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Abstract

The purpose of time-lapse seismic processing is to relate changes in seismic
signals to changes in reservoir parameters. A synthetic time-lapse experiment
has been conducted in order to provide a controlled test environment for
an interferometric imaging algorithm. The time-lapse contrast is created by
introducing a 51% increase in water saturation to a model by Gassmann fluid
substitution.

A time-convolution algorithm was then applied on the dataset to verify
the pre-processing steps, prior to applying the interferometric method. This
method was also used to recursively remove time-lapse responses from the
output data.

The time-convolution method has been successful in recursively remov-
ing the time-lapse responses as it passes through the contrast in the media,
leaving only the difference reflections below.

It was found that the interferometric method responds well to the contrast
of the reservoir, and shows a trend in accordance with expectations from the
theory.
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Chapter 1

Introduction

In order to get the maximum value from a field it is vital to have a reservoir
model which is as accurate as possible in order to come up with an optimal
drainage and injection strategy. Although a lot of data can be collected via
instruments in the wells, this provides no information about the situation
away from the well. Time-lapse seismic is therefore becoming an increasingly
important tool for monitoring changes in hydrocarbon reservoirs due to pro-
duction, and can provide valuable input to the reservoir model.

To provide useful input in a reservoir management setting, the change in
the seismic signal must be attributed to a contrast in physical properties of
the reservoir. This means that some inversion scheme is needed.

There are many challenges associated with the acquisition and processing
of time-lapse seismic surveys. An important challenge is to achieving a high
degree of repeatability of geometry between surveys. A low degree of repeata-
bility can cause problems when attempting to produce difference measure-
ments (Landrø, 1999; Landro et al., 1999). Highly heterogenous reservoirs
and random noise also contribute to the uncertainty.

A promising method for imaging time-lapse data is the use of boundary
interaction integrals to produce difference measurements from seismic data
sets. Two such a methods are described in Dillen (2000). One uses a time-
convolution approach to produce difference wave fields, while the other is
based on a time-correlation approach to represent phase differences.

1.1 Motivation

Since both methods mentioned have been implemented and found to produce
good results for one-dimensional problems, it is desirable to extend this to
two-dimensional problems. For the time-convolution method this has also
been demonstrated in Dillen (2000), so it will be a case of reproducing the

1



2 1 Introduction

same results to verify that the processing scheme is correctly implemented
and able to produce sensible output.

With the time-correlation method the goal is to demonstrate sensitivity
to small variations in reservoir thickness in addition to velocity changes.

1.2 Notation

Throughout this thesis the three-dimensional space R
3 is considered. Within

this space a Cartesian reference frame is used to define three mutually per-
pendicular base vectors, {i1, i2, i3}, which form a right-handed system. The
vector x, specified by the Cartesian coordinates {x1, x2, x3} and written as
x = (x1, x2, x3), defines a position in space and is given by

x = x1i1 + x2i2 + x3i3. (1.1)

To identify when the transverse coordinates {x1, x2} are used, the posi-
tional vector is also denoted by x = (xT , x3), with the transverse coordinate
given by

xT = x1i1 + x2i2. (1.2)

The Einstein summation convention is used, such that one can write

x = xiii, (1.3)

where a repeated lower-case Latin subscript takes the values {1, 2, 3}.
Time is given by the coordinate {t} in the one-dimensional space R, and

denoted by t.
Give the wave field f(x, t), the Fourier transform of this wave field will

decorated with a ,̂ such that

ˆf(x, ω) =

∫ ∞

−∞

f(x, t)e−iωtdt, (1.4)

with i being the imaginary unit, e the base of the natural logarithm, and ω
denoting angular frequency.

ω = 2πf (1.5)

When using partial derivates these are given with respect to the variable
given in subscript

∂tf(x, t) =
∂

∂t
f(x, t). (1.6)

For derivatives with respect to vector arguments the Einstein summation
convention is used, and the derivatives are given by



1.2 Notation 3

∂kfk(x, t) =
∂

∂x1

f(x, t) +
∂

∂x2

f(x, t) +
∂

∂x3

f(x, t). (1.7)





Chapter 2

Theory

2.1 Fluid substitution

Fluid substitution is often carried out by applying the low-frequency Gassm-
mann theory (Gassmann, 1951). The equations presented by Gassmann relate
the saturated bulk modulus of a rock to it’s porosity, the bulk modulus of
the porous rock frame, the bulk modulus of the mineral matrix, and the bulk
modulus of the pore fluids

Ksat = Kfr +
(1 − Kfr

Kma
)2

φ
Kfl

+ 1−φ
Kma

− Kfr

K2
ma

. (2.1)

Here Ksat is the saturated bulk modulus, Kma is the bulk modulus of the
mineral matrix, Kfl is the bulk modulus of the pore fluids, Kfr is the bulk
modulus of the porous rock frame, and φ is porosity.

There are two important assumptions for the application of Gassmann’s
equation. The first is that the rock is homogeneous and isotropic, and that
the pore space is completely connected. The second restricts its use to low
enough frequencies. This implies that the pore pressure must be equalised
over a length scale much larger than the pore size and much less than the
seismic wavelength (Smith et al., 2003).

An important point mentioned by Avseth et al. (2005, p. 19) is that a gas
saturated rock should not be treated as a dry rock; the gas should be treated
as a fluid when performing the fluid substitution.

The workflow for performing fluid substitution shown in this chapter, is
the same as presented by Smith et al. (2003).

2.1.1 Basic relationships

To relate a rock’s bulk modulus to pressure wave velocity, shear wave velocity
and density the following relationship is used

5



6 2 Theory

K = ρB(V 2
p − 4

3
V 2

s ). (2.2)

In this relationship ρB is the bulk density of the rock, Vp is the pressure wave
velocity, and Vs the shear wave velocity. The equation can easily be solved
for Vp, shown in Eq. (2.13).

The shear modulus of the rock is given by the following equation

G = ρBV 2
s . (2.3)

This equation can be solved with respect to Vs, see Eq (2.14).
What is important to recognise from these relationships is that the satu-

rated bulk modulus of a rock may be sensitive to the composition of the pore
fluid, while the shear modulus is insensitive to pore fluid (Berryman, 1999).

The last basic equation for doing fluid substitution gives the relationship
between the bulk density (ρB), the pore fluid density (ρfl), porosity (φ), and
the rock matrix’ grain density (ρma)

ρB = ρma(1 − φ) + ρflφ. (2.4)

2.1.2 Rock and fluid properties

Before performing the actual fluid substitution the porosity of the rock (φ),
properties of the pore fluids, the bulk modulus of the mineral matrix (Kma),
and the bulk modulus of the porous rock frame (Kfr) must be determined.
All these parameters can be determined from laboratory measurements or
wire-line logs.

The first step is to determine the porosity of the rock. By solving Eq. (2.4)
for porosity it can be calculated from wire-line log values.

Prior to performing fluid substitution it is also necessary to know the
properties of the in-situ pore fluids, as well for the fluids to be substituted
into the rock.

There is usually more than one type of pore fluid, and it is therefore nec-
essary to determine the properties of each fluid and then mix them according
to some physical principle. An assumption of Gassmann’s equation is that
the pore space is completely connected and the fluid pressure is equilibrated
throughout the pore space. Because of this and an assumption of a homoge-
neous fluid, uniformly distributed in the pore space, enables the calculation
of the pore fluids bulk modulus by the Reuss average (Mavkov et al., 1998)

Kfl =

(

N
∑

i=1

Si

Ki

)−1

, (2.5)

where Kfl is the bulk modulus of the mixed fluids and Ki and Si is the bulk
modulus and saturation of each fluid components respectively. For a simple
two-component case with water and hydrocarbons this can be expanded as
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Kfl =

(

Sw

Kw

+
1 − Sw

Khc

)−1

, (2.6)

where Sw and Kw is the saturation and bulk modulus of the water respec-
tively, and Khc is the bulk modulus of the hydrocarbon component.

For the bulk density a simple mixture can be used

ρfl =

N
∑

n=1

Siρi. (2.7)

Again this is expanded for the simple case of water and hydrocarbons, re-
sulting in

ρfl = Swρw + (1 − Sw)ρhc. (2.8)

Here ρw and ρhc is the density of water and hydrocarbon. This equation can
together with Equation (2.6) easily be expanded to include additional fluid
components, as is often required when dealing with hydrocarbon reservoirs
where there is typically three types of pore fluid present; formation water, oil
and gas.

Next the properties of the mineral matrix has to be defined. This requires
knowledge about the mineralogical composition of the rock. Such knowledge
can be gained either through measurements on core plugs or estimated via
wire-line logs. Which technique is required depends on the complexity of the
lithology to be modelled.

Once the volumetric fraction of each component of the rock matrix is
known, the bulk moduli (Kma) can be determined by using e.g. Voight-
Reuss-Hill averaging. In this technique the Voight average represents an up-
per boundary, while the Reuss average gives the lower boundary of the bulk
modulus. The Voight-Reuss-Hill average is simply the average of these.

KReuss =

(

F1

K1
+

F2

K2

)−1

(2.9)

KV oight = (F1K1 + F2K2) (2.10)

KV RH =
1

2
(KRuess + KV oight) (2.11)

In these equations F1 and F2 represent the volumetric fraction of each com-
ponent, and K1 and K2 are the bulk moduli. Both Eqs. (2.9) and (2.10) can
easily be expanded to include more than two components.

The last property to be determined is the bulk modulus of the porous
rock framework, Kfr. Since this and the shear modulus (G) are properties
of the framework and thus are not influenced by the fluid substitution, this
calculation is only done once, and these parameters are later considered as
constants.
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There are several ways to determine Kfr, either from velocity measure-
ments on core samples, by empirical relationships or from wire-line log data.
When finding Kfr from wire-line data Eq. (2.1) is solved for Kfr

Kfr =
Ksat

(

φKma

Kfl
+ 1 − φ

)

− Kma

φKma

Kfl
+ Ksat

Kma
− 1 − φ

. (2.12)

The saturated bulk modulus (Ksat) for the in-situ rock is calculated by
Eq. (2.2), and the remaining terms can then be calculated from the process
described earlier.

