, H., Qvarnström, A., Sciences, 
C., Sci-, A., Ecology, A., Centre, E.B., Dynamics, B., Uni-, N., 2016. Increasing the power 
of genome wide association studies in natural populations using repeated measures 
evaluation and implementation. doi:10.1111/2041-210X.12535 

Rönnegård, L., Shen, X., Alam, M., 2010. hglm: A Package for Fitting Hierarchical Generalized 
Linear Models. R J. 2, 20–28. 

Rønning, B., Broggi, J., Bech, C., Moe, B., Ringsby, T.H., Pärn, H., Hagen, I.J., Sæther, B.E., 
Jensen, H., 2015. Is basal metabolic rate associated with recruit production and survival 
in free-living house sparrows? Funct. Ecol. 1–9. doi:10.1111/1365-2435.12597 

Rønning, B., Jensen, H., Moe, B., Bech, C., 2007. Basal metabolic rate: heritability and genetic 
correlations with morphological traits in the zebra finch. J Evol Biol 20, 1815–1822. 
doi:10.1111/j.1420-9101.2007.01384.x 

Rønning, B., Moe, B., Berntsen, H.H., Noreen, E., Bech, C., 2014. Is the Rate of Metabolic 
Ageing and Survival Determined by Basal Metabolic Rate in the Zebra Finch? PLoS One 
9, e108675. doi:10.1371/journal.pone.0108675 

Santure, A.W., De Cauwer, I., Robinson, M.R., Poissant, J., Sheldon, B.C., Slate, J., 2013. 
Genomic dissection of variation in clutch size and egg mass in a wild great tit (Parus 
major) population. Mol. Ecol. 22, 3949–3962. doi:10.1111/mec.12376 



 
27 

 

Santure, A.W., Poissant, J., De Cauwer, I., van Oers, K., Robinson, M.R., Quinn, J.L., Groenen, 
M. a M., Visser, M.E., Sheldon, B.C., Slate, J., 2015. Replicated analysis of the genetic 
architecture of quantitative traits in two wild great tit populations. Mol. Ecol. 6148–
6162. doi:10.1111/mec.13452 

Sax, K., 1923. The Association of Size Differences with Seed-Coat Pattern and Pigmentation 
in Phaseolus vulgaris. Genetics 8, 552–560. 

Schielzeth, H., Husby, A., 2014. Challenges and prospects in genome-wide quantitative trait 
loci mapping of standing genetic variation in natural populations. Ann. N. Y. Acad. Sci. 
1320, 35–57. doi:10.1111/nyas.12397 

Skjelseth, S., Ringsby, T.H., Tufto, J., Jensen, H., Saether, B.E., 2007. Dispersal of introduced 
house sparrows Passer domesticus: an experiment. Proc. R. Soc. B-Biological Sci. 274, 
1763–1771. doi:10.1098/rspb.2007.0338 

Slate, J., 2013. From beavis to beak color: A simulation study to examine how much QTL 
mapping can reveal about the genetic architecture of quantitative traits. Evolution (N. 
Y). 67, 1251–1262. doi:10.1111/evo.12060 

Slate, J., 2005. Quantitative trait locus mapping in natural populations: Progress, caveats and 
future directions. Mol. Ecol. 14, 363–379. doi:10.1111/j.1365-294X.2004.02378.x 

Slate, J., Santure, A.W., Feulner, P.G.D., Brown, E.A., Ball, A.D., Johnston, S.E., Gratten, J., 
2010. Genome mapping in intensively studied wild vertebrate populations. Trends 
Genet. 26, 275–284. doi:10.1016/j.tig.2010.03.005 

Tarka, M., Akesson, M., Beraldi, D., Hernández-Sánchez, J., Hasselquist, D., Bensch, S., 
Hansson, B., 2010. A strong quantitative trait locus for wing length on chromosome 2 in 
a wild population of great reed warblers. Proc. Biol. Sci. 277, 2361–2369. 
doi:10.1098/rspb.2010.0033 

