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I 

Abstract 
 
Understanding reservoir geomechanical behavior is becoming more and more important 
for the petroleum industry. Reservoir compaction, which may result in surface subsidence 
and fault reactivation, occurs during reservoir depletion. Stress changes and possible 
fracture development inside and outside a depleting reservoir can be monitored using 
time-lapse (so-called “4D”) seismics and/or passive seismics, and this can give valuable 
information about the conditions of a given reservoir during production. In this study we 
will focus on using the (particle-based) Discrete Element Method (DEM) to model 
reservoir geomechanical behavior during depletion and fluid injection. 
  We show in this study that DEM can be used in modeling reservoir geomechanical 
behavior by comparing results obtained from DEM to those obtained from analytical 
solutions. The match of the displacement field between DEM and the analytical solution 
is good, however there is mismatch of the stress field which is related to the way stress is 
measured in DEM. A good match is however obtained by measuring the stress field 
carefully. We also use DEM to model reservoir geomechanical behavior beyond the 
elasticity limit where fractures can develop and faults can reactivate. 
  A general technique has been developed to relate DEM parameters to rock properties. 
This is necessary in order to use correct reservoir geomechanical properties during 
modeling. For any type of particle packing there is a limitation that the maximum ratio 
between P- and S-wave velocity Vp/Vs that can be modeled is 3 . The static behavior for 
a loose packing is different from the dynamic behavior. Empirical relations are needed 
for the static behavior based on numerical test observations. The dynamic behavior for 
both dense and loose packing can be given by analytical relations. Cosserat continuum 
theory is needed to derive relations for Vp and Vs. It is shown that by constraining the 
particle rotation, the S-wave velocity can be larger than the P-wave velocity. 
  A Modified Discrete Element Approach is introduced because of limitations imposed by 
the regular DEM. The modified approach works on clusters made of three elements each. 
Each cluster behaves like a continuum medium before failure and like a DEM medium 
after failure. The method is tested using several numerical examples. 
  The modified approach is used to model reservoir geomechanical behavior for two 
North Sea reservoirs. The first model is based on the Gullfaks field, where fracture 
development during fluid injection is modeled. Two scenarios are modeled, the first 
scenario shows a possibility of creating vertical fractures and the second shows the 
possibility of creating horizontal fractures. The directions of the fractures are mainly 
sensitive to the  initial effective stresses of the reservoir. Based on a Gullfaks 4D seismics 
cross-section, the horizontal fractures scenario appears to be a more likely possibility. 2D 
cross-sections from the Elgin-Franklin field are used to model the effects of fault 
reactivation on the stress field around a depleted reservoir. A 4D seismics cross-section 
for the Elgin-Franklin reservoir is used for comparison. The cross-section shows a 
possibility of using 4D seismics data to predict fault reactivation based on velocity 
changes. We can not, at this stage, rule out that the velocity changes shown on the 4D 
seismics cross-section correspond to the stress changes around the reactivated fault 
obtained from the geomechanical model.   
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Sammendrag  
 
Forståelse av petroleumsreservoarers geomekaniske oppførsel blir stadig viktigere for 
oljeindustrien. Reservoarkompaksjon, som kan resultere i overflatesetninger og 
reaktivering av forkastninger, oppstår i forbindelse med olje- og gassutvinning ved 
poretrykkreduksjon.  Spenningsendringer og mulig sprekkutvikling inne i og utenfor et 
produserende reservoar kan monitoreres ved hjelp av repetert (såkalt ”4D”) seismikk og / 
eller passiv seismikk, og dette kan gi verdifull informasjon om hvordan et reservoar 
endrer seg under produksjon. I dette arbeidet vil vi fokusere på bruk av en (partikkel-
basert) Diskret Element Metode (DEM) for å modellere geomekanisk reservoaroppførsel 
under poretrykkreduksjon og under injeksjon av fluid.   
  Vi viser i dette arbeidet, gjennom å sammenlikne resultatene produsert v.hj.a. DEM med 
beregninger fra analytiske løsninger, at DEM kan benyttes til modellering av 
geomekanisk reservoaroppførsel. Forskyvningfelt beregnet med DEM stemmer godt 
overens med de analytiske beregningene. Det er imidlertid avvik i beregninger av 
spenningsfeltet, noe som kan relateres til måten spenninger bestemmes på i DEM. God 
tilpasning kan oppnås ved å forbedre metodikken for spenningsbestemmelse i DEM. Vi 
benytter også DEM til å modellere geomekanisk reservoaroppførsel ut over de elastiske 
grensene, slik at sprekker kan oppstå og forkastninger kan bli reaktivert.   
  En generell teknikk for relatere DEM parametere til bergartsegenskaper er blitt utviklet. 
Dette er nødvendig for å kunne bruke korrekte bergmekaniske reservoaregenskaper i 
modelleringen. For en vilkårlig pakning av partikler er forholdet mellom P- og S-
bølgehastighet Vp/Vs begrenset oppover til 3 . Statisk oppførsel for en løs pakning er 
forskjellig fra dynamisk oppførsel. Empiriske relasjoner basert på numeriske forsøk er 
nødvendige for å kunne beskrive statisk oppførsel. Dynamisk oppførsel for både tett og 
løs pakning kan beskrives ved analytiske relasjoner. Cosserat’s kontinuumsteori må 
benyttes til å utlede relasjoner for Vp og Vs. For eksempel ser en at ved å hindre 
partikkelrotasjon kan S-bølgehastigheten (Vs) bli større enn P-bølgehastigheten (Vp). 
  En Modifisert Diskret Element Metode blir introdusert på grunn av begrensninger i den 
regulære DEM. Den modifiserte modellen benytter klaser bestående av tre elementer. 
Hver klase oppfører seg som et kontinuum før mekanisk brudd og som en DEM etter 
brudd. Metoden er testet ved flere numeriske eksempler.  
  Den modifiserte metoden er blitt anvendt til å modellere geomekanisk 
reservoaroppførsel for to Nordsjøreservoarer. Den første modellen er basert på Gullfaks-
feltet, og spekkutvikling assosiert med fluidinjeksjon er studert. To scenarier er 
modellert. Det første scenariet demonstrerer mulig utvikling av vertikale sprekker, og det 
andre viser mulig horisontal sprekkdannelse. Sprekkenes orientering er hovedsaklig 
følsom for det opprinnelige spenningsfeltet i reservoaret. Basert på en Gullfaks 4D 
seismisk seksjon, anser vi horisontale sprekker som det mest sannsynlige. 2D seksjoner 
fra Elgin-Franklin feltet er blitt brukt til å modellere effekter forbundet med reaktivering 
av forkastninger rundt et produserende reservoar. Resultatene er blitt sammenliknet med 
en 4D seismisk seksjon fra Elgin-Franklin reservoaret og viser at det er mulig å benytte 
4D seismiske data til å forutsi reaktivering av forkastninger basert på hastighetsendringer. 
Vi kan ikke på nåværende tidspunkt utelukke at hastighetsendringer vist i de seismiske 
4D dataene svarer til spenningsendringer rundt den reaktiverte forkastningen som 
beregnet fra den geomekaniske modellen.  
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Introduction 
 
 
Reservoir monitoring is becoming a more and more important tool for hydrocarbon field 
management. The extent to which changes in the reservoir are caused by pressure change 
and resulting stress concentration, fracturing and fault (re-)activation, or saturation 
changes, plays a significant role in understanding the current field status and planning 
future production strategies. For such reasons, multidisciplinary efforts have been 
gathered to understand the mechanism of the reservoir behavior during production.  
  So far continuum models, like finite element and finite difference methods, are the 
dominant methods in reservoir geomechanical modeling. However, these models lack the 
ability to treat the discontinuities in a dynamic manner. Neglecting discontinuities can 
result in an incorrect and/or incomplete reservoir description, depending on whether they 
are initially present or production induced. Newly created fractures can be detected by 4D 
seismics or as micro-seismic events using geophones planted inside the wells. Since the 
discrete element method (DEM) is inherently discontinuous, it is an obvious choice for 
studying such discontinuities. However, the method must first be tailored to this purpose 
and tested to show its ability in modeling problems at the reservoir scale, before being 
applied to real field data. 
  Chapter 1 introduces DEM with the basic theory and background necessary to perform a 
full reservoir geomechanical and reservoir monitoring study. The theory behind the 
particle-based DEM will be introduced: this includes the governing equations, 
mechanical damping used to reach a static solution, time step limitation, and bonding 
models. Rock Physics, as a very important science to link reservoir production-related 
changes to seismic changes, will be introduced. Three theories usually used in Rock 
Physics will be explained: effective medium theory, granular medium theory, and 
poroelasticity theory. Finally, a brief description of time-lapse seismics used in reservoir 
monitoring will be given. 
  Chapter 2 is considered as a preliminary study which focuses on investigating the 
feasibility of using DEM in large-scale reservoir geomechanics. Such a study is 
important, since (particle-based) DEM is usually applied to model rock at the micro-scale 
level. In a large-scale case, sphere or disk elements are no longer considered as rock 
grains, but as elements used to mesh the problem domain. Two types of modeling will be 
performed. First, reservoir geomechanical behavior will be modeled within the elasticity 
limit, and the results are compared with the appropriate analytical solution. Second, 
reservoir behavior will be modeled beyond the elasticity limit, observing the fracture 
development and fault re-activation.  
  Analytical relations that relate DEM parameters to rock properties will be derived in 
Chapter 3 by comparing a DEM medium with classical continuum as well as Cosserat 
continuum theories. This is important in order to feed DEM geomechanical models with 
the correct properties, because, in real life, rock properties are given as continuum 
medium parameters rather than as DEM input parameters. A potential for using DEM in 
forward seismic modeling will also be shown. 
  Because of DEM limitations, as it will be described in Chapter 3, a modified discrete 
element approach will be proposed in Chapter 4. The proposed method will work with 
clusters made of three elements each. The clusters behave according to continuum 
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medium before failure and according to DEM medium after failure. This enables the 
method to model facture development and propagation just like the original DEM while 
keeping the benefits of classical continuum models. Finally a fluid-coupling technique 
will be presented, based on discretizing the domain into a network of pipes that match the 
cluster contacts. This will facilitate modeling fluid flow through fractures as they are 
developed.    
  In Chapter 5, the modified discrete element approach proposed in Chapter 4 will be used 
to model reservoir geomechanics for 2D geological cross-sections taken from North Sea 
reservoirs. The first model will be the Gullfaks field, where simulation of fluid injection 
through a horizontal well will be performed. Fracture development will be monitored 
throughout the modeling period, and the result will then be compared to a 4D seismics 
section for the same reservoir. The second model will be taken from the Elgin-Franklin 
reservoir. The modeling will focus on studying fault re-activation scenarios, and how 
fault sliding can affect the stress field outside a depleting reservoir. The results from the 
geomechanical models will be compared to a 4D seismics cross-section to check the 
possibility of seeing fault reactivation evidence on the 4D seismics data.      
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



                                                                                                                                         IX                               

Table of contents  
 
1 Theory and background.......................................................................................... 1 

1.1 Introduction.......................................................................................................... 1 
1.2 Discrete Element Method .................................................................................... 2 

1.2.1 Calculation cycle......................................................................................... 2 
1.2.2 Governing equations ................................................................................... 2 
1.2.3 Mechanical damping................................................................................... 6 
1.2.4 Time step..................................................................................................... 7 
1.2.5 Bonding models .......................................................................................... 9 

1.3 Other numerical methods................................................................................... 10 
1.3.1 Finite Element Method (FEM).................................................................. 10 
1.3.2 Finite Difference Method.......................................................................... 14 

1.4 Reservoir geomechanics .................................................................................... 16 
1.4.1 Nucleus of strain and Geertsma solution .................................................. 17 
1.4.2 Stress path coefficient ............................................................................... 20 

1.5 Rock Physics...................................................................................................... 22 
1.5.1 Effective medium theory........................................................................... 22 
1.5.2 Granular medium model ........................................................................... 25 
1.5.3 Fluid effect ................................................................................................ 27 

1.6 Time-lapse seismics (4D seismics).................................................................... 27 
1.6.1 Time shift .................................................................................................. 28 
1.6.2 Amplitude change ..................................................................................... 29 

 
2 Discrete element modeling of stress and strain evolution within and outside a 

depleting reservoir ................................................................................................. 31 
2.1 Introduction........................................................................................................ 31 
2.2 Geomechanics of depleting reservoirs ............................................................... 32 
2.3 Discrete element modeling ................................................................................ 34 
2.4 Elastic case: comparison with Geertsma’s analytical model ............................. 34 

2.4.1 Modeling of depletion for a rectangular reservoir using PFC2-D .............. 35 
2.4.2 Modeling of Depletion Using PFC3-D ....................................................... 39 

2.5 Beyond Elasticity: Fault Initiation within and outside a Depleting Reservoir .. 40 
2.6 DEM Modeling with a Pre-existing Fault.......................................................... 43 

2.6.1 Reservoir Depletion, with Fault on the Side of the Reservoir .................. 45 
2.7 Discussion.......................................................................................................... 47 
2.8 Conclusions........................................................................................................ 48 

 
3 Relating discrete element method (DEM) parameters to rock properties ....... 49 

3.1 Introduction........................................................................................................ 49 
3.2 Micro-macro relations for a granular medium................................................... 50 
3.3 Dense packing.................................................................................................... 52 

3.3.1 Hexagonal packing.................................................................................... 52 
3.3.2 Square packing.......................................................................................... 58 

3.4 Random loose packing....................................................................................... 60 
3.4.1 Dynamic test ............................................................................................. 62 



                                                                                                                                         X                               

3.4.2 Static test................................................................................................... 65 
3.5 Failure properties and failure envelope.............................................................. 67 
3.6 Building velocity model..................................................................................... 70 
3.7 Studying the effect of particle rotation using the Cosserat continuum theory... 72 

 
4 A modified discrete element approach................................................................. 77 

4.1 Introduction........................................................................................................ 77 
4.2 A modified discrete element approach .............................................................. 78 

4.2.1 Solution scheme ........................................................................................ 81 
4.2.2 Failure criteria........................................................................................... 84 
4.2.3 Cluster states ............................................................................................. 85 
4.2.4 Cluster quality........................................................................................... 85 

4.3 Comparison with FEM....................................................................................... 87 
4.4 Modeling cracks propagation............................................................................. 89 

4.4.1 Horizontal crack........................................................................................ 89 
4.4.2 Inclined crack............................................................................................ 89 

4.5 Biaxial compression test .................................................................................... 91 
4.6 A general modified approach............................................................................. 94 
4.7 Fluid coupling .................................................................................................... 96 

4.7.1 Solution procedure .................................................................................... 98 
4.7.2 Restriction on the mesh quality................................................................. 98 
4.7.3 Comparison with analytical solution ........................................................ 99 

 
5 Reservoir geomechanical modeling for some North Sea cases: A comparison to 

4D seismics............................................................................................................ 103 
5.1 Introduction...................................................................................................... 103 
5.2 Reservoir geomechanical response to fluid injection ...................................... 104 

5.2.1 A numerical test ...................................................................................... 104 
5.2.2 2D synthetic model based on Gullfaks Field .......................................... 106 

5.3 Reservoir geomechanical response to depletion .............................................. 113 
5.4 Reactivations of faults passing through reservoirs during depletion: Elgin-

Franklin Field................................................................................................... 115 
5.5 Building velocity model of Gullfaks model for time-lapse seismics study ..... 122 

 
6 Conclusion ............................................................................................................ 125 
 
References...................................................................................................................... 127 
 
Appendix........................................................................................................................ 131 



Chapter 1: Theory and background  1 
________________________________________________________________________ 

1 Theory and background 
 

1.1 Introduction  
 
Studying reservoir geomechanics for reservoir monitoring application is truly a 
multidisciplinary effort. People engaged in such a study have to acquire certain 
knowledge of seismic analysis, reservoir engineering, and Rock Physics, and 
geomechanics. All those disciplines are essential for a complete reservoir monitoring 
study. In this chapter, a brief background for each of these disciplines will be introduced, 
which will help the reader for better understanding throughout this thesis. 
  Section 2 will introduce the Discrete Element Method (DEM) which will be used later 
in modeling reservoir geomechanics. The advantage of DEM over other numerical 
methods is its ability to model the dynamic development and propagation of fractures. 
Governing equations, mechanical damping, time step limitation, plus a bonding model 
will be introduced.  
  Section 3 will give a briefing about other numerical methods that are already used in 
modeling reservoir geomechanics. Two methods will be introduced, Finite Element 
Method (FEM), and the Finite Difference Method (FDM), which will allow the reader to 
compare them to DEM. 
  Section 4 will introduce basic concepts of reservoir geomechanics. Geertsma analytical  
solution for modeling reservoir depletion will also be described. Since in this thesis two 
dimensional models will only be used, a two dimensional version of Geertsma solution 
will be derived.   
  Section 5 will introduce Rock Physics, which is the study of the rock behaviors and rock 
properties. The mechanical properties for rocks will be the focus in this section. Three 
theories that are used widely in rock physic will be explained. First, we describe effective 
media theory which derives effective (continuum) mechanical properties for a rock after 
assuming that it is made from small scale heterogeneous materials (pores, cracks). 
Second, granular medium theory is described, based on the fact that many sedimentary 
rocks are made of grains. Third, fluid effects on rock mechanical properties will be 
described through poroelasticity theory. The importance about Rock Physics is that it can 
serve as a link between the production-related changes in a reservoir and its overburden 
and the seismic changes.  
  Section 6 will give an overview of time-lapse seismics, and how it can be used to 
monitor changes in reservoirs and their overburdens during production. It will also be 
shown that there are two types of 4D seismics analysis used in a reservoir monitoring 
study; time shift and amplitude change.            
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1.2 Discrete Element Method 
 
Discrete Element Method, or Distinct Element Method, (DEM) is a numerical technique 
developed by Cundall & Strack (1979) to model granular media and it may also be used 
to model rock mass that contains cracks and faults. It is a dynamic technique that models 
the granular media by a group of elements (or particles) that interact with each other by a 
specific contact law. Then the motion of the elements is updated using Newton’s 2nd Law. 
In a simplified way, the method may be considered as a mass-spring system (see Figure 
1.1) where the mass represents the element and the spring governs the contact law. The 
solution process is divided into steps, each step is called a calculation cycle and within 
this cycle both the contact and the motion laws are used.   
 
 

 
 
Figure 1.1. A mass-spring system that simplifies DEM concept, where m represents the element 
mass and the spring stiffness k represents the contact law. 
 

1.2.1 Calculation cycle 
 
The calculation cycle is an implementation of Newton’s 2nd law and the Contact law 
(force displacement law) at each time step and for each particle. Newton’s 2nd law 
updates the position of each particle, then the relative motion between each two particles 
in contact is fed into the contact law to update the contact forces and thus the total force 
on each particle is obtained. Then, the new total force is fed back to the Newton’s law. 
This cycle is repeated until a predefined number of steps is achieved. The number of 
steps is controlled, for example in static problem, by reaching the steady state solution. 
Figure 1.2 summarizes the calculation cycle. 

1.2.2 Governing equations 
 
To explain the theory behind DEM, an example of two particles A and B are taken, see 
Figure 1.3. The particles are located at A

ix , and B
ix  relative to given coordinate axes, the 

particles have radii of RA, RB. For simplicity we assume a two dimensional (2D) case. 
For a given time the gap un in a normal direction to the contact may be given as 
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Figure 1.2. The calculation cycle implementation which represents the solution procedure used in 
the Discrete Element Method. 
 
 

 
 
Figure 1.3. An interaction of two particles A, and B at a particular time, this figure is used to 
illustrate the theory behind DEM. 
 
 
 A B A B 2 A B 2

n 1 1 2 2u R R (x x ) (x x )= + − − + −  (1.1) 
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So by using linear contact law which is given by a normal stiffness constant kn, notice kn 
is a secant modulus since it is related to the total normal relative displacement un, the 
normal force at the contact Fn can be given as 
 
 n n nF k u= −  (1.2) 
 
Also, the movement of the two particles results in shear displacement at the contact. We 
would however like to work with the relative shear displacement increment Δus instead of 
the total one. In this case, the shear stiffness constant ks represents a tangent modulus 
since it is related to the displacement increment. So, the shear force increment ΔFs can be 
given as 
 
 s s sΔF k Δu= −  (1.3) 
 
where the shear relative displacement increment Δus is calculated using the particles’ 
velocities and the time step Δt as follows 
 
 A A B B

s i j j iΔu (Δv Δv n n ω d ω d )Δt= − − −  (1.4) 
 
where A B

i i iΔv (v v )= − is the relative velocity and ni is the normal unit vector, notice that 
Einstein summation convention with dummy subscript i,j is used in Eq. (1.4), ωA, ωB are 
the particles’ rotational velocities, and dA, dB are the distances between the contact point 
and the particles’ centers and they are given as  
 
 A C A 2 C A 2

1 1 2 2d (x x ) (x x )= − + −  (1.5) 
 
 B C B 2 C B 2

1 1 2 2d (x x ) (x x )= − + −  (1.6) 
 
However in 2D, the shear unit vector ti can be related to the normal unit vector ni (t1 = -
n2, t2 = n1), so Eq. (1.4) may be written as 
 
 A A B B

s 1 1 2 2Δu (Δv t Δv t ω d ω d )Δt= + − −  (1.7) 
 
Now, the shear force Fs can be updated as follows 
 
 t Δt t

s s sF F ΔF+ = +  (1.8) 
 
After updating the shear force, we need to check for particles slip and the criterion for 
that may be given as  
 
 s f nF μ F≤  (1.9) 
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where μf is the friction coefficient between the two particles, and if Eq. (1.9) is violated 
the shear force is set to 
 
 t Δt t Δt t

s f n sF μ F sign(F )+ +=  (1.10) 
 
After calculating Fn, and Fs at the contact C, the total contact force C

iF can be calculated 
as follows 
 
 C

i n i s iF F n F t= +  (1.11) 
 
This contact force will then be applied to the both particles as follows 
 
 A C

i iF F=  (1.12) 
 
 B C

i iF F= −  (1.13) 
 
The contact force C

iF  will also cause moment M acting on the both particles which can be 
given as  
 
 A C A C

3 jk j j kM e (x x )F= −  (1.14) 
and 
 B C B C

3 jk j j kM e (x x )F= − −  (1.15) 
 
where eijk is the alternating tensor defined as 
 

e123 = e231 = e312 = -e213 = -e132 = -e321 = 1, 
eijk = 0   otherwise. 

 
It should be mentioned that in more realistic models, unlike the one shown in Figure 1.3, 
each particle will have more than one contact, so the contributions from all the contacts 
that lie on the same particle must be added to Eqs. (1.12) to (1.15). 
  After getting the total force for each particle, we use Newton’s law to get the particle 
acceleration. Since we are still working with Figure 1.3, let us take particle A as an 
example. So the acceleration of particle A ( A

ia ) can be given as 
 

 
A ex total

A i i i
i A A

F F Fa
m m
+

= =  (1.16) 

where mA is the particle mass, ex
iF is an external force applied to particle A, which can be 

an act of gravity, pore pressure, or other type of loads defined by the user. Similarly, the 
rotational acceleration (αA) can be given a 

 
A

A
A

Mα
I

=  (1.17) 
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where IA is the moment of inertia of particle A, for example for a disk-shaped particle is 
given as 
 

 A A A 21I m (R )
2

=  (1.18) 

 
After getting the values of the particle’s transitional and rotational accelerations, the 
values of the velocity and the rotational velocity can be updated using central-finite 
difference integration scheme as follows 
 

 
Δt Δtt tA A A2 2

i i i(v ) (v ) a Δt
+ −

= +  (1.19) 
and 

 
Δt Δtt tA A A2 2(ω ) (ω ) α Δt

+ −
= +  (1.20) 

 
Finally, the particle’s position is updated as 
 

 
ΔttA t Δt A t A 2

i i i(x ) (x ) (v ) Δt
++ = +  (1.21) 

 
There are many other integration schemes that can be used instead of the above one, for 
example Munjiza (2004) lists many high-order schemes. Although these schemes can be 
more accurate than the above first-order one, they demand more computer memory and 
CPU time which is more costly in term of numerical modeling. Besides, the above 
scheme appears to be sufficient for our purpose, giving its simplicity and efficiency. 

1.2.3 Mechanical damping 
 
Mechanical damping is a phenomenon inside the rocks that causes energy dissipation for 
example through fracturing or internal friction. Damping causes rocks, during mechanical 
loading, to reach the state of rest, or in numerical modeling term, the steady state 
solution. In DEM, damping may be applied to the particles as a viscous force acting on 
each contact which can be given as a function of shear and normal damping coefficients, 
cn, cs, as follows 
 
 d

n n nF c Δv=  (1.22) 
and 
 d

s s sF c Δv=  (1.23) 
 
where Δvn, Δvs, are the relative normal and shear velocities, respectively.  
These forces are then included in Eq. (1.11) as follows 
 
 C d d

i n n i s s iF (F F )n (F F )t= − + −  (1.24) 
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The mechanical damping can also be applied using the absolute particle velocity and a 
damping parameter c instead, in this case the particle acceleration given in Eq. (1.16) is 
modified to  
 

 
A ex A

A i i i
i A

F F cva
m

+ −
=  (1.25) 

 
So damping serves as a technique to solve static problems, this technique is usually 
known as dynamic relaxation. Although one of the above two methods may be used to 
serve this purpose, Cundall (1987) suggests another damping method where the damping 
force for each particle, d

iF  is given as 
 
 d total A

i i iF α F sign(v )=  (1.26) 
 
where α is a damping factor varies from 0 to 1, then the particle acceleration is given as  
 

 
A ex d

A i i i
i A

F F Fa
m

+ −
=  (1.27) 

 
It should be mentioned that Cundall gave several reasons why this damping technique is 
better than the conventional one, and since we are not planning to comment on that here 
in order to avoid complicating this introduction, one may return to the given reference for 
more details. Damping is also applied to the rotational motion in a similar fashion like the 
transitional motion presented above. 
  To illustrate how the damping in Eq. (1.26) works, we take a simple example of two 
particles, A, B, the particles have radii of 1 m and they are placed on the x-axis and they 
are just in touch. Particle B is fixed while a force Fx = 1.0e6 is applied to particle A. the 
normal stiffness parameter kn = 1.0e9 while ks = 0. The steady state solution for this 
example given in term of horizontal displacement of particle A is ux = Fx/kn =1.0e6/1.0e9 
= 1.0e-3 m. We run this example using DEM for three conditions, undamped (α = 0) and 
damped (α = 0.4, α=0.7). the outcome of the numerical simulation is shown in Figure 1.4, 
where it is obvious that for undamped condition, the steady state solution is never 
reached, while for the damped conditions, the steady state solution is reached and it is 
faster for the condition of α=0.7, that is why this value for the damping factor will be 
used in every coming simulation. 

