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Abstract: The effect of axial variations in acoustooptic phase-mismatch
coefficient of a two-mode birefringent photonic crystal fiber (PCF) is
studied experimentally using two different methods. The first method is to
determine axial non-uniformities directly from the transmission spectrum,
while the second method is to use acoustic pulses. Both methods are seen
to be in good agreement. It is found that axial non-uniformities increase the
coupling bandwidth significantly as compared to an axially uniform fiber.
The effect of acoustic birefringence is also considered.
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1. Introduction

Acoustooptic (AO) coupling in optical fibers has been applied to the design of many devices,
such as tunable filters [1]. These devices rely on coupling between two optical modes, induced
by a traveling acoustic wave acting as a long period grating [2,3]. By tailoring fiber parameters,
it is possible to make broadband and narrow-band filters [4–10].

There exists a new class of optical fibers, called photonic crystal fibers (also denoted micro-
structured optical fibers or holey optical fibers) [11, 12], which offer a large degree of freedom
in tailoring fiber parameters. Previously, acoustooptic coupling between the fundamental mode
and a cladding mode, as well as coupling between the fundamental mode and weakly guided
second order modes has been demonstrated in index-guiding PCFs [13, 14]. In Ref. [14] it was
found that the coupling bandwidth was larger than expected for coupling to a single mode in a
uniform fiber, and it was pointed out that this was likely due to the combined effect of splitting
in mode index between the nearly degenerate higher order modes and axial non-uniformities.
The four nearly degenerate higher order modes are reduced to two pairs of linearly polarized
second order modes with stable lobe orientations in birefringent fibers [15, 16]. This enables
selective excitation of the higher order modes and avoids the problem of coupling to several
nearly degenerate modes.

It is however critical that the fibers are axially uniform, since axial non-uniformities may give
rise to significant sidelobes in the transmission spectrum [17–19]. We therefore investigate to
what extent axial variations in acoustooptic phase-mismatch coefficient contribute to the acous-
tooptic coupling bandwidth in a birefringent two-mode PCF. A method is presented, where ax-
ial variations in the acoustooptic phase-mismatch coefficient Δβ (z) are obtained directly from
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the transmission spectrum. The method is based on the fact that in the weak coupling regime,
there is a Fourier transform relation between the grating parameters (amplitude of the acoustic
wave and Δβ (z)) and the amplitude and phase of the coupled light. Since the amplitude of the
acoustic wave is known (it is approximately constant), one can use the Gerchberg-Saxton al-
gorithm to determine Δβ (z) directly from the measured transmission spectrum. This algorithm
transforms successively between the two Fourier domains, fixing the magnitudes at the known
values [20,21]. This determines Δβ (z) up to a two-fold ambiguity due to the complex conjugate
symmetry of the Fourier transform. This method is compared to an existing method where axial
non-uniformities are measured using acoustic pulses [19]. The two methods are found to be in
good agreement. The measurements show that the minimum coupling bandwidth is limited by
axial variations in acoustooptic phase-mismatch coefficient.

The effect of acoustic birefringence is also investigated. The PCF is found to be acoustically
birefringent, and a large contribution to this birefringence is likely due to an unintentional
ellipticity of the fiber cross-section.

2. Fiber properties

Optical birefringence in index-guiding photonic crystal fibers can be obtained by introducing
a two-fold rotational symmetry into the fiber structure to obtain form birefringence [22–24],
or by introducing stress-elements into the cladding to obtain stress-induced birefringence [25].
The fiber used in this experiment is a commercially available PCF of the same type as the
one used in Ref. [24], i.e. where two of the air holes on the opposite sides of the core are
enlarged to introduce form birefringence. The geometry of the fiber is shown in Fig. 1(a), and
a closeup of the core region is shown in Fig. 1(b) and (c). The geometric parameters of the
fiber, as obtained from SEM pictures of the fiber cross-section, are D = 125 μm for the fiber
diameter, Λ = 4.15 μm for the hole spacing, ds = 0.50Λ for the diameter of the small holes, and
dl = 0.98Λ for the diameter of the large holes. The experiments are carried out at a wavelength
of 633 nm, where the fiber supports four guided modes as schematically shown in Fig. 1(d). The
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Fig. 1. (a) The birefringent PCF. Calculated intensity profiles of (b) the fundamental modes
and (c) the second order modes. (d) Mode diagram. ng: Refractive index of silica, ncl:
Effective cladding index.