Valdar, W., Solberg, L.C., Gauguier, D., Cookson, W.O., Rawlins, J.N.P., Mott, R., Flint, J., 
2006. Genetic and environmental effects on complex traits in mice. Genetics 174, 959–
984. doi:10.1534/genetics.106.060004 

Versteegh, M. a., Helm, B., Dingemanse, N.J., Tieleman, B.I., 2008. Repeatability and 
individual correlates of basal metabolic rate and total evaporative water loss in birds: A 
case study in European stonechats. Comp. Biochem. Physiol. - A Mol. Integr. Physiol. 
150, 452–457. doi:10.1016/j.cbpa.2008.05.006 

Visscher, P.M., Hemani, G., Vinkhuyzen, A. a E., Chen, G.B., Lee, S.H., Wray, N.R., Goddard, 
M.E., Yang, J., 2014. Statistical Power to Detect Genetic (Co)Variance of Complex Traits 
Using SNP Data in Unrelated Samples. PLoS Genet. 10. 
doi:10.1371/journal.pgen.1004269 



 
28 

 

White, C.R., Kearney, M.R., 2013. Determinants of inter-specific variation in basal metabolic 
rate. J. Comp. Physiol. B Biochem. Syst. Environ. Physiol. 183, 1–26. 
doi:10.1007/s00360-012-0676-5 

Wiersma, P., Munoz-Garcia, A., Walker, A., Williams, J.B., 2007. Tropical birds have a slow 
pace of life. Proc. Natl. Acad. Sci. U. S. A. 104, 9340–9345. 
doi:10.1073/pnas.0702212104 

Williams, B.K., Nichols, J.D., Conroy, M.J., 2002. Analysis and management of animal 
populations, Academic Press New York. 

Wilson, A.J., Réale, D., Clements, M.N., Morrissey, M.M., Postma, E., Walling, C. a., Kruuk, 
L.E.B., Nussey, D.H., 2010. An ecologist’s guide to the animal model. J. Anim. Ecol. 79, 
13–26. doi:10.1111/j.1365-2656.2009.01639.x 

Xu, S.Z., 2003. Theoretical basis of the Beavis effect. Genetics 165, 2259–2268. 

Yang, J., Lee, S.H., Goddard, M.E., Visscher, P.M., 2011a. GCTA: A tool for genome-wide 
complex trait analysis. Am. J. Hum. Genet. 88, 76–82. doi:10.1016/j.ajhg.2010.11.011 

Yang, J., Manolio, T.A., Pasquale, L.R., Boerwinkle, E., Caporaso, N., Cunningham, J.M., de 
Andrade, M., Feenstra, B., Feingold, E., Hayes, M.G., Hill, W.G., Landi, M.T., Alonso, A., 
Lettre, G., Lin, P., Ling, H., Lowe, W., Mathias, R.A., Melbye, M., Pugh, E., Cornelis, M.C., 
Weir, B.S., Goddard, M.E., Visscher, P.M., 2011b. Genome partitioning of genetic 
variation for complex traits using common SNPs. Nat. Genet. 43, 519–U44. 
doi:10.1038/ng.823 

 

 

 

 

 

 

 

 

 

 

 

 



 
29 

 

Tables 

Table 1 Sample sizes and BMR statistics for genetic analyses performed within populations and for pooled 
analysis. Founders at Lauvøya include 62 individuals from Leka and 64 individuals from Vega. Means and 
standard errors are from mixed models where only intercept and id (as a random factor) were fitted. N is total 
number of observations, id is the number of unique individuals, mean and variance obs. is the mean and 
variance of BMR for observations, respectively. 

Sample Leka  Vega Lauvøya Pooled analysis 

N 362 225 333 920 

id 267 172 258 697 

Mean obs. 1.36 1.31 1.29 0.345 

Variance obs. 0.359 0.308 0.355 1.32 

Mean BMR 76.6 (± 0.5) 83.1 (± 0.6) 80.1 (± 0.6) 79.4 (± 0.3) 
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Table 2 Variance component estimates for BMR (mL O2 h-1) from repeated measurement model (rGLS). 