1.2.4 Time step 
 
Since this method is an explicit one, there will be limitation on the time step Δt used in 
the integration scheme. The maximum time step for DEM system is given as follows 
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Figure 1.4. An illustration of how the damping can be used to obtain the steady state solution. In 
this example, the undamped condition never reaches the steady state solution, while the damped 
condition with α = 0.7 reaches the solution faster than the condition of α = 0.4.  
 
 

 
trans
eq

A

k
Δt

m
=  (1.28) 

 
where trans

eqk is a function of both kn, and ks (see Itasca, PFC2D manuals), and from the 
rotational motion the maximum Δt is given as  
 

 
rot
eq
A

k
Δt

I
=  (1.29) 

 
rot
eqk does not include kn since it does not affect the particle rotation. The chosen Δt is the 

minimum of those obtained from the above two equations. Clearly, if Δt is too small, it 
will take too long time to obtain the solution. One way to overcome this problem is to 
change the value of mA in Eq. (1.28) so that Δt has a predefined high value. For example, 
we can set Δt = 1 no mater what the model properties are, and then use an artificial mass, 

A
dm , given as 
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 A trans
d eqm k=  (1.30) 

 
This mass is used in Eqs. (1.27) instead of the correct mass mA. Although using this 
artificial mass will speed up the simulation, the result is only valid for the steady state 
solution. This means that this technique can not be used for dynamic problems, but only 
for static problems. 

1.2.5 Bonding models 
 
Rocks usually have tensile and shear strength. In DEM we can include such strength by 
adding bonds at the contacts (see Itasca, PFC2D manuals). The bond may be imagined as a 
glue point bonding the two particles in contact (see Figure 1.5a), and it has tensile and 
shear strength so that if the normal contact force for a contact C, Fn, exceeds the contact 
tensile strength T, i.e. nF T≤ − , the bond breaks in tension and Fn, Fs is then set to zero. 
Similarly, if the shear contact force for the same contact, Fs, exceeds the contact shear 
strength S, i.e. sF S≥ , the bond breaks in shear and Fs is then given by Eq. (1.10). Finally, 
if the bond breaks and the two particles get separated both Fn and Fs are set to zero.  
  There is also another type of bonds that can be used in DEM, called the parallel bond 
(Potyondy and Cundall, 2004), see Figure 1.5b. The parallel bond is considered as a piece 
of material that connects two particles and has shear and tensile strength, beside another 
set of kn, ks which has a unit of N/m3 instead of N/m. This because the parallel bond has 
cross section area, so to obtain the bond forces the new set of kn and ks must be multiplied 
by the bond cross section area. The parallel bond can also carry moment from 
neighboring particles, this moment contributes to the failure criteria. Because the parallel 
bond has extra stiffness, it carries extra shear and normal forces which are updated 
incrementally. As a result of that, one can install the parallel bond inside models at any 
time, for example, after compacting a model by gravity force. This may mimic the 
cementation process inside sedimentary rocks after they have been compacted by gravity.    
 
 

 
 
Figure 1.5. Types of bonds used in DEM to give the models a specific strength. 
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1.3 Other numerical methods 
 
Although this work is focusing on studying the possibilities for using DEM in reservoir 
geomechanics, it should be mentioned that there are other well-established methods that 
are currently used to model geomechanical behavior of hydrocarbon reservoirs. Such of 
these methods are, Finite Element and Finite Difference Methods (FEM & FDM). In this 
section, a brief introduction to those methods will be given to allows the reader to see the 
similarities and the differences between those methods and DEM.  
 

1.3.1 Finite Element Method (FEM) 
 
The Finite Element Method (FEM) is used to solve partial differential equations by 
dividing a problem domain into several elements with specific shape (triangular, or 
rectangular). Then it uses a trial function (usually a simple one) as an approximation to 
the solution. The trial function works on each element. Since this approximation might be 
rough (depending on the trial function), increasing the number of elements in the domain 
will result in more accurate solution. There are several techniques used in FEM and the 
differences are usually based, for example, on what type of trial function is used. Some of 
those techniques (see Zienkiewicz et. al. 2000 & Kwon et. al. 1997) are Weighted 
Residual method, Energy Method, Rayleigh-Ritz Method, and Galerkin’s Method. In this 
section we will demonstrate the use of the last technique (Galerkin’s Method) to solve the 
problem of elastic solid, since this type of problem is encountered in reservoir 
geomechanics. So we start by writing the differential equations that describe the 
equilibrium of elastic solid and we limit our self by 2D problems as follows 
 

 xyxx
x

σσ f 0
x y

∂∂
+ + =

∂ ∂
 (1.31) 

 

 yy xy
y

σ σ
f 0

y x
∂ ∂

+ + =
∂ ∂

 (1.32) 

 
where σij are the stress tensors and fi are the body loads, i = x, y. let us assume that a 
domain we want to work on is a square and that it is divided into two triangular elements 
only, see Figure 1.6. Then a linear trial function is used to approximate the solution 
which is, in this case, given by a displacement field, u and v as follows 
 
 1 2 3u a a x a y= + +  (1.33) 
 
 1 2 3v b b x b y= + +  (1.34) 
 
For each element, Eqs. (1.33) & (1.34) can be written in term of nodal displacements of 
that element, for example, for element 1 in Figure 1.6 , one may write 
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3

i i
i 1

u H (x, y)u
=

= ∑  (1.35) 

and 

 
3

i i
i 1

v H (x, y)v
=

= ∑  (1.36) 

 
where  

 1 2 3 3 2 2 3 3 2
1H [(x y x y ) (y y )x (x x )y]

2A
= − + − + −  (1.37) 

 

 2 3 1 1 3 3 1 1 3
1H [(x y x y ) (y y )x (x x )y]

2A
= − + − + −  (1.38) 

 

 3 1 2 2 1 1 2 2 1
1H [(x y x y ) (y y )x (x x )y]

2A
= − + − + −  (1.39)   

 
Hi is called the shape function and in this case it is given for linear triangular element. A 
is the element area. 
 

 
Figure 1.6. An elastic solid domain divided into two elements, this example is used to illustrate 
the Finite Element Method.  
 
 
Now we apply Galerkin’s Method for Eqs. (1.31) & (1.32) over element 1 which yields 
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32

1 1

xy
xyxx

1 1 1 x
y x

σσI [ω ( ) ω (f )] x y 0
x y

∂∂
= + + ∂ ∂ =

∂ ∂∫ ∫  (1.40) 

and 

 
32

1 1

xy
yy xy

2 2 2 y
y x

σ σ
I [ω ( ) ω (f )] x y 0

y x
∂ ∂

= + + ∂ ∂ =
∂ ∂∫ ∫  (1.41) 

 
where ω1, ω2 are weighting functions and for the Galerkin’s Method are given as 
 

 1 i
i

uω H
u

∂
= =

∂
 (1.42) 

and 

 2 i
i

vω H
v

∂
= =

∂
 (1.43) 

 
Furthermore, to simplify the first parts of Eqs. (1.40) & (1.41), we use the Green’s 
theorem which may be proven by using integration by part and states that for two 
functions f (x, y), g (x, y) one may write 
 

 
2 2 2 2

1 1 1 1

y x y x

x
y x y x S

g ff x y g x y f g n S
x x

∂ ∂
⋅ ⋅∂ ∂ = − ⋅ ⋅∂ ∂ + ⋅ ⋅ ⋅∂
∂ ∂∫ ∫ ∫ ∫ ∫  (1.44) 

 
The second term in the right-hand side of Eq. (1.44) represents the traction applied to the 
domain boundary S, this term is usually known as the Neuman boundary condition. Since 
in this example we are not planning to add any traction for simplicity reason, this part 
will be neglected. Now, we recall the following relations for the strain and the stress 
 

 
xx xx

yy yy

xy xy

σ λ 2μ λ 0 ε
σ λ λ 2μ 0 ε
σ 0 0 μ ε

⎡ ⎤ ⎡ ⎤+⎡ ⎤
⎢ ⎥ ⎢ ⎥⎢ ⎥= + =⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦⎣ ⎦ ⎣ ⎦

Cε  (1.45) 

and 

 
xx

yy

xy

u
xε
vε
y

ε
1 u v( )
2 y x

⎡ ⎤∂
⎢ ⎥

∂⎢ ⎥⎡ ⎤
⎢ ⎥∂⎢ ⎥ = ⎢ ⎥⎢ ⎥ ∂⎢ ⎥⎢ ⎥⎣ ⎦ ⎢ ⎥∂ ∂

+⎢ ⎥∂ ∂⎣ ⎦

 (1.46) 

 
 
and by using Eqs. (1.35) & (1.36) we end up with 
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1
31 2

1
xx

231 2
yy

2
xy

33 31 1 2 2

3

uHH H0 0 vx x xε
uHH Hε 0 0 0
vy y y

ε
uH HH H H H

y x y x y x v

⎡ ⎤⎡ ⎤∂∂ ∂
⎢ ⎥⎢ ⎥

∂ ∂ ∂ ⎢ ⎥⎢ ⎥⎡ ⎤
⎢ ⎥⎢ ⎥∂∂ ∂⎢ ⎥ = =⎢ ⎥⎢ ⎥⎢ ⎥ ∂ ∂ ∂ ⎢ ⎥⎢ ⎥⎢ ⎥⎣ ⎦ ⎢ ⎥⎢ ⎥∂ ∂∂ ∂ ∂ ∂
⎢ ⎥⎢ ⎥∂ ∂ ∂ ∂ ∂ ∂ ⎢ ⎥⎣ ⎦ ⎣ ⎦

eBU  (1.47) 

 
Also Eqs. (1.35) & (1.36) may be written in a matrix form as follows 
 

 

1

1

1 2 3 2

1 2 3 2

3

3

u
v

H 0 H 0 H 0 uu
0 H 0 H 0 H vv

u
v

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎡ ⎤⎡ ⎤

= =⎢ ⎥⎢ ⎥⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎢ ⎥

⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

eNU  (1.48) 

 
Then we substitute Eqs. (1.42) to (1.44) into Eqs. (1.40) & (1.41), so we get 
 

 
3 32 2

1 1 1 1

1 1
xx xyx xy y

1 x

2 y2 2y x y x
yy xy

ω ωσ σ
ω fx y

x y x y
ω fω ωσ σ

y x

∂ ∂⎡ ⎤+⎢ ⎥ ⎡ ⎤∂ ∂⎢ ⎥∂ ∂ = ∂ ∂⎢ ⎥∂ ∂⎢ ⎥ ⎣ ⎦+⎢ ⎥∂ ∂⎣ ⎦

∫ ∫ ∫ ∫  (1.49) 

 
By using Eqs. (1.45) to (1.48), Eq. (1.49) may be written as 
 

 
3 32 2

1 1 1 1

x xy y
x

yy x y x

f
[ ] x y x y

f
⎡ ⎤

∂ ∂ = ∂ ∂⎢ ⎥
⎣ ⎦

∫ ∫ ∫ ∫T e TB CBU N  (1.50) 

 
 
and after applying the double integral, we end up with 
 
 e e eK U =F  (1.51) 
 
where Fe (the second term of Eq. (1.50)) is the nodal applied force for the element, and 
Ke = BTCBA is called the element stiffness matrix. This process is repeated for all the 
elements in the model (in this example only two elements), then a global stiffness matrix 
K is assembled such that the following set of linear equations is obtained 
 
 KU=F  (1.52) 
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Finally, Eq. (1.52) is solved using algebra after applying the required load in F, and the 
required displacement constrain in U. Then, after obtaining the solution (represented by 
the nodal displacements U), the values of the stress and the strain can be calculated using 
the above equations. 

1.3.2 Finite Difference Method 
 
The Finite Difference Method (FDM) is another common numerical method which is 
used to solve partial differential equations. Unlike FEM which depends on approximating 
the solution of the differential equation by a specific shape function, FDM depends on 
approximating the differential equation itself using Taylor’s expansion, for example. One 
of the advantages of FDM over FEM is the simplicity in deriving the solution, which of 
course will result in speeding up the solution time using computers. However, FDM uses 
structured mesh (usually rectangular grids) to cover the solution domain, and in some 
cases it is even difficult to have non-uniform grids size, which makes it difficult to solve 
problems that have domains of complex surfaces, that is why FEM is the method of 
choice in such problems. Yet in some problems, approximating the domain boundaries 
and interfaces with rectangular grids is considered a sufficient approximation, for 
example when simulating fluid flow in hydrocarbon reservoirs. Although FDM is 
considered an Eulerian method, because the solution inside each grid is changing while 
the grid itself remains fixed, another Lagragian type is also available which allows the 
use of unstructured, non-uniform grids. This type allows the grids to move with the 
solution, which makes it more suitable to solve problems of deforming solid, and since 
reservoir geomechanic is considered one of these problems, this type will be explained 
briefly downward, see Wilkins (1964) for more details.  
  Let us start with Figure 1.7 which shows a grid made of 4 zones, each zone has 4 nodes. 
Now, at any time the equation of motion for a node, for example node a, may be written 
as (the zone stresses are applied as forces to each node using the zones’ edges) 
 

 

t Δt t 1 t 2 t
a a xx a e xx e a

a
3 t 4 t 1 t
xx a d xx d a xy b a

2 t 3 t 4 t
xy a c xy c a xy a b

Δtx x [(σ ) (y y ) (σ ) (y y )
m

(σ ) (y y ) (σ ) (y y ) (σ ) (x x )

(σ ) (x x ) (σ ) (x x ) (σ ) (x x )]

+ = − − + −

+ − + − − −

− − − − − −

 (1.53) 

and 

 

t Δt t 1 t 2 t
a a yy b a yy a c

a
3 t 4 t 1 t
yy c a yy a b xy a e

2 t 3 t 4 t
xy e a xy a d xy d a

Δty y [(σ ) (x x ) (σ ) (x x )
m

(σ ) (x x ) (σ ) (x x ) (σ ) (y y )

(σ ) (y y ) (σ ) (y y ) (σ ) (y y )]

+ = − − + −

+ − + − − −

− − − − − −

 (1.54) 

 
where Δt is the time step, x, y  are the node’s velocities, σij is the zones’ stress, and m is 
the node’s mass obtained form the conservation of mass equation. After obtaining the 
nodal velocities at the current time, the zones’ strain rate ijε  for each zone ( say zone 1) 
can be updated as follows 
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 1 t Δt t Δt t Δt
xx b e f a f a b e1

x 1(ε ) ( ) ( [(x x )(y y ) (x x )(y y )])
x 2A

+ + +∂
= = − − − − −

∂
 (1.55) 

 

 1 t Δt t Δt t Δt
yy b e f a f a b e1

y 1(ε ) ( ) ( [(y y )(x x ) (y y )(x x )])
y 2A

+ + +∂
= = − − − − −

∂
 (1.56) 

 

 
1 t Δt t Δt
xy b e f a f a b e1

t Δt
b e f a f a b e

1 x y 1(ε ) ( ) ( [(x x )(x x ) (x x )(x x )
2 y x 4A

                  (y y )(y y ) (y y )(y y )])

+ +

+

∂ ∂
= + = − − − − −

∂ ∂

+ − − − − −
 (1.57) 

 
Finally the stress to be used in the next time step is updated as follows, after assuming 
isotropic material 
 
 1 t Δt 1 t 1 t Δt 1 t Δt

xx xx xx yy(σ ) (σ ) [(λ 2μ)(ε ) λ(ε ) ]Δt+ + += + + +  (1.58) 
 
 1 t Δt 1 t 1 t Δt 1 t Δt

yy yy yy xx(σ ) (σ ) [(λ 2μ)(ε ) λ(ε ) ]Δt+ + += + + +  (1.59) 
 
 1 t Δt 1 t 1 t Δt

xy xy xy(σ ) (σ ) [μ(ε ) ]Δt+ += +  (1.60) 
 
 

 
 
Figure 1.7. Representation of Lagragian finite difference method where the domain is divided 
into zones and nodes. 
  
 
It is worth to mention that other types of constitutive relations can be used to update the 
stress, like anisotropic or elastic plastic relations, which makes this method simple to 
solve nonlinear problems, however this method is still explicit and there will be limitation 
on choosing Δt, this problem may be overcome like in DEM by using artificial nodal 
masses. Similarly, the static solution may be achieved by using damping force.
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1.4 Reservoir geomechanics 
 
Decreasing the pore pressure of hydrocarbon reservoirs through depletion or increasing 
the pore pressure through fluid injection causes changes in the stress and the 
displacement fields inside and outside the reservoirs. For example during depletion, a 
reservoir compacts which results in surface subsidence, and also faults that pass through 
the reservoir or outside it may be reactivated (Segall & Fitzgerald, 1998), see Figure 1.8.  
 
 

 
 
Figure 1.8. Reservoir compaction, surface subsidence, and fault reactivation scenarios during 
reservoir depletion. 
 
  Some recorded examples of reservoir compaction and surface subsidence are the 
compaction of South Belridge field of California which made large tensile fractures at the 
surface that caused a huge casing failure. In Lost Hills Field the subsidence rate exceeded 
30 cm per year (Du and Olson, 2001). The sea-floor subsidence at the Ekofisk field in the 
North Sea required the platform to be raised, and eventually a new one to be built. Today, 
even after 20 years of water-injection, compaction of the Ekofisk chalk reservoir is still 
causing surface subsidence.  
  Another mechanism that is encountered during depletion is fault reactivation which may 
result in seismic activities and small earthquakes. Grasso (1992) listed many hydrocarbon 
reservoirs where major seismic activities were monitored. According to Grasso, there are 
three mechanisms that can induce seismicity and trigger earthquakes in hydrocarbon 
reservoirs: the first is by fluid injection and pore pressure increase, the second is by fluid 
extraction and pore pressure reduction, and the third is by mass transfer and fluid 
circulation. 
  In this section some theories will be introduced which deal with obtaining analytical 
solutions for the stress and strain changes inside and outside reservoirs, thus they can be 
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used to calculate compaction and subsidence, also to study the possibilities of fault 
reactivation. Although those solutions are based on some simple assumptions, they can 
play a very significant rule in understanding a reservoir geomechanical response during 
fluid and stress change.  

1.4.1 Nucleus of strain and Geertsma solution 
 
The differential equation that describes mechanical equilibrium of poroelastic media may 
be written as  
 

 
2

j2
i i

i j i

uμ Pμ u α f 0
(1 2ν) x x x

∂ ∂
∇ + − + =

− ∂ ∂ ∂
 (1.61) 

 
where μ is the shear modulus, ν is the Poisson’s ratio, α is the Biot’s coefficient, P is the 
pore pressure, ui is the displacement, and fi is the body load (unit force per unit volume). 
  Eq. (1.61) is derived after making analogy with thermoelasticity (Geertsma, 1957). To 
solve this equation, Geertsma’s method (1973) will be used, which is based on obtaining 
the solution for only a point pressure source known as center of dilation, then integrating 
the solution over the whole domain that examines pressure disturbance (in our case the 
domain is the hydrocarbon reservoir). This means that the domain is assumed to be 
covered by center of dilations and the solution of Eq. (1.61) over this domain is 
considered as the total sum of the solutions of each center of dilation. The center of 
dilation is considered one of the nucleus of strain concepts (Mindlin & Cheng, 1950) and 
is represented by a spherical cavity in an infinite body exposed to uniform pressure along 
its circumference. This is mathematically equivalent to three couples of forces acting at a 
point ( Timoshenko & Goodier, 1970), see Figure 1.9, note that the third force couples is 
perpendicular to the page and is not shown (X3).   
 
 

 
 
Figure 1.9. Center of dilation concept, which is represented by a pressurized sphere or three 
couples of forces. 
 
To solve Eq. (1.61), a potential Φ for the displacement  field ui is introduced as follows 
 

 i
i

Φu
x

∂
=

∂
 (1.62) 
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Then, by substituting Eq. (1.62) into Eq. (1.61) we end up with 
 
 2

mΦ c P∇ =  (1.63) 
 
where cm is the uniaxial compaction coefficient and is given as 
 

 m
α(1 2ν)c
2μ(1 ν)

−
=

−
 (1.64) 

 
For a center of dilation located at point ξi, Eq. (1.63) becomes  
 
 2

m 1 1 2 2 3 3Φ c Pδ(x ξ )δ(x ξ )δ(x ξ )∇ = − − −  (1.65) 
 
where δ(x) is the delta function, and the solution of Eq. (1.65) at any point x may be 
given as 
 

 1 1 2 2 3 3m
1 2 3

δ(x ξ )δ(x ξ )δ(x ξ )c PΦ ξ ξ ξ
4π R

− − −
= − ∂ ∂ ∂∫∫∫  (1.66) 

 
where 2 2 2

1 1 2 2 3 3R (x ξ ) (x ξ ) (x ξ )= − + − + − , and form Eq. (1.66) we get 
 

 mc PΦ
4πR

= −  (1.67) 

 
Thus, based on Eq. (1.62) we obtain  
 

 m i i
i 3

c P (x ξ )u
4π R

−
=  (1.68) 

 
This solution is only valid for infinite solid. However since we seek the solution for 
hydrocarbon reservoirs where a free surface exists, a solution for a semi-infinite solid is 
needed. Such a solution was derived by Mindlin & Cheng (1950) for a nucleus of strain 
in a thermoelastic media by assuming an imaginary nucleus of strain (center of dilation) 
on the opposite side of the free surface and at similar distance from it as the real one. 
Davies (2003) simplifies their solution so that the displacement for a semi-infinite solid 

e
iu  can be written as a function of the displacements of the real iu∞ and the imaginary iu '∞  

of the infinite solid as follows 
 

 e i
i i i 3

3

u 'u u (3 4ν)u ' 2x
x

∞
∞ ∞ ∂

= + − +
∂

 (1.69) 

 
where both iu∞ and iu '∞  can be obtained using Eq. (1.68) and if these expressions are 
substituted in Eq. (1.69) the Geertsma solution will be retrieved. However, since in this 
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thesis the study will focus on 2D problems, the above approach will be used to derive the 
solution for semi-infinite plane. In this case Eq. (1.65) reduces to 
 
 2

m 1 1 3 3Φ c Pδ(x ξ )δ(x ξ )∇ = − −  (1.70) 
 
The solution for this equation can be given as (Timoshenko & Goodier, 1970), 
 

 m
1 1 3 3 1 3

c PΦ δ(x ξ )δ(x ξ ) ln(R) ξ ξ
2π

= − − ∂ ∂∫∫  (1.71) 

 
where 2 2

1 1 3 3R (x ξ ) (x ξ )= − + − , and from Eq. (1.71) we get 
 

 mc PΦ ln(R)
2π

=  (1.72) 

 
So the values of iu∞ and iu '∞  for infinite plane can be given as  
 

 m i i
i 2

1

c P (x ξ )u
2π R

∞ −
=  (1.73) 

and 

 
'

m i i
i 2

2

c P (x ξ )u '
2π R

∞ −
=  (1.74) 

 
where 2 2

1 1 1 3 3R (x ξ ) (x ξ )= − + −  and 2 2
2 1 1 3 3R (x ξ ) (x ξ )= − + + , then by substituting 

Eqs. (1.73) & (1.74) into Eq. (1.69) and assuming x1 = x, x3 = z, we get 
 

 e 3 3 3 3m
z 2 2 4

1 2 2

z ξ 4ν(z ξ ) (z 3ξ ) 4z(z ξ )c Pu [
2π R R R

− + − + +
= + −  (1.75) 

 

 e 1 3m 1 1
x 2 2 4

1 2 2

4z(x ξ )(z ξ )c P (x ξ ) (x ξ )u [ (3 4ν)
2π R R R

− +− −
= + − −  (1.76) 

 
Then, by using Eqs. (1.45) & (1.46), expressions for the stresses can be obtained as 
follows (an expression for the shear stress σxz is not derived since it will not be used later) 
 

 
2 3

e 3 3 3 3m
z 2 2 4 4 6

1 2 1 2 2

2(z ξ ) 2(z ξ )(5z ξ ) 16z(z ξ )μc P 1 1σ [ ]
2π R R R R R

− + − +
= − − − +  (1.77) 

 

 
2 3

e 3 3 3 3m
x 2 2 4 4 6

1 2 1 2 2

2(z ξ ) 6(z ξ )(3z ξ ) 16z(z ξ )μc P 1 3σ [ ]
2π R R R R R

− + − +
= − − + + −  (1.78) 
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To obtain the solution for a reservoir, Eqs. (1.75) to (1.78) are integrated over the 
reservoir domain. Let us take an example of a rectangular reservoir with thickness h and 
length 2L, see Figure 1.10. Then the stresses outside the reservoir can be given as (note 
that compression is positive) 
 

 
L L

e e
z z x x

L L

σ h σ x            and        σ h σ x
− −

= ∂ = ∂∫ ∫  (1.79) 

 
Figure 1.11 & 1.12 show the normalized stress field around the reservoir as obtained 
from these equations. Notice the stress concentration at the reservoir edge, which is 
known as stress arching. Also notice that the vertical stress decreases above the reservoir 
and increases on the side, while the horizontal stress has opposite behavior. Finally, the 
problem of this method is that it can only find the solution outside the reservoir and not 
inside it, which is considered an important limitation.  
 
