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Abstract 

Understanding the basis of genetic variation is a general goal in evolutionary biology. Towards 

this goal, the architectures of the standing genetic variation in two life history traits, clutch size 

and onset of laying, were investigated in an insular house sparrow population off the coast of 

Northern Norway. A newly developed 200K SNP-array was used for genome-wide association 

mapping (GWAS) and genome partitioning. No genome-wide significant or suggestive loci 

were detected for either trait. Estimated heritabilities were 0.10 and 0.06 for clutch size and 

onset of laying, respectively. While genome partitioning was able to show that clutch size was 

polygenic, differences between subpopulations confounded attempts to characterize lay date. 

This study highlights the dangers of performing GWAS across diverging subpopulations. 

 

Introduction 

      Clutch size and onset of laying are quantitative life history traits closely linked to fitness in 

birds. Indeed, as a measure of fecundity, clutch size comprises one of the primary components 

of fitness (Roff 2002), and offspring survival is closely related to onset of laying in many 

species (Verhulst & Nilsson 2008). However, across avian species, both of these traits vary 

considerably. This variation is found not only between species, but between and within 

populations as well (e.g. Lack 1947; Monaghan & Nager 1997; Lambrechts & Dias 1993; 

Noordwijk et al. 1981). Ever since Lack’s seminal paper noting this variation, attempts to 

model the forces that structure it have been frequent in scientific literature (e.g. Cody 1966, 

Lack 1968, Winkler and Wallin 1987, Rowe et al. 1994). 

 We expect birds to maximize their clutch size while minimizing the cost to their residual 

reproductive value (Pianka & Parker 1975). This would include a trade-off with both egg size 

(Smith & Fretwell 1974), later clutches (Pianka & Parker 1975), and fledgling survival. 

Similarly, onset of laying is ideally timed such that hatching of chicks coincides with the 



maximum availability of insect food (Arcese & Smith 1988). As a result, timing of laying is 

expected to be dependent on factors that accurately predict when this maximum will be. It has 

been shown experimentally that lay date can be artificially manipulated by providing extra food 

or by changing the photoperiod (Arcese & Smith 1988; Lambrechts et al. 1997). The optimality 

of a given phenotype is dependent on the host of factors that determine its fitness. However, 

these factors can be variable through time and space and organisms may find them difficult to 

predict by simple heuristics.  

Indeed, it has been shown that differences in onset of laying between subpopulations 

can have variable fitness consequences through time (Ringsby et al. 1998; Ringsby et al. 2002). 

This can be one explanation for the existence of substantial genetic variation for these types of 

plastic traits, even though they are under apparent strong selection (Charmantier & Gienapp 

2013). 

The heritability of clutch size tends to be significant in avian species, ranging between 

0.21 to 0.48, demonstrating that there is a genetic component to variation in clutch size (Postma 

& Noordwijk 2005). A significant heritability has also been shown for onset of laying, e.g. 

Noordwijk et al. 1981; Merila & Sheldon 2000.  

It is clear that in order to properly understand the variation in these traits, it is necessary 

to integrate the knowledge about both their ultimate causation and their proximate causation, 

i.e. the work of evolutionary ecologists and the work of physiologists (see Tinbergen 1963, 

Visser et al. 2010). As such, mapping the standing genetic variation (SGV) within its ecological 

context represents an important step in bridging these disciplines.  

Additionally, we are interested in how this genetic variation is structured. In general, 

we expect that SGV of traits under selection will have architectures consisting of many genes 

of small effect, i.e. a polygenic architecture, as selection will quickly fix genes of large-effect 

size. However, theoretical work has shown that the relative strength of other evolutionary 



forces has an effect on the number, effect size, and clustering of the genes involved in the 

variation (e.g. Yeaman & Whitlock 2011). Specifically, when adaptive divergence of traits 

between populations is muffled by migration and drift, we expect these traits to have an 

oligogenic architecture, i.e. few genes of large effect size, and we expect that these genes will 

be clustered together (Yeaman & Whitlock 2011).  

 The goal of this study, then, was to analyze the genetic basis of variation in both clutch 

size and onset of laying in a wild House Sparrow population. We examined how much of the 

phenotypic variation is due to genetic effects, estimated whether the genetic basis is oligogenic 

or polygenic, and attempted to locate genes of significant effect size in the genome. This was 

accomplished using two complementary methodologies: a genome-wide association study 

(GWAS) and genome partitioning. 