Estimates and their 95 % confidence intervals (CI) are presented. BMR was measured on 697 individuals with 

920 observations from three genetically connected island populations of House Sparrows. BMR was controlled 

for for fixed effects of sex, age, period of measurement and mass. Variance in BMR was decomposed into 

variance due to genetic (Va) and environmental (Vpe) differences between individuals. Va and Vpe were 

estimated by by fitting the genomic relatedness matrix and animal identity as random effects, respectively. Ve 

is residual variance not explained by covariates or random effects. Confidence intervals were estimated by 

asymptotic normal approximation methods.   

Variance components Estimate CI (95 %) 

Va (additive genetic variance) 12.4  9.74 - 15.7  

Vpe (permanent environment variance) 6.64 5.02 - 8.78  

Ve (residual variance) 42.2  38.0 - 47.0  
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Table 3 Summary statistics for the top 10 SNPs associated with BMR (mL O2h-1) from repeated measurement GWA scan using 920 observations from 697 individuals from 

three genetically linked island-populations of house sparrows. For each SNP the table shows their chromosome, position within scaffolds, the reference allele A1, the effect 

allele A2, the minor allele frequency (MAF), estimated effect size of allele A2 with standard error, p-values adjusted for genomic inflation. SNP names in bold pass the 

pooled analysis suggestive threshold (p<5.44 x 10-6).  

SNP-name chromosome position A1 A2 MAF effect (SE) p-value callrate 

SNPa91021 11 2987835 G T 0.248 2.42 (± 0.484) 7.71 x 10-7 1.000 

SNPa91020 11 2985904 C T 0.247 2.42 (± 0.486) 7.85 x 10-7 1.000 

SNPa53531 5 10214309 G A 0.096 3.18 (± 0.716) 1.10 x 10-5 0.999 

SNPa222365 4 7761289 G A 0.460 1.74 (± 0.404) 2.06 x 10-5 0.997 

SNPa159077 5 4405934 A G 0.138 2.61 (± 0.607) 2.11 x 10-5 0.999 

SNPa70021 8 10303911 C T 0.081 -3.30 (± 0.783) 3.06 x 10-5 1.000 

SNPa91033 11 3001742 C T 0.194 2.20 (± 0.528) 3.71 x 10-5 0.996 

SNPa91032 11 3000916 A G 0.194 2.17 (± 0.527) 4.47 x 10-5 1.000 

SNPa121703 4 5392680 T C 0.494 1.74 (± 0.428) 5.49 x 10-5 0.996 

SNPa520269 4 961417 G A 0.326 1.89 (± 0.467) 5.91 x 10-5 0.994 
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Table 4 Summary statistics for the top 10 SNPs associated with BMR (mL O2h-1) from repeated measurement GWAS using 362 observations from 267 individuals from Leka. 

For each SNP the table shows their chromosome, position within scaffolds, the reference allele A1, the effect allele A2, the minor allele frequency (MAF), estimated effect 

size of allele A2 with standard error, p-values adjusted for genomic inflation. SNP names in bold pass the bonferroni significance threshold within Leka (p=2.75 x 10-7).  

SNP-name chromosome position A1 A2 MAF effect (SE) p-value callrate 

SNPi43117 5 418265 A G 0.028 8.67 (± 1.638) 2.32 x 10-7 1.000 

SNPa340652 29 3391002 C T 0.075 4.96 (± 1.144) 2.29 x 10-5 1.000 

SNPa287941 9 5026343 C A 0.165 3.47 (± 0.808) 2.67 x 10-5 0.989 

SNPi32953 1 2006319 A G 0.077 4.24 (± 0.991) 2.89 x 10-5 0.993 

SNPa91720 11 4035219 C T 0.163 -3.59 (± 0.840) 2.96 x 10-5 1.000 

SNPa67428 8 4546553 C T 0.400 -2.67 (± 0.633) 3.67 x 10-5 0.993 

SNPa402163 3 768362 C T 0.212 -3.24 (± 0.769) 3.84 x 10-5 0.996 

SNPa165502 18 5581805 G A 0.153 3.55 (± 0.848) 4.40 x 10-5 0.978 

SNPa495505 30 1034 C A 0.276 -3.04 (± 0.728) 4.46 x 10-5 0.996 

SNPa339958 29 2331321 C T 0.483 -2.84 (± 0.683) 5.00 x 10-5 0.993 
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Figures 