 

 
 
Figure 1.10. A nucleus of strain concept used to model geomechanical response due to pore 
pressure change for a rectangular reservoir with length 2L, thickness h, and buried at depth ξ3. 

1.4.2 Stress path coefficient 
 
As the fluid pressure changes inside a reservoir the stresses will also change. Stress 
change (Δσi) can be quantified through stress path coefficients using pore pressure 
change (ΔP), according to 
  

 i
i

σγ
ΔP
Δ

=  (1.80) 
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Figure 1.11. Normalized values of horizontal stress (σxx) around a rectangular reservoir (length 
= 2L and thickness = h) as a result of reducing the reservoir pore pressure by P, ν = 0.25, the 
color code is changing by 0.3.    
 
 

 
 
Figure 1.12. Normalized values of vertical stress (σzz) around a rectangular reservoir (length = 
2L and thickness = h) as a result of reducing the reservoir pore pressure by P, ν = 0.25, the color 
code is changing by 0.3.   
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where σi is the total stress and is given as a sum of the effective stress (the stress as seen 
by the reservoir rock) and the pore pressure i.e. 
 
 i iσ σ ' P= +  (1.81) 
 
Rudniki (1999) derived analytical solution for the vertical and horizontal stress path 
coefficients (γv & γh) assuming ellipsoidal reservoir as follows  
 

 1 2 1/2
v 2 3/2

1 2ν eγ α [cos (e) e(1 e ) ]
1 ν (1 e )

−−
= − −

− −
 (1.82) 

 

 1 2 1/2
h 2 3/2

1 2ν eγ α [1 (cos (e) e(1 e ) )]
1 ν 2(1 e )

−−
= − − −

− −
 (1.83) 

 
where e is the reservoir aspect ratio (e = thickness/length), this solution also assumes 
infinite and homogeneous medium. This concept (stress path coefficient) will be used in 
Chapter 5 to study  geomechanical behaviors of reservoirs during fluid change.  

1.5 Rock Physics 
 
Rock Physics, as an independent branch of science, is gaining an increasing interest 
within the oil industry. It usually includes studying chemical, electromagnetic, and 
mechanical properties of rocks. The last part (the mechanical properties), which involves 
studying wave propagation and rock failure, is of our interest in this thesis. 
Understanding what controls the speed of sound waves in rock is crucial for seismic 
interpretation. Rock failure theories are frequently used in investigating borehole 
stabilities during drilling (see Fjær et al., 2008). Time lapse seismics, also known as 4D 
seismics, is becoming an important tool for reservoir monitoring studies. In this situation 
Rock Physics serves as a link between the changes in reservoir conditions during 
production and the changes in acquired 4D seismics data. Some of the most important 
theories concerning the mechanical properties for rocks will be briefly described in this 
section. This includes effective medium theory, granular medium theory, and poroelastic 
theory to describe fluid effects on rock behavior.            
 

1.5.1 Effective medium theory 
 
Effective medium theory states that for a heterogeneous medium that consists of several 
materials with different elastic mechanical properties, an equivalent elastic property may 
be derived to replace all the previous properties. This assumption is usually valid at 
macro-scale level i.e. at a scale much larger than the heterogeneity itself. This is an 
important theory for rocks, because rocks are usually made of several materials and 
contains pores and cracks.  
  A simple example of an effective medium theory can be given by assuming a certain 
rock is made of one type of solid material that has an elastic property (Bulk Modulus in 



Rock Physics  23 
________________________________________________________________________ 

this case) Ks and contains pores filled of fluid with a Bulk Modulus Kf , see Figure 1.13.  
For such a rock, a porosity Φ may be defined as the sum of the pores volume over the 
total volume of the rock. Based on that, the effective Bulk Modulus for the rock K* can 
be given as  
 
 s fK* K (1 Φ) K Φ= − +  (1.84) 
. 
Eq. (1.84) is known as Voigt model (upper bound) and is derived after assuming the rock 
is under a uniform strain condition. Similar to the upper bound, there is a lower bound 
known as Reuss model and is derived after assuming a condition of uniform stress, see 
Eq. (1.85). These two bounds are shown in Figure 1.14 where a normalized K* is plotted 
versus Φ.  
 

 
s f

1 (1 Φ) Φ
K * K K

−
= +  (1.85) 

 
Besides these two simple bounds a narrower and more advanced bounds are also 
available known as Hashin-Shtrikman bounds (see Hashin & Shtrikman, 1963).  
 
 

 
  
Figure 1.13. Rock made of solid material and pores that can be filled with fluid. 
 
 
Since rocks usually contain cracks, crack medium models are developed using effective 
medium theory. These models are based on inclusion model (see Eshelby, 1957), where 
the cracks are visualized as ellipsoids scattered inside the solid material of rocks, see 
Figure 1.15. One of the simplest example of such models is the isotropic model (e.g. 
Budiansky and O’Connell, 1976) which assumes a random orientation of cracks, in this 
model the effective bulk and shear modulii, K* and μ*, are given as follows 
 
 s 1K* K (1 Q ζ)= −  (1.86) 
 
 s 2μ* μ (1 Q ζ)= −  (1.87) 
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Figure 1.14. The upper and the lower bounds of the effective bulk modulus K* based on Voigt 
and Reuss models, respectively.  
 
 
where μs is the shear modulus of the solid material and ζ is known as crack density which 
depends on the number, the size, and the shape of the cracks and is given as 
 

 
22n Aζ

π P
=  (1.88) 

 
n is the number of cracks, A is the crack area, and P is the crack perimeter. Q is known as 
the impact of the cracks which depends on the solid material properties and in this model 
is given as  
 

 
2
s

1
s

(1 ν )16Q
9 (1 2ν )

−
=

−
 (1.89) 

 

 s s
2

s

(1-ν )(5-ν )32Q =
45 (2 ν )−

 (1.90) 

 
where νs is the Poisson’s ratio for the solid material. 
  Eqs. (1.86) & (1.87) assume that the cracks orientation is distributed randomly in a way 
which creates isotropic material. However this might usually not be the case, for 
example, the cracks might be oriented in preferable directions depending on stress state 
under which the rock has formed. In this case, the rock shows anisotropic behavior where 
the effective elastic properties *

ijC may be given as a function of the solid material elastic 

properties s
ijC  as follows (the summation convention is not considered)  

 
N

* s m m
ij ij ij

m 1
C C (1 Q ζ )

=

= −∑  (1.91) 
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Figure 1.15. Cracked medium model with ellipsoidal cracks that have different orientations. 
 
 
m denotes a set of cracks that have specific orientation, and N is the number of sets in the 
rock. Hudson (1981) derived a solution for a rock that has one set of horizontal cracks 
embedded in isotropic solid (N = 1) which are normal to the z-axis, in this case ζm = ζ and 
the expressions for Qij are given as 
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νQ Q
1 2ν

= =
−

 (1.92) 
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= =
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−
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 (1.94) 

 

 s
44

s

1 νQ
2 ν

−
=

−
 (1.95) 

1.5.2 Granular medium model  
 
Many types of sedimentary rocks are made of solid grains (e.g. sandstone), so it is 
essential, in order to develop physical models for such rocks, to understand the physical 
behavior for grains that are in contact. Hertz (1882) formulated equations that describe 
the behavior of two elastic solid spheres which are loaded against each other by a load P 
(see also Johnson, 1985). As the two spheres approach each other, a contact area -a- will 
grow continuously starting from a contact point, see Figure 1.16. Due to the growing 
contact area, the relation between the load P and the relative displacement of the two 
spheres Un becomes nonlinear. In other word, the stiffness of the contact is not constant 
(increasing during loading, decreasing during unloading), see Eq. (1.96). 
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Figure 1.16. Hertz model that describes two solid spheres being pressed against each other by a 
load P, notice how the contact area -a- increases from one step to another. 
 
 

 
1/32 2 2
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s

9(1 v ) PU
2E R

⎡ ⎤−
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⎣ ⎦
 (1.96) 

 
Hertz was able to derive this relation after assuming that each sphere acts as half-space, 
which makes this solution valid only if the size of the contact area is very small in 
comparison with the sphere size. This assumption is considered to be true for hard grain 
like quartz, which usually are dominant minerals in sandstone rocks. Furthermore, if we 
assume that a granular medium is made from many spherical grains and loaded under 
isotropic condition given by a mean effective stress σ'm, then the effective bulk and shear 
modulus for the medium, K*, μ*, can be given as 
 

 
2 2 2

s m3
2 2 2

s

z (1 Φ) E σ 'K*
72π (1 ν )

−
=

−
 (1.97) 

 

 
2 2 2

s s m3
2 2 2

s s

5 4ν 3z (1 Φ) E σ 'μ*
10(2 ν ) π (1 ν )

− −
=

− −
 (1.98) 

 
where z is the coordination number (the average number of contacts per sphere), Φ is 
again the porosity. These two relations are based on Hertz-Mindlin contact model (see 
Digby, 1981) where Mindlin (1949) added the shear loading effect to the original Hertz 
theory. Thus, the relations can be used to study the sensitivity of wave velocity change to 
stress change in rocks, which is important to link geomechanical changes to seismic 
changes. Walton (1987) derived a similar relation assuming, first, perfectly rough spheres 
(equal to Eq. (1.97) & (1.98)), second, perfectly smooth spheres i.e. no shear force 
develops at the contact. He also considered the case of uniaxial strain condition which 
results in anisotropic relations. 
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1.5.3 Fluid effect 
 
The mechanical fluid effect on effective elastic properties of rocks is described by the 
poroelasticity theory, (see Biot, 1941 & 1962). The poroelasticity theory is based on 
macroscopic thermodynamics and hence neglects the shape of the pores in rocks and only 
looks to the fraction of the pore volume to the total volume of the rocks, which is usually 
known as a porosity Φ. One of the most significant equations in poroelasticity is the Biot-
Gassmann equation, which enables us to estimate the contribution of the pore fluid 
stiffness to the total untrained stiffness of the rock. The equation defines the effective 
bulk modulus K* for a saturated rock made of a solid material with bulk modulus Ks, 
rock porosity Φ, and pore fluid stiffness kf as follows 
 

 

2fr

sf
fr

f fr

s s

K(1 )
KkK* K k KΦ 1 (1 Φ )

ΦK K

−
= +

+ − −
 (1.99) 

 
where Kfr is the framework (drained) bulk modulus for the rock i.e. the dry rock bulk 
modulus. This can be seen through Eq. (1.99), when there is no fluid in the rock (kf  = 0),  
K* = Kfr. This equation assumes isotropic rock, monomineralic solid, and the fluid has no 
chemical effect on the framework bulk modulus. Notice that Kfr may be obtained from 
previous theory described above, or from mechanical test on a dry sample. On the other 
hand, poroelasticity theory shows no effect of the pore fluid on the shear modulus i.e. 
 
 frμ* μ=  (1.100) 
 
Eq. (1.99) is very important in estimating the effect of fluid substitution process inside a 
hydrocarbon reservoir during production on the stiffness property of the reservoir rock. 
Thus, it can serve as a link between saturation changes and seismic changes during 
reservoir monitoring studies. 

1.6 Time-lapse seismics (4D seismics) 
 
Among other hydrocarbon reservoir monitoring techniques, time-lapse seismics (also 
known as 4D seismics) has emerged as a powerful reservoir monitoring tool (see e.g. 
Lumley, 2001). Some early successful studies of reservoir monitoring using 4D seismics 
showed its great potential. Such studies are, for example, Gullfaks field (Sønneland et al., 
1997), and Fulmar field (Johnston et al., 1998) in the North Sea. The focus of those 
studies was to detect water-flushed zones by looking to seismic amplitude changes for the 
reservoir reflectors. By tracing the water movement and possible changes in oil-water 
contact (OWC), decision can be made for infill drilling to produce from bypass zones 
where no water flooding occurs.  
  Not all reservoirs are suitable for 4D seismics monitoring. Therefore a feasibility study 
must be carried out before starting acquiring more seismic data. Lumley et al. (1997) 
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presented a technical risk spreadsheet which can be used to assess a reservoir potential 
for a time-lapse seismics study. The spread sheet includes several reservoir properties 
such as: fluid saturation, reservoir rock bulk modulus and porosity. For example, if a 
reservoir rock is stiff (high bulk modulus such as carbonate reservoir), detecting fluid 
change will be difficult. This can be explained by looking at Eq. (1.99), where if Kfr >> kf  
then K* ≈ Kfr regardless of fluid substitution during production.  
  Another key point in time-lapse seismic study assessment is seismic repeatability issue. 
This means that the conditions of acquiring and processing a monitor seismic survey has 
to be similar to those of a base survey, so that the changes between the base and the 
monitor surveys are guaranteed to be only production-related and are not due to some 
seismic noise. Such factors that may affect seismic repeatability are; sea tides, changes in 
sea water temperature, noise from passing ships …etc.  
  Marine seismic data can be acquired by two methods: Towed Seismic Streamer where a 
marine vessel pulls the hydrophones (receivers) line, or by Ocean Bottom Cable (OBC) 
where the receivers are installed on the sea floor. The second method has the advantage 
of recording S-wave as well as P-wave, however it is more expensive. The seismic data 
are, then, processed into common-midpoint (CMP) gathers, a most widely used 
processing technique. CMP concept will be used in the coming discussion.                       
  There are usually two ways used to exploit 4D seismics data, time shift and amplitude 
change. The following example will be used to explain those two ways briefly. Figure 
1.17 shows a model made of two homogeneous layers, the upper layer represents the 
overburden and the lower layer represents the reservoir. Rays paths for a single CMP 
gather are also shown in the figure. Let us assume that the reservoir has been depleted, 
which causes saturation and pore pressure changes inside the reservoir, thus the velocity 
will increase. On the other hand, the reservoir compaction causes the overburden to 
stretch, which results in increasing the upper layer thickness and decreasing its velocity. 
The change in the upper layer thickness and velocity are denoted as; ΔZ1 and ΔV1, while 
the change in the lower layer velocity is ΔV2.  

1.6.1 Time shift    
 
The change in ray path travel time between a monitor and a base surveys (see Figure 
1.17) is called a time shift Δt. Landrø et al. (2004) shows that the time shift in a layer (say 
layer 1) Δt1 can be approximated as a function of the layer thickness change ΔZ1 and the 
velocity change ΔV1 as follows 
 

 1 1 1

1 1 1

Δt ΔZ ΔV
t Z V

= −  (1.101) 

 
Hatchell et al. (2005) shows that Eq. (1.101) may be rewritten as follows 
 

 1
zz

1

Δt (1 R)ε
t

= +  (1.102) 

where εzz = ΔZ1/Z1 is the vertical strain caused  by layer stretching, R is a constant which 
relates ΔV1 to εzz by  ΔV1/V1 = -Rεzz.    
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Figure 1.17.  A single CMP for a two-layer model (an overburden and a reservoir), due to 
reservoir compaction, the overburden is stretched by ΔZ1 and its velocity is changed by ΔV1. The 
reservoir velocity is changed by ΔV2 due to saturation change (ΔS) and pressure change (ΔP) (or 
mean effective stress change Δσ'm), the rays paths for both base and monitor surveys are also 
shown, where Si, and Ri, denote the source and the receiver, respectively.   
 
 
  Δt1 represents a zero offset time shift, which is obtained after applying NMO correction 
and stacking to the CMP gathers. By using Eq. (102) and the seismic data, one can 
calculate the amount of layer stretching (εzz) given that R is known. Furthermore, 
geomechanical models, like the one described in section 1.3.1, may be used to obtain an 
estimation of εzz, which will help us to calibrate the value of R. 
  Δt can be obtained manually by just picking the travel time based on the maximum 
amplitude of a seismic reflector from  the base and the monitor surveys. However, more 
advanced seismic inversion methods are usually used for real reservoirs which can be 
automated through computer codes. One of these methods is warping (see Hall, 2006). 
For example, warping method is used by Total E&P UK Ltd. to produce the time shift 
map for the Elgin-Franklin reservoir where the 4D seismic cross-section shown in Figure 
5.18 is taken from.  

1.6.2 Amplitude change 
 
Amplitude change is another useful piece of data that can be used to detect changes in 
hydrocarbon reservoir. As we mentioned early in this section, comparing seismic 
amplitude changes between a monitor and a base surveys can be used directly to map 
fluid movement (qualitative approach). Beside that, amplitude change can be used 
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quantitatively to discriminate between pressure and saturation changes for a given 
reservoir using AVO (Amplitude Versus Offset) analysis (see Landrø, 2001). Let us take 
the reservoir reflector that separate layer 1 and layer 2 shown in Figure 1.17 as an 
example. The amplitude change versus offset ΔRθ can be given using the AVO equation 
as follows 
 
 2

θ 0ΔR ΔR ΔG sin θ= +  (1.103) 
 
where ΔR0 is AVO intersect (represents the zero offset amplitude change) and ΔG is the 
AVO gradient change, θ is the incident angle. The values of ΔR0 and ΔG can be obtained 
from near and far offset CMP gathers of 4D seismic data, see figure 1.17. Landrø (2001) 
shows that by using the values of ΔR0 and ΔG, one can write explicit expressions for 
fluid saturation and pore pressure changes (ΔS & ΔP) based on some Rock Physics 
models. It should be mentioned that Landrø (2001) assumed that the pressure change is 
equal to the mean effective stress change (ΔP = Δσ'm ), which is, according to Eq. (1.80), 
not necessary true, that is one of the reasons why reservoir geomechanic is needed in 
reservoir monitoring studies. 
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2 Discrete element modeling of stress and strain evolution 
within and outside a depleting reservoir 

 
*Published in Pure and Applied Geophysics. by Haitham Alassi, Rune Holt, and 
Liming Li. Vol. 163: 1-21, 2006.  

2.1 Introduction 
 
Petroleum reservoir depletion leads to stress alteration within and outside the reservoir. 
During recent years it has become evident that such stress changes can have a profound 
impact on reservoir management (e.g., Teufel et al., 1991; Addis,1997; Kenter et al., 
1998; Holt et al., 2004). Not only do they control purely mechanical deformation 
(reservoir compaction and surface subsidence), but they also impact petroleum recovery 
through compaction drive and through possible permeability changes. Furthermore, stress 
changes may affect the ability to drill stable wells, and the risks for onset of particle 
production or casing collapse throughout the life of the reservoir. In some cases, 
depletion-induced stress changes may be large enough to cause seismicity by activation 
of existing or generation of new faults. This may be utilized as a tool for reservoir 
performance monitoring (Maxwell and Urbancic, 2001). The main purpose of reservoir 
monitoring is to identify which parts of the reservoir that are produced, so that the 
production strategy can be tailored to the behavior of the reservoir. Today reservoirs are 
frequently monitored by ‘‘4-D’’ (also called time-lapse) seismics surveys. Clearly, stress 
sensitive wave velocities within a depleting reservoir or its surroundings may cause time-
shifts that can be used as indicators of reservoir performance (Kenter et al., 2004). 
   The economic impact of the issues above calls for modeling tools that can predict the 
evolution of stresses as a result of pore pressure changes associated with fluid extraction 
from the reservoir. Further, models need to be available that can also predict associated 
strains (compaction, subsidence, casing deformations), associated seismic velocity 
changes, and associated seismicity risk. There is currently no model that can be used to 
predict all these facets of the problem. Geomechanical simulators (Pande et al., 1990; 
Zienkiewicz, 1991; Jing and Hudson, 2002) addressing large scale problems like those 
described above are most often based on Finite Element (FEM) formulations, and are 
inherently static in the sense that they do not predict dynamic features like faulting. They 
do however predict plastic strain occurrence, but need to be re meshed in order to account 
for faulting. Although full poromechanical coupling is available (Settari and Mourits, 
1994; Gutierrez and Lewis, 1998; Lewis et al., 2003; Koutsabeloulis and Hope, 1998; 
Osorio et al., 1998; Longuemare et al., 2002) in such models, at least in a staggered 
manner, a further link to seismic modeling is as yet absent. 
  The motivation behind the work presented here is to explore the feasibility of applying 
an inherently dynamic model to this problem, namely a discrete element (DEM) 
approach. The DEM used here is the Particle Flow Code (PFC), which is available in 2-D 
and 3-D formulations, and which has been applied with success at grain scale (Cundall 
and Strack, 1979; Potyondy and Cundall, 2004), and also has been refined to incorporate 
poromechanical coupling (Shimizu, 2004; Li and Holt, 2004) and elastic wave 
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propagation (Li and Holt, 2002). Clearly, this model may have severe limitations for a 
reservoir or even basin-scale application as outlined here — the elements in the model 
can no longer be particles, but must be several meter large circular or spherical grid 
blocks. Conversely, the potential of the DEM to study localized failure, as demonstrated 
by Li and Holt (2002), makes it attractive for the purpose of studying the impact of 
inelasticity which has not been properly addressed by other tools. 
A key subject in reservoir geomechanics is the reservoir stress path as defined in the next 
section, and how the stress path may be linked to the production strategy of the field. We 
then proceed to describe the basic principles of the DEM used in this work (PFC), see 
Chapter 1.2 for more details. It is important to validate such an approach: Since direct 
experimental calibration is not possible, our validation strategy has been to determine if 
results of analytical elastic modeling can be reproduced. We will therefore show a 
comparison between predictions of the DEM and the classical Geertsma theory 
(Geertsma, 1973), both for 2-D and 3D cases. We then proceed to address the case in 
which the elastic limit is exceeded somewhere in the model, leading to damage, in the 
form of fault generation. Finally, we demonstrate how DEM may be used to analyze the 
circumstances in which a pre-existing fault may be activated as a result of reservoir 
depletion. 

2.2 Geomechanics of depleting reservoirs 
 
The reservoir stress path is defined through the following parameters (Hettema et al., 
1998) 
 

 v h
v h

f f

Δσ Δσγ ;     γ
ΔP ΔP

= =  (2.1) 

 
  Here Δσv and Δσh denote vertical and horizontal stress path coefficients, representing 
the change in total vertical and horizontal stresses (Δσv and Δσh) with change (ΔPf) in 
reservoir pore pressure. Notice that the γ–parameters are valid within the reservoir as well 
as in the surrounding rock volume, but the pore pressure change always refers to the 
reservoir. 
  If there is no stress arching so that the full weight of the overburden is carried by the 
reservoir, then γv = 0. If in addition the reservoir compacts (linearly) elastically with no 
lateral strain, then 
 

 fr
h

fr

1 2νγ α
1 ν
−

=
−

 (2.2) 

 
where α is the poroelastic (Biot) coefficient and νfr is Poisson’s ratio for the drained 
reservoir rock. Since γh > 0 and the pore pressure decrease is negative, Eqs. (2.1) & (2.2) 
imply that the total horizontal stress is reduced. 
  It is evident from field experience ( Teufel et al., 1991; Addis,1997; Kenter et al., 1998) 
and also from theoretical considerations (Rudnicki, 1999; Segall and Fitzgerald, 1998) 
that the stress path in a general case will deviate from that above. If the reservoir is 
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drained in such a way that the drained volume cannot be approximated as a flat 
‘‘pancake’’–like object, then stress arching will occur. Also, a stiff (compared to the 
draining rock volume) overburden will promote stress arching.  
  Geertsma (1973) used the so-called ‘‘nucleus of strain’’ method to calculate an 
analytical solution for displacements as well as changes in the stress field for a depleting 
disk shaped reservoir. His solution is limited by the assumption of uniform elastic 
properties of the sedimentary basin, including the reservoir and the surrounding rock. 
  In order to solve this problem for realistic field cases, where the shape of the reservoir 
differs from the idealized cylindrical geometry, where there is elastic contrast between 
the reservoir and its surroundings, and where the reservoir may be tilted, numerical 
techniques must be used. The Finite Element Method (FEM) has been applied to this 
problem by e.g. Kosloff et al. (1980); Morita et al. (1989); Brignoli et al. (1997); 
Ganbolati et al. (1999; 2001) and Mulders (2003). 
  As an example of the outcome of such simulations, Figure 2.1 shows the stress path 
coefficients obtained on the basis of FEM simulations (Mahi, 2003) vs. depth for a case 
of elastic match between reservoir and surrounding rock. Results are shown for two 
different radii of drainage. γv is positive, which means that the reservoir compacts (as a 
response to effective stress change) less than it would if arching was not present. Outside 
the reservoir, where the pore pressure is not expected to change much as a result of 
depletion, the positive γv value corresponds to vertical decompression. The other stress 
path coefficient, γh, is positive within the reservoir (reduced total but increased effective 
horizontal stress), and negative above and below, implying horizontal compression in 
those areas.  
 
 

 
   
Figure 2.1. Vertical and horizontal stress path coefficients along a vertical line through the 
reservoir center, calculated based on FEM simulations (after Mahi, 2003). The computations are 
performed for a disk-shaped (500 m thick) reservoir centered at 3000 m depth, with a drainage 
radius of 2000 m (bold curves) and 500 m (narrow curves). Approximate solutions are shown for 
the case of elastically matched reservoir and surroundings (Young’s modulus = 12 GPa; 
Poisson’s ratio = 0.20). Notice that these curves are reproduced as mathematical approximations 
to FEM simulation. 
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Reducing drainage area is seen to cause increased arching within and near the reservoir, 
although the influenced zone is shrinking. This situation may correspond to an early 
development phase or production of an isolated reservoir compartment. Note that the 
zone affected by stress alteration as a result of depletion in both cases extends 1000 m or 
more above and below the reservoir. 
  An important observation from FEM simulations as well as from analytical 
computations (Segall and Fitzgerald, 1998) is that the vertical stress is strongly increased 
near the edge on the outside of the reservoir, while the horizontal stress is reduced. This 
stress alteration may exceed the elastic limit of the rock around the reservoir, and the 
edge zone is therefore where fault generation or fault activation most likely will take 
place. 