With the ongoing revolution in molecular genetics, the cost of performing higher power 

quantitative genetic analyses with molecular data is decreasing at an incredible rate. This 

allows for the relatively quick and easy construction of Single Nucleotide Polymorphism (SNP) 

arrays and the proliferation of genome-wide association studies in non-model organisms 

(Jensen et al. 2014). In turn, these have allowed for unprecedented opportunities to address this 

major question in biology: what is the exact nature of the causal connection between genotype 

and phenotype (Schielzeth & Husby 2014)? 

In short, a GWAS is a method for associating phenotypic traits with genetic variants of 

known genomic location. It exploits linkage disequilibrium (LD) between genetic markers and 

the causal genes themselves. If genes coding for some quantitative trait are in LD with some 

genetic marker, then individuals who possess a particular allele (or alleles) at this genetic 

marker should score higher for the trait (Visscher et al. 2012). This requires that SGV for this 

trait exists in the study population and that a sufficient number of genetic markers are available 

(Schielzeth & Husby 2014). In the past, linkage mapping was generally done using crosses and 



hence utilizing recent LD. However, SNP-typing and high density SNP-arrays enable far 

greater marker densities. As a result, it is now possible to utilize historical population-wide 

LD; this grants genome-wide association studies greater resolution and power than linkage 

mapping studies (Risch & Merikangas 1996, Mackay et al. 2009).  

Genome partitioning is a multi-marker method that allows us to partition the additive 

genetic variance into each chromosome (Yang et al. 2011a; Yang et al. 2011b). If the trait of 

interest is polygenic, then we expect that causal loci are of small effect size and spread 

throughout the genome. Then, the variance in the trait explained by a genomic region should 

be roughly proportional to its size. If this expectation is not met, then there are likely genomic 

regions with one or more QTL’s which, together, have a substantial effect size (Slate 2013, 

Yang et al. 2011b). 

 To date, the majority of gene mapping studies have focused on model organisms, 

generally humans or domesticated animals (Jensen et al. 2014). For many study systems, the 

challenges of genomic studies in the wild were insurmountable. Until recently, genetic studies 

in natural vertebrate populations have required extensive pedigree information, requiring long-

term studies. Linkage mapping could then be carried out using information from relatives in 

pedigrees (e.g. Slate et al. 2002; Tarka et al. 2010; Johnston et al. 2010, see also review in Slate 

et al. 2010). However, the large sample sizes needed to draw robust conclusions from studies 

of genetic architecture may be difficult to generate in the wild and environmental heterogeneity 

can confound efforts to properly separate variance components. Nevertheless, studying 

organisms in the wild is important as it allows us to view fitness-related traits in their 

environmental context (Ellegren & Sheldon 2008). The relationship between phenotype and 

environment is often complex in unknown ways and laboratory studies have the potential to 

miss this complexity by not considering factors that affect the selection or expression of traits 

(Kruuk et al. 2014).   



In the past few years, though, several studies of natural vertebrate populations have 

endeavored to utilize GWAS approaches to characterize variation in morphology and life 

history. For example, Johnston et al. (2014) successfully identified a locus connected to time 

to sexual maturation in wild salmon (Salmo salar) using a GWAS with 5568 SNP’s. Similarly, 

long-term data from a wild population of Soay sheep (Ovis aries), where individuals were 

typed on a 50K SNP-chip, was used in a GWAS to identify a locus explaining variation in horn 

morphology (Johnston et al. 2011, 2013). Furthermore, Husby et al. discovered at least one 

locus associated with clutch size in a collared flycatcher population using a 50K SNP-chip 

(2015). Two studies on great tits using a 10K SNP-chip did not detect any genome-wide 

significant loci connected to clutch size or egg mass, but were able to show that these traits 

were polygenic through genome partitioning (Santure et al. 2013; 2015). 

In light of this, we see that the insular house sparrow (Passer domesticus) population 

off the coast of Northern Norway offers a unique opportunity for studying quantitative genetics 

in the wild. Here, extensive individual-based data has been collected collected continuously on 

a number of islands since 1993, allowing for the generation of large sample sizes. Pedigree 

data has been collected for each individual, along with a slew of morphological and life history 

traits (e.g. Ringsby et al. 2002, 2009; Jensen et al. 2003, 2004, 2008; Husby et al. 2006; Pärn 

et al. 2009; Kvalnes et al. 2013). Each island represents a discrete sub-population within a 

metapopulation, where gene flow, genetic drift, and selection can all be measured (Holand et 

al. 2011; Jensen et al. 2013; Baalsrud et al. 2014). Further, much genomic groundwork has 

recently been done with this species using data collected in this project. A 10K SNP-chip was 

produced and was shown to be effective at, for instance, detecting sub-populations correlating 

to different islands in the study system (Hagen et al. 2013). The whole genome has been 

sequenced and assembled based on a linkage map (Elgvin et al. in prep; Hagen et al. ms). These 

resources were then used to create a custom 200K SNP-array (Hagen et al. in prep).  