 

Fig. 1 Multidimensional scaling of the genomic relatedness matrix based on 697 individuals typed in 183 876 SNPs. Individuals originate from three genetically linked island 

populations off the coast of mid-Norway. Coloring is the population identifier: Leka =Green, Vega=Red, Lauvøya = Blue. Crosses are individuals that were translocated from 

either Leka (green cross) or Vega (red cross) to Lauvøya in a selection experiment (see main text). Dots are either individuals released back on the islands (Leka =red dots, 

Vega = green dots), or recruits from Lauvøya (blue dots).
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Fig. 2 Manhattan plot of pooled analysis repeated measures GWA scan for SNPs associated with BMR (mL O2h-1) in 697 individuals (N=920 observations) from three 

genetically connected island-populations of House Sparrows. 183 876 SNPs are show with their chromosome (SNPs positions are within scaffolds, see main text) labelled on 

the x-axis and the negative-log10 p-values on the y-axis. No SNPs were included from chromosome 16, and chromosomes; 19, 21, 22, 24, 25, 26, 28, 29, 31, and 32 (Z) are 

not labelled. The dashed line is the genome-wide significance threshold  for the pooled analysis(p=2.72 x 10-7), and the solid line shows the suggestive threshold for the 

pooled analysis (p=5.44 x 10-6). 
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Fig. 3 Manhattan-linkage disequilbirum plot for a one million basepair (Mb) long region on chromosome 11 (within the same scaffold, see main text) containing the two top 

SNPs from the GWA scan for BMR.  Results are from repeated measures GWAS scan for SNPs associated with BMR (mL 02h-1) in 697 individuals (N=920 observations) from 

three genetically connected island-populations of house sparrows. Linkage disequilibrium (r2) between SNPs and reference SNPa91021 is color coded after degree of LD, 

where r2 color index is shown on right hand side of figure (SNPa91021 is the open black circle, overlapping with SNPa91020). Negative-log10 p-values are on the y-axis, 

where the dashed line is the genome-wide significance threshold for the pooled populations (p=2.72 x 10-7), and the solid line indicates the suggestive threshold for the 

pooled populations (p=5.44 x 10-6).  
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Fig. 4 Manhattan plot of repeated measures GWA scan for SNPs associated with BMR (mL O2 h-1) in 267 (N=362 observations) House Sparrows from Leka. 181 298 SNPs are 

shown with their chromosome labelled on the x-axis (SNPs positions are within scaffolds, see main text) and negative-log p-values on the y-axis. No SNPs were included 

from chromosome 16. Chromosomes; 19, 21, 22, 24, 25, 26, 28, 29, 31, and 32 (Z) are not labelled. Dashed line is the genome-wide significance threshold within Leka 

(p=2.75 x 10-7), and the solid line indicates the suggestive threshold within Leka (p=5.42 x 10-6). 
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Fig. 5 a)  Box-and-whisker plot of natural variation in BMR (mL O2 h-1) for all observations of individuals with 

different genotypes at the top SNP (SNPa91021) from the GWAS on the pooled population data. Median 

values (Q2) are shown as solid horizontal lines in the boxes, the bottom and top of boxes show the 25th (Q1) 

and 75th (Q3) percentile of data, respectively. Whiskers show max/min value or max/min points that are less 

than 1.5 times the interquantile range (Q3-Q1), which is approximately two standard deviations. b) Effect plot 

of the three genotype classes of SNPa91021 on BMR (mL O2 h-1) with 95 % confidence interval (CI). Predicted 

means and CI are computed through Kenward-Roger approximation a mixed model with fixed effect of SNP, 

fixed factors and covariates of age (years), sex, period of measurement (evening and night) and mass (grams) 

with individual identity as random effect.  n is the number of individuals in genotype class. 
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Fig. 6 Relationship between variance in BMR (mL O2 h-1) explained and chromosome size expressed in million 

basepairs (Mb). 697 individuals from three genetically linked island populations of house sparrows typed on 