four guided modes resemble the two orthogonal polarizations of the LP 01 and the LP11(even)
modes in a standard elliptical-core fiber [16], and are ordered schematically according to their
mode index in Fig. 1(d). The splitting in mode index between the two orthogonal polarizations
is exaggerated in the figure. It is found that the mode indices of the second order modes are
slightly larger than the effective cladding index n cl, which is taken to be to mode index of
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the fundamental space-filling mode of the cladding [11]. Both of the two LP 01 modes have
approximately the same intensity distribution, which is shown in Fig. 1(b). In Fig. 1(c), the
intensity distribution for the LP11 modes is shown. The mode indices and mode profiles are
calculated using a fully vectorial solution of Maxwell’s equations in a planewave basis [26],
using the supercell method [11].

3. Determination of axial variations in acoustooptic phase-mismatch coefficient

Two different methods for determining axial variations in the acoustooptic phase-mismatch
coefficient are utilized. We first present a method where Δβ (z) is obtained directly from the
transmission spectrum using acoustooptic coupling in a stationary interaction region. We then
summarize the basics of an existing method [19], where Δβ (z) is measured using acoustic
pulses.

Det.

HornV

Laser

MS MSPC L

Offset det.

HornV

Laser

MSPC L

(a)

(b)

Stripped PCF

Stripped PCF

vg

Fig. 2. Experimental setup. (a) Stationary acoustooptic interaction region. (b) Acoustic
pulses. PC: Polarization controller, L: Lens, MS: mode stripper.

3.1. Method 1: Stationary acoustooptic interaction region

Consider the setup in Fig. 2(a). Polarized monochromatic light from a laser is coupled into the
PCF. A mode stripper ensures that light entering the stripped part of the PCF, i.e. the acousto-
optic interaction region, is contained in the LP01 modes. The horn generates a continuous flex-
ural acoustic wave of angular frequency Ωa, which propagates in the stripped PCF section. The
frequency and amplitude of the acoustic wave is experimentally controllable. After the stripped
PCF section, the light coupled into the second order modes is removed using a second mode
stripper, and transmission is recorded as a function of acoustic frequency.

Assuming that the light is linearly polarized along the x- or y-axis of the fiber, the electric
field in the stripped PCF section can be represented as a superposition of the (x- or y-polarized)
fundamental mode ψ01 and second order mode ψ11

ψ(r,t) = ∑
i=01,11

ai(z)ψi(x,y)exp

[
i
∫ z

−L
2

βi(z′)dz′
]

exp(−iωit), (1)

where the stripped PCF section extends from z = −L/2 to z = L/2. A scalar notation is used
for simplicity and coupling to cladding modes is neglected. Here a i, ψi, βi, and ωi denote
mode weight, normalized mode profile, propagation constant, and angular frequency, respec-
tively, for mode i. The propagation constants are assumed to depend on z to account for axial
non-uniformities, and the angular frequencies satisfy ω 01 = ω11 + Ωa. The mode field evolves
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according to the coupled mode equations [27]

d
dz

a01(z) = iκ(z)a11(z)exp

[
−i

∫ z

−L
2

Δβ (z′,Ωa)dz′
]

(2)

d
dz

a11(z) = iκ∗(z)a01(z)exp

[
i
∫ z

−L
2

Δβ (z′,Ωa)dz′
]
, (3)

where the acoustooptic phase-mismatch coefficient is given by

Δβ (z,Ωa) = β01(z)−β11(z)−Ka(z,Ωa), (4)

and Ka is the wavenumber of the acoustic wave. κ(z) is the acoustooptic coupling constant,
which is proportional to the amplitude of the acoustic wave. Note that a i also depends on Ωa,
but this has been suppressed in the notation for simplicity. We then assume that κ(z) = κ , that
is, damping of the acoustic wave along the acoustooptic interaction region is neglected. We also
assume that