2.1.3 Velocities

When porosity and properties of the rock frame and mineral matrix have
been calculated it is possible to use Eq. (2.1) to determine the bulk modulus
with any chosen pore fluids.

The next step is then to solve Eq. (2.2) with respect to Vp to find the new
pressure wave velocity

Vp =

√

K + 4
3G

ρB

, (2.13)

and Eq. (2.3) with respect to Vs so that the new shear wave velocity can be
calculated

Vs =

√

G

ρB

. (2.14)

This concludes the fluid substitution and the updated model can now be
used for additional seismic modelling.

2.2 Time-lapse imaging and interferometry

In this thesis two methods are described for time-lapse imaging; one that
uses a time-convolution type integral and another that uses a time-correlation
type integral. The former produces a difference wave field containing differ-
ence refections, the latter, which is an interferometric method, yields phase
differences.

The time-convolution type integral is used to construct a difference wave
field from two time-lapse wave fields by calculating a surface integral at a
certain level in the sub-surface. The interesting feature of this difference wave
field is that it contains information about time-lapse changes below the level
at which the integral is calculated (Dillen, 2000). Any changes above this
level will not contribute to the resulting difference reflections.
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Similarly, the time-correlation type integral, representing an interferomet-
ric method, can also be computed at depth, yielding a difference phase
map unaffected by the time-lapse changes above the surface of computa-
tion. Hence, both the time-convolution type and the time-correlation type
methods offer a recursive scheme which can unravel the time-lapse changes
from the wave fields, starting at the acquisition surface and working through
the overburden towards the target of interest. The output yields images in
terms of true time-lapse reflectivity or phases depending on which method is
chosen.

In order to compute the surface integral at depth, the wave field at the
desired depth has to be known. The way to obtain this is through back-
propagation from the receivers down to the desired depth. When doing syn-
thetic modelling another option is placing the receivers at the target depth
in the model to record the required wave fields. The synthetic approach will
be followed in this thesis.

2.2.1 Acoustic wave equations

A media defined by the parameters {ρ, κ}, ρ being the density and κ being the
bulk modulus as discussed in Chapter 2.1, is considered. Being an acoustic
medium, the shear modules is defined as zero. For this medium the acoustic
wave equations are defined as

∂kp(x; xS , t) + ρ(x)∂tvk(x; xS , t) = fk(t)δ(x − xS), (2.15)

∂kvk(x; xS , t) + κ(x)∂tp(x; xS , t) = q(t)δ(x − xS) (2.16)

where vk(x; xS , t) is k-th component of the particle velocity at x due to a
source at xS and p(x; xS , t) is the pressure at x caused by a source at xS .
fk(t) is a displacement source and q(t) is a volumetric source. A description
of the notation used is given in Chapter 1.2.

Now consider two sets of time-lapse acoustic wave fields, the reference and
the monitor wave field, denoted by superscripts (1) and (2) respectively.

The Fourier transforms of Eqs. (2.15) and (2.16) for these reference and
monitor wave fields are then given as

∂kp̂(1)(x; x
(1)
S , ω) + iωρ(1)(x)v̂

(1)
k (x; x

(1)
S , ω) = f̂

(1)
k (ω)δ(x − x

(1)
S ) (2.17)

∂kv̂
(1)
k (x; x

(1)
S , ω) + iωκ(1)(x)p̂(1)(x; x

(1)
S , ω) = q̂(1)(ω)δ(x − x

(1)
S ), (2.18)

and

∂kp̂(2)(x; x
(2)
S , ω) + iωρ(2)(x)v̂

(2)
k (x; x

(2)
S , ω) = f̂

(2)
k (ω)δ(x − x

(2)
S ) (2.19)

∂kv̂
(2)
k (x; x

(2)
S , ω) + iωκ(2)(x)p̂(2)(x; x

(2)
S , ω) = q̂(2)(ω)δ(x − x

(2)
S ), (2.20)

respectively. For readability and simplicity the arguments will later be
dropped from most equations.
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2.2.2 Acoustic reciprocity of the convolution type

νk\\::::::::

D

∂D

D
′

Fig. 2.1: Configuration for the application of the reciprocity theorem.

The interaction quantity between the two time-lapse states is given by the
field reciprocity relationship as (Fokkema and van den Berg, 1993)

∂k(p̂(1)v̂
(2)
k −p̂(2)v̂

(1)
k ) = v̂

(2)
k ∂kp̂(1)+p̂(1)∂kv̂

(2)
k −v̂

(1)
k ∂kp̂(2)−p̂(2)∂kv̂

(1)
k (2.21)

By multiplying Eqs. (2.17)–(2.20) by v̂
(2)
k , p̂(2), v̂

(1)
k and p̂(1) respectively

the following expressions are obtained

v̂
(2)
k ∂kp̂(1) + iωρ(1)v̂

(1)
k v̂

(2)
k = f̂

(1)
k v̂

(2)
k (2.22)

p̂(2)∂kv̂
(1)
k + iωκ(1)p̂(1)p̂(2) = q̂(1)p̂(2) (2.23)

v̂
(1)
k ∂kp̂(2) + iωρ(2)v̂

(2)
k v̂

(1)
k = f̂

(1)
k v̂

(1)
k (2.24)

p̂(1)∂kv̂
(2)
k + iωκ(2)p̂(2)p̂(1) = q̂(2)p̂(1) (2.25)

By applying Eqs. (2.22)–(2.25) to Eq. (2.21) one arrives at the following
relationship

∂k(p̂(1)v̂
(2)
k − p̂(2)v̂

(1)
k ) = iω

{

(ρ(2) − ρ(1))v̂
(1)
k v̂

(2)
k − (κ(2) − κ(1))p̂(1)p̂(2)

}

+ f̂ (1)v̂
(2)
k + q̂(2)p̂(1) − f̂ (2)v̂

(1)
k − q̂(1)p̂(2) (2.26)

which is the local form of Rayleigh’s reciprocity theorem.
Integrating Eq. (2.26) over the domain D and applying Gauss’ integral

theorem to the resulting integral on the left hand side yields
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∫

∂D

(

p̂(1)v̂
(2)
k − p̂(2)v̂

(1)
k

)

νkdA

=

∫

D

iω
(

(ρ(2) − ρ(1))v̂
(1)
k v̂

(2)
k − (κ(2) − κ(1))p̂(1)p̂(2)

)

dV

+

∫

D

(

f̂
(1)
k v̂

(2)
k + q̂(2)p̂(1) − f̂

(2)
k v̂

(1)
k − q̂(1)p̂(2)

)

dV (2.27)

where ν is the normal vector of ∂D, the first volume integral on the right
hand side represents the media contrast and the right-most volume integral
is the source term. Eq. (2.27) is the global form of Rayleigh’s reciprocity
theorem for the domain D. It represents the complex-frequency domain reci-
procity theorem of the time-convolution type (the multiplications represent
convolutions in the time-domain).

Now, using only explosive point sources, defined in Eq. (2.71), Eq. (2.27)
simplifies to

∫

x∈∂D

(

v̂
(1)
k (x; x

(1)
S )p̂(2)(x; x

(2)
S ) − p̂(1)(x; x

(1)
S )v̂

(2)
k (x; x

(2)
S )
)

νkdA

+ iω

∫

x∈D

(

∆ρv̂
(1)
k (x; x

(1)
S )v̂

(2)
k (x; x

(2)
S ) − ∆κp̂(1)(x; x

(1)
S )p̂(2)(x; x

(2)
S )
)

dV

= q̂(1)p̂(2)(x
(1)
S ; x

(2)
S ) − q̂(2)p̂(1)(x

(2)
S ; x

(1)
S ), (2.28)

where ∆ is the contrast between properties of the two cases, such that given
γ as a property of either the wavefields or media

∆γ = γ(2) − γ(1). (2.29)

Eq. (2.28) shows that the sum of a boundary integral and a volume integral
containing temporal contrast sources is equivalent to a difference field (see
e.g. Dillen, 2000).

If one considers the case where both sources are within the domain D

and there is no contrast in medium parameters between the reference and
monitor model, i.e. κ(1) = κ(2) and ρ(1) = ρ(2), the second integral on the left
hand side of Eq. (2.28) will vanish. If in addition the medium is unbounded
such that ∂D → ∞ the contribution from the boundary integral will also
disappear (Fokkema and van den Berg, 1993) (see Fig. 2.2), leaving

0 = q̂(1)p̂(2)(x
(1)
S ; x

(2)
S ) − q̂(2)p̂(1)(x

(2)
S ; x

(1)
S ) (2.30)

When the source signature is the same, i.e. q̂(1) = q̂(2), it follows from
Eq. (2.30) that for any state

p̂(x
(1)
S ; x

(2)
S ) = p̂(x

(2)
S ; x

(1)
S ) (2.31)
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ν\\

D

∂D → ∞

∗q̂
(1)

∗q̂
(2)

Fig. 2.2: Unbounded media with no time-lapse contrast.

which is to say that the fields recorded from each of the two shots are inter-
changeable. Using this source-receiver reciprocity and assuming equal sources
simplifies the right-hand side of Eq. (2.28) to

q̂(1)p̂(2)(x
(1)
S ; x

(2)
S ) − q̂(2)p̂(1)(x

(2)
S ; x

(1)
S ) = q̂∆p̂(x

(1)
S ; x

(2)
S ) (2.32)

ν\\

D

∂D → ∞

∗q̂
(1)

∗q̂
(2)

{∆ρ, ∆κ}

Fig. 2.3: Unbounded media with contrast volume.