    

Materials & Methods 

Study Population 

The house sparrow is a small non-migratory passerine bird species. They are 

reproductively mature in their first breeding season after birth and generally attempt to 

reproduce in this season (Anderson 2006). They generally produce 1-3 clutches per season and 

the breeding season lasts from early May to mid August (Ringsby et al. 1998). Seasonal 

variation in clutch size has been documented, generally increasing initially and then decreasing 

through successive clutches in the season (Westneat et al. 2014, Seel 1968). The incubation 

period lasts around 11 days and the nestling period lasts around 15 days (Seel 1968).  

Also, the House Sparrow is known for living commensally with humans (Anderson 

2006). Our study system consists of a collection of 18 islands off the coast of Northern Norway 

in the region of Helgeland (Figure 1). Here, the sparrows are found almost exclusively on dairy 

farms and in residential areas (Husby et al. 2006). This predictability, along with the small size 

of the islands, allows us to track the populations with relative ease. As a result, this 

metapopulation has been tracked continuously since 1993. 

Mark-recapture rates of adult birds show that 80-100% of the individuals in our study 

system are banded (Pärn et al. 2009, 2012, but see also Ringsby et al. 1998, 1999 and Holand 

et al. 2015, 2016). Furthermore, the house sparrow is a sedentary species; only a relatively 

small proportion of recruits are dispersers (Pärn et al. 2009, 2012), and the dispersal distances 

are short (Tufto et al. 2005; Pärn et al. 2009, 2012) relative to the extensive size of the study 

area (ca. 1600 km2). As a consequence, the majority of the individuals in the study system have 

been tracked from hatching to death, such that we generally have data on several clutches per 

individual (Ringsby et al. 1999, Pärn et al. 2009, Sæther et al. 1999, Billing et al. 2012, Kvalnes 

et al. 2013). Additionally, this means that accurate estimates of fitness components are 



available. This data has been used to investigate the connection between fitness and a host of 

traits including dispersal rates (Pärn et al. 2009), brood sex ratio (Husby et al. 2006), egg mass 

(Kvalnes et al. 2013), and morphology (Jensen et al. 2004, 2008). 

Specifically, it has been shown that the fitness consequences of onset of laying vary 

substantially between years (Ringsby et al. 2002, Ringsby et al. 1998). Significant differences 

between islands in onset of laying, along with autocorrelated daily weather conditions, 

produces variable selection between years with different weather condtions, as the fitness of a 

lay date is dependent on these weather conditions (Ringsby et al. 2002). 

 

Phenotypic Data Collection 

Each year, fieldwork was carried out through the breeding season. About every 7-10 

days, each island is thoroughly searched for active nest sites, such that each brood is visited at 

least 2-3 times. Clutch size is measured as the maximum number of eggs, nestlings, and/or 

dead nestlings recorded throughout the breeding attempt (Husby et al. 2006). Onset of laying 

for each female individual was defined as the date at which the first egg was laid in the female’s 

first clutch of the breeding season. This date is determined, given the clutch size, simply by 

extrapolating backwards from either hatching date or the average laying rate of one egg per 

day (Kvalnes et al. 2013). This date is then transformed into a numerical variable by counting 

the number of days into the year, i.e. number of days since December 31st.  

When nestlings are 8-12 days old, a blood sample is taken and each bird is uniquely 

banded with one numbered aluminum ring and three colored plastic rings. Adults and fledged 

juveniles are captured with mist nets throughout the summer and also in the autumn. At capture 

any unbanded birds are banded, they are measured for a host of morphological traits, and a 

blood sample is taken. All procedures follow an established field protocol and measurements 

are subsequently corrected by field worker (see Jensen et al. 2003). Observational data 



supplements this, as the unique bands can be visible at a distance, meaning that recapture is not 

necessary in order to track the individuals in the population. 

The blood samples collected from adults and nestlings are then used to genotype all 

individuals on 14 highly variable microsatellite markers. These are then compared in order to 

determine the genetic parentage of each brood (see e.g. Jensen et al. 2008; Billing et al. 2012; 

Baalsrud et al. 2014). Additionally, due to high nest site fidelity, it is generally possible to 

extrapolate maternity to all clutches in a nest within a breeding season, such that unhatched 

clutches can be assigned mothers (Kvalnes et al. 2013). 