Δβ (z,Ωa) = Δβ (z,Ω0)+ Δβ̃(Ωa) ≡ Δβ (z)+ Δβ̃(Ωa), (5)

where the first term represents the variation in Δβ due to axial non-uniformities, at the angular
frequency Ω0, and the second term refers to variations in Δβ with acoustic frequency for a
perfect, axially uniform structure. The validity of an assumption similar to Eq. (5) has been
discussed in Ref. [19]. It is assumed that a11(−L/2) = 0, and that the amplitude of the acoustic
wave is sufficiently low, such that a01(z) ≈ a01(−L/2) = 1. We then obtain

d
dz

a11(z) = iκ∗ exp

[
i
∫ z

−L
2

Δβ (z′)dz′
]

exp
[
iΔβ̃ (Ωa)(z+L/2)

]
. (6)

It is then assumed that

Δβ̃ (Ωa) ≈ dΔβ̃ (Ω0)
dΩa

(Ωa −Ω0) ≈−dK(Ω0)
dΩa

ΔΩ = − ΔΩ
vg(Ω0)

, (7)

where vg is the acoustic group velocity, and ΔΩ = Ωa −Ω0. Defining φ(z) =
∫ z
−L/2 Δβ (z′)dz′

and u(Ωa) = −ia11(L/2)exp[−iΔβ̃(Ωa)L/2]/κ∗, we obtain

u(Ωa) =
∫ ∞

−∞
h(z)exp [−iΔΩz/vg(Ω0)]dz, (8)

where we have defined

h(z) =
{

exp [iφ(z)] if −L
2 ≤ z < L

2
0 otherwise.

(9)

In other words, u(Ωa), which is proportional to the amplitude of the coupled light, is the Fourier
transform of h(z), which describes the grating. This means that if we know u(Ω a), we can use
the inverse Fourier transform to determine h(z) and thereby find Δβ (z) using

Δβ (z) =
d
dz

φ(z). (10)

The problem is that experimentally, when the transmission spectrum is recorded, only |u(Ω a)|
is obtained. However, since |h(z)| is known, the Gerchberg-Saxton (G-S) algorithm can be used
to find φ(z). The algorithm works as follows [20]:
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1. The initial values of φ(z) are chosen randomly in the interval −π . . .π .

2. The Fourier transform (FFT) of h(z) is computed.

3. The computed phase of u is combined with the known value of |u| and the inverse Fourier
transform (IFFT) is computed

4. The new values for φ(z) are used as input to the algorithm, and step (2)-(4) are repeated
until convergence.

Convergence is checked by comparing the measured |u| with the one computed from h using
φ(z) determined by the G-S algorithm. A two-fold ambiguity does however arise since |h(z)|
is symmetric [21]. This is due to the fact that the complex conjugate symmetry of the Fourier
transform causes both φ(z) and −φ(−z) to give the same |u|. It cannot be determined which of
these two solutions are found by the G-S algorithm. Despite this shortcoming, the G-S method
is useful due to its experimental and computational simplicity.

3.2. Method 2: Acoustic pulses

Consider the case where the acoustic horn generates a pulse of duration t a with carrier frequency
Ωa/(2π). The acoustic pulse will travel along the stripped part of the fiber with group velocity
vg(Ωa), as shown in Fig. 2(b), and the length of the pulse is l p = vgta. The acoustic pulse
therefore acts as a long-period grating with length l p, moving along the stripped part of the
PCF with velocity vg. In Ref. [19] it was shown that Δβ (z) is given by

Δβ (z) =
Ω(z/vg)−Ωa

vg
, (11)

where Ω(z/vg) is the frequency shift of the coupled light at a pulse position z = −L/2 + v gt.
Hence, by measuring the beat frequency between the modes ψ 01 and ψ11 as a function of time,
one obtains Δβ (z). Note that the frequency spectrum of the acoustic pulse must contain the
frequency range of Ω(z/vg) for this method to work. This can achieved by choosing a short
pulse (with a corresponding wide frequency spectrum), and choosing Ω a close to the expected
range of Ω(z/vg).