Having examined the situation where there is no change in the medium pa-
rameters, the next step is to look at the situation where there are changes in
medium parameters, as illustrated by Fig. 2.3. Applying Eq. (2.28), the con-
tribution from the boundary integral becomes zero, but the medium contrast
will have an effect through the volume integral, leading to, using Eq. (2.32)
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iω

∫

x∈D

(

∆ρv̂
(1)
k (x; x

(1)
S )v̂

(2)
k (x; x

(2)
S ) − ∆κp̂(1)(x; x

(1)
S )p̂(2)(x; x

(2)
S )
)

dV

= q̂∆p̂(x
(1)
S ; x

(2)
S ) (2.33)

which shows that the difference wave field is equal to an integral over the
temporal contrast sources.

2.2.3 Interaction integral

Taking the boundary integral of Eq. (2.28) the following interaction integral
is defined (Dillen, 2000; Dillen et al., 2002)

Îconv(x
c
3; x

(1)
S , x

(2)
S )

def
=

∫

x
T
∈R2

(

v̂
(1)
3 (xT , xc

3; x
(1)
S )p̂(2)(xT , xc

3; x
(2)
S )

− v̂
(2)
3 (xT , xc

3; x
(2)
S )p̂(1)(xT , xc

3; x
(1)
S )
)

dxT (2.34)

where xc
3 is the depth where the integral is evaluated, and xT = (x1, x2) is the

transverse coordinate over which the integration is performed. Fig. 2.4a shows
a configuration where x3 = xc

3 represents the lower bounding surface of the
domain of application D. In defining the interaction integral it is taken into
account, as indicated in the figures below, that the contributions where the
boundary approaches infinity vanishes (Fokkema and van den Berg, 1993),
so that only the contribution from the plane surface at x3 = xc

3 remains.
Fig. 2.4a shows the situation where the interaction integral is derived as a

difference gather. Application of Eq. (2.28) to the configuration of Fig. 2.4a,
taking into account that the time-lapse contrasts are outside D, and using
Eqs. (2.32) and (2.34), yields

Îconv(xc
3; x

(1)
S , x

(2)
S ) = q̂∆p̂(x

(1)
S ; x

(2)
S ) (2.35)

From this last equation it is clear that for any level between the sources
and the top of the contrast volume, the interaction integral is invariant with
respect to x3.

If the domain of integration is as shown in Fig. 2.4b there are no sources
within the domain. However, the time-lapse contrast will contribute such that
Eq. (2.28) becomes

Îconv(x
c
3; x

(1)
S , x

(2)
S ) = iω

∫

x∈Dtlc

(

∆κp̂(1)(x; x
(1)
S )p̂(2)(x; x

(2)
S )

− ∆ρv̂
(1)
k (x; x

(1)
S )v̂

(2)
k (x; x

(2)
S )
)

dV (2.36)

In this last equation Dtlc is the domain of time-lapse changes. Hence, the
interaction integral is a measure of the total time-lapse changes below xc

3.
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∗ ∗

X Z [ _ b e g h h ee ^ Y X [[ _ _ ] [ Y

[ \ ] ^ _ a c e e aa Y T
V ]] c d c a _ \

−∞ oo ∞//

−∞OO

(∆ρ, ∆κ)

q(1) q(2)

∂D

D

x3 = xc
3

(a) Including sources, excluding contrast.

∗ ∗

X Z [ _ b e g h h ee ^ Y X [[ _ _ ] [ Y

[ \ ] ^ _ a c e e aa Y T
V ]] c d c a _ \

−∞ oo ∞//

−∞
��

(∆ρ, ∆κ)

q(1) q(2)

∂D

D

x3 = xc
3

(b) Excluding sources, including contrast.

Fig. 2.4: Boundary integral evaluated above contrast.

When the interaction integral is evaluated at a depth inside the medium
of time-lapse changes, as depicted in Figs. 2.5a and 2.5b, we can again derive
two representations for Îconv. For the upper figure we obtain

Îconv(x
c
3; x

(1)
S , x

(2)
S ) = q̂∆p̂(x

(1)
S ; x

(2)
S )

− iω

∫∫

xT∈R
2

xmin
3

<x3<xc
3

(

∆ρv̂
(1)
k (x3, xT ; x

(1)
S )v̂

(2)
k (x3, xT ; x

(2)
S )

− ∆κp̂(1)(x3, xT ; x
(1)
S )p̂(2)(x3, xT ; x

(2)
S )
)

dxT dx3, (2.37)
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∗ ∗

X Z [ _ b e g h h ee ^ Y X [[ _ _ ] [ Y

[ \ ] ^ _ a c e e aa Y T
V ]] c d c a _ \

−∞ oo ∞//

−∞OO

(∆ρ, ∆κ)

q(1) q(2)

∂D

D

x3 = xc
3

(a) Upper domain.

∗ ∗

X Z [ _ b e g h h ee ^ Y X [[ _ _ ] [ Y

[ \ ] ^ _ a c e e aa Y T
V ]] c d c a _ \

−∞ oo ∞//

∞��

(∆ρ, ∆κ)

q(1) q(2)

∂D

D

x3 = xc
3

(b) Lower domain.

Fig. 2.5: Boundary integral evaluated inside contrast.

in which xT is the transverse coordinate, x3 is the longitudinal coordinate
and xmin

3 is the lower bound of the longitudinal coordinate in Dtlc. A compari-
son shows that Eq. (2.37) contains the same difference wave field as Eq. (2.35),
in addition to a sort of compensation term in the form of a volume integral
with time-lapse contrast contributions between xmin

3 < x3 < xc
3. Theoreti-

cal considerations (Dillen et al., 2002) and numerical modelling (this thesis)
show that the latter volume integral removes the time-lapse effects caused by
time-lapse contrasts inside xmin

3 < x3 < xc
3 from the difference wave field ∆p̂.

The volume integral is what will compensate for and eliminate the difference
reflection originating at any level above xc

3.
If the configuration is as shown in Fig. 2.5b the interaction integral Îconv

contains information from the time-lapse contrasts inside xc
3 < x3 < xmax

3 ,
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with xmax
3 being the upper bound of x3 in D

tlc;

Îconv(x
c
3; x

(1)
S , x

(2)
S )

= iω

∫∫

xT ∈R
2

xc
3
<x3<xmax

3

(

∆κp̂(1)(x3, xT ; x
(1)
S )p̂(2)(x3, xT ; x

(2)
S )

− ∆ρv̂
(1)
k (x3, xT ; x

(1)
S )v̂

(2)
k (x3, xT ; x

(2)
S )
)

dxT dx3 (2.38)

Comparison with Eq. (2.36) shows that in Eq. (2.38) Îconv is influenced by
an smaller amount of the contrast volume as xc

3 passes through the changes.

∗ ∗

X Z [ _ b e g h h ee ^ Y X [[ _ _ ] [ Y

[ \ ] ^ _ a c e e aa Y T
V ]] c d c a _ \

−∞ oo ∞//

∞��

(∆ρ, ∆κ)

q(1) q(2)

∂D

D

x3 = xc
3

Fig. 2.6: Boundary integral evaluated below contrast.

In Fig. 2.6 a situation where the boundary integral is evaluated at a level
below the contrast is shown. For this situation the interaction integral is zero,
since neither the sources of the difference wave field nor the contrast volume
give any contribution;

Iconv(x
c
3; x

(1)
S , x

(2)
S ) = 0 (2.39)
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νk__???????

{pinc, vinc
k }

��

?????????????

{psct, vsct
k }
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{ρsct, κsct}

∂D
sct

D
sct′

{ρb, κb}

Fig. 2.7: Scattering domain.

2.2.4 Scattered wave fields

Scattered wave fields are caused by a contrast between an embedded medium
and a background medium of infinite extent in which it is embedded, as
illustrated in Fig. 2.7. In terms of the medium perturbation {δρ, δκ} we write

{ρ, κ} = {ρb, κb} ìn D
sct′ , (2.40)

{ρ, κ} = {ρsct, κsct} = {ρb, κb} + {δρ, δκ} ìn D
sct, (2.41)

where the contrasting medium in the domain D
sct is defined by the parame-

ters {ρsct, κsct}. Its complement with respect to R
3 and its boundary ∂D

sct

is denoted by D
sct′ . In R

3 the background medium parameters are denoted
by {ρb, κb}

The total acoustic wave field in the configuration, {p̂, v̂k}, is decomposed
into an incident wave field, {p̂inc, v̂inc

k }, and a scattered wave field, {p̂sct, v̂sct
k };

p̂ = p̂sct + p̂inc, (2.42)

v̂k = v̂sct
k + v̂inc

k . (2.43)

The incident wave field is the wave field which would be present even if D
sct

shows no contrast to the background. The source of the total wave field is
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outside the scattering domain, and since it remains in the absence of the
scattering domain it also serves as the source for the incident wave field.

The goal now is to find an expression for the scattered wave field which
shows that it originates from the contrast in acoustic parameters between
the scattering domain and the background media. First it is established that
since the total wave field has no sources within the scattering domain;

∂kp̂ + iωρsctv̂k = 0, in D
sct, (2.44)

∂kv̂k + iωκsctp̂ = 0, in D
sct. (2.45)

Next, it is observed that the incident wave field also has no sources in D
sct,

and is defined by the material parameters of the background material.