 Clutches that did not hatch and had a clutch size less than three were not included in 

the analysis of clutch size as it is reasonable to suspect that the majority of these were 

incomplete clutches. Similarly, first lay dates after the 15th of July were removed from the 

analysis of lay date as these are likely second or third clutches where the first clutch was simply 

not observed (Kvalnes et al. 2013). See appendix for a supplementary table including the 

descriptive statistics of clutch size and onset of laying. 

 

Genotyping 

 The individuals in this study were genotyped on a custom Affymetrix Axiom 200k 

SNP-array. Analysis of linkage disequilibrium decay of the earlier 10K SNP-chip (Hagen et 

al. 2013) revealed that approximately 200,000 SNP’s would be required to guarantee that a 

QTL would be in linkage disequilibrium with a marker, regardless of the QTL’s location 

(Husby, Hagen, Jensen; personal communication). As a result, we expect that there are few 

genomic regions wherein a significant QTL could remain undetected. 

The SNP’s for the 200K array were identified through 10X whole-genome Illumina re-

sequencing of 33 house sparrows from 15 populations spread throughout northern Scandinavia. 

These genomes were then aligned with the reference genome (Elgvin et al. ms) and SNP’s with 



little variation in their flanking sequences were chosen (Hagen et al. ms). In general, SNP’s are 

evenly spaced with an average of 6 kbp between them, though about 15,000 SNP’s are 

concentrated within a host of candidate genes (Hagen et al. ms).  

The data for this study comes from the seven islands with the highest mark-recapture 

rates in our study system (Figure 1). On five of the islands (Nesøy, Gjerøy, Hestmannøy, Indre 

Kvarøy, and Aldra), sparrows from 1998 until present were genotyped. On the other two 

(Træna and Selvær), sparrows from 2003 until present were genotyped (Table 1).  There is a 

discrepancy in the time series used as the “outer” islands of Træna and Selvær experienced a 

population crash around 2000 and did not fully recover until 2003 (Baalsrud et al. 2014). 

Altogether, 3247 adult individuals were genotyped from these islands. These constitute almost 

all adult house sparrows present on these islands during these periods. 

 

 Figure 1: Map of islands included in the long-term house sparrow study off the coast of 
Northern Norway. Islands in black are island in the study system that have been continuously 
followed. Populations used in this study are circled in red. 
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Markers not among the 186,056 SNP’s that were ranked as Polymorphic High 

Resolution, Affymetrix’s highest quality class, were not used for any analyses. Also, markers 

with a call-rate less than 95% and a minor allele frequency less than 0.01 were removed. An 

identity-by-state matrix was constructed for the entire population based on the remaining 

markers where average kinship values of a pair are below the diagonal, numbers of SNP’s 

typed for a pair are above the diagonal, and homozygosity of an individual is on the diagonal. 

Principal components analysis was then performed on this matrix and six clusters of individuals 

were delineated based on the first four principal components. Markers that were significantly 

out of Hardy-Weinberg equilibrium in all six clusters were removed, where the significance 

threshold was Bonferroni-corrected such that the genome-wide significance threshold equaled 

2.84 x10-7. After this quality control, 184,409 SNP’s were available for further analysis. 

Similarly, 66 individuals were removed where IBS between any pair exceeded 0.95, 46 

individuals were removed where call rate was less than 0.95, and 192 individuals were removed 

where heterozygosity at the Z chromosome exceeded or fell under the expected rate given the 

sex of the individual. Work is on-going to examine in greater detail why so many individuals 

appear to have been incorrectly sexed. Together, 2808 individuals passed this quality control, 

and of these, 620 had adequate clutch size data and 607 had adequate data on laying date (Table 

1).  

 

 

 

 

 

 



Table 1: Overview of the number of SNP-genotyped individuals coming from each island and 
the period during which data from these islands will be included. This gives a rough idea of 
the relative importance of each island in the analyses. CS=Clutch Size, LD=Lay Date. 

 

Model Building  

Preliminary model building for clutch size showed that the best mixed model with the 

smallest AIC value included the fixed effects island, age, lay date, clutch number, and a clutch 

number by lay date interaction, where lay date was mean centered within island (see also 

Westneat et al. 2009). Similar model building for onset of laying showed that the best model 

included island, year, and age effects, where the age of individuals was simply classified as 

first year or older as per Noordwijk, Balen, & Scharloo (1981). Both models included ID as 

random effects. These models were constructed using the R package “lme4” (Bates 2010).  