4. Results and discussion

A 48 cm section, denoted section 1, of the PCF was stripped to allow for propagation of the
acoustic wave. The acoustic horn was a hollow aluminum cone filled with epoxy. It was opti-
mized for having a broad frequency response [28], whose magnitude was found to be approx-
imately constant in the frequency range of interest. The horn was made in contact with the
stripped PCF section using a drop of silicone oil. This made it possible to rotate the acousto-
optic interaction region with respect to the horn tip. Each mode stripper was made by coiling
the PCF 5 turns around a post with a diameter of 5 mm. This effectively removed the light in the
second order modes due to the high macrobending loss of the second order modes, compared
to the fundamental modes.

Using the setup in Fig. 2(a) as a starting point, the second mode stripper and the detector was
removed and a CCD array was placed 8 mm from the fiber end. The light polarization and fiber
orientation was varied, and it was found that the acoustic wave coupled light from the LP 01 to
the LP11 modes, with negligible coupling to cladding modes in the relevant frequency range.
By optimizing the position of the horn tip, the light polarization, and the fiber orientation, we
were able to couple more than 90% of the light from the LP 01 to the LP11 mode at an acoustic
frequency of 7.379 MHz. An example of the measured mode profile with the acoustic wave
on/off is shown in Fig. 3.
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(a) (b)

Fig. 3. Measured mode profile for (a) acoustic wave off and (b) acoustic wave on.

4.1. Acoustic birefringence

It is clear from Fig. 1(a) that for a perfect fiber, the x- and y-polarized flexural acoustic waves
will have different propagation constants due to the two-fold rotational symmetry of the fiber
cross-section. It has however previously been shown for a Hi-Bi fiber that an unwanted elliptic-
ity in the fiber cross-section can constitute the main contribution to the acoustic birefringence,
and that the acoustic axes therefore not necessarily coincide with the x- and y-axis [29].

Using acoustic pulses, the effect of acoustic birefringence was studied for the PCF. The setup
for characterizing the PCF using acoustic pulses is shown in Fig. 2(b). As discussed in Sec. 3.2,
the acoustic pulse acts as a long period grating of length l p moving at a speed vg. The frequency
shift of the coupled light is related to Δβ (z) according to Eq. (11).

The frequency shift of the coupled light was measured as a function of time using an offset
detector and a digital oscilloscope. Each point in time corresponds to a given pulse position as
the pulse travels along the stripped PCF. The acoustic pulse was a square wave with a carrier
frequency of 7.4 MHz. The duration of the pulse was t a = 2.7 μs, corresponding to a frequency
spectrum of width Δ f ≈ 1/ta = 0.37 MHz. Using a laser probing technique [3], an acoustic
group velocity of vg = 3516 m/s was measured at 7.4 MHz. This gives a pulse length l p =
vgta = 9.5 mm.

We denote linearly polarized light along the x- and y-axis as opt. pol. 1 and opt. pol. 2, respec-
tively. The acoustic axes are denoted as the x ′- and y′-axis, and the corresponding polarizations
of the flexural acoustic wave are called ac. pol. 1 and ac. pol. 2. Figure 4(a) shows a recorded
interferogram using ac. pol. 2 and opt. pol. 1. The frequency shift of the coupled light is ap-
proximately 7.4 MHz, resulting in a signal period close to 0.5 mm. The polarization of the light
was then optimized to excite an equal amount of opt. pol. 1 and opt. pol. 2. Using the identity
cos(k1z) + cos(k2z) = 2cos [(k1 − k2)z/2]cos [(k1 + k2)z/2], we find that the slowly varying
envelope in Fig. 4(b) is given by cos [(Δβx −Δβy)z/2], where Δβx = 2π(n01x − n11x)/λ and
Δβy = 2π(n01y − n11y)/λ . From Fig. 4(b) one then obtains |Δβx −Δβy| = 2π/Lz1 ≈ 114 m−1,
where Lz1 ≈ 5.5 cm is the distance between two zeros of the slowly varying envelope.