183 876 SNPs were used to partition additive genetic variance in BMR across chromosomes. Standard error is 

shown as whiskers for each labelled chromosome. 
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Appendix  Tables 

Table A1. Summary of likelihood ratio (LR) tests of factors and covariates explaining BMR (mL O2 h-1)  Factors and covariates include; sex, a factor with two levels (males and 
females), period of measurement is a factor with two levels corresponding to evening and night measurements, age (years), and mass (grams). Mixed models were fitted by 
maximum likelihood with animal identity as a random factor. LRT-p-values are shown for each factor and covariate. DF = degrees of freedom. See main text for details on 
covariates and LRT.    

Predictors Log-likelihood ratio DF LRT-p-value 

Age 14.866 1 p = 0.0001154 

Sex  19.823 1 P < 8.6 x 10-6 
Period 84. 991 1 p <  2.2 x-10-16 

Mass 384.74 1 P <  2.2 x-10-16 
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Table A2. Summary table of k-means clustering analysis (clusters = 3) of the distance transformed genomic relatedness matrix for 697 individuals from three populations 

typed at 183876 SNPs. The Leka and Vega populations include only individuals that were released back on their respective islands during the selection and translocation 

experiment (see main text). The Lauvøya population consists of individuals translocated to the island and their recruits. Numbers in parentheses are the numbers of 

translocated individuals assigned to each cluster, whereas the remaining individuals in the Lauvøya population are recruits from Lauvøya assigned to each cluster.  

 Cluster 1 Cluster 2 Cluster 3 

Leka 0 176 91 

Vega 157 0 15 

Lauvøya 83 (62) 46 (43) 129 (21) 
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Table A3. Summary statistics for the top 10 markers associated with BMR(mL O2 h-1) from repeated measurement GWAS analysis using 225 observations from 172 

individuals from Vega.  For each SNP the table shows their chromosome, position within scaffolds, the reference allele A1, the effect allele A2, the minor allele frequency 

(MAF), estimated effect size of allele A2 with standard error, p-values adjusted for genomic inflation. No SNPs pass the genome-wide significance threshold within Vega 

(p=2.76 x 10-7).  

SNP-name chromosome position A1 A2 MAF effect (SE) p-value callrate 

SNPa296177 5 3671235 G T 0.265 3.69 (± 0.818) 9.44 x 10-6 1.000 

SNPa222365 4 7761289 G A 0.491 2.92 (± 0.659) 1.30 x 10-5 0.992 

SNPa221808 4 6915431 C A 0.220 -3.62 (± 0.825) 1.60 x 10-5 1.000 

SNPa400839 9 1805070 A C 0.407 2.99 (± 0.690) 2.09 x 10-5 1.000 

SNPa253598 29 6890225 G T 0.119 -4.56 (± 1.074) 2.94 x 10-5 1.000 

SNPa56615 29 913883 T C 0.083 5.16 (± 1.215) 2.95 x 10-5 0.996 

SNPa520255 4 938848 C T 0.237 3.44 (± 0.817) 3.55 x 10-5 1.000 

SNPa254479 29 8222619 A G 0.095 -5.16 (± 1.241) 4.35 x 10-5 1.000 

SNPa408985 3 1223497 A G 0.271 -3.00 (± 0.721) 4.40 x 10-5 1.000 

SNPa259353 4 7482732 G A 0.197 3.63 (± 0.875) 4.52 x 10-5 1.000 
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Table A4. Summary statistics for the top 10 markers associated with BMR(mL O2 h-1) from repeated measurement GWAS analysis using 333 observations on 258 individuals 

from Lauvøya.  For each SNP the table shows their chromosome, position within scaffolds, the reference allele A1, the effect allele A2, the minor allele frequency (MAF), 

estimated effect size of allele A2 with standard error, p-values adjusted for genomic inflation. SNP names in bold pass the genome-wide significance threshold within 

Lauvøya (p=2.75 x 10-7). 