While inclusion of tarsus length as a proxy for body size did decrease the AIC values 

for both traits, the decision was made to not include it in the final analyses as there were several 

individuals with missing morphological data. As a result, inclusion of tarsus length would 

necessitate a loss in sample size outweighing the benefits. Climatic variables were not 

considered, though early results from a parallel study indicate that these have little effect on 

laying date (Ringsby, Johansen, personal communication, 2016). 

 

Island Years # of individuals 
genotyped 

# of ind. w/ CS 
data 

# of ind. w/ LD 
data 

Nesøy 1998-2013 161 13 13 

Gjerøy 1998-2013 657 123 123 

Hestmannøy 1998-2013 1100 255 250 

Indre Kvarøy 1998-2013 378 77 73 

Aldra 1998-2013 211 30 27 

Træna 2003-2013 466 65 65 

Selvær 2003-2013 274 57 56 

 Total = 3247 620 607 



Genome-Wide Association Study (GWAS)  

 The genome-wide association studies were done using two R packages: GenABEL and 

RepeatABEL. GenABEL includes functions that allow for the efficient handling of the large 

datasets inherent to SNP-data (Aulchenko et al. 2007). GRAMMAR-gamma, a function within 

GenABEL, can be used for generating p-values and effect sizes for each SNP sans repeated 

measurements (Svischeva et al. 2012). However, GRAMMAR-gamma only accepts one value 

per individual, the mean lifetime clutch size and the onset of laying for an individual’s first 

year was used. RepeatABEL allows for the analysis of data with repeated measurements 

(Husby et al. 2015; Rönnegård et al. 2016).  As we have data on several clutches for many 

individuals, the bulk of the analysis was done using RepeatABEL so as to maximize our power. 

RepeatABEL uses the GRM to control for relatedness between indvididuals. 

 P-values are corrected for genomic inflation in order to correct for population 

stratification. Significance and suggestive thresholds were Bonferroni-corrected such that the 

genome-wide significance level corresponds to p=2.71x10^-7 and the suggestive level 

corresponds to p=5.42x10-6.  

 

Genome Partitioning  

 Genome partitioning is performed using the software Genome-wide Complex Traits 

Analysis (GCTA) (Yang et al. 2011a, Yang et al. 2013). As GCTA only accepts one value per 

individual, the mean lifetime clutch size and the onset of laying for an individual’s first year 

was used. 

The methodology used here is similar to the one described in Yang et al. (2011b), where 

a genetic relationship matrix (GRM) is constructed for each genomic region. Here, the genomic 

regions used are autosomes. These GRM’s are then adjusted in order to control for the 

imperfect LD between causal sites and tagged markers. Then, all GRM’s are fitted 



simultaneously in a mixed effects model and variance components are estimated using AI-

REML (Gilmour, Thompson, & Cullis 1995). In the case of model converge problems, the 

chromosome with the fewest SNP’s was successively removed until the model converged. As 

a result, the partitioning of mean lifetime clutch size included 19 chromosomes and the 

partitioning of lay date included 27 chromosomes. No fixed factors were used in these analysis 

as inclusion of additional covariates only led to convergence problems, necessitating the 

removal of more chromosomes.  

 

Heritability 

Estimates of heritability of our traits come from three different sources. The three 

methods used in this study (GRAMMAR-gamma, RepeatABEL, and GCTA) all function 

through the estimation of variance components. They can therefore be used to calculate a trait’s 

additive genetic variance and, in turn, the narrow-sense heritability. However, as GRAMMAR-

gamma and GCTA only accept one value per individual, these two ignore within-individual 

variation. As a consequence, many of the fixed effects accounted for in the GWAS no longer 

have any meaning, e.g. age and year effects. As the fixed effects influence the phenotypic 

variance in the model, this must be accounted for when comparing heritability estimates 

(Wilson 2008).  

For our purposes, the estimates of heritability from RepeatABEL are the most relevant. 

These best reflect the proportions of additive genetic and environmental variance actually 

viewed by our GWA studies. However, note that traditional estimates of heritability are derived 

from estimates of relatedness based on a pedigree. Here, relatedness is calculated using the 

identity-by-state at all markers. As a result, we aren’t reliant on the accuracy of a pedigree, nor 

is noise introduced by the variance around the pedigree-predicted relatedness due to 

recombination and segregation (Berenos et al. 2014).  