Figure 4(c) shows the resulting interferogram using ac. pol. 2 and opt. pol 2, and is similar
to Fig. 4(a), except for a small change in the signal period since Δβ x �= Δβy. In Fig. 4(d) the
stripped part of the PCF was rotated an angle of 70◦, compared to Fig. 4 (a), to excite a combi-
nation of ac. pol. 1 and ac. pol. 2. The optical polarization was opt. pol. 1. The rotation angle of
the stripped PCF section was chosen such that both the x ′ and the y′ component of the acoustic
wave contributed equally to the acoustooptic coupling coefficient. This can be used to determine
the angle between the acoustic and optical axes [29]. Using the method in Ref. [29], we estimate
that this angle is approximately 20◦ in this PCF section. From the distance Lz2 ≈ 28.0 cm be-
tween the zeros in the slowly varying envelope, it is found that |K1−K2|= 2π/Lz2 ≈ 22.4 m−1,
where K1 and K2 are the propagation constants for ac. pol. 1 and ac. pol. 2, respectively. An
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Fig. 4. Interferograms. (a) Ac. pol. 2, opt. pol. 1. (b) Ac. pol. 2, opt. pol. 1 and 2. (c) Ac.
pol. 2, opt. pol. 2. (d) Ac. pol. 1 and 2, opt. pol. 1. (e) Ac. pol. 1, opt. pol. 1. (f) A 180◦ twist
of the AO-region. (g) A 360◦ twist of the AO-region. (h) A 540◦ twist of the AO-region.

unintentional ellipticity in the fiber cross-section of the order of 10−3 is estimated to be suffi-
cient to account for the measured acoustic birefringence. Figure 4(e) shows the interferogram
obtained using ac. pol. 1 and opt. pol. 1. This was achieved by rotating the acoustooptic inter-
action region an angle of 90◦ compared to Fig. 4(a), and demonstrates experimentally that the
x′- and y′-axis are orthogonal.

We then used ac. pol. 2 and opt. pol. 2 as a starting point, and fixed the orientation of the
fiber at the horn. The orientation of the other end of the acoustooptic interaction region was
rotated in steps of 180◦, and an interferogram was recorded at each step. Figure 4(f)-(h) shows
the resulting interferogram for a twist angle θ of 180 ◦, 360◦, and 540◦, respectively. For higher
twist angles the interferograms are similar to Fig. 4(h), except for n zeros in the the envelope for
a n ·180◦ twist. This is interpreted as when θ ≥ 540◦, the polarization of the acoustic wave is not
able to follow the twist, but remains approximately constant with respect to the laboratory frame
along the entire acoustooptic interaction region. For pulse positions where the polarization of
the acoustic wave is orthogonal to the y-axis, the acoustooptic coupling constant is zero due to
symmetry, resulting in zeros in the slowly varying envelope of the interferogram [30]. Since
such zeros are not observed for θ = 180◦,360◦, the acoustic polarization is affected by weak
twists of the fiber. It can be noted that in the limit of strong acoustic birefringence, the acoustic
polarization should be able to follow the twist, in the same manner as the optical x- or y-
polarization follows the twist of the birefringent PCF, which then should have no influence on
the interferogram.