SNP-name chromsome position A1 A2 MAF effect (SE) p-value callrate 

SNPa373199 7 3705623 C A 0.232 14.66 (± 3.245) 1.07 x 10-5 0.994 

SNPa481642 20 340019 C T 0.268 4.94 (± 1.114) 1.53 x 10-5 0.994 

SNPa95001 11 10039130 G A 0.444 -4.43 (± 1.016) 2.17 x 10-5 0.994 

SNPa147493 6 9294894 A G 0.366 6.15 (± 1.444) 3.35 x 10-5 0.994 

SNPa12575 12 3770892 A G 0.376 4.26 (± 1.006) 3.59 x 10-5 0.994 

SNPa338847 29 538758 G T 0.055 -4.94 (± 1.193) 5.49 x 10-5 1.000 

SNPa449664 2 215512 C A 0.380 -5.04 (± 1.219) 5.55 x 10-5 1.000 

SNPa338852 29 549135 G T 0.312 -5.17 (± 1.266) 7.03 x 10-5 1.000 

SNPa147421 6 9199435 G A 0.201 7.55 (± 1.865) 7.94 x 10-5 1.000 

SNPa132401 10 9611318 G A 0.386 3.56 (± 0.879) 8.09 x 10-5 1.000 
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Appendix Figures 

 

Fig. A1 Histogram over BMR measures across years within Leka, Vega, and Lauvøya. Column width is 1 mL O2 h-1. Dashed lines are means within islands and years.  
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Fig. A2 Shows the custom made climate chamber used for collecting BMR data of eight individual house sparrows, housed within eight smaller respirometer chambers, for 

estimating O2 consumption (mL O2 h-1). See main text for details. Photo: Henrik Jensen.  
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Fig. A3 Multidimensional scaling of the genomic relatedness matrix based on 697 individuals and 183 876 SNPs. Individuals originate from three island populations off the 

coast of mid-Norway. Coloring shows clusters identified by the k-means method with numbers of centers set to three. See Appendix Table A2 for   
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Fig. A4 Manhattan plot of repeated measures GWAS scan for SNPs associated with BMR (mL 02 h-1) in 172 (N=225 observations) House Sparrows from Vega. 181 342 SNPs 

are shown with their chromosome labelled on the x-axis (SNPs positions are within scaffolds, see main text) and negative-log10 p-values on the y-axis. No SNPs were 

included from chromosome 16, and chromosomes; 19, 21, 22, 24, 25, 26, 28, 29, 31, and 32 (Z) are not labelled. The dashed line is the genome-wide significance threshold 

within Vega (p=2.76 x 10-7), and the solid line indicates the suggestive threshold within Vega (p=5.52x 10-6). 
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Fig. A5 Manhattan plot of repeated measures GWAS scan for SNPs associated with BMR (mL O2 h-1) in 258 (N=333 observations) House Sparrows from Lauvøya. 181 844 

SNPs are shown with their chromosome labelled on the x-axis (SNPs positions are within scaffolds, see main text)  and negative-log10 p-values on the y-axis. No SNPs were 

included from chromosome 16, chromosomes; 19, 21, 22, 24, 25, 26, 28, 29, 31, and 32 (Z) are not labelled. The dashed line is the genome-wide significance threshold 

within Lauvøya (p=2.75 x 10-7), and the solid line indicates the suggestive threshold within Lauvøya (p=5.50 x 10-6). 

 

  

 