Results 

No loci were genome-wide significant at the Bonferroni-corrected significance level in 

the GWA studies on mean lifetime clutch size, clutch size, or onset of laying; nor were there 

any suggestive loci in any of these analyses (see appendix for a summary of the top ten SNP’s 

in each analysis) (Figure 2). 

Partitioning the variance by chromosome using GCTA generally corroborated these 

results.  For clutch size, the correlation between chromosome size and proportion of variance 

explained was non-significant (Figure 3, r2=0.06, p=0.32). However, this was largely driven 

by chromosome 20. After removing this from the analysis, there is a clear correlation between 

the size of the chromosome and the proportion of variance explained (r2= 0.28, p=0.02). These 

results suggest that clutch size is a polygenic trait. Moreover, as no SNP’s on chromosome 20 

seemed salient in the GWAS, the results seem to indicate that a relatively large proportion of 

loci of small effect size may be clustered on this chromosome. 

For onset of laying, the correlation between chromosome size and proportion of 

variance explained was non-significant (Figure 3, r2= 0.01, p=0.59).  Chromosome 4 explained 

far more than any other chromosome, although removing this chromosome did not improve 

the correlation (Figure 3). This outlier is due to the stratification in our data due to the between-

island differences in lay date; these differences were not controlled for in the genome 

partitioning (see Appendix). These results suggest that onset of laying has an oligogenic 

architecture. 

 

 

 

 



  
Figure 2: Manhattan plots of GWAS. Relative positions between markers are only correct 
within scaffolds. 
 



 

Figure 3: Chromosome partitioning of lay date and clutch size. The point in blue refers to 
chromosome 4 and chromosome 20 in the plot of lay date and clutch size, respectively 

 

The heritability of mean lifetime clutch size was 0.14 in GRAMMAR-gamma and 0.20 

in GCTA. The RepeatABEL estimates of heritability from the GWAS was 0.10 for clutch size 

and 0.07 for lay date. GCTA estimated the heritability of lay date as 0.30. 

 

Table 2: Units of clutch size are number of eggs and units of lay date are number of days  

Variance Components of RepeatABEL GWAS 
 

 Source Clutch Size   Lay Date 
 
 Additive Genetic Variance 0.120 22.500 
 Permanent Environmental Variance 0.090 19.500 
 Residual Variance 0.950 303.600 
    
 

 

 



Discussion 

The genetic architectures of two life history traits, clutch size and onset of laying, were 

investigated using two complementary methods: GWAS and genome partitioning.  

For clutch size, it’s polygenic nature is shown by the absence of significant hits in our 

GWAS (Figure 3), despite our relatively high marker density. Polygenicity can also be seen in 

the correlation between chromosome size and variance explained, although, the collection of 

markers on chromosome 20 explain more variance than expected given the size of the 

chromosome. In combination, the GWAS and chromosome partitioning results indicate that 

the genes controlling the variation in clutch size, while many and of small-effect, are not spread 

evenly throughout the genome.  

These findings are generally corroborated by previous research. In Rowe’s modelling 

work, the primary factor determining clutch size for each female is her initial condition; 

females that begin the season with more energy will have a larger clutch size (Rowe 1994). As 

condition is expected to be highly polygenic, we expect clutch size to be highly polygenic as 

well. Also, genome-wide association studies on clutch size in two populations of great tit 

(Parus major) found no significant loci, and genome partitioning of variance showed that the 

amount of variance explained by a chromosome was correlated with its length (Santure et al. 

2013; 2015). This implies that clutch size is a polygenic trait.  Conversely, a GWAS on the 

collared flycatcher found one significant loci that explained about 28% of the additive genetic 

variance, indicating that relatively few genes may structure the genetic variation (Husby et al. 

2015).  

However, note that the great tit studies had a sample size of ~1000 and used ~6,000 

SNP’s (Santure et al. 2013; 2015) while the collared flycatcher study had a sample size of 313 

and used ~37,000 SNP’s (Husby et al. 2015). As a result, the great tit study may have missed 

loci not in linkage disequilibrium with their relatively few markers, and, indeed, they conclude 



that they have low power to detect loci of a significant effect size (Santure et al. 2015). The 

collared flycatcher study, though it benefitted from using repeated values and a higher density 

of SNP’s, suffers from a small sample size and the authors note that their estimated effect sizes 

are likely overestimated due to the Beavis effect (Husby et al. 2015). Then, the present study 

may have the best combination of sample size and number of markers out of these studies. As 

a consequence, we may have the best power out of available studies. However, a proper power 

analysis would be necessary in order to decisively conclude this. 

