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Abstract—This paper provides clustered compressive sensing 

(CCS) based image processing using Bayesian framework 

applied to medical images. Some images, for example like 

magnetic resonance images (MRI) are usually very weak due to 

the presence of noise and due to the weak nature of the signal 

itself. Compressed sensing (CS) paradigm can be applied in 

order to boost such signals. We applied CS paradigm via 

Bayesian framework. Using different sparse prior information 

and in addition incorporating the special structure that can be 

found in sparse signal, CCS can be applied to improve image 

processing. This is shown in the results of this paper. First, we 

applied our analysis on Angiogram image, then on Shepp-logan 

phantom and finally on another MRI image. The results show 

that applying the clustered compressive sensing give better 

results than the non-clustered version. 

 

Index Terms—Bayesian framework, sparse prior, clustered 

prior, posterior, compressive sensing, LASSO, clustered 

LASSO.  

 

I. INTRODUCTION 

Compressive Sensing (CS) is a paradigm to capture 

information at lower rate than the Nyquist-Shannon sampling 

rate when signals are sparse in some domain [1]-[4]. The 

problem of limited number of samples or measurements can 

occur in multiple scenarios, e.g. when we have limitations on 

the number of data capturing devices, measurements are very 

expensive or slow to capture such as in magnetic resonance 

imagining (MRI) [5], [6]. The CS paradigm in signal 

processing requires three important ingredients [6]. First, the 

desired signal should have a sparse representation in a known 

transform domain, i.e., it should be compressible. If the 

signal is sparse spatially, for example, consider an image 

which is sparse in the pixels, then the transform domain can 

be the identity. Second, the aliasing artifacts due to under 

sampling should be incoherent in the transform domain. This 

creates a noise like structure. This measurement noise then 

can be modeled using white Gaussian noise. Third, a 

nonlinear reconstruction scheme should be used to enforce 

sparsity and consistency with the data [7]. Recently, this 

recovery using CS has been shown to be mathematically 

exact [2], [3]. As a signal-processing scheme, CS follows a 

 

 

 

 

similar framework: encoding, transmission/storing, and 

decoding. 

 

 
Fig. 1. Block diagram for CS based reconstruction. 

 

Focusing on the encoding and decoding of such a system 

with noisy measurement the block diagram is given in Fig. 1. 

Encoding is done by linear projections using random sensing 

transformations. At the decoding side, reconstruction is done 

using nonlinear schemes. And there are many algorithms in 

addressing this issue: convex relaxations [4], [8], greedy 

iterative algorithms [9], iterative thresholding algorithms 

[10]-[12]. In this paper, the focus is merely on the convex 

relaxation methods. We consider a noisy measurement and 

applied convex relaxation algorithms for robust 

reconstruction. This is done using a Bayesian framework for 

its flexibility and robustness. Basically, it is the updated 

version of the recent work [13].  

Therefore, this paper is organized as follows. In section II 

we present the CS problem and redefine it under Bayesian 

framework as in [13], [14]. Section III shows our results 

using synthetic signals, and section IV presents conclusion 

and future work. 

 

II. COMPRESSED SENSING BASED RECOVERY 

Beginning with a given vector of measurements y      

and measurement matrix            assuming noisy 

measurement with w       being i.i.d. Gaussian random 

variables with zero mean and covariance matrix    , 

estimating the sparse vector x       is the problem that we 

are considering given the linear model 

          .                                   (1) 

Here      and      , where k is the number of 

non-zero entries in x. Applying CS reconstructions using 

different algorithms we recover the estimate of the original 

signal x, say     . The measurement noise is reduced 

simultaneously with the reconstruction of the true image data 

using nonlinear reconstruction schemes. 

Various methods for estimating x may be used. We have 

the least square (LS) estimator in which no prior information 

is applied: 
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which performs very badly for the CS estimation problem we 

are considering. Another approach to estimate x is via the 

solution of the unconstrained optimization problem 

                
 

 
     -    

 

 
       ,             (3) 

where       is a regularizing term, for some non-negative  . 

If             , as a penalizing norm. In this paper we shall 

consider when               , which gives us different 

estimators which we define them here using Bayesian 

framework. 