∂kp̂inc + iωρbv̂inc
k = 0, in D

sct, (2.46)

∂kv̂inc
k + iωκbp̂inc = 0, in D

sct. (2.47)

Eqs. (2.44) and (2.45) can be rewritten as

∂kp̂ + iωρbv̂k = −iωδρv̂k, in D
sct, (2.48)

∂kv̂k + iωκbp̂ = −iωδκp̂, in D
sct. (2.49)

By subtracting Eqs. (2.46) and (2.47) from Eqs. (2.48) and (2.49), re-
spectively, while applying Eqs. (2.43) and (2.42), the following relationship
emerges

∂kp̂sct + iωρbv̂sct
k = −iωδρv̂k, in D

sct, (2.50)

∂kv̂sct
k + iωκbp̂sct = −iωδκp̂, in D

sct. (2.51)

There are no sources for the scattered wave field outside the scattering
domain, therefore

∂kp̂sct + iωρbv̂sc
k = 0, in D

sct′ , (2.52)

∂kv̂sct
k + iωκbp̂sct = 0, in D

sct′ . (2.53)

By combining Eqs. (2.50)–(2.53) the following result is obtained

∂kp̂sct + iωρbv̂sct
k = f̂sct

k , in R
3, (2.54)

∂kv̂sct
k + iωκbp̂sct = q̂sct, in R

3, (2.55)

where

f̂sct
k = {iωδρv̂k, 0}, in {D

sct, Dsct′}, (2.56)

q̂sct = {iωδκp̂, 0}, in {D
sct, Dsct′}. (2.57)
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2.2.5 Interferometry

Interferometry does not use the total wave field, as the interaction integral of
the convolution type does, but instead depends on the scattered wave fields
defined earlier.

In order to define the interaction integral of the time correlation type it is
once again necessary to consider two states, denoted by superscripts (1) and
(2). These are defined as described in Chapter 2.2.1. The important distinction
is that now they are scattered wave fields, which according to Eqs. (2.54) and
(2.55) are defined by

∂kp̂sct,(1) + iωρb,(1)v̂
sct,(1)
k = f̂

sct,(1)
k , (2.58)

∂kv̂
sct,(1)
k + iωκb,(1)p̂sct,(1) = q̂sct,(1), (2.59)

and

∂kp̂sct,(2) + iωρb,(2)v̂
sct,(2)
k = f̂

sct,(2)
k , (2.60)

∂kv̂
sct,(2)
k + iωκb,(2)p̂sct,(2) = q̂sct,(2), (2.61)

respectively. Now state (2) is characterised by the anti-causal wave field,

{p̂‡sct,(2), v̂
‡sct,(2)
k }(x, ω) = {p̂sct,(2), v̂

sct,(2)
k }(x,−ω), (2.62)

with source distribution

{q̂‡sct,(2), f̂
‡sct,(2)
k }(x, ω) = {q̂sct,(2), f̂

sct,(2)
k }(x,−ω), (2.63)

with complex conjugate denoted by ‡. The acoustic wave field equations for
state (2) are

∂kp̂sct,(2)‡ − iωρb,(2)v̂
sct,(2)‡
k = f̂

sct,(2)‡
k , (2.64)

∂kv̂
sct,(2)‡
k − iωκb,(2)p̂sct,(2)‡ = q̂sct,(2)‡, (2.65)

The superscript sct used to denote scattered wave fields will be left out
from later equations for the sake of readability, such that all wave fields are
to be considered as scattered unless explicitly defined otherwise.

The interaction quantity between the two states is now given as

∂k(p̂(1)v̂
‡(2)
k + v̂

(1)
k p̂‡(2))

= v̂
‡(2)
k ∂kp̂(1) + p̂(1)∂kv̂

‡(2)
k + v̂

(1)
k ∂kp̂‡(2) + p̂‡(2)∂kv̂

(1)
k . (2.66)

By multiplying Eqs. (2.58), (2.59), (2.64) and (2.65) by v̂
‡sct,(2)
k , p̂‡sct,(2),

v̂
sct,(1)
k and p̂sct,(1) respectively, and using Eq. (2.66) one arrives at
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∂k(p̂(1)v̂
‡(2)
k + v̂

(1)
k p̂‡(2)) = iω

(

∆ρbv̂
(1)
k v̂

‡(2)
k + ∆κbp̂(1)p̂‡(2)

)

+ f̂
(1)
k v̂

‡(2)
k + f̂

‡(2)
k v̂

(1)
k + q̂‡(2)p̂(1) + q̂(1)p̂‡(2). (2.67)

Integrating Eq. (2.67) over the domain D with boundary ∂D and with
D

sct ⊂ D leads to

∫

x∈∂D

(

p̂(1)v̂
‡(2)
k + v̂

(1)
k p̂‡(2)

)

νkdA

= iω

∫

x∈R3

(

∆ρbv̂
(1)
k v̂

‡(2)
k + ∆κbp̂(1)p̂‡(2)

)

dV

+

∫

x∈Dsct

(

f̂
(1)
k v̂

‡(2)
k + f̂

‡(2)
k v̂

(1)
k + q̂‡(2)p̂(1) + q̂(1)p̂‡(2)

)

dV (2.68)

where we take into account that the contrast sources have support in D
sct

only. Assuming the configuration in Fig. 2.2.5 we define
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Fig. 2.8: Correlation integral above scatterer.
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(2)
S )
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dxT . (2.69)

Assuming that there is no temporal change in the background media, ∆ρb = 0
and ∆κb = 0, the first integral on the right-hand-side of Eq. (2.68) vanishes.
Substituting Eqs. (2.56) and (2.57) we obtain
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Îcorr ≈
∫

x∈Dsct

iω
(

δρ(1)v̂
(1)
k v̂

‡(2)
k − δρ(2)v̂

‡(2)
k v̂

(1)
k

+ δκ(2)p̂‡(2)p̂(1) − δκ(1)p̂(1)p̂‡(2)
)

dV (2.70)

It is an approximation because the anti-causal wave fields has small contri-
butions from the lower boundary. When there is no time-lapse contrast we
have δρ(1) = δρ(2) and δκ(1) = δκ(2), and hence, Îcorr is approximately zero.
Therefore, Îcorr is a measure for the time-lapse contrast in D

sct.

2.3 Finite-difference modelling

A common way of solving differential equations numerically is by using the
finite-difference method. This involves transforming a continuous differential
equation into a discrete system which can be solved stepwise numerically. In
our example the equation is the two-dimensional wave equation.

Several schemes have been developed for solving both the elastic and the
acoustic two-dimensional wave equation by the finite-difference method, and
the specifics of these are beyond the scope of this work.

The scheme used for the finite-difference modelling here is one developed
by Holberg (1987). It is an explicit solution of the scalar wave equation given
below

(

1

ρc2

)

∂2P

∂t2
=

3
∑

j=1

∂

∂xj

(

ρ−1

(

∂P

∂xj

))

+ s, (2.71)

where P represents pressure, ρ is the density, c is seismic velocity and s is
some source term. The explicit solution from Holberg (1987) is then given as

Pn+1 = 2Pn − Pn−1 + κ
[

dx

(

ρ−1dy (Pn)
)

+ dz

(

ρ−1dz (Pn)
)]

,

κ = ρc (∆t)
2
,

(2.72)

where n is the step number, ∆t is the temporal sampling interval, x = x1,
y = x2, z = x3 and Pn represents pressure at time t = n∆t. The stability
condition of Eq. (2.72) is given by the following Eq. (see Holberg, 1987, p.
653)

c∆t ≤ ∆x

π

√
3(1 + E), (2.73)

where ∆x is the spatial sampling interval and E is the maximum error in the
frequency response of the spatial differentiators. In application of the scheme
the maximum allowed error in group velocity can be used for E, since phase
errors are generally much smaller than error in group velocity (Holberg, 1987).

Another criteria for the stability of the finite-difference scheme is the num-
ber of grid points per shortest wave-length. For some schemes this require-
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ment can be as high as 10 grid points per shortest wavelength (e.g Kelly et al.,
1976), but the solution presented by Holberg (1987) requires only a minimum
of 2.0-2.5 grid points per shortest wavelength to produce acceptable results.

There may still be some unwanted artifacts in the modeled results (Wild and Singh,
1998), but since this work does not include any comparison to real data this
effect is not considered to be of significance.



Chapter 3

Seismic modelling

3.1 Geological model

The 2D geological model is the same as used by Kvam (2005, chapter 3
and 6). It is based on stacked data from a representative in-line from the
Gullfaks field. The model consist of 11 layers where P-wave velocities have
been determined from velocity analysis on real seismic data, as well as well
logs (Kvam and Landrø, 2005, p. 42-43). Densities are also from well logs. The
S-wave velocity field is derived from a linear Vp − Vs ratio (Castagna et al.,
1985).

A part of this model will later be used for finite-difference modelling of
time-lapse changes by performing fluid substitution in the reservoir zone.

Table 3.1: Initial model parameters.

Layer no. Vp (m/s ) Vs (m/s ) Density (kg/m3 )

1 (water) 1476 0 1000
2 1758 800 1800
3 2132 800 1900
4 2216 900 2000
5 2088 850 2100
6 2271 910 2118
7 2580 1180 2300
8 (reservoir) 2630 1340 2350
9 2710 1280 2200
10 2900 1400 2400
11 3100 1500 2500

23
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Fig. 3.1: P-wave velocity field for the complete model.

The dimensions of the full model are 7000 m in the horizontal direction
and 4000 m in the vertical direction. The reservoir zone is at approximately
2700 m depth.

3.1.1 Partial model

To limit the computation time for modelling runs, a subset of the full model
was created. This subset covers a graben-like structure containing part of the
reservoir zone and parts of the basement and overburden and is 2000x2000 m.
Fig. 3.2 shows the P-wave velocity field of the smaller model.

The test model is at a depth of 1600 m and an offset of 3600 m, as shown
in figure 3.2.

3.2 Reservoir model

The parameters for the reservoir zone listed in Table 3.2 are from Stovas et al.
(2006), while the pore water and oil properties are the same as used by
Stovas and Landrø (2004).
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Fig. 3.2: Zoomed P-wave velocity field for reservoir part of geological model.

Table 3.2: Reservoir parameters.

S0 Kfr (GPa) Kma (GPa) µ (GPa) ρma (g/c3m ) φ
0.29 4.70 29.0 3.91 2.62 0.29

3.3 Model calibration

Since the reservoir and fluid properties from Stovas et al. (2006) and Stovas and Landrø
(2004) do not match the geological model from Kvam and Landrø (2005)
the model has to be calibrated prior to fluid substitution. Initially at-
tempts were made to adjust the two sets of parameters to match each other,
but this proved to give unrealistic results. The chosen approach for cali-
bration has been to replace the entire reservoir in the initial model from
Kvam and Landrø (2005) with one where velocities and density are com-
puted using rock and fluid properties from Stovas and Landrø (2004) and
Stovas et al. (2006).