2.3 Discrete element modeling 
 
We have in this work applied a Discrete Element Method (DEM) named PFC (‘‘Particle 
Flow Code’’) (Cundall and Strack, 1979; Potyondy and Cundall, 2004), which is widely 
used to model the mechanical behavior of rock and other granular materials. The material 
is represented by discrete particles, basically disks (in 2-D) or spheres (in 3-D) which 
interact with each other through a user-defined (usually linear) force-displacement 
contact law, using a soft contact (overlapping particles) approach. Within a calculation 
cycle, the values of forces and displacements are calculated, and the law of motion is 
applied to each particle to update position and velocity. Bonds can be inserted at the 
contacts to represent cementation in rocks. The model is fully dynamic, and hence able to 
describe complex phenomena like rock failure. One significant point in PFC is that elastic 
energy can be tracked during simulation, which allows the user to monitor the energy 
release during crack development and fault sliding. Additionally, wave propagation 
simulations can be easily performed (Li and Holt, 2002) since PFC is a dynamic program.   
  In the subsequent sections of this paper we will use bonded models to simulate reservoir 
depletion and fault activation. 

2.4 Elastic case: comparison with Geertsma’s analytical model 
 
Bonded particles can be used to model continuum media, similar to other numerical 
methods like FEM. The main purpose of the work presented in this section, is to discern 
to what extent PFC performs as a continuum model. To do this, a set of simulations has 
been performed both with two-dimensional (PFC2-D) and three-dimensional (PFC3-D) 
DEM models, and then compared to analytical predictions based on Geertsma (1973). 
Thus; the model and the boundary conditions have been constructed so that no 
interparticle bonds break, i.e., the model material is linearly elastic.  
  Geertsma (1973) used the center of dilatation (‘‘nucleus of strain’’) concept to calculate 
displacements and stress changes associated with depletion of a disk-shaped reservoir in 
an elastically homogeneous half-space. His analytical solutions are valid for 3-D, making 
it necessary to derive similar analytical solutions for the center of dilatation (represented 
as disks) approach in 2-D (see Chapter 1.4.1). Also, instead of using analytical integrals 
as done by Geertsma for the disk-shaped reservoir, numerical integral is incorporated to 
solve the problem of other 3- D reservoir shapes. 
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2.4.1 Modeling of depletion for a rectangular reservoir using PFC2-D 

 
PFC is suitable for grain-scale modeling, where recent studies indicate that a good 
qualitative and close to quantitative match between modeling and experiment can be 
obtained (Holt et al., 2005). Since here we use PFC for modeling of large scale behavior, 
the particle size must be chosen large (typically 20 m radius in this work) as well, to keep 
reasonable computational time. No controlled experiment is possible, consequently, 
validation is performed by comparison with an analytical model as described above. 
  In order to make the PFC model most comparable to continuum models, the particle 
packing should be chosen as compact as possible. In the work presented here, a 
hexagonal packing of uniformly-sized particles is used. This leads to anisotropy, which 
creates difficulty in finding suitable linear elastic parameters for the model when 
comparing it to isotropic analytical theory. An alternative would be to choose a broad 
particle-size distribution. Further, force transmission in granular materials is different 
from that in continua. The force chain pattern depends not only on the elastic parameters 
of the system, but also on the contact law that governs the relation among the neighboring 
particles (linear or nonlinear), and the packing of the particles. 
 
 

 
 
Figure 2.2. PFC2-D geomechanical model used for modeling reservoir depletion. The black 
particles along the reservoir boundary denote where forces are applied to simulate depletion. 
 
 
The model is 10 km wide and 4.3 km deep. It is composed of a hexagonal packing of 
31250 equally sized (radius = 20 m) particles. After packing, gravitational force is added 
under zero lateral strain (fixed walls) boundary conditions. Finally, parallel bonds are 
inserted at all interparticle contacts. The tensile as well as the shear strength of the bonds 
are set equal to 5 MPa. Figure 2.2 shows the model that is used during the simulation, 
including a rectangular reservoir inserted at 2000 m depth from the surface. Table 2.1 
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shows the model properties. Note that the reservoir parameters do not represent any real 
reservoir, since the main purpose of this study is to demonstrate feasibility of DEM for 
reservoir and basin scale studies. 
  The reservoir is depleted uniformly, with no drainage to the surroundings. Under this 
assumption, the pore pressure gradient on the boundary will be very large, whereas inside 
the reservoir it will be zero. In FEM modeling this problem may be solved using a 
technique presented by Gambolati et al. (2001). They let the pore pressure decrease from 
pf to zero on a string of elements around the reservoir. In our model we similarly apply 
these forces to all particles at the reservoir boundary. The accuracy of our solution will 
hence depend on the element (i.e., particle) size, which is linked to computational time. 
  Using this method (applying force (traction of 10 MPa per unit length) to the reservoir 
boundary particles), the reservoir is depleted by a pore pressure change ΔPf  = 10 MPa. 
The reservoir has been placed at different depths c within the model basin. Young’s 
modulus and Poisson’s ratio of the reservoir material (as listed in Table 2.1) were 
determined by performing a biaxial test on a sample with the same PFC parameters as the 
reservoir. In the reservoir model there is however a stress gradient, therefore elastic 
parameters are also expected to change with depth. No bonds were broken in the model 
during this simulation, meaning that the PFC material behaves perfectly elastic. The 
resulting compaction and subsidence are plotted in Figure 2.3 together with the analytical 
solution obtained from Geertsma’s method, adapted to 2-D. As depth c increases, the 
values of subsidence and also the displacement of the top of the reservoir decrease, given 
that the reservoir dimensions are kept unchanged. It can also be seen that for shallow 
depths (c/R < 0.5; R is reservoir radius) the value of subsidence becomes closer to that of 
vertical displacement at the top of the reservoir. Satisfactory agreement is obtained 
between the numerical and the analytical solutions. Figure 2.4 shows a similar 
comparison between PFC2-D and the Geertsma 2-D solution of the subsidence and 
compaction bowls in the case of a reservoir placed at 2000 m depth. The agreement is 
again acceptable. 
 
 

Table 2.1. Model properties for the PFC2-D simulations 
 

Properties Values 
Model dimensions [km] 10 * 4.3 
Reservoir dimension [m] 4000*500 

Particle radius [m] 20 
Interparticle normal stiffness [GN/m] 24 
Interparticle shear stiffness [GN/m] 12 

Interparticle normal and shear bond strength [MPa] 5 
Young’s modulus [Gpa] 30 

Poisson’s ratio [-] 0.14 
 
 
  The PFC2-D simulation permits determination of the stress path coefficients (Eq. (2.1)) 
throughout the model. The changes in vertical and horizontal stresses are measured after 
depleting the reservoir by 10 MPa. The arching coefficients obtained from PFC and 
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analytical solutions are shown vs. depth through the reservoir center in Figure 2.5, and in 
the lateral direction just above the top of the reservoir in Figure 2.6. Note that the discrete 
element model predicts an increase in the horizontal stress path coefficient with distance 
from the center of the reservoir towards the edge, as was found also in the finite-element 
simulations of a disk-shaped reservoir by Mulders (2003). On the other hand, there is a 
significant difference between the results of the PFC simulation and the analytical 
solution: While the trends are the same, the values of the stress path coefficients differ 
significantly. This is related to element size and texture as mentioned above, and 
particularly to choosing the appropriate elastic parameter for the analytical computation. 
The difference also depends on the method used to measure the stress in PFC: To date the 
stress is assumed to exist only in the particles (or disks), which is considered a crude 
approximation and thus is responsible about the misfit between the analytical the 
numerical solution. A better way to measure the stress is to use measurement circles (see 
PFC manual). The boundary conditions also highly contribute to the difference, as can be 
seen in Figure 2.4, where the discrepancy between the analytical and the numerical 
solution increases with distance from the reservoir boundary towards the model 
boundary. 
 
 

 
 
Figure 2.3. Surface subsidence and displacement at the top and the bottom of a rectangular 
(4000 * 500 m) reservoir, simulated with a PFC2-D model and those obtained by analytical 
solution. Results are shown for different reservoir depths. The reservoir is depleted with ΔPf 10 
MPa. uz is the vertical displacement, cm is the uniaxial compaction coefficient, h, R, and c are 
reservoir thickness, radius (= 2000 m), and depth, respectively. Reservoir compaction equals the 
difference between reservoir top and bottom displacements. 
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Figure 2.4. Comparison between PFC2-D modeled and analytically calculated reservoir 
displacement (at the top of the reservoir) and surface subsidence along the x axis (lateral 
direction). Model parameters are listed in Table 2.1, reservoir depth is 2000 m, uz is the vertical 
displacement. cm is the uniaxial compaction coefficient, h is reservoir thickness, R is the 
reservoir radius 
 
 

 
 
Figure 2.5. Vertical and horizontal arching coefficients versus depth, from PFC2-D simulation. 
Reservoir depth = 2000 m. 
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Figure 2.6. Vertical and horizontal arching coefficients along x axis, from PFC2-D simulation. 
Reservoir depth = 2000 m. 
 
 

2.4.2 Modeling of Depletion Using PFC3-D 
 
A PFC3-D model consisting of 32,000 spherical particles is constructed, using a cubic 
packing (see Table 2.2 for model description). The element (particle) size was kept the 
same as in the 2-D modeling (20 m). In order to limit computational time, the model size 
is considerably reduced (1600 · 1600 · 800 m). The reservoir thickness is 120 m, and it is 
inserted at a depth of 400 m. Depletion of the reservoir is again simulated by applying 
normal forces to the boundary particles (as was done above). Figure 2.7 shows a 
comparison between PFC3-D modeling and the Geertsma [3-D] solution for compaction 
at the top of the reservoir. Again, a triaxial test was performed to establish Young’s 
modulus and Poisson’s ratio for the reservoir material. As in the 2-D case, the fit is 
acceptable, but not perfect. The reasons for not accomplishing perfect matching are the 
same as above: The size of the model relative to the particle size is even smaller in this 
case, which is a primary source of error. Again; rock properties in the PFC model are 
expected to vary with depth, and the cubic packing also introduces a slight anisotropy. 
Nevertheless, a main conclusion is that both 2-D and 3-D PFC simulations with perfectly 
elastic (no bond breakage) material produce results which are fairly close to analytical 
predictions.
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Table 2.2. Model properties for the PFC3-D simulations 
 

Properties Values 
Model dimensions [m] 1600 * 1600*800 

Reservoir dimension [m] 800*800*120 
Particle radius [m] 20 

Young’s modulus [GPa] 12 
Poisson’s Ratio [-] 0.0 

 
 
 
 

 
 
Figure 2.7. Comparison between PFC3-D modeled and analytically calculated (with the nucleus of 
strain model; GEERTSMA, 1973) displacement (at the top of the reservoir). Model parameters 
are listed in Table 2.2, reservoir depth is 400 m. 
 

2.5 Beyond Elasticity: Fault Initiation within and outside a Depleting 
Reservoir 

 
As can be depicted from the previous sections, the stresses evolving during reservoir 
depletion may exceed the elastic limit; within the reservoir, as well as outside of it. This 
may lead to the formation of localized deformation bands, or activation of pre-existing 
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faults. In order to study faulting, the PFC2-D model created in the previous section was 
used, with a significantly larger reservoir depletion (=60 MPa). Figure 2.8 shows the 
modeled surface subsidence and displacement at the top of the reservoir (measured at the 
reservoir center line). The rate of compaction increases with increasing depletion, and the 
increased reservoir compressibility can be directly linked to damage inside the reservoir 
as measured by the number of bond breakages. The vertical displacement on the surface 
of the model shows a similar trend. Obviously, the increased compaction within the 
reservoir contributes to this. The change in subsidence to compaction ratio is small, in 
spite of significant bond breakage also in the surrounding material, in particular near the 
reservoir edges, as illustrated in Figure 2.9. The localized failure zone near the reservoir 
edge seems to have little impact on the surface subsidence, at least as long as they do not 
reach the surface. The observed failure pattern is in agreement with expectations based on 
analytical computations, finite-element simulations (e.g., Brignoli et al., 1997), as well as 
laboratory modeling (Papamichos et al., 2001). While bonds fail largely in shear within 
the reservoir, tensile bond failures dominate outside. This is partly a result of the 
somewhat arbitrary choice of tensile vs. shear bond strengths. Notice that the failure 
pattern in this simulation corresponds largely to that seen in a previous PFC2-D simulation 
(Holt et al., 2004), but differs in details: In that case, significant bond breakage occurred 
above the reservoir as well as near the edges. The difference is mainly caused by the 
difference in particle-size distribution and texture. Figure 2.10 also shows bond 
breakages after continued depletion to100 MPa (notice that the values are arbitrarily 
chosen and do not represent a real case — in reality, the level of depletion should be 
compared to the strength parameters of the surrounding and reservoir rock). Cracks are 
seen to propagate to the surface and the number of cracks inside and outside the reservoir 
increase significantly. Although this is not a realistic case, it shows a similar trend to that 
obtained from laboratory modeling (Papamichos et al., 2001). 
 
 

 
 
Figure 2.8. Vertical displacements (measured at the center) at the surface and at the top of the 
reservoir during simulated depletion, using a PFC2-D model as described in the text. Also shown 
are recorded numbers of broken bonds between elements within the reservoir and in the full 
model. 
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Figure 2.9. Positions of bond breakages after depleting the PFC2-D model shown in Figure 2.2 
with 60 MPa. The black line segments indicate local shear failures, while the grey ones represent 
tensile failures. 
 
 
 

 
 
Figure 2.10. Positions of bond breakages after depleting the PFC2-D model shown in Figure 2 
with 100 MPa. The black line segments indicate local shear failures, while the grey ones 
represent tensile failures. 
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2.6 DEM Modeling with a Pre-existing Fault 
 
The simulations shown in the previous section demonstrate that the DEM is able to 
simulate faulting during depletion of an initially intact reservoir embedded in initially 
intact surroundings. One may however question if this fault pattern is realistic or not – it 
is clearly limited by the resolution of the simulation (particle size), which limits the 
possibility for a fault to localize within the model. In reality, faults may also exist before 
the reservoir is depleted. The positions of these faults may be seen from seismics, and 
then it makes no sense to use a numerical model to attempt reproduction of their 
formation. 
  These considerations triggered a study of how PFC may be used to embed and simulate 
the behavior of an existing fault, and to explore the feasibility of studying fault response 
to reservoir depletion. 
  To create a fault in PFC2-D, the same model as in previous sections is applied, but with 
specific properties assigned to a group of particles along a pre-defined fault plane. Table 
2.3 presents the fault properties. Recognize that since the hexagonal packing is used, the 
fault takes a straight shape because of the chosen dipping angle (60º), and the fault 
thickness is equal to the particle’s diameter.  
  Irregular packing may also be used, however then smaller particle sizes need to be 
created in the fault zone. Slip may be initiated in different ways. A triggering process 
driven by a high shear stress is mimicked by reducing the friction coefficient between the 
fault particles and neighboring particles. If the process is triggered by high normal stress, 
fault activation may be simulated by slightly reducing the size (by 1%) and stiffness (see 
Table 2.3) of the fault particles. 
  After the fault is initiated, the model is run to equilibrium, where the unbalanced force is 
reduced to a minimum value, and no further fault slipping occurs. In our case, a normal 
fault is developed according to both scenarios above, since the model is in a normal 
faulting environment (vertical > horizontal stress). The hanging wall slips downward and 
the foot wall slips upward. 
  The shear-induced fault (Figure 2.11) extends in the direction of the maximum principal 
stress by development of wing cracks. Damage is mainly located of the tip regions of the 
fault. The compaction-induced fault, on the other side, develops a more extended damage 
zone (Figure 2. 12). 
  Fault sliding alters the stress distribution of the model, leading to stress concentrations 
at the tips of the fault. On one side of the tip, the stress increases (more compression), 
while on the other side of the same tip, there is an area where the stress decreases 
(becomes more tensile). Within the stress reduction zones, bonds may break in tension. 
Cracks grow during sliding of the fault as a result of more stress concentration, and the 
stress re-distribution caused by bonds breakage. Eventually the cracks that nucleate at 
different places will coalesce with each other forming a damage-zone around the fault. 
The cracks do not only start at the tips of the fault, but also along the fault plane, because 
of the stress disturbance caused by a sudden change of the stiffness and the size of the 
particles that form the fault. Figure 12 shows the tensile breakages of the parallel bonds at 
the end of the simulation. Oded et al. (2002) presented a fault deformation model which 
predicts damage (cracks) not only at the fault tips, but also along the fault plane, as is also 
seen from the PFC model with particle shrinkage as the fault triggers. 
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Table 2.3. Fault properties used in PFC simulations. These properties are assigned to all the 
particles that compose the fault. 
 

Properties Values 
Normal stiffness kn [GN/m] 1 
Shear stiffness ks [GN/m] 0.5 
Friction coefficient μ [-] 0.3 

Fault length [m]  1480 
Fault dip angle [º] 60 

 
 
 
 

 
 
Figure 2.11. Bond breakages during fault sliding, triggered by reducing the interparticle friction 
coefficient. Note that all bond failures are tensile (gray color), except at the fault face, which 
shows failures in shear (black). 
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Figure 2.12. Bond breakages during fault sliding, triggered by reducing particle size and 
stiffness. Note that all bond failures are tensile (gray color), except at the fault face, which shows 
failures in shear (black). 
 

2.6.1 Reservoir Depletion, with Fault on the Side of the Reservoir 
 
To study the effect of reservoir depletion on re-activation of a fault, a reservoir is inserted 
to the left of the fault created previously (see Figure 2.13). The size of the reservoir is 
(arbitrarily chosen) 2500 *500 m and it is placed at a depth of 2000 m. Again an 
undrained boundary condition is assumed. According to Segall and Fitzgerald (1998), 
normal faults that lie on the side of the reservoir will be re-activated under such 
circumstances, given a sufficient pore pressure reduction. A simulated reservoir depletion 
of 40 MPa causes slipping of the fault, the hanging wall moves downward, while the foot 
wall follows the movement of the reservoir boundary. It can be seen that the deformation 
of the lower boundary increases the amount of slip, while the deformation of the upper 
boundary of the reservoir decreases the slip between the two fault faces. This behavior 
differs from that of a typical normal fault, in which the foot wall is expected to move 
upward. 
  The slip or frequently called RSD (relative shear displacement) is plotted in Figure 2.14 
versus depth after 20 and 40 MPa depletion. This value represents the relative 
displacement between the two sides of the fault in the dipping direction. Reactivation 
causes new bond breakage in the area of stress concentration; in this case at the tensional 
side of the fault tips. Figure 2.15 depicts the new cracks that are developed due to 
reservoir depletion. The increasing tension on the sides of the reservoir as a result of 
depletion causes creation of a tensile-normal fault in the direction perpendicular to 
minimum horizontal stress (Segall and Fitzgerald, 1998; Ferrill and Morris, 2003). Since 
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in our model the minimum stress is horizontal, the created tensile fault has a dip angle = 0 
(vertical fault). 
 
 

 
 
Figure 2.13. A normal fault is placed to the right of a reservoir. The model is used to simulate the 
re-activation behavior of the fault due to reservoir depletion. 
 
 

 
 
Figure 2.14.Slip between the fault faces (see Figure 2.13) after 20 and 40 MPa depletion.
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Figure 2.15. Bond breakages developed after depleting the reservoir in Figure 2.13 by 40 MPa. 
Note the concentration of the cracks at the tips of the fault and also at the tips of the reservoir, as 
a result of stress concentration in those areas. 
 

2.7 Discussion 
 
The simulations presented here demonstrate the feasibility of using a discrete element 
model to simulate the geodynamics of a depleting reservoir. The strength of DEM is the 
ability to simulate faulting and fault activation in a dynamic manner, where natural 
complexity emerges from simple contact laws. A dynamic approach is therefore 
beneficial when fracturing is expected to take place. Consequently traditional finite 
element solutions suffer, mainly from the need to continuously remesh as a fracture 
grows. However; there will be a multitude problems where FEM solutions are sufficient, 
and these solutions are more efficiently obtained than DEM solutions. 
  Element size also is a main restriction for DEM. Within limits of current computer 
technology, element size cannot be reduced to the size of physical particles (grains). 
Rules need to be developed to guide the choice of particle size distribution and packing, 
and to guide the choice of parameters for contact laws between elements. Notice that 
disks or spheres as used here are basic building blocks which may be grouped into 
clusters or ‘‘clumps’’ to generate elements of various shapes (Potyondy and Cundall, 
2004; Li and Holt, 2002). Micromechanical calibration (as in Holt et al., 2005) cannot be 
expected to provide a complete answer here, and the approach must be based largely on 
field experience, geological considerations, and comparison to theory or other modeling 
tools. Improved resolution may however be obtained by using small particles in parts of 
the model where the dynamic feature is most required. This may be achieved with PFC 
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by utilizing a recent option (AC/DC) for automatic linkage of the DEM to a continuum 
(e.g., FEM or finite difference) model. 
  In the PFC simulations shown here, poromechanical coupling was (for simplicity) not 
applied. This is however possible (Shimizu, 2004; Li and Holt, 2004), and would permit 
more realistic treatments of pressure gradients within a reservoir compartment and across 
faults. This also permits well drainage to be part of the model. Currently, only single 
phase fluid flow has been coupled to PFC, nonetheless this is not a fundamental 
limitation. Also, since wave propagation can be performed relatively easy with PFC (Li 
and Holt, 2002), direct simulations of seismic surveys as well as induced seismicity 
(Hazzard and Young, 2000) may be incorporated within the same scheme as the 
geomechanical and fluid flow simulations. 
 

2.8 Conclusions 
 
We have demonstrated the feasibility of a Discrete Element Model (PFC) to simulate 
stress evolution and associated displacements resulting from pore pressure depletion of a 
producing reservoir. The model was calibrated in 2-D as well as 3-D for a case of perfect 
elasticity, when comparison could be made to analytical calculations by the nucleus of 
strain theory (Geertsma, 1973). The accuracy of the DEM is limited by element size, 
which here was 20 m (given by the radius of disk elements in 2-D; spheres in 3-D). While 
calculated compaction and subsidence were in good agreement with theory, the scatter in 
stress calculations was more significant. The results are also sensitive to particle size
distribution and packing, indicating that more work is required to optimize the choices of 
these parameters and parameters controlling the contact law between particles. Also as 
with other numerical methods, the results are largely affected by the boundary conditions. 
Therefore the model must be refined to achieve better results. 
  The simulations performed illustrate the ability of the DEM to generate localized faults 
when the elastic limit is exceeded somewhere in the model. As one would expect from 
analytical stress calculations and from previous numerical work, faulting is likely to take 
place in the surrounding near the edge of a depleting reservoir. When faults are known to 
exist prior to depletion and can be identified from seismic images, they may be embedded 
in the DEM model by selecting an array of particles with properties different from the 
surroundings. In our case, two options for numerical simulation of fault activation were 
considered; (i) reduced friction; (ii) reduced particle size and stiffness. Further work is 
required to find a geologically representative formulation for a fault in the DEM. 
  We conclude that DEM, such as PFC, may provide useful insight into the dynamic 
behavior of a rock mass such as in the case of a depleting reservoir embedded in a 
sedimentary basin. In principle, fluid flow and elastic wave propagation may also be 
incorporated in this model. Only when faulting is expected to take place will DEM be 
beneficial compared to more traditional simulation approaches (like FEM). 
Improvements include reducing particle (element) size, particularly in zones where 
failure may occur. Linking of DEM to a continuum model appears to be a promising tool. 
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3 Relating discrete element method (DEM) parameters to 
rock properties   

 
*Part of this chapter is presented and published at the proceeding of FLAC/DEM 
Symposium, Minneapolis, USA, 2008. Another part is presented at EAGE conference, 
Vienna, 2006, and appeared in the Extended Abstract.  
 

3.1 Introduction  
 
In Chapter 2 a feasibility study is presented to show the possibility of using DEM in large 
scale reservoir geomechanics. The study is conducted without looking into much detail 
about how to relate DEM parameters to conventional rock properties. For example, to 
obtain the values of the Young’s modulus E and the Poisson’s ratio ν, a biaxial test on a 
sample that resembles the geomechanical model material is performed. However, if we 
want to use DEM as a general method in reservoir geomechanics, general and concrete 
relations must be derived to relate DEM Parameters like kn, ks to rock properties like E 
and ν. In this chapter we will use an approach based on Walton’s model for granular 
media (1987) to derive such relations. 
  In the first section, the Walton approach is revisited and used to derive a relatively 
general formula for the elastic constitutive relation Cijkl, the formula uses DEM 
parameters kn, ks for the contact normal and shear stiffness instead of the Hertz-Mindlin 
contact law used by Walton. Then, this formula is used to derive relations for dense 
packing of two types, hexagonal and square. A modification for the square packing is 
done to guarantee isotropic behavior. These relations are tested by dynamic and static 
tests, such as wave propagation in both homogeneous and heterogeneous media, also 
biaxial and reservoir geomechanical tests. 
  After that, relations for a loose, dense packing are derived, and a technique is presented 
to show how many particles are needed to give isotropic packing. It is also shown that the 
dynamic behavior for the loose packing is different from the static one. For example, 
based on two dimensional simulation it is found that the dynamic Poisson’s ratio is 
limited to 0.25 (based on plane-strain condition) i.e. the maximum P-/S-wave velocity 
ratio is limited by Vp/Vs < 3 . The static Poisson’s ratio is however not limited by the 
same value. Empirical relations for the static behavior are derived based on observing 
numerical tests and some dimensional analysis. 
  Next, a procedure for creating a failure envelope for DEM models is presented. The 
procedure relies on numerical simulations of Biaxial and Brazilian tests to extract the 
failure properties. Since until now we could not obtain failure relations for DEM similar 
to the elastic relations, one may use such a procedure to get the failure properties for the 
DEM models.  
  Then, we show how one may construct a velocity model from a DEM geomechanical 
model to be used later in seismic modeling. 
 In the last section, we study the effect of particle rotation on the elastic properties using 
Cosserat continuum theory.  
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3.2 Micro-macro relations for a granular medium 
 
In this section, Walton’s (1987) approach will be used to derive relations that relate the 
effective (macroscopic) elastic properties (defined by the elastic stiffnesses Cijkl) to DEM 
internal (microscopic) stiffness parameters (normal stiffness kn, shear stiffness ks). Unlike 
Walton’s derivations, a linear contact force law which is defined by kn and ks, will be 
used instead of the Hertz-Mindlin contact law. 
  We start with a DEM medium made of spherical elements that occupies a volume V, see 
Figure 3.1. Then the medium is assumed to be loaded from zero condition to an initial 
condition defined by the strain, εij and the stress σij. For such a system, one can write the 
displacement for a particle (or element) p with position Xi as follows.  
 
 p p

i ij jU ε X=  (3.1) 
 
 

 
 
Figure 3.1. DEM medium (granular medium) consists of spherical particles and under initial 
load defined by σij & εij. 
 