A. Bayesian Framework 

Under Bayesian inference consider two random variables 

x and y with probability density function (pdf)      and 

    , respectively. Using Bayes‟ theorem it is possible to 

show that the posterior distribution,       , is proportional to 

the product of the likelihood function,       , and the prior 

distribution,       
 

                           .                            (4) 

 

Equation (4) is called Updating Rule in which the data 

allows us to update our prior views about x. And as a result 

we get the posterior which combines both the data and 

non-data information of x [13], [15]-[17]. Fur ther  the 

Maximum a posterior (MAP),      , is g iven  by   

 

                                           (5) 

  

to proceed further, we assume prior distributions on x. 

B. Sparse Prior 

The reconstruction of x resulting from (3) for the sparse 

problem we consider in this paper is presented as a 

maximum a posteriori (MAP) estimator under the Bayesian 

framework as in [14]. We show this by defining a prior 

probability distribution for   of the form 
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where the regularizing function      →    is some scalar 

valued,  non-negative  function with          which  can  be 

expanded to a vector argument by            
 
   , such 

that for sufficiently large  ,              
     

    is finite. 

Further, the likelihood function of   given   is given by 
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together with (4) and (6), this now gives the posterior 
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.           (8) 

 

and the MAP estimator  is then given by 

 

               
 

 
    -    

 

 
      .           (9) 

As shown in [13]. Now, as we choose different 

regularizing function which enforces sparsity into the vector 

 , we get different estimators listed below [16]. 

1) Linear Estimators: when            
        (9) reduces 

to 

          
            (10) 

 

which is the LMMSE estimator. But this estimator is 

not good enough for sparsity problem since it does not 

enforce sparsity well. Instead the following two 

estimators are more interesting for CS problems.  

2) LASSO Estimator: when                    we  get the 

LASSO estimator and  (9) becomes, 
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      .   (11) 

 

3) Zero-Norm regularization estimator: when       
    , we get zero norm regularization estimator and  (9)  

becomes 

 

                       
 

 
    -    

 

 
      .

 

(12)

 

This is the best solution for reconstruction of the sparse 

vector x, but is NP-complete. The worst solution among these 

LP penalizing forms for the sparse problem considered is the 

L2- regularization solution given by (10). However, the best 

approximation is given by equation (11) and its equivalent 

forms such as L1-norm regularized least-squares (L1-LS) and 

others [2]-[4]. 

C. Clustering Prior 

Building on the Bayesian philosophy, we can further 

assume another prior distribution for clustering. The entries 

of the sparse vector   may have some structure that can be 

represented using distributions. In [18] a hierarchical 

Bayesian generative model for sparse signals is found in 

which they have applied full Bayesian analysis by assuming 

prior distributions to each parameter appearing in the analysis. 

We follow a different approach. Instead we use another 

penalizing parameter   to represent clusterdness in the data. 

For that we define the clustering using the distance between 

the entries of the sparse vector   by 

 

               
 
   ,                          (13) 

 

and we use a regularizing parameter  . Hence, we define the 

new prior to be 

     
 

 
                                       (14) 

 

where   is the normalization constant to get      
         . 

The new posterior evolving this prior under the Bayesian 

framework is proportional to the product of the three pdf‟s 

                  . 

By similar arguments as used in section II.B, we arrive at 

the clustered LASSO estimator 
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where  ,   are our tuning parameters for the sparsity in   and 

the way the entries are clustered, respectively.   

 

III. RESULTS 

The main focus of this paper is to give a practical 

application of clustered compressed sensing. In order to 

verify the theory we have selected different medical related 

images. We used LS, LMMSE, LASSO and Clustered 

LASSO given by equations (2), (10), (11), and (12), 

respectively, to reconstruct from a noisy measurement and 

compare their performances too. We apply our analysis to 

Angiogram, phantom and then to functional MRI (fMRI) 

images. 