The density in the calibration is calculated using Eq. (2.4), where ρfl is
found by applying Eq. (2.8) and ρma is given in Table 3.2. To get the bulk
density of the fluid Eqs. (2.9), (2.10) and (2.11) are used.
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To determine the bulk modulus of the saturated reservoir Gassmann’s
equation (Gassmann, 1951) is used in the following form,

K = Kfr +
4

3
G +

(Kfr − Kma)
2

Kma

(

1 − φ + φKma

Kf
− Kfr

Kma

) (3.1)

After obtaining K from Eq. (3.1) and G from Table 3.2 the initial seismic
velocities are calculated from Eqs. (2.13) and (2.14). The pore fluids are
assumed not to influence the shear modulus of the reservoir rock framework.

When the new initial properties are calculated they replace zone 8 in
Table 3.1. The properties of the calibrated model are shown in Table 3.3.

Table 3.3: Calibrated model parameters.

Layer no. Vp (m/s ) Vs (m/s ) Density (kg/m3 )
1 (water) 1476 0 1000
2 1758 800 1800
3 2132 800 1900
4 2216 900 2000
5 2088 850 2100
6 2271 910 2118
7 2580 1180 2300
8 (reservoir) 2482 1364 2100
9 2710 1280 2200
10 2900 1400 2400
11 3100 1500 2500

3.4 Modelling software

The software used for modelling is SDI (Amundsen et al., 1997). It is de-
veloped and supplied by SINTEF Petroleum Research, and is based on the
finite-difference scheme developed by Holberg (1987). It is capable of do-
ing acoustic or elastic modelling, but for simplicity and speed only acoustic
modelling was used.
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Fig. 3.3: P-wave velocity field for reservoir part of geological model after
calibration.

3.5 Survey parameters

For each of the three scenarios, 11 different surveys have been modelled with
receivers at different levels of the model. All parameters have been kept con-
stant between the surveys except for the depth of the receiver level. More on
this can be found in Chapter 3.5.2.

All distances in the survey geometry have to be multiples of the grid sizes
(∆x and ∆z). This is a restriction imposed by the modelling software.

3.5.1 Source

The source wavelet used is a second derivative Gaussian wavelet (Eq. (3.2)),
with a maximum frequency of 50 Hz, and a dominant frequency of 22 Hz.

g(t) =
(

(2σ (t − t0))
2 − 2σ

)

e−σ(t−t0)
2

, (3.2)

where σ is the standard deviation of the Gaussian distribution, and t0 is the
time-shift of the Gaussian wavelet.
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Fig. 3.4: Source wavelet.

3.5.2 Acquisition geometry

The same basic geometry are used for all the seismic experiments. The only
parameter that might vary is the depth of the receiver level.

For every receiver level there are 64 shots and 128 receivers. The shots are
spaced by 24 m and the receivers are set 12 m apart. This gives an offset of
1536 m.

The first shot of each survey is positioned at the first receiver. Given that
the distance between shots is two times the distance between receivers, each
shot will have a zero offset trace.

3.6 Modelling scenarios

To allow the wave field to be recorded at various depths through the reservoir,
several receiver levels were chosen. For all levels the geometry described in
Chapter 3.5.2 is used, except for the depth of the receivers. The twelve depths
are given in Table 3.4, and the coverage is shown in Fig. 3.5.
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Fig. 3.5: Source level and receiver levels. Dotted line is source level and upper-
most recording level.

Table 3.4: Receiver levels.

Scenario Depth (m)

tm 200 m
tr 1120 m
r0 1144 m
r1 1168 m
r2 1192 m
r3 1216 m
r4 1240 m
r5 1264 m
r6 1288 m
r7 1312 m
r8 1336 m
br 1360 m





Chapter 4

Implementation

In order to explore the methods for time-lapse imaging discussed in Chap-
ter 2.2, they have been implemented in a simple processing workflow (see
Appendix C for source code). Since the output from the two methods does
not contain the same type of information about changes in the data, the
post-processing steps for imaging are quite different and will thus be dis-
cussed separately.

The general layout of the workflow is similar for both methods.

1. Initialise geometry and survey parameters.
2. Read data for both surveys.
3. Process input data.
4. Compute desired integral.
5. Process result.
6. Write output.
7. Image result.

Except for the computation of the integral, the main differences are in the
way input data are processed before the computation and how the output is
processed and imaged after the computation is completed.

For both methods the input data consists of recorded pressure and vertical
acceleration fields. Since the actual input is in form of vertical velocity fields
they have to be numerically converted to represent particle acceleration, this
is described in Appendix B.

To conserve memory and reduce the number of data points involved in
the computation, the input data is down-sampled from 0.5 ms to 4 ms. This
corresponds to a Nyquist frequency of 125 Hz, which is well within the range
of the seismic signal.

Both integrals are computed on a grid by iterating and summing over all
shots in the surveys for which they are to be determined. The resulting traces
are then kept in a matrix for further processing. In Fig. 4.1 the layout of the
resulting matrix is shown. For each point in the matrix, a sum corresponding
to the interaction integrals in Eq. (2.34) or (2.67) is evaluated.

31
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Fig. 4.1: Organisation of output matrix from integrals, the circled traces
where the shot positions coincide are what is referred to as zero offset in this
context.

4.1 Convolution

For the time-convolution type integral given by Eq. (2.34) the summation for
each point of the matrix in Fig. 4.1 looks like (ω-dependency omitted)

Iconv(m, n) =

i=N
∑

i=1

j=N
∑

j=1

v
(1)
3 (m, i)p(2)(n, j) − v

(2
3 )(n, j)p(1)(m, i), (4.1)

where m and i denote shot and receiver numbers for the reference survey,
while n and j are shot and receiver numbers of the monitor survey. N is
the number of receivers in each survey and assumed to be the same for both

surveys. v
(1),(2)
3 and p(1),(2) are the same properties as defined in Chapter 2.2.

For imaging purposes the result of the time-convolution method is con-
verted to time-space by inverse Fourier transform and imaged as any 2D
seismic dataset.
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4.2 Correlation

The numerical implementation of the time-correlation interaction integral is
done according to the following equation (ω-dependency omitted)

Icorr(m, n) =

i=N
∑

i=1

j=N
∑

j=1

[v
(1)
3 (m, i)]‡p(2)(n, j) + v

(2
3 )(n, j)[p(1)(m, i)]‡, (4.2)

where all parameters are the same as in Eq. (4.1).
With the result of the time-correlation integral imaging is not as straight-

forward as with the time-convolution variant. There are several methods
available to image the data in a meaningful way, but due to a limited time
schedule the simplest method has been chosen for this work.

This method involves an inverse Fourier transform to space-time and the
subsequent extraction of the zero offset traces. In the end the data is inter-
polated to a sampling rate of 0.1 ms in order to enhance resolution.





Chapter 5

Results

5.1 Fluid substitution

Table 5.1: Seismic properties of reservoir.

Sw Vp(m/s ) Vs (m/s ) ρ (kg/m3 )
0.29 2482 1364 2100
0.80 2607 1352 2140
∆ 125 -12 40

To get a time-lapse response from the reservoir, the saturation of water
was increased from 0.29 for the reference, to 0.8 for the monitor model by
fluid substitution. The changes in seismic properties are given in Table 5.1.
They represent a 7% increase in acoustic impedance for the reservoir.

5.2 Seismic modelling

Even though care has been taken to stay within the stability criteria of the
finite difference modelling scheme, the synthetic modelling produces certain
artifacts in the resulting seismograms. The two most visible are the edge
reflections and the grid diffractions as seen in Fig. 5.1. Most of the edge re-
flections are outside the area of interest and should not present any significant
problems. Grid diffractions occur at non-planar interfaces due to the discrete
sampling of the input model. Since the reservoir is curved this could lead to
unwanted effects in the data analysis.

The time-lapse changes created by fluid substitution produced good time-
lapse responses at the reservoir level, as shown in Fig. 5.2. The modelling

35
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Fig. 5.1: Shot gathers of reference survey at 35th shot. The direct wave is
removed.
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Fig. 5.2: Difference gather calculated from the recorded pressure wave field
at the position of the 35th shot.

artifacts and noise above the reservoir are perfectly repeatable, but there are
still some non-repeatable artifacts below the reservoir. Since they are of very
low amplitude compared to the signal they should have minimal impact on
further analysis.

5.3 Convolution

The convolution integral is evaluated and then imaged as a difference wave
field at all receiver levels. Since the receiver levels are quite close, 24 m, not
all levels are shown.
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(b) Convolution integral.

Fig. 5.3: Difference gather and convolution integral at 35th shot. Receiver
level is 200 m, well above the contrast

.

From the theory in Chapter 2.2.3 it is expected that the convolution in-
tegral in time-space will resemble the difference gather shown in Fig. 5.2. A
comparison of the two is shown in Fig. 5.3.
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Fig. 5.4: Convolution integral of Eq. (2.34) just above the reservoir (1120 m).

At a level just above the reservoir all the difference reflections are still
present. There is also some noise present in the data. This noise is intro-
duced by assuming periodicity when computing the convolution integral. It
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is possible to attenuate the noise, but since the data are not to be used in
any further analysis this does not serve any purpose.
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Fig. 5.5: Convolution integral of Eq. (2.34) at various depths through the
reservoir.

While moving the level at which the convolution integral is evaluated down
through the reservoir, an increasingly larger portion of the difference reflec-
tions disappear. The noise is still present and constant.

Once a level below the contrasting reservoir zone is reached, all difference
reflections are removed from the resulting image. There is still some residual
noise in the image. A portion of it is attributed to modelling artifacts, while
the remainder comes from the convolution integral.