For lay date, our results are inconclusive. The confounding effects of subpopulation 

structure (see Appendix) are too great to make robust conclusions. While no significant or 

suggestive SNP’s were detected in the GWAS (Figure 2), the chromosome partitioning shows 

a clear oligogenic structure (Figure 3). These results contradict each other. However, this 

makes sense as the former analysis controlled for mean differences between islands and the 

latter did not. 

There seems to be a dearth of similar investigations into the genetic basis of lay date, 

though there are several studies establishing that the trait has a significant heritability (e.g. 

McCleery et al. 2004, Cooke & Findlay 1982, Noordwijk et al. 1981) and a few studies have 

focused on connecting the phenology of lay date with genetic variation at a candidate gene, 

Clock (e.g. Liedvogel et al. 2012; Leder et al. 2006).   

In general, the observed heritabilities of both our traits are lower than those seen in 

other studies (e.g. Sheldon et al. 2003; Noordwijk et al. 1981; Postma & Noordwijk 2005). 

There are a myriad number of methodological and biological potential reasons for this. This 

discrepancy might stem from established issues with heritability as a statistic, e.g. it is 

dependent on the fixed effects (Wilson 2008), and it is dependent on the amount of 

environmental variance (Postma 2014). It may also be because our study uses repeated values, 

such that within-individual variation is taken into account. Additionally, the house sparrow is 



a multi-brooded species meaning that these traits may be more plastic than in other single-

brooded species. However, the most salient differences between the present study and previous 

studies is that genomic relatedness is directly calculated with the markers rather than estimated 

through a pedigree. This has been shown to produce lower estimates of genetic variance 

(Berenos et al. 2014).  

These findings call for follow-up studies. In order to make more general conclusions 

about the genetic architecture of these traits, studies with larger sample sizes will be needed 

(Mackay et al. 2009). Additionally, further research should focus on characterizing the 

environmental variables connected to variation in these life history traits. Currently, the 

majority of the variation remains unexplained, and this limits our ability to detect loci (Mackay 

et al. 2009). Specifically, the substantial differences between islands in onset of laying must be 

properly characterized. Perhaps a structured association would cast more light on this problem. 

In conclusion, this study shows that it is difficult to gain a full understanding of the 

genetic basis of a complex trait in a wild population even with a large number of markers. The 

success of this approach remains highly dependent on access to quality ecological and 

phenotypic data. While the metapopulation structure can be seen as this study system’s greatest 

strength, it clearly poses a host of methodological problems as well. 
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Appendix 

Supplementary Note: Island Effect on Lay Date 

Genetic drift is very important in structuring the genetic variation in these small 

stochastic island populations (Jensen et al. 2013, Holand et al. 2011). As a result, we expect to 

see differences between islands regardless of similarities in the adaptive landscape. Indeed, 

there are marked differences in lay date between islands (e.g. Ringsby et al. 2002).  

In order to investigate this, two different analyses were run for onset of laying: one 

including island as a fixed effect and one without. These two analyses presented drastically 

different results. Removing island as a fixed effect tripled the additive genetic variance and a 

marginally increases the permanent environmental variance. Heritability increased to 0.16 from 

0.06.  

Also, as seen in the Results, no SNP’s were genome-wide significant or suggestive 

when including island as a fixed effect. However, without controlling for the island effect, all 

of the top six most significant SNP’s were located on chromosome 4 and four of these were 

genome-wide suggestive. The most significant of these was located ~31 Mbp from the rest, 

which seemed to be clustered around a peak (Figure 5). At this peak, linkage disequilibrium 

between SNP’s was very high, such that these SNP’s seemed to be detecting the same effect in 

the population and were functionally the same. As a result, these four suggestive SNP’s were 

only detecting two loci. 



 

Figure 5: Manhattan plot of GWAS of onset of laying without taking into account differences 
between island. Relative positions of markers are only correct within scaffolds. 
 

These two loci explained a surprisingly large proportion of the variance in laying date, 

each accounting for approximately 20% of the additive genetic variation, though only 2-3% of 

the phenotypic variation. In combination with the non-significant correlation between 

chromosome size and genetic variance explained, these results support an oligogenic model for 

this trait.  

When we plot the p-values from each analysis against each other (Figure 6), we see that 

including island systematically increases p-values. Additionally, the most significant SNP’s all 

lie exactly where they would be predicted to be given a linear regression between the two sets 

of p-values. This indicates that the significance of these SNP’s can be almost wholly explained 

by differences between islands. 