 
Remember that for DEM the following contact law holds at the contact  
 
 n n nF k U=  (3.2) 
and 
 s s sF k U=  (3.3) 
 
 
Let us assume that a contact m connects two particles p1 and p2 (see Figure 3.1) then the 
normal and shear relative displacements m

nU and m
sU can be written as  
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 m m m
n i iU ΔU I=  (3.4) 

and 
 m m m m

s(i) i n iU ΔU U I= −  (3.5) 
 
where the relative displacement at the contact m

iUΔ is given as, 
 
 m p1 p2

i ij j jΔU ε (X X )= −  (3.6) 
 
The normal unit vector m

iI  is given as 
 

 
p1 p2

m i i
i

m

X XI
d
−

=  (3.7) 

 
dm is the contact length, i.e. distance between p1 and p2. 
The total force Fi at contact m can be written as 
 
 m m m m m m m m m m

i n j j i s i j j iF k ΔU I I k (ΔU ΔU I I )= + −  (3.8) 
or 
 m m m m m m m m

i n s kl k l i m s ij j mF (k - k )(ε I I )I d k ε I d= +     (3.9) 
 
Notice that summation Einstein convention with dummy subscript i,j,k,l is used in the 
above equations. Further more, by using Cauchy’s formula (see Walton, 1987), the 
average stress σij can be written as 
 

 c c
ij i j j i

S

1σ (X T X T ) S
2V

 = + ∂∫  (3.10) 

 
where S represents the spheres’ surface, c

iX  is the distance between a contact on the 
surface of a sphere and its center, and Ti is the surface traction. Since we have discrete 
element medium with distinct contacts being assumed as points, the integral in Eq. (3.10) 
can be replaced by summation. Besides, instead of summing over the spheres while 
measuring the stress we sum over the contacts. So Eq. (3.10) may be written as  
 

 
Nc

m m m m
ij m i j m j i

m 1

1σ (d I F d I F )
2V =

= +∑  (3.11) 

 
Nc is the number of contacts inside the medium. Notice that since m c

m i id I 2X= , another 
factor ½ should appear in Eq. (3.11). However since we are summing over the contacts 
instead of the spheres, each contact is counted once. This is opposite to the case in Eq. 
(3.10) where each contact is counted twice. 
Now, by substituting Eq. (3.9) into Eq. (3.11), we end up with
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CN

m m m 2 m m m 2 m m m m m m 2
ij s jl l i m s il l j m n s kl i j k l m

m 1

1 1σ ( (k ε I I d k ε I I d ) (k k )ε I I I I d )
V 2=

= + + −∑  (3.12) 

 
Recalling the following relation  
 
 ij ijkl klσ C ε=  (3.13) 
 
Finally, by substituting Eq. (3.12) into Eq. (3.13), Cijkl can be given as 
 

 

CN m 2
m m m m m m m ms m

ijkl j k il i k jl j l ik i l jk
m 1
m m 2 m m m m
n s m i j k l

k d1C ( (I I δ I I δ I I δ I I δ )
V 4
(k k )d I I I I )

=

= + + +

+ −

∑  (3.14) 

It is worthy mentioning that Sayers et. al. (1995) derived a similar equation; however he 
assumed a continuous medium which includes uniform distribution of cracks, instead of a 
granular medium. Furthermore, he used compliance parameters instead of stiffness 
parameters.  
  In the following sections we will use this equation to derive the micro-macro relations 
for granular media made of dense packing and random, loose packing of spheres in two 
dimensions (2D) only. 

3.3 Dense packing 
 
The dense packing can be defined as a granular medium where the number of contacts 
per particle is large (more than 4 in 2D). It naturally follows that the ordered packing can 
be classified as the best example of the dense packing. Thus in the following two 
subsections, two types of ordered packing will be studied: hexagonal and square packing. 

3.3.1 Hexagonal packing 
 
In a hexagonal packing each particle is surrounded by six neighboring particles, see 
Figure 3.2. However, this configuration can be looked at in a simplified way by assuming 
that each set of three particles form a triangle as a basic unit (or cluster) of the packing. 
  To derive the micro-macro relation for this packing, we use Eq. (3.14) where the 
number of contacts Nc=3, dm is equal to the particle diameter, and V is the area of the 
triangle forming the cluster after assuming a unit thickness. Half the vales of kn and ks are 
inserted into the equation because each contact is shared by two clusters and should be 
counted only once. Then the Lame’s constants λ and μ can be given as 

 1111 2222 n s
3λ 2μ C C (3k k )

4
+ = = = +  (3.15) 

 1122 2211 n s
3λ C C (k k )

4
= = = −  (3.16) 

 1212 2121 n s
3μ C C (k k )

4
= = = +  (3.17) 
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Figure 3.2. Hexagonal packing. 
 
Notice that the packing shows isotropic behavior (all the other elastic coefficients are 
equal to zero) regardless of the cluster orientation, this can be proven by rotating the 
triangular cluster by a given angle then use Eq. (3.14) again to derive expressions for 
Cijkl. To verify this derivation numerically, two tests on a PFC2D sample are done, one is 
dynamic and the other is static. 

3.3.1.1 Dynamic test 
 
Before doing the numerical test, the relations for P-wave and S-wave velocities (Vp and 
Vs) are needed. First, the density of the cluster ρ can be given as function of the packing 
porosity Φ (fraction of the void volume of the packing to the total packing volume) and 
the particle density ρs 
 
 sρ (1 Φ)ρ= −  (3.18) 
 

 πΦ 1
2 3

= −  (3.19) 

 
Second, it follows that Vp and Vs can be given as: 
  

 p n s
s

λ 2μ 3V (3k k )
ρ 2πρ
+

= = +  (3.20) 

 

 s n s
s

μ 3V (k k )
ρ 2πρ

= = +  (3.21) 

3.3.1.1.1 Homogeneous case  
 
A PFC2D sample of dimensions 140*140 mm2, with particle diameter of 1mm is built; 
the particles are bonded with high contact bond strength, so that no bond breakage occurs 
during testing. A source and a receiver composed of one particle each are set at two 
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opposite corners of the sample. A Ricker wavelet source signal with mean frequency= 
200 kHz is used, and the excitation is accomplished by applying a vertical force to the 
source. The wave trace as recorded by the receiver is shown in Figure 3.3, indicating both 
the P-wave and the S-wave. Both of Eqs. (3.20) & (3.21) are used to get the analytical 
values, and Figure 3.3 is used to measure the numerical values of the wave velocities 
from travel times. The values are shown in Table 3.1.The slight mismatch depends 
mainly on the accuracy of picking arrival times (first zero crossing is used), and on 
possible numerical dispersion (zero damping coefficient was used in the calculations). 
  Notice that the parameters used are generic and do not intend to mimic any specific 
granular medium. 
 
 

 
 
Figure 3.3. Wave trace as recorded by the receiver for the hexagonal packing model. 
 
 
Table 3.1. Model properties and the resulting analytical and numerical values of P-wave and S-
wave for the hexagonal packing model. 
 

 
 

Vp 
m/s 

 
 

Vs 
m/s 

 
 

Vp 
m/s 

 
 

Vs 
m/s Property kn 

N/m 
ks 

N/m 
ρs 

kg/m3 
Analytical Numerical 

Value 8.8e10 4.4e10 2630.0 7477 4895 7418 4887 
 

3.3.1.1.2 Heterogeneous case 
To check the accuracy of DEM in modeling wave propagation in heterogeneous media, 
which is important for seismic forward modeling, a model consisting of two layers is 
constructed, see Figure 3.4 for the model properties. A compressional point source with a 
Ricker wavelet is used (the source is located at point (0,0) and the receiver at (1,0) Km), 
the mean frequency is 10 Hz. Figure 3.5 shows the horizontal displacement, as seen by 
the receiver, obtained from both DEM using PFC2D commercial code and the exact 
Cagniard-De Hoop solution (De Hoop, 1960). Clearly one can notice the accuracy of 
DEM from the figure. 
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                Figure 3.4. Heterogeneous model for seismic wave modeling. 
 
 

 
 
Figure 3.5 wave trace as recorded by the receiver showing the horizontal displacement for the 
reflected P-wave and S-wave (RVp & RVs), heterogeneous case. 
 
 

3.3.1.2 Static test 
 
To model the static behavior of the hexagonal packing two tests will be performed, the 
first is a biaxial test on small scale and the second is reservoir geomechanical test on 
large scale. 
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3.3.1.2.1 Biaxial test 
 
A sample of dimensions 60*30 mm2 and particle diameter = 1 mm, with the same micro-
parameters that are used in the homogeneous dynamic test. The stress and the strain 
tensors are monitored during the numerical test, and they are used to measure Young’s 
Modulus ( E ) and the Poisson’s Ratio ( ν ) for plane-stress condition. Further more the 
analytical expressions for the plane-stress condition of E and v can be derived using Eqs. 
(3.15) & (3.16) as follows 

 n s
n

n s

k kE 2 3k
3k k

+
=

+
 (3.22) 

 n s

n s

k kν
3k k

−
=

+
 (3.23) 

 
The values of E and ν obtained from Eqs. (3.22) & (3.23), and those obtained from the 
biaxial test are shown in Table 3.2, where it can be seen the agreement between the two 
methods. 
 
Table 3.2. Hexagonal model properties and the values of E & ν obtained from the biaxial test and 
from Eqs. (3.22) & (3.23). 
 

 
 

E 
GPa 

 
 
ν 
-- 

 
 

E 
GPa 

 
 
ν 
-- Property kn 

N/m 
ks 

N/m 
Analytical Numerical 

Value 8.8e10 4.4e10 130.6 0.1428 130.3 0.1426 
 

3.3.1.2.2 Reservoir Geomechanical test 
 
A model, based on the Valhall oil field, consisting of five shale layers with a wide and 
thin (8000 *180 m) chalk reservoir is constructed, Figure 3.6 illustrates the model. The 
properties of the model are shown in Table 3.3.The static elastic moduli of the shale are 
taken from a correlation for typical North Sea shale based on elastic wave velocities 
(Horsrud, 2001). The static elastic moduli for the chalk are taken from Gommesen and 
Fabricius (2001), assuming 30% porosity. Two models were built, DEM using PFC2D 
and FEM using Comsol Multiphysics® (Comsol Group). Both FEM mesh and DEM 
cluster are shown in Figure 3.7. The size for FEM mesh is chosen approximately to be 
equal to DEM particle diameter (=20 m). The reservoir is depleted uniformly by 30 MPa 
(by applying traction to the reservoir boundaries). Figure 3.8 shows the change in mean 
effective stress (the average of the horizontal and vertical effective stresses) measured at 
the reservoir center from both models as a function of depth. Figure 3.9 shows the same 
stress along the reservoir horizon inside it. Clearly both methods are matched, and they 
show no significant change in the overburden or the underburden, with significant stress 
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change inside the reservoir as expected. Figure 3.9 also shows an increase in the stress 
inside the reservoir as one goes to the reservoir edge, which is a result of stress arching. 
 
 

 
 
Figure 3.6. Reservoir Geomechanical model including the overburden, a 2D synthetic model 
based on Valhall Field.  
 
 

 
 
Figure 3.7 The FEM mesh (a), and the DEM cluster (b) used in the model. 
 

 
Table 3.3. The elastic properties for the overburden and the reservoir. 

 
 
 

 
 
 
 
 
 

                       
 

 

layer Young's 
modulus 

Shear 
modulus Vp Vs density Depth 

shale GPa GPa m/s m/s kg/m^3 Km 
1 0.75 0.31 1700 800 1550 0.85 
2 0.82 0.36 1800 900 1600 1.46 
3 1.10 0.49 2000 1000 1700 2.02 
4 1.44 0.63 2200 1200 1750 2.8 
5 7.40 3.30 4000 2500 2300 4 

Chalk       
reservoir 9.0 3.75 2900 1500 1800 2.8 
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Figure 3.8. The mean effective stress versus depth through the reservoir center. 
 
 

 
 

Figure 3.9. The mean effective stress along the reservoir horizon. 
 

3.3.2 Square packing  
 
This type of packing may be used as alternative to the hexagonal packing. One problem 
with this packing is that in its basic form, (see Figure 3.10.a) it shows a Poisson’s ratio 
equal to 0, which makes it impractical to use in practical geomechanics. Usually in lattice 
dynamics this problem is overcome by introducing a diagonal interaction between the 
particles.  
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Of course this can not be done in DEM, because the interactions in DEM are based on 
physical contacts between the particles. Another feature of the simple square packing is 
that it exhibits anisotropic elasticity. To solve these problems, smaller particles are added 
to the packing, see Figure 3.10.b.  The cluster in this type of packing is composed of 4 
equally sized particles and one small particle at the center. Thus the number of contacts 
N=8, and V is equal to the area of the square. To obtain the micro-macro relations, these 
values are substituted into Eq. (3.14), notice that the values of kn and ks for all the 
contacts that are shared by the large particles are set to half, because these contacts are 
shared by two clusters. However this is not the case for the diagonal contacts, because 
they lie totally inside one cluster. After substitution, the resulting micro-macro relations 
are: 

 1111 2222 n s
1λ 2μ C C (3k k )
2

+ = = = +  (3.24) 

 1122 2211 n s
1λ C C (k k )
2

= = = −  (3.25) 

 1212 2121 n s
1μ C C (k k )
2

= = = +  (3.26) 

 
 

 
 

Figure 3.10 Square packing 

3.3.2.1 Dynamic test 
The packing porosity Ф, P- and S-wave speeds Vp, Vs of this cluster are given as 
 

 1Φ 1 π(1 )
2

= − −  (3.27) 

 

 p n s
s

λ 2μ 1V (3k k )
ρ π(2 2)ρ

+
= = +

−
 (3.28) 

 

 s n s
s

μ 1V (k k )
ρ 2(2 2)ρ

= = +
−

 (3.29) 

We perform the same dynamic homogeneous test like that for the hexagonal packing, and 
the result for this test is shown in Table 3.4. Notice that this material exhibits isotropic 
elasticity, which was tested by calculating all the coefficients of Cijkl.      
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Table 3.4 Model properties and the resulting analytical and numerical values of P-wave and S-
wave for the square packing model. 
 

 
 

Vp 
m/s 

 
 

Vs 
m/s 

 
 

Vp 
m/s 

 
 

Vs 
m/s Property kn 

N/m 
ks 

N/m 
ρs 

kg/m3 
Analytical Numerical 

Value 8.8e10 4.4e10 2630.0 7977 5222 7871 5148 
 

3.3.2.2 Static biaxial test 
 
The values of Young’s modulus ( E ) and Poisson’s ratio (ν) for plane-stress conditions 
can be given as 
 

 n s
n

n s

k kE 4k
3k k

+
=

+
 (3.30) 

 n s

n s

k kν
3k k

−
=

+
 (3.31) 

 
A biaxial test is performed with the same model properties as for the hexagonal packing. 
The values of E & ν are obtained from Eqs. (3.30) & (3.31) and the biaxial test and are 
shown in Table 3.5. Again there is good agreement between the analytical and the 
numerical values. 
 
 
Table 3.5. Square packing model properties and the values of E & ν obtained from the              
biaxial test and from Eqs. (3.30) & (3.31). 
 

 
 

E 
GPa 

 
 
ν 
-- 

 
 

E 
GPa 

 
 
ν 
-- Property kn 

N/m 
ks 

N/m 
Analytical Numerical 

Value 8.8e10 4.4e10 150.8 0.1428 150.3 0.1425 
 
 

3.4 Random loose packing 
 
Random packing is needed in order to have more uniform distribution of particles. 
Packing by numerical technique has usually high porosity and low number of contact per 
particle. That is why we call it loose packing, see Figure 3.11. This type of packing is 
usually created numerically (see e.g. AUGMENTED FISHTANK in PFC2D manual), 
and with specific distribution such as uniform distribution. 
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Figure 3.11. Random packing 
 
The micro-macro relation for this packing can be derived using Eq. (3.14), after assuming 
that an average particle diameter dav may replace dm, as follows: 
 

 
cN2

m m m m m m m m m m m mav s
1111 1 1 1 1 1 1 1 1 n s 1 1 1 1

m 1

d kC ( (I I I I I I I I ) (k k )I I I I )
2V 4=

= + + + + −∑  (3.32) 

 
c cN N2

m m m m m m 2 m m m mav n s
1122 n s 1 1 2 2 m 1 1 2 2

m 1 m 1

d (k k )1C (k k )I I I I d I I I I
2V 2V= =

−
= − =∑ ∑  (3.33) 

 
cN2

m m m m m m m mav s
1212 1 1 2 2 n s 1 2 1 2

m 1

d kC ( (I I I I ) (k k )I I I I )
2V 4=

= + + −∑  (3.34) 

 
As a result of a random distribution packing, we can assume that the unit normal vector Ii 
of all the contacts in the random packing can be represented by an angle θ and follows a 
uniform distribution function (θ starts from 0 to 2π), so the summation can be replaced by 
integration and we get 

 
c 2πN

m m m m 4c c
1 1 1 1

m 1 0

N 3NI I I I cos (θ) θ
2π 8=

= ∂ =∑ ∫  (3.35) 

 
c 2πN

m m m m 2 2c c
1 1 2 2

m 1 0

N NI I I I cos (θ)sin (θ) θ
2π 8=

= ∂ =∑ ∫  (3.36) 

 
c 2πN

m m 2c c
1 1

m 1 0

N NI I cos (θ) θ
2π 2=

= ∂ =∑ ∫  (3.37) 

 
c 2πN

m m 2c c
2 2

m 1 0

N NI I sin (θ) θ
2π 2=

= ∂ =∑ ∫  (3.38) 

 
Now we introduce the coordination number z as the number of contact per particle. If the 
number of particles is Np, then z = 2Nc/Np. The porosity of the packing Φ can be given as 
 
 

 
2

p avN πd
Φ 1

4V
= −  (3.39) 
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Then, by substitution of Eqs. (3.35) to (3.39) into Eqs. (3.32 to (3.34), we get  

 1111 2222 n s
(1 Φ)zλ 2μ C C (3k k )

4π
−

+ = = = +  (3.40) 

 1122 2211 n s
(1 Φ)zλ C C (k k )

4π
−

= = = −  (3.41) 

 1212 2121 n s
(1 Φ)zμ C C (k k )

4π
−

= = = +  (3.42) 

 
The rest of the elastic coefficients are derived in the appendix which proves that the 
random packing shows isotropic behavior.  
 In the following two sections dynamic and static tests, similar to the dense packing case, 
will be performed. As it will be shown the static behavior of the loose packing diverges 
from the dynamic behavior and fails to follow the above derived relations.   

3.4.1 Dynamic test 
 
Form Eqs. (3.39), (3.40), & (3.42) the relations for Vp and Vs can be given as 
 

 p n s
s

λ 2μ zV (3k k )
ρ 4πρ

+
= = +  (3.43) 

 

 s n s
s

μ zV (k k )
ρ 4πρ

= = +  (3.44) 

 
Notice that if we set z = 6 (as in the hexagonal packing case) into Eqs. (3.43) & (3.44), 
they will become identical to Eqs. (3.20) & (3.21), which makes them a general case. 
However, setting z = 8, the square packing case, will not lead to Eqs. (3.28) & (3.29). 
This is because the square packing has two particle sizes, one being smaller than the 
other, whereas in the derivation of Eqs. (3.43) & (3.44), an average particle size dav is 
assumed. To overcome this misfit, we can calibrate for the coordination number z, so by 
setting the value of z as follows, will lead Eqs. (3.43) & (3.44) to become identical to 
Eqs. (3.28) & (3.29). 
 

 4z
(2 2)

=
−

 (3.45) 

 
This type of calibration should be kept in mind while doing the numerical dynamic test 
on loose packing, since this type of packing contains different particles’ sizes.  
  For testing Eqs. (3.43) & (3.44), a model of size 600*600 mm2 is built. The model has a 
periodic structure where it consists of rectangular cells, these cells are named Pbrick in 
PFC2D, and they have a size of 5 *5 mm2 each. All the Pbricks are identical replicas. The 
question now is how many particles are needed per Pbrick? To answer this question, a 
single Pbrick is built several times, with increasing the number of particles each time. 
Then Eq. (3.14) is used, directly, to get the elastic coefficients Cijkl. Since we will have 
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isotropic material, the values of C2222/C1111 = C22/C11 and C1112/C1111 = C16/C11 are 
calculated. For the isotropic case, the first expression must equal to 1 and the other to 
zero. These expressions are plotted versus the number of particles per Pbrick Np, see 
Figure 3.12. Notice that around 100 particles are needed to give isotropic behavior so a 
larger number has to be used in our model (around 120 particles are used). Next, a source 
and a receiver are set 200 mm apart with the same y-axis coordinate, then a directional 
point source with Ricker wavelet signal (mean frequency= 80 kHz) is used. The modeling 
is repeated twice, in the first case, the source is excited vertically and in the second case 
horizontally. Then the P-wave and the S-wave are recorded at the receiver, respectively. 
Notice that in the first case, the horizontal receiver velocity is recorded, and in the second 
case, the vertical receiver velocity is recorded. Figure 3.13 shows the wave front at a 
particular time, and Figure 3.14 shows the P-wave as recorded by the receiver. This 
figure is used to measure the value of P-wave and a similar figure for the S-wave, then 
these values are compared with those calculated from Eqs. (3.43) & (3.44), see Table 3.6. 
 
 

 
 
Figure 3.12. C22/C11 and C16/C11 vs. number of particles Np. his figure may be considered as 
guidance for how many particles per Pbrick are sufficient to give isotropic behavior. 
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Figure 3.13. Wave front propagating through random packing model, notice the P-wave and the 
S-wav. 
 
 

 
 
Figure 3.14. Wave trace as recorded by the receiver for the random packing model 
 
 
Table 3.6 Model properties and the resulting analytical and numerical values of P-wave  and S-
wave for the random packing model. 
 

 
 

Vp 
m/s 

 
 

Vs 
m/s 

 
 

Vp 
m/s 

 
 

Vs 
m/s Property kn 

N/m 
ks 

N/m 

 
 
z 
-- 

ρs 
kg/m3 

Analytical Numerical 
Value 30e9 15e9 3.4 2630 3286 2151 3111 2040 
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3.4.2 Static test 
 
As we motioned previously, the static behavior for the loose packing, unlike the dense 
packing, does not follow the analytical relations derived above. The reason for that is due 
to the fact that loose packing has larger pores which allows, during mechanical loading 
and unloading, the particles to move into these pores also to slide on each other, this will 
also results in creating new contacts during the simulation. This behavior is not captured 
by the derived analytical relations above. Nevertheless, these analytical relations may 
guide us to write suitable relations to relate the static elastic coefficients to the internal 
DEM parameters.   
  By recalling Eqs. (3.40) through (3.42), one can write a relation for the Poisson’s ratio ν 
as follows 

 

s

n

s

n

k1
kν k3
k

−
=

+
 (3.46) 

 
As it can be observed from Eq. (3.46), the Poisson’s ratio is only a function of ks/kn ratio, 
so based on observing static numerical tests, we would like to write an empirical relation 
for ν as a function of ks/kn.  
  Now, a 2D sample is generated using PFC2D, See Figure 3.15. Then several biaxial 
tests are performed on this sample with changing ks/kn ratio each time and keeping kn 
constant. During the tests, the stress and the strain are measured and are used to calculate 
the Young’s modulus E and the Poisson’s ratio ν. The Poisson’s ratio ν is calculated 
using the vertical strain εy and the lateral strain εx, i.e. ν = - εx/ εy which corresponds to 
plane-stress condition. 
  Figure 3.16 shows ν as a function of ks/kn, as it can be seen from the figure, the best-fit 
curve is given as logarithmic function with a quite good accuracy. Consequently, a 
relation for ν may be written as follows 
 

 s

n

kν A Ln( ) B
k

= ⋅ +  (3.47) 

 
As it can be seen form Figure 3.16 that ν has values larger than 1/3 (the maximum limits 
predicted by Eq. (3.46)). This is related to the fact we mentioned above which is due to 
the presence of large pores.  
  The values of the constants A, B as taken from that figure are (approximately) A = -
0.172 and B=0.091. We did several tests with different samples and the values of A & B 
remains, more or less, around the above values. So, for simplicity, one may assume these 
constants as general for loose packing. That should not come as a surprise, since the 
dynamic Poisson’s ratio (also the static one for dense packing, since they are the same) is 
only a function of ks/kn. However, one should notice that this equation is empirical and is 
based on some observations and dimensional analysis. Finally, a similar logarithmic 
relation for the Young’s modulus is observed to be correct, however, the constants in the 
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relation are varying from a sample to another, which requires from us to find two 
constants each time a loose packing sample is created.     
 
 

 
 

Figure 3.15. 2D sample used for the biaxial tests. 
 