These results give confidence in that the processing scheme prior to eval-
uation of the convolution integral is correct and that the integral itself is
implemented correctly.
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Fig. 5.6: Convolution integral of Eq. (2.34) below reservoir (1360 m).

5.4 Interferometry

Looking at Fig. 5.7a there is some noise present in the computed integral.
Most of the noise again appears to be outside the area of interest, and of
much lower amplitude than the signal.

The most interesting part of the time-correlation integral is the time-lag
of the first peak. In Fig. 5.7, the image is zoomed to show a window of
±50 ms around zero correlation time-lag. In this figure it is clear that the
delay caused by contrasts in the seismic signal changes as the signal moves
across the reservoir.

Since the delay observed in the correlation integral relates to velocity
changes in the reservoir, this delay should change with the thickness of the
reservoir as well. In Fig. 5.8 the delay of the correlation integral relative to
the reference survey is plotted together with the shape of the reservoir. The
delay from the correlation integral follows the same trends as the approximate
change in vertical traveltime. It is also worth noting that the interpolation
yields a significant increase in resolution.

The measured changes in traveltime appear to be greatly mispositioned
with respect to what is expected from the computed curve. Since the data
are not corrected for any travel path effects these will still be present and
distort the imaging.
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(c) Correlation of Reference-Monitor.

Fig. 5.7: Zero offset traces of correlation integral in space-time. The green
line marks zero correlation lag.

5.4.1 Improving resolution

In an attempt to achieve better definition of the edges of the reservoir, a
computational scheme where only limited offset data was attempted. The
first attempt was made using a fixed number of five traces to each side of
the shot position, to achieve a split-spread configuration. At the edges the
split-spread configuration is not an option, so instead the number of traces
is reduced. The result of this first attempt is shown in Fig. 5.9a, and has not
provided much improvement. Even though a clear definition of the edges is
gained, the error in the central part is far too great.

To account for the problems of the central part, a new scheme was imple-
mented. Instead of a fixed number of traces, a minimum number of traces was
chosen and a split-spread configuration is enforced wherever possible. This
means that at the edges five traces of normal offset data will be included, but
towards the central shots an increasing number of traces will be included in
a split-spread manner.
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Fig. 5.8: Correlation time lag across reservoir and reservoir outline.

Fig. 5.9b shows the results of this adaptive scheme. It has the same increase
of delay to the left of the reservoir as observed with the first scheme, but the
error in the central parts is drastically reduced in comparison to the first
attempt.

In a final attempt to remove the unexpected increase in delay to the left
of the reservoir, the adaptive scheme was run with no minimum number
of traces. This gives the effect that at the left-most shot, only the zero-
offset receiver will be included. As shown in Fig. 5.9c, this did not lead to a
significant improvement.

When looking at the results it is clear that this provides a rough scheme to
get better definition of the edges of the reservoir, but it does not offer much
in the way of overall improved resolution.
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(a) Fixed width of maximum of 11 traces.
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(c) Adaptive width, no minimum.

Fig. 5.9: Correlation time lag using limited offset data.



Chapter 6

Conclusions

An interferometric method for time-lapse imaging using a boundary integral
of the time-correlation type has been presented and implemented. In order
to test the method and implementation, a synthetic time-lapse dataset was
produced using Gassmann fluid substitution and acoustic finite-difference
modelling.

A method based on a similar integral, but of the time-convolution type,
was also implemented to serve as a way to confirm that the processing scheme
was correctly implemented. It is well suited for this application as it is compu-
tationally similar to the correlation integral, and produces a difference wave
field which is straightforward to image and verify.

The time-convolution integral responds as predicted by the theory. When
the imaging level is moved through the region where time-lapse effects are
present, difference reflections originating from contrasts above the current
level are removed from the resulting image. No quantitative analysis of the
result has been performed, but a qualitative evaluation and comparison to
conventional difference gathers support the theoretical observations.

For the time-correlation integral the measured time delays correspond well
to the predicted trends in vertical traveltime, and the deviation is likely due
to lacking correction for travel path differences in the contrast volume, intro-
duced by non-planar interfaces and non-vertical travel paths. The geometry
of the reservoir might also introduce some focusing effect, causing the signal
to be positioned incorrectly in imaging.

After interpolation of the traces in the correlation integral, resolution be-
yond the original sampling rate was achieved. This makes it possible to detect
changes below the seismic resolution.

Further work on the imaging of both the convolution and correlation inte-
gral is needed in order to interpret the results in terms of changes in reservoir
properties.
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Chapter 7

Discussion

The work presented in this thesis does not fully exploit the potential of the
interferometric imaging method. One question which is highly significant if it
is ever to be used for "real life" reservoir monitoring, is how to apply it when
there are more than one dataset.

Once the method is implemented it can be used to compare any two sur-
veys, with one serving as a reference to the other. However, the reference
survey does not necessarily have to represent the initial conditions of the
monitored reservoir. In this way it would be possible to examine changes in-
crementally and also gain information about the rate at which the changes
occur. This can in turn be used as input to e.g. fluid flow predictions.

After the attempts to correct for offset effects, it would be interesting to
see how well the integral responds to noisy data. The measured increase in
the delay outside the left side of the reservoir suggests that some element of
noise introduces a false response.

A problem with the scheme applied to reduce the offset effects is that
while it to a certain degree will compensate for travel path effect, it also
removes data from the correlation, thus leaving the integral less resilient to
noise. Some other way of correcting for travel path effects, preferably without
reducing input to the correlation, should therefore be found. Although tests
could still be performed to see when the lack of data becomes a significant
problem. It is clear that a certain amount of traces is needed in order to
produce reliable measurements, but how much is enough?

The results also show that the correlation is able to detect changes below
seismic resolution. Nothing has been done to explore how sensitive it is at
this level of resolution, nor how reliable it is when operating at sub-seismic
resolutions.
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Chapter 8

Recommendations

More work should be done on imaging and inversion of the convolution inte-
gral. Of the two integrals, it is the simplest to interpret, and relates to physical
phenomena in terms of true difference reflections. The first step would be to
remove the travel path effects and position the difference reflections correctly
in the subsurface.

Additional processing steps to properly image the correlation integral
should also be tested. Application of the Radon transform would enable imag-
ing of the phase changes of plane waves with a defined angle of incidence.
An inversion scheme to relate the measured traveltime changes to velocity
changes, and further to saturation changes should also be explored.

A back-scattering of the wave field should also be performed to test the cor-
relation integral at depths within the contrast domain. Following the promis-
ing behaviour of the convolution integral, this could lead to interesting results.

47





References

L. Amundsen, B. Arntsen, J. Helgesen, K. Hokstad, M. Landrø, R. Mittet, and R. Sollie.
SDI Documentation. IKU, 1997. Internal documentation.

P. Avseth, T. Mukerji, and G. Mavko. Quantitative seismic interpretation: applying rock
physics tools to reduce interpretation risk. Cambridge University Press, Cambridge,
2005. ISBN 0-521-81601-7.

J. G. Berryman. Origin of Gassmann’s equations. Geophysics, 64(5):1627–1629, 1999.
J. P. Castagna, M. L. Batzle, and R. L. Eastwood. Relationships between compressional-

wave and shear-wave velocities in clastic silicate rocks. Geophysics, 50(4):571–581,
1985.

M. W. P. Dillen. Time-lapse seismic monitoring of subsurface stress dynamics. PhD
thesis, Delft University of Technology, 2000.

M. W. P. Dillen, J. T. Fokkema, and C. P. A. Wapenaar. Recursive elimination of tempo-
ral contrasts between time-lapse acoustic wave fields. Journal of Seismic Exploration,
11:41–57, 2002.

J. T. Fokkema and P. M. van den Berg. Seismic Applications of Acoustic Reciprocity.
Elsevier Science Publishers B.V., 1993.

M. Frigo and S. G. Johnson. The design and implementation of FFTW3. Proceedings of
the IEEE, 93(2):216–231, 2005. special issue on "Program Generation, Optimization,
and Platform Adaptation".

F. Gassmann. Elastic waves through a packing of spheres. Geophysics, 16(4):673–685,
1951.

O. Holberg. Computational aspects of the choice of operator and sampling interval for
numerical differentiation in large-scale simulation of wave phenomena. Geophysical
Prospecting, 35(6):629–655, 1987. doi: 10.1111/j.1365-2478.1987.tb00841.x.

K. R. Kelly, R. W. Ward, S. Treitel, and R. M. Alford. Synthetic seismograms: A finite
-difference approach. Geophysics, 41(1):2–27, 1976.

E. Kreyszig. Advanced Engineering Mathematics. John Wiley & Sons, Inc, 8th edition,
1999.

Ø. Kvam. Pore pressure estimation from single and repeated seismic data sets.
PhD thesis, NTNU, Trondheim, 2005. Avhandling (dr. ing.) – Norges Teknisk-
Naturvitenskapelige Universitet, 2005.

Ø. Kvam and M. Landrø. Pore-pressure detection sensitivities tested with time-lapse
seismic data. Geophysics, 70(6):O39–O50, 2005.

M. Landrø. Repeatability issues of 3-d VSP data. Geophysics, 64(6):1673–1679, 1999.
doi: 10.1190/1.1444671.

M. Landro, O. A. Solheim, E. Hilde, B. O. Ekren, and L. K. Stronen. The Gullfaks 4D
seismic study. Petroleum Geoscience, 5(3):213–226(14), aug 1999.

49



50 REFERENCES

MathWorks. MatLab 7 – Function Reference: Volume 2 (F-O). The MathWorks, Inc,
2006b edition, Sept. 2006.

G. Mavkov, T. Mukerji, and J. Dvorkin. The Rock Physics Handbook. Cambridge
University Press, 1998.

W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery. Numerical Recipes
in FORTRAN. Cambridge University Press, 2nd edition, 1992.