4.2. Axial variations in acoustooptic phase-mismatch coefficient

We here report results using method 1 and method 2 to measure axial variations in the acousto-
optic phase-mismatch coefficient. The four upper curves in Fig. 5(a) shows measured transmis-
sion in section 1 as a function of frequency for all four combinations of acoustic and optical
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Fig. 5. (a) Measured transmission in section 1. (b) Retrieved Δβ (z) using the G-S algorithm.
(c) Retrieved Δβ (z) using acoustic pulses. Red curves: Ac. pol 2, opt. pol. 2. Magenta
curves: Ac. pol. 1, opt. pol. 2. Blue curves: Ac. pol. 2, opt. pol. 1. Green curves: Ac. pol. 1,
opt. pol. 1. Black curve: Ideal computed transmission for an axially uniform fiber.

polarizations. Also shown is an ideal transmission spectrum for an axially uniform fiber, i.e.
when Δβ (z) is constant (black curve). It is apparent that axial non-uniformities dominate the
coupling bandwidth (coupling to other modes has been ruled out experimentally using the CCD
camera). The measured transmission spectrum is used as an input to the G-S algorithm and
Δβ (z) is determined, as shown in Fig. 5(b). As noted above, the algorithm yields either Δβ (z)
or Δβ (−z), and one cannot determine which of the two solutions is the correct one. Only one of
the two solutions is shown in the figure (Accidentally, Δβ (z) ≈ Δβ (−z) in this fiber section, so
the two solutions are almost similar). As a reference measurement we determined Δβ (z) using
acoustic pulses as shown in Fig. 5(c). By comparing Fig. 5(b) and (c) we observe that the two
methods are in reasonable agreement. Note that Δβ (z) is undefined outside the coupling region.
This shows up as noise in the measurements. It is clear from Fig. 5 that the axial variation in
Δβ (z) is the same for all four combinations of acoustic and optical polarizations. A possible
cause for this is that the fiber diameter might vary with z. An experimental characterization of
the fiber diameter is left for future studies.

7.35 7.4 7.45 7.5

0.8

1

1.2

1.4

Acoustic frequency [MHz]

T
ra

ns
m

is
si

on
 (

ar
b.

 o
ffs

et
)

(a)

0 0.2 0.4 0.6
0

20

40

60

80

100

Position (arb. offset) [m]

Δβ
(z

) 
[m

−
1 ]

(b)

Fig. 6. (a) Measured transmission in section 2 (magenta curve), computed transmission
using Δβ (z) found by the G-S method (red curve) and by acoustic pulses (blue curve). (b)
Retrieved Δβ (z) in section 2 using the G-S algorithm (red curve) and acoustic pulses (blue
curve).

The measurements were repeated for a different fiber section, denoted section 2, using ac. pol.
1 and opt. pol. 1. The results are reported in Fig. 6(a) and (b). The upper solid line in Fig. 6(a)
shows measured transmission in section 2. Outside a 0.07 MHz bandwidth, the acoustooptic
coupling was negligible, and the measured transmission has been set to 1 to remove noise in
the G-S algorithm. Figure 6(b) shows retrieved Δβ (z) using the G-S algorithm (red curve) and
acoustic pulses (blue curve). As a consistency check, the retrieved Δβ (z) is used to calculate the
transmission spectrum, as shown in Fig. 6(a), using Δβ (z) determined by the G-S method (red
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curve) and acoustic pulses (blue curve). Both methods reproduce the measured transmission
spectrum very well, as shown in the figure.

5. Conclusion

The aim of this work is to investigate how fiber imperfections affect the coupling bandwidth of
an acoustooptic tunable filter based on a two-mode index-guiding birefringent PCF, where the
optical birefringence is due to two enlarged air holes on the opposite sides of the core.

The PCF is found to be acoustically birefringent. A large contribution to this birefringence
is likely due to an unintentional ellipticity of the fiber cross-section.

The two methods for determining axial variations in acoustooptic phase-mismatch coeffi-
cient are seen to be in good agreement. The G-S approach is experimentally and computation-
ally simple, but yields a two-fold ambiguity in Δβ (z). Using acoustic pulses is experimentally
more complex, but the two-fold ambiguity in Δβ (z) is avoided. For the fiber investigated it
is found that the minimum acoustooptic coupling bandwidth is limited by axial variations in
acoustooptic phase-mismatch coefficient.
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