 
 

 
 
Figure 3.16. Poisson’s ratio ν versus ks/kn as obtained from the biaxial tests and with the best-fit 
curve. kn is kept constant during the tests.
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3.5 Failure properties and failure envelope 
 
It is also important in order to study possible failure processes in a reservoir to relate rock 
failure properties to internal DEM properties. Such typical properties are shear strength 
and tensile strength. As it was shown, DEM has its failure properties defined at the 
contacts, like contact shear strength and tensile strength, and friction coefficient. These 
properties do not represent the rock mass properties, for example those usually obtained 
from experimental tests. So far, we have not been able to derive analytical relations for 
the failure properties just like we did for the elastic properties in the previous sections. 
However to overcome such difficulty, one can do some numerical tests on DEM samples, 
then extract the rock properties from those tests. In this section, several tests will be 
performed on a DEM sample using PFC2D. The sample properties are shown in Table 
3.7, notice that the properties are chosen to speed up the numerical tests and they are not 
meant to resample any particular type of rocks. 
 
 
Table 3.7. PFC2D sample properties used in some numerical tests to extract failure properties. 
 

Contact properties  Value  
kn 8.8e10 N/m 
ks 4.4e10 N/m 
Internal friction coefficient  0.5 
Internal shear strength (Contact Bond) 2.0e8 ± 0.5e8 N 
Internal tensile strength (Contact Bond) 2.0e8 ± 0.5e8 N 
Particles’ radius  0.25-0.415 mm 

 
 
One Brazilian test and six biaxial tests with different confining pressures (Pc = 5, 10, 20, 
30, 40, and 50 MPa) are performed following a procedure described by Potyondy and 
Cundall (2004) and may also be found in ITASCA PFC2D manual (AUGMENTED 
FISHTANK). The outcome of the Brazilian test is shown in Figure 3.18 where it is 
obvious tensile cracks develop parallel to the applied load (the load is applied by given 
the confining walls initial velocities). Figure 3.19 shows the axial force vs. the axial 
strain, from this figure one can calculate the tensile strength for the assembly by 
measuring the peak force Fp and using the following formula for the tensile strength T 
(see Goodman, 1980). 
 

 pF
T

πR
=  (3.48) 

 
R is the radius of the PFC2D disk assembly, assuming that the disk has a unit thickness in 
the out-of-plane direction. The resulting tensile strength for this sample is T = 48 MPa.  
  For each biaxial test, we plot the axial stress versus the axial strain (σyy vs. εyy, see 
Figure 3.20). Peak stresses are measured from the plot, the peak stress in this case 
represents the maximum principle stress σ1 to achieve shear failure according to Mohr-
Coulomb criteria (see chapter 4.2.2), and the confining pressure Pc represents the 
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minimum principle stress σ2. By plotting σ1 versus σ2 from all the biaxial tests we can 
create a best-fit line which represents the Mohr-Coulomb criteria, and from this line the 
values of shear strength S and friction coefficient μf can be retrieved (S = 94.0 MPa, μf = 
0.223). Figure 3.21 shows the final failure envelope for this assembly including the shear 
failure and the tensile failure as obtained from the previous tests.  
  Another failure criterion can be added which represents the compaction failure of the 
rock, like pore collapse and grain crushing. This criterion is usually represented by a cap 
model. In DEM we can model this failure type by reducing the particle radius by a certain 
amount when the compressive mean stress on that particle reaches a predefined value.    
  It is obvious here that using DEM is linked with some difficulties which means for each 
time one want to build a geomechanical model, a failure envelope is needed to be 
constructed. However this problem might be solved in the future by obtaining micro-
macro relations based on observing numerical tests just like we did for the elastic 
properties. One also can notice that no complicated plastic flow model is required 
(hardening and softening models), such behaviors are captured automatically in DEM by 
local failures at the contacts and by particles rearrangement and rotation. This may also 
reduces the number of parameters that we need to fit for (usually plastic models have too 
many parameters to fit for, (see e.g. Chen et. al., 1990)), which can be considered as a 
strength of this method.      

 
 

 
   
Figure 3.18. The outcome of the Brazilian test on PFC2D sample, notice the development of 
tensile cracks in the middle of the sample.  
 
 



Failure properties and failure envelope                                                                                                          69 
________________________________________________________________________ 

 
 
Figure 3.19. The axial force vs. the axial strain obtained from the Brazilian test and used to 
measure the tensile strength of the PFC2D sample. 
 
  
 

 
 
Figure 3.20. The axial stress vs. the axial strain for several biaxial tests, this figure is used to 
extract the shear failure properties for PFC2D sample.  
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Figure 3.21. Failure envelope constructed form the Brazilian test and the biaxial tests for a 
PFC2D sample.   

 

3.6 Building velocity model 
 
The next step after doing geomechanical modeling is to construct velocity models for the 
reservoir in order to use that in 4D seismic study. It will be easier to just perform forward 
seismic modeling directly on the same geomechanical model, however this is not 
feasible. The reason for that is that seismic modeling requires certain element size to 
avoid numerical dispersion (usually the wave length has to be 10 times the particle 
diameter), whereas in the geomechanical model the small elements are required only in 
the reservoir region and the rest of the model can have larger elements. So this option is 
not economical on a current personal computer. Another option that might be feasible is 
to use Eq. (3.14) together with some contact model such as Hertz-Mindlin contact model 
(Hertz, 1882 & Mindlin, 1949) to update the velocity model, then use that in other 
seismic models like one based on Finite difference method. A procedure for doing so is 
proposed as follows: For a current condition in a geomechanical model, the model is 
divided into control volumes, preferably matching Pbricks presented in previous sections. 
Then for each contact in every control volume, kn, ks are updated based on the condition 
of that contact. For example if the contact normal force Fn is in tension or a crack is 
developed at that contact, kn and ks are set to zero. Also if the contact normal force is in 
compression, kn and ks are updated according to Hertz-Mindlin contact model as follows 
( e.g. Fjær et. al. 2008 and Bachrach et. al. 2000) 
 

 n
4aμk
1 ν

=
−

 (3.49) 
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 s
8aμk
2 ν

=
−

 (3.50) 

where  

 

1
3

n3F R(1 ν)a
8μ

⎡ ⎤−
= ⎢ ⎥

⎣ ⎦
 (3.51) 

 
The radius R depends on the radii of the two particles in contact R1, R2 as follows 
 

 1 2

1 2

2R RR
R R

=
+

 (3.52) 

 
μ and ν are the shear modulus and the Poisson’s ratio for the grain material of the 
reservoir rock. With the values of kn and ks in hand, Equation 3.14 can now be used to 
update the velocities for this control volume. 
  To test this procedure, a biaxial test is performed on 2D sample using PFC2D, the 
sample is similar to that shown in Figure 3.15 with particles’ properties shown in Table 
3.8. The sample is first loaded to an isotropic stress condition of 5.0 MPa, then the biaxial 
test starts. The horizontal and the axial P-waves and the S-wave are calculated for the 
sample using the above procedure at several stages of the biaxial test. The result together 
with the axial load curve is shown in Figure 3.22. 
  One important point to be noticed when looking to Figure 3.22 is the axial P-wave 
sensitivity to stress increase. As it is shown, the axial P-wave velocity increases only 
slightly as the axial stress increases, which does not necessarily mimic the behavior of 
real granular rock. For example, Fjær (2006) shows, based on laboratory tests on dry 
Castlegate sandstone, much more sensitivity of the axial P-wave velocity to stress 
increase. Such a deviation between our model and real rocks can be related to closure of 
the cracks that are perpendicular to the axial load direction in the real rocks as the load 
increases, also it is possible that the power law factor used in the Hertz-Mindlin contact 
model is not accurate so another factor has to be used. Notice that Fjær, in the same 
paper, presented a rock model that can include these two effects.        
 
 
Table 3.8. PFC2D sample properties used in some numerical Biaxial tests to update the wave 
velocities 
 

Contact properties  Value  
kn 8.8e9 N/m 
ks 4.4e9 N/m 
Internal friction coefficient  0.5 
Internal shear strength 20.0e6 ± 5.0e6 N 
Internal tensile strength 20.0e6 ± 5.0e6 N 
Particles’ radius  0.25-0.415 mm 
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Figure 3.22. The updated values of the wave velocities during biaxial test together with the load 
curve obtained for PFC2D sample. 
 

3.7 Studying the effect of particle rotation using the Cosserat 
continuum theory 

 
So far the particle rotation effect in the previous derivations of micro-macro relations is 
not included, that is because the relations are compared to the classical elasticity theory 
which does not have rotational degree of freedom. That means if we want to study the 
effect of particle rotation, the classical elasticity theory will not be sufficient and more 
advanced theory is needed, namely, micropolar elasticity, see for example (Eringen, 
1968).This theory is general and we are interested here in a special case which is usually 
referred to as Cosserat continuum. 
  Since the particle rotation is not included in Eq. (3.5), this equation is not complete and 
the complete version should be written as follows, notice that we are interested in 2D, so 
there will only be one rotational degree of freedom, i.e. the rotation around the z-axis; θz 

= θm ≈ θji. 
 

 
m m

m m m m p1 p2m k m k
s(i) i n i

d I d IU ΔU ΔU I θ θ
2 2

= − − −  (3.53) 
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where θp1, θp2 are the rotations of p1 and p2, and the contact m is assumed to be half way 
between p1 and p2, see Figure 3.1 for more details. Then, by replacing θp1, θp2 with 
average rotation at the contact θm, the total force Fi can be written as 
 
 m m m m m m m m m m m m

i n j j i s i j j i m kF k ΔU I I k (ΔU ΔU I I d I θ )= + − −  (3.54) 
 
Then by using Eq. (3.11), the total stress in the whole medium σij may be written as  
 

 

CN m m 2
m m m m m m m m m ms m s m

ij j i i j i k j k
m 1
m m m m m m
n s m k k i j

k d k d1σ ( (ΔU I ΔU I ) (I I θ I I θ )
V 2 2
(k k )d ΔU I I I )

=

= + − +

+ −

∑  (3.55) 

 
Remember that the wave equation can be written as  
 

 
2

ij i
2

j

σ uρ
x t

∂ ∂
=

∂ ∂
 (3.56) 

and 
 

 m m m mi i
i j j

j j

u uΔU ΔX I d
x x

∂ ∂
≈ =

∂ ∂
 (3.57) 

 
 
By substituting Eq. (3.57) in Eq. (3.55) and assuming that θm ≈ θji we get  
 

 

cN 2 2 2
m 2 m m m m m m 2 m m m m11 1 1 1
s m 1 1 1 2 n s m 1 1 1 12 2

m 11 1 1 2 1
2 2 2

m m m m m m m m m m m m1 2 2
1 1 1 2 2 1 1 2 2 1 1 12

1 2 1 2 1

m 2 m m 11
s m 1 2

1

σ u u u1 [k d ( I I I I ) (k k )d ( I I I I
x V x x x x

u u uI I I I I I I I I I I I )
x x x x x

θk d I I ]
x

=

∂ ∂ ∂ ∂
= + + −

∂ ∂ ∂ ∂ ∂

∂ ∂ ∂
+ + +

∂ ∂ ∂ ∂ ∂
∂

−
∂

∑

 (3.58) 

 

 

cN m 2 2 2 2 2
m m m m m m m ms m12 2 2 1 1
2 1 1 1 2 2 1 22 2

m 12 2 2 1 2 2 1
2 2 2

m m 2 m m m m m m m m m m m m1 1 2
n s m 1 1 1 2 1 1 2 2 2 1 2 22 2

2 1 2 2
m 22

m m m m s m2
2 1 2 1

2 1

k dσ u u u u1 [ ( I I I I I I I I )
x V 2 x x x x x x

u u u(k k )d ( I I I I I I I I I I I I
x x x x

k du I I I I ) (I
x x 2

=

∂ ∂ ∂ ∂ ∂
= + + +

∂ ∂ ∂ ∂ ∂ ∂ ∂

∂ ∂ ∂
+ − + +

∂ ∂ ∂ ∂

∂
−

∂ ∂

∑

m m m m21 21
1 1 2 2

2 2

θ θI I I )]
x x

∂ ∂
+

∂ ∂

 (3.59) 
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cN 2 2 2
m 2 m m m m m m 2 m m m m22 2 2 2
s m 2 2 2 1 n s m 2 2 2 22 2

m 12 2 2 1 2
2 2 2

m m m m m m m m m m m m2 1 1
2 2 2 1 1 2 2 1 1 2 2 22

2 1 2 1 2

m 2 m m 22
s m 2 1

2

σ u u u1 [k d ( I I I I ) (k k )d ( I I I I
x V x x x x

u u uI I I I I I I I I I I I )
x x x x x

θk d I I ]
x

=

∂ ∂ ∂ ∂
= + + −

∂ ∂ ∂ ∂ ∂

∂ ∂ ∂
+ + +
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∂

−
∂

∑

 (3.60) 

 

 

cN m 2 2 2 2 2
m m m m m m m ms m21 1 1 2 2
1 2 2 2 1 1 2 12 2

m 11 1 1 2 1 1 2
2 2 2

m m 2 m m m m m m m m m m m m2 2 1
n s m 2 2 2 1 2 2 1 1 1 2 1 12 2

1 2 1 1
m 22

m m m m s m1
1 2 1 2

1 2

k dσ u u u u1 [ ( I I I I I I I I )
x V 2 x x x x x x

u u u(k k )d ( I I I I I I I I I I I I
x x x x

k du I I I I ) (I
x x 2

=

∂ ∂ ∂ ∂ ∂
= + + +
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∂ ∂ ∂
+ − + +
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∂
−
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∑

m m m m12 12
2 2 1 1

1 1

θ θI I I )]
x x

∂ ∂
+

∂ ∂

 (3.61) 

 
Then, by substituting Eqs. (3.58) to (3.61) into Eq. (3.56) and using Eqs. (3.35) to (3.38) 
we get 
 

 
2 2 2 2

s1 2 1 21 1
n s n n s s2 2 2

1 2 1 2 2

4πρu u u θ u(3k k ) 2k (k k ) 4k
x x x x x z t

∂ ∂ ∂ ∂ ∂
+ + + + − =

∂ ∂ ∂ ∂ ∂ ∂
 (3.62) 

and 

 
2 2 2 2

s2 1 2 12 2
n s n n s s2 2 2

2 1 2 1 1

4πρu u u θ u(3k k ) 2k (k k ) 4k
x x x x x z t

∂ ∂ ∂ ∂ ∂
+ + + + − =

∂ ∂ ∂ ∂ ∂ ∂
 (3.63) 

 
The wave equation for the Cosserat continuum in 2D can be given as (see Mindlin, 1965) 
 

 
2 2 2 2

1 2 1 21 1
2 2 2
1 2 1 2 2

u u u θ u(λ 2μ) (λ μ β) (μ β) 2β ρ
x x x x x t

∂ ∂ ∂ ∂ ∂
+ + + − + + − =

∂ ∂ ∂ ∂ ∂ ∂
 (3.64) 

 

 
2 2 2 2

2 1 2 12 2
2 2 2
2 1 2 1 1

u u u θ u(λ 2μ) (λ μ β) (μ β) 2β ρ
x x x x x t

∂ ∂ ∂ ∂ ∂
+ + + − + + − =

∂ ∂ ∂ ∂ ∂ ∂
 (3.65) 

 
So by comparing Eqs. (3.64) & (3.65) to Eqs. (3.62) & (3.63) we get 
 

 s
(1 Φ)zβ 2k

4π
−

=  (3.66) 

and 

 p n s
s

λ 2μ zV (3k k )
ρ 4πρ

+
= = +  (3.67) 
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 s n s
s

μ β zV (k k )
ρ 4πρ
+

= = +  (3.68) 

 
Notice that this result is the same like that derived previously. Now, if the particles are 
not allowed to rotate (i.e. constrain the particles rotation θ = 0), Eqs. (3.62) & (3.63) will 

become equivalent to those of classical continuum which means c
n s

(1 Φ)zμ (k k )
4π
−

= + , 

and c
n s

(1 Φ)zλ (k k )
4π
−

= − , where “c” stands for “constrained”. However β is not zero and 

still given by Eq. (3.66), that means the shear wave is given as 

 
c

s n s
s

μ β zV (k 3k )
ρ 4πρ
+

= = +  (3.69)  

and 

 
c c

p n s
s

λ 2μ zV (3k k )
ρ 4πρ

+
= = +  (3.70) 

If one compares Eq. (3.69) to Eq. (3.70) (or Eq. (3.67)), it can be seen that when ks > kn, 
Vs will be larger than Vp, which is unrealistic to isotropic elastic solid. However this 
behavior is a consequence of imposing a constrain on the particle rotation in the 
numerical model, which is considered unrealistic condition in real rocks (e.g. sandstone), 
because grains in these rocks do rotate. Finally, to test Eq. (3.69), a DEM model using 
PFC2D is built where ks is set three times the value of kn, then waves are allowed to 
propagate inside the model by applying directional force source. Figure 3.23 shows the 
wave front; notice how Vs propagates faster than Vp as predicted by Eq. (3.69).  
       

 
 
Figure 3.23. Wave front propagating inside DEM 2D Model where the particles are not allowed 
to rotate and ks = 3kn, notice how the S-wave propagates faster than the P-wave. 



                                                                                                                                            76 
________________________________________________________________________ 

 
 
 



Chapter 4: A modified discrete element approach                                                                                  77 
________________________________________________________________________ 

4 A modified discrete element approach  
 

4.1 Introduction 
In the previous chapters (2 & 3) we show the potential of using DEM in both 
geomechanical modeling and seismic forward modeling, also a general technique to 
relate its internal constitutive parameters such as kn, ks to the conventional constitutive 
parameters such Young’s Modulus, Poisson’s Ratio, and the wave velocities Vp, and Vs is 
presented. The approach still has, first, a problem when it comes to feed the model with 
strength properties which are stress-based in the real life and are contact force-based in 
DEM. As it was shown, some numerical tests are needed to construct the failure 
envelope. Second, it is more difficult to construct a model and install initial conditions, 
like stress, using DEM than in the other well-established methods such as Finite Element 
(FEM) or Finite Difference Methods (FDM). Third, as it was shown in Chapter 3, DEM 
has a limitation on the maximum Vp/Vs ratio (limited by 3 ). Because of these 
hindrances, we decided to make some modifications on the original DEM. 
  The modified approach works with clusters, where each cluster is made of three 
elements, unlike the original DEM which works with single element. At this stage the 
shear stiffness ks is neglected. Next the solution scheme for this approach is presented. 
Also a relation between the stress and the internal forces is obtained which enable us to 
define the failure properties just like in other continuum methods such as FEM, and 
FDM, and install the initial condition easily. Each cluster can have one of three states, 
intact cluster which behaves similar to FEM or DEM, failing cluster which behaves 
exactly like DEM, and interface cluster which is used to model faults and predefined 
fractures. The approach may be considered similar to other methods that work with 
fracturing like Numerical Manifold Method (Shi, 1991), The Combined Finite-Discrete 
element method (Munjiza, 2004), AC/DC in PFC2D v4.0 (Itasca Consultant Group). It 
should be mentioned that the theory behind this approach is based on DEM as presented 
by Cundall (1979).         
  After that, the elastic behavior of this approach is compared to FEM using a simple 
reservoir geomechanical example. Also some fracture propagation examples are shown, 
the first example shows how the fracture propagates from the tips of initial horizontal 
crack during tensile test, and the second shows how wing-fractures are developed at the 
tips of inclined crack during compressive test. The final example shows the developments 
of the shear bands during biaxial test. These tests are done for validation. 
  Then, a general approach is presented where ks is included. By including ks, the 
approach becomes more close to the original DEM. Also, with ks being included, element 
rotation has to be included. This of course raises the demand of computer power, 
however element rotation can affect fracture propagation and sliding (Liebowitz, 1968 & 
Ehlers, 2003), which might be interesting to see.                                                                                                
Finally, fluid coupled method is presented based on Finite different method where the 
spatial discretization is achieved by a network of pipes. The method allows flow through 
fractures as they are developed in the geomechanical model. 
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4.2 A modified discrete element approach 
 
Consider Figure 4.1 which shows a cluster made from three elements and packed in a 
triangular shape. As it is shown in previous chapters, the constitutive relation that relate 
the internal forces at the contacts in DEM to the contact relative displacements are called 
normal and shear stiffness coefficients, kn, ks. For this cluster we would like to write the 
internal constitutive relation that relate the normal contact forces F to the normal contact 
relative displacement U in a matrix form. Also the shear contact force is neglected by 
setting the contact shear stiffness ks=0, see Eq. (4.1).  
 
 

 
 
Figure 4.1. Representation of modified DEM using spherical Elements. The forces Fnm (or F) are 
applied at the contacts (1, 2, & 3), and the relative displacements Unm (or U) are calculated at 
these contacts, where m represents the contacts i.e. m = {1, 2, 3}. 
 

 
n1 n1 n1

n2 n2 n2

n3 n3n3

F k 0 0 U
F 0 k 0 U

0 0 k UF

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥=⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦

 (4.1) 

 
Then the modification is done by replacing all the zeros in Eq. (4.1) by new stiffness 
coefficients aij, see Eq. (4.2).  

 

 
n1 n1 12 13 n1

n2 21 n2 23 n2

31 32 n3 n3n3

F k a a U
F a k a U

a a k UF

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥=⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦

 (4.2) 

 
or in a compacted form 
 F K U=  (4.3) 
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Remember that the stress σ = [σxx, σyy , σxy] may be written as a function of internal force 
as follows (recall Eq. (3.11)) 
 

 

2 2 2
xx 11 1 21 2 31 3 n1

2 2 2
yy 12 1 22 2 32 3 n2

xy 11 12 1 21 22 2 31 32 3 n3

I d I d I d F
1 I d I d I d F
A

I I d I I d I I d F

⎡ ⎤⎡ ⎤σ ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥σ = ⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥σ ⎣ ⎦⎣ ⎦ ⎣ ⎦

 (4.5) 

or 

 
1
A

Tσ= M F  (4.6) 

 
A relation for the strain ε = [εxx, εyy, εxy]  can be given by using Eqs. (3.4), (3.6), & (3.7) 
as 
 

 

1 2 2
xxn 11 1 12 1 11 12 1

2 2 2
n 21 2 22 2 21 22 2 yy
3 2 2 2
n 31 3 32 3 31 32 3 xy

U I d I d I I d
U I d I d I I d
U I d I d I I d

⎡ ⎤⎡ ⎤ ⎡ ⎤ ε
⎢ ⎥⎢ ⎥ ⎢ ⎥= ε⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥ ε⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 (4.7) 

or 
 U= M ε  (4.8) 
 
Remember also 
 σ Cε=  (4.9) 
 
 
So by using Eqs. (4.2), (4.5), (4.7), & (4.9), one may write (see also Ferrari et. al., 1997) 
 

 

2 2 2 2 2
11 1 21 2 31 3 11 1 12 1 11 12 111 12 14 n1 12 13
2 2 2 2 2

21 22 24 12 1 22 2 32 3 21 n2 23 21 2 22 2 21 22 2
2 241 42 44 11 12 1 21 22 2 31 32 3 31 32 n3 31 3 32

I d I d I d I d I d I I dC C C k a a
1C C C I d I d I d a k a I d I d I I d
A

C C C I I d I I d I I d a a k I d I d

⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥= ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦ 3 31 32 3I I d

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 (4.10) 

 
or in compacted form 

 T1C= M K M
A

 (4.11) 

 
where K is the internal (cluster) constitutive relations (or micro-stiffness matrix), C is the 
material constitutive relations (or macro-stiffness matrix). A is the area of the cluster (or 
triangle), and the area is used instead of the volume, since we assume that each cluster 
has a unit thickness (in the out-of-plane direction), this will guarantee that the stress in 
Eq. (4.5) has the right unit. M is the unit normal vector matrix for the cluster, and 
Im1=cosθm, and Im2=sinθm, and the angle θm represents the normal vector orientation of 
the contact m inside the cluster. dm is the contact’s length (the distance between the two 
elements that are in contact). 
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It is also possible to write Eqs. (4.10) & (4.11) in a different form as follows 
 

 
1
A

=C M'K  (4.12) 
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(4.13) 

 
Notice that the elements are not necessary spherical, they can follow Voronoi’s shapes, 
which makes it easier to build more complicated models with the help of automatic mesh 
generation codes, see Figure 4.2. In the right side of this figure a cluster taken from the 
triangular mesh (or Voronoi’s diagram) is shown. The cluster has three edges (Eg1, Eg2, 
Eg3), this is true for any cluster made from such a triangular mesh and thus guarantees 
the applicability of above formulation. The figure also shows the unit normal vectors: I1i, 
I2i,  and I3i used in the above formulation.   
Notice that columns (1, 5, & 9) in Eq. (4.13) can be obtained directly from Equation 
(3.14), whereas the rest are obtained as a result of introducing the new stiffness 
coefficients aij. In regular DEM these columns are set to zero. 
It is worth to mention that K in Eq. (4.11) is equivalent to element stiffness matrix Ke 
derived in Finite Element Method (FEM), where it is given as (see, for example, Kwon & 
Bang, 1997). 
 
 e T AK B C B =  
 
where B is a shape function matrix. Notice our derivation is based 100 % on the Particle-
Based Discrete Element Method as developed by Cundall, unlike the Finite Element 
Method where the derivation of the stiffness matrix is based on simplifying partial 
deferential equation using specific shape function. In fact, Hori et. al. (2005) derived a 
special shape function based on DEM and they showed that it is equal to linear shape 
function of triangular finite element, they called the method FEM-β. So in this case Ke ~ 
K, and B ~ M-1, where (-1) means the inverse. Later on, we will present a general 
modified DEM approach where ks will be included, in that case we may not expect that 
the resulted derivations will be equivalent to any FEM derivations.  
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Figure 4.2. Voronoi’s Elements built from a triangular mesh and used in the modified discrete 
element approach. A zoom on one cluster is shown on the right side of the figure. Notice that each 
cluster is equivalent to a triangle and it always contains three edges (Eg1, Eg2, & Eg3) and three 
elements (Element1, Element2, & Element3), the elements correspond to the nodes (Node1, 
Node2, & Node3) of the triangle. 