T. M. Smith, C. H. Sondergeld, and C. S. Rai. Gassmann fluid substitutions: A tutorial.
Geophysics, 68(2):430–440, 2003.

A. Stovas and M. Landrø. Optimal use of PP and PS time-lapse stacks for fluid-
pressure discrimination. Geophysical Prospecting, 52(4):301–312, 2004. doi: 10.1111/
j.1365-2478.2004.00420.x.

A. Stovas, M. Landrø, and B. Arntsen. A sensitivity study based on 2D synthetic
data from the Gullfaks Field, using PP and PS time-lapse stacks for fluid-pressure
discrimination. Journal of Geophysics and Engineering, 3(4):314–328, 2006.

A. J. Wild and S. C. Singh. Some unintended features of elastic finite-difference models.
Geophysical Prospecting, 46(1):79–101, 1998. doi: 10.1046/j.1365-2478.1998.810316.x.



Appendix A

The Fast Fourier Transform

The fast Fourier transform (FFT) is an efficient algorithm for computing the
forward and inverse discrete Fourier transform in a computer.

Given x0, . . . , xN−1 as complex numbers, the DFT is defined as fol-
lows (Press et al., 1992)

Xk =

N−1
∑

n=0

xne
2πi

N
nk k = 0, . . . , N − 1, (A.1)

The non-normalised inverse transform is obtained by changing the sign of the
exponent.

Implementing Eq. A.1 as-is would yield an inefficient and computation-
ally intensive solution using O(N2) arithmetic operations, while the FFT
algorithms will reduce this number to O(N log N) (Press et al., 1992).

A.1 Implementation in MatLab

MatLab uses an implementation of the fast Fourier transform provided by
the free FFTW1 library developed at MIT (MathWorks, 2006).

Since arrays in MatLab are 1-indexed, Eq. A.1 is modified, leading to the
following for the forward and inverse transforms respectively

1 Fastest Fourier Transform in the West
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52 A The Fast Fourier Transform

X(k) =

N
∑

j=1

x(j)ω
(j−1)(k−1)
N (A.2)

x(j) =
1

N

N
∑

k=1

X(k)ω
−(j−1)(k−1)
N (A.3)

ω = e−
2πi
N (A.4)

From Eq. (A.3) it can be seen that MatLab normalises the inverse transform
by 1

N
.

The output from the MatLab functions is ordered such that the positive
frequencies are in the first half of the output and the negative frequencies in
the second half. The consequence of this is that

X(
N

2
+ k) = X‡(k). (A.5)

This is a property of the output from the library MatLab uses to compute
the FFT (Frigo and Johnson, 2005).

A.2 Integration

Being no more than a faster way of computing a DFT, the FFT has the
same mathematical properties. The properties of importance for this work
are those with respect to convolution, cross-correlation and integration.

For the continuous Fourier transform an integral in the time-domain will
be transformed as (Kreyszig, 1999)

F
{
∫

x(t)dt

}

=
1

iω
x̂(ω) (A.6)

When applied to the fast Fourier transform this expression takes on a
different form. In case of the implementation used by MatLab it will appear
as

1

1 − e−ik 2π
N

f̂(k) (A.7)



Appendix B

Modelling output conversion

Since the modelling software used outputs the pressure field and particle
acceleration in the vertical direction, while the interaction quantities are de-
fined by pressure and particle velocity (Eq. 2.21) it is necessary to perform a
conversion from particle acceleration to velocity.

The conversion is performed by applying the relationship

a(x, t) =
∂v(x, t)

∂t
(B.1)

which implies that the velocity can be expressed as

v(x, t) =

∫ T

t=0

a(x, t)∂t (B.2)

Implementing this approach directly in a numerical workflow would be
impractical. Since the datasets are transformed to the Fourier-domain for
calculation of the interaction integrals, the integral property of the Fourier
transform can be exploited. This leads to the following relationship

v̂(x, ω) =
1

iω
â(x, ω) (B.3)

As discussed in Appendix A.2 equation B.3 does not hold as-is for the FFT
and must be modified according to Eq. (A.7), giving the following expression
for the conversion from particle acceleration to velocity

v̂(x, ωk) =
1

1 − e−ik 2π
N

â(x, ωk) (B.4)

In the actual implementation this relationship is only computed up to N
2 ,

since the other half of the signal can be reconstructed using the symmetry of
the FFT according to Eq. (A.5).
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Appendix C

MatLab source code

C.1 Model calibration

Listing C.1: Model calibration

1function [VP,VS,RHO] = ca l ib r a temode l (vp , vs , rho , res ,
zonef , hcf , wf )

2% I n i t i a l i z e ou tpu t
3VP = vp ;
4VS = vs ;
5RHO = rho ;
6
7% Read parameters
8[ khc , rhohc , vo lhc ] = f l u i d ( hc f ) ;
9[ kw , rhow ] = f l u i d (wf ) ;
10[ sw , k fr , kma, g , rhoma , por ] = re sda ta ( zone f ) ;
11
12% Calcu la t e f l u i d and bu l k d e n s i t y from r e s e r v o i r

parameters
13r hop f l = mean( sw) ∗rhow + (1−mean( sw) ) ∗sum( rhohc .∗ vo lhc )
14rhob = (1−mean( por ) ) ∗mean( rhoma) + mean( por ) ∗ r hop f l
15% Calcu la t e f l u i d bu l k modulus
16v = mean( sw) ∗kw+(1−mean( sw) ) ∗sum( khc .∗ vo lhc ) ;
17r = 1/((mean( sw) /kw)+(1−mean( sw) ) ∗sum( vo lhc . / khc ) ) ;
18kp f l = . 5∗ ( v+r ) ;
19
20RHO( r e s ) = rhob ;
21
22% Calcu la t e v e l o c i t i e s from r e s e r v o i r parameters
23VS( r e s ) = sqrt (mean( g ) /rhob ) ;
24M = mean( k f r ) + (4/3) ∗mean( g ) + ( (mean( k f r )−mean(kma)

) ∗( mean( k f r )−mean(kma) ) ) /( mean(kma) ∗ (1 − mean(
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56 C MatLab source code

por ) + mean( por ) ∗(mean(kma) / kp f l ) − mean( k f r ) /mean(
kma) ) ) ;

25VP( r e s ) = sqrt (M/rhob ) ;
26end

C.2 Fluid substitution

Listing C.2: Fluid substitution

1function [ vpsat , vssat , rhosat , Ksat , Gsat ] = f l s u b s (vp , vs ,
rho , res , f l da ta , r e s zone s )

2% FLSUBS − Perform f l u i d s u b s t i t u t i o n
3%
4
5vpsq = vp .∗ vp ;
6vssq = vs .∗ vs ;
7
8% I n i t i a l moduli
9Kin = rho . ∗ ( vpsq−(4/3)∗ vssq ) ;
10Gin = rho .∗ vssq ;
11
12% I n i t i a l i z e ou tpu t
13Ksat = Kin ;
14Gsat = Gin ;
15vpsat = vp ;
16vs sa t = vs ;
17rhosat = rho ;
18
19% Read parameters
20[ hc . k , hc . rho , hc . s ] = f l u i d ( ’ f l d a t a . in ’ ) ;
21[w. k ,w. rho ] = f l u i d ( ’ wdata . in ’ ) ;
22[w. s , k f r , kma , g , rhoma , por ] = re sda ta ( ’ r e s zone s . in ’ ) ;
23
24% Calcu la t e f l u i d p r ope r t i e s
25[ rhop f l , k p f l ] = mix f lu id (w, hc ) ;
26% Calcu la t e bu l k d e n s i t y
27rhob = (1−mean( por ) ) ∗mean( rhoma) + mean( por ) ∗ r hop f l ;
28
29rhosat ( r e s ) = rhob ;
30
31%mean(Gin ( re s ) )
32%mean( g )
33%s q r t (mean( g )/ rhob )
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34%rhob ∗ mean( vpsq ( re s ) )
35%M = mean( k f r ) + (4/3) ∗g + ( (mean( k f r )−mean(kma) ) ∗(

mean( k f r )−mean(kma) ) ) /( mean(kma) ∗ (1 − mean( por )
+ mean( por ) ∗(mean(kma)/ k p f l ) − mean( k f r )/mean(kma)

) ) ;
36%s q r t (M/ rhob )
37
38Ksat ( r e s ) = gassmann (mean( k f r ) , mean(kma) , kpf l , mean(

por ) ) ;
39vpsat ( r e s ) = sqrt ( ( Ksat ( r e s ) + (4/3) ∗Gsat ( r e s ) ) . / rhosat

( r e s ) ) ;
40v s sa t ( r e s ) = sqrt ( g/rhob ) ;
41%mean( vpsa t ( r e s ) )
42end

Listing C.3: Implementation of the Gassmann equation

1function Ksat = gassmann (Kfr , Kma, Kfl , por )
2% GASSMANN Perform f l u i d s u b s t i t u t i o n us ing Gassmann ’

s r e l a t i o n
3% Usage : Ksat = gassmann ( Kfr , Kma, Kfl , por )
4%
5% Arguments ( in order ) :
6% − Kfr : Rock framework bu l k modulus
7% − Kma: Mineral matrix bu l k modulus
8% − Kfl : F lu id bu l k modulus
9% − por : Poros i t y
10%
11% The sa tu ra t ed bu l k modulus i s re turned .
12a = (1−(Kfr . /Kma) ) .∗(1−(Kfr . /Kma) ) ;
13b = ( por . / Kfl ) + ((1−por ) . /Kma) − ( Kfr . / (Kma.∗Kma) ) ;
14
15Ksat = Kfr + a . / b ;
16end

Listing C.4: Mix fluid components

1function [ r ho f l , k f l ] = mix f lu id ( water , hc )
2sw = water . s ;
3rhow = water . rho ;
4kw = water . k ;
5vo lhc = hc . s ;
6rhohc = hc . rho ;
7khc = hc . k ;
8
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9r h o f l = mean( sw) ∗rhow + (1−mean( sw) ) ∗sum( rhohc .∗
vo lhc ) ;