A. Angiogram Image 

The first one is an angiogram image taken from University 

Hospital Rechts der Isar, Munich, Germany [19]. Angiogram 

images are already sparse in the pixel representation. In 

general MRI images are sparse (and even clustered) in the 

spatial and the transformed domain. The image we took is 

also clustered as well. The original signal after vectorization 

is   of length N = 960. By taking 746 measurements, and 

maximum number of non-zero elements k = 373, we applied 

the different the reconstruction schemes and the results are 

shown in Fig. 2 and Table I. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 2: Comparison of a signal reconstruction using sparse prior 

only and using additional clustered prior. 

 
Fig. 2. Comparison of reconstruction schemes:  a) original image    b) 

LMMSE c) LASSO d) clustered LASSO. 

 

TABLE I: PERFORMANCE COMPARISON 

Algorithms MSE in dB 

LMMSE -35.1988 

LASSO -53.6195 

Clustered LASSO   -63.6889 

 

B. 

Consider the Shepp-Logan phantom which is not sparse in 

spatial domain but can be sparcified in k-space by zeroing out 

small coefficients. We then measured the sparsified image 

and added noise. The original signal after vectorization is   

of length N = 200.  By taking 94 measurements, that is   is of 

length M = 94, and maximum number of non-zero elements k 

= 47, we applied different the reconstruction algorithms used 

above. The result shows clustered LASSO does well 

compared to the others as can be seen in Fig. 3 and Table II. 

 

 
Fig. 3. Comparison of reconstruction schemes: a) original image    b) 

sparcified image c) LS  d) LMMSE  e) LASSO f) clustered LASSO. 

 

TABLE II: PERFORMANCE COMPARISON 

Algorithms MSE in dB 

LS -21.3304 

LMMSE -27.3876 

LASSO -37.9978 

Clustered LASSO -40.0068 

 

C.  fMRI Image 

Another example to apply the clustered LASSO based 

image reconstruction using Bayesian framework to medical 

images is a functional MRI (fMRI) image. We took many 

slices of fMRI image given in Fig. 5, which is sparse with 

some clusterdness in the transform domain as it is shown in 

Fig. 4. And this gives ground to apply the framework and the 

procedure used here. The performance of the different 

reconstruction schemes is visible from Fig. 5.  

 
Fig. 4. The five column images represent the real and imaginary part of the 

Fourier transform representation of the data set we have chosen to present 

further, which in general shows that the fMRI data have sparse and clustered 

representation. 

 

In addition, for a synthetic data we have compared the 

different recovery techniques by using pick signal to noise 

ratio (PSNR) and mean square error (MSE) versus 

measurement ratio (M/N) and the results are shown in Fig. 6 

and Fig. 7, respectively. Generally reconstruction using 

LASSO is much better than LS and LMMSE algorithms for 

the sparse reconstruction problem.  
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Fig. 5. Application of sparse and cluster prior on a fMRI data analysis 

 

 

 
Fig. 6. Comparison of reconstruction schemes using PSNR versus 

measurement ration  

 

 
Fig. 7. Comparison of reconstruction schemes using MSE versus 

measurement ration  

 

Further, clustered LASSO outperforms LASSO since it 

uses more accurate information about the structure of the 

sparsity. Finally, we see the impact of sparsity ratio on the 

performances of the reconstruction schemes in Fig. 8 using 

reconstruction ratio versus sparsity ratio, k/N. 

 

 
Fig. 8. Comparison of different reconstruction schemes using the metric 

 

 

IV. CONCLUSIONS 

In this paper clustered compressive sensing using Bayesian 

framework is presented. Our emphasis in this work is to 

incorporate prior information‟s like sparseness and 

clusteredness in the reconstruction of signals from fewer 

measurements. And apply it on different medical related 

images. Clustered LASSO recovery does well in terms of 

PSNR and MSE than LASSO (using only sparse prior), 

LMMSE and LS. In addition, in this work we have shown 

comparison of the different reconstruction algorithms 

performance for different amount of measurement ratio 

versus PSNR and MSE. In addition sparsity ratio versus 

reconstruction ratio is provided to see hoe the schemes 

behave with the amount of sparsity. For future work we plan 

to apply different forms of clustering depending on the prior 

information‟s of images or geometry of clustredness. 
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