4.2.1 Solution scheme 
 
This modified approach can still be called DEM, and it has more or less a same solution 
scheme like regular DEM, with minor modifications. In regular DEM (See Chapter 1), 
the solution is achieved through cycles. Each cycle has two steps, the first step is looping 
through all the contacts then getting contact forces, and the second is looping through the 
elements and updating their positions. In our approach, the first step is modified by 
looping through the clusters instead, then getting contact forces for that specific cluster. 
Figure 4.3 shows a complete flow chart for the solution scheme that represents this step. 
  For each cluster the following input variables must be available, the internal contact 
normal and shear forces Fnm, Fsm, the elements’ velocity Vi, time step dt, the initial 
position of the elements Xi, this remains fixed throughout the modeling period, the 
updated elements’ position Xi, up, the micro-stiffness matrix K obtained from Eq. (4.11), 
the friction coefficient μf, the ratio r = ksm/knm in order to calculate ksm, the cluster state (0 
intact, (1 or 2) failing, 3 interface), and the shear and the tensile strength. Again m 
corresponds to the three contacts in each cluster i.e. m = {1, 2, 3}. 
After that, the gap g is calculated at the three contacts (or edges) using Xi and Xi,up, then 
the normal and the shear relative displacements , dUnm, dUsm are calculated using Vi and 
dt following the procedure described in Chapter 1.2. 
  If the cluster is intact, dUnm are used to calculate the internal contact normal force 
increments dFnm as described by Eq. (4.2). Notice that the normal forces are updated   
incrementally in this method. The new stress σij, new is calculated to check failure. Notice 
that for intact cluster the shear forces Fsm are set to zero. 
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Figure 4.3. Flowchart showing the solution scheme for getting the internal forces for the 
modified DEM, this scheme is applied to each cluster in the model. 
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  If the cluster is failing cluster or of interface type, only knm and ksm are used to calculate 
the internal force increments dFnm, dFsm just as described in Chapter 1.2 for the regular 
DEM. The element rotation can also be included in a similar way. Notice that for failing 
cluster the shear forces Fsm will start to have a value. 
  After calculating the internal forces, Fnm Fsm, they are then applied to each element in 
order to update the elements’ velocity Vi and the position Xi, up in a similar way as 
described in Chapter 1.2. 
  Figure 4.4 shows two clusters and the edges where the internal forces calculated from 
the above procedure are applied. Notice that each contact between two elements, for 
example Element 1 and Element 3, shares two clusters (Cluster A and Cluster B) where 
each cluster has its own edge on that contact ((Eg1)A, (Eg1)B. Notice, also, that the 
internal forces for each cluster are updated independently.  Furthermore, if a cluster fails 
and a gap exists on an edge inside it, this edge will be declared as a crack.  
  This method is proposed to model reservoir scale geomechanics which is considered, as 
an approximation, a small deformation problem. In this case and after fractures take 
place, the modeled material is not expected to move large distance and create new 
contacts. Thus, a contact detection algorithm is not needed and contacts obtained 
naturally from the triangular mesh will remain fixed throughout the modeling period.     
  Finally, it is worthy to mention that the only material properties that are required for this 
method are the macro-stiffness matrix C and the ksm/knm ratio r. 
 

 
 
Figure 4.4. Two clusters A & B taken from a triangular mesh. Notice that the contact between 
Element 1 and Element 3 shares the two clusters where each cluster has its own sub-edge ((Eg1)A 
& (Eg1)B). The internal contact forces calculated from the above procedure are applied to each 
sub-edge independently, in this case, (Fn1)A, (Fs1)A  applied to (Eg1)A  and (Fn1)B, (Fs1)B to (Eg1)B . 
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4.2.2 Failure criteria  
 
Many failure criteria exist for rock. The Mohr-Coulomb criterion, a rather simple and 
widely accepted criterion, will be used for shear failure. For 2D, it can be given as (see 
e.g. Fjær et. al. 2008) 
 
 fτ S μ N= +  (4.14) 
 
where τ is the shear stress, N is the normal stress, S is the shear strength, and μf is the 
friction coefficients and is given in term of friction angle φ as 
 
 fμ tanφ=  (4.15) 
 
Two principle stresses exist in 2D, σ1 & σ2. Further more, it is assumed that σ1 > σ2 and 
are given as (remember, positive means compression) 
 

 ( )2 2
1 xx yy xx yy xy

1 1( ) -
2 2

σ = σ + σ + σ σ + σ  (4.16) 

 

 ( )2 2
2 xx yy xx yy xy

1 1( )
2 2

σ = σ + σ − σ − σ + σ  (4.17) 

 
Also τ and N are given as   
 

 1 2
1τ (σ σ )sin 2β
2

= −  (4.18) 

 

 1 2 1 2
1 1N (σ σ ) (σ σ ) cos 2β
2 2

= + + −  (4.19) 

 
The failure angle β is given as, see Figure 4.5 for more details 
 

 π φβ
4 2

= +  (4.20) 

 
On the other hand, the tensile failure criterion is governed by the tensile strength T. 
Tensile failure takes place when the minimum principle stress σ2 exceeds (in negative) 
the tensile strength i.e. 
 
 2σ T< −  (4.21)
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Figure 4.5. Mohr-Coulomb failure criteria with tension cut-off. 
 

4.2.3 Cluster states 
 
As we see in Figure 4.3, each cluster can be under one of three states: intact cluster, 
failing cluster, and interface cluster. 
  The intact cluster represents the material elastic behavior before failure, in this case the 
solution can be considered as continuum and is equivalent to Finite element or Finite 
difference method. The failing cluster, weather shear or tensile failure, behaves similar to 
regular DEM, i.e. kn , and ks are used to measure the contact forces, also slip condition 
and element separation are included. Notice, since, so far, ks is not included in the 
formulation of the intact cluster, a value for ks will be introduced just after the cluster has 
failed, thus shear force will start to build up in the failing cluster.  
  The interface cluster behaves similar to the failing cluster with a modification of the 
normal unit vector for all the contacts that lie on the interface plane. New normal unit 
vector I’, normal to the interface plane, replaces the natural normal unit vector I for these 
contacts. This modification is proposed by Ivars et. al. (2008). This type of cluster is used 
to model predefined faults and fractures, see Figure 4.6 for more details 

4.2.4 Cluster quality 
Generally speaking, any type of triangular mesh can be used in this method. However, 
the triangles are recommended to have good qualities. Good quality triangle produces 
good quality cluster, the cluster shown in Figure 4.2 is an example on that. 
  Bad quality triangle (usually known as obtuse angled triangle) should be avoided. Such 
a triangle is shown in Figure 4.7, notice how the edges of the cluster meet outside the 
triangle. In this case one of the edges (Eg1) does not really exist. If one can not avoid 
having such a cluster, Eg1 can be assumed as an imaginary edge. Notice that the 
formulations presented in Chapter 4.2 are still valid for such a triangle and they are 
mathematically correct.  
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Figure 4.6. Representation of the interface cluster, the normal unit vector for a contact is 
changed to become normal to the interface plane. The relative normal and shear displacement 
increments dUn and dUs are calculated normal and along the interface plane, respectively, using 
the new unit normal  I’  instead of  I  for the contacts that lie on the interface plane.    
 
 
  

 
 
Figure 4.7. Bad quality cluster produced by obtuse angled triangle, notice how Eg1 does not exist 
but can be assumed as an imaginary edge.
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4.3  Comparison with FEM 
 
To test the accuracy of this method, a reservoir model of dimension 2000*200 m2 is built 
and is placed at 2500 m depth, the Young’s modulus E = 10 GPa and the Poisson’s ratio ν 
= 0.25, see Figure 4.8. Then the reservoir is depleted by 2.0 MPa. Same mesh is used for 
both the DEM and the FEM models. Figure 4.9 shows the vertical displacement along 
vertical line passing through the reservoir center as obtained from this method and FEM 
(using Comsol multiphysics®). Figure 4.10 shows the change in the vertical stress along 
the same line and from both models. For convenience, the values inside the reservoir are 
neglected. Notice the good match between the two methods.  
 

 
 

Figure 4.8. Reservoir model used to test the accuracy of the modified DEM in comparison with 
FEM (using Comsol). Two models with same mesh are used for both methods 
 

 
 

Figure 4.9. The vertical displacement along vertical line passing through the reservoir center as 
obtained from modified DEM and FEM (using Comsol). 
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Figure 4.10. The change in the vertical stress along vertical line passing through the reservoir 
center as obtained from modified DEM and FEM (using Comsol). 
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4.4 Modeling cracks propagation 
 
One of the major strengths of DEM is to model fracture initiation and propagation. In the 
following two sections, we will use the modified method to model fracture propagation 
after placing an initial crack in the model. Two types of cracks will be used, in the first 
model a horizontal crack, and in the second one an inclined crack.    

4.4.1 Horizontal crack 
 
A model of dimension 2*2 m2 is build with 3222 elements, the Young’s modulus E = 10 
GPa and the Poisson’s ratio ν = 0.25, the tensile strength T = 0.1 MPa . Then, a horizontal 
line crack is placed in the center of the model with a length of 0.2 m. Tensile load is 
achieved by applying an initial velocity Vo to the upper and lower boundary of the model, 
see Figure 4.11. During the simulation, crack propagation is monitored, as it is depicted 
in Figure 4.12, cracks begin to grow horizontally from both tips of the initial crack until 
they reach the model boundary.     
 
 

 
 

Figure 4.11. Horizontal crack model. 
 

4.4.2 Inclined crack  
 
In this case, a similar model like the previous one is built by placing an inclined crack in 
the model instead. The crack dip angle is 70 degree. A compressive load is applied here 
with initial velocity Vo, see Figure 4.13. As expected wing-shaped fractures are 
developed at the tips of the initial crack, Figure 4.14 shows the fractures propagation at 
several stages.  
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Figure 4.12. Tensile fractures development at the initial crack tips during tensile loading, 
horizontal crack model.
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The behavior of cracks propagation in the above two cases is well documented in the 
literature (see Liebowitz, 1968) and is due to stress concentration at the crack tips during 
loading, which leads to fracturing. 
 
 

 
 

Figure 4.13. Inclined crack model. 
 

4.5 Biaxial compression test 
 
In the previous sections we show the ability of this method for modeling tensile failure 
given that the material has initial crack embedded inside it. In this section, a biaxial 
compression test will be performed on an intact sample, and then the shear failure 
behavior for the sample will be monitored during loading. A sample of dimension 1*2 m2 
is built, the sample consists of 10808 elements and 21314 clusters, the Young’s Modulus 
(plane strain) E = 10 GPa and the Poisson’s ratio ν = 0.25. Both the shear strength and the 
tensile strength are set the same and their values are based on uniform distribution 
function ranging from 0.5 to 3.5 MPa. The friction angle is set to 30 degree. The load is 
achieved by applying initial velocity to the upper and the lower boundaries, since there 
will be no confining stress for this test, no external load is applied to side boundaries. 
The fractures and the loading curve (vertical stress vs. vertical strain) are monitored at 
four stages and are shown in Figure 4.15. As it can be seen from the figure, scattered 
shear cracks are developed at earlier stages, mainly in the weak clusters, then after the 
peak of the stress strain curve has been passed, shear bands starts to develop at several 
locations, see the last graph of Figure 4.15. At that stage tensile cracks are also 
developed, probably as a result of sliding on the shear bands which causes tensile stress at 
some locations sufficient for the material to fail in tensile.           
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Figure 4.14. Wing-shaped fractures development at the initial crack tips during compressive 
loading, inclined crack model. 
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Figure 4.15. Uniaxial compression test at several stages together with the stress-strain curves, 
notice the development of the shear bands at the end of the simulation. Red points represent shear 
failure and yellow points represent tensile failure. 
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4.6 A general modified approach 
 
In the previous sections we apply a restriction on this method by setting the shear 
stiffness to zero (ks = 0). In this section ks will be included, so the internal constitutive 
relation represented by Eq. (4.2) is modified to 
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 (4.22) 

 
Fsm is the shear force and Usm is the shear relative displacement at the contact. Also, since 
we are working in 2D, the shear unit vector τmi can be written in term of the normal unit 
vector Imi as; τm1 = -Im2, τm2 = Im1. Now the stress σij can be written in term of internal 
forces for each cluster as 
 

 

n1

n 22 2 2 2 2 2
xx 11 1 21 2 31 3 12 1 22 2 32 3

n32 2 2 2 2 2
yy 12 1 22 2 32 3 11 1 21 2 31 3

s1
xy 11 12 1 21 22 2 31 32 3 11 12 1 21 22 2 31 32 3

s2

s3

F
F

σ I d I d I d I d I d I d
F1σ I d I d I d I d I d I d
FA

σ I I d I I d I I d I I d I I d I I d
F
F

⎡ ⎤
⎢ ⎥
⎢ ⎥⎡ ⎤⎡ ⎤ − − −
⎢ ⎥⎢ ⎥⎢ ⎥ = ⎢ ⎥⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥⎢ ⎥ − − −⎣ ⎦ ⎣ ⎦ ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 (4.23) 

 
With introducing the constant ks, the numbers of unknowns become 12 whereas the 
macro stiffness matrix C has only 9 coefficients (in this 2D case). In other words we can 
not solve for the micro stiffness matrix K. To solve this problem we introduce a new 
input parameter r which is equal to ksm/knm, and by recalling that columns 1, 5, and 9 in 
Eq. (4.13) are retrieved directly from Eq. (3.14) we replace them by new ones with 
including ks (or r in this case) so the matrix M' in Eq. (4.12) is modified and given in 
Figure 4.16. where K and C are still given as before and in a vector form. To obtain the 
values of the strain εij, Eq. (4.7) can still be used without modification. 
It should be noticed that with the existence of the shear force Fsm there will become 
coupled moment on each element which requires the element rotation to be included as a 
new degree of freedom. 
  The reason why we need an extra constant (r) to represent an elastic model is that by 
including element rotation, the model can no longer be represented by the classical theory 
of elasticity, but may be represented by micropolar elasticity theory (Eringen, 1968). This 
requires an extra constant usually named (κ or β). Also element rotation can affect 
fracture development, which might be interesting to investigate.      
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Figure 4.16. The unit vector matrix M' for the general modified approach, which includes ks.
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4.7 Fluid coupling 
 
The goal of developing this method is that it should be used in reservoir geomechanical 
modeling. In this type of problem the modeling is triggered by applying load to the 
reservoir which is a function of reservoir pore pressure change.  The change in the pore 
pressure is usually obtained from separate reservoir flow simulation by some specific 
programs. These programs commonly use the Finite Difference Method, and solve for 
pressure and gas-oil-water saturations i.e. multiphase simulation. This technique 
(transferring data between the fluid and the geomechanical models) is considered as 
uncoupled simulation (Gutlerrez et. al, 1994), and is used in the oil industry because of 
practical reasons. Remember, a lot of effort is made by the reservoir engineering using 
input data for real fields to obtain pore pressure distribution. However this might not be 
the most accurate technique, since the geomechanical changes inside reservoirs may 
affect the fluid flow, for example by changing permeability. 
A coupled technique is needed for a more accurate representation of the problem in hand. 
Such a technique can proceed in two ways; the first is one-way coupling where data are 
transferred from the fluid model to the geomechanical model. The second is two-way 
coupling where data transfer occurs from the fluid model to the geomechanical model 
and back again to the fluid model. The data transfer at specific rate defined by the user. In 
this section we will present a fluid flow model based on the Finite Difference Method 
where the spatial discretization is achieved by a network of pipes. The pipes are made to 
match the contacts of the discrete elements and the domains of the network are made to 
match the clusters, see Figure 4.17 for more details. A similar approach was used by Li 
(2002) to model fluid flow in granular rock samples using DEM.   
 
 

 
 
Figure 4.17. A network of pipes that match the contacts inside a discrete element cluster, this type 
of discretization is used to solve the fluid flow problem in porous medium.  
 
 



Fluid coupling                                                                                                                                              97 
________________________________________________________________________ 

As shown in Figure 4.17 each fluid domain has three pipes and the flow rate q in each 
pipe can be given using Darcy’s law as follows  
 

 i
i i

i

kq (P P )
L μ

= −  (4.24) 

 
where ki is the permeability of the pipe, Li is the pipe length, μ is the fluid viscosity, and 
P, Pi are the pressures of the domain of concern and the other connected domains, 
respectively. 
Now we can write an expression for Pi based on Taylor’s expansion as follows 
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where O(xi,yi) is a first order error if a random mesh is used , and  this error will be of 
third order if a uniform mesh is used like that shown in Figure 4.19a. However, for 
random mesh and as the mesh resolution increases the error terms may cancel each other 
and the total error becomes small.  
The flow rates qi to the domain will result in a fluid volume change in that domain which 
can be given as 
 

 f
1 2 3

f

ΔV q q q
Δt

= + +  (4.26) 

 
Δtf is a fluid time step, also the fluid compressibility cf can be given as  
 

 f
f

f

V1c
V P

∂
= −

∂
 (4.27) 

 
The fluid volume Vf  = ΦA, where Φ is the porosity and A is the domain area (since we 
are working in 2D). Also we define xi = Ii1Li and yi = Ii2Li, where Ii is the unit vector and 
Li is the length of the pipe (Ii1 = cosθi, Ii2 = sinθi).  Then by using the approximation Δ ~ 
∂  and the above equations one may write 
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 (4.28) 

 
Recall that the partial differential equation for fluid flow in porous media may be given 
as 
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where kij is the permeability tensor for the porous media. So by comparing Eq. (4.28) and 
Eq. (4.29), one can obtain a relation between the permeability tensor kij and the 
permeability of the pipes for each cluster in a matrix form as follows 
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 (4.30) 

 

4.7.1 Solution procedure 
 
The solution starts by finding the pipe permeability ki for each cluster using Eq. (4.30), 
one has to notice that each pipe shares two clusters (back to Figure 4.4) so the total 
permeability of a specific pipe is actually a contribution of two sub-pipes connected in 
series. After that, Eqs. (4.24) & (4.26) are used to calculate the change in the fluid 
volume for each cluster, and then the pore pressure is updated based on Eq. (4.27) as 
follows 
 

 new old f
f

1P P ΔV
AΦc

= +  (4.31) 

 
This is for one-way coupling, if two-way coupling is needed then Eq. (4.31) becomes 

 new old f v
f

1P P (ΔV AΔε )
AΦc

= + −  (4.32) 

Where Δεv is the change in volumetric strain as obtain from the geomechanical model 
during one fluid cycle (i.e. Δtf). Since the fluid pressure front is considered slow relative 
to the stress (wave) front in the rock, for each fluid time step (Δtf) the geomechanical 
model is run to equilibrium before starting another fluid time step. The geomechanical 
model uses the pressure distribution obtained from the fluid flow model as external load. 
Also, because this is an explicit solution, the smaller Δtf the more accurate the solution is, 
and there will be a restriction on the maximum value of Δtf to give a stable solution.  
 

4.7.2 Restriction on the mesh quality 
 
As we have said before, a random (or non-uniform) mesh is preferable in this technique 
to produce a random distribution of discrete elements. Random mesh generation codes 
are usually used to build the models. However, the resulted mesh does not necessary have 
high quality. To give an example, Figure 4.18 shows two triangles which are taken from a 
random mesh. The triangle to the left has “good” quality and to right has “poor” one. To 
construct the pipes network for fluid flow, lines start from the middle of the triangle 
edges and perpendicular to those edges are created. Where these lines meet represents the 
fluid domain. Unlike the left triangle, the right triangle has its pipes met outside it. For 
such a case, one of the pipes’ permeability ki obtained from Eq. (4.30) will have negative 
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value, specifically the pipe perpendicular to the longest edge, see Figure 4.18. Since 
negative permeability is unrealistic, these types of triangles should be avoided. In fact, in 
other numerical methods like Finite Element, great efforts are made to generate a good 
quality mesh that contains minimum number of such triangles for numerical accuracy 
purpose. If such triangles could not be avoided for a reason or another, we suggest to set 
each negative permeability to zero, this of course will add to the error for this numerical 
technique.  
 

 
 
Figure 4.18. Two triangles taken from random mesh generated by computer, the left triangle has 
good quality and the right one has bad quality which produces negative k. 
 

4.7.3 Comparison with analytical solution 
 
To check the accuracy of this method we use a simple problem of fluid flow in porous 
media. The problem is represented by a long bar with length L and initial pore pressure 
equal P0. Then the pressure at the left edge is given a fixed value PL which is larger than 
P0, and the right hand pressure PR is fixed at P0. For such a problem the analytical 
solution at any point in the bar and at any time t, P(x, t), is given as 
 

 
2 2

xx
L R L 2

n 1 f

kx 2 1 n π nπxP(x, t) P (P P ) exp( t)sin( )
L π n L Φμc L

∞

=

⎡ ⎤
= + − + −⎢ ⎥

⎣ ⎦
∑  (4.33) 

 
The following numerical values are used as an example, L = 100 m, PL = 1.0 MPa, PR = 
P0 = 0.0 MPa, Φ = 1.0, cf = 1.0 Pa-1, μ = 1000.0 cp, kxx = 1.0 m2. Notice that these values 
are not meant to be realistic, they are just for comparison purpose. For the numerical 
simulation, two models are built one with uniform mesh and the other with random mesh, 
see Figure 4.19. The values of the pressure at two periods (t = 100 s, t = 400 s) and along 
the bar as obtained from the analytical and numerical solutions are shown in Figure 4.20. 
The result shows good accuracy for the numerical solution, with the uniform mesh case 
being more accurate than the random case, as expected.  
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Figure 4.19. Uniform mesh (a), and random mesh (b) used for the numerical solution for fluid 
flow in the porous bar example. 
 
 
 

 
 
Figure 4.20. Comparison of pressure vs. distance at two periods in time between the analytical 
and the numerical solutions for fluid flow in a porous bar, obtained from both uniform and 
random mesh. 
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Finally, the reason why such spatial discretization is used is related to the fact that each 
pipe will match a contact in a cluster ( or edge, see Figure 4.2). In other words a potential 
fracture if this cluster fails during the geomechanical simulation. Alternatively it will 
match a predefined fracture or a fault if the cluster is of the interface type. For example, if 
a fracture is created during the geomechanical simulation, the permeability of the 
corresponding pipe can be increased to model hydraulic fracture effect. Similarly, if the 
predefined fault slides, the permeability of the pipes passing along the fault plane can be 
adjusted based on the fault properties. 
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5 Reservoir geomechanical modeling for some North Sea 
cases: A comparison to 4D seismics. 

 
* Part of this chapter is presented and published in the Extended Abstract of EAGE 
Conference, Rome, 2008.  
 

5.1 Introduction 
The modified discrete element approach presented in Chapter 4 will be used in this 
chapter to model reservoir geomechanical response to pressure change. Some real 
geological sections for hydrocarbon reservoirs taken from the North Sea will be used for 
that purpose. 
  In the first section, the stress path coefficient presented in Chapter 1 is used to 
investigate the possibility of creating vertical or horizontal fractures during fluid 
injection. A numerical test on an elliptical reservoir will be provided as an example. Then 
a 2D synthetic section for the Gullfaks field in the North Sea is built, and fluid flow 
together with geomechanical modeling is implemented on this section. The modeling is 
triggered by injecting fluid into a horizontal well passing through the reservoir using the 
fluid-coupling approach described in Chapter 4. Because of the uncertainty in reservoir 
properties and other given data, two scenarios will be studied, the first one with low 
horizontal effective stress and the second one with low vertical effective stress. In both 
cases fracture development will be monitored. A time-lapse seismics cross section for 
Gullfaks field will be shown and compared to the above two scenarios based on an 
interpretation by Landrø et. al. (2001). 
  Next, the stress path coefficient will be used to investigate the possibility of rock failure 
in hydrocarbon reservoirs during depletion i.e. pore pressure reduction. The most likely 
type of failure in this case is shear failure.  
  After that, fault reactivation possibilities during reservoir depletion on two real 
reservoirs’ sections will be studied. The sections are taken from Elgin-Franklin gas 
reservoir provided by (Total E&P UK Ltd.).The study will focus on how faults may slide 
and how that can affect the stress field around the reservoir. The effects of the reservoir 
geometry including the reservoir compartments will also be studied. If such effects can be 
detected using time lapse seismic, then certain measure may be taken to avoid failure in 
well casing as a result of fault sliding, also this may help us to track which compartment 
is producing and which is not if the saturation change is not sufficient to give such 
information. It is still early, however, to say that fault reactivation, if it happens, may be 
detected by time lapse seismic. Finally, a time-lapse seismic cross section for Elgin-
Franklin reservoir will be shown and compared to the geomechanical model.  
  In the last section, we will show how the fractures that are developed inside the 
reservoir during fluid change may be converted to velocity change which in turn creates 
velocity models that can be used in seismic modeling for time-lapse seismics studies. 
Rock 
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Physics model for cracked media (Budiansky et. al., 1976) will be used for that purpose. 
It should be mentioned that such a technique requires calibration depending on the rock 
type and properties.    