10v = mean( sw) ∗kw+(1−mean( sw) ) ∗sum( khc .∗ vo lhc ) ;
11r = 1/((mean( sw) /kw)+(1−mean( sw) ) ∗sum( vo lhc . / khc ) ) ;
12k f l = . 5∗ ( v+r ) ;
13end

C.3 Acceleration to velocity

Listing C.5: Convert particle acceleration to particle velocity

1function v e l o c i t y = a2v_xf ( a )
2for i =1: s ize (a , 2 )
3f = a ( 1 : s ize ( a , 1 ) /2+1 , i ) ;
4v = i n t f f t ( f , s ize ( a ( : , i ) , 1 ) ) ;
5v = f l i p f f t ( v ) ;
6v e l o c i t y ( : , i ) = v ;
7end

8end

Listing C.6: Integration in the Fourier domain

1function i n t e g r a l = i n t f f t ( f f t , N)
2i n t e g r a l = zeros ( s ize ( f f t ) ) ;
3for k=1:N/2+1
4i n t e g r a l (k , : ) = (1 / (1 − exp(− j ∗k∗(2∗ pi/N) ) ) ) .∗

f f t (k , : ) ;
5end

6end

C.4 Interaction integrals

Listing C.7: time-convolution type

1%% Parameters
2nshot = 64 ;
3nrec = 128 ;
4nt = 4096 ;
5dt = 0 . 0 0 0 5 ;
6dshot = 24 ;
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7nsamp = 8 ;
8%recpos = ’tm ’ ;
9r e f s h o t = 35 ;
10
11%% pre−a l l o c a t e arrays f o r speed
12ref_p_tx = zeros ( nt /nsamp , nrec , nshot ) ;
13ref_a_tx = zeros ( nt /nsamp , nrec , nshot ) ;
14mon_p_tx = zeros ( nt /nsamp , nrec , nshot ) ;
15mon_a_tx = zeros ( nt /nsamp , nrec , nshot ) ;
16
17conv_fx = zeros ( nt /nsamp , nshot , nshot ) ;
18
19%% Read a l l r e f e r e n c e data
20[ ref_a_tx , ref_p_tx ] = readsd ida ta ( ’ base ’ , recpos , nshot ,

nrec , nt , nsamp) ;
21
22%% Read a l l monitor data
23[mon_a_tx , mon_p_tx ] = readsd ida ta ( ’ s80 ’ , recpos , nshot ,

nrec , nt , nsamp) ;
24
25%% Do s t u f f f o r a l l s ho t s in monitor survey
26for r e f =1: nshot
27ref_p_fx = f f t ( ref_p_tx ( : , : , r e f ) ) ;
28ref_a_fx = f f t ( ref_a_tx ( : , : , r e f ) ) ;
29ref_v_fx = a2v_xf ( ref_a_fx ) ;
30
31for mon=1: nshot
32disp ( sprintf ( ’ P ro ce s s ing r e f e r e n c e  %03d and 

monitor %03d o f  %03dx%03d . . .  %03d l e f t ’ , r e f
,mon, nshot , nshot , ( nshot ∗nshot )−(mon+nshot ∗(
r e f −1)) ) ) ;

33mon_p_fx = f f t (mon_p_tx ( : , : ,mon) ) ;
34mon_a_fx = f f t (mon_a_tx ( : , : ,mon) ) ;
35mon_v_fx = a2v_xf (mon_a_fx) ;
36
37conv_fx ( : ,mon, r e f ) = sum( ref_v_fx .∗mon_p_fx −

ref_p_fx .∗mon_v_fx , 2) ;
38end

39end

40
41%% cleanup
42clear ref_v_fx ref_a_fx ref_p_fx mon_v_fx mon_p_fx

mon_a_fx mon_v_fx ;
43clear i j n n f f t r e f mon ;
44
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45%% Dump r e f e r e n c e sho t to f i l e
46f i d = fopen ( s t r c a t ( ’ convint_ ’ , recpos , ’_ ’ ,num2str(

r e f s h o t ) , ’_tx . bin ’ ) , ’w ’ , ’ l ’ ) ;
47fwrite ( f i d , real ( i f f t ( conv_fx ( : , : , r e f s h o t ) ) ) , ’ f l o a t 3 2 ’

) ;
48fc lose ( f i d ) ;
49clear f i d ;
50
51%% Save r e f e r e n c e sho t f o r l a t e r use
52eval ( [ ’ convint_ ’ , recpos , ’_ ’ ,num2str( r e f s h o t ) , ’ _fx = 

conv_fx ( : , : , r e f s h o t ) ; ’ ] ) ;
53
54%% Dump i n t e g r a l s to f i l e
55writecomplex3d( s t r c a t ( ’ convint_ ’ , recpos , ’ _fx . bin ’ ) ,

conv_fx ) ;
56
57%% Clean out e v e r y t h in g ( almost )
58clear conv_fx

Listing C.8: time-correlation type

1%% Parameters
2nshot = 64 ;
3nrec = 128 ;
4nt = 4096 ;
5dt = 0 . 0 0 0 5 ;
6dshot = 24 ;
7nsamp = 8 ;
8recpos = ’tm ’ ;
9r e f s h o t = 35 ;
10
11%nyqu i s t = 1/(2∗ dt ∗nsamp) ;
12
13%f = [ ( 0 : nt /(nsamp∗2) ) −(nt /(nsamp∗2) −1:−1:1) ] / ( dt ∗nt ) ;
14%omega = f ∗2∗ p i ;
15
16%% pre−a l l o c a t e arrays f o r speed
17ref_p_tx = zeros ( nt /nsamp , nrec , nshot ) ;
18ref_a_tx = zeros ( nt /nsamp , nrec , nshot ) ;
19mon_p_tx = zeros ( nt /nsamp , nrec , nshot ) ;
20mon_a_tx = zeros ( nt /nsamp , nrec , nshot ) ;
21dir_p_tx = zeros ( nt /nsamp , nrec , nshot ) ;
22dir_a_tx = zeros ( nt /nsamp , nrec , nshot ) ;
23
24%% Read a l l r e f e r e n c e data
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25[ ref_a_tx , ref_p_tx ] = readsd ida ta ( ’ base ’ , recpos , nshot ,
nrec , nt , nsamp) ;

26
27%% Read a l l monitor data
28[mon_a_tx , mon_p_tx ] = readsd ida ta ( ’ s80 ’ , recpos , nshot ,

nrec , nt , nsamp) ;
29
30%% Read d i r e c t wave
31[ dir_a_tx , dir_p_tx ] = readsd ida ta ( ’ d i r e c t ’ , recpos ,

nshot , nrec , nt , nsamp) ;
32
33%% Compute s c a t t e r e d wave f i e l d s
34ref_p_sct_tx = ref_p_tx−dir_p_tx ;
35ref_a_sct_tx = ref_a_tx−dir_a_tx ;
36mon_p_sct_tx w= mon_p_tx−dir_p_tx ;
37mon_a_sct_tx = mon_a_tx−dir_a_tx ;
38
39%% Clean out f u l l wave f i e l d s
40clear dir_a_tx dir_p_tx mon_a_tx mon_p_tx ref_a_tx

ref_p_tx ;
41
42%% pre−a l l o c a t e working arrays
43ref_p_fx = complex ( zeros ( nt /nsamp , nrec ) ) ;
44ref_a_fx = complex ( zeros ( nt /nsamp , nrec ) ) ;
45ref_v_fx = complex ( zeros ( nt /nsamp , nrec ) ) ;
46mon_p_fx = complex ( zeros ( nt /nsamp , nrec ) ) ;
47mon_a_fx = complex ( zeros ( nt /nsamp , nrec ) ) ;
48mon_v_fx = complex ( zeros ( nt /nsamp , nrec ) ) ;
49
50corr_fx = complex ( zeros ( nt/nsamp , nshot , nshot ) ) ;
51
52%% Do the i n t e g r a l
53for r e f =1: nshot
54ref_p_fx = f f t ( ref_p_sct_tx ( : , : , r e f ) ) ;
55ref_a_fx = f f t ( ref_a_sct_tx ( : , : , r e f ) ) ;
56ref_v_fx = a2v_xf ( ref_a_fx ) ;
57
58for mon=1: nshot
59disp ( sprintf ( ’ P ro ce s s ing r e f e r e n c e  %03d and 

monitor %03d o f  %03dx%03d . . .  %03d l e f t ’ , r e f
,mon, nshot , nshot , ( nshot ∗nshot )−(mon+nshot ∗(
r e f −1)) ) ) ;

60mon_p_fx = f f t (mon_p_sct_tx ( : , : ,mon) ) ;
61mon_a_fx = f f t (mon_a_sct_tx ( : , : ,mon) ) ;
62mon_v_fx = a2v_xf (mon_a_fx) ;
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63
64corr_fx ( : ,mon, r e f ) = sum( ref_p_fx .∗ conj (

mon_v_fx ) + ref_v_fx .∗ conj (mon_p_fx) , 2) ;
65end

66end

67
68%% cleanup
69clear ref_v_fx ref_a_fx ref_p_fx mon_v_fx mon_p_fx

mon_a_fx mon_v_fx ;
70clear i j n n f f t r e f mon ;
71
72%% e x t r a c t d iagona l ( zero o f f s e t i n t e g r a l s )
73diag = zeros ( nt/nsamp , nshot ) ;
74for i =1: nshot
75diag ( : , i ) = corr_fx ( : , i , i ) ;
76end

77eval ( [ ’ co r r int_ ’ , recpos , ’ _diag_fx = diag ; ’ ] ) ;
78clear diag i ;
79
80%% Dump output to f i l e
81writecomplex3d( s t r c a t ( ’ co r r int_ ’ , recpos , ’ _fx . bin ’ ) ,

corr_fx ) ;
82
83%% Clean out e v e r y t h in g ( almost )
84clear corr_fx ref_p_sct_tx ref_a_sct_tx mon_p_sct_tx

mon_a_sct_tx
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