 

Figure 6: Plot comparing the p-values of the GWA studies of lay date excluding the island 
effect (abscissa) and including the island effect (ordinate). Here, the SNP’s in red are the four 
suggestive SNP’s, all on chromosome 4. The blue line represents equivalence, and the red line 
represents the linear regression. The linear regression did not include the SNP’s in red, such 
that the effect is not driven by those outliers. 
 

Though RepeatABEL uses the GRM to control for relatedness in the population 

(Rönnegård et al. 2016), the stratified relatedness produced by the differences between islands 

pose a problem for this analysis. As the differences between islands were revealed to be 

primarily genetic, then controlling out this variation may control out exactly the variation we 

are interested in. On the other hand, the differences in allele frequencies at these loci may be 

due to random genetic drift within each population. If the variation is best explained at the 

population level, then our sample size is actually equal to the number of populations and all 

our individuals merely reflect pseudoreplication. A different approach would be required in 

order to separate the differences in allele frequencies between populations due to mere random 

genetic drift and the differences that actually cause differences in lay date. 



In any case, BLAST results of these suggestive SNP’s against the collared flycatcher 

and zebra finch genome did not lead to any genes that easily lend themselves to interpretation. 

While homologues can be found for most of these SNP’s in these two genomes, they are 

generally not near known genes. However, SNPa217703, the most significant SNP for lay date, 

comes within ~37 kbp of a gene related to Fragile X Syndrome, called AFF1. In the chicken 

genome, there were no significant hits.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Supplementary Tables 

Table 1: Descriptive statistics of traits of interest 
 Clutch Size Onset of Laying 

(Days from Dec 31st) 
Mean 4.85 141.8 

Median 5 138 

Within Individual Variance 0.19 59.8 

Between Individual Variance 1.04 328.7 

Total Variance 1.23 387.6 

# of Individuals 620 607 

# of Observations 1726 931 

 

Summary of GRAMMAR-gamma GWAS of Clutch Size, Top 10 SNP's 
 

SNP Names Chromosome  Major 
Allele 

Minor 
Allele 

Effect 
Size SE P-value 

 
SNPa462400 2 C A -0.224 0.051 0.00001 
SNPa462413 2 A C -0.220 0.051 0.00002 
SNPa434592 4 T C 0.286 0.067 0.00002 
SNPa462414 2 C T 0.215 0.051 0.00002 
SNPa44085 2 G A -0.221 0.053 0.00003 
SNPa513360 14 A G 0.245 0.060 0.00004 
SNPa461196 2 T C -0.297 0.073 0.00005 
SNPa285571 9 T G -0.412 0.102 0.00005 
SNPa300393 1 G A 0.238 0.059 0.0001 
SNPa241736 2 G A -0.212 0.053 0.0001 

 

 
 
 
 
 
 
 
 
 
 

     



Summary of RepeatABEL GWAS of Lay Date, Top 10 SNP's 
 

SNP Names Chromosome Major Allele Minor  
Allele 

Effect 
Size SE P-value 

 
SNPa217703 4 C A -4.556 1.026 0.00001 
SNPa123579 4 A C 4.890 1.115 0.00001 
SNPa374248 8 T C 5.013 1.162 0.00002 
SNPa152625 1 T C 4.007 0.947 0.00003 
SNPa123552 4 A G 4.641 1.107 0.00003 
SNPa123542 4 A C 4.615 1.102 0.00003 
SNPa44244 2 A G -3.930 0.950 0.00004 
SNPa148320 6 A G -3.888 0.952 0.0001 
SNPa61161 29 A G 4.273 1.054 0.0001 
SNPa251119 29 C T -5.546 1.370 0.0001 

       
  

 

Summary of RepeatABEL GWAS of Clutch Size, Top 10 SNP's 
 

SNP Names Chromosome Major 
Allele 

Minor 
Allele Effect Size SE P-value 

 
SNPa462400 2 C A -0.217 0.047 0.00001 
SNPa493087 6 A G 0.208 0.047 0.00001 
SNPa462414 2 C T 0.204 0.046 0.00001 
SNPa462413 2 A C -0.208 0.047 0.00001 
SNPa432427 1 A G -0.222 0.051 0.00002 
SNPa400068 2 G T 0.269 0.062 0.00002 
SNPa57977 29 C T 0.272 0.064 0.00003 
SNPa432398 1 G A -0.204 0.048 0.00003 
SNPa479653 4 T G -0.277 0.066 0.00003 
SNPa480691 11 A G 0.262 0.062 0.00004 

       
 