5.2 Reservoir geomechanical response to fluid injection 
 
In this section, the geomechanical behavior of a reservoir during fluid injection will be 
studied using the modified DEM. However, before starting numerical modeling, we 
would like to use simple analytical solution to try to predict tensile failure. The stress 
path coefficients γi for ellipsoidal reservoir explained in Chapter 1 will be used for this 
purpose. Recalling the definition of the effective stress, one may write   
 

 i
i

Δσ ' (γ 1)
ΔP

= −  (5.1) 

 
where ΔP is the pressure change and index i denotes vertical or horizontal direction. 
Since the tensile failure is expected when the final effective stress reaches zero (assuming 
the rock tensile strength T = 0), one can write Eq. (5.1) in term of initial effective stress 

i,iniσ '  as follows 
 

 i,ini
i

σ '
(1 γ )

ΔP
= −  (5.2) 

 
Now, with the help of Eqs. (1.82) & (1.83) in Chapter 1 which define γi as a function of 
Poisson’s ratio and reservoir aspect ratio e (e = thickness/ length, for example e =1 

corresponds to a sphere), we choose to plot the initial effective stress ratio i,iniσ '
ΔP

( both the 

horizontal and the vertical) as a function of e for a Poisson’s ratio ν = 0.25, see Figure 
5.1. This figure gives the critical reservoir geometry that results in either creating vertical 
fractures or horizontal fractures based on the values of the initial effective stress and the 
amount of pressure increase. As it is depicted in the figure the horizontal and the vertical 
effective stress curves form two regions, and by knowing the status of a given reservoir 
one can decide the likelihood of creating vertical or horizontal fractures. A similar figure 
can be created for different values of Poisson’s ratio where the general trend will be; an 
increasing of the vertical fractures region as the Poisson’s ratio increases, see for 
example, Figure 5.2 for ν = 0.3.  

5.2.1 A numerical test 
 
To test the modified DEM with the above analytical solution, an elliptical 2D reservoir 
with dimension (2000 * 200 m2 ) is built. The reservoir has the following elastic 
properties, Young modulus E = 10 GPa, and Poisson’s ratio ν = 0.3. The initial vertical 
effective stress is chosen as 12 MPa, and the initial horizontal effective stress is chosen as 
4.5 MPa. The fluid injection is simulated by increasing the pore pressure uniformly and 
gradually inside the reservoir up to ΔP = 10 MPa. As it can be seen in Figure 5.2, the 
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values that we choose result in vertical fractures, since the aspect ratio e = 0.1 in this 
case. The result of the simulation is shown in Figure 5.3, where the development of 
vertical fractures is seen. The intensity of the fractures increases towards the edges. In 
fact, the fractures start at the edges, and then move towards the reservoir center.  
 
 

 
 
Figure 5.1. Two regions represent the condition of creating vertical or horizontal fractures 
depending on reservoir properties, initial stress, and the amount of depletion, this figure is for 
Poisson ratio ν = 0.25. 
 
 

 
 
Figure 5.2. Two regions represent the condition of creating vertical or horizontal fractures 
depending on reservoir properties, initial stress, and the amount of depletion, this figure is for 
Poisson ratio ν= 0.3. 
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Figure 5.3. Vertical fractures developed inside elliptical reservoir as a result of uniform pressure 
increase using the modified discrete element approach, ν = 0.3.  
 

5.2.2 2D synthetic model based on Gullfaks Field 
 
In this section we will test our method on a synthetic model of the Gullfaks field in the 
North Sea. The study will however be limited to two dimensions (2D) only. In previous 
works, see Kvam et al., (2005), and Duffaut et al.,(2007), efforts were made to detect 
pore pressure increase inside Gullfaks field by acquired time-lapse data. We will extend 
their work by performing geomechanical modeling together with fluid coupling to see if 
fractures can initiate, where and how they propagate. The Gullfaks 2D synthetic model is 
shown in Figure 5.4.Young’s modulus and the Poisson’s ratio are chosen somewhat 
arbitrary, Table 5.1 shows the selected data (Duffaut et al., 2007) and the horizontal well 
information is provided by StatoilHydro.  
 
 
Table 5.1. Properties of the Gullfaks 2D synthetic model. 
 
Properties values 
Initial horizontal effective stress h,iniσ '  4.5 MPa 

Initial vertical effective stress v,iniσ '  8.0 MPa 
Pore pressure change ΔP 7.0 MPa 
Horizontal well length 300 m 
Young’s Modulus E 10 GPa 
Poisson’s ratio ν 0.25 

 
Although the reservoir is not elliptical, we still may use same technique that presented in 
previous section to check whether we get tensile failure. Notice that the reservoir 
thickness is about 100 m which gives an aspect ratio about e = 0.1 and σ'h,ini/ΔP = 4.5/7.0 
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= 0.6429, so for these values and with the help of Figure 5.1 one can see that vertical 
fractures will not develop (Notice the scenario of horizontal fractures is neglected 
because σ'v,ini > ΔP ) . Because of the uncertainties in the data and the reservoir geometry, 
a sensitivity study will be conducted by fixing all the factors except the effective stresses. 
Two cases will be studied in the following two subsections, one with lower horizontal 
effective stress (σ'h,ini=3 MPa) and the other with lower vertical effective stress (σ'v,ini=6.5 
MPa). 
 

 
 
Figure 5.4. Gullfaks 2D synthetic model used for geomechanical modeling.  
 

5.2.2.1 Case 1, low horizontal effective stress (σ'h,ini=3 MPa) 
 
Before starting the modeling, we checked the critical e that results in vertical fractures. 
That is because the reservoir might have sealing faults which create isolated reservoir 
compartments that will have shorter length, which means larger e, facilitating creation of 
vertical fractures. To do that we define a failure envelope fh based on Eq. (5.2) as follows  

 h,ini
h h

σ '
f (1 γ )

ΔP
= − −  (5.3) 

 
The failure takes place when fh < 0, and by plotting fh vs e one cane see that the critical 
value ecrit = 0.24, see Figure 5.5. Since this critical value of e is larger than 0.1, we should 
not expect fracture development. Nevertheless, we proceed with the modeling by 
increasing the well pressure by 7 MPa, and the model is monitored for fracturing. Notice 
that one-way coupling is used from the fluid model to the geomechanical model. The 
fluid flow scheme described in Chapter 4 is used for the fluid modeling.  Figure 5.6 
shows the development of the fractures together with the pressure change distribution at 
several stages of the modeling. As it is shown, at the early stage the fractures start near 
the well edges, then they propagate vertically. On the other hand, at the end of the 
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modeling when the pore pressure stabilizes, vertical fractures develop at the reservoir 
edges. As we can see, vertical fractures are developed even though the analytical solution 
above does not predict that. The reason for that is due to the well and the fluid injection, 
where as the well pressure increases stress concentrates (more tension) at the well tips 
resulting in vertical fractures. Also, the way the pressure front moves from the horizontal 
well affects how the fracture propagate. Finally, vertical fractures development at the end 
of the simulation (when the pressure stabilizes) is due to the stress concentration on the 
edges, such behavior is not predicted by the analytical model because of its elliptical 
geometry, and because of incorporating fluid coupling.    
 
 

 
 
Figure 5.5. The tensile failure criteria versus the aspect ratio e described by Eq. (5.3) for ν = 
0.25, the failure takes place when fh < 0.  
 

5.2.2.2 Case2, low vertical effective stress (σ'v,ini=6.5 MPa). 
 
In this case and after the fluid injection, the fractures start at the well edges and they 
propagate horizontally toward the reservoir edges. At late stages of the modeling, the 
fractures initiate at the edges of the reservoir then they propagate horizontally toward the 
reservoir center, see Figure 5.7. In other words, horizontal fractures are developed. 
  Figure 5.8 shows a seismic cross section for Gullfaks reservoir, base acquired in 1985 
and monitor acquired in 1996. According to Landrø et. al. (2001), the increase of the 
seismic amplitude a top reservoir (top Cook) and the pull-down effect at bottom reservoir 
(base Cook) is due to pressure increase inside the reservoir, which resulted in a decrease 
in the effective stress i.e. a decrease in the wave velocity. The horizontal fracture scenario 
predicted by our model, on the other hand, can cause such a decrease in the wave 
velocity, which may be considered as a complementary interpretation.        
  It is good to mention before finishing this section that in the previous two scenarios we 
assume the reservoir initially being like a one continuum unit without interfaces or planes 
of weakness. However, real reservoirs usually contain initial fractures and small faults,  
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Figure continues 



Reservoir geomechanical response to fluid injection                                                                    110 
________________________________________________________________________ 

 

 
 
Figure 5.6. Fractures development (up) and pressure change distribution (down) at four stages 
during fluid injection, Case 1. Notice the fractures develop vertically. 
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 Figure continues 
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Figure 5.7. Fractures development (up) and pressure change distribution (down) at four stages 
during fluid injection, Case 2. Notice the fractures develop horizontally. 
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which are embedded in their bodies. In this case, stress concentrations are expected 
around the faults, which results in fracture development, even though the initial effective 
stress is relatively high. Such a scenario can be easily modeled using this technique.   
 
 

 
 
Figure 5.8. Base (1985) and monitor (1996) seismic surveys for Gullfaks reservoir, the monitor 
survey (bottom) shows an increase in the seismic amplitude at top reservoir, after Landrø et. al. 
(2001) with permission from the authors.    
 

5.3 Reservoir geomechanical response to depletion 
 
During depletion the effective stress increases inside reservoir, and shear is the most 
likely failure mechanism. In order for shear failure to take place, certain conditions must 
be met inside the reservoir. We use the Mohr-Coulomb criterion described in Chapter 4, 
where Eq. (4.14) can be rewritten in term of vertical and horizontal effective stress, vσ '  
and hσ ' , respectively as  
 2

v hσ ' 2S tanβ σ ' tan β= +  (5.4) 
 
In this case we assume vσ ' > hσ ' , and these stresses represent the final state (the state 
where the failure occurs) i.e. after depletion. A failure envelope function f can be defined 
as  
 
 2

h vf 2S tanβ σ ' tan β σ '= + −  (5.5) 
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Failure takes place when f < 0. The initial vertical and horizontal effective stresses can be 
related to each other using a coefficient K0 as follows 

 

 h,ini
0

v,ini

σ '
K

σ '
=  (5.6) 

Finally, by using Eq. (5.5) one may write  
  

 2 2
h v h,ini

0

1f 2Stanβ ΔP(tan β(γ 1) (γ 1)) σ ' (tan β )
K

= + − − − + −  (5.7) 

In Figure 5.8, we plot f versus the aspect ratio e using the following values; S =1.0 MPa, 
ν = 0.1, tanβ = 1.7320, K0 = 0.2, h,iniσ ' = 5 MPa , and ΔP = -10 MPa. Notice that as e 
increases the reservoir becomes more stable with a critical e value near 0.11, also it is 
easy to show that the stability increases as ν increases, which is exactly the opposite of 
the tensile failure condition. 
  For testing purpose, an elliptical reservoir is built with dimensions 2000 * 100 m2 (e = 
0.05) with the rest of properties as listed above where S has been given a uniform 
distribution with values ranging from 1 to 10 MPa. Young Modulus E = 10 GPa. After 
depleting the reservoir by 10 MPa, the location of the failing clusters (all in shear) inside 
the reservoir are shown in Figure 5.9. This result comes in agreement with Eq. (5.7).  
 
 
 

 
 
Figure 5.8. The shear failure criteria versus the aspect ratio e described by Eq. (5.7) for ν =  0.1, 
the failure takes place when fh < 0.0. 
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Figure 5.9. The spots indicate the shear failure inside the reservoir as a result of depletion. 
 

5.4 Reactivations of faults passing through reservoirs during 
depletion: Elgin-Franklin Field 

 
A single reservoir is usually separated by faults into several compartments. These 
compartments might not be aligned, having different elevations and thicknesses. Such a 
condition will enhance faults reactivation if the pore pressure reduction is large enough. 
Fault reactivation might be detected using 4D seismics (Røste et al. 2007). In this section, 
we will perform geomechanical modeling on two 2D cross-sections taken from Elgin-
Franklin sandstone reservoir in the North Sea, which are provided by Total E&P UK Ltd. 
The first section is shown in Figure 5.10, notice the faults and the compartments. 
  We start by depleting the reservoir with 30 MPa and neglecting the existence of the 
faults, i.e. the faults are not allowed to slide. The outcome of the simulation is shown in 
Figure 5.11. The figure depicts the change in the vertical effective stress and the 
displacement field. The stress change is chosen because it is reflecting the velocity 
change usually shown in the seismic data. Also, since the 4D seismics data under 
investigation are P-wave and close to zero-offset data, we believe that vertical stress is 
more representative to seismic velocity changes. As expected, the stress increases inside 
the reservoir (red color) and decrease in the overburden (blue color). Beside this 
behavior, there is increase in the stress in the overburden and the underburden between 
the compartments. This increase can be considered as local arching as a result of different 
elevations and thicknesses of the reservoir compartments. This is interesting, because we 
might see an increase in the wave velocity just above the reservoir, where the 
conventional thinking predicts a decrease due to the overburden stretching.                  
  In the second model, the faults are included and the reservoir is again depleted by 30 
MPa.  The change in the vertical effective stress and the displacement field are shown in 
Figure 5.12. Notice the large decrease in the effective stress (blue color) in the 
overburden just around the faults, and remember from Figure 5.12 that those are the same 
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areas that shows stress arching (stress increase) in the first case. Such opposite behavior 
is due to the reactivation and the sliding of the faults. This might be helpful in the 
interpretations of the 4D seismics date, since the later might be used to decide whether 
there is fault reactivation or not based on the velocity changes just around those areas.      
  Another result that is worthy looking to is the relative shear displacement (or RSD), 
which represents the relative displacement between the two sides of the faults and along 
the fault plane, in other words it shows the amount of the fault sliding. Figure 5.13 shows 
this value for the three faults considered in this simulation. Notice that the maximum 
RSD is equal to 1 m, and it belongs to the middle fault, because this fault has a maximum 
throw. This just gives an indication of how the geometry affects the amount of sliding. 
These values are interesting to know for evaluation of casing failure scenarios, if there 
are wells that run through one of these faults.  
 
 

 
 
Figure 5.10. The first 2D geological section for a sandstone reservoir in the North Sea, the 
compartments and the faults that are indicated by the arrows are only included in the 
goemechanical modeling.  
 
 
The second cross-section is shown in Figure 5.14. This cross-section has only one 
compartment with two bounded faults. Because the time-lapse seismics data showed no 
change around the left fault, this fault will not be considered in the simulation. Similar to 
what has been done above, the reservoir is depleted first without considering the faults 
and by 30 MPa. The resulting vertical effective stress change and the displacement field 
are shown in Figure 5.15. Again, the result shows stress increase inside the reservoir, 
stress decrease in the overburden, and stress increase (arching effect) at the reservoir 
edges. 
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Figure 5.11. Vertical stress change after reservoir depletion by 30 MPa together with the 
displacement field. The faults are not included here, notice the local arching effect.   
 

 
 
Figure 5.12. Vertical stress change after reservoir depletion by 30 MPa together with the 
displacement field. The faults are included here, notice the fault reactivation effect.   
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Figure 5.13. A close look to the reactivation of the reservoir faults, the figure also shows the 
maximum relative shear displacement RSD for each fault, notice the maximum RSD is equal to 1 
m and it is belong to the middle fault. 
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After that, we deplete the reservoir including the right fault, and the result is shown in 
Figure 5.17. Also a close look at the displacement field around the fault is shown in 
Figure 5.16, where there is obvious the reactivation of the fault and more significantly at 
the lower side of the fault. As a result of fault reactivation, an area of stress increase is 
developed at the down tip of the fault and in the sideburden, see Figure 5.17. Also at the 
upper tip of the fault just next to the reservoir one can see an increase in the blue area in 
comparison to Figure 5.15, which means an extension of stress decrease region as a result 
of fault reactivation. Figure 5.18 shows a 4D seismics cross section for the same 
geological section used in the geomechanical model as taken from the Elgin-Franklin 4D 
seismics data. The blue color means velocity decrease and the red color means velocity 
increase, notice the similarity between this figure and Figure 5.15, which confirm the 
stress increase in the overburden as a result of stretching (see e.g. Hatchell et al., 2005) 
and the increase of the stress inside the reservoir as a result of compaction.  
  Beside that, there is an increase in velocity next to the fault (Figure 5.18) which might 
be a result of fault reactivation as explained above in the geomechanical model of Figure 
5.17. We should mention that the comparison relating to a fault reactivation scenario 
between Figure 5.17 and Figure 5.18 is considered a weak comparison. Based on that and 
on the fact that this seismic effect might just be a noise, we can not rule out such an 
interpretation. However, such way of thinking, might help us to detect fault reactivation 
from 4D seismics data in the future.       
 
 
 

 
 
Figure 5.14. The second 2D geological section for a sandstone reservoir in the North Sea, the 
reservoir are indicated by the arrow, only the right fault is  included in the goemechanical 
modeling.   
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Figure 5.15. Vertical stress change after reservoir depletion by 30 MPa together with the 
displacement field. The right  fault is not included here.   
 
 
 

 
 
Figure 5.16. Displacement field showing the reactivation of the right fault in the second reservoir 
section as a result of reservoir depletion.  
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Figure 5.17. Vertical stress change after reservoir depletion by 30 MPa. The right  fault is 
included here. Notice the effect of the fault reactivation on the stress field.   
 
 

 
 
Figure 5.18. 4D seismics cross section for Elgin-Franklin reservoir, the blue color represents 
velocity decrease due to stretching in the overburden, and the red color represents velocity 
increase due to reservoir compaction. Beside that, there is velocity increase just to right to the 
fault, which might be, as explained in Figure 4.17, related to fault reactivation. With a 
permission from Total E&P Uk Ltd. 
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5.5 Building velocity model of Gullfaks model for time-lapse seismics 
study 

 
After obtaining the amount and the distribution of fractures from the geomechanical 
model, it is now possible to use these fractures to update the velocity model for a time-
lapse seismics study. One way of doing so is to divide the model into several control 
volumes, and then use Rock Physics models based on crack density and crack orientation 
to update the velocity model. However, this requires a very fine model so that there is a 
sufficient amount of control volumes. This is essential to avoid dependency on the size 
and the number of the control volumes chosen. As an alternative, we decided to choose 
each failing cluster as a control volume, remember each failing cluster has the possibility 
of having 0, 1, 2, or 3 cracks. Then an effective medium theory for a cracked medium 
explained in Chapter 1 (Budiansky et al., 1976) is used to update the velocity for each 
cluster. This model assumes isotropy. This approach results in copying the fractures as 
they are from the geomechanical model to the velocity models where the velocity change 
depends on (among other things) the number of cracks per cluster (0, 1, 2, or 3). Of 
course, such an approach requires calibration from some experimental or field data to 
assure that the contribution of these fractures resemble those in the real rocks. For 
Gullfaks 2D synthetic model, we use some published data to update the velocity model 
(Kvam et. al., 2005), where the values of P-wave and S-wave velocities in the reservoir 
are Vp = 2630 m/s, Vs = 1340 m/s, and the reservoir density is ρ = 2350 kg/m3. The 
velocity change model can now be easily constructed. Figure 5.19 shows the reduction in 
P-wave (up) and S-wave (down) velocities for the low horizontal effective stress 
scenario, the mean value of ΔVp = 400 m/s and of ΔVs = 100 m/s. Figure 5.20 shows the 
same thing but for low vertical effective stress scenario, where the mean value of ΔVp = 
670 m/s and of ΔVs = 200 m/s. Of course, since the model needs calibration, the real 
values might differ from those shown in the figures. 
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Figure 5.19. P-wave velocity (up) and S-wave velocity (down) reduction due to the fractures 
development for the low horizontal effective stress scenario after using Budiansky’s rock physical 
model, the reduction in the velocity depends on the reservoir properties and the number of cracks 
per cluster that is why the model requires calibration.  
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Figure 5.20. P-wave velocity (up) and S-wave velocity (down) reduction due to the fractures 
development for the low vertical effective stress scenario after using Budiansky’s rock physical 
model, the reduction in the velocity depends on the reservoir properties and the number of cracks 
per cluster that is why the model requires calibration. 
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6 Conclusion 
 
In Chapter 2 we showed the possibilities of using Discrete Element Method (DEM) in 
modeling reservoir geomechanics. For the elastic limit, the comparison of the 
displacement field between DEM and the analytical solution, derived in Chapter 1, was 
fairly good. The misfit was mainly related to the model boundary, which requires a larger 
model to be built, and since DEM is an expensive method in term of elements number, 
using continuum coarse grid, coupled with the DEM region, for the model far field is a 
possible solution. The main problem in fitting the stresses was related to the way the 
stress was measured, which was based on using the element area. In PFC, the best way to 
avoid such a problem is to use measurement circles to measure the stress, however this 
requires that each measurement circle contains a sufficient amount of elements, which 
was not practical for our coarse model. As it was shown in Chapter 3 that by taken the 
above points into consideration, a very good fit was achieved. The fracture development 
and fault reactivation, when modeling beyond the elasticity limit, came in agreement of 
what theory predicts, (see e.g. Segall et al., 1998). For example, by comparing Figure 2.9 
to Figure 1.11, one can notice how the fracture propagation follows the contour of zero 
horizontal stress line. 
  Relations to relate DEM parameters to rock properties were derived in Chapter 3. Such 
relations will facilitate feeding geomechanical models with correct properties. The 
relations were derived for two categories: dense packing, and loose random packing. For 
the dense packing, the dynamic and the static relations are the same, and a limitation on 
the maximum Vp/Vs is found (Vp/Vs < 3 ) which corresponds to a maximum Poisson’s 
ratio ν < 0.25 (plane strain). The static behavior for the loose random packing deviates 
from the dynamic behavior. The dynamic behavior can still be given by some analytical 
relation with the same limitation like that for the dense packing, while empirical relations 
for the static behavior have to be obtained based on numerical tests. It is also important to 
mention that the static Poisson’s ratio for loose random packing is not limited by 0.25. It 
was shown that if the particle rotation is prevented, a new expression for the shear wave 
has to be derived after using the Cosserat continuum theory, the new expression for the 
shear wave allows the shear wave to travel faster than the pressure wave, which is 
unrealistic for isotropic rocks.  
  Based on the study performed in this thesis, we conclude that there are three main 
limitations hinder the use of (particle-based) DEM in modeling large-scale reservoir 
geomechanics. First, the maximum P-wave/S-wave ratio is limited by (Vp/Vs < 3 ). 
Second, it is difficult to derive relations for failure properties just like it was done for 
elastic properties, and numerical tests have to be done each time a geomechanical model 
is built. Third, there are always difficulties in building geomechanical models and 
installing complicated initial stress conditions, usually given for hydrocarbon reservoirs, 
using DEM.      
    Because of the limitations described above, a modified discrete element approach was 
proposed. The modified approach works on clusters made of three elements each. For 
each cluster the micro stiffness matrix (K) are derived based on rock properties given by 
the macro stiffness matrix (C). K contains the regular normal stiffness parameters for all 
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contacts in the cluster knm, and the newly introduced stiffness parameters aij. The shear 
stiffness parameter is calculated using the ratio r (ksm = r * knm). That means in order to 
model any material using this method, one needs C and r as input parameters, beside that 
the shear and the tensile strengths are also required. Before failure the cluster behaves 
like continuum models (e.g. FEM, & FDM) and after failure the cluster behaves similar 
to regular DEM. The method was tested successfully by comparing it to FEM, and by 
performing crack propagation and uniaxial compression tests.  
  For intact cluster, all the shear forces are set to zero, and the shear forces start to build 
up only when the cluster fails. However, in more generalized approach, the shear forces 
can be included before the cluster fails. In this case, the micro stiffness matrix (K) should 
be calculated using the procedure described in Chapter 4.6 instead, and the particle 
rotation has to be accounted for.   
  Fluid coupling scheme (based on Finite Difference) to be used with the modified 
approach was proposed. In such a scheme, the domain is discretized into a network of 
pipes that match the contacts in the clusters. This will allow fluid flow through fractures 
(pipes) as they are developed. The scheme was tested successfully by comparing it to 
analytical solution.  
  Analytical expressions for the stress path coefficients were used to study the condition 
of rock failure inside reservoirs during both fluid injection and depletion. It was shown 
that if the injected fluid pressure rises above the effective stresses, tensile failure may 
happen, depending on reservoirs properties and geometry. Then, the modified approach 
was used to model reservoir geomechanical behavior and the result of this modeling was 
compared to these analytical solutions. The method, then, was used to model a reservoir 
geomechanical response during fluid injection for a case study of Gullfaks field. The 
models showed possibilities of fractures development, these fractures may form vertically 
or horizontally depends on the initial effective stress. The fractures were also 
concentrated on the well’s and the reservoir’s edges. It was also shown that the fluid 
coupling and reservoir geometry play an important rule in controlling when and how the 
fractures develop, in a way that can not be predicted by the analytical solution alone. The 
result was compared to 4D seismics cross sections taken from Gullfaks field, and it was 
shown, according to the seismic data, that the horizontal fractures scenario is more likely 
the case. This comes in agreement with the goemechanical model, since the vertical stress 
path coefficient is much less than the horizontal one, which makes it more difficult for 
the vertical fracture to develop than for the horizontal one, see Figure 5.1 for more 
details.  
  The modified discrete element approach was used to model the effect of fault 
reactivation on changing the stress field around reservoirs during depletion. Two cross 
sections taken from Elgin-Franklin field were used to study such a case. The result shows 
that if a fault is reactivated, the stress change around the reservoir is different from the 
case of no fault reactivation. The result for the geomechanical model of one of Elgin-
Franklin cross-sections was compared to 4D seismics data for the same section, where it 
was noticed an increase of the wave velocity near the fault, which mimics the effect 
shown by the goemechanical model. To what extent, this seismic anomaly may 
correspond to fault reactivation remains unknown, since this anomaly might be just a 
noise, however such an interpretation may help us in the future when more 4D seismics 
data are coming. 
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Appendix    
 
In this appendix we will derive the rest of the coefficients of the stiffness matrix Cijkl for 
the 2D dimensional random packing shown in Chapter 3.4. Since the value of these 
coefficients is zero, this will prove that this packing is isotropic.    
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So, by substituting Eqs. (A.5) to (A.8) into Eqs. (A.1) to (A.4) we get 
 
 
                                          1112 2212 1211 1222C C C C 0= = = =                                  (A.9) 
 
 
This proves that the random packing shows isotropic behavior.